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(ABSTRACT)

General Response Surface Methodology involves the exploration of some response variable
which is a function of other controllable variables. Many criteria exist for selecting an experimental
design for the controllable variables. A good choice of a design is one that may not be optimal in
a single sense, but rather near optimal with respect to several criteria. This robust approach can

lend well to strategies that involve sequential or two stage experimental designs.

An experimenter that fits a first order regression model for the response often fears the pres-
ence of curvature in the system. Experimental designs can be chosen such that the experimenter
who fits a first order model will have a high degree of protection against potential model bias from
the presence of curvature. In addition, designs can also be selected such that the experimenter will
have a high chance for detection of curvature in the system. A lack of fit test is usually performed
for detection of curvature in the system. Ideally, an experimenter desires good detection capabilities

along with good protection capabilities.

An experimental design criterion that incorporates both detection and protection capabilities
is the A,* criterion. This criterion is used to select the designs which roaximize the average
noncentrality parameter of the lack of fit test among designs with a fixed bias. The first order ro-
tated design class is a new class of designs that offers an improvement in terms of the A,* criterion
over standard first order factorial designs. In conjunction with a sequential experimental strategy,

a class of second order rotated designs are easily constructed by augmenting the first order rotated



designs. These designs allow for estimation of second order model terms when a significant lack

of fit is observed.

Two other design criteria, that are closely related, and incorporate both detection and pro-
tection capabilities are the Jo-, and Jpcp 5 Criterion. Jpo, considers the average mean squared error
of prediction for a first order model over a region where the detection capabilities of the lack of fit
test are not strong. Jpcy.x considers the maximum mean squared error of prediction over the re-
gion where the detection capabilities are not strong. The Jpe, and Jucy .y Criteria are used within
a sequential strategy to select first order experimental designs that perform well in terms of the mean
squared error of prediction when it is likely that a first order model will be employed. These two
criteria are also adopted for nonsequential experiments for the evaluation of first order model pre-
diction performance. For these nonsequential experiments, second order designs are used and
constructed based upon Jpc, and Jpcyx for first order model properties and D, -efficiency and

D-efficiency for second order model properties.
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Chapter I

I. Introduction

Many experimental problems can be characterized as an investigation of some response vari-
able of interest that can be expressed as a mathematical function, f, of k other independent variables.
The goals of such an investigation include determining an appropriate functional model represen-
tation for the response and then utilizing this model to predict, explore and optimize the response
within 2 region in the independent variables. The procedures of modeling, predicting, exploring and
optimizing a response variable are generally referred to as Response Surface Methodology (RSM).

For these experimental investigations, the response variable, » , can be written as
n = fx1, X3, «er Xp)

where x,, x; ..., X, represent the independent variables. In general, the true form of the response
function, f, is unknown. The usual assumption is that f, although unknown, can be well approxi-
mated by a low order polynomial function. Typically, either a multiple linear regression model or
a quadratic regression model is employed as an approximating form for . Empirical linear or
quadratic regression models based upon sample data of the observed response are used to predict,

explore and optimize the response variable.
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Since the true form of the response function is unknown, the experimenter is typically un-
certain of the best characterization for the response function. Employing either a linear or quadratic
model will influence the prediction, exploration and optimization. Also, since any empirical model
is only an approximation, choosing the best characterization is of great importance. Therefore, in
addition to the goals of general RSM procedures, the experimenter also needs good capabilities for
the selection of an appropriate characterization for the response function. This selection of either
a linear or quadratic model will be made based upon observed responses. Once an appropriate

model is chosen, prediction, exploration and optimization procedures can be employed.

In performing an experiment, one usually can select the combinations of values for the inde-
pendent variz;bles at which the response variable is observed. In general, n selected combinations
of values comprise what is referred to as an experimental design. Experimental designs are chosen
such that an experimenter can achieve specific goals with the best statistical properties. In choosing
a design, the experimenter should select the one that allows for him to make the best choice be-
tween a linear or quadratic model characterization of the response function. In addition, designs
which perform well in terms of prediction, exploration and optimization are desired. The goal for
design selection is then to choose a design that will allow for good quality model selection and
perform well in terms of prediction, exploration and optimization. Unfortunately, the experimenter
is faced with the dilemma of choosing a design that either performs well in terms of model selection
or in terms of prediction and expldration. Designs which perform well in both aspects have not
been previously examined. Within this work, an experimental design strategy and specific exper-
imental design criteria are developed for use in selecting robust experimental designs which allow

for good quality model selection and good prediction and exploration properties.

After a detailed discussion of the methods of RSM and specific experimental design classes
in Chapter 11, a new experimental design criterion that incorporates both model selection and pre-
diction is developed in Chapter III. This criterion is applied to standard factorial designs to select
the designs that will provide for good model selection and also provide good prediction properties
for a linear regression model. In addition, a new design class is proposed that will provide for better

Introduction 2



model selection properties than factorial designs with equivalent prediction properties for a linear

regression model.

Due to the uncertainty of the best response function characterization, if a quadratic regression
model is chosen‘ based upon the model selection procedure, then the designs of Chapter I1I will
need to be augmented to allow for quadratic model terms to be estimated. Chapter IV discusses
the augmentation of these designs to create &esigns that will perform well when a quadratic re-

gression model is employed.

Finally, two other closely related design criteria that evaluate the prediction performance and
account for the model selection performance are developed in Chapter V. These two criteria are
applied to standard design classes to select designs that will perform well in terms of prediction and

model selection.
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Chapter 11

II. Response Surface Methodology Review

2.1 Response Surface Methodology

The origin of Response Surface Methodology (RSM) is usually credited to Box and Wilson
(1951). Within their work, they define a sequential framework for experimentation and statistical

analysis. This sequeﬁtial framework is summarized by the following:

1) Employ a model of order d for the response variable.
2) Perform a check of the adequacy of the model.

3) If the model of order d is adequate, use it for exploration.
If the model of order d is inadequate, employ a model of order d + 1.

The work that is presented here corresponds to an experimental philosophy that is consistent with

this sequential framework.
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In general, RSM combines experimental design and regression techniques to develop a model

for a response variable, » , expressed as a function of k other independent variables, §,, &, ..., &
n =./(€lv $20 0 €1 21

The experimenter usually has control over the values of the independent variables and will observe
a response at particular combinations of values for the independent variables. In general, exper-
imental design methods are employed to obtain a set of n values at which the response variable is

observed.

When considering an experimental design in a response surface problem, it is common to

transform the k independent variables into design variables of the form

'fiu"-éi i=1, 2,.., k
=T " u= 1, 2,..,. n 22)

Z

u=1
n

where §, = and s, is the appropriate scale factor such that —1 < x,< 1. Design variables
will be used throughout this work, but the values of the independent variables can always be ob-

tained using the above transformation.

The observed data obtained from employing a particular experimental design is then used to
estimate the response function, f, usually with a low order polynomial. These low order
polynomials are representative of first or second order Taylor series expansions of the response

function f.

Response Surface Methods use the estimated response function to predict response values and

to locate optimal response values within a specified region of interest in the design variables, R.
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The simple polynomial functions that are commonly used to estimate the response functions
are low order polynomials in the design variables. First (d=1) and second (d=2) order
polynomials are frequently adopted. The simplest model is a first order polynomial model of the

form
k
y=5Bo+ _Z:lﬂtx: +e (2.3

where y is the observed response, the 8, are constant coefficients and ¢ is the model error. An al-
ternative polynomial model used when the first order model is inadequate, is the second order

polynomial model of the form
k ko
y=Bo+ _Zlﬂ:xx + _Zlﬂux: + gﬁi,-x:x; +e 249
i= i=

where y is the observed response, the 8, f; and B, are constant coefficients and ¢ is the random

error component.

2.2 General Linear Model Representation

The first and second order polynomial models belong to the class of general linear models of the

form

y=XB+:z (2.5)

where y is an 7 x | vector of observed responses, X is an 7 x p matrix of the design variables which
accounts for the model under consideration, § is a p x 1 vector of constant coefficients and g is an
n x | vector of random errors. The usual assumptions corresponding to the general linear model

are,
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E(g) = 0 and Var(g) = o*I

(2.6)

In the general linear model form, an estimate of the model is obtained by estimation of the

coefficients of § . Several methods exist for obtaining these estimates. The method of least squares

will be used here throughout to obtain estimates of g based on the sample data. The least squares

estimator of § , obtained from sample data is given by
A -1 ’
B=XX)"'Xy .
Based upon the least squares estimates, é, the estimated responses are given by

P=Xp .

Properties of the coefficient estimates, é and the response estimates, 2 are given by

E@)=8 ,
Var(f) = (X0
Ep)=Xp ,

Var(p) = XX X)X

27

(2.8)

(2.9)

(2.10)
@2.11)

2.12)

Also, it is often of interest to predict values of the response at any specific combination of values

of the design variables, that is, at the point x’, = [1 Xy Xg...Xp]- The predicted response based

upon least squares estimation is given by
A
§=xof
with the variance of this predicted response given by

Var(p) = o 2 o(XX) %y

RSM Review
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The least squares response function estimate is also used in optimizing the response variable
by identifying the values of the design variables which provide for the optimal predicted response.
A detailed explanation of optimization methods is given by Myers (1976). In the case of a first
order polynomial model, the method of steepest ascent is used for optimization. Canonical analysis

and ridge analysis are used for optimizing second order polynomial models.

Throughout this work a partitioning of the general linear model often will be used. First and

second order models can be represented by partitioning the X matrix and # vector as follows
r1=Xg + Kb +z (2.15)

where
X, contains first order variables (1, x;),
B, contains first order regression coefficients (8, 8,),
X, contains second order variables (x?, x.x)),

B. contains second order regression coefficients (8, §,)-

2.3 The Role of Experimental Design

An experimental design is a set of values for the design vanables x,,x;,...,x; at which the re-
sponse variable, y, is observed. The choice of an experimental design is an important aspect of
RSM. Previous results given in section 2.2 show that properties of the least squares estimators are
a function of the values of the design variables which are represented in the general linear model
by the X matrix. Since many statistical properties depend upon the experimental design, a specific
design can be selected to achieve optimality in terms of some of these properties. Properties related

to an experimental design are also dependent upon the model under consideration via the X matrix.
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RSM procedures usually follow in a sequential manner. To begin, an experimental design is
usually chosen to achieve certain first order model propertics and to fit a first order model.
Orthogonality among the design variables is a frequently desired property for a first order model.
Orthogonality allows for estimation of the model coefficients without the undesirable effect of
collinearity. Other properties which will be discussed later can also be achieved for a first order

model.

Once an appropriate design is selected and the responses are observed, least squares proce-
dures are used to obtain a first order model estimate. The first order model is then judged for its
adequacy as an estimate of the true response function by performing a lack of fit test. If the first
order model is adequate then it will be used for prediction and exploration of the response. If the
first order model is determined to be inadequate, a second order model is usually adopted. In some
instances, a second order model cannot be fit using the data points from the existing design. In such
cases, one may supplement the existing design with addition points such that a second order model
can be fit. This sequential framework of experimentation is commonly used in RSM when an ex-

perimenter is uncertain as to the model form to be used for an estimated response function.

The origins of the sequential design procedure are credited to Box and Wilson (1951), who
discuss the use of a factorial design or fractional factorial design for fitting a first order model and
then augmenting this with axial points to form a central composite design for fitting a second order
model. Factorial designs and central composite designs will both be discussed in detail later. The

important concept generated by Box and Wilson is that experimentation is performed sequentially.

The sequential framework of experimentation is common practice when the experimenter is
uncertain about the model form. Unfortunately the sequential idea has received little attention in
terms of formal construction of experimental designs. Only two general concepts of experimental

design address the idea of sequential experimentation.
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The first concept is that of orthogonal blocking. If an experiment is performed sequentially,
then it is possible that responses observed during the initial first order stage were subject to different
experimental conditions than the responses observed during the augmentation stage. A block effect
could exist due to possibly different experimental conditions in such a case. Designs which block
orthogonally have block effects that are orthogonal to the model coefficients and therefore any

statistical tests performed on the model coefficients will not be confounded with block effects.

The second concept that addresses sequential experimentation is that of augmenting a first
order design with points to obtain a second order D-optimal design (D-optimality will be discussed
in section 2.4). Mitchell (1974) has developed the DETMAX algorithm for augmenting first order

designs with points that allow for D-optimality to be achieved.

Despite the frequent use of sequential experimentation, design procedures which address this
concept are restricted to the two mentioned above. This work attempts to consider the sequential

framework of experimentation and incorporate it into the design of RSM experiments.

2.4 Design Criteria

The choice of an experimental design is usually based upon one or more statistical properties
of interest. One can optimize a design with respect to these properties. Several design optimality

criteria are discussed in this section.
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2.4.1 Design and Region Moments

It is necessary to define the concepts of design moments and region moments before dis-

cussing particular design criteria.

The design moment matrix is given by,

M= (X,',X) (2.16)
The elements of the design moment matrix are individual design moments of the form,
GEE N GE 2 . Gl= uzl e
n Xy 3 n t 1ux)u
L} = Z] , L) = Z » L= Z] (2.17)
The design moment matrix corresponding to a first order model is given by
1 1] (21 .. [x]
(1 [ [l .. [i4]
(21 [121 (221 .. [24]
M=| . . . . (2.18)
k] k1] [k2] ... [ki]

For a partitioned linear model of the form of (2.15) it is useful to define the design moment matrices

XX X' X- X', X-
M“=( ;1) ' M12=( ;,2) dMn—( 2X7) , 2.19)

where X, corresponds to first order model terms and X, corresponds to second order model terms.
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Region moment matrices are dependent upon the region of interest, R, in k-dimensional

space. The region moment matrix is given by,
M =1<fR xxX’dx . (2.20)

where K is the inverse of the volume of the region R given by,

The elements of the region moment matrix are individual region moments of the form

w’=KfR xld&’ wii=KfR x,zdx, wij=KfR pr"ldxi
@.21)
3 .
Wiii=KfR xjdx wiiii=K/R x“d& ! wﬁjj=KfR x,zszd& )

In addition, other region moment matrices of interest are

I3} =KfR XX/ dx ,
ma=Kf, xxydx (2.22)
n=K[, xxyds .

2.4.2 Variance Criteria

An experimenter is often interested in the quality of the prediction obtained from fitting a
particular model. The importance of good prediction lies in that optimization is a function of the
predicted values obtained from a particular model. One measure of the quality of prediction is the

variance of predicted values given by (2.14).
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Several design criteria exist pertaining to the variance of prediction. One criterion is based
upon the concept of rotatability. An experimental design is said to be rotatable if the prediction
variance is constant over spheres of constant radius. If a design is rotatable, then the prediction
variance at any point is a function only of the distance of that point from the design center. Box
and Huater (1957) developed design moment conditions which assure rotatability of a design. Most

designs used in practice are either rotatable or have moment conditions that are near rotatable.

Another criterion related to the prediction variance is the concept of G-optimality. This cri-
terion considers the maximum prediction variance in a region of interest. A G-optimal design is

one which achieves the minimum maximum prediction variance.

The maximum prediction variance is also used for comparing experimental designs via an

efficiency measure called G-efficiency defined by Atwood (1969) as

_dp
max Var(i:\)

XeR

- Geefficiency = (2.23)

where o%p is the maximum prediction variance for a G-optimal design (p = the number of pa-
rameters in the model) and max Var(p) is the maximum prediction variance in a region R for a

particular design D.

Finally, another design criterion based upon the prediction variance is the integrated predic-
tion variance, V. This quantity is usually used for design comparison rather than design optimality.

The integrated prediction variance is given by

V=L [prates
=nk f R;;(X'x)'l xdx (2.29)
=(uM™) .

If the fitted model is a first order model then in the notation of the partitioned linear model
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V= tr(uy, M) (2.25)

In addition to prediction, an experimenter could also be concerned about the quality of the
estimated regression coefficients. The quality of the least squares coefficient estimates is reflected
by the variance-covariance matrix of é One commonly used norm on the variance-covariance
matrix is the determinant. This determinant is called the generalized variance of é Designs that
minimize the generalized variance of é, apart from o2, are called D-optimal designs. Kiefer (1961)
introduced the notion of D-optimality for experimental designs. D-optimal designs minimize
| (X’X)! | or equivalently maximize | X’X|. These designs perform well in terms of coefficient esti-

mation and give the smallest (1 — «) x 100% confidence ellipsoid for g

The generalized variance of é can also be used for comparing designs. Atwood (1969) defines

the D-efficiency of a design D to be

1
IXXlp |7

D-efficiency = —I—F‘:\;{:D—t (2.26)
-op!

np

where | X’X |, is the generalized variance of é ,apart from o2 for a design D with n points,
| XX |p.op is the generalized variance of é, apart from o2, for the D-optimal design with n, points

and p is the number of coefficients in the fitted model.

The concept of D-optimality and D-efficiency can also be applied to a subset of the coeffi-
cients. In particular, optimization methods for second order models depend heavily upon the esti-
mated second order coefficients (8, and B,). Therefore, the generalized variance of this subset of
coefficients is of importance for second order models. Kiefer (1961) introduced the idea of D,-op-
timal design which are D-optimal designs for a subset of coefficients. D, -optimal designs minimize
the variance-covariance matrix of some subset of estimated coefficients, é,. A D,-efficiency measure

for comparing designs is given by
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|Va’(3:)0PT| /"OPT l/p2
| Var(8)° np

Dg-efficiency =

2.27)

where Var(ﬁ,)o"' is the variance-covariance matrix for a D,-optimal design with n,,; design points,
Var(ﬁ,)” is the variance-covariance matrix for a design D with n, design points and p, is the number

of coefficients in §,.

2.4.3 Bias Criterion

Another measure of the quality of prediction is the bias in prediction. Since a model that is
used for prediction is always an approximation, bias is present in the prediction due to model

misspecification. For the general linear model of (2.15) suppose that the fitted model is given by,
A A
Py =X8, (2.28)
while the model that one protects against is of the form
y=Xp+ X+ . (2.29)
The estimate éx is no longer an unbiased estimate, as its expected value is given by,
A -—
E@)) =B + (X1 X)X Xy, . (2.30)
Also, the expectation of a predicted value at the point x’' = [x; X;] is

E}) =% \E@))

. (2.31)
=I’]E1 +.I'1(X11X1) X'legz .

The squared bias in a predicted value is then given by
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Bias*(9) = [E() -y

, _ , _ _ 2.32)
= B'y(x' 2% — 226X (X1 X)) T X XKy + XX (X X) T | (X0 X)) T X X)) B

A measure of the bias in prediction, in a region of interest, R, in k-dimensional space is given by

the integrated squared bias, B , which is due to Box and Draper (1959).

=L Bias’()dx . (2.33)

Using both design and region moment matrices, the integrated squared bias, B, can be written

as,

(2.34)

n
2
[+
=
'2

B'3lnas + M M7 g M M3 — 20 M M 518,
g

Tg

where T is called the bias matrix. As shown by Box and Draper, a necessary and sufficient condi-

tion for minimizing the integrated squared bias in a region R is given by
M My = 7wy (2.35)

Experimental designs which satisfy (2.35) are called minimum bias designs.

The importance of the bias was shown by Box and Draper who not only considered bias but
also variance together with bias in terms of a mean squared error. Box and Draper showed that
designs that are close to minimum bias achieve minimum mean squared error (which is discussed
in section 2.4.4). This seems to be an indication that bias considerations dué to model underspec-

ification are dominant over variance considerations.

Consider an example for a k = 1 variable design. The integrated mean squared error in pre-
diction, denoted by J, can be divided into a variance portion, ¥, and a bias portion, B, ie.,

J =V + B. The variance portion, V, for k = 1 variable can be expressed as
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- 1
V=1 +_3[11] .

The bias, B, of equatiofx (2.34) simplifies for k& = 1 variable to
2
_ﬁ[ — 132 ;4__]
B= 2 ([11]-1/3"+ 25 |-

Therefore the mean squared error, J is given by

J=1 +—‘—+"—p¥l[([u]— 1/3)’+—"’—]
3[11] a® 45 ] °
Unfortunately the mean squared error J cannot be minimized with respect to the design moment
[11] without the knowledge of 8,,. Table 2.1, taken from Myers (1976) evaluates J for certain values
of @, which represent values of the pure quadratic coefficient g, corresponding to various

ratios of variance, V, to bias, B .
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Table 2.1

Jn Bule

9.375 (V= %B)
6.540 (V= %B)
4.499 (V=B)
2.994 (V=2B)
1.822 (V=4B)
1.215 (V= 6B)
0.501 (V= 10B)

RSM Review

Designs for a k=1 First Order Model

J-optimal [11] Optimal J
0.349 9.777
0.363 5.755
0.388 3.718
0.433 2.656
0.519 2.052
0.623 1.790
1.000 1.467

Min. Bias J
([11=1/3)

9.800
5.799
3.798
2.797
2.296
2.131
2.022

Values of J for Optimal, Minimum Bias and Minimum Variance

Min. Variance J

({1i=1

48.208
24.145
12.129
6.114
3.104
2.121
1.467

18



Table 2.1 displays the importance of integrated bias for experimental designs. Even for cases when
variance, V, contributes heavily to J , the minimum bias design (i.e. [11] = 1/3) is close to the
minimum mean squared error design. This seems to indicate that control of the integrated bias in
the experimental design is more important than the variance. Box and Draper (1959) have exam-
ined the extension to k> 1 variables and observed similar results pertaining to the importance of

bias.

2.4.4 Mean Squared Error Criterion

The previous two sections have discussed the use of prediction variance and prediction bias
for selecting experimental designs. The prediction variance and prediction bias can be combined
into the mean squared error of prediction. If a model of the form y = X,‘lz, is fit, then the mean

squared error of prediction at a point x’ = [, x’,] is given by

MSE@) = o*¢ (X X)) "' %
+ B'alxpx’y = 2053 (X1 X)X Xy + XX (X0 X)) (X0 X)) TN X5)8,(2.36)
= Var(y) + Bias*(§) .

A measure of the mean squared error in prediction for all points within the region of interest,
R, is given by the integrated mean squared error, J, defined by Box and Draper (1959) as
J=V+B
-1 R_ o .
‘-‘-"(ItnMn)'*‘?EzTEz : (237
As previously mentioned, the integrated mean squared error cannot be used for selecting ex-

perimental designs without the knowledge of the coefficients in g,.
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2.4.5 Lack of Fit Criteria

Another property of an experimental design which is of interest is the quality of the lack of
fit test. It is assumed that the fitted model is of the form (2.28). Then it is of interest to detect if
this model is an adequate representation of the response function or if a model of the form (2.29)
should be adopted. In particular, following the sequential model development procedure, a first
order model is fit and a lack of fit test is used to determine if the first order model is adequate for
modeling the response. The quality of the lack of fit test is generally measured by the power of the

test.

For the partitioned linear model given by (2.15), the model y = X,él would be an adequate
representation of the response function if f;, = 0. Therefore it is important to test the lack of fit

hypothesis
Ho H Ez = Q .

Under the usual assumption that g ~ N(Q, 02]) it is possible to test the hypothesis H;: §, =0 using

an F statistic of the form,

A - A
po MM = M'oM; 1 M12)Bs
s’

(2.38)

where p, is the number of coefficients in g, and s? is the pure error mean square. A detailed de-
scription of the lack of fit test procedure is given by Myers (1976) and Draper and Herzberg (1971).
The sequential model development procedure is to fit a model of the form y = X,é, if the lack of

fit test is not significant, or a model of the form f = Xlé, + X,&; if the lack of fit test is significant.

It is well known that the power of the lack of fit test is an increasing function of the non-

centrality parameter given by,
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1= nB'y(My; — M'lel—lan)&

2
g

(2.39)

A design will have maximum power for the detection of the adequacy of a fitted model if it maxi-
mizes the noncentrality parameter, A . The noncentrality parameter is a function of the exper-

imental design through the matrix of the quadratic form in the g, ,

L=My — M' ;M My, (2.40)

L is referred to as the lack of fit matrix. Unfortunately, 4 is also a function of the unknown coef-
ficients in §,. Therefore, the choice of an experimental design that maximizes 4 is also a function

of the unknown g,.

