

Cloud Digital Repository Automation

Matthew Brockman, Chris Hill

CS4624: Multimedia, Hypertext, and Information Access
Virginia Tech, Blacksburg, VA 24061

Instructor: Dr. Edward Fox
Client: Yinlin Chen

5/2/2018

2

Table of Contents
Table of Figures………………………………………………………………………………………….3

Table of Tables…………………………………………………………………………………………...4

Abstract…………………………………………………………………………………………………... 5

Introduction…………………………………………………………………………………………….... 6

Requirements……………………………………………………………………………………….... 7

Design…………………………………………………………………………………………………….. 8

Tech Stack……………………………………………………………………………………………. 9

Implementation……………………………………………………………………………………... 10

Notes on AWS……………………………………………………………………………………….12

Account Management……………………………………………………………………………... 12

AWS Console Pipeline Walkthrough………………………………………………………………. 13

Costs…………………………………………………………………………………………………….. 23

Lessons Learned…………………………………………………………………………………….... 25

Problems…………………………………………………………………………………………….. 25

Solutions…………………………………………………………………………………………….. 25

Future work…………………………………………………………………………………………. 26

Closing Thoughts…………………………………………………………………………………... 26

Acknowledgements…………………………………………………………………………………... 27

References……………………………………………………………………………………………... 28

3

Table of Figures

1. Representation of a Software Development Pipeline...……………………………………... 6

2. Different Stages within the Pipeline………..…………………………………………………. 10

3. The Initial Pipeline Screen…………………...……………..………………………………………. 13

4. Connecting a Github Account………………………………………………………………………. 13

5. AWS CodeBuild Selection Options………..………………………………………………………. 14

6. AWS Build Project Configuration ………………….………………………………………………. 14

7. BuildSpec.yaml Specification ……………………………………...………………………………. 15

8. Caching Options and Service Roles……………….……………………………………………….15

9. Advanced Build Setting for AWS CodeBuild……………...……………………………………….16

10. Deployment Provider Selection…………....……………………………………………………... 17

11. Application and Environments for Beanstalk………………………….………………………… 17

12. Selected Environment Tier………………………………………………………………………... 18

13. New Environment Creation…...…………………………………………………………………... 18

14. Base Configuration for Environment………………………………………………....…………...19

15. Finalizing Deployment for both Application and Environment….……………………………... 20

16. CodePipeline Access using Services…………..………………………………………………... 20

17. Final Review of the Pipeline……………………………………………………………………..... 21

18. Final Pipeline format in AWS……………………………………...…………………………... 22

4

Table of Tables
1.1 Cost Analysis for CodeBuild…………………….…………………………………………... 23

5

Abstract

 The Cloud Digital Repository Automation project uses AWS services to create a

Continuous Integration and Continuous Deployment pipeline for the Fedora4 digital

repository system. We have documented our process, services, and resources used so

that the pipeline can be modified and expanded upon further.

This project is for our course Multimedia, Hypertext, and Information Access,

which creates an automated deployment pipeline using AWS resources. The overall

purpose of this project is to automate some of the more mundane yet essential aspects

of building and deploying a codebase. Taking source code from a repository and

updating based on the recent changes can be a hassle as well as manually time

consuming. This process of updating and bug fixing source code is not a new concept

but can be made easier if some and if not all of the building, testing, and deploying is

done automatically. This project aims to help the Fedora4 development team by

providing a baseline pipeline configuration that can handle updates to source and

subsequently build, test, and deploy the new updates and changes.

 Our project sets up an AWS pipeline that handles automatic deployment to a

staging server in the cloud for Fedora4. We based our implementation of the pipeline to

what was available for our access and made sure not to interfere with any existing

Fedora4 code or resources. We used Amazon services such as CodePipeline,

CodeBuild, and Elastic Beanstalk to create and format our automation process.

Understanding and utilizing cloud automation is essential to future careers as software

developers and this project aims to acclimate and understand AWS in that role with a

focus on automated CI/CD.

6

Introduction

Continuous Integration(CI) and Continuous Deployment(CD) is at the forefront of

modern software practices. Programming applications and coding projects are

developed and maintained by a group of developer’s who update and write code to suit

client needs or improve the product incrementally. Continuous integration with a project

aims to collaborate all developer’s work to a main or master branch and essentially

integrating the day’s work together. This CI in combination with Continuous

Deployment allows for any application to be in a state of release and keeping software

up to date with the latest changes to the code.

