
90
87

Sequential Robust Response Surface Strategy

byPatrickA. DeFeo

Dissertation submitted to the Faculty of the
4

Virginia Polytechnic Institute and State University

in partial fuliillment of the requirements for the degree of

Doctor of Philosophy

in

Statistics

APPROVED:

,’ 'Z M
7 d Ülys, Chairman

IKlaus H. Hinkelmann Jesse C. Arnold
/¤ 1/./

I Al Ä17

Jeäy B. Birch Eric P. Smith

. June 22, 1988
E

Blacksburg, Virginia



Sequential Robust Response Surface Strategy

by

· Patrick A. DeFeo
U

Raymond H. Myers, Chairman

Statistics

(ABSTRACT)

ää
F
Ä General Response Surface Methodology involves the exploration of some response variable

which is a function ofother controllable variables. Many criteria exist for selecting an experimental

design for the controllable variables. A good choice of a design is one that may not be optimal in

a single sense, but rather near optimal with respect to several criteria. This robust approach can

lend well to strategies that involve sequential or two stage experimental designs.

An experimenter that fits a first order regression model for the response often fears the pres-

ence of curvature in the system. Experimental designs can be chosen such that the experimenter
l

who fits a first order model will have a high degree of protection against potential model bias from

the presence of curvature. In addition, designs can also be selected such that the experimenter will

have a high chance for detection of curvature in the system. A lack of fit test is usually performed

for detection of curvature in the system. Ideally, an experimenter desires good detection capabilities

along with good protection capabilities.

An experimental design criterion that incorporates both detection and protection capabilities

is the A,* criterion. This criterion is used to select the designs which maximize the average

noncentrality parameter of the lack of fit test among designs with a fixed bias. The first order ro-

tated desigi class is a new class of designs that offers an improvement in terms of the A,* criterion

over standard first order factorial designs. In conjunction with a sequential experimental strategy,

a class of second order rotated designs are easily constructed by augmenting the first order rotated



designs. These designs allow for estimation of second order model terms when a significant lack

of fit is observed.

Two other design criteria, that are closely related, and incorporate both detection and pro-

tection capabilities are the Jpc, and JpcmX cxiterion. Jpc, considers the average mean squared error

ofprediction for a first order model over a region where the detection capabilities of the lack of fit

test are not strong. JPCMAX considers the maximum mean squared error of prediction over the re-

gion where the detection capabilities are not strong. The JPCA and JPCMAX criteria are used within

a sequential strategy to select first order experimental designs that perform well in terms of the mean

squared error of prediction when it is likely that a first order model will be employed. These two

criteria are also adopted for nonsequential experiments for the evaluation of first order model pre-

diction performance. For these nonsequential experiments, second order designs are used and

constructed based upon JpcA and JpC„„ for first order model properties and D, -efficiency and

D-efficiency for second order model properties.
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Chapter I ‘

I. Introduction

Many experimental problems can be characterized as an investigation of some response vari-

able ofinterest that can be expressed as a mathematical limction, f, ofk other independent variables.

The goals of such an investigation include determining an appropriate functional model represen-

tation for the response and then utilizing this model to predict, explore and optimize the response

within a region in the independent variables. The procedures ofmodeling, predicting, exploring and

optimizing a response variable are generally referred to as Response Surface Methodology (RSM).

For these experimental investigations, the response variable, q , can be written as

q =f(xl, x2, ..., xt)

where x,,x,_...,x,, represent the independent variables. In general, the true form of the response

function, f, is unknown. The usual assumption is that jj although unknown, can be well approxi-

mated by a low order polynomial function. Typically, either a multiple linear regression model or

a quadratic regression model is employed as an approximating form for fI Empirical linear or

quadratic regression models based upon sample data of the observed response are used to predict,

explore and optimize the response variable.
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Since the true form of the response function is unknown, the experimenter is typically un-

certain of the best characterization for the response function. Employing either a linear or quadratic

model will influence the prediction, exploration and optimization. Also, since any empirical model

is only an approximation, choosing the best characterization is of great importance. Therefore, in

addition to the goals of general RSM procedures, the experirnenter also needs good capabilities for

the selection of an appropriate characterization for the response function. This selection of either

a linear or quadratic model will be made based upon observed responses. Once an appropriate

model is chosen, prediction, exploration and optimization procedures can be employed.