One design criterion that addresses the lack of fit test is the determinant of the lack of fit
matrix. Designs that maximize this determinant are referred to as |L|-optimal design. Atkinson
(1972) has investigated | L|-optimal design under the name of T-optimal designs. The |L| con-
siders only the design dependent portion of the noncentrality parameter. This criterion is essentially
equivalent to D,-optimality since the variance-covariance matrix of é, apart from o2 is the lack of
fit matrix. In addition an |L|-efficiency measure can be defined for comparing designs that is

equivalent to the D,-efficiency given in (2.27).

Atkinson points out that designs that are | L |-optimal may provide poor estimates of §, when
the hypothesis of §, = 0 is not rejected. He suggests a procedure for maximizing |L| subject to a

bound on the D-efficiency of a design for estimating §,.

The |L| criterion has two shortcomings in attempting to characterize the power of the lack
of fit test. First, | L| does not account for an increase in the power of the lack of fit test associated
with an increase in the degrees of freedom. Secondly, |L| does not account for the dependency

of the noncentrality parameter on the coefficients in §,.
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The A criteria address the quality of the lack of fit test accounting for the coefficients in g,.
The A criteria were developed by Jones and Mitchell (1978). The A, criterion selects designs which
maximize the minimum noncentrality parameter 4 over a specified region of model inadequacy in

the coefficients in #,. The region of model inadequacy used is
® = (8;:8',Pf2 > 5} Where P=py - B BT By - (2.41)
Jones and Mitchell show that the minimum value of 4 will occur on the boundary of ® and
is equal to

Amin = 6(min eigenvalue of T-'L). (2.42)

The A, criterion is an average analog of A,. The A,-criterion maximizes the average value of the
noncentrality parameter, 4, over the boundary of the region ®. Jones shows that the average value

of 1 is equal to

s (T 'LYip, (2.43)

where p, is the number of parameters in §,. The design criterion reduces to maximizing t{7-!L].
The A;-optimality criterion has an appealing advantage over the A, criterion in that the lack of fit
matrix L need not be of full rank for the A, criterion. For many first order designs (i.e., factorial
designs), the lack of fit matrix is not of full rank.

2.5 Experimental Design Classes

This section provides an introduction to the design classes considered throughout this work.
Factorial designs will be the only first order design class discussed (an additional first order class
will be considered in Chapter 3). Several classes of second order designs are given. Designs be-
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longing to all of the classes presented here can be chosen according to most of the criteria given in

section 2.4.

2.5.1 Factorial and Fractional Factorial Designs

2* factorial designs are generally employed for the purpose of using a first order model esti-
mate for the response. These designs utilize two levels for each of the k variables. The levels of
the factorial design are given by + g, where 0 < g < 1. These designs are orthogonal and therefore
first order rotatable. In addition, n, center points will be added to the basic factorial structure to
allow for an error estimate and to obtain pure quadratic information. Center points are defined to
be experimental points where all k design variables are set to zero. Factorial designs with center
runs can be used to perform a lack of fit test for detecting second order terms. An example of a

factorial design in k=3 variables is given by

-8 —& &

—& & g

-8 g —&

N 8 d (2.44)
& -8 &
g —& 4
4 g &

i -4 g 4 ]

Fractional factorial designs are also considered. These designs have only a fraction of the
design points of a full factorial design. Appropriate fractions are chosen such that all linear and

interaction coefficients can be estimated.
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2.5.2 Central Composite Designs

Central composite designs (ccd) were originally discussed by Box and Wilson (1951). The
central composite design is the most commonly used second order design. The designs consist of
three parts:
1) A factorial portion or fractional factorial (for k > 5) with levels + 2, 0<g< 1.
2) An axial portion consisting of 2k axial points. An axial point has one variable set to some
value + a, 0 < a < 1, and all other variable values set to zero.
3) Center points portion containing r, center points used for replication error and to achieve
other properties of interest.

A central composite design has the following form,

tg +g g
-« 0 0
« 0 0
0 —-a 0
0 a« 0
(2.45)
0 0 -—a
0 0 «
e 0 0
i ]

As discussed by Box and Wilson, central composite designs fit nicely into the sequential
framework of experimentation. A factorial design can be used for estimating a first order model and

performing a lack of fit test. If a significant lack of fit is observed, the existing factorial design can
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be augmented with axial points to form a central composite design for estimating a second order

model.

2.5.3 Box-Behnken Designs

These designs are constructed by combining 2* factorial designs with balanced incomplete
block designs. These designs are special fractions of 3* factorial designs. Box-Behnken designs were
originally constructed as an alternative to central composite designs with less design points. In
addition, Box-Behnken designs require only three levels for the variables whereas the central com-
posite design requires five levels. The levels of a Box-Behnken design are denoted by +g,
0<g<1. Fork=3, 4and 5 variables, Box-Behnken designs are constructed by ﬁsing a 2? factorial
designs in each of the (l;) combinations of variable pairs and setting the values of the other k-2
variables to zero. For k=6 variables, a 2° factorial design is combined with all possible variable

triples. An example of a Box-Behnken design for k=3 variables is given by
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-8 -8 0
-£ 8 0

g8 -8 0

g 8 0
-8 0 -z
-8 0 ¢

g 0 —-g |. (2.46)

g 0 ¢

0 -g -¢g

0 -z g

0 g -z

0

2 0 0

i §

The performance of Box-Behnken designs will be compared with that of central composite designs.

The next three subsections discuss saturated or near saturated second order design classes.
A saturated design is one in which the number of design points is equal to the number of coeffi-
cients to be estimated. Near saturated designs contain slightly more design points than coefficients
to be estimated. These designs can be useful when cost constraints limit the number of exper-

imental points. The performance of these three classes will be compared amongst each other.

2.5.4 Small Composite Designs

Small composite designs, as originally defined by Hartley (1959), are very similar to central

composite designs. Small composite designs consist of a factorial portion, an axial portion and
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center points. The designs with just the factorial and axial portions are saturated or near saturated.
The factorial portion of these designs is always a special fraction. This chosen fraction makes use
of the fact that axial points can be used to estimate first order and pure quadratic coefficients and
factorial points can be used to estimate interaction coefficients. An example of a k=3 variable

small composite design is given by

[ T

-&§ —& 8

g & -&

& —& 4
-8 g g
- 0

« 0 0 (2.47)

0 - 0

0 a« 0

0 0 -«

0 ] a

0 0 Q

2.5.5 Hybrid Designs

Roquemore (1976) developed this class of designs that are saturated or near saturated when
considered without the use of center points. The designs consist of a central composite design in
k-1 variables with the values of the &t variable chosen to achieve the same degree of orthogonality
among the k variables as a central composite design. The general form of Hybrid design is given

by
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tg
+a

g

(2.48)

One can notice the central composite design for the first k-1 variables. The values of a, b,cand d

are chosen such that all odd design moments are equal to zero and all pure second moments are

equal.

2.5.6 Notz Designs

Notz (1982) constructed saturated or near saturated designs that perform well in terms of

D-efficiency relative to other saturated design classes. Notz designs consist of a 2* factorial design,

or some part of it, augmented with a k dimensional identity matrix. A Notz design for k=13 vari-

ables is given by
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(2.49)

Notz uses the levels of + 1 to achieve good D-efficiencies. The work performed here will al-

low the factorial levels to vary over the range 0 < g < 1 for designs that are of the identical structure
given by Notz. The D-efficiency values for these designs will be less than that achieved by Notz,

but other gains in performance of the designs will be shown.
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Chapter 111

III. A Lack of Fit Criterion and First Order Designs

In this chapter, in conjunction with the sequential strategy, a new class of robust first order
experimental designs will be developed using the A,* optimality criterion. These designs offer the
best power of the lack of fit test for a design with a given integrated bias. The flexibility of this
design class will be shown by optimizing the design parameters with respect to several optimality
criteria. In addition, the design class will be compared to standard design classes. However, the
next section will begin with a brief review of the lack of fit and integrated mean squared error -

properties of experimental designs.

3.1 Lack of Fit and Integrated Mean Squared Error
Revisited

The general design philosophy of accounting for potential bias in the integrated mean squared
error criterion appears to contradict that of maximizing the power of the lack of fit test. This can
most easily be seen for the case of k =1 variable, where the fitted model is of first order and the

model one protects against is of second order. Technically, the fitted model is y = ﬁo + ﬁ x and the
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assumed model is y = §, + B,x + B,,x%. If it is assumed that an orthogonal first order design will

be used, then the design moment matrices are given by

1 [1] 10 1o
M“=[[1] [11]] = [o [11]] = [0 Lz] 3

[11] (] |22
Mz [[llll] %] - [3]

(3.2)

and

Zx“
My =

(3.3)

Also, for the region of interest given by the interval [-1,1], the region moment matrices are given

by
1 0
= 11 3.4
3} 0 _3_ ( )
1 .
ma=|31 (3.5)
0
and
1
K2 ="7"- (3.6)

The conditions for a minimum bias design given by (2.35) are satisfied by designing
[11]= 22 3- This implies that the data would be chosen such that the points are restricted

in their distance from the design center.
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A design which maximizes the power of the lack of fit test is constructed such that the

noncentrality parameter is a maximum. The noncentrality parameter for k= 1 variable is given by,

ﬂﬂn

2,2
Ex) ] 3.7)

C1111] = [} = "ﬂ” [zx‘-
This would be maximized regardless of §8,, by spreading out the design points as much as possible

(i.e. the design points are at -1, + 1 and 0).

The conflict between the two criteria is obvious since designs which account for bias restrict
the spread of the design points whereas designs which maximize the power of the lack of fit test
correspond to the maximum attainable spread in the design points (i.e., in the corners of the oper-
ability region). Also, it appears that designs which have good bias properties will have poor lack
of fit power properties and vice versa. This general conflict extends to the case of kK > 2 variables
in a similar fashion to what has been displayed for the £ = 1 variable case.

Despite this conflict, many times an experimenter is uncertain of how to specify his model.
When this uncertainty exists, as it often does, one usually will estimate the response with a simple
_ model (i.e, first order) then perform a lack of fit test for detection of model terms of order one
higher (i.e., second order terms). If a significant lack of fit is observed, the higher order model
(d=12) is used to estimate the response. If a nonsignificant lack of fit is observed, then the simple

model (d = 1) is used to estimate the response.

In experimental problems that are described by the above scenario, an experimental design
that will provide a high quality lack of fit test and in addition, provide some protection due to po-

tential bias when a nonsignificant lack of fit is observed are desired.
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3.1.1 Two Variable Example

Consider the following example in k& = 2 variables. The design region, where design points can be
placed will be characterized by a unit square. The region of interest for prediction, R will also be
the unit square. The integrated mean squared error of prediction, J, and the noncentrality param-

eter of the lack of fit test can be written as,

2w
J=l+ga+ ﬁ [(B2, + BT - 2wyLif] + W)

+ 2By 1B ([l — 2w il + wyy) + BTwiy )

(3.8)

A= (8% + P Qi) — L) + 28118 a(Lii] - LT) + Biali] (39)
for symmetric designs with odd moments through order 4 equal to zero.

If we assume the second order coefficients are known and given by,

B12

f;”—=—1/2 L RV 13

-4

then choosing a design with pure second moment, (ii], equal to 0.40 will perform well in terms of
mean squared error. Recall table 2.1 which indicated that designs with second moments slightly

greater than the minimum bias second moment will perform well in terms of mean squared error.

A factorial design with [ii] = 0.4 and with four center points is given by
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-0.8944 --0.89441
-0.8944  0.8944
0.8944 —0.8944
D = 0.8944  0.8944
0 0
0 0
0 0
0 0

The four center points included in this design allow for a lack of fit test to be performed with 3
degrees of freedom for an error estimate. The noncentrality parameter for the lack of fit test given
by (3.9) will equal 24.317 and this yields a power of 0.7078 at « = 0.05 for the detection of second

order terms.

The conflict between bias and power discussed above suggests that one needs to decide which
criterion is most important and use the design that is optimal with respect to that criterion. For-
tunately, a criterion that accounts for ix)th the power of the lack of fit test and the mean squared
error will be developed and used to select robust designs with respect to mean squared error and
power of the lack of fit. This criterion is used when an experimenter is unsure about the model and
begins the investigation in the sequential manner previously described. A first order design allows
for a first order model to be fit and a lack of fit test to be performed to check the adequacy of a first
order model. The lack of fit test is used to decide upon a first order (nonsignificant lack of fit) or
a second order (significant lack of fit) model. Good power of the lack of fit test is desired since the
important decision of a model form is dependent upon this test. In addition, if the lack of fit test
is nonsignificant and a first order model is used, then good mean squared error of prediction is de-
sired.
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3.1.2 A:-Optimality - Review

The A,-optimality criterion maximizes the average value of the noncentrality parameter of the

lack of fit test over a region of model inadequacy. The region of model inadequacy is given by,

N
¢={gzzﬁz—fi=a,a>0}. (3.10)
(.4
The A, criterion maximizes
Ad,
{ 2 se{P7'L)
2 = = (3.11)
Jdb, %
¢

Choosing a design that maximizes (3.11) is equivalent to choosing a design which maximizes the
tr[ P-'L] since p, and 6 are independent of the design. Jones uses the A, criterion with a model

inadequacy measure that is independent of the design, that is, the P matrix is not design dependent.

An alternative approach to design, which accounts for the lack of fit performance and po-
tential bias, is to redefine the measure of model inadequacy to be the integrated bias or the inte-

grated mean squared error.

In the next section, we will develop a new design criterion denoted by A,*, that represents a
modification of the A, criterion. The A,* criterion will consider the average noncentrality param-
eter of the lack of fit test over a region of fixed integrated bias, B, or integrated mean squared error,
J. This new criterion will then be applied to ordinary factorial designs to select the factorial designs
that perform best in terms of the lack of fit test for a given bias. In addition, the A,* criterion will
be utilized in developing a new class of experimental designs which offer improved lack of fit per-

formance compared to factorial designs.
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3.2 A Lack of Fit| Mean Squared Error Criterion

The A, criterion developed by Jones attempts to consider the noncentrality parameter of the
lack of fit test accounting for the unknown second order coefficients. Unfortunately, Jones’ ap-
proach considers the second order coefficients through some measure of model inadequacy (3.10)
that is somewhat artificial. A more reasonable measure of model inadequacy is given by the inte-
grated bias in prediction. Therefore, one can consider the A, criterion modified such that the region
of model inadequacy is determined by the integrated bias of prediction. The A,* criterion is a

modification of the A, criterion defined as,

== (3.12)

_ar[T7'L)
)

Again, since & and p, are design independent, the A,* criterion uses as a basis for design se-
lection, tr{T-'L]. This criterion evaluates the performance of the lack of fit test, through the
noncentrality parameter, conditional upon the bias properties of a design being fixed. A detailed

derivation of this criterion is given in Appendix B.

If the bias properties of a design are fixed, then since T depends only upon second order de-
sign moments, the fixed bias condition corresponds to fixing the second order design moment. In
addition, one can see from (3.8) that if the second order design moment is fixed, then the prediction
properties (i.e., ¥, B and J) of a design for a first order model are completely determined. The lack
of fit properties, given by the noncentrality parameter of (3.9) are a function of second order and

fourth order design moments. If the second order moments are fixed, then the A;* criterion is used
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to select the fourth order design moments that achieve the maximum average noncentrality pa-

rameter.

This research will involve utilization of the A;* criterion when the prediction properties for
a first order model are fixed. Therefore the second order design moment is chosen according to
some prediction property (bias, variance or mean squared error). Empirical optimization of A,*
criterion will be performed in evaluating the parameters of certain design classes and also to com-
pare among the classes. The design region in which data points can be placed will be considered

to be a unit cuboidal region.

3.3 Factorial Designs

The A,* criterion is applied to the class of first order 2* factorial designs with n, center runs.
The criterion is used to choose the fourth order design moments for factorial designs with the sec-
ond moment chosen according to one of three prediction properties of interest (Bias, Variance,
Mean Squared Error). Factorial designs for k = 2, 3 and 4 will be investigated. The k = 4 design
is a one half fraction of a 2¢ design with defining contrast I = ABCD.

Table 3.1 provides a summary of the evaluation of k=2, 3 and 4 variable factorial designs.
Minimum bias, minimum variance and mean squared error efficient factorial designs are evaluated
in terms of the A,* criterion for various sample sizes, n. One can use the results of Table 3.1 to
select a design of one of the three types (minimum bias, minimum variance or mean squared error

efficient) that performs well in terms of the lack of fit test based upon the A;* criterion.
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Table 3.1 - Evaluation of Factorial Designs in Terms of A,* Criterion

=2 Minimum Bias Minimum Variance Mean Squared Error Efficient
n g tr{T-'L] n g ir[T-'L] n g r[T-'L]
7 0.7638 3.6250 7 10 7.5643 7 0.8346 4.9746
8 0.8165 4.5000 8 1.0 7.9615 8 0.8944 6.1527
9 0.8660 5.3750 9 1.0 8.3478 9 0.9487 7.3309
10 0.9129 6.2499 10 1.0 8.5091 10 1.0 8.5091
11 0.9574 7.1250 il 1.0 8.3739 11 1.0 8.3739
12 1.0000 8.0000 12 1.0 8.0 12 1.0 8.0
k=3

n g r{T-'L] n g tr[T-'L] n g tr[T-'L]
10 0.6455 4.6875 10 1.0 22.2467 10 0.7331 7.4264
11 0.6770 5.5312 11 1.0 20.7096 11 0.7689 8.6435
12 0.7071 6.3750 12 1.0 19.5789 12 0.8031 9.8605
13 0.7360 7.2187 13 1.0 18.7831 13 0.8359 11.0776
14  0.7638 8.0625 14 1.0 18.2657 14 0.8675 12.2947
15  0.7906 8.9063 15 1.0 17.9745 15 0.8979 13.5117
16 0.8165 9.7500 16 1.0 17.8549 16 0.9274 14.7288
17 0.8412 10.5937 17 1.0 17.8460 17 0.9559 15.9458
18 0.8660 11.4375 18 1.0 17.8824 18 0.9836 17.1629
k=4

n g tr{T-'L] n g tr{T-\L] n g tr{T-L]
10  0.6455 8.7500 10 1.0 43.8667 10 0.7500 15.0815
11 0.6770 10.1250 11 1.0 40.3907 11 0.7866 17.1548
12 0.7071 11.5000 12 1.0 37.6667 12 0.8216 19.2281
13 0.7360 12.8750 13 1.0 35.5563 13 0.8551 21.3014
14 0.7638 14.2500 14 1.0 33.9606 14 0.8874 23.3746
15  0.7906 15.6250 15 1.0 32.8000 15 0.9186 25.4479
16 0.8165 17.0000 16 1.0 32.0000 16 0.9487 27.5212
17 0.8416 18.3750 17 1.0 31.4792 17 0.9779 29.5944
18 0.8660 19.7500 18 1.0 31.1428 18 1.0000 31.1428
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3.4 Rotated Designs

A class of first order designs which outperforms the class of ordinary factorial designs in terms
of the A,* criterion is the claSs of rotated factorial designs. These rotated factorial designs are

fractions of 4-level designs within the experimental region,

-lgsx<l  for i=12,...k

These rotated designs can be considered as factorial designs rotated through an angle 8 such that
the design points are on the boundary of the experimental design region. Figure 3.1 shows a fac-
torial design with level g = 0.80 and a corresponding rotation design.
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L J

Figure 3.1 - Two Variable Factorial Design and Corresponding Rotation Design
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The design matrix corresponding to the factorial design given in Figure 3.1 is given by

—& —& ]
-2 g
D = . (3.13)
g -8
| & 8]

If this design is rotated through an angle 8, the transformation matrix is given by,

cos@ sind
R = (3.19)
—sinf cos@

and the new design matrix has the form,

-—g(cose—sina) —g(coso+sin6)-
—g(cosf +sinf)  g(cosf —sinf)

RD (3.15)

g(cos@ +sinf) —g(cosd —sinf)

i g(cos@ —sind) g(cosf —sinf)

The four levels of this design can then be appropriately scaled to the values, 1, —1,d and —d by

reexpressing the transformation matrix as

d+1 —-d+1
2 22

R d—1 d+1 (3.16)
22 2g

and the design matrix as
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[—d —1]
d 1
D = . 3.17)
-1 d
1 -d
L B

The design points of (3.17) are all located on the boundary of the experimental design region.
The value of d is arbitrary but bounded by 0 £ d < 1. (d =1 corresponds to a factorial design with
g=1). The value of d can be specified to achieve the desired properties (i.e., bias, variance, etc.)
for a design. These properties will be discussed for the rotated design class.

The rotated designs developed for k = 2 variables above are easily extended for the case of
k > 2 variables. The designs are just rotations of the ordinary factorial designs. For k = 3 variables

the transformation matrix is given by,

d+0)2g (—d+1)/2¢ 0
R =|(@d=132g (d+D)2 0 (3.18)

0 0 J(@+2)/2¢

yielding the design

~d -1 —/@+D2
-d -1 (@ + )2
-1 d =.J@+ne
- @+ br2 (3.19)
1 —d — [(d*+ D)2
L —-d [ +1)2

d 1 _ J(d+D2

HHERBHERE

d 1 (@ +1)[2
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Notice that two variables have been rotated, while the third has just been rescaled to guarantee

symmetry.

The transformation matrix for £ = 4 variables is given by,

[ (d+ D)2 0  (-d+1)2g 0 |
0 d+1)/2g 0 (d—-1)/2g
R = (3.20)
(—d+1)22 0 d+1)/2g 0
I 0 (d-1)/2g 0 (d+ 1)/28_

yielding the design

: ]
-d -d -1 -1l
-d d -1 1
d -d 1 -1
d d 11
1 | -d —d
1 -1 -d d
-1 1 d -d
-1 -1 d d

(3.21)
-d -1 -1 d
d 1 1 -d
-d 1 -1 -d
d -1 1 4
-1 d d 1
1 -d —-d -1
-1 -d d -1
1 d —-d 1
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A fractional factorial design for & = 4 variables with defining contrast I=ABCD is also often
used when the experimenter is limited in the number of allowable experimental runs. The corre-

sponding rotation design of this one-half fraction is given by

-d -d -1 -1
-d d -1 1
d d 1 -1

d d 1 I

(3.22)

| 1 —-d -d

1 -1 -d d
-1 1 d —-d
-1 -1 d d
L J

The general pattern shown in the designs for k=2, 3 and 4 variables can be extended to
construct rotation designs for k > 5 variables. Only k = 2, 3 and 4 variable designs are studied here,

although one would expect similar results to hold for k > 5 variables.

Consistent with the sequential framework of experimentation, the prediction and lack of fit

properties of the rotation designs are now investigated.

3.4.1 Effect of Rotation on Bias and Mean Squared Error

The effect of rotation on the integrated prediction bias, B and the integrated mean squared
error of prediction, J is summarized by the following theorems.

Theorem 1:

The integrated bias, B, is invariant to an orthogonal rotation of an orthogonal symmetric first

order design when protecting against a second order model.
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Proof:
Recall from (2.34)

B= :,%E'z[#zz = 24 M7 Mg + M (oM e My M85

Only M,, and M,, are affected by the design, therefore it must be shown that M,, and M,, are
unaffected by rotation.

(i) To show that M, is unaffected by rotation, recall that M,, = X", X,/n, where
X, =[1, X, X;...x:). The design D is given by [x,, x;..x,] therefore X, =[1|D]. The orthogonal

rotation of D by the transformation matrix R is given by
D*=RD.
The rotated X; matrix is then of the form,
Xi*=[01ID%]

where X, and X,* are related by the transformation matrix H,

so that

X,* = HX,.
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Now,

My * =X ¥ X, *n
=X'1H'HX1IYI

and since R and therefore also H is an orthogonal rotation,

HH=I
which implies that
M11.=X711X|/n
=X1:X|/n
=M, .