The concepts of CICD aim to help a software development team and automate

the building/compiling, testing, and deploying of an application. The application can be

passed through a pipeline of stages for these steps in the software delivery process.

Automation of any or all of these steps drastically affects the amount of human

interaction for any code change in the repository. This means that developer’s can

spend more time designing, programming, and debugging, rather than manually testing

and checking results of the most recent build or checking that the latest version deploys

to production. Automatically checking for a change in the repository is the start of this

process for most applications.

Figure 1 - Representation of a Software Development Pipeline

The future of software development revolves around integrating bug fixes and

new features being delivered and deployed as soon as possible. By automating these

some or all of these steps, much of the process for building, testing, artifacting, and

deploying new versions of software becomes seamless and simply requires minimal

human interaction. In this way, any problems can quickly be sought out, fixed and

7

automatically tested, and releasing new software becomes almost completely

automated.

Handling this process for the Fedora4 team is hopefully helpful and also intuitive

when the pipeline is then passed on to them because it lays important groundwork for

the configuration of their deployment server in an AWS cloud environment.

Requirements

The following requirements for this project:

● Using Amazon Web Services for an automated pipeline (AWS)

● Automated Deployment Pipeline of Fedora 4 to a staging server

○ Github change triggers the following

○ Build using Maven 3 on AWS resources

○ Deploy to a cloud server (AWS EC2 instance)

● $500 AWS credit for the budget

● Documentation of steps, accounts, files in order to recreate and

reconfigure this process for any updates and changes

8

Design

The Project deliverable is an automated continuous integration (CI) and
continuous delivery (CD) release workflow for an open source digital repository software
- Fedora 4 using Amazon Web Services (AWS). A working CICD deployment staging
server for Fedora 4 allows for the Fedora to maintain a streamlined finished product for
both clients and development team alike. Much of the pipeline is aimed at using AWS
and multiple plugins can be found for any existing additions to it, like a Jenkins plug-in
for AWS[1].

 AWS CodePipeline[2] serves as an overarching backbone that can utilize and
automate the other AWS services within itself. It is built upon a series of inputs and
outputs between each of the stages.

Elastic Beanstalk[3] is a service that offers EC2 instances based on the necessary
resources for a certain web application. This service automatically scales based on the
requested resources or the amount from the web app. There is a reduction in
complexity because the Beanstalk will handle more detailed aspects of load balancing,
scaling, and application health. It also supports applications developed in Java, as well
as

AWS Simple Storage Service (S3)[4] serves as an intermediary storage space for
artifacts in each stage in the pipeline. Each input and output of the Pipeline can be
managed by this simple repository and provides access to the data throughout all of
AWS, as long as permissions are given.

 Other options we looked into on AWS were CodeDeploy and Opsworks. These
tools are good options to look at in terms of configuring a testing, pre-prod, and
production server. CodeDeploy handles deployment on existing EC2 instances that are
already setup and configured for the production environment. Opsworks acts a tool to
configure EC2 instances using either a Chef recipe approach or Puppet. Considering
this was our first time deploying, we opted to use Elastic Beanstalk. However if
interesting in deploying and configuring a fleet of servers, OpsWorks and CodeDeploy
may be of use.

1
 "GitHub - jenkinsci/pipeline-aws-plugin: Jenkins Pipeline Step Plugin"

https://github.com/jenkinsci/pipeline-aws-plugin. Accessed 1 May 2018.
2
 "AWS CodePipeline | Continuous Integration" https://aws.amazon.com/codepipeline/. Accessed 1

May 2018.
3
 "AWS Elastic Beanstalk – Deploy Web" https://aws.amazon.com/elasticbeanstalk/. Accessed 1 May

2018.
4
 "Cloud Object Storage | Store & Retrieve Data Anywhere | Amazon" https://aws.amazon.com/s3/.