In perforrning an experiment, one usually can select the combinations of values for the inde-

pendent variables at which the response variable is observed. In general, n selected combinations

of values comprise what is referred to as an experimental design. Experimental designs are chosen

such that an experimenter can achieve specific goals with the best statistical properties. In choosing

a design, the experimenter should select the one that allows for him to make the best choice be-

tween a linear or quadratic model characterization of the response function. In addition, designs

which perform well in terms of prediction, exploration and optimization are desired. The goal for

design selection is then to choose a design that will allow for good quality model selection and

perform well in terms of prediction, exploration and optirnization. Unfortunately, the experimenter

is faeed with the dilemma of choosing a design that either performs well in terms of model selection

or in terms of prediction and exploration. Designs which perform well in both aspects have not ·

been previously examined. Within this work, an experimental design strategy and specific exper-

irnental design criteria are developed for use in selecting robust experimental designs which allow

for good quality model selection and good prediction and exploration properties.

After a detailed discussion of the methods of RSM and specific experimental design classes

in Chapter II, a new experimental design criterion that incorporates both model selection and pre- '

diction is developed in Chapter III. This criterion is applied to standard factorial designs to select

the designs that will provide for good model selection and also provide good prediction properties

for a linear regxession model. ln addition, a new design class is proposed that will provide for better
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model selection properties than factorial designs with equivalent prediction properties for a linear

regression model.

Due to the uncertainty of the best response function characterization, if a quadratic regression

model is chosen based upon the model selection procedure, then the designs of Chapter III will

need to be augmented to allow for quadratic model terms to be estimated. Chapter IV discusses

the augmentation of these designs to create designs that will perform well when a quadratic re-

gression model is employed.

Finally, two other closely related design criteria that evaluate the prediction performance and

account for the model selection performance are developed in Chapter V. These two criteria are

applied to standard design classes to select designs that will perform well in terms of prediction and

model selection.
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Chapter II

II. Response Surface Methodology Review

2.1 Response Surface Methodology ·

The origin of Response Surface Methodology (RSM) is usually credited to Box and Wilson

(1951). Within their work, they define a sequential framework for experimentation and statistical

analysis. This sequential framework is summarized by the following:

1) Employ a model of order d for the response variable.

2) Perform a check of the adequacy of the model.

3) lf the model of order d is adequate, use it for exploration.
If the model of order d is inadequate, employ a model of order d+ 1.

The work that is presented here corresponds to an experimental philosophy that is consistent with

this sequential framework.
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In general, RSM combines experimental design and regression techniques to develop a model

for a response variable, rp , expressed as a function of k other independent variables, C,, C1, ..., C,

The experimenter usually has control over the values of the independent variables and will observe

a response at particular combinations of values for the independent variables. In general, exper-

imental design methods are employed to obtain a set of n values at which the response variable is

observed.

When considering an experimental design in a response surface problem, it is common to

transform the lr independent variables into design variables of the form

giu ..g'i i= l, 2,..., k
· =

———· , 2.2xm sl u= l, 2,..., n
( )

_ é 6..
“

where C, = -% and .r, is the appropriate scale factor such that -l 5 x, 5 l . Design variables

will be used throughout this work, but the values of the independent variables can always be ob-

tained using the above transformation.

The observed data obtained from employing a particular experimental design is then used to

estimate the response function, f, usually with a low order polynomial. These low order

polyrromials are representative of first or second order Taylor series expansions of the response

function f.

Response Surface Methods use the estimated response function to predict response values and

to locate optimal response values within a specified region of interest in the design variables, R.