(ii) To show that M,, is unaffected by rotation, recall that M, consists of the design moments
[ii}, [iti] and [iij]. [ii] is unaffected by the rotation since the [ii] are the diagonal elements in M,;.
The moments iii] = [iij] = 0 for a first order symmetric design. It is assumed that the design center
can be centered and scaled to x = 0. For any design point x of a symmetric design there also exists
the design point — x.

Now consider a design point x from a symmetric experimental design D. Since D is sym-
metric, the point — X must also be a design point in D. Consider the orthogonal rotation of D using

the transformation matrix R . For the point x, Z corresponds to the rotation of x,
Z=Rx .
For the point — x, the rotation corresponds to
R(—x)=-Rx=-2z.

Therefore, for any design points x and — x in the design D, the corresponding rotated points in
D* will be zand — z. Therefore D* will also be symmetric, and [iii] = [iij] = 0, which leads to
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My =M;,* .

The integrated bias for a rotated factorial design will be equal to the integrated bias of the

corresponding factorial design.

Theorem 2:

The integrated mean squared error, J, is invariant to an orthogonal rotation of an orthogonal

symmetric first order design when protecting against a second order model.
Proof:

Recall
J=V+B

and that B is unaffected from the result of Theorem 1. Also, V = tr(u, M) is a function of the
design only through the matrix M,,. It has been shown in the proof of theorem 1 that M,; is un-

affected by rotation. Therefore V and subsequently J are unaflected by rotation.

Theorem 1 and 2 show that the prediction properties pertaining to a first order model for
rotation designs are equivalent to the prediction properties for an ordinary factorial design.

Therefore, rotation designs can be used to achieve the same prediction properties as factorial de-

signs.
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3.4.2 Effect of Rotation on Lack of Fit

A first order factorial design with the addition of center runs allows for a lack of fit test to
be performed on second order coefficients (8, and B,). The general linear model form of the test
statistic and the noncentrality parameter have been previously given. This test statistic is for testing

the general linear hypothesis
Hy: HB, =0

which forms the testable hypotheses (i.e., estimable functions) of the second order coefficients
contained in B,. A k=2, first order factorial design with center runs has the testable lack of fit

hypothesis in the second order coefficients given by

B ;
Hy: [ . ]= 0. (3.23)
B+ B2

The development of these testable hypotheses is given in Myers (1976). A k = 2 variable rotated
factorial design of the class previously discussed, has the testable lack of fit hypothesis in the second

order coefficients given by,

(1-d%
Hy; Bru——FBxn -0. (3.24)

B+ B2

The development of these testable hypotheses is given in Appendix A. The rotated factorial design
detects additional information based on the pure second order coefficients while sacrificing the de-
tection of some interaction information. The lack of fit testable hypothesis for k > 2 variables have

a similar structure to the k = 2 variable case. For k = 3, a factorial design with center runs has the

lack of fit testable hypothesis
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B2
P13
P23
B+ B+ B

The k = 3 rotated design has the testable lack of fit hypothesis,

For k = 4, a factorial design with center runs has the testable lack of fit hypothesis

r

1—d* 1-d°
B2 — 7 ﬁzz"‘zd_ﬂss
B3
Bas

Bi1+ By + Ba3

B2
P13
Bra

Hy: | Bas =0 .

Bas
B
Bi1+ B2+ B33+ Pas

- .

The k = 4 rotated design has the testable lack of fit hypothesis,
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B2
1—d* 1—d? 1—d*

B+ 24 Put——F Bu+t > Paa

Bra

Hy: | B2 =0. (3.28)

1—d* 1-d*

Baa— 2d B+ >d Baa

B3a

B11+ Baa+ B3z + Bas

The factorial designs allow for testing the interaction coefficients separate from the sum of the
pure quadratic coefficients. The rotated factorial designs allow for testing a combination of the

interaction and pure quadratic coefficients in addition to the sum of the pure quadratic coefficients.

The power properties can be measured by ¢r{ T-!L] which is the A,* criterion. A design, D,,
which has larger {T-'L] than another design, D,, will have larger average power than that of D,.
The class of rotated factorial designs consistently provides larger value for #{7-!L] as compared
with the corresponding factorial designs.

3.4.3 A2’ Criterion Applied to the Rotated Design Class

The A,* criterion is applied to the class of first order rotated factorial designs with n, center
runs. The criterion is used to choose the fourth order design moments for rotated factorial designs
with the second moment chosen according to one of three prediction properties of interest (Bias,
Variance, Mean Squared Error). Rotated factorial designs for k=2, 3 and 4 are investigated here.
The k=4 desién is a rotation of a one half fraction of a 2* factorial design with defining contrast I
= ABCD.

Table 3.2 provides a summary of the evaluation of k=2, 3 and 4 varable rotated designs.

Minimum bias, minimum variance and mean squared error efficient rotated designs are evaluated
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in terms of the A,* criterion for various sample sizes, n. One can use the results of Table 3.2 to
select a design of one of the three types (minimum bias, minimum variance or mean squared error

efficient) that performs well in terms of the lack of fit test based upon the A,* criterion.

A Lack Of Fit Criterion and First Order Designs 51



Table 3.2 - Evaluation of Rotated Designs in Terms of A,* Criterion

Minimum Bias Minimum Variance Mean Squared Error Efficient

k=2 :
n. d ir{T-'L] n d ir{T-'L] n d r{T-'L]
7 0.4082 4.9643 7 1.0 7.5643 7 0.6325 5.6688
8 0.5773 5.2499 8 1.0 7.9615 8 0.7746 6.4227
9 0.7071 5.7499 9 1.0 8.3478 9 0.8944 7.3909
10 0.8165 6.4000 10 1.0 8.5091 10 1.0000 8.5091
11 09129 7.1591 11 1.0 8.3739 11 1.0000 8.3739
12 1.0000 8.0000 12 1.0 8.0000 12 1.0000 8.0000
k=3
n d tr{T-'L] n d t{T-'L] n d i{T-'L]
10 + * 10 1.0 22.2467 10 0.2739 9.7366
11 * * 11 1.0 20.7096 11 0.4272 10.2839
12 0 8.6250 12 1.0 19.5789 12 0.5385 10.9948
13 0.2887 8.9639 13 1.0 18.7831 13 0.6305 11.8315
14  0.4082 9.4018 14 1.0 18.2657 14 0.7106 12.7672
15  0.5000 9.9187 15 1.0 17.9745 15 0.7826 13.7820
16 0.5774 10.5000 16 1.0 17.8549 16 0.8485 14.8611
17  0.6455 11.1342 17 1.0 17.8460 17 0.9097 15.9937
18 0.7071 11.8125 18 1.0 17.8824 18 0.9670 17.1702
k=4

n d r{T-'L] n d tr{T-'L] n d tr{T-'L]
10 -+ * 10 1.0 43.8667 10 0.3536 19.2159
I . 11 1.0 40.3907 11 0.4873 20.0000
12 0.0000 16.0000 12 1.0 37.6667 12 0.5916 21.1293
13 0.2887 16.3654 13 1.0 35.5563 13 0.6801 22.5014
14  0.4081 16.9286 14 1.0 33.9606 14 0.7583 24.0713
15 0.5000 16.4500 15 1.0 32.8000 15 0.8292 25.7995
16 0.5774 18.5000 16 1.0 32.0000 16 0.8944 27.6562
17 0.6455 19.4559 17 1.0 31.4792 17 0.9553 29.6188
18  0.7071 20.5000 18 1.0 31.1428 18 1.0 31.1428

* . Minimum Bias Designs do not exist
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3.5 Comparison of Factorial and Rotation Designs

Tables 3.1 and 3.2 provide a summary of factorial and rotated designs that achieve minimum
bias, minimum variance and efficient mean squared error values. A comparison of factorial designs
and rotation designs based upon Tables 3.1 and 3.2 indicates that rotation designs can achieve the
same first order prediction properties (minimum bias, minimum variance or mean squared error
efficient) but attain better lack of fit properties as measured by the A,* criterion. Minimum bias
and mean squared error efficient designs in Table 3.2 of a given sample size, n, are just rotations
of the corresponding designs given with Table 3.1. The minimum variance designs of Tables 3.1
and 3.2 are identical since a rotation design with d = 1 is exactly a factorial design with g = 1.

Example Revisited

Consider the example of section 3.1.1 in the following context. A chemist is interested in
studying the viscosity of star block copolymers. He is interested in how the variables temperature
and compression affect the viscosity. The temperature can be set from 130°C to 230°C and the
compression as measured by percentage can range from 5 to 25 percent. The cuboidal design region

is then given by,

130 < Temp < 230
5 < Comp% < 25.

This region can then be centered and scaled by defining the design variables,

Temp — 180
N=T50

Comp.% — 15
x2=_10— .
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Therefore the variables x, and x, are in the region

-leISl
-ISXZSI .

The chemist is unsure of how the variables temperature and compression affected viscosity. If a first
order model in temperature and compression is inadequate, then a second order model will be
adopted. The uncertainty of the model is cause for concern about bias in a first order model and
also for concern about the performance of a lack of fit test. A rotated design with 4 center runs
will provide a design that attempts to address the integrated mean squared error and power of the

lack of fit test. A rotated design in the design variables is given by,

X X2
=0.7746 -1
0.7746 1

1 -0.7746

-1 0.7746

0 0

0 0

0 0

in terms of the natural variables, temperature and compression percentage, the design is

Temp. Comp.%

141.27 5

218.73 25
230 7.254
130 22.746
180 15
180 15
180 15
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The rotated design given above has second order design moment, [ii] equal to 0.4. This design
represents a rotation of the factorial design given in the example of section 3.1.1. If we assume the
same second order coefficients as previously considered, then the noncentrality parameter for the
lack of fit test is equal to 27.2382 which yields the power for detection of second order terms equal
to 0.7519 at a=0.05. The rotation design given here allows for approximately a 7% increase in the
power of the lack of fit test in comparison to the factorial design given in section 3.1.1. Since the
second order moment, [ii], for both designs is 0.40, the prediction properties of both designs are

equivalent.
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Chapter IV

IV. Augmentation Of First Order Designs

The previous chapter considers the use of factorial designs and rotation designs for estimating
a first order response function model. Prediction properties of the first order model estimate
(minimum bias, minimum variance, mean squared error efficient) were considered in selecting a
specific design within each class. The rotation design class was introduced as a class of experimental
designs which possesses first order model prediction properties equivalent to that of the factorial
design class. But, the rotation design class was shown to have superior lack of fit properties for the

detection of second order model terms.

This chapter examines procedures for augmentation of both factorial and rotation designs that
allows for estimation of a second order response function model. These augmentations can be
utilized when a significant lack of fit is observed based upon the observed responses corresponding

to a first order design.
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4.1 Sequential Design Procedure

As previously mentioned in ghapter 2, an experimental design strategy that is consistent with
the sequential framework given by Box and Wilson is developed throughout this work. When an
experimenter is uncerta.in of the best characterization for the response variable, then a sequential
design strategy should be implemented. In such cases, usually the simplest model form, a first order
model, is initially considered for the response. An appropriate experimental design plan is chosen
and responses observed corresponding to such a plan. Factorial designs or rotation designs are two
design classes that can be used for considering first order models. Observed responses correspond-

ing to a first order design are used to obtain a first order model estimate.

The uncertainty on the part of the experimenter in terms of the best model characterization
for the response leads to the need for checking for inadequacy of the first order model. The ob-
served responses from a first order design can be used to perform a lack of fit test for checking the
adequacy of a first order model. The lack of fit test described in section 2.4.5 is for the detection
of second order model terms. If a nonsignificant lack of fit is observed, then the observed data
suggests that a first order polynomial model is an adequate approximation of the true response
function. A first order model estimate is then employed to predict and explore the response variable

within a region of interest in the design variables.

If a significant lack of fit is observed, then the data suggests that a first order model is not an
adequate approximation for the response function since second order variable contribution appears
to be present in the response system. In such a case, a second order model cannot be estimated
using the observations obtained from a first order design. An experimenter could then employ an
entirely new second order design to obtain a second order model estimate. Alternatively, the data

obtained from the first order design could be augmented with additional experimental points that

allow for estimation of a second order model.
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Augmentations of both factorial and rotated designs according to various properties of a sec-
ond order model are considered here. These augmentations are consistent with the sequential

framework of experimentation described and are employed when a significant lack of fit is observed.

4.2 Second Order Design Criteria

Many criteria exist for evaluating a second order experimental design. Three general concepts
which are of great interest within the sequential experimental framework are orthogonal blocking,
second order prediction variance properties and variance properties of the estimated regression co-

efficients.

4.2.1 Orthogonal Blocking

Orthogonal blocking is an important property of experimental designs constructed in a se-
quential manner when a first order design is augmented with experimental points that allow for
estimation of a second order model. These additional points are usually observed at a later time,
under possibly different experimental conditions than the original first order design points. A block
effect could exist due to the possibly different experimental conditions. Orthogonally blocked de-
signs are of the form such that block effects are orthogonal to the model terms, allowing for esti-
mation and testing of the model terms free of any block effects. Box and Hunter (1957) developed
the general conditions for orthogonal blocking of a second order design. These conditions are given

by,
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(1) Each block must form a first order orthogonal design.

(2) The contribution to the sum of squares of each variable @l

n
(3 x2) from each block is proportional to the block size.
u=1

4.2.2 Prediction Properties and Coefficients Estimation

The choice of an experimental design used for prediction purposes with respect to a second
order model are generally based upon the prediction variance. Two general prediction variance
criteria which are often used in relation to a second order model are rotatability and G-optimality.
Both criterion are discussed in general within section 2.4.2 . Rotatability assures that the predicted
values of points equal distance from the design center will have equal prediction variances. G-
optimality is a design criterion based upon the maximum prediction variance within a region of

interest, R. The properties of experimental designs that assure rotatability will be discussed here.

Another often used property for selecting second order experimental designs is based upon
the quality of the estimated regression coefficients. D-optimality and D,-optimality, discussed in
section 2.4.2 are frequently adopted criteria for evaluating the quality of estimated coefficients for
a second order model.

4.3 Augmentation of Factorial Designs - Central
Composite Designs

Central composite designs, introduced by Box and Wilson (1951) are the most commonly
used second order designs. These designs are discussed in general in section 2.5.2 . Central com-
posite designs can be partitioned into a factorial section, an axial section and center points. A fac-

torial design used in the initial stage of experimentation can be augmented with axial points and
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possibly additional center points to form a central composite design. The general structure of a
central composite design is given by (2.45). The axial points allow for estimation of the pure

quadratic coefficients, 8,, which could not be previously estimated using a factorial design.

The central composite design is a very flexible design that can be made to satisfy several op-
timality criteria. The flexibility of these designs is a result of the freedom to select the values of g,
« and 7, the number of center points. Initially, the values of g and r, are selected to satisfy some
criterion of interest pertaining to a first order model. Here, the value of g and #n, will be chosen
according to some first order prediction property. If a significant lack of fit is observed, then the
axial points are added with possibly additional center points. The value of « and the number of
additional center points are determined by some criterion of interest of a second order model.
Orthogonal blocking, rotatability, D-optimality and D,-optimality are the criteria for selecting « and

the number of additional center points investigated within this work.

4.3.1 Orthogonally Blocked Central Composite Designs

The conditions for orthogonal blocking given by (4.1) can easily be attained for central
composite designs of the form (2.45). Appropriate selection of g, « and n, will guarantee orthogonal
blocking. Central composite designs in two blocks can be constructed for all values of k. The first
block of n, experimental points consists of the initial factorial plus center points design. The aug-
mentation of axial and additional center points to complete the central composite design consists
of the second block of n, experimental points. The values of g, ,, « and n, are selected to achieve
orthogonal blocking. The first condition of orthogonal blocking given in (4.1) will always hold for
a central composite design in two blocks. The second condition of (4.1) requires that the following
expression in the design parameters holds.

2k-l 2

g m
=Ty (4.2)

o
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The value of g and n, are selected based upon some criterion of interest for a first order model
(i.e., prediction). If augmentation of the factorial design is necessary, then the possibility of a block
effect exists among the factorial block and the axial block. The values of « and n, can then be
chosen according to (4.2) to obtain orthogonal blocking for the given first block with g and n,. For
the example given in section 3.1, the factorial design with g=0.8944 and n,=8 can be augmented
with an axial section with a=0.8944 and zero center points (m,=4) or « = 1.00 with one center

point (= 5) to form an orthogonally blocked central composite design in two blocks.

4.3.2 Rotatable Central Composite Designs

The conditions for rotatability given by Box and Hunter can be satisfied by selecting appro-

priate values for g and a of a central composite design. Rotatability can be achieved if,
a=4/2*g . (4.3)

Again, the value of g is selected based upon some criterion of interest for a first order model.
If augmentation of the factorial design is necessary, then prediction properties pertaining to a second
order model are of interest. The value of « can be chosen such that the central composite design
will be rotatable. Note that the conditions for rotatability are not a function of the number of
center runs. Therefore, by choosing an appropriate number of center runs, a rotatable central

composite design can be constructed to also block orthogonally.

4.3.3 D and D, Efficient Central Composite Designs

Central composite designs in general can be constructed to be very efficient with respect to

second order coefficient estimation as measured by D-efficiency and D,-efficiency. These designs
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which contain few or no center points achieve D-efficiency and D,-efficiency values of 0.90 and
above. In addition, these designs have values of g=1 and «=1. In general, within the sequential
experimental framework it has been previously discussed that g is chosen according to some first
order model property. Within this work g is chosen according to first order prediction properties.

If the variance of prediction for a first order model is used for selecting g, then g will equal
1.0 and efficient central composite designs can be constructed by augmenting these designs with
axial points at « = 1.0. If prediction bias or mean squared error for a first order model is used for
selection of g, then g will usually be less than one and the central composite design formed by
augmenting with axial points at « = 1.0 will not be as D-efficient or D, -efficient as ‘variance’ de-
signs. Table 4.1 provides some D-efficiency and D,-efficiency values for designs with factorial
sections that are mean squared error efficient as given in Table 3.1 . The designs given in Table
4.1 show that the central composite designs with lower values for g and smaller n perform poorly
in terms of the D-efficiency and D,-efficiency. The better performing central composite designs have

higher values of g and larger sample sizes, n.
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Table 4.1
D-efficiency and Dj-efficiency for Central Composite
Designs Created By Augmentation of Mean Squared Error Efficient

Factorial Designs

k=2

n g a« D-efficiency D -efficiency
10 0.77 1.00 0.6065 0.5009

11 0.84 1.00 0.6621 0.6011

12 0.89 1.00 0.7068 0.6890
13 0.95 1.00 0.7454 0.7694
14 1.00 1.00 0.7817 0.8473

k=3

n g @ D-efficiency D,-efficiency
16 0.73 1.00 0.4632 0.3869
17 0.77 1.00 0.4988 0.4360
18 0.80 1.00 0.5268 0.4765
19 0.84 1.00 0.5508 0.5126
20 0.87 1.00 0.5732 0.5467
21 0.90 1.00 0.5925 0.5771
22 0.93 1.00 0.6138 0.6104
23 0.96 1.00 0.6306 0.6378
24 0.98 1.00 0.6489 0.6673

k=4

n g o D-efficiency D,-efficiency
25 0.71 1.00 0.3985 0.3322
26 0.75 1.00 0.4428 0.3822
27 0.79 1.00 0.4870 0.4330
28 0.82 1.00 0.5623 0.5229
29 0.86 1.00 0.5623 0.5229
30 0.89 1.00 0.5990 0.5678
31 0.92 1.00 0.6325 0.6096
32 0.95 1.00 0.6610 0.6461
3 0.98 1.00 0.6998 0.6951
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4.4 Augmentation of Rotated Designs - Second Order
Rotated Designs

The first order rotation designs discussed in section 3.4 can be augmented to form a class of
second order rotated designs. These second order rotated designs are essentially rotations of central
composite designs. The transformation matrices given by (3.16), (3.18) and (3.20) can be applied
to central composite designs to create the second order rotated designs. For k=2, 3 and 4 variables,

second order rotated designs are given by,

—d -1
d 1
-1 d
1 —-d
1-d
- —af {_{_ g) , (4.49)
| d“ “15d)
—(1 T a) @
a(-l__—_d) -
1+d
0 0
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respectively.

The first order rotated designs used during the initial stage of experimentation can be aug-

mented with dual axial points and possibly additional center points to create a second order design.
1-d
1+d
remaining k - 2 variables set to zero. The dual axial points allow for estimation of the second order

The dual axial points have two variables chosen at specific levels (+ « and + a(

)) and the

coefficients, 8, and B, free of the effects of aliasing.

The second order rotated designs are very flexible and can be made to satisfy several opti-
mality criteria. This flexibility is the result of the freedom to select the values of d, « and n,, the
number of center points. The values of d and n, are initially selected according to some criterion
of interest for a first order model. The selection of d and n, based upon some prediction property
of a first order model has been previously discussed. This choice of d and n, is also consistent with
the sequential framework of experimentation. If a significant lack of fit is observed based upon the
observations of the first order rotated design, then the dual axial points are added along with pos-
sibly additional center points. The value of «, 0 < « < 1, and the number of additional center points

are determined by some criterion of interest pertaining to a second order model.

Orthogonal blocking, rotatability, D-efficiency and D,-efficiency are the second order criteria
investigated here. Where possible, comparisons will be made of the second order rotated designs

to central composite designs.

4.4.1 Orthogonally Blocked Second Order Rotated Designs

The conditions for orthogonal blocking given by (4.1) can easily be established for second
order rotated designs of the forms (4.4)-(4.6). Appropriate selection of the design parameters, d, «
and n, can guarantee orthogonal blocking. Second order rotated designs in two blocks can be

constructed for all values of k. The first block of 7, experimental points consists of the initial first
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order rotated design with center points. The augmentation of dual axial and additional center
points to complete the second order rotated design comprise the second block of n, experimental
points. The values of d, #,, a. and », are selected to achieve orthogonal blocking. The first condi-
tion for orthogonal blocking given in (4.1) will always hold for a second order rotated design in two
blocks. Both blocks as described above are first order orthogonal. The second condition in (4.1)

requires that the following relationship among the design parameters holds.

1+d> m
i @.7)

The values of d and n, are sclected based upon some criterion of interest for a first order model
(i-e., prediction). If augmentation of the first order rotated design is necessary, then the possibility
of a block effect exists among the initial first order rotated design and the augmented dual axial
section. The relationship for orthogonal blocking (4.7) can be used to select values of « and n,

based upon the d and 7, used in the first order rotated design.

For the example given in section 3.5, the first order rotated design with d=0.7746 and n,=8

can be augmented with dual axial points and center points that satisfy (4.7). These values of « and

n, are given by the following:

m a

4 0.6661
5 0.7447
6 0.8158
7 0.8811
8 0.9420
9 0.9991

Any of the above combinations of « and n, will guarantee orthogonal blocking.
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4.4.2 Rotatable Second Order Rotated Designs

The conditions for rotatability given by Box and Hunter can be achieved by selecting ap-

propriate values of d and « of a second order rotated design. Rotatability can be achieved for de-

signs of the form (4.4)-(4.6) if,
_ | k(1 + dy?
*= 4
k 2
with a*=, /-(—l’;—‘i—)- for k 0dd

Consistent with the sequential framework, d is chosen according to some criterion of interest

(4.8)

for a first order model. If augmentation of the first order rotated design is needed, then prediction
properties pertaining to a second order model are addressed by selecting a such that rotatability is
achieved. Notice that the conditions for rotatability are not a function of the number of center
points. The selection of an appropriate number of center points can be based upon other criterion

for a second order model.