Accessed 1 May 2018.

https://github.com/jenkinsci/pipeline-aws-plugin
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/s3/

9

Tech Stack

● Github

● Amazon Web Services

○ AWS CodePipeline

○ AWS CodeBuild

○ AWS Elastic Beanstalk

■ AWS EC2 Instances

○ AWS Dashboard

● Maven

Source code: Fedora 4 Github repository

Build tool: Maven 3 with AWS CodeBuild

Deployment Server: EC2 instance encompassed in Elastic Beanstalk with Tomcat

10

Implementation

 Implementation involves using 3 main stages within the CodePipeline. These

consist of pulling source code from our forked Fedora4 github repository, building and

testing Fedora4 then outputting an artifact into a S3 bucket, and finally onto the Elastic

Beanstalk.

Figure 2 - Different Stages within the Pipeline

 Since the Fedora4 repository is public, the option to fork was offered to us to add

files for AWS services to use for an automatic deployment. The use of Amazon’s S3

bucket is necessary because of the permissions and security roles built in to both AWS

services and the EC2 instance(s) within the Elastic Beanstalk. In order to retrieve the

build artifact in between stages, the easiest and most effective way is to use S3 buckets

that can also be used as an artifactory that can timestamp a build. This artifactory can

be used to rollback to previous versions or debug a client’s specific version. Each build

can be set to have a timestamp or be configured further with AWS CloudWatch.

 The changes made to the forked Fedora4 repository include a BuildSpec.yml

file that is used when AWS triggers a release and starts the pipeline based on the

Github webhook. AWS CodeBuild can be supplied direct commands to run in a

specified build environment where the BuildSpec.yml specifies what commands to

be run.

 Deployment to the Beanstalk is handled by passing the artifact from the specified

bucket and having an .ebextensions folder within the directory of the zipped file

passed to the Beanstalk. Any configuration steps for the environment and other

software configurations should be handled in this folder with the use of .yml or .json

files. There is a great AWS guide[5] that specifies how these files should be formatted

and used for a software environment like Fedora4. Essentially any packages that need

installing or setup commands that need to be run on the Beanstalk will be placed here.

Any and all configurations that need to be done to the instance or instances within the

Beanstalk should be placed in this folder with the correct file ending. These Elastic

Beanstalk extensions[6] are found more in-depth and can be configured to suit the type

5
 "ebextensions - AWS Documentation."

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html. Accessed 2 May 2018.
6
 "Customizing Software on Linux Servers - AWS Elastic Beanstalk."

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-ec2.html. Accessed 2 May
2018.

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-ec2.html

11

of staging server. This includes any specific file commands that need to be run or any

file manipulation that occurs. It is interesting to note that the Beanstalk can restart

based on a list of files that change. Once a configuration is set and functioning, make

sure to save the configuration so that this environment can be saved and used for other

applications.

 The addition of the .ebextensions folder should be made in the pom.xml file

to be included. There are 2 ways of passing the extension config files to the Beanstalk,

manually extracting them once the instance(s) are up, or passing Beanstalk a .zip file

containing both the 5.0.0-SNAPSHOT.war and the .ebextensions folder. Using the

latter approach is the only way of making this process completely automated, to avoid

ssh into the Beanstalk to manually configure files. These extensions act almost as a

Dockerfile for the Beanstalk but must be added and configured in the build phase. In

the BuildSpec.yml file extra commands can be given to combine the .war and

.ebextensions folder.

 Ultimately an .ebextensions folder can be further configured to address any

specific Fedora4 needs or changes, but there is a single config file based on the

Dockerfile that specifies the commands run on a preliminary configuration for the

Beanstalk. Beanstalk needs a .zip file that contains both the .war and

.ebextensions. This should be modified in the Pipeline overview such that the input

to the Beanstalk is a .zip file so Fedora4 configurations can be passed to it.

12

Notes on AWS

Initially an error was due to not putting the correct path name to the artifact within

the codeBuild account. If data is stored onto AWS S3 buckets like we have used, make

sure that the artifact is stored on the same bucket that the pipeline is being built in.

 For example if the bucket is in aws-us-east-2, do not create the pipeline in aws-

us-west 1 because the pipeline will not be able to see any of the codeBuild or S3

buckets in another region.