RSM Review 5



The simple polynomial functions that are commonly used to estimate the response functions

are low order polynomials in the design variables. First (d= 1) and second (d= 2) order

polynomials are frequently adopted. The simplest model is a first order polynomial model of the

form

1:y = ßo + Xlßm + ¤ (2-3)

where y is the observed response, the ß, are constant coefiicients and 6 is the model error. An al-

ternative polynomial model used when the first order model is inadequate, is the second order

polynomial model of the form

1: 1: 2r = ßo + iE!/im + _Elßrm + E/ßwy + = (2-4)
= 12

where y is the observed response, the ß,, ß„ and ß„ are constant coeflicients and 6 is the random

error component.

2.2 General Linear Model Representation

The first and second order polynomial models belong to the class of general linear models of the

form

X = XE + 5 (2.5)

where X is an n x l vector of observed responses, X is an rz x p matrix of the design variables which

accounts for the model under consideration, E is a p x l vector of constant coefficients and 5 is an

n x 1 vector of random errors. The usual assumptions corresponding to the general linear model

arc)
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E(;) = Q and Var(g) = 62] . (2.6)

In the general linear model form, an estimate of the model is obtained by estimation of the

coellicients of E . Several methods exist for obtaining these estimates. The method of least squares

will be used here throughout to obtain estimates of E based on the sample data. The least squares

. estimator ofE , obtained from sample data is given by

A -1 I
E = (X'X) XQ . (2.7)

Based upon the least squares estirnates, E, the estimated responses are given by

^
A

Q = XE . u (2.8)

Properties of the coefiicient estimates, E and the response estimates, Q are given by

60%) = E . (2-9)

Var(^ - 2 x· " 2 10E) — ¤ ( X) „ ( - )

EQ) =xg , (2.11)

Var(Q) = 62X(X'X)"X' . (2.12)

Also, it is often of interest to predict values of the response at any specific combination of values

of the design variables, that is, at the point gg, = [1 x„, x,,,...x„,,]. The predicted response based

upon least squares estimation is given by

A , ^y = ;_0E (2.13)

with the variance of this predicted response given by

Var(Q) = 62;j0(X'X)",;0 . (2.14)
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The least squares response function estimate is also used in optimizing the response variable

by identifying the values of the design variables which provide for the optimal predicted response.

A detailed explanation of optimization methods is given by Myers (1976). In the case of a first

order polynomial model, the method of steepest ascent is used for optimization. Canonical analysis

and ridge analysis are used for optimizing second order polynomial models.

Throughout this work a partitioning of the general linear model often will be used. First and

second order models can be represented by partitioning the X matrix and Q vector as follows

where

X, contains first order variables (l, x,),

Q, contains first order regression coefiicients (ß„, ß,),

X} contains second order variables (xi, x,x]),

Q, contains second order regression coeflicients (ß,,, ß,,). ·

2.3 The Role ofExperimental Design

An experimental design is a set of values for the design variables x,,x,,...,x,, at which the re-

sponse variable, y, is observed. The choice of an experimental design is an important aspect of

RSM. Previous results given in section 2.2 show that properties of the least squares estimators are

a function of the values of the design variables which are represented in the general linear model

by the X matrix. Since many statistical properties depend upon the experimental design, a specific

design can be selected to achieve optimality in terms of some of these properties. Properties related

to an experimental design are also dependent upon the model under consideration via the X matrix.

RSM Review
’
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RSM procedures usually follow in a sequential manner. To begin, an experimental design is

usually chosen to achieve certain first order model properties and to fit a first order model.

Orthogonality among the design variables is a frequently desired property for a first order model.

Orthogonality allows for estimation of the model coefiicients without the undesirable effect of

collincarity. Other properties which will be discussed later can also be achieved for a first order

model.