4.4.3 D and D, Efficient Second Order Rotated Designs

Second order rotated designs can be constructed to be very efficient with respect to coefficient
estimation for a second order model. These designs which perform well in terms of D-efficiency
and D,-efficiency contain few or no center points with d=1 and « =1. In general, within the se-
quential experimental framework it has been previously discussed that d is chosen according to
some first order model property. Here, first order prediction properties are used for selecting d. If
the first order model prediction variance is used, then d= 1.0 is chosen and D-efficient and D,-effi-
cient second order designs can be constructed by augmenting with axial points at « = 1.0. If pre-

diction bias or mean squared error for a first order model is used for selecting d, then d will usually
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be less than one and the second order rotated designs constructed by augmenting with dual axial
points at « = 1.0 will not be as D-efficient or D -efficient as ‘variance’ designs. Table 4.2 provides
some D-efficiency and D,-efficiency values for designs with first order rotated sections (i.e., d) that
are mean squared error efficient as given in Table 3.2. The designs given in Table 4.2 show that
second order rotated designs with lower values for d and smaller sample sizes, n, perform poorly in
terms of D-efficiency and D,-efficiency. The better performing designs have larger values for d and

n.
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Table 4.2
D-efliciency and Dg-efficiency for Second Order Rotated
Designs Created By Augmentation of Mean Squared Error Efficient

First Order Rotated Designs

k=2

n d o D-efficiency D,-efficiency
10 0.45 1.00 0.6574 0.5642

11 0.63 1.00 0.6800 0.6252
12 0.77 1.00 0.7128 0.6976
13 0.89 1.00 0.7466 0.7713
14 1.00 1.00 0.7817 0.8473

k=3

n d a D-efficiency D -efficiency
16 0.27 1.00 0.5082 0.4368

17 0.43 1.00 0.5226 0.4641

18 0.54 1.00 0.5411 0.4942
19 0.63 1.00 0.5595 0.5238
20 0.71 1.00 0.5782 0.5534
21 0.78 1.00 0.5952 0.5809
22 0.85 1.00 0.6151 0.6121
23 0.91 1.00 0.6311 0.6385
24 0.97 1.00 0.6489 0.6673

k=4

n d a D-efficiency D,-efficiency
25 0.11 1.00 0.4798 0.4182
26 0.35 1.00 0.4812 0.4258
27 0.49 1.00 0.5096 0.4599
28 0.59 1.00 0.5383 0.4945
29 0.68 1.00 0.5707 0.5335
30 0.76 1.00 0.6036 0.5738
31 0.83 1.00 0.6348 0.6126
32 0.89 1.00 0.6620 0.6474
3 0.96 1.00 0.6999 0.6953
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The value of « is chosen to be one for all augmentations since this value will provide for the
best D-efficiency and D,-efficiency. In general, the larger the value of a, the better the two efficiency

measures will be.

A comparison of the information provided in Tables 4.1 and 4.2 shows that the second order
rotated designs can be made more D-efficient or D -efficient than a corresponding central composite
design. The values of g and d in both tables are selected such that the second order design moment,
[ii], equals 0.43. Designs with second moments slightly greater than 1/3 are generally considered to
be mean squared error efficient as discussed in section 2.4.3. In addition, the first order prediction
properties for the factorial designs are equivalent to those of the first order rotated designs. But,
from Tables 4.1 and 4.2 it is clear that the second order rotated designs will always outperform the
central composite designs in terms of second order coefficient efficiencies (D and D,) if the axial

points of both designs are chosen to maximize these efficiencies.
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Chapter V

V. A Mean Squared Error Criterion

Experimental designs which perform well in terms of the traditional integrated mean squared
error of prediction, J given by (2.1) can be improved in terms of lack of fit performance by utilizing
the A,* criterion discussed in Chapter III. Conditional upon a 'second order design moment chosen
based upon some prediction property for a first order model, the lack of fit properties for a design

are be measured by the A,* criterion.

This chapter examines an experimental design criterion that considers the integrated mean
squared error of prediction conditional upon the lack of fit properties. Box and Draper (1959, 1963)
have discussed experimental designs which perform well in terms of the unconditional mean
squared error of prediction. The work here is in the same spirit except that lack of fit properties
are incorporated into the evaluation of the integrated mean squared error, J. This conditional in-

tegrated mean squared error is consistent with the sequential framework of experimentation.
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5.1 One Variable Case

Consider the case of a k = 1 variable response model. Within the sequential framework, for

a first order response model estimate the integrated mean squared error of prediction is given by,

2
_ 1 ni [ N . ]
J=1+ 3 + 2 i -1/3" + 25 (5.1
and the noncentrality parameter of the lack of fit test for the detection of the quadratic coefficient
B, is given by

np

2
A=—1
-4

(Ciiid] - L) . (52

The quantity J is used to evaluate the prediction capabilities of a first order response_model
estimate. The noncentrality parameter, 4 , is used to evaluate the lack of fit properties. Notice that
both J and A are functions of the quadratic coefficient 8,,. For a given experimental design,

A and J can be evaluated in terms of §,,.

Consider J and 4 for the following example with an experimental design.consisting of five

experimental points given by

{1,-1,0,0,0} . (5.3)

This design in one variable has a second moment equal to 0.4 and the three center runs allow
for a lack of fit test to be performed with two degrees of freedom for the pure error term in the
denominator. This design is thought to perform well in terms of the integrated mean squared error
of prediction, J, as examined by Box and Draper (1959, 1963). Box and Draper suggest that the
use of a second moment slightly greater than the minimum bias second moment will perform well

in terms of J. Recall from section 2.4.4 that the optimal design in terms of J is a function of the
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design given above. In addition, Figure 5.2 provides a plot of the power of the lack of fit test vs.

ﬁﬂu.

quadratic coefficient, 8, which is unknown. Figure 5.1 provides a plot of J vs. for the

«/’ n By

greater than 13.5 the power is greater than 0.9. Therefore,

Figure 5.2 shows that for large values of
sign is quite large. In fact, for ———x— \/—,8,1
for these large values of '8 , it is highly probable that we will observe a significant lack of fit

'\[_ll

and subsequently fit a second order response model. When the value of ——— is not so large,

, the power of the lack of fit test for this de-

there exists a reasonable chance of observing a nonsignificant lack of fit despite the fact that g, is
J—ﬁ,, a first order model estimate would likely be used, and the
prediction properties of this model are characterized by J .

not zero. For these values of ————

The quantity J depends upon the second order coefficient, B, , but for the experimental de-
sign given it can be seen from Figures 5.1 and 5.2 that values of J are only important over a range
of B,, where the power of the lack of fit is not large. Within the sequential framework, when the
power of the lack of fit test becomes large, J, which is a prediction measure for a first order model
is no longer of great interest since it is highly likely a second order model will be fit when the true
B, is in this range.

This example provides the motivation for the next section which discusses a measure that
evaluates the integrated mean squared error of prediction (/) over a region of low power for the lack
of fit test. This measure is developed in general for any number of variables k& and any design class.
This measure will be used throughout this chapter for evaluation of first order prediction properties
of several design classes.
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Figure 5.1 - Integrated Mean Squared Error of Prediction vs. The Second Order Coefficient
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Figure 5.2 - Power of the Lack of Fit Test vs. The Second Order Coefficient
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5.2 Power Conditional Average and Power Conditional
Maximum Mean Squared Error

As discussed within the context of the one variable example of section 5.1, the mean squared
error of prediction for a first order model is of interest only when the first order response model
estimate is used for prediction and exploration. When the lack of fit test is significant, indicating
that a second order response model is to be used, then J is not of interest. The procedure suggested
here is to evaluate the performance of J restricted to a region of second order coefficients such that
the power of the lack of fit test is not large. The J-optimal design depends upon the second order
coefficients which in general are unknown. Box and Draper (1959, 1963) consider the performance
of J over all possible values of the second order coefficients. Their results indicate that designs
which perform well in terms of J over many possible values for the second order coefficients have

second order design moments that are slightly greater than the minimum bias second moment.

Here within this work, the consideration of J is restricted to values of the second order coef-
ficients that result in low power of the lack of fit test. This evaluation of J is consistent with the
sequential experimental framework. A criterion similar to the A,* criterion of section 3.2.2 is de-
veloped. The A,* criterion considers the average noncentrality parameter of the lack of fit test
conditional upon the integrated mean squared error of prediction being fixed. The A,* criterion
can be used to improve upon the lack of fit test performance. If one considers the class of designs
with a given integrated mean squared error, J, for a first order model the A,* criterion can be used

to select the designs of this class that perform best in terms of the lack of fit test.

An idea similar to the A,* criterion is to consider the average J over a region of fixed power
for the lack of fit test. This criterion is called the power conditional average mean squared error
of prediction, denoted by Jp,. Consider for a first order response model estimate the integrated

mean squared error of prediction given by,
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J = tr(py M) + (5.9
Also consider the noncentrality parameter of the lack of fit test for detection of second order model
terms given by
nf’',L
1= —E—’Z—E’— : (5.5)

-4

The sequential experimental framework previously discussed specifies that a first order re-
sponse model estimate is initially considered and based upon the lack of fit test, either a first order
or a second order model will be used for prediction and exploration of the response variable. If the
lack of fit test is nonsignificant, a measure of the prediction properties for a first order model is given
by J. If the lack of fit test is significant, then a second order model is used for estimating the re-
sponse and J is no longer of interest. Therefore, within the sequential framework, the quantity J
is only of interest when a nonsignificant lack of fit is observed, i.e., when the wrong model is being
fit. Hence, a measure of the prediction properties of an experimental design pertaining to a first
order response model estimate is the average value of J over the values of the second order coeffi-

cients that will result in low power for the lack of fit test.

Recall from section 2.4.4 that the optimal integrated mean squared error design when fitting
a first order model is a function of the unknown second order coefficients. The J,, criterion of
averaging the integrated mean squared error over a region in the second order coefficients where the
power is low accounts for the dependency of J on the second order coefficients. Formally, the

Jpc, criterion is defined as the following.

Let @= {E,:i;fﬁ< Ao} where 4, is the noncentrality parameter required to achieve a

specified power of the lack of fit test.
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The derivation of Jp., is given in Appendix B. Jp., measures the prediction capabilities of

a design pertaining to a first order model.

In addition to the power conditional average mean squared error, Jp,, one may also consider
the power conditional maximum mean squared error to evaluate the prediction properties. The
maximum J over the region ® will occur somewhere on the boundary of ©, therefore a measure
associated with this maximum J/ is given by,

Jrcmax= mgx J

(5.7
= lr(p“Mﬁ') + Ay(max eigenvalue (L'IT)) .

The derivation of Jpcy .y 1S also given in Appendix B.

5.3 Application of J,., and J,_,,, to First Order Factorial
Designs

The Jpe, and Jpcpqx criteria developed in section 5.2 are used here to evaluate the first order
model prediction performance for factorial designs. Jpe, and Jpcyr can be used to select the val-
ues of the design parameters g and n, , the number of center points. Factorial designs with center
points often comprise the initial experimental design used to estimate a first order model and to
perform a lack of fit test. Within the sequential framework, if a significant lack of fit test is ob-
served, then these factorial designs are supplemented with axial points in order to fit a second order
model.
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Consider Jpe, and Jpep x given by (5.6) and (5.7). Both are a function of the lack of fit

matrix L and the bias matrix 7. The L and T matrices for a factorial design with center points can

be expressed as the following,

| @ehin 0 58
o [2%*n-@"n*] ik '
Wy [ 0
T=[ w . ] (5.9)
0 2
. NS, 2gl \2  2g .

where T, is a k x k matrix with diagonal elements equal to ( = ) =~ — Wy + w, and off di-

2k 2k+l
agonal elements equal to ( ,‘,gz )z - ng’ Wy + w,y. 1is an identity matrix of dimension (2)

The L matriﬁ given by (5.8) is not of full rank since all second order coefficients cannot be
estimated (or tested) with a factorial design. Since L is not of full rank, it appears that both Jpc,

and Jpcp.x cannot be applied to factorial design since both require the existence of L-1.

For factorial designs, consider the following expressions of the integrated mean squared error,

J and the noncentrality parameter, 4 :

A= ﬁ [(Zﬁﬁ)([iiia ~ ) + 2(5&@)([@] - L) + (Zﬁ?j)([iwj)] . (510

kw .
J=1+ _[;]l + :12- [(}j/z,’,)([:q2 — 2wyLii] + wy) + 2(5ﬂﬁﬂjj)([iﬂz — 2wyLii] + wyy)

(5.11)
+ (Zﬂ%)(wujj)] .

Note that both 1 and J can be expressed in terms of the same functions of the second order
coefficients. Therefore, the form of the second order model can then be reparameterized in terms

of the functions of the second order coefficients given in (5.10) and (5.11). These new “parameters”
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are Y f3 IZ}B,,B” and Y’} and represent the functions of the second order coefficients that are
<,

testable hypotheses for a factorial design.

This reparameterized model is given by,

r=XB1+ X85 +¢

A
Bo
By [ 55} |
where §,=| | and g0 = | Zub| . (5.12)
&
B

Using this reparameterized model the noncentrality parameter of the lack of fit test can be

expressed as
t 14 L * *
A= ELZ—E—Z , (5.13)
[
L] — [ii]? 0 0
where L*=| o [i]-[l* O
0 0 Rl

The expression given by (5.13) is equivalent to that given by (5.10). The advantage of the
reparameterized model is that the matrix L* in the quadratic form of (5.13) is of full rank and its

inverse exists.

The mean squared error, J, can also be expressed in the terms of the reparameterized model
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I = trpy Mp) + =5 (5.14)
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L] — 2wy +wy 0 0
where T* = 0 [if]? — 2w,Li]] + wy O
Q 0 Wiwl

k

2
is equivalent to that given by (5.11). This reparameterization of the mean squared error, J, allows

Where 1 is an identity matrix of dimension ( ) in both L* and T*. The expression given by (5.14)

for conformability between the lack of fit matrix L* and the bias matrix 7*.

Based upon this reparameterized model for factorial designs, the J,c, and Jpcpx Values can
be expressed as the quantities given by (5.6) and (5.7) with L replaced by L* and T replaced by
T*. The design parameters for a factorial design can then be chosen such that Jpc, or Jpcaer is 2
minimum. These designs would correspond to designs which achieve the minimum average or
minimum maximum mean squared error of prediction over the region of low power for the lack

of fit test.

The investigation of factorial designs is considered for k =2 to k=5 variables, considering
both the full and a one half fraction of the k = 5 factorial. In addition both cuboidal and spherical
design regions are considered. That is the design points are considered to be within a k-dimensional
unit cube or unit sphere. The region of interest in the design variables for exploration, R, is also
considered to be a unit cuboidal or unit spherical region. Three combinations of design region and
region of interest are examined. These combinations are a cuboidal design region with a cuboidal
region of interest, a spherical design region with a spherical region of interest and a cuboidal design

region with a spherical region of interest.

Appendix C contains summary tables of factorial designs. The reader is referred to Appendix

C for details of comparing factorial designs based upon the Jpo, and Jocpqx values. The values of
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Jpca calculated in Appendix C are for the average mean squared error over the second order coef-
ficient region such that the power of the lack of fit test is less than or equal to 0.90. J,, was also
examined for regions in which the power was less than 0.75 and 0.50. No substantial differences
in terms of conclusions existed among the 0.90, 0.75 and 0.50 regions. Of course the value of Jp,
will change, but comparisons of the designs within each of these three regions yielded nearly iden-

tical results. The 0.90 “power” region is selected for design comparison throughout this work.

5.3.1 Factorial Designs with Cuboidal Regions for the Design and
Exploration

When both the design region and the region of interest are cuboidal the conclusions and rec-
ommendations drawn from Appendix C for the J,¢, criterion are the following.
(1) The addition of several center points dramatically decreases the values of Jpc,. This
result is probably due to the fact that the degrees of freedom and hence the power of the
lack of fit test will increase when the number of center points increases. Although the op-
timal values of J/,¢, are achieved for designs with an extraordinary number of center points,
Jrca values fairly close to the optimal values can be obtained with more reasonable num-
bers of center points. For k = 2 variables, 4-7 center points will yield acceptable values for
Jpca- For k=3, 5-11 center points will yield acceptable values for Jp.,. For k= 4 at least
6 center points and for k= 5 at least 7 center points will yield acceptable values for Jp, .
In addition, for k=5, a one half fractional factorial design achieves consistently smaller
values for J/,, than the complete factorial.
(2) The optimal values of g for the recommended number of center points given in (1) are
1.0. The center points allow for a better lack of fit test with more degrees of freedom and
also reduce the second order design moments to values which perform well in terms of J
for values of g at the extremes of 1.0.
The conclusions drawn about the Jpc, . Criterion are:
(1) The addition of several center points dramatically decreases the values of Jpcpx-

Reasonable number of center points which provide for near optimal values of Jpcpx are
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given by 5 to 8 center points for k = 2 variables, at least 6 for k = 3, at least 8 for k = 4 and
at least 10 for k= 5. In addition, for k=5, a one half fractional factorial design achieves
consistently smaller values of Jpcy,x than the complete factorial.

(2) The optimal values of g for k=2 and k= 3is 1.0. For k=4 and k= 5 smaller values

of g will yield the best performing designs in terms of Jpcpe s

$.3.2 Factorial Designs With Spherical Regions for the Design and
Exploration

When both the design region and the region of interest are spherical the conclusions and
recommendations drawn from Appendix C for the J,, criterion are the following.
(1) The addition of several center points dramatically decreases the values of J,,. Again
this result is probably due to the gain in performance of the lack of fit test and hence a
smaller region in the second order coefficients that / is averaged over. The recommended
number of center points that will guarantee optimality or near optimality in terms of J,,
are for k = 2, 4 to 6 center points. For k= 3,4 and 5 the recommended number of center
points are 5-9, at least 7 and at least 7 respectively. A k= 5 one half fractional factorial
achieves consistently smaller values of Jpc, than the complete factorial.
(2) The optimal values of g for all numbers of center points and all & are the largest possible
values within the k-dimensional unit sphere. These values are g = 1 /\/7(_ .
The conclusions drawn about the Jpcy . criterion are:
(1) The addition of several center points dramatically decreases the values of Jpcp r. Again
this result is probably due to the gain in performance of the lack of fit test and hence a
smaller region in the second order coefficients that J is averaged over. The recommended
number of center points that will guarantee optimality or near optimality in terms of
Jpemax are for k=2, 4 to 6 center points. For k= 3,4 and 5 the recommended number
of center points are 5-9, at least 7 and at least 7 respectively. A k = 5 one half fractional

factorial achieves consistently smaller values of Jpcp,r than the complete factorial.
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(2) The optimal values of g for all number of center points and all k are the largest possible

values within the k-dimensional unit sphere. These values are g = 1/\/k .

5.3.3 Factorial Designs within a Cuboidal Design Region and Spherical
Region of Interest

When the design region is represented by a unit cuboidal region and the region of interest is
a unit sphere or hypersphere within the design region thén the conclusions and recommendations
drawn from Appendix C for the J,, criterion are the following.
(1) The addition of several center points dramatically decreases the values of J,-,. The gain
in performance of the lack of fit test through the additional center points is reflected in a
decrease in Jpo,. The recommended number of center points that will guarantee optimality
or near optimality in terms of J,-, for k = 2 through 5 variables are 4 to 9, at least 5, at
least 6 and at least 7 respectively. A k= 5 one half fractional factorial achieves consistently
smaller values of J,¢, than the complete factorial.
(2) The optimal values of g for designs with the recommended number of center points
given in (1) are often less than the maximum allowed of 1.0.
The conclusion drawn about the Jpyx criterion are:
(1) The addition of several center points dramatically decreases the values of Jpcp ye The
recommended number of center points that will guarantee optimality or near optimality in
terms of Jpcpux for k= 2,3,4 and 5 vaniables are 5 to 9, at least 7, at least 9 and at least
10 respectively. A k=5 one half fractional factorial achieves consistently small values of
Jpcuax than the complete factorial.
(2) The optimal values of g for designs with the recommended number of center points

given in (1) are often less than the maximum allowed of 1.0.
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5.4 Robust Second Order Designs

The sequential framework utilized throughout this work can be adjusted to the special needs
of an experimenter. The framework previously described initially employs a first order design for
fitting a first order response model estimate. If a lack of fit test for second order departures is sig-
nificant then additional sample observations are needed, consisting of either an augmentation of the
existing first order design or a new second order design. If additional sample observations cannot
be obtained by an experimenter, then the initial design must have the capabilities of fitting a second
order model. This is not the case with the first order designs discussed previously (factorial or ro-
tated). This section will consider experimental situations when additional observations cannot be

taken after some initial stage.

Specifically, the ‘one experiment’ framework considered within this section is given by the
following. The experimenter is uncertain as to the best characterization for the response variable.
Initially, a first order response model estimate will be used, if this model is found to be inadequate
based upon a significant lack of fit test, then a second order model will be adopted. Within this
framework only one experimental design can be employed to accomplish the objectives mentioned
above.

Atkinson (1972, 1973) has previously considered the use of second order designs within the
‘one experiment’ framework. Atkinson discusses the use of the |L| criterion for evaluating exper-
imental designs in terms of the performance of the lack of fit test and also as a D, measure to
evaluate the quality of the second order coefficient estimates. He points out that experimental de-
signs which perform well in terms of | L|, designs with good D,-efficiency as given in (2.27), may
perform poorly in terms of the quality of the first order coefficient estimates. Therefore, Atkinson
derives an efficiency measure similar to that of D, -efficiency for first order model terms. He then

constructed experimental designs that will have the largest | L| conditional upon achieving a lower
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bound for the first order efficiency measure. These designs are considered to perform well in terms
of the lack of fit test, |L], and also in terms of estimating a first order model or a second order
model depending on the outcome of the lack of fit test. This robust design selection of choosing
a design that will perform well in terms of both a first order and second order model based upon
the results of the lack of fit test will now be considered using the J,p., criterion to evaluate the
performance of a first order response model estimate in terms of prediction capabilities. D, -effi-
ciency for second order terms and D-efficiency for the full second order model are simultaneously

considered for evaluation of second order model performance.

Two often used second order design classes, central composite designs and Box-Behnken de-
signs, are evaluated and compared using the robust selection criteria of Jpc, Or Jpcpr cOmbined
with D -efficiency and D-efficiency. The designs discussed here are therefore robust in terms of
providing good performance of the lack of fit test and additionally providing good prediction per-
formance for a first order model and good model estimation for a second order model depending

upon the result of the lack of fit test.

Appendix C contains summary tables of Jpe,, Jpcrax, D,-efficiency and D-efficiency for cen-
tral composite designs and Box-Behnken designs. The reader is referred to Appendix C for the
details of the evaluation and comparison of central composite and Box-Behnken designs. As with
the factorial designs of section 5.3, the values of Jpc, and Jpcp.x are calculated for the region in the
second order coefficients, ®, such that the power of the lack of fit test is less than or equal to 0.90.
Similar results were obtained for other values of the power examined but not presented within this
work.

5.4.1 Second Order Designs Within a Cuboidal Design Region for a
Cuboidal Region of Interest

When both the design region and the region of interest are best represented by a unit cuboidal
region, then the conclusions and recommendations drawn from the tables of Appendix C are the

following.
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(1) Central composite designs that perform best in terms of all the robust selection criteria,
JIpcar Jremar D-efficiency and D-efficiency possess the values of g and « to be 1.0. The
Box-Behnken designs that perform best possess the value of g equal to 1.0.

(2) The addition of center points at first dramatically decreases the values of
Jrca and Jpcpax but with each additional center point the D, -efficiency and D-efficiency
will also decrease. Therefore to maintain robustness, consideration of all four measures
simultaneously yields the following recommendations for the number of center points. For
k=3,4 and § variables 6 to 8, 8 to 10 and 9 to 12 center points respectively will provide
designs which perform best in terms of the four design criteria.

(3) For k=13 variables, the two design classes are generally equivalent. For k=4 and
k =5 variables, the central composite design outperforms the Box-Behnken design. For
k=35 a one-half fraction of a 25 factorial design used for the factorial portion within the

central composite design performs the best.

5.4.2 Second Order Designs Within a Spherical Design Region for a
Spherical Region of Interest

When both the design region and the region of interest are best represented by a unit sphere

or hypersphere, then the conclusions and recommendations drawn from the tables of Appendix C
are the following.

(1) Central composite designs that perform best in terms of all the robust design selection

criteria have the values of g equal to f and « = 1. These designs are such that all non

center points are on the sphere of radius one among the design variables. The Box-

Behnken designs that perform best utilize the value of g equal to %

(2) For both design classes the addition of center points at first dramatically decreases the

values of Jp, and Jpcpx » but with each additional center point the D-efficiency will also

decrease. The following recommendations for the number of center points is based upon

simultaneous consideration of Joc, Or Jpcpar With the D-efficiency. For k= 3,4 and 5
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variables, 6 to 10, 7 to 11 and 8 to 12 center points respectively will provide for designs that
perform well in a robust sense.