Account Management

● user/ IAM account number: 099214287868

● IAM account name: rock_mjb

● Password: TunaMelt123

This account manages all the resources created for the AWS Pipeline. These are the

resources needed for the automatic deployment to a Beanstalk and the URL for the

beanstalk currently is located at :

 http://trial7.us-east-2.elasticbeanstalk.com:8080/fcrepo

A sample .tar file is located at:

https://s3.console.aws.amazon.com/s3/object/fedora4configs/beanstalk_configs/f

edora_w_config.zip

The .zip file should be modeled like above in terms of directory structure in order

for Elastic Beanstalk to read and recognize the extensions folder with configuration

inside.

http://trial7.us-east-2.elasticbeanstalk.com:8080/fcrepo
https://s3.console.aws.amazon.com/s3/object/fedora4configs/beanstalk_configs/fedora_w_config.zip
https://s3.console.aws.amazon.com/s3/object/fedora4configs/beanstalk_configs/fedora_w_config.zip

13

AWS Console Pipeline Walkthrough
This is meant to provide help initializing a Fedora 4 pipeline using the AWS console.

Figure 3 - The initial pipeline screen

Figure 4 - Connecting a github account with AWS allows for automatic webhooks based on a git

push to the repository given.

14

Figure 5 - This is build selection. Among the options here are Jenkins, AWS CodeBuild, and

Solano CI. The CodeBuild option is the most straightforward for this. If a BuildSpec.yml file[7] is

added to the github repository, there are many options to determine build commands and

environments.

Figure 6 - This is where the build process can be specified and configured for CodeBuild.

7
 "Build Specification Reference for AWS CodeBuild - AWS CodeBuild."

https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html. Accessed 1 May 2018.

https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html

15

Figure 7 - Here is where a BuildSpec.yaml file can be used to specify any and all

commands/build environment variables. Generic OS and runtime languages can be specified

here as well.

Figure 8 - Here is where the option to cache the dependencies of a build can be specified at a

specific S3 bucket to save on build time. Service role is to ensure that the the build can access

the correct AWS resources it needs to build, ie here you would give a service role that has

access to a cache bucket.

16

Figure 9 - These are the advanced settings for AWS CodeBuild. Any Virtual Private Cloud

network can be specified for this build. A timeout can be set to make sure that the build time

doesn’t take up too many resources. The average build time with tests was around 12 min and

without Maven unit tests, 7 min.

Remember to save this build project so that if another pipeline is made it can use the same

configurations.

17

Figure 10 - The Deployment provider is selected as Elastic Beanstalk. And the creation of an

application and an environment is prompted.

Figure 11 - This is a created application without an environment named “FinalApplication”
Creating an environment can be made by “Create one now.”

18

Figure 12 - The selected environment is web server because a .war file is being deployed.

Figure 13 - This specifies the new environment name and description for the specified

application.

19

Figure 14 - This specifies the Tomcat servlet that is used for Fedora4. Upload the code from an

artifactory, and in this case, we used S3 as the artifactory so providing a .zip file after CodeBuild

would be optimal defined in the BuildSpec.yml file.

20

Figure 15 - Finalizing Deployment for both Application and Environment after they have been

created. Ensure that the application being uploaded is targeted wherever the CodeBuild output

bucket is specified.

Figure 16 - Let CodePipeline Service be allowed to access both the CodeBuild and S3 buckets

used by this pipeline

21

Figure 17 - Final Review step before Pipeline creation.

22

Finished Pipeline
The finished pipeline is now deployed and the CodePipeline on the AWS account looks

like with manual and automatic deployments.

Figure 18 - Final Pipeline format in AWS

23

Costs
Build Time is the most important factor in this situation. It costs 1$ per pipeline and also

dependent upon other AWS resources used by this pipeline (i.e. EC2 instances within Beanstalk

and CodeBuild minutes). S3 storage charges are miniscule and the heaviest charge is based

on CodeBuild. CodeBuild charges by build minutes, essentially based on how long the maven

install command takes. Roughly 7 minutes without tests and 12 minutes with tests.

Table 1.1 - Cost Analysis for CodeBuild

7 min * $0.005 = 0.035 cents per build without testing

12 min * $0.005 = 0.06 cents per build

Instance use is dependent on how much traffic is outbound out of the Beanstalk and a calculator

at: https://calculator.s3.amazonaws.com/index.html

This can help with determining exact costs for each staging server, testing, pre-prod, or prod.