Once an appropriate design is selected and the responses are observed, least squares proce-

dures are used to obtain a first order model estimate. The first order model is then judged for its

adequacy as an estimate of the true response function by performing a lack of fit test. If the first

order model is adequate then it will be used for prediction and exploration of the response. If the

first order model is deterrnined to be inadequate, a second order model is usually adopted. In some

instances, a second order model cannot be fit using the data points from the existing design. In such

cases, one may supplement the existing design with addition points such that a second order model

can be fit. This sequential framework of experimentation is commonly used in RSM when an ex-

perimenter is uncertain as to the model form to be used for an estirnated response function.

The origins of the sequential design procedure are credited to Box and Wilson (1951), who

discuss the use of a factorial design or fractional factorial design for fitting a first order model and

then augrnenting this with axial points to form a central composite design for fitting a second order

model. Factorial designs and central composite designs will both be discussed in detail later. The

important concept generated by Box and Wilson is that experimentation is performed sequentially.

The sequential framework of experimentation is common practice when the experimenter is

uncertain about the model form. Unfortunately the sequential idea has received little attention in

terms of formal construction of experimental designs. Only two general concepts of experimental

desigr address the idea of sequential experimentatiou.
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The first concept is that of orthogonal blocking. lf an experiment is performed sequentially,

then it is possible that responses observed during the initial first order stage were subject to different

experimental conditions than the responses observed during the augmentation stage. A block effect

could exist due to possibly different experimental conditions in such a case. Designs which block

orthogonally have block effects that are orthogonal to the model coefficients and therefore any

statistical tests performed on the model coefficients will not be confounded with block effects.

The second concept that addresses sequential experimentation is that of augmenting a first

order design with points to obtain a second order D-optimal design (D-optimality will be discussed

in section 2.4). Mitchell (1974) has developed the DETMAX algorithm for augmenting first order

designs with points that allow for D-optimality to be achieved.

Despite the frequent use of sequential experimentation, design procedures which address this

concept are restricted to the two mentioned above. This work attempts to consider the sequential

framework of experimentation and incorporate it into the design of RSM experiments.

2.4 Design Criteria
”

The choice of an experimental design is usually based upon one or more statistical properties

of interest. One can optimize a design with respect to these properties. Several design optimality

criteria are discussed in this section.
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2.4.1 Design and Region Moments

It is necessary to define the concepts of design moments and region moments before dis-

cussing particular design criteria.

The design moment matrix is given by,

X'
M = $-7/9- . (2.16)

The elements of the design moment matrix are individual design moments of the form,
n X,

-
n X2 U rr xu;.

[ü=Z7i,°i. [¤?]=E—}%‘—. [¤1]=X·—%·.
u= 1 u= 1 u = 1

I n X?
·

n XF II xäx?
wa- 2%. um- 2%. mm- 2%,% . um

u=1 u=1 u=l

The design moment matrix corresponding to a first order model is given by

1 [1] [2] [kl
[1] [11] [12] [rk]
[2] [12] [22] [2k]

M = . . . . (2.18) .

Lk] [kr] [kk] ·

For a partitioned linear model of the form of (2.15) it is useful to define the design moment matrices

(X' X ) (X' X ) (X' X)M1l=i;Ti_
·

M12="% &¤dM22=—% • (2-19)

where X, corresponds to first order model terms and X, corresponds to second order model terms.
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Regen moment matrices are dependent upon the regen of interest, R, in k·dimensienal

space. The regen moment matrix is gven by,

11 =1<fR mid; . (2.20)

where K is the inverse ef the volume ef the regen R gven by,

K = ./„«¤

The elements of the regen moment matrix are individual regen moments of the form

(2.21)

Wüi=K/~R xfdx , Wüü=K_/lk xfdx , lViijj=K/~R X3-Qzdl •

‘
In addition, other regen moment matrices ef interest are '

ßll =KfR 'xläldxt

rm = Kfk mizdx • (2.22)

#22 = K./-R X2t2dX ·

2.4.2 Variance Criteria

An experimenter is often interested in the quality of the prediction obtained from fitting a

particular model. The importance of good predictien lies in that optimization is a function ef the

predictcd values obtained from a particular model. One measure of the quality of prediction is the

variance of predicted values gven by (2.14).
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Several design criteria exist pentaining to the variance of prediction. One criterion is based

upon the concept of rotatability. An experimental design is said to be rotatable if the prediction

variance is constant over spheres of constant radius. If a design is rotatable, then the prediction

variance at any point is a function only of the distance of that point from the design center. Box

and Hunter (1957) developed design moment conditions which assure rotatability efa design. Most

designs used in practice are either rotatable 'er have moment conditions that are near rotatable.