(3) For k=13 variables the central composite design outperforms the Box-Behnken with
respect to all four criteria. For k = 4, the central composite design and Box-Behnken de-
sign are exactly equivalent. This result for k = 4 is a consequence of the fact the central
composite and Box-Behnken designs are rotations of each other for k=4 . The Box-
Behnken design is most robust for & = S although a central composite design containing a
one-half fraction performs well in terms of Jp, and Jpcp i but suffers from poor second

order model properties, as measured by the D-efficiency.

5.4.3 Second Order Designs Within a Cuboidal Design Region for a
Spherical Region of Interest

When the design region is best characterized by a cuboidal region and the region of interest
is best characterized by a spherical region the following conclusions and recommendations are
drawn from the tables of Appendix C.

(1) Central composite designs that perform best in terms of the robust design selection
criteria have the values of g and « equal to 1.0. The Box-Behnken designs that perform
best utilize the value of g equal to 1.0.

.(2) The addition of center points dramatically decreases the value of Jpe, and Jpcpx at
first. With each additional center point the D,-efficiency and D-efficiency simultaneously
decrease, resulting in the following recommendations for the number of center points. For
k=34 and S variables, 6 to 9, 8 to 11 and 8 to 11 center points respectively will provide
robust designs with respect to all four design criteria.

(3) The central composite and Box-Behnken designs are approximately equivalent for
k = 3 variables. The central composite designs outperform the Box-Behnken for £ = 4 and

k = 5 with a one-half fraction used within the k = 5 central composite.
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3.5 Economical Robust Second Order Designs

The experimental situation described within section 5.4 is further investigated within this
section for second order designs that are more economical than central composite or Box-Behnken
designs. These designs are saturated or near saturated with respect to estimation of a second order
response model when no center points are used. Without center points, these designs do not pos-
sess the capabilities for performing a lack of fit test. Within this section, small composite, Hybrid
and Notz type designs which are saturated or near saturated experimental design classes will be
examined in a similar fashion as central composite and Box-Behnken designs in section 5.4. These
three design classes will be considered in the context of a ‘one experiment’ sequential framework.
The need for a lack of fit test within this framework results in consideration of the three design
classes with the addition of center points. These designs with center points are no longer saturated
or near saturated for estimation of a second order model, but they provide economical alternatives

to central composite and Box-Behnken designs.

The economical designs examined here have the advantage of containing fewer experimental
points than central composite or Box-Behnken designs. Unfortunately the performance of the
economical designs in terms of the Jpc,, Jpcpqr, D, -efficiency and D-efficiency is much worse than
the central composite or Box-Behnken. An experimenter should therefore consider using the eco-
nomical designs only when he or she is limited in the number of experimental points and cannot

accommodate the needs for a central composite or Box-Behnken design.

A general examination and comparison of the three economical design classes in terms of
Jrcar Jpcuaxs Di-efficiency and D-efficiency is now considered. Appendix C contains summary
tables of these four design criteria for the small composite, hybrid and Notz designs with the addi-

tion of center points. Consistent with the comparisons for factorial, central composite and Box-
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Behnken designs the values of Jp, and Jpcp,x calculated in Appendix C are for a region in the
second order coefficients, ©, such that the power of the lack of fit test is less than or equal to 0.90.

3.5.1 Economical Second Order Designs Within a Cuboidal Design Region
for a Cuboidal Region of Interest

When both the design region and the region of interest are best represented by a unit cuboidal
region, then the conclusions and recommendations drawn from the tables of Appendix C are given
by the following.

(1) Small composite and Notz designs that perform best in terms of the
Jrcas Jrcuaxs D-efficiency and D-efficiency possess the values of ¢ and « equal to one.
For the hybrid designs, the designs given by Roquemore (1976) with given values for
8 a,b,c, and d are scaled such that the largest possible value of these five design param-
eters is equal to one. This will guarantee that all design points are within the unit cube.
(2) The addition of center points at first dramatically decreases the value of
Jpca and Jpcpar but with each additional center point the D,-efficiency and D-efficiency
will also decrease. In order to maintain robustness in terms of the four design criteria, si-
multaneous consideration of all four criteria yield the following recommendations for the
number of center points. For k=3 and & = 4 variables, 6 to 8 and 8 to 10 center points
respectively provide for designs which perform well in terms of the four design criteria.

(3) For k =3 variables, the Notz design performs extremely well in terms of the four cri-
teria. It outperforms the other design classes in terms of the criteria by a good margin.

The small composite design performs best for k = 4 variables.

5.5.2 Economical Second Order Designs Within a Spherical Design Region
for a Spherical Region of Interest

When both the design region and the region of interest are best represented by a unit sphere
or hypersphere, then the conclusions and recommendations drawn from the tables of Appendix C

are given by the following.
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(1) The small composite and Notz type designs that perform best possess the values of g
and « equal to TIE- and 1.0. The hybrid designs that perform best are such that for the
designs given by Roquemore, the experimenfa.l point which is the farthest distance from the
center of the design is scaled such that it falls on the sphere in the design variables with
radius one. All other design points are scaled using the same scaling factor as the farthest
point, this will guarantee that all experimental points are within the unit sphere.

(2) The addition of center points dramatically decreases the values of J,., and Jécm o but
with each additional center point the D-efficiency will also decrease. For k=3 and k=4
variable designs, 6 to 8 and 7 to 9 center points respectively will result in designs that per-
form well in terms of the four design criteria.

(3) Among the design classes, the hybrid designs perform best. The hybrid 311B and 416C

are the best performing test for k =3 and k = 4 variables.

5.5.3 Economical Second Order Designs Within a Cuboidal Design Region
With a Spherical Region of Interest

When the design region is best characterized by a cuboidal region and the region of interest
is best represented by a spherical region the following conclusions and recommendations are drawn
from the tables of Appendix C.

(1) Small composite and Notz type designs that perform best in terms of the four design
criteria have the values of g and « equal to one. The hybrid designs of the form given by
Roquemore are scaled such that the largest value of g, a, ¢ and d is scaled such that it is
equal to one.

(2) The addition of center points dramatically decreases the values of Jp, and Jpcp x, but
with each additional center point the D,-efficiency and D-efficiency will also decrease. The
following recommendations for the number of center points will provide robust designs in
terms of the four design criteria. For k=3 and k= 4 variables, 6 to 9 and 7 to 10 center

points respectively will provide for robust design performance.
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(3) Among the design classes, the Notz type design performs well for k& = 3 variables and
the small composite performs best for X = 4 variables.
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Chapter VI

VI. Summary, Conclusions and Further Research

* The objective of this research was to investigate sequential response surface design strategies.
Due to the nature of the sequential design framework, lack of fit properties and first order response
model prediction properties are important features of a first order experimental design. Uncertainty
of the best characterization for the response model brings about the need for a lack of fit test.
Prediction and exploration goals in a response surface experiment bring about the need for high
quality first order prediction properties.

The A, design criteria which addresses the lack of fit properties of an experimental design was
modified to account for the first order mean squared error of prediction. The A,* criterion which
maximizes the average noncentrality parameter of the lack of fit test for second order coefficients
conditioned upon a fixed first order integrated prediction bias, B, was utilized as a design selection
criterion for first order designs. Based upon A,* , the rotation design class was developed and first

order model properties of these designs were investigated.

The sequential design framework specifies that if a significant lack of fit is observed then a

second order response model estimate is employed. Augmentations of first order designs con-
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structed using the A,* criterion were investigated using various second order model properties.
Augmentations of rotation designs based upon this criterion were given and compared to

factorial/central composite designs.

Finally, the Jpo, and Jpcp e criteria were developed as methods for evaluating first order
prediction properties of experimental designs. The Jpc, and Jpcy r Criteria incorporate the per-
formance of the lack of fit test into the evaluation of the first order integrated mean squared error
of prediction. These two design criteria were used to construct factorial designs for use within the
sequential experimental framework. In addition, Jp., and Jpcp r Were considered in conjunction
with D,-efficiency and D-efficiency in defining a robust design selection procedure for evaluation
of second order designs within the sequential framework limited to the ‘one experiment’ (no aug-

mentation or redesigning) case.

This chapter summarizes the developments and results of the A,*, Jpc, and Jpcyp criteria,
A summary of the results for the construction of vatious designs applying these three criteria will

be given.

6.1 Az’ and Rotated Designs

The A,* criterion has been used in this work as a design selection criterion for choosing re-
sponse surface designs that perform well in terms of the lack of fit properties while accounting for

first order prediction properties. As formally defined, the A,* criterion is
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The use of 4 for design selection reduces to evaluating trf{7L]. Designs which achieve large
values of tr{7-'L] will perform well in terms of the power of the lack of fit test. The evaluation of
factorial designs based upon tr{7-!L] resulted in designs with g= 1.0 performing the best for the lack
of fit purposes. When incorporating the first order prediction properties (integrated bias, integrated
variance or integrated mean squared error) of a factorial design into the evaluation of the design
performance, the designs which perform best have g= 1.0 with the number of center points chosen

so that the prediction properties are satisfied.

In some cases, i.c., minimum bias and minimum mean squared error efficient, the factorial
designs with g= 1.0 required the addition of quite a number of center points. In order to achieve
the prediction property of interest (bias or mean squared error) the value of g must be reduced if
less center points are to be used. For these designs with fewer center points and g < 1.0, the power
properties are reduced as measured by tr{7-'L]. Fortunately, for these situations the power prop-
erties were improved upon by consideration of the class of first order rotated designs. These designs
represent factorial designs with g < 1.0 transformed or rotated such that all design points fall on the

outer edges of a cuboidal region.

These first order rotated designs were first shown to achieve better lack of fit properties as
measured by trf{7-'L} than the corresponding g < 1.0 factorial designs. In addition, the prediction
properties of the rotation designs as measured by the first order prediction variance, first order

prediction bias or the first order prediction mean squared error were shown to be identical to those
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of the corresponding g < 1.0 factorial designs. The rotation design class provides a robust alterna-

tive in terms of the lack of fit and prediction properties to ordinary factorial designs.

The first order rotation design class was shown to be easily augmented with dual axial type
points for estimation of a second order response model. These designs formed the second order
rotated design class. It was shown that second order rotated designs can be constructed to block
orthogonally and be rotatable. Also, these designs were shown to be more D-efficient for a full
second order model and more D,-efficient for second order coefficients within a cuboidal design

region than central composite designs.

6.2 J,. and J,,,., Design Criteria

The Jpcq and Jpcpex Criteria have been used in this work as design selection criteria for
choosing designs that perform well in terms of the first order integrated mean squared error of
prediction, J. The evaluation of J is restricted to a region in the second order coefficients where it
is somewhat likely that a first order model will be used for prediction based upon the outcome of
the lack of fit test. The importance of good prediction for optimization purposes and the lack of
fit test for model uncertainty purposes within the sequential experimental framework are addressed
by the Jpc, and Jpcpey Criteria. Formally, Jpe, and Jpcyx Were defined as,

’ Jd
fgigg, < B,

Jpca =
Soap 4
28 62)

Aotr{L'T]

= tr(uy, M) + oy 42

and
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where 4, is the noncentrality parameter needed to achieve a specified power for the lack of fit test.

Jpca and Jpcpax Were first utilized to evaluate the performance of first order factorial designs.
Construction of factorial designs based upon Jpc, and Jpcpr Was studied in Section 5.3. These

factorial designs were examined in both cuboidal and spherical design and interest regions.

Jpca and Jpepr Were also examined along with D, -efficiency and D-efficiency to construct
robust second order experimental designs used within the experimental framework when only one
experiment can be Momed. These designs can be utilized for testing second order departures
from a first order model and for estimating either a first or second order model depending upon the
result of the lack of fit test. Central composite and Box-Behnken designs were compared in
cuboidal and spherical design and interest regions. The results are presented in Section 54. The
central composite designs were shown to be more robust with respect to the four criteria except for
the case of k=5 variables for a spherical design region and a spherical region of interest, where the

Box-Behnken performs better.

The robust design selection procedure of evaluating Jpcy, Jpouax » Di-efficiency and D-
efficiency was also applied to the construction of economical second order designs. Small com-
posite, hybrid and Notz designs were evaluated and compared for k=3 and k=4 variables. Again,
cuboidal and spherical design and interest regions were examined in the design evaluation. The

results of the evaluations are presented in Section 5.5.
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6.3 Areas of Further Research

As is common with many types of research work similar to this one, several areas of further

research are open for investigation. Some of these areas are listed as follows.

(1) The first order rotation design class developed within this work was employed within
the sequential experimental framework. When a significant lack of fit is observed, aug-
mentation of the first order rotated designs with dual axial type points will allow for esti-
mation of the second order coefficients. The second order rotated design class constructed
by the augmentation of a first order rotated design with dual axial points often will consist
of an excessive number of design points that an experimenter is unable to obtain. An in-
vestigation of more economical augmentations of first order rotated designs is needed when

the number of experimental points is limited.

(2) The Jpe, and Jpcyeqx Criteria have been applied to several well established experimental
design classes. These criteria have not been investigated for the rotated design classes.
Preliminary investigations indicate that a reparameterization for first order rotated designs
similar to that of a factorial design will not produce conformability among the integrated
bias and the noncentrality parameter. A more complete investigation of the possible use

of these two criteria within the rotated class is warranted.

(3) The Jpc, and Jpcpx Criteria present summary or overall norms on the performance
of the integrated mean squared error. A possible investigation of the performance of J over
all possible values of the noncentrality parameter could display interesting features not
obtainable from overall norms such as J,¢, and J,,,. Plots of J vs. 4 could provide for an

overall description of the mean squared error performance relative to the lack of fit per-

formance.
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Appendix A

Appendix A

The development of the testable hypotheses for the first order rotated design class is given
by the following.

Graybill (1976) gives the following results concerning testable hypotheses for the general lin-

ear model.

When considering the general linear model of the form y = X8 + ¢,
(1) Elements of (X’X)f are testable hypothe;f»es.
(2) Any linear combination of testable hypotheses is a testable hypothesis.

Consider g to be the vector of all coefficients of a second order model.

B
B=|8;
Bii
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where

B. s the 1 x (k + 1) vector of first order coefficients.
k

By is the:1 x () vector of interaction coefficients.
2

B is the-1 x k vector of pure quadratic coefficients.

Also consider the rotated designs of the form (3.17), (3.19) and (3.21). The elements of
(X" X)B for these designs are given by,

k=2
nBo + 21 + dH)Byy + 2(1 + dA)By; -TIT
2(1 + dH, T,
21+ dbB, T3
4d*Bya + 2d(1 — dP)Byy — 2d(1 — d))fay ) Ta
21+ d))By + 2d(1 — d)Pyy + A1 + dHBy, +4d™Byy | | Ts
21 + )y — 2d(1 — dV)Byy + 4d%Byy + 21 + d)Byy LT6.
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[

nBo + 41 + d*)(Byy + By + B33)

41+ d*B,

41+dp,

41+ d*)B,

8dB15 + 4d(1 — d*)(B; — B11)

21+ d*py3

21+ d*y,

41+ d*)Bo - 4d(1 = d))B 13 + K1 + d)By, + 8dByy + 2(1 + ¢ By
41+ d*)Bo + 4d(1 — d))B,; + 8d*Byy — 4(1 + &)y + 21 + d) By
41+ d)By + 21 + d) By, + By + B33)
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nBo -+ 8(1 + d)Byy + B3y + B33)

8(1 + d3)B,

8(1 + d3)B,

8(1 + d2)B;

8(1 + d*)B,

41+d%,

16d%8,3 + 8d(1 ~ d*)(B33 — B1y)

4(1+dY g,

41+ d*’py,

1642824 + 8d(1 — d>)(Bag — B12)

41+ d*) B3

8(1 +d*)Bo — 8d(1 ~ d*)B 13+ 8(1 + d)Byy + 16”33 + 41 + ') (B32 + Baa)
8(1 + dY)Bp — 8d(1 — A + &(1 + d*)(Byy + Ba) + 8(1 + )Py + 1648y
8(1+ d*)Bo + 8d(1 — d)By + 16481, + 8(1 + d)B33 + 41 + & (B2 + Baa)
8(1 + d*)Bo + 8d(1 — d*)Baq + 41 + d*2(Byy + Ba3) + 167855 + 8(1 + )y
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The testable hypotheses are given by,

k=2
XX is of rank §, therefore there exists 5 independent testable hypotheses.

T, Ts+ Ty
=4 (n_ayl+d)
T,
21 + d?)
T;
A1 + d%)
T,  nTs+T)
n=4  Yn-41+d)

= f,

=f

=B,

=p1+PFn

—(-dTy Ty ml-d)Ts+Ty 5 _u—d’>ﬂ
2d(n—4 T 4P sdn-a1-dy 2 d *
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k=3
X’X is of rank 8, therefore there exists 8 independent testable hypotheses.

T, 2T

=8 U-d-y
Pl
ﬁ =,
ﬁﬁa
d(—l (+l ;;::)jls) * 87:152 * M(ln-ild;)f(jz)— y T : _ddz) fua = ;ddz)
ﬁ = B3
?(%dz){ = P23

-2 (=9 +4+ d)T,

(1 +d¥(n—-18) 2n — 8)(1 + d?)? =butbat by

Appendix A

B33

108



k=4

X'X is of rank 12, therefore there exists 12 independent testable hypotheses.

Appendix A

Ty, Typ+Ti3+Tia+Tis iy
n=16 20— 16)(1 + d?) 0
T,
—2 __p8
81+dy)
Ty
—3 =3
81+dd 2
T,
—4 -
8(1+dy)
Ts
—3 =
8(1+d?
Ty
=p
a1+
T 1-d*
Tod? =bi3+——75— (B33~ 1)
Ty
ar+dyr 8
Ty
=p
a+dyp P
Ty _ 1—d?
Ted? =bu+——g— Baa— B2
T
=§
al+d2 ¢
AT+ Ti3+Tia+Tis) 2T,

16(1 + d3*(n — 16)

116 =B+ Bn+B33+Bau
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Appendix B

Appendix B

The development and derivation of the A,*, Jpc, and Jpcy x Criteria are given here.

Appendix B.1 Development of Az

Recall from (3.12) that the A,* criterion is given by,

[ adg
2T}
_ 22222_6
I=—2
df;

T
2222_6
2
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The development here follows closely to that of the A, criterion given by Jones (1975), the reader
is referred there for more details.

k
Letpy=k+ (2). the number of coefficients in f,.

B'2LB,

J 7[ 02 dEz
_ o< E’,E’ <6+
A= -
§—0 f dp,
i< E::El <6+¢
where
I E'zl;éz d, = Pl ;:[r'L] (6 + Pl _ seil2+1)
P 112
s g':;g, i ey +20(5-+ )ITI
and
12
[ d=—s ke " (6 + e — 694/%) |
&g::g, <ore r(5-+DITI
Therefore,

ﬂpzlzt T—IL
(Pz + Z)F(p:l[z + l)]l T' 12 ((6 + e)(lez'!'l) - 6(pzlz+1))
= lim

=0 /2
r(p2/21i21) oLk ((6+ effil? — 6”2/2)

i

Following the form given by Jones, applying L ‘Hospital’s rule gives,

Tt 1,40+¢
A=lm (T L1
_onT'L]
-
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Appendix B.2 Development of J,

CA

Recall from (5.6) that the J,, criterion is given by,

S Jdp
-EZ—,LE—:SM
Jpca= I
£t g
J vdg,+ [ Bdg,
E—’aﬁgs% Ei—,%s&,
; dp,
:—’;e’slo
S weaMihdg+ [ ﬁ@ dg,
; dp,

M+ D)L | g+ r (2 + 1)L

P25l
r(Z+ 1)L

e{L7'T] .

"(unMﬁ')[

49
pp+2

= tr(uy M) +
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Appendix B.3 Development of J,,,,,

Recall from (5.7) that the Jpcy, criterion is given by,

Jpcmax= (&f{igx‘o} J

Ez Ez

=  max  [tr(u, M)+
&<

The maximum value of J within this ellipsoidal region in g, will always occur on the boundary,
B'.LB,

g;

= Jo.

Since tr(u,,My;') is not dependent upon f, this piece is constant with respect to the maximization

‘)T
and the evaluation of max BsTh: is all that is necessary.
Balh o?
[EZ' () - ‘0)
Bilfs BaTE: Ez

Note that =——— ———— are both positive definite quadratic forms.

pe

Now, since L is positive definite, it can be expressed as

L=PLP

where P is an orthogonal matrix and L. is a diagonal matrix with the eigenvalues of L on the di-
agonal.

The positive definite symmetric square root of L is given by,

L= pLlp

and
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B'2Lg, a'yey
== — can be expressed as 3
[ 4 o

where g, = L'38,.
Therefore,
' T v 1 =12y =12,
max ____Ezéz = max apl TL Tdf
JBalfs o’ i-9Y pr
B == 4) { 3 = Ao}
= Ao max eigenvalue LY 3
= 1o max eigenvalue [L~!7]
and

Jocuax= tr(u“Mﬁl) + Ay max eigenvalue [L7'7] .