Existing AWS Resources
All lasting AWS resources should be located in region = us-east-2
There exists a pipeline at :https://us-east-

2.console.aws.amazon.com/codepipeline/home?region=us-east-2#/dashboard

There exists 3 CodeBuild builds at:

https://us-east-2.console.aws.amazon.com/codebuild/home?region=us-east-2#/projects

There exists 2 Beanstalks at:

https://us-east-2.console.aws.amazon.com/elasticbeanstalk/home?region=us-east-

2#/applications

https://calculator.s3.amazonaws.com/index.html
https://us-east-2.console.aws.amazon.com/codepipeline/home?region=us-east-2#/dashboard
https://us-east-2.console.aws.amazon.com/codepipeline/home?region=us-east-2#/dashboard
https://us-east-2.console.aws.amazon.com/codebuild/home?region=us-east-2#/projects
https://us-east-2.console.aws.amazon.com/elasticbeanstalk/home?region=us-east-2#/applications
https://us-east-2.console.aws.amazon.com/elasticbeanstalk/home?region=us-east-2#/applications

24

Timeline and Milestones

1/31: Meeting with client, understanding scope of the problem, addressing questions,

identifying some requirements and understanding the budget.

2/4 -2/5: Prep for Presentation 1. Formally write down and understand requirements,

present using visuals/slides in presentation, what is expected at delivery time

2/18: Ensure that client approves of AWS tool choice (i.e., CodeDeploy, CodePipeline),

formulate design based on AWS research for CICD and best optimal solution for

deployment

2/28: Collect research from the AWS user guide for CICD, note the current state of the

Fedora CICD pipeline, and determine the system config for deployment and adjust for

the current state

3/16: Prep for Presentation 2. Be able to explain the design and methodology of the

preferred solution, strengths and flaws of the pipeline we create using certain

technologies (AWS).

3/20: Begin testing with the pipeline to ensure that a deployment server can be created

using EC2 instances. The staging server should contain the web-app for Fedora4 after

passing testing.

4/15: Prep for Presentation 3. Explain the implementation of the pipeline, tools and

technologies that were used, configurations of the pipeline system.

4/29: Prep for final Presentation. Synthesize information from requirements, research,

design, implementation, and testing with visuals and diagrams explaining our thought

process and procedures done.

5/1: Ensure that all documents and materials are in a submitted form/turned in to

canvas and that the client has a version of the finished project

25

Lessons Learned

Problems

Much of our problems stemmed from choosing different AWS options within the suite of

developer tools, as well as understanding and configuring them correctly. Researching the

plethora of different tools available for deployment was simply incredible. AWS has 3 different

tools that we could find that were specific for deployment, which were EC2 instances,

CodeDeploy, and Elastic Beanstalk. Each of these tools came with a different set of features

and steps for configuration. Choosing between them wasn’t easy because of the research that

needed to be put into them. AWS has some very simplified tutorials for deploying a web

application in the form of a .war file and the suggested tutorials never made any notion of

configurations for the deployment server. This required extra research and experimentation

with the available options for AWS like the .ebextensions folder.

 Another problem we came across with, and this may be Amazon specific, was the

CodeBuild builds, configurations, and histories being region dependent. This means that if the

pipeline was being built on a different region server (i.e. us-east-1) and all of the functioning

builds are working correctly but are located on another server (i.e. us-east-2), the pipeline would

not have access to the builds. This caused some problems were upon a pipeline would not

have access to a build configuration that was in a different region.

 The final problem was understanding how Beanstalk actually uploaded a zipped

codebase to it’s instance(s) and where to current working directories existed and operated in.

The .ebextensions are slightly confusing to work with but operate almost the same as a

Dockerfile. At first, Elastic Beanstalk looks like you can configure settings and files in the

instance(s) controlled by it, but in reality you must use the config yaml and json files. There are

no ways to automate a config setup other than using these files. If the environment cannot be

setup correctly refresh the environment entirely and create a new environment as the crashed

environment is unrecoverable if the .ebexstensions are incorrect.

Solutions

 One of the simpler solutions to the build region and pipeline region was by placing the

pipeline and builds within the same AWS region. This was an overlooked solution because it

was so simple yet so detrimental. The inability to reach built .zip or .war files was a major

blockage for the pipeline as no output artifacts were reachable in another region.

 A solution to deployment configurations that we found is the usage of the

.ebextensions folder to place the commands needed to setup a configuration on the

Beanstalk. This was a sought after fix for our problem because we do not want to manually

configure a Beanstalk for every development or production change. The ability to save an

Elastic Beanstalk configuration means that once completely configured, an application can

quickly be spun up with the correct configuration.