Another criterion related to the prediction variance is the concept of G-optimality. This cri-

terion considers the maximum prediction variance in a region of interest. A G-optimal design is

one which achieves the minimum maximum prediction variance.

The maximum prediction variance is also used for comparing experimental designs via an

efticiency measure called G·eHiciency defined by Atwood (1969) as

Gzp „
' ' G·€ÜlClCt1Cy=—'?— (2.23)

rpg; wu)

where 6*p is the maximum prediction variance for a G-optimal design (p = the number of pa-

rameters in the model) and rrrakx Var(;7) is the maximum prediction variance in a regen R for a

particular design D. _

Finally, another design criterion based upon the prediction variance is the integated predic-

tion variance, V. This quantity is usually used for design comparison rather than design optimality.

The integrated prediction variance is gven by

V =g[RG

lf the fitted model is a first order model then in the notatien of the partitioned linear model
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V= "(#11Mii) · (2·25)

ln addition to prediction, an experimenter could also be concemed about the quality of the

estimated regression coeflicients. The quality of the least squares coeilicicnt estimates is reflected

by the variance-covariance matrix of One commonly used norm on the variance-covariance

matrix is the determinant. This dcterminant is called the generalized variance of Designs that

minirnize the generalized variance of Ä, apart from 6*, are called D-optimal designs. Kiefer (196l)

introduccd the notion of D·optimality for experimental designs. D-optimal designs minimize

|(X'X)" | or equivalently maxirnize | X'X |. These designs perform well in terms of coeliicient esti-

mation and jvc the smallest (1 - a) x 100% confidence ellipsoid for Q

The generalized variance of Ä can also be used for comparing designs. Atwood (1969) defines

the D-efiiciency of a design D to be

iwi %
D·efficiency = (2.26)

no

where |X'X ln is the generalized variance of Ä ,apart from 6* for a design D with n points,

|X'X |D_„,„ is the generalized variance of Ä, apart from 6*, for the D-optimal design with nn points

and p is the number of coeflicients in the litted model.

The concept of D·optimality and D·efiiciency can also be applied to a subset of the coeiii-

cients. In pa.rticu1ar, optimization methods for second order models depend heavily upon the esti-

mated second order coeflicients (ß„ and ßu). Therefore, the generalized variance of this subset of

coefiicients is of importance for second order models. Kiefer (1961) introduced the idea of D,~op·

timal design which are D-optimal designs for a subset of coeflicients. D,-optimaldesignsthe

variance·covariance matrix of some subset of estimated coeflicients, Ä,. A D,-eflicicncy mcasure

for comparing designs is given by
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I V ^ 0prI 1/p2
Dfeüiciency = (2.27)

l Vwiß.-) l /¤1>

where Var(Ä,)°"' is the variarnoe-covariance matrix for a D,-optimal design with non- design points,

Var(Ä,)° is the variance-covariance matrix for a design D with no design points andp, is the number

of coeflicients

in2.4.3Bias Criterion

Another measure of the quality of prediction is the bias in prediction. Since a model that is

used for prediction is always an approximation, bias is present in the prediction due to model

misspeciücation. For the general linear model of (2.15) suppose that the litted model is given by,

^
A

X = X,Q, (2.28)

while the model that one protects against is of the form

The estimate Ä, is no longer an urnbiased estimate, as its expected value is given by,

^ -E(ß,) = Q, + (X',X,) ‘x·,x,g, . (2.30)

Also, the expectation of a predictedyalue at the point 5' = [5, 5,] is

EQ) — iv EQ )‘ ‘
_l (2.31)

=&'lél + ·Z€'1(X1·X1) XIIXZEZ -

The squared bias in a predicted value is then given by
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—y1’
(2A

measure of the bias in prediction, in a regen of interest, R, in k-dimensional space is given by

the integrated squared bias, B , which is due to Box and Draper (1959).

