
Configuration Management for Reusable Software

William B. Frakes
Computer Science Department

Virginia Tech
wfrakes@vt.edu

Abstract

This paper discusses the configuration management of reusable software, and proposes an
architecture that incorporates configuration management with a software library.

Introduction
Software configuration management concerns monitoring and controlling changes to
software. This paper discusses configuration management of reusable software assets,
drawing on previous work on configuration management for traditional software
engineering [Frakes et. al. 91]. Configuration management has three major activities:

• Version control. Reusable software components, like any software product, will have
versions because of error fixes and enhancements. To build a system using these assets,
one needs to know which version to use. Old versions of assets must be recoverable for
reference, and so they can be used to make corrections and enhancements. As software
assets change, they form successive versions. Version control is the activity of keeping track
of these versions.

• Change control. Change control is the procedure for requesting changes, deciding what
changes to make, making changes, and recording and verifying changes. Changes to
reusable assets in a library cannot be made haphazardly, but must be made under a
controlled process.

• Build control. Keeping track of which versions of work products go together to form a
release, and generating derived assets and systems correctly, is called build control. Build
control for reuse has two aspects. One is the general specification of which versions of
assets to use in a system build. The other aspect is that reusable assets may themselves be
composites of other items, so specifications of how to build assets may also be required.

We discuss each of these activities in turn as it relates to reusable components..

Version Control

A software configuration item is any software project work product treated as a unit for
version control. Examples of reusable assets that might be put under version control include
functions and subroutines, classes, requirements and design documents, sets of test cases,
header files, and user documents. Assets are often changed producing variants. Variants are
sometimes distinguished as versions to be kept track of in the version control system. The
first version of an item is called a baseline. For example, a software component might be
baselined at the end of testing. A second version might be generated if errors are discovered
after field release, a third version when the component is enhanced with new functionality.

Except for baselines, versions are always created by changing previous versions, called
predecessors. A version is a successor to its predecessor. There are two kinds of versions:.
A version is a revision if it replaces another version. A version is a variation, or branch, if it
is one of several alternative versions. Variations may be created from other versions, or may
be a baseline. Revisions are produced because it is constantly necessary to correct errors,
remove or add information, and so forth. Variations are generated because of the need to
tailor components to different environments and users.

To illustrate, suppose that a baseline component is changed to correct several mistakes. The
new version is a revision of the baseline because it is meant to replace it. Two additional
components might be generated from the corrected version describing two slightly different
components for different operating systems. Because these three components are
alternatives, with none meant to replace the others, they are variations, not revisions. In large
projects generating multiple releases or multiple variations of releases for different operating
environments or markets, there may be many variations and revisions of all items. Version
control systems must keep track of all versions of items, including successor and
predecessor information.

The design of reusable assets involves the prediction of variant future uses, and reusable
assets should be designed to make modifications as easy as possible. In theory, the
changeable parts of an asset should be hidden from a user; the visible interface should not
change or should change minimally when errors are corrected or enhancements made. Thus,
the interface and implementation of an asset might be treated as distinct software
configuration items.

Version control is primarily record keeping, and a database tool is often used to support it.
In a small ad-hoc reuse environment an informal system might do. Usually, however, the
task is large and complex, so mechanized tools like Source Code Control System (SCCS)
[Rochkind, 75]and Revision Control System (RCS) [Tichy, 85] are required.

Change Control

Change control is the activity of considering, deciding on, delegating responsibility for, and
monitoring changes to items. Change control is instituted as a collection of procedures,
usually focused on a database system for documenting and tracking changes.

Such a change tracking database system is called a change control system. Change control
may be informal on small projects, perhaps using a logbook to document and track changes.
On larger projects, strict change control procedures must be instituted along with a
mechanized system for documenting and tracking changes.