Appendix B

114



Appendix C
Appendix C

Appendix C 115



k=4

19
20
21
22

24
25
26
27

Appendix C

Factorial Designs - Minimum Jp, For Designs With Given
Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

0.86
0.92
0.98
1.00
1.00
1.00
1.00
1.00
1.00

lid]

0.5488
0.5000
0.4444
0.4000
0.3636
0.3333

[ii]

0.6228
0.6771
0.7171
0.7273
0.6957
0.6666
0.6400
0.6154
0.5926

Table C.1

JPCA

20.5020
9.1936
6.8199
6.0974
5.9163
5.9721

Jrca

15.0769
54.0690
30.3279
20.9476
16.3396
13.7371
12.1324
11.0806
10.3797

k=5

36
37
38
39
40
41
42
43

k=5 (I/2fracu'on)"

n

20
21
22
23
24
25
26
27
28

g

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

fi)

0.8000
0.7619
0.7273
0.6957
0.6666
0.6400
0.6154
0.5926
0.5714

= OO
cooooo O o
SS3288888S

0.86
0.90
0.95
0.99
1.00
1.00
1.00
1.00
1.00

Jrca

68.0726
37.6649
26.1520
20.5324
17.3695
15.4270
14.1662
13.3196
12.7413

E

0.6156
0.6534
0.6154
0.5714
0.5333
0.5000
0.4706
0.4444
0.4211

[id)

0.6570
0.7005
0.7600
0.8205
0.8000
0.7805
0.7619
0.7442
0.7273

Jrca

63.2490
23.4157
14.2405
10.8241
9.2318
8.4112
7.9796
7.7685
7.6931

Jrca

112.4210
60.9461
40.6565
30.2894
24.1892
20.3431
17.7503
15.9157
14.5702
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k=4

19
20
21
22

24
25
26
27

Appendix C

Factorial Designs - Minimum Jpc, For Designs With Given
Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

0.70
0.70
0.70
0.70
0.70
0.70

coocooooo
SMU\MMMUI [+ -]
SSESSSSSSS

Lh

0.2800
0.2450
0.2177
0.1960
0.1780
0.1633

[ii)

0.2105
0.2000
0.1905
0.1818
0.1739
0.1666
0.1600
0.1538
0.1481

Table C.2

‘IPCA

21.5691
11.9769
10.1611

9.8506
10.0499
10.4772

JPCA

195.4490
74.5790
46.6494
35.7541
30.3752
27.3690
25.5736
24.4711
23.7986

k=3
n

11
12
13
14
15
16
17
18

k=5 (1/2 fraction)

n

20
21
22
23
24
25
26
27
28

8

0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447

[i]

0.1600
0.1524
0.1455
0.1391
0.1333
0.1280
0.1231
0.1185
0.1143

cooooooe
A b v ina o
NN NSNNNSNW)

0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447

JPCA

125.1640
78.2140
59.6030
50.2500
44.9080
41.6220
39.5190
38.1530
37.2750

=

0.2363
0.2166
0.1999
0.1857
0.1733
0.1625
0.1529
0.1444

[ii]

0.1777
0.1730
0.1684
0.1641
0.1600
0.1560
0.1524
0.1488
0.1455

Irca

76.6960
33.5343
23.6721
20.0628
18.5157
17.8690
17.6877
17.7756

Jrca

155.7200
90.3990
64.7790
51.8560

44.3380 -

39.5540
36.3220
34.0470
32.4010
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Table C.3
Factorial Designs - Minimum Jp.4 For Designs With Given
Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k = 2 .o k = 3 .. )

n g (ii] Jrca n g li] Jrca

7 0.81 03749 17.8344 11 0.69 0.3463 59.4860

8 0.89  0.3961 8.0116 12 074 03651 22.0349

9 098  0.4268 5.5740 13 080 0.3938 13.2580
10 1.00  0.4000 4.5797 14 0.86 0.4226 9.6966
11 1.00 03636  4.1703 15 091 04417 7.8179
12 1.00  0.3333 4.0198 16 0.97 04705 6.6650
13 1.00  0.3077 4.0030 17 1.00 04705 5.8971

18 1.00  0.4444 5.3961

k=4 ) k=5

n g [i] Jrca n g fii] Jpca
19 061 03133 1553430 36 0.57 0.2888 114.2230
20 0.64 0.3277 528160 37 0.59 0301t 61.0787
21 0.68 0.3523 29.4479 38 062 03237 40.3896
22 0.72 03770 20.2103 39 0.64 03361 29.9206
23 0.76 0.4000 154627 40 0.67 03591 23.7440
24 0.80 04267 12.6209 41~ 0.70 0.3824 19.7233
25 084 04516 10.7429 42 0.72 03950 169118
26 0.88 0.4766 9.4131 43 0.75 04186 14.8456
27 092 0.5016 8.4230 4 0.78 0.4425 13.2658

k=35 (l/2ﬁ'acu'on)"
n g fii] Jrca

20 0.65 0.3380  66.7850
21 0.70 03730  36.1250
22 0.74 0.3983  24.1154
23 0.79 0.4342  18.0014
24 0.84 0.4704  14.3794
25 0.89 0.5069 12.0102
26 0.95 0.5554  10.3487
27 1.00 0.5926 9.1229
28 1.00 0.5714 8.2078
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Table C.4
Factorial Designs - Minimum Jpcys4x For Designs With Given
Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k=2 k=3

n B [ii] Jrcmax n g [ii] Jrcmax

7 1.00 0.5710 55.6974 11 091 0.6020 213.4180

8 1.00  0.5000 22.3424 12 095 0.6020 71.1770

9 1.00 04444 149730 13 1.00 0.6i54 39.0306
10 1.00 0.4000 12.4026 14 1.00 05714  20.5520
11 1.00 03636 11.4089 15 1.00 0.5333 17.2044
12 1.00 03333 11.1056 16 1.00  0.5000 15.2055
13 1.00 03080 11.1612 17 1.00 0.4706 13.9674

18 1.00 04444 13.1961
19 1.00 04211  12.7300

k=4 k=35

n g fid] Jpcmax n g [ii] Jrcuax
19 0.84  0.5940 736.9390 36 0.82 0.5980 697.0200
20 0.87  0.6055 230.2840 37 0.83  0.5960 349.3640
21 0.89 0.6035 119.0520 38 0.85 0.6080 218.0470
22 091 0.6023 76.4968 39 0.86 0.6070 153.4230
23 094 0.6147 55.2868 40 0.87 0.6055 116.3290
24 096 0.6144 42,9645 41 0.88 0.6040 92.7825
25 098 0.6147 35.0564 42 0.89 0.6030 76.7415
26 1.00 06154 29.6127 43 090 0.6030 65.2266
27 1.00 0.5926 25.7379 44 092 0.6160 56.6030
28 1.00 0.5714  22.9060 45 093 0.6150 49.9575

k=5 (1/2 Jraction)
n g [ii] Jecmax

20 0.87 0.6055 350.3980
21 0.89 0.6035 176.5420
22 0.91 0.6023 110.8970
23 0.94 0.6147  78.5911
24 0.96 0.6144  60.0335
25 0.98 0.6147  48.2527
26 1.00 0.6154  40.2252
27 1.00 0.5926  34.5485
28 1.00 0.5714  30.4258
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10
12

k=4

19
20
21
22
23
24
25
26

Appendix C

Design Region : Spherical Region of Interest : Spherical

0.70
0.70
0.70
0.70
0.70
0.70

CLPPeeoeo
LuanaLthiawy W
OCOOoOCOODS

[i]
0.2800
0.2450
0.2177
0.1960

0.1780
0.1633

fii]

Table C.5
Factorial Designs - Minimum Jp¢y 4y For Designs With Given
Sample Size and Power < 0.90 For « = 0.05 Test

JPCMAX

99.8820
47.7030
35.9010
31.9720
30.7140
30.6510

J, PCMAX

0.2105 1368.9300

0.2000
0.1905
0.1818
0.1739
0.1666
0.1600
0.1538

461.9970
258.0080
178.9970
139.5610
116.8450
102.5340

92.9706

k=3

k=5 (1)2fraction)

n

20
21
22
23
24
25
26
27
28

g

0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447

lii]

0.1600
0.1524
0.1455
0.1391
0.1333
0.1280
0.1231
0.1185
0.1143

wnuththtlhhhnwunn W

coocooooe
NSNS NN

0.447
0.447
0.447
0.447
0.447
0.447
0.447

0.447

J, PCMAX

824.9000
452.1370
308.4680
236.9620
195.7930
169.8030
152.3500
140.1160
131.2790

(1]
0.2363
0.2166
0.1999
0.1857
0.1733
0.1625
0.1529
0.1444

[ii]

0.1777
0.1730
0.1684
0.1641
0.1600
0.1560
0.1240
0.1488
0.1455

J, PCMAX

402.9780
154.8850
97.5998
75.4705
64.7847
59.0463
55.8451
54.1025

J, PCMAX

241.7000
198.7050
170.5570
150.8650
136.4370
125.5030
117.0050
110.2700
104.8500
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Table C.6
Factorial Designs - Minimum Jp¢,,4 ¥ For Designs With Given
Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k=2 . k=3
n g [ii] Jrcmax n g fii] Jrcmax
7 094 0.5050 62.0300 11 077 04310 255.3040
8 1.00 0.5000 23.4380 12 0.81 04374 84.6180
9 1.00 04444 14.4840 13 0.84 0.4342 46.0408
10 1.00 04000 11.1170 14 0.88 0.4425 30.8998
1t 1.00 0.3636 9.5760 15 091 04417 23.1806
12 1.00  0.3333 8.8330 16 095 04513 18.5991
17 098 04520 15.6032
18 1.00 04444 13.5155

k=4 k=5
n g fii] Jrcmax n '4 [id] Jrcmax
19 0.67 0.3780 918.8200 36 0.62 03420 156.4590
20 0.69 0.3810 286.6270 37 0.62  0.3320 123.2690
21 0.70  0.3730 147.5850 38 0.63 0.3340 101.3590
22 072  0.3770 94.3720 39 0.64 03360 858710
23 0.74 0.3810 67.8630 40 0.65 03380 74.3760
24 0.76  0.3850 52.4670 4] 0.66 0.3400 65.5290
25 0.78  0.3890 42.5860 42 0.67 0.3420 58.5240
26 0.79 0.3840 35.7822 43 0.68 03440 52.8510
27 0.81 0.3890 30.8474 44 069 0.3460 48.1700

k=5 (1|2 fraction)
n g [lll J, PCMAX

20 0.65 0.3380 448.8200
21 0.66 0.3320  225.2920
22 0.68 0.3360 140.8680
23 0.70 0.3410  99.3360
24 0.71 0.3360  75.4920
25 0.73 0.3410  60.3430
26 0.75 0.3460  50.0250
27 0.76 0.3420  42.6170
28 0.78 0.3480  37.0750
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k=2
n

11
12
13
14
15
16
17
18

k=3
n

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Appendix C

(g=1,«=1)
ny fii]
3 0.5455
4 0.5000
5 0.4615
6 0.4286
7 0.4000
8 0.3750
9 0.3529
10 0.3333
(g=1,a=1)
ny [ii]
3 0.5882
4 0.5556
5 0.5263
6 0.5000
7 0.4762
8 0.4545
9 0.4348
10 0.4167
11 0.4000
12 0.3846
13 0.3704
14 0.3571
15 0.3448
16 0.3333

JPCA

38.7609
17.9518
13.0267
11.1827
10.3779
10.0347

9.9336

9.9742

JPCA

95.5630
41.7049
28.3689
22.9723
20.2653
18.7554
17.8733
17.3586
17.0764
16.9501
16.9335
16.9966
17.1196
17.2887

Table C.7

Central Composite Designs - Minimum Jpc, and Jpep4x For Designs With
Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

J, PCMAX

78.5108
34.3712
26.0754
22.8950
21.4922
20.8943
20.7240
20.8064

JPCMAX

203.3764
91.4993
63.1889
51.5682
45.6698
42.3396
40.3648
39.1870
38.5156
38.1850
38.0945
38.1791
38.3955
38.7132

D -efficiency D-efficiency

0.9626
0.9266
0.8870
0.8473
0.8090
0.7728
0.7388
0.7071

D -efficiency D-efficiency

0.9054
0.8710
0.8376
0.8057
0.7754
0.7469
0.7200
0.6947
0.6710
0.6487
0.6277
0.6079
0.5893
0.5717

0.9026
0.8602
0.8195
0.7814
0.7462
0.7137
0.6839
0.6565

0.8704
0.8360
0.8035
0.7730
0.7444
0.7178
0.6928
0.6696
0.6477
0.6273
0.6081
0.5901
0.5731
0.5571
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k=4
n

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

(8

=L a=1)

fii]

0.6429
0.6207
0.6000
0.5806
0.5625
0.5455
0.5294
0.5143
0.5000
0.4865
0.4737
0.4615
0.4500
0.4390
0.4286

Table C.7 (continued)
Central Composite Designs - Minimum Jpc,4 and Jpcprqx

JPCA

85.7819
55.5990
43.0616
36.5000
32.5978
30.0906
28.3998
27.2258
26.3986
25.8152
25.4091
25.1363
24.9658
24.8757
24.8499

JPCMAX

224.7950
146.8462
114.2491
97.0988
86.8517
80.2372
75.7545
72.6239
70.4027
68.8213
67.7066
66.9425
66.4484
66.1665
66.0544

k=4 - 1/2 fraction of factorial (g=1, a=1)

n

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Appendix C

ny

p—
(=R NN No WV I N

11
12
13
14
15
16
17
18
19

[ii]

0.5000
0.4762
0.4545
0.4348
0.4167
0.4000
0.3846
0.3704
0.3571
0.3448
0.3333
0.3226
0.3125
0.3030
0.2941
0.2857
0.2778

JPCA

72.2474
48.2983
38.4351
33.3616
30.4259
28.6139
27.4607
26.7251
26.2701
26.0123
25.8984
25.8924
25.9695
26.1119
26.3064
26.5434
26.8151

PCMAX

162.0387
107.8572
85.3530
73.6621
66.8110
62.5097
59.7059
57.8528
56.6392
55.8758
55.4409
55.2529
55.2550
55.4067
55.6779
56.0463
56.4947

D,-efficiency D-efficiency

0.8411
0.8184
0.7965
0.7754
0.7551
0.7357
0.7171
0.6993
0.6822
0.6659
0.6503
0.6353
0.6210
0.6073
0.5941

D -efficiency D-efficiency

0.7507
0.7197
0.6909
0.6640
0.6391
0.6159
0.5942
0.5739
0.5549
0.5371
0.5204
0.5046
0.4898
0.4758
0.4625
0.4500
0.4381

0.8380
0.8153
0.7934
0.7726
0.7526
0.7336
0.7155
0.6982
0.6816
0.6658
0.6507
0.6363
0.6225
0.6092
0.5966

0.7265
0.6972
0.6701
0.6450
0.6216
0.5999
0.5796
0.5607
0.5430
0.5263
0.5107
0.4960
0.4821
0.4690
0.4566
0.4449
0.4337
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k=5(@g=1,a=1)

n n [i]

46 4 0.7391
47 5 0.7234
48 6 0.7083
49 7 0.6939
50 8 0.6800
51 9 0.6667
52 10 0.6538
53 11 0.6415
54 12 0.6296
55 13 0.6182
56 14 0.6071
57 15 0.5965
58 16 0.5862
5 17 0.5763
60 18 0.5667
61 19 0.5574
62 20 0.5484
63 21 0.5397
64 22 0.5313
65 23 0.5231
66 24 0.5152
67 25 0.5075
68 26 0.5000

Table C.7 (continued)
Central Composite Designs - Minimum Jpc4 and Jpeprax

JPCA

171.7772
107.8351
81.0202
66.7628
58.0909
52.3484
48.3207
45.3789
43.1661
41.4658
40.1388
39.0923
38.2614
37.6000
37.0741
36.6582
36.3329
36.0830
35.8966
35.7641
35.6778
35.6313
35.6195

JPCMAX

539.1523
340.4260
256.7879
212.2005
185.0238
166.9948
154.3290
145.0634
138.0836
132.7119
128.5132
125.1960
122.5576
120.4529
118.7753
117.4447
116.4000
115.5935
114.9875
114.5520
114.2626
114.0993
114.0457

k=5 - 1/2 fraction of factorial (g=1, a=1)

n

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Appendix C

Ny

(i)

0.6000
0.5806
0.5625
0.5455
0.5294
0.5143
0.5000
0.4865
0.4737
0.4615
0.4500
0.4390
0.4286
0.4186
0.4091
0.4000
0.3913
0.3830
0.3750

JPCA

125.4781
80.5325
61.7516
51.8421
45.8854
42.0044
39.3396
37.4456
36.0693
35.0571
34.3104
33.7630
33.3690
33.0957
329187
32.8200
32.7859
32.8054
32.8701

J, PCMAX

353.2761
226.2275
172.9196
144.6750
127.6176
116.4431
108.7195
103.1848
99.1220
96.0950
93.8238
92.1205
90.8545
89.9325
89.2857
88.8626
88.6237
88.5383
88.5821

D -efficiency D-efficiency

0.8178
0.8042
0.7908
0.7777
0.7648
0.7522
0.7398
0.7278
0.7162
0.7048
0.6937
0.6829
0.6724
0.6622
0.6522
0.6426
0.6331
0.6240
0.6151
0.6064
0.5979
0.5897
0.5816

D,-efficiency D-efficiency

0.7764
0.7543
0.7334
0.7134
0.6944
0.6763
0.6591
0.6427
0.6270
0.6120
0.5977
0.5841
0.5710
0.5585
0.5465
0.5350
0.5239
0.5133
0.5032

0.8405
0.8263
0.8123
0.7987
0.7854
0.7725
0.7599
0.7477
0.7358
0.7243
0.7131
0.7022
0.6916
0.6813
0.6712
0.6615
0.6520
0.6428
0.6339
0.6252
0.6167
0.6084
0.6004

0.7706
0.7491
0.7286
0.7092
0.6907
0.6732
0.6564
0.6405
0.6253
0.6109

0.5970

0.5838
0.5711
0.5590
0.5474
0.5363
0.5256
0.5153
0.5055
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Central Composite Designs - Minimum Jp¢ 4 and Jpcps4x For Designs With

Appendix C

Table C.8

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

k=2
n

11
12
13
14
15
16
17
18

k=3
n

17
18
19
20
21
22
23
24
25
26
27
28
29
30

(8= 1k, a=1)
ny li] Jeca
3 0.3636  45.1601
4 0.3333  20.5213
5 0.3077 14.8267
6 0.2857  12.7381
7 0.2667 11.8507
8 0.2500 11.4921
9 0.2353  11.4087
10 0.2222  11.4855
=1, a=1)
y [i] Jrca
3 0.2745 116.9414
4 0.2593  49.6580
5 0.2456  33.5006
6 0.2333  27.1044
7 0.2222  23.9600
8 0.2121  22.2450
9 0.2029 21.2724
10 0.1944  20.7308
11 0.1867  20.4601
12 0.1795  20.3701
13 0.1728  20.4064
14 0.1667  20.5343
15 0.1609  20.7307
16 0.1556  20.9795

JPCMAA’

93.5258
32.5355
24.7790
21.8182
20.5239
19.9843
19.8455
19.9435

J, PCMAX

219.8223
67.5760
47.0447
38.6966
34.4871
32.1349
30.7629
29.9674
29.5381
29.3553
29.3460
29.4635
29.6762
29.9623

D-efficiency

0.9689
0.9318
0.8927
0.8545
0.8183
0.7844
0.7529
0.7237

D-efficiency

0.9763
0.9490
0.9193
0.8894
0.8602
0.8322
0.8054
0.7800
0.7560
0.7333
0.7118
0.6915
0.6723
0.6541
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k=4
n

28
29
30
31
32
13
34
35
36
37
38
39
40
41
42

k=4 - 1/2 fraction of factorial (g= 1/\/k , a=1)

n

20
21
22
23
24
25
26
27
28
29
30
3]
32
33
4
35
36

Table C.8 (continued)
Central Composite Designs - Minimum Jpc4 and Jpeprax

(= 1k, a=1)
ny [ii] Jrca
4 0.2143  93.1954
5 0.2069  60.0446
6 0.2000 46.5467
7 0.1935  39.6001
8 0.1875  35.5350
9 0.1818  32.9670
10 0.1765  31.2687
11 0.1714  30.1173
12 0.1667  29.3309
13 0.1622  28.7996
14 0.1579  28.4536
15 0.1538  28.2459
16 0.1500  28.1442
17 0.1463  28.1257
18 0.1429  28.1733

[ii]

0.2000
0.1905
0.1818
0.1739
0.1667
0.1600
0.1538
0.1481
0.1429
0.1379
0.1333
0.1290
0.1250
0.1212
0.1176
0.1143
0.1111

JPCA

103.9345
68.7809
54.4456
47.1231
42.9090
40.3199
38.6794
37.6378
36.9975
36.6385
36.4841
36.4830
36.5997
36.8088
37.0916
37.4343
37.8261

J, PCMAX

137.7375
71.5807
56.3772
48.4144
43.6874
40.6633
38.6384
37.2473
36.2825
35.6176
35.1715
34.8897
34.7345
34.6788
34.7026

PCMAX

152.8071
102.0537
80.9976
70.0790
63.6978
59.7070
57.1201
55.4245
54.3284
53.6544
53.2883
53.1538
53.1974
53.3812
53.6772
54.0642
54.5263

D-efficiency

0.9718
0.9523
0.9318
0.9111
0.8905
0.8703
0.8507
0.8317
0.8133
0.7955
0.7784
0.7620
0.7461
0.7309
0.7162

D-efficiency

0.9007
0.8707
0.8413
0.8130
0.7861
0.7606
0.7365
0.7137
0.6923
0.6720
0.6528
0.6346
0.6174
0.6012
0.5857
0.5710
0.5571
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k=5 (g=1Jk, a=1)
n [i]

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

k=5 - 1/2 fraction of factorial (g= 1/\/k , a=1)

n

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table C.8 (continued)
Central Composite Designs - Minimum J PCA and J, PCMAX

ny Jrca
4 0.1826 154.3804
5 0.1787 96.3978
6 0.1750  72.5223
7 0.1714  60.0113
8 0.1680  52.4981
9 0.1647 47.5824
10 0.1615 44.1757
3] 0.1585 41.7185
12 0.1556  39.8953
13 0.1527 38.5156
14 0.1500 37.4579
15 0.1474  36.6409
16 0.1448  36.0087
17 0.1424  35.5211
18 0.1400  35.1490
19 0.1377  34.8703
20 0.1355  34.6685
21 0.1333  34.5305
22 0.1312  34.4461
23 0.1292 344071
24 0.1273  34.4071
25 0.1254  34.4406
26 0.1235  34.5033

fii)

0.1733
0.1677
0.1625
0.1576
0.1529
0.1486
0.1444
0.1405
0.1368
0.1333
0.1300
0.1268
0.1238
0.1209
0.1182
0.1156
0.1130
0.1106
0.1083

JPCA

158.3653
101.2030
77.5775
65.2221
57.8549
53.0931
49.8512
47.5689
45.9293
44,7403
43.8792
43.2638
42.8372
42.5586
42.3983
42.3340
42.3485
42.4288
42.5641

J, PCMAX

285.0650
136.5835
95.5941
79.7376
70.0991
63.72717
59.2718
56.0302
53.6049
51.7539
50.3219
49.2048
48.3300
47.6458
47.1142
46.7065
46.4010
46.1804
46.0316
45.9435
45.9077
45.9169
45.9653

PCMAX

200.1534
129.3415
99.6794
84.0036
74.5707
68.4206
64.1963
61.1934
59.0119
57.4084
56.2267
55.3619
54.7411
54.3123
54.0371
53.8867
53.8390
53.8771
53.9872

D-efficiency

0.9846
0.9740
0.9620
0.9493
0.9363
0.9231
0.9099
0.8968
0.8838
0.8710
0.8585
0.8462
0.8342
0.8224
0.8109
0.7997
0.7887
0.7780
0.7675
0.7573
0.7474
0.7377
0.7282

D-efficiency

0.9463
0.9256
0.9045
0.8836
0.8630
0.8431
0.8238
0.8052
0.7872
0.7700
0.7534
0.7374
0.7221
0.7073
0.6931
0.6795
0.6663
0.6537
0.6415
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Table C.9
Central Composite Designs - Minimum Jp.4 and Jpeps4x For Designs With
Given Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k=2 (g=1,a=1)
k .

ny [ii] Trca Jpcrax D -efficiency D-efficiency
11 3 0.5455  35.7090 94.1444 0.9626 0.9026
12 4 0.5000 15.5160 32.0355 0.9266 0.8602
13 5 0.4615  10.7481 24.2373 0.8870 0.8195
14 6 0.4286  8.9207 21.2349 0.8473 0.7814
15 7 0.4000  8.0741 19.8989 0.8090 0.7462
16 8 0.3750  7.6602 19.3176 0.7728 0.7137
17 9 0.3529 74719 19.1371 0.7388 0.6839
18 10 0.3333 74153 19.1935 0.7071 0.6565

k=3 (g=1,a=1)

n n, [id] Jrea Jecrax D,-efficiency D-efficiency
17 3 0.5882 72.4166  258.8034 0.9054 0.8704
18 4 0.5556  29.7561 88.0640 0.8710 0.8360
19 5 0.5263  19.3305 47.6161 0.8376 0.8035
20 6 0.5000 15.1059 33.4224 0.8057 0.7730
21 7 0.4762  12.9569 29.6263 0.7754 0.7444
22 8 0.4545 11.7239 27.4812 0.7469 0.7178
23 9 0.4348  10.9682 26.2074 0.7200 0.6928
24 10 0.4167 10.4903 25.4459 0.6947 0.6696
25 11 0.4000 10.1876 25.0100 0.6710 0.6477
26 12 0.3846  10.0020 24.7932 0.6487 0.6273
27 13 03704  9.8984 24.7307 0.6277 0.6081
28 14 0.3571 9.8544 24.7809 0.6079 0.5901
29 15 0.3448 9.8550 24.9157 0.5893 0.5731
30 16 0.3333 9.8899 25.1157 0.5717 0.5571
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k=4
n

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

&=1a =1)

ny {i]
4 0.6429
5 0.6207
6 0.6000
7 0.5806
8 0.5625
9 0.5455
10 0.5294
11 0.5143
12 0.5000
13 0.4865
14 0.4737
15 0.4615
16 0.4500
17 0.4390
18 0.4286

Table C.9 (continued)
Central Composite Designs - Minimum Jp¢4 and Jpearax

Jrca

50.6878
31.6193
23.7333
19.5991
17.1234
15.5130
14.4068
13.6186
13.0433
12.6170
12.2990
12.0621
11.8874
11.7616
11.6746