- B (2.33)
6

Using both design and region moment matrices, the integrated squared bias, B, can be written

as!

B = %a'.r»-„ + M·„Mn‘~„Mn‘M„ - 2»··„Mn‘M„1.6„
" (2.34)

=%ßm
6

where T is called the bias matrix. As shown by Box and Draper, a necessary and suflicient condi-

tion for minimizing the integated squared bias in a regen R is given by

MÜIM12 = #TrlI4nz· (2-35)

Experimental designs which satisfy (2.35) are called minimum bias designs.

The importance of the bias was shown by Box and Draper who not only considered bias but

also variance together with bias in terms ef a mean squared error. Box and Draper showed that

designs that are close to minimum bias achieve minimum mean squared error (wlnich is discussed

in section 2.4.4). This seems to be an indication that bias considerations due to model underspec-

ilication are dominant over variance considerations.

Consider an example for a k = 1 variable design. The integrated mean squared error in pre-

dictien, denoted by J, can be divided into a variance portion, V, and a bias pertion, B, i.e.,

J= V+ B. The variance portiorn, V, for k = 1 variable can be expressed as
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- LV- 1+ $[11] .

The bias, B, of equation (2.34) simpliiies for k = 1 variable to

Hßiu 2 4B- 62 [([11]— 1/3) +

45Thereforethe mean squared error, J is given by

- ..L 2h[ ¤ A.]J- 1+ 3[ll] + 62 ([11] 1/3) + 45 .

Unfortunately the mean squared error J cannot be minimized with respect to the design moment

[11] without the knowledge ofß„. Table 2.1, taken from Myers (1976) evaluates J for certain values

of @, which represent values of the pure quadratic coetiicient ß„ corresponding to various

ratios of variance, V, to bias, B .
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Table 2.1 Values of J for Optimal, Minimum Bias and Minimum Variance
Designs for a k= 1 First Order Model

Min. Bias J Min. Variance J
J-optima1[l1] Optimal J ([1l]= 1/3) ([1l]= 1)

9.375 (V= %B) 0.349 9.777 9.800 48.208
6.540 (V= %B) 0.363 5.755 5.799 24.145
4.499 (V= B) 0.388 3.718 3.798 12.129
2.994 (V = 2B) 0.433 2.656 2.797 6.114
1.822 (V= 4B) 0.519 2.052 2.296 3.104
1.215 (V= 6B) 0.623 1.790 2.131 2.121
0.501 (V= 10B) 1.000 1.467 2.022 1.467
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Table 2.1 displays the importance of integrated bias for experimental designs. Even for cases when

variance, V, contributes heavily to J , the minimum bias design (i.e. [ll] = 1/3) is close to the

minimum mean squared error design. This seems to indicate that control of the integrated bias in

the experimental design is more important than the variance. Box and Draper (1959) have exam-

ined the extension to k > 1 variables and observed similar results pertaining to the importance of

bias.

2.4.4 Mean Squared Error Criterion

The previous two sections have discussed the use of prediction variance and prediction bias

fer selecting experimental designs. The prediction variance and prediction bias can be combined

into the mean squared error ef prediction. If a model of the form Q = is fit, then the mean

squared error of prediction at a point x' = [x', Ix',] is given by

2=
Var(Q) +Bias2(Q) .