The basic activities and processes of change control are the following: 1. Someone submits
a request for a change. Such requests are called MRs (modification requests), and
submitting a request is called opening an MR. Usually a form, either paper or electronic,
called a modification request form or MRF is used to open an MR. An example of an MRF
follows:

Modification Request: Date of MR:
APPLICATION: TYPE: SW RELEASE OCC:
ORIG. NAME: EMAIL:
DESCRIPTION:
RELATED MRs:
STATUS:

PRIOR STATUS:
DUE DATE:
TESTER:
CATGORY CHNG:
RESOLUTION SUMMARY:
RESOLUTION:
IMPACT:
CHILDREN:

MRs may be opened by customers, developers, managers, testers, documenters, or some
selected subset of these groups. MRs may mention faults, errors, enhancements, typos, and
so forth.

If an MR is written against a requirement during the latter part of the life cycle, the change
will also possibly require changes in the design, code, test plans, and other later life-cycle
products. The MRs written to change these later life-cycle products are said to be child MRs
of the original MR. Another example of child MRs are changes in individual compile
modules dictated by a change in a common header file. Here, MRs to change the compile
module are child MRs of the MR for the header. Reusable components will also be subject
to these concerns.

2. MRs are reviewed by a change control authority or an MR review board that examines
each MR and decides on an appropriate action. The MR review board may be composed of
developers, managers, testers, and so forth. In a typical development environment, the MR
review board will be project specific and may last only for the length of the project. In a
reuse situation, the authority of the MR review board may have to extend across projects
and organizations, and will have to last the lifetime of the reuse collection.

Often the decision involves classifying the MRs according to their severity. A classification
system like the following is sometimes used:
• Severity level 1. The item is unusable, incomprehensible, or unmanufacturable because of a
problem reported by the MR. For example, an MR reporting a software fault causing the
system to crash during typical use would rate a severity rank of 1.
• Severity level 2. The item is usable but unacceptable because of the problem reported in the
MR. For example, a test case with partially incorrect input conditions might be given this
severity classification.
• Severity level 3. The item is usable, but the MR reports a failure to conform to standards,
guidelines, or practices. For example, an MR reporting improperly formatted section
headings in a user document would receive a Level 3 severity ranking.
• Severity level 4. The MR requests an enhancement or adaptation. For example, a request
for a port to a personal computer would rank as a severity Level 4 MR.

Once MRs are classified, the MR review board decides how to dispose of each MR. Among
the possibilities accepting the MR and making the required change immediately, deferring
the MR, or rejecting the MR .

3. Once a change is approved, a change tracking authority is notified and proceeds to track
the progress of the change. SCCS provides crude support for build control of non-derived
items in its version numbering system.

4. The change must be planned, scheduled, assigned to a developer, implemented, reviewed,
and verified. Once this is done, the change control authority is notified that the change is
completed. The MR is closed, and the change becomes part of the next version of the
software configuration item. Change control systems can usually report the status of MRs,

generate statistics and reports summarizing the change activity of a project, and direct
notifications and information about changes to people. Figure 2 illustrates the change
control process.

Test

Organization

Modification

Request (MR)

Originator

Software

Build

Group

Responsible

Person

Project

Personnel

Project

Management

Potentially

Affected

Organization

MR
Review
ProcessStatistical

Analysis

Change

Management

System

MR Report

Bug-fix
Resolution

Impact
AssessmentResponse

Board
Decision

MR
Data

MR
Statistics

MR Report

MR Report

MR
MR Report

Formal change control systems introduce significant management overhead in development
and maintenance. Consequently software configuration items are usually placed under
change control at the same time they are placed under version control, usually as late in the
life cycle as possible.

Build Control

 A software configuration is a set of item versions. Build control is the activity of
specifying, tracking, and forming software configurations. Build control centers around the
database activity of maintaining complete specifications of software configurations as items
change thorough the life cycle.

An important group of items that are part of software configurations are derived items,
items generated from other items, usually by the computer. Examples of derived items
include object modules, executable files, test data, and so forth. Non-derived item build
control is not difficult until there is more than one release of a system; then it can become a
difficult problem. Non-derived item build control is usually done by hand. Efficient derived
item build control is a difficult problem, but it yields to mechanization; many tools for
derived item build control exist. For example, the primary build control tool in the UNIX
environment is make, which automates the generation of derived items.