J, PCMAX

235.0764
129.2817
85.9291
63.1614
49.3736
40.2224
36.1199
34.6547
33.6159
32.8769
32.3567
32.0008
31.7715
31.6417
31.5915

k=4 - 1/2 fraction of factorial (g=1, a=1)

n

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Appendix C

Ny

5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20

(id]

0.5000
0.4762
0.4545
0.4348
0.4167
0.4000
0.3846
0.3704
0.3571
0.3448
0.3333
0.3226
0.3125
0.3030
0.2941
0.2857
0.2778

JPCA

35.2539
22.8245
17.7267
15.0963
13.5588
12.5925
11.9595
11.5368
11.2551
11.0721
10.9608
10.9034
10.8873
10.9035
10.9455
11.0085
11.0887

PCMAX

118.9913
64.5805
42.4666
35.1562
31.9489
29.9368
28.6267
27.7622
27.1975
26.8439
26.6442
26.5602
26.5654
26.6406
26.7719
26.9488
27.1632

D,-efficiency D-efficiency

0.8411
0.8184
0.7965
0.7754
0.7551
0.7357
0.7171
0.6993
0.6822
0.6659
0.6503
0.6353
0.6210
0.6073
0.5941

D -efficiency D-efficiency

0.7507
0.7197
0.6909
0.6640
0.6391
0.6159
0.5942
0.5739
0.5549
0.5371
0.5204
0.5046
0.4898
0.4758
0.4625
0.4500
0.4381

0.8380
0.8153
0.7934
0.7726
0.7526
0.7336
0.7155
0.6982
0.6816
0.6658
0.6507
0.6363
0.6225
0.6092
0.5966

0.7265
0.6972
0.6701
0.6450
0.6216
0.5999
0.5796
0.5607
0.5430
0.5263
0.5107
0.4960
0.4821
0.4690
0.4566
0.4449
0.4337
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Table C.9 (continued)
Central Composite Designs - Minimum Jp¢4 and Jpcprax

k=5 (g=1,a=1)

n ny 1] Jrca Teemax D,-efficiency D-efficiency
46 4 0.7391 853845  594.6961 0.8178 0.8405
47 5 0.7234 519032  331.3274 0.8042 0.8263
48 6 0.7083  37.9392  222.4965 0.7908 0.8123
49 7 0.6939 30.5292  164.9392 0.7777 0.7987
50 8 0.6800 26.0193 129.8669 0.7648 0.7854
51 9 0.6667 23.0241 106.4554 0.7522 0.7725
52 10 0.6538 20.9126 89.8063 0.7398 0.7599
53 11 0.6415 19.3589 77.4045 0.7278 0.7477
4 12 0.6296 18.1789 67.8343 0.7162 0.7358
55 13 0.6182 17.2609 60.2409 0.7048 0.7243
56 14 0.6071 16.5334 54.0797 0.6937 0.7131
57 15 0.5965 15.9487 48.9875 0.6829 0.7022
58 16 0.5862 15.4736 44.7135 0.6724 0.6916
59 17 0.5763 15.0844 43.8683 0.6622 0.6813
60 18 0.5667 14.7639 43.2727 0.6522 0.6712
61 19 0.5574 14.4991 42.8010 0.6426 0.6615
62 20 0.5484 14.2799 424314 0.6331 0.6520
63 21 0.5397 14.0988 42.1468 0.6240 0.6428
64 22 0.5313 13.9496 41.9339 0.6151 0.6339
65 23 0.5231 13.8275 41.7819 0.6064 0.6252
66 24 0.5152 13.7286 - 41.6820 0.5979 0.6167
67 25 0.5075  13.6497 41.6272 0.5897 0.6084
68 26 0.5000 13.5882 41.6116 0.5816 0.6004

k=15 - 1/2 fraction of factorial (g=1, a=1)

n n [ii] Jrca Joenar D,-efficiency D-efliciency
30 4 0.6000 53.5611  298.1942 0.7764 0.7706
31 5 0.5806 . 33.4073  164.9548 0.7543 0.7491
32 6 0.5625 25.0266  110.0539 0.7334 0.7286
33 7 0.5455 20.6072 81.0971 0.7134 0.7092
34 8 0.5294  17.9432 63.5012 0.6944 0.6907
35 9 0.5143  16.1968 51.7900 0.6763 0.6732
36 10 0.5000 14.9864 43.4878 0.6591 0.6564
37 1 0.4865 14.1144 37.7393 0.6427 0.6405
8 12 0.4737 13.4693 36.2949 0.6270 0.6253
39 13 04615 12.9833 35.2205 0.6120 0.6109
40 14 0.4500 12.6130 34.4159 0.5977 0.5970
41 15 04390 12.3294 33.8142 0.5841 0.5838
42 16 0.4286 12.1125 33.3687 0.5710 0.5711
43 17 0.4186 11.9479 33.0460 0.5585 0.5590
4 18 0.4091 11.8250 32.8216 0.5465 0.5474
45 19 0.4000 11.7359 32.6771 0.5350 0.5363
46 20 0.3913  11.6747 32.5984 0.5239 0.5256
47 21 0.3830 11.6366 32.5745 0.5133 0.5153
48 22 0.3750 11.6179 32.5968 0.5032 0.5055
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Table C.10

Box-Behnken Designs - Minimum Jp¢4 and Jpeas4x For Designs With

Given Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k=3 (g=1)

n n [ii]

15 3 0.5333
16 4 0.5000
17 5 0.4706
18 6 0.4444
19 7 0.4211
20 8 0.4000
21 9 0.3810
2 10 0.3636
23 11 0.3478
24 12 0.3333
25 13 0.3200
k=4 (g=1)

nn [id]

28 4 0.4286
29 5 0.4138
30 6 0.4000
31 7 0.3871
32 8 0.3750
33 9 0.3636
4 10 0.3529
35 11 0.3429
36 12 0.3333
37 13 0.3243
38 14 0.3158
39 15 0.3077
40 16 0.3000
41 17 0.2927
492 18 0.2857

Appendix C

Jrea

99.0171
40.8820
27.1984
21.8615
19.2742
17.8855
17.1151
16.7018
16.5120
16.4706
16.5326

JPCA

102.4338
65.5830
50.5945
42.8804
38.3612
35.5001
33.6013
32.3072
31.4164
30.8073
30.4026
30.1506
30.0156
29.9721
30.0015

JPCMAX

262.9427
79.3800
40.6271
30.5696
27.4472
25.7384
24.7761
24.2530
24.0090
23.9529
24.0292

‘,PCMAX

186.2390
94.0335
73.7251
63.0710
56.7314
52.6622
49.9252
48.0335
46.7100
45.7865
45.1546
44.7419
44.4979
44.3865
44.3812

D,-efficiency D-efficiency

0.7790
0.7580
0.7330
0.7069
0.6810
0.6558
0.6318
0.6091
0.5875
0.5672
0.5481

D,-efficiency D-efficiency

0.4659
0.4583
0.4497
0.4405
0.4311
0.4217
0.4124
0.4033
0.3944
0.3857
0.3774
0.3693
0.3615
0.3539
0.3466

0.7723
0.7452
0.7172
0.6898
0.6636
0.6389
0.6157
0.5940
0.5736
0.5545
0.5366

0.5073
0.4971
0.4364
0.4756
0.4649
0.4543
0.4441
0.4341
0.4245
0.4153
0.4063
0.3978
0.3895
0.3815
0.3739
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Appendix C

Box-Behnken Designs - Minimum JPCA and ‘IPCMAX

[ii]

0.3636
0.3556
0.3478
0.3404
0.3333
0.3265
0.3200
0.3137
0.3077
0.3019
0.2963
0.2909
0.2857
0.2807
0.2759
0.2712
0.2667
0.2623
0.2581
0.2540
0.2500

Table C.10 (continued)

JPCA

235.9410
147.9900
111.5351
92.3385
80.7653
73.1679
67.8874
64.0681
61.2268
59.0709
57.4133
56.1289
55.1313
54.3585
53.7653
53.31717
52.9899
52.7616
52.6170
52.5434
52.5307

JPCMAX

376.1972
207.4228
157.5886
131.0684
114.9437
104.2812
96.8213
91.3919
87.3276
84.2235
81.8201
79.9430
78.4714
77.3184
76.4206
75.7300
75.2102
74.8325
74.5747
74.4187
74.3499

D,-efficiency D-efficiency

0.2913
0.2886
0.2854
0.2818
0.2780
0.2741
0.2702
0.2662
0.2623
0.2584
0.2545
0.2507
0.2470
0.2434
0.2398
0.2363
0.2329
0.2296
0.2264
0.2232
0.2201

0.3396
0.3356
0.3312
0.3265
0.3217
0.3169
0.3122
0.3074
0.3028
0.2982
0.2937
0.2893
0.2850
0.2808
0.2767
0.2728
0.2689
0.2651
0.2614
0.2578
0.2543
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Appendix C

Box-Behnken Designs - Minimum Jp¢ 4 and Jpep4x For Designs With

Table C.11

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

k=3
n

15
16
17
18
19
20
21
22
23
24
25

k=4
n

28
29
30
31
k7
33
34
35
36
37
38
39
40
4]
42

®=14/2)
o lii]

3 0.2667
4 0.2500
5 0.2353
6 0.2222
7 0.2105
8 0.2000
9 0.1905
10 0.1818
11 0.1739
12 0.1667
13 0.1600

(8=12)
i)

n
4 0.2143
5 0.2069
6 0.2000
7 0.1935
8 0.1875
9 0.1818
10 0.1765
11 0.1714
12 0.1667
13 0.1622
14 0.1579
15 0.1538
16 0.1500
17 0.1463
18 0.1429

JPCA

125.3791
54.4813
37.3223
30.5318
27.2195
25.4442
24.4702
23.9629
23.7498
23.7334
23.8548

JPCA

93.1954
60.0446
46.5467
39.6001
35.5350
32.9670
31.2687
30.1173
29.3309
28.7996
28.4536
28.2459
28.1442
28.1257
28.1733

J, PCMAX

230.9081
104.7706
72.9049
59.9003
53.3699
49.7476
47.6608
46.4776
45.8685
45.6460
45.6958

'IPCMAX

137.7375
71.5807
56.3772
48.4144
43.6874
40.6633
38.6384
37.2473
36.2825
35.6176
35.1715
34.8897
34.7345
34.6788
34.7026

D-efficiency

0.9382
0.9053
0.8712
0.8380
0.8062
0.7762
0.7480
0.7215
0.6968
0.6736
0.6518

D-efficiency

0.9718
0.9523
0.9318
0.9111
0.8905
0.8703
0.8507
0.8317
0.8133
0.7955
0.7784
0.7620
0.7461
0.7309
0.7162
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Appendix C

k=35
n

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Table C.11 (continued)
Box-Behnken Designs - Minimum J, PCA and J PCMAX

(8=1//2)
) fia]
4 0.1818
5 0.1778
6 0.1739
7 0.1702
8 0.1667
9 0.1633
10 0.1600
11 0.1569
12 0.1538
13 0.1509
14 0.1481
15 0.1455
16 0.1429
17 0.1404
18 0.1379
19 0.1356
20 0.1333
21 0.1311
22 0.1290
23 0.1270
24 0.1250

Jrea

156.8755
98.2003
74.0175
61.3415
53.7306
48.7539
45.3086
42.8274
40.9902
39.6037
38.5444
37.7299
37.1033
36.6240
36.2620
35.9952
35.8065
35.6829
35.6139
35.5911
35.6080

J, PCMAX

269.1327
128.9410
91.8483
76.7236
67.5392
61.4762
57.2431
54.1704
51.8777
50.1337
48.7900
47.7472
46.9360
46.3070
45.8237
45.4588
45.1915
45.0055
44.8879
44.8285
44.8190

D-efficiency

0.9750
0.9635
0.9508
0.9374
0.9238
0.9100
0.8963
0.8827
0.8693
0.8562
0.8433
0.8307
0.8184
0.8063
0.7946
0.7831
0.7720
0.7611
0.7505
0.7401
0.7300
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Table C.12

Box-Behnken Designs - Minimum Jpc4 and Jpepr4x For Designs With

k=3
n

15
16
17
18
19
20
21
22
23
24
25

k=4
n

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Appendix C

Given Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

(8=1)

[ii]

0.5333
0.5000
0.4706
0.4444
0.4211
0.4000
0.3810
0.3636
0.3478
0.3333
0.3200

(i}

0.4286
0.4138
0.4000
0.3871
0.3750
0.3636
0.3529
0.3429
0.3333
0.3243
0.3158
0.3077
0.3000
0.2927
0.2857

JPCA

82.4575
29.5226
17.6791
13.1559
10.9551
9.7374
9.0148
8.5722
8.3020
8.1445
8.0646

J, PC4

56.9960
32.0514
22.4722
17.7250
15.0065
13.3020
12.1674
11.3808
10.8206
10.4153
10.1199

9.9053

9.7515

9.6446

9.5745

J, PCMAX

445.5840
132.0811
64.8219
39.6218
27.3362
20.3701
16.0211
13.1944
13.0796
13.0615
13.1115

J, PCMAX

421.9941
204.3381
123.2349
83.8234
61.4756
47.4655
38.0442
31.3737
26.4619
22,7326
19.8309
17.5280
15.6705
14.1520
12.8967

D,-efficiency D-efficiency

0.7790
0.7580
0.7330
0.7069
0.6810
0.6558
0.6318
0.6091
0.5875
0.5672
0.5481

D -efficiency D-efficiency

0.4659
0.4583
0.4497
0.4405
0.4311
0.4217
0.4124
0.4033
0.3944
0.3857
0.3774
0.3693
0.3615
0.3539
0.3466

0.7723
0.7452
0.7172
0.6898
0.6636
0.6389
0.6157
0.5940
0.5736
0.5545
0.5366

0.5073
0.4971
0.4864
0.4756
0.4649
0.4543
0.4441
0.4341
0.4245
0.4153
0.4063
0.3978
0.3895
0.3815
0.3739
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Table C.12 (continued)
Box-Behnken Designs - Minimum Jpc 4 and Jpeprax

k=5 (g=1)

n ’b [ii] J PCA J PCMAX D,-CmCiency D-Cmcicncy
44 4 0.3636 96.0190 1005.1715 0.2913 0.3396
45 5 0.3556  52.7505  483.5712 0.2886 0.3356
46 6 0.3478 36.0876  289.9514 0.2854 0.3312
47 7 0.3404  27.7811 196.2040 0.2818 0.3265
48 8 0.3333 229785 143.2133 0.2780 0.3217
49 9 0.3265  19.9252 110.0747 0.2741 0.3169
50 10 0.3200 17.8533 87.8258 0.2702 0.3122
51 11 0.3137 16.3803 72.0829 0.2662 0.3074
52 12 0.3077 15.2964 60.4851 0.2623 0.3028
53 13 0.3019 14.4780 51.6644 0.2584 0.2982
54 14 0.2963  13.8482 44.7808 0.2545 0.2937
55 1S 0.2909  13.3566 39.2937 0.2507 0.2893
56 16 0.2857  12.9690 34.8416 0.2470 0.2850
57 17 0.2807 12.6615 31.1748 0.2434 0.2808
58 18 0.2759  12.4169 28.1159 0.2398 0.2767
59 19 0.2712 12.2225 25.5357 0.2363 0.2728
60 20 0.2667  12.0689 23.3385 0.2329 0.2689
61 21 0.2623  11.9486 21.4516 0.2296 0.2651
62 22 0.2581 11.8561 19.8194 0.2264 0.2614
63 23 0.2540 11.7868 18.3984 0.2232 0.2578
64 24 0.2500 11.7372 17.1541 0.2201 0.2543
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Small Composite Designs - Minimum Jpe4 and Jpcarg
Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k=3
n

13
14
15
16
17
18
19
20
21
22
23
24
25

k=4
n

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Appendix C

(g=1,a=1)
ny [ii]
3 0.4615
4 04286
5  0.4000
6 03750
7 03529
8 03333
9 03158
10 0.3000
11 0.2857
12 02727
13 0.2609
14 02500
15  0.2400
@=1a=1)
ny fid]
4 0.5000
5 04762
6 04545
7 04348
8 0.4167
9 0.4000
10 0.3846
11 0.3704
12 0357
13 03448
14 03333
15 0.3226
16 03125
17 0.3030
18 0.2941
19  0.2857
20 02778

Jrca

303.7775
137.3482
95.4995
78.5444
70.1278
65.5448
62.9853
61.6160
61.0029
60.8989
61.1535
61.6699
62.3829

JPCA

106.6664
70.9130
56.1301
48.4868
44.0331
41.2573
39.4658
38.2985
37.5508
37.0981
36.8607
36.7849
36.8335
36.9798
37.2043
37.4923
37.8326

Table C.13

JPCMAX

674.5472
305.1574
211.7348
173.6554
154.6012
144.1019
138.1237
134.8069
133.1823
132.6978
133.0165
133.9218
135.2682

JPCMAX

190.8337
126.7767
100.1566
86.3158
78.1948
73.0872
69.7494
67.5351
66.0766
65.1502
64.6120
64.3655
64.3438
64.4988
64.7951
65.2062
65.7120

D,-efficiency D-efficiency

0.4534
0.4280
0.4048
0.3836
0.3642
0.3466
0.3305
0.3157
0.3022
0.2897
0.2782
0.2675
0.2576

D -efficiency D-efficiency

0.6275
0.6015
0.5774
0.5550
0.5342
0.5147
0.4966
0.4797
0.4638
0.4489
0.4349
0.4218
0.4094
0.3976
0.3866
0.3761
0.3662

x For Designs With

0.5345
0.5050
0.4783
0.4542
0.4324
0.4126
0.3945
0.3780
0.3628
0.3488
0.3359
0.3240
0.3129

0.6447
0.6187
0.5946
0.5723
0.5516
0.5323
0.5143
0.4975
0.4818
0.4670
0.4532
0.4401
0.4278
0.4162
0.4052
0.3948
0.3849
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Appendix C

Small Composite Designs - Minimum Jp,4 and Jpcpr4x For Designs With

Table C.14

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

k=3
n

13
14
15
16
17
18
19
20
21
22
23
24
25

k=4
n

20
21
.22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

(g=1n/k,

Ny

@=1Jk,a

Ry
4
5
6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

[id

0.2564
0.2381
0.2222
0.2083
0.1961
0.1852
0.1754
0.1667
0.1587
0.1515
0.1449
0.1389
0.1333

lii]

0.2000
0.1905
0.1818
0.1739
0.1667
0.1600
0.1538
0.1481
0.1429
0.1379
0.1333
0.1290
0.1250
0.1212
0.1176
0.1143
0.1111

a=
i

)

‘IPCA

236.7053
105.8014
73.3737
60.3796
54.0000
50.5737
48.6999
47.7361
47.3490
47.3492
47.6217
48.0925
48.7123

1)

JPCA

132.9837
87.8675
69.3800
59.8886
54.3934
50.9909
48.8116
47.4057
46.5183
45.9948
45.7362
45.6762
45.7688
45.9812
46.2894
46.6751
47.1247

"PCMAX

511.3970
231.9207
161.2785
132.5163
118.1513
110.2600
105.7899
103.3339
102.1584
101.8456
102.1407
102.8796
103.9523

JPCMAX

269.0040
178.4000
140.7349
121.1409
109.6353
102.3908
97.6489
94.4958
924115
91.0795
90.2966
89.9263
89.8737
90.0709
90.4680
91.0276
91.7208

D-efficiency

0.7776
0.7432
0.7093
0.6772
0.6472
0.6195
0.5939
0.5701
0.5482
0.5278
0.5089
0.4914
0.4750

D-efficiency

0.8431
0.8150
0.7875
0.7610
0.7358
0.7120
0.6894
0.6681
0.6480
0.6290
0.6111
0.5941
0.5780
0.5627
0.5483
0.5345
0.5215
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Small Composite Designs - Minimum Jpc4 and Jpcpr4x For Designs With
Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k=3
n

13
14
15
16
17
18
19
20
21
22
23
24
25

k=4
n

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Appendix C

(g=1,a=1)
1) (i)
3 0.4615
4 0.4286
5 0.4000
6 0.3750
7 0.3529
8 0.3333
9 0.3158
10 0.3000
11 0.2857
12 0.2727
13 0.2609
14 0.2500
15 0.2400
(g=la=1
ny [i]
4 0.5000
5 0.4762
6 0.4545
7 0.4348
8 0.4167
9 0.4000
10 0.3846
11 0.3704
12 0.3571
13 0.3448
14 0.3333
15 0.3226
16 0.3125
17 0.3030
18 0.2941
19 0.2857
20 0.2778

J, PCA

158.3214
70.3104
48.3404
39.4546
35.0327
32.6074
31.2331
30.4756
30.1093
30.0060
30.0877
30.3043
30.6222

JPCA

49.2998
32.0533
24.9478
21.2687
19.1118
17.7521
16.8586
16.2598
15.8586
15.5960
15.4344
15.3485
15.3207
15.3385
15.3928
15.4767
15.5848

Table C.15

J, PCMAX

306.4765

139.1448°

96.8431
79.6153
71.0071
66.2747
63.5907
62.1125
61.4010
61.2059
61.3748
61.8095
62.4439

J, PCMAX

- -118.9913
64.5805
42.4666
35.1562
31.9489
29.9368
28.6267
27.7622
27.1975
26.8439
26.6442
26.5602
26.5654
26.6406
26.7719
26.9488
27.1632

D,-efficiency D-efficiency

0.4534
0.4280
0.4048
0.3836
0.3642
0.3466
0.3305
0.3157
0.3022
0.2897
0.2782
0.2675
0.2576

D,-efficiency D-efficiency

0.6275
0.6015
0.5774
0.5550
0.5342
0.5147
0.4966
0.4797
0.4638
0.4489
0.4349
04218
0.4094
0.3976
0.3866
0.3761
0.3662

0.5345
0.5050
0.4783
0.4542
0.4324
0.4126
0.3945
0.3780
0.3628
0.3488
0.3359
0.3240
0.3129

0.6447
0.6187
0.5946
0.5723
0.5516
0.5323
0.5143
0.4975
0.4818
0.4670
0.4532
0.4401
0.4278
0.4162
0.4052
0.3948
0.3849
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Table C.16

Notz Type Designs - Minimum Jpc4 and Jpeps4x For Designs With

k=3
n

14
15
16
17
18
19
20
21
22
23
24
25

k=4
n

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Appendix C

Given Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

(g=1a=1)

[ii]

0.6429
0.6000
0.5625
0.5294
0.5000
0.4737
0.4500
0.4286
0.4091
0.3913
0.3750
0.3600

g=1a=1)

ny
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

0.6316
0.6000
0.5714
0.5455
0.5217
0.5000
0.4800
0.4615
0.4444
0.4286
0.4138
0.4000
0.3871
0.3750
0.3636

JPCA

143.5098
62.3651
42.3760
34,3460
30.3610
28.1734
26.9272
26.2310
25.8824
25.7668
25.8147
25.9814

JPCA

140.0998
92.0232
72.2116
61.9830
56.0214
52.2979
49.8843
48.2994
47.2706
46.6323
46.2783
46.1374
46.1604
46.3121
46.5666

JPCMAX

391.6120
176.6775
122.2979
100.0759
88.8997
82.6875
79.0976
77.0509
75.9851
75.5800
75.6403
76.0405

J, PCMAX

365.7610
242.1681
190.7666
164.0256
148.3085
138.4157
131.9387
127.6325
124.7876
122.9614
121.8909
121.3889
121.3146
121.5831
122.1242

D,-efficiency D-efficiency

0.8249
0.7888
0.7534
0.7197
0.6880
0.6584
0.6309
0.6053
0.5815
0.5594
0.5388
0.5196

D -efficiency D-efficiency

0.6328
0.6072
0.5831
0.5604
0.5392
0.5193
0.5008
0.4834
0.4671
0.4518
0.4374
0.4239
04111
0.3991
0.3877

0.8433
0.8043
0.7675
0.7334
0.7017
0.6726
0.6456
0.6207
0.5976
0.5761
0.5562
0.5376