26

Future work

This pipeline was meant to be a groundwork and foundation for the Fedora4 team so

that they can integrate their current workflow into the automated pipeline. There are many

different arrangements for any pipeline and the fact that they can all be automated and run from

afar as distinct stages allows devOps to interchange and configure settings for the needs of

development or production.

There are so many plug-ins and integrations with other DevOps services like Jenkins,

Chef, Puppet, and Docker. AWS can combine many 3rd-party tools to further automate a

pipeline.

And on a final note, the changes made to the pipeline can always be undone by

modifying the process and configurations at each step of the way.

Closing Thoughts

 This project was both eye opening and informative to say the least. Amazon Web

Services is a huge player in the cloud computing industry today and the tools that they provide

developers are ever-changing. Part of the challenge of this project was finding the correct tools

to use for the pipeline. AWS offers many different tools aimed at certain aspects of cloud

computing and using just a few of these tools and seeing how they operate and work with

existing AWS frameworks is just incredible. This was a great introduction and project learning

about how to use AWS for building, testing, and deploying.

27

Acknowledgements
Client: Yinlin Chen

Special thanks to the our client Yinlin Chen to support us in our project and also to the Fedora4

team and their documentation on Fedora4 configurations which can be found at the DuraSpace

wiki8: https://wiki.duraspace.org/display/FEDORA4x/Fedora+4.x+Documentation . Their

maintenance of the documentation was a great help for formatting our ebextensions file.

8
 "Fedora Repository Home - Fedora Repository - DuraSpace Wiki." 9 Jan. 2017,

wiki.duraspace.org/display/FEDORA4x/Fedora+4.x+Documentation. Accessed 1 May 2018.

https://wiki.duraspace.org/display/FEDORA4x/Fedora+4.x+Documentation

28

References
[2] "AWS CodePipeline | Continuous Integration" https://aws.amazon.com/codepipeline/. Accessed 1
May 2018.

[3] "AWS Elastic Beanstalk – Deploy Web" https://aws.amazon.com/elasticbeanstalk/. Accessed 1
May 2018.

[7] "Build Specification Reference for AWS CodeBuild - AWS CodeBuild."
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html. Accessed 1 May 2018.

[4] "Cloud Object Storage | Store & Retrieve Data Anywhere | Amazon" https://aws.amazon.com/s3/.
Accessed 1 May 2018.

[6] "Customizing Software on Linux Servers - AWS Elastic Beanstalk."
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-ec2.html. Accessed 2 May
2018.

[5] "ebextensions - AWS Documentation."
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html. Accessed 2 May 2018.

[8]“Fedora 4.x Documentation - Fedora 4.x Documentation.” DuraSpace Wiki, Duraspace,
wiki.duraspace.org/display/FEDORA4x/Fedora+4.x+Documentation. Accessed 1 May 2018.

[1] "GitHub - jenkinsci/pipeline-aws-plugin: Jenkins Pipeline Step Plugin"
https://github.com/jenkinsci/pipeline-aws-plugin. Accessed 1 May 2018.

AWS CodePipeline Guide:

https://docs.aws.amazon.com/codepipeline/latest/userguide/codepipeline-user.pdf

AWS CodeBuild Guide:

https://docs.aws.amazon.com/codebuild/latest/userguide/codebuild-user.pdf

AWS Elastic Beanstalk Guide:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/awseb-dg.pdf

AWS CodeDeploy Guide:

https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-user.pdf

AWS EC2 Guide:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf

https://aws.amazon.com/codepipeline/
https://aws.amazon.com/elasticbeanstalk/
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-ec2.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
https://github.com/jenkinsci/pipeline-aws-plugin
https://docs.aws.amazon.com/codepipeline/latest/userguide/codepipeline-user.pdf#welcome
https://docs.aws.amazon.com/codebuild/latest/userguide/codebuild-user.pdf
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/awseb-dg.pdf
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-user.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf

	Table of Figures
	Table of Tables
	Abstract
	Introduction
	Requirements

	Design
	Tech Stack
	Implementation
	Notes on AWS
	Account Management

	AWS Console Pipeline Walkthrough
	Costs
	Lessons Learned
	Problems
	Solutions
	Future work
	Closing Thoughts

	Acknowledgements
	References