A measure of the mean squared error in prediction for all points within the regen of interest,

R, is given by the integrated mean squared error, J, defined by Box and Draper (1959) as

J = V+ B

=~<«„Mn‘>+jwar- (2**7)

As previously mentioned, the integrated mean squared error cannot be used fer selecting ex-

perimental designs without the knowledge of the coefiicients in Q,.
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2.4.5 Lack of Fit Criteria

Another property of an experimental design which is of interest is the quality of the lack of

fit test. lt is assumed that the fitted model is of the form (2.28). Then it is of interest to detect if

this model is an adequate representation of the response function or if a model of the form (2.29)

should be adopted. ln particular, following the sequential model development procedure, a first

order model is fit and a lack of fit test is used to determine if the first order model is adequate for

modeling the response. The quality of the lack of fit test is generally measured by the power of the

test.

For the partitioned linear model given by (2.15), the model Q = X,Q, would be an adequate

representation of the response function if Q, = 0. Therefore it is important to test the lack of fit

hypothesis

u
Ho I E2 = Q .

Under the usual assumption that g ~ N(Q, 6*I) it is possible to test the hypothesis H0: Q, = Q using

an F statistic of the form,

A ’ _l A I

F= "ß2(M22 "M l;M1l Ml2)EZ (238)
p,.r

where p, is the number of coefiicients in Q, and sz is the pure error mean square. A detailed de-

scription of the lack of fit test procedure is given by Myers (1976) and Draper and Hemberg (1971).

The sequential model development procedure is to fit a model of the form Q = X,Q, if the lack of

fit test is not significant, or a model of the form Q = MQ, + X,Q, if the lack of fit test is significant. '

lt is well known that the power of the lack of fit test is an increasing function of the non-

centrality parameter given by, .
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· M - M· M"MÄ =
”E 2( 22 ;2 ll 12)E2 O (2-39)

- 6

A design will have power for the detection of the adequacy of a fitted model if it maxi-

mizes the noncentrality parameter, A . The noncentrality parameter is a function of the exper-

imental design through the matrix of the quadratic form in the Q, ,

L=M22 "‘M'12MÜ1M12· (2-40)

L is referred to as the lack of fit matrix. Unfortunately, 1 is also a function of the unknown coef-

ficients in Therefore, the choice of an experimental design that maximizes J. is also a function

of theunknownOne

design criterion that addresses the lack of fit test is the determinant of the lack of fit

matrix. Designs that maximize this determinant are referred to as ILI ·optimal design. Atkinson

(l972)'has investigated ILI ·optimal design under the name of T-optimal designs. The ILI con-

siders only the design depcndent portion of the noncentrality parameter. This criterion is essentially

equivalent to D,-optimality since the variance-covariance matrix of Q, apart from 6* is the lack of

fit matrix. In addition an lLl·efiiciency measure can be defined for comparing designs that is

equivalent to the D,·efiiciency given in (2.27).

Atkinson points out that designs that are ILI —optimal may provide poor estimates ofQ, when

the hypothesis of Q, = 0 is not rejected. He suggests a procedure for maximizing ILI subject to a

bound on the D-efiiciency of a design for estimating Q,.

The ILI criterion has two shortcomings in attempting to characterize the power of the lack

of fit test. First, ILI does not account for an increase in the power of the lack offit test associated

with an increase in the degrees of freedom. Secondly, ILI does not account for the dependency

of the noncentrality parameter on the coefiicients in Q,.
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The A criteria address the quality of the lack of fit test accounting for the coeflicientsinThe

A criteria were developed by Jones and Mitchell (1978). The A, criterion selects designs which

maximize the minimum noncentrality parameter .1 over a specified region of model inadequacy in

the ceefiicients in Q,. The regen of model inadequacy used is

¢ = {EZZEEPEZ > YYIICYC P = [122 * [1’l2[1;ll[1l2

•Jonesand Mitchell show that the minimum value of .1 will occur on the boundary of <l> and

is equal to

.1,,.,,,, = ö(min eigenvalue of T”‘L). (2.42)

The A, criterion is an average analog of A,. The A,-criterion maximizes the average value of the

noncentrality parameter, .1, over the boundary of the regen <l>. Jones shows that the average value

of 1 is equal to

6tr[T"‘L]/p, (2.43)

where p, is the number of parameters in The design criterion reduces to maximizing tr[T·‘L].