0.6833
0.6560
0.6304
0.6066
0.5843
0.5636
0.5442
0.5261
0.5092
0.4933
0.4783
0.4643
0.4510
0.4385
0.4267
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Appendix C

Notz Type Designs - Minimum Jpc4 and Jpepr4x For Designs With

Table C.17

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

k=3
n

14
15
16
17
18
19
20
21
22
23
24
25

k=4
n

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

(8= 1k, a=1)
g [i] Jrca
3 0.2619 160.4562
4 0.2444  71.0067
5 0.2292  49.1065
6 0.2157  40.3948
7 0.2037  36.1415
8 0.1930  33.8692
9 0.1833  32.6343
10 0.1746  32.0056
11 0.1667 31.7602
12 0.1594  31.7717
13 0.1528  31.9633
14 0.1467  32.2862
(8=1/k, a=1)
ny [ii] Jrca
4 0.1974 180.1491
5 0.1875 119.7223
6 0.1786  94.8802
7 0.1705  82.1090
8 0.1630  74.7158
9 0.1563  70.1455
10 0.1500 67.2283
11 0.1442  65.3580
12 0.1389  64.1905
13 0.1339  63.5169
14 0.1293  63.2030
15 0.1250  63.1592
16 0.1210  63.3231
17 0.1172  63.6501
18 0.1136  64.1075

JPCMAX

371.6201
168.2507
116.8381
95.8612
85.3390
79.5152
76.1736
74.2928
73.3406
73.0138
73.1277
73.5634

J PCMAX

427.9495
283.7078
223.7354
192.5400
174.2485
162.7422
155.2245
150.2343
146.9564
144.8804
143.6675
143.1251
143.0858
143.4450
144.1243

D-efficiency

0.8725
0.8381
0.8035
0.7701
0.7387
0.7092
0.6817
0.6561
0.6323
0.6101
0.58%4
0.5700

D-efficiency

0.7585
0.7313
0.7050
0.6799
0.6562
0.6338
0.6127
0.5929
0.5743
0.5567
0.5402
0.5246
0.5099
0.4959
0.4827
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Table C.18

Notz Type Designs - Minimum J/p-4 and Jpcp4x For Designs With

Given Sample Size and Power < 0.90 For a« = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k=3 (g=1,a=1)

n

14
15
16
17
18
19
20
21
22
23
24
25

k=4
n

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Appendix C

li1}

0.6429
0.6000
0.5625
0.5294
0.5000
0.4737
0.4500
0.4286
0.4091
0.3913
0.3750
0.3600

(g=1,a=1)

ny
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

[ii]

0.6316
0.6000
0.5714
0.5455
0.5217
0.5000
0.4800
0.4615
0.4444
0.4286
0.4138
0.4000
0.3871
0.3750
0.3636

‘IPCA

108.3271
44.5081
29.0539
22.8650
19.7670
18.0285
16.9961
16.3737
16.0089
15.8159
15.7430
15.7572

‘,PCA

72.7943
46.1898
35.3336
29.7463
26.4811
24.4236
23.0679
22,1535
21.5335
21.1192
20.8540
20.7003
20.6318
20.6301
20.6815

JPCMAX

314.2793
113.5644
78.7033
64.4539
57.2847
53.2974
50.9910
49.6737
48.9853
48.7204
48.7539
49.0053

J, PCMAX

211.2199
113.3264
89.4222
76.9807
69.6721
65.0673
62.0589
60.0591
58.7363
57.8875
57.3973
57.1623
57.1302
57.2597
57.5142

D -efficiency D-efficiency

0.8249
0.7888
0.7534
0.7197
0.6880
0.6584
0.6309
0.6053
0.5815
0.5594
0.5388
0.5196

D,-efficiency D-efficiency

0.6328
0.6072
0.5831
0.5604
0.5392
0.5193
0.5008
0.4834
0.4671
0.4518
0.4374
0.4239
0.4111
0.3991
0.3877

0.8433
0.8043
0.7675
0.7334
0.7017
0.6726
0.6456
0.6207
0.5976
0.5761
0.5562
0.5376

0.6833
0.6560
0.6304
0.6066
0.5843
0.5636
0.5442
0.5261
0.5092
0.4933
0.4783
0.4643
0.4510
0.4385
0.4267
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Table C.19

Hybrid Designs - Minimum Jp¢4 and Jpcar4x For Designs With

Given Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

Hybrid 310

nn [ii]

13 3 03119
4 4 02897
15 5 02704
16 6 02535
17 7 02385
18 8 02253
19 9 02134

20 10 0.2028
21 11 0.1931
2 12 0.1843
23 13 0.1763
24 14 0.1690

Hybrid 3114
n n [ii]

13 3 03077
14 4 02857
15 5 02667
16 6 02500
17 7 02353
18 8 02222
19 9 02105

20 10 0.2000
21 11 0.1905
2 12 0.1818
23 13 0.1739
24 14 0.1667

Hybrid 311B

n o [ii]
13 3 0.2564
14 4 0.2381
15 5 0.2222
16 6 0.2083
17 7 0.1961
18 8 0.1852
19 9 0.1754
20 10 0.1667
21 11 0.1587
2 12 0.1515
23 13 0.1449
24 14 0.1389

Appendix C

‘,PCA

193.6866
88.5364
62.3537
51.8873
46.7977
44.1173
42.7067
42.0420
41.8507
41.9779
42.3291
42.8438

Irca

2264177
101.9399
71.1631
58.8812
52.8952
49.7204
48.0235
47.1931
469116
46.9989
47.3454
47.8807

‘,PCA

369.7226
165.9630
115.2664
94.8898
84.8573
79.4511
76.4799
74.9375
74.3013
74.2741
74.6753
75.3887

J, PCMAX

324.7064
146.1705
101.6547
83.7056
74.8289
70.0141
67.3395
65.9221
65.3030
65.2210
65.5172
66.0897

JPCMAX

387.9108
176.9775
123.7459
102.1402
91.4064
85.5613
82.2998
80.5592
79.7856
79.6635
80.0004
80.6725

J, PCMAX

695.4559
315.6444
219.6822
180.6437
161.1739
150.5033
144.4829
141.1999
139.6576
139.2878
139.7442
140.8039

D,-efficiency D-efficiency

0.3232
0.3078
0.2927
0.2786
0.2654
0.2532
0.2420
0.2316
0.2220
0.2131
0.2048
0.1972

D,-efficiency D-efficiency

0.2900
0.2790
0.2672
0.2555
0.2442
0.2336
0.2237
0.2144
0.2058
0.1978
0.1903
0.1833

D,-efficiency D-efficiency

0.1973
0.1898
0.1818
0.1738
0.1662
0.1589
0.1522
0.1459
0.1400
0.1346
0.1295
0.1247

0.3879
0.3683
0.3501
0.3334
0.3180
0.3039
0.2909
0.2790
0.2681
0.2580
0.2486
0.2399

0.3619
0.3459
0.3301
0.3152
0.3012
0.2883
0.2764
0.2653
0.2551
0.2457
0.2369
0.2287

0.2720
0.2599
0.2481
0.2368
0.2264
0.2167
0.2077
0.1994
0.1917
0.1846
0.1780
0.1719
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Table C.19 (continued)
Hybrid Designs - Minimum JPCA and JPCMAX

Hybrid 4164

n n [ii] Jrca Jocaax D,-efficiency D-efficiency
20 4 0.2148 366.5304  508.9650 0.1276 0.1758
21 5 0.2046 241.8834  337.1925 0.1232 0.1695
22 6 0.1953 190.3165  265.7815 0.1188 0.1634
23 7 0.1868 163.6005  228.6362 0.1147 0.1577
24 8 0.1790 147.9754  206.8172 0.1107 0.1524
25 9 0.1719 138.1795  193.0767 0.1070 0.1473
26 10 0.1653 131.8006  184.0809 0.1034 0.1425
27 11 0.1591 127.5871 178.0969 0.1001 0.1381
28 12 0.1534 124.8283  174.1394 0.0970 0.1338
29 1B 0.1482 123.0924  171.6083 0.0940 0.1299
30 14 0.1432 122.1018  170.1180 0.0912 0.1261
31 15 0.1386 121.6710  169.4099 0.0885 0.1226
32 16 0.1343 121.6708  169.3042 0.0860 0.1192
33 17 0.1302 122.0088  169.6756 0.0836 0.1160
4 18 0.1264 1226173  170.4224 0.0813 0.1130
35 19 0.1228 123.4454 1714772 0.0792 0.1102
36 20 0.1193 1244542  172.7854 0.0771 0.1075

Hybrid 416B

n ny [ii] Ieca Jpcmax D, -efficiency D-efficiency
20 4 0.2102 337.3317  466.9464 0.1326 0.1815
21 5 0.2002 222.8125  300.0872 0.1280 0.1750
22 6 0.1911 1754670  236.7872 0.1235 0.1688
23 7 0.1828 150.9585  203.8751 0.1192 0.1629
24 8 0.1752 136.6401 184.5644 0.1151 0.1573
25 9 0.1682 127.6768  172.4192 0.1112 0.1521
26 10 0.1617 121.8522  164.4823 0.1075 0.1472
27 11 0.1557 118.0164  159.2169 0.1041 0.1426
28 12 0.1501 115.5167  155.7489 0.1008 0.1382
29 13 0.1450 113.9562  153.5460 0.0977 0.1341
30 14 0.1401 113.0802  152.2663 0.0948 0.1302
31 15 0.1356 112.7181 151.6805 0.0920 0.1266
32 16 0.1314 112.7514  151.6290 0.0894 0.1231
3 17 0.1274 113.0953  151.9975 0.0869 0.1198
34 18 0.1236 113.6874  152.7022 0.0846 0.1167
35 19 0.1201 114.4812  153.6800 0.0823 0.1138
36 20 0.1168 115.4409  154.8826 0.0802 0.1110

Appendix C



Hybrid 416C
nn
20 4
21 S
2 6
23 7
24 8
25 9
26 10
27 11
28 12
29 13
30 14
31 15
2 16
33 17
34 18
35 19
36 20

Appendix C

Hybﬂd DeSing - Mmlmum JPCA and JPCMAX

lii]

0.1976
0.1882
0.1797
0.1719
0.1647
0.1581
0.1520
0.1464
0.1412
0.1363
0.1318
0.1275
0.1235
0.1198
0.1163
0.1129
0.1098

Table C.19 (continued)

Irca

384.0369
253.2477
199.1609
171.1457
154.7623
144.4907
137.8011
133.3811
130.4855
128.6616
127.6186
127.1620
127.1563
127.5050
128.1369
128.9987
130.0498

‘,PCMA 7 4

564.3146
351.9961
277.5164
238.7744
216.0285
201.7094
192.3350
186.1074
181.9936
179.3676
177.8273
177.1030
177.0070
177.4051
178.1985
179.3130
180.6888

D,-efficiency D-efficiency

0.1174
0.1133
0.1093
0.1055
0.1019
0.0984
0.0952
0.0921
0.0892
0.0865
0.0839
0.0814
0.0791
0.0769
0.0748
0.0729
0.0710

0.1646
0.1587
0.1531
0.1477
0.1427
0.1379
0.1335
0.1293
0.1253
0.1216
0.1181
0.1148
0.1116
0.1087
0.1059
0.1032
0.1006
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Table C.20
Hybrid Designs - Minimum Jp¢ 4 and Jpepg4x For Designs With
Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

Hybrid 310

n g fid] Jpca Jrcrax D-eficiency
13 3 0.2158 159.3617  420.5179 0.7668
14 4 0.2004  72.8835 189.9352 0.7282
15 5 0.1870  51.4004 131.9391 0.6922
16 6 0.1753  42.8349 108.4036 0.6590
17 7 0.1650 38.6849 96.6834 0.6286
18 8 0.1559 36.5121 90.2663 0.6008
19 9 0.1476  35.3810 86.6480 0.5752
20 10 0.1403  34.8614 84.6757 0.5517
21 11 0.1336  34.7299 83.7489 0.5300
22 12 0.1275 34.8594 83.5262 0.5100
23 13 0.1220 35.1724 83.7991 0.4914
24 14 0.1169  35.6192 84.4339 0.4742
Hybrid 3114

n ny [ii] Jrca Jrcuax D-efficiency
13 3 0.2462 122.1341 206.9597 0.8898
14 4 0.2286 54.5151 90.9279 0.8504
15 5 0.2133  38.0960 63.2156 0.8116
16 6 0.2000 31.6452 52.1889 0.7748
17 7 0.1882 28.5584 46.7791 0.7406
18 8 0.1778  26.9643 43.8685 0.7089
19 9 0.1684 26.1512 42.2703 0.6795
20 10 0.1600  25.7942 41.4414 0.6524
21 11 0.1524  25.7252 41.1003 0.6273
22 12 0.1455  25.8493 41.0871 0.6040
23 13 0.1391  26.1087 41.3047 0.5824
24 14 0.1333  26.4666 41.6906 0.5622
Hybrid 311B

n o fi) Jrca Jrcuax D-efficiency
13 3 0.2564 117.7045 180.9115 0.9345
14 4 0.2381 52.3036 83.3485 0.8931
15 5 0.2222 36.4644 58.7754 0.8523
16 6 0.2083  30.2493 48.8398 0.8138
17 7 0.1961 27.2766 43.9361 0.7778
18 8 0.1852  25.7408 41.2951 0.7445
19 9 0.1754 24.9562 39.8499 0.7136
20 10 0.1667 24.6099 39.1085 0.6851
21 11 0.1587  24.5402 38.8148 0.6588
22 12 0.1515  24.6559 38.8226 0.6343
23 13 0.1449 249014 39.0428 0.6116
24 14 0.1389  25.2413 39.4181 0.5905
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Appendix C

Table C.20 (continued)
HYbfid Designs - Minimum JPCA and JPCMAX

Hybrid 4164
nn (ii]
20 4 0.1867
21 5 01778
2 6  0.1697
23 7 01623
24 8 0.1556
25 9 0.1494

26 10 0.1436
27 11 0.1383
28 12 0.1334
29 13 0.1288
30 14 0.1245
31 15 0.1205
32 16 0.1167
3 17 0.1132
4 18 0.1098
35 19 0.1067
36 20 0.1037

Hybrid 416B

nn [u]
20 4 0.1851
21 5 0.1763
22 6 0.1683
23 7 0.1610
24 8 0.1542
25 9 0.1481

26 10 0.1424
27 11 0.1371
28 12 0.1322
29 13 0.1277
30 14 0.1234
31 IS5 0.1194
32 16 0.1157
33 17 0.1122
4 18 0.1089
35 19 0.1058
36 20 0.1028

‘IPCA

113.6314
75.8849
60.3686
52.4020
47.8014
44.9684
43.1708
42.0288
41.3272
40.9349
40.7681
40.7703
40.9026
41.1371
41.4532
41.8356
42.2726

J, PCA

105.3513
70.3730
56.0176
48.6590
44.4177
41.8123
40.1648
39.1236
38.4893
38.1410
38.0008
38.0168
38.1530
38.3835
38.6893
39.0563
39.4736

JPCMAX

244.9257
165.1309
131.6032
114.0835
103.7924
97.3285
93.1299
90.3685
88.5786
87.4775
86.8727
86.6540
86.7214
87.0176
87.4997
88.1296
88.8872

J, PCMAX

183.5062
122.2228
96.8039
83.6211
75.9103
71.0810
67.9416
65.8754
64.5387
63.7028
63.2384
63.0547
63.0836
63.2822
63.6172
64.0610
64.5937

D-efficiency

0.8156
0.7863
0.7583
0.7318
0.7068
0.6833
0.6612
0.6405
0.6209
0.6024
0.5850
0.5686
0.5531
0.5384
0.5244
0.5112
0.4986

D-efficiency

0.8599
0.8290
0.7996
0.7717
0.7454
0.7206
0.6973
0.6754
0.6548
0.6354
0.6170
0.5997
0.5833
0.5678
0.5531
0.5392
0.5259
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Appendix C

Hybri
n o n
20 4
2l S
2 6
23 7
24 8
25 9
26 10
27 11
28 12
29 13
30 14
31 15
2 16
33 17
34 18
35 19
36 20

d 416C

Table C.20 (continued)
Hybrid Designs - Minimum JPCA and JPCMAX

lii]

0.1854
0.1766
0.1686
0.1612
0.1545
0.1483
0.1426
0.1374
0.1324
0.1279
0.1236
0.1196
0.1159
0.1124
0.1091
0.1060
0.1030

JPCA

105.0602
70.1882
55.8748
48.5373
44.3079
41.7099
40.0669
39.0287
38.3963
38.0490
37.9093
37.9255
38.0614
38.2915
38.5966
38.9628
39.3792

JPCMAX

180.1981
120.1443
95.2279
82.2991
74.7301
70.0000
66.9193
64.8974
63.5848
62.7710
62.3216
62.1458
62.1772
62.3781
62.7114
63.1526
63.6791

D-efficiency

0.8632
0.8321
0.8025
0.7745
0.7481
0.7232
0.6998
0.6778
0.6571
0.6376
0.6192
0.6018
0.5854
0.5698
0.5550
0.5410
0.5277
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Table C.21

Hybrid Designs - Minimum Jpc4 and Jpcpr4x For Designs With

Given Sample Size and Power < 0.90 For « = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

Hybrid 310

n n fii]

13 3 0.3119
14 4 02897
15 5 0.2704
16 6 02535
17 7 0.2385
18 8 0.2253
19 9 0.2134

20 10 0.2028
21 i1 0.1931
2 12 0.1843
23 13 0.1763
24 14 0.1690

Hybrid 3114
nn fid]
13 3 0.3077
14 4 02857
15 5 02667
16 6 02500
17 7 02353
18 8 0.2222
19 9 0.2105

20 10 0.2000
21 11 0.1905
2 12 0.1818
23 13 0.1739
24 14 0.1667

Hybrid 311B

n n (i)

13 3 02564
14 4 02381
15 5 02222
16 6  0.2083
17 7 0.1961
18 8 0.1852
9 9 0.1754

20 10 0.1667
21 11 0.1587
22 12 0.1515
23 13 0.1449
24 14 0.1389

Appendix C

JPCA

86.8697
38.4424
26.6832
22.0585
19.8389
18.6854
18.0892
17.8180
17.7520
17.8234
17.9910
18.2285

JPCA

89.9824
38.4415
26.2623
21.5482
19.3102
18.1571
17.5660
17.3005
17.2393
17.3141
17.4840
17.7226

JPCA

117.7060
52.3044
36.4649
30.2498
27.2770
25.7412
24.9566
24.6103
24.5406
24.6563
24.9018
25.2417

"PCMAX

209.7824
93.1488
64.6421
53.2139
47.5715
44.5094
42.8038
41.8938
41.4883
41.4221
41.5944
41.9407

J, PCMAX

192.1668
64.0807
42.0073
34.4312
30.8600
28.9759
27.9590
27.4453
27.2487
27.2644
27.4292
27.7024

J, PCMAX

180.9145
83.3499
58.7763
48.8406
43.9368
41.2958
39.8505
39.1091
38.8154
38.8232
39.0434
39.4187

D-efficiency D-efficiency

0.3232
0.3078
0.2927
0.2786
0.2654
0.2532
0.2420
0.2316
0.2220
0.2131
0.2048
0.1972

D,-efficiency D-efficiency

0.2900
0.2790
0.2672
0.2555
0.2442
0.2336
0.2237
0.2144
0.2058
0.1978
0.1903
0.1833

D -efficiency D-efficiency

0.1973
0.1898
0.1818
0.1738
0.1662
0.1589
0.1522
0.1459
0.1400
0.1346
0.1295
0.1247

0.3879
0.3683
0.3501
0.3334
0.3180
0.3039
0.2909
0.2790
0.2681
0.2580
0.2486
0.2399

0.3619
0.3459
0.3301
0.3152
0.3012
0.2883
0.2764
0.2653
0.2551
0.2457
0.2369
0.2287

0.2720
0.2599
0.2481
0.2368
0.2264
0.2167
0.2077
0.1994
0.1917
0.1846
0.1780
0.1718
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Hybrid Designs - Minimum Jpc4 and Jpcprax

Hybrid 4164
non fid]
20 4 02148
2L 5 0.2046
2 6 01953
23 7 0.1868
24 8 01790
25 9 01719

26 10 0.1653
27 11 0.1591
28 12 0.1534
29 13 0.1482
30 14 0.1432
31 15 0.1386
32 16 0.1343
3 17 0.1302
4 18 0.1264
5 19 0.1228
36 20 0.1193

Hybrid 416B
nn (ii]

20 4 02102
21 5 0.2002
2 6 01911
23 7 0.1828
24 8 0.1752

25 9 0.1682
26 10 0.1617
27 11 0.1557
28 12 0.1501
29 13 0.1450
30 14 0.1401
31 15 0.1356
32 16 0.1314
33 17 0.1274
4 18 0.1236
5 19 0.1201
36 2 0.1168

Appendix C

Table C.21 (continued)

JPCA

88.0980
58.6073
46.5420
40.3715
36.8213
34.6436
33.2683
32.4002
31.8723
31.5829
31.4672
31.4817
31.5961
31.7891
32.0447
32.3511
32.6993

JPCA

83.8791
55.7937
44.3217
38.4637
35.0990
33.0397
31.7430
30.9281
30.4363
30.1709
30.0703
30.0933
30.2111
30.4033
30.6549
30.9547
31.2942

J, PCMAX

181.5988
124.3814
99.8379
86.8975
79.2737
74.4908
71.3757
69.3394
68.0263
67.2331
66.8144
66.6779
66.7594
67.0142
67.4102
67.9165
68.5150

JPC MAX

143.0494
95.4301
75.7191
65.5062
59.5397
55.8105
53.3945
51.8138
50.7917
50.1640
49.8233
49.6971
49.7417
49.9145
50.1933
50.5580
50.9864

D,-efficiency D-efficiency

0.1276
0.1232
0.1188
0.1147
0.1107
0.1070
0.1034
0.1001
0.0970
0.0940
0.0912
0.0885
0.0860
0.0836
0.0813
0.0792
0.0771

D,-efficiency D-efficiency

0.1326
0.1280
0.1235
0.1192
0.1151
0.1112
0.1075
0.1041
0.1008
0.0977
0.0948
0.0920
0.0894
0.0869
0.0846
0.0823
0.0802

0.1758
0.1695
0.1634
0.1577
0.1524
0.1473
0.1425
0.1381
0.1338
0.1299
0.1261
0.1226
0.1192
0.1160
0.1130
0.1102
0.1075

0.1815
0.1750
0.1688
0.1629
0.1573
0.1521
0.1472
0.1426
0.1382
0.1341
0.1302
0.1266
0.1231
0.1198
0.1167
0.1138
0.1110
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Hybrid 416C
non
20 4
21 5
2 6
23 7
24 8
25 9
26 10
27 11
28 12
29 13
30 14
31 15
32 16
3 17
34 18
35 19
36 20

Appendix C

Hybl‘id Designs - Minimum ‘IPCA and ‘IPCMAX

[i1]

0.1976
0.1882
0.1797
0.1719
0.1647
0.1581
0.1520
0.1464
0.1412
0.1363
0.1318
0.1275
0.1235
0.1198
0.1163
0.1129
0.1098

Table C.21 (continued)

JPCA

93.4907
62.3556
49.6040
43.0791
39.3247
37.0229
35.5706
34.6559
34.1016
33.8004
33.6834
33.7046
33.8320
34.0427
34.3200
34.6513
35.0270

J, PCMAX

158.9163
106.0865
84.1666
72.7979
66.1459
61.9887
59.2877
57.5192
56.3747
55.6694
55.2846
55.1407
55.1786
55.3661
55.6702
56.0659
56.5429

D,-efficiency D-efficiency
0.1174

0.1133
0.1093
0.1055
0.1019
0.0984
0.0952
0.0921]
0.0892
0.0865
0.0839
0.0814
0.0791
0.0769
0.0748
0.0729
0.0710

0.1646
0.1587
0.1531
0.1477
0.1427
0.1379
0.1335
0.1293
0.1253
0.1216
0.1181
0.1148
0.1116
0.1087
0.1059
0.1032
0.1006
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