Besides the primary activities of configuration management, configuration management
tools can produce data to help with project tracking. For instance, SCCS and RCS can
report how many lines have changed in project files. Since these changes, or deltas, are

easier to obtain than corrected error data, they are sometimes used as proxy metrics to
estimate fault densities. Such data can be useful as an indicator of component quality.

Software Reuse Libraries

A reuse library consists of a repository for storing reusable assets, a search interface that
allows users to search for assets in the repository, a representation method for the assets
and facilities for change management and quality assessment. Surveys of reuse libraries
may be found in [Frakes&Gandel 90] and [Milli et. al. 98].

Repository

existing systems

select

transform

certify

design

purchase

User

search
system

Classify

Software Library
The figure above shows the major features of a reuse library. Reusable assets for the
library can be obtained through the re-engineering of parts in existing systems through a
process of selection and transformation or they may be designed from scratch or purchased.
However obtained, the assets will need to go through a certification process to assure that
they meet the quality standards required by the library. Studies have shown that if users
believe that the library contains substandard components they will avoid using it [Carle 87].

As shown in table 1, a distinction is often drawn between different levels of published
literature and this distinction applies to software assets as well as traditional printed media
such as books and papers. The primary reuse literature consists of the assets themselves,
for example, code modules. The secondary literature consists of indexes which guide a
potential user to the primary literature. The tertiary literature provides an index to asset
indexes and so on. The process of developing good secondary and tertiary indexes for
reusable software is ongoing. One important development has been the identification of a
link between indexing and domain analysis [Frakes et. al. 98].

Literature Level Book Asset Example
Primary book asset code module
Secondary index to books index to assets index of code

modules
Tertiary index to index to

books
index to index to
assets

index of indexes of
code modules

Table 1: Levels of Indexing

The next step is to classify, or assign a representation, to the assets. Good representations
are needed to help users find and understand assets in the library. Once classified the
assets are stored in the repository. Users will then submit queries to the repository via a
search system. Topics that will need to be considered when creating an reuse library
include:

• the platforms used to implement the library storage mechanism
• representation methods for the assets
• search interfaces
• version control
• inter-operability of reuse libraries
• the measurement and evaluation of reuse libraries

Integrated Architecture

The figure below shows a high level proposed architecture for a reuse environment that
integrates a reuse library tool with tools for version control, change control, and build
control. The ovals indicate needed activities, and the boxes available tools for
implementation. A system based on this architecture would provide an environment that
would support both reuse and traditional software development activities.

An integrated architecture for configuration management of
reusable components

Configuration
Managemnt

Build
Comtrol

Version
Control

Change
Control

Make

RCS

Process Database

Search
Engine

Database

Summary

Configuration management is an important part of software engineering. It includes three
inter-related activities: version control, change control, and build control. Existing software
development environments, such as UNIX, offer tools to support these activities separately,
This paper has discussed configuration management issues on terms of reusable
components, and has proposed an integrated architecture for combining tool support for
configuration management and reuse libraries.

REFERENCES

Carle, R. (1987). Reusable Software Components for Missile Applications. In Tenth
Minnowbrook Workshop on Software Reuse, . Blue Mountain Lake, NY:

Frakes, W. B., & Gandel, P. B. (1990). Representing Reusable Software. Information and
Software Technology, 32(10), 653-664.

Frakes, W. B., Fox, C. J., & Nejmeh, B. A. (1991). Software Engineering in the UNIX/C
Environment. Englewood Cliffs, NJ: Prentice-Hall.

Frakes, W., Prieto-Diaz, R., & Fox, C. (1998). DARE: Domain Analysis and Reuse
Environment. Annals of Software Engineering, 5, 125-151.

Mili, A., Mili, R., & Mittermeir, R. T. (1998). A Survey of Software Reuse Libraries.
Annals of Software Engineering, 5, 349-414.

Rochkind, M. J., 1975 "The Source Code Control System," IEEE Transactions on
Software Engineering, SE-1, no. 4 , 255-265.

Tichy, W., "RCS—A System for Version Control," 1985 Software Practice and
Experience, 15, no. 7 , 637-654.