The A,·optimality criterion has an appealing advantage over the A, criterion in that the lack of fit

matrix L need not be of_full rank for the A, criterion. For many first order designs (i.e., factorial

designs), the lack of fit matrix is not of full rank.

2.5 Experimental Design Classes

This section provides an introduction to the design classes considered throughout this work.

Factorial designs will be the only first order design class discussed (an additional first order class

will be considered in Chapter 3). Several classes of second order designs are given. Designs be-
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longing to all of the classes presented here can be chosen according to most of the criteria given in

section 2.4.

2.5.1 Factorial and Fractional Factorial Designs

2* factorial designs are generally employed for the purpose of usirng a frrst order model esti-

mate for the response. These designs utilize two levels for each of the k variables. The levels of

the factorial design are given by ;[; g, where 0 5 g s l. These designs are orthogonal and therefore

first order rotatable. In addition, n„ center points will be added to the basic factorial structure to

allow for an error estirnate and to obtain pure quadratic information. Center poirnts are defined to

be experimental points where all k design variables are set to zero. Factorial designs with center

runs can be used to perform a lack of fit test for detecting second order terms. An example of a

factorial design in k= 3 variables is given by

*8 *8 *8

*8 *8 8

. *8 8 *8

~
—g g g

. (2.44)
8 *8 *8

8 *8 8

8 8 *8

8 8 8

Fractional factorial designs are also considered. These designs have ornly a fraction of the

design poirnts of a full factorial design. Appropriate fractions are chosen such that all linear and

interaction coefiicients can be estimated.

RSM Review 23



2.5.2 Central Composite Designs

Central composite designs (ccd) were originally discussed by Box and Wilson (1951). The

central composite design is the most commonly used second order design. The designs consist of

three parts:

I) A factorial portion or fractional factorial (for k 2 5) with levels i g, 0 S g < l.

2) An axial portion consisting of 2k axial points. An axial poirnt has one variable set to some

value i a, 0 < a S l, and all other variable values set to zero.

3) Center points portion contairning n„ center poirnts used for replication error and to achieve

other properties of interest.

A central composite design has the following form,

ig ig ig
— oz 0 O

a 0 0
U

0 — a 0

0 a 0

. . . . (2.45)

0 0 -a

0 0 u

Q Q Q

As discussed by Box and Wilson, central composite designs fit nicely into the sequential

framework ofexperimentation. A factorial design can be used for estimating a first order model and

performing a lack of fit test. lf a significant lack of fit is observed, the existing factorial design can
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be augmented with axial points to form a central composite design for estimating a second order

model.

2.5.3 Box-Behnken Designs

These designs are constructed by combining 2* factorial designs with balanced incomplete

block designs. These desigrs are special fractions of 3* factorial designs. Box-Behnken designs were

originally constructed as an alternative to central composite designs with less design points. In

addition, Box·Behnken designs require only three levels for the variables whereas the central com-

posite design requires live levels. The levels of a Box-Behnken design are denoted by i g,

0 S g S 1. For k= 3, 4 and 5 variables, Box-Behnken designs are constructed by using a 2* factorial
k

designs in each of the ( ) oombinations of variable pairs and setting the values of the other k·2
2

variables to zero. For k= 6 variables, a 2* factorial design is cornbined with all possible variable

triples. An example of a Box·Behnken design for k= 3 variables is given by
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-.2 —g 0
—s g 0 s

V
s —g 0

s g 0

-s 0 —s

—s 0 s
g 0 —g . (2.46)

g 0 s
0 —s —s —

0 -s s
0 s —s

' 0 g g

Q Q
u

Q

The performance of Box-Belmken designs will be compared with that of central composite designs.

The next three subsections discuss saturated or near saturated second order design classes.

A saturated design is one in which the number of design points is equal to the number of coeffi-

cients to be estimated. Near saturated designs contain slightly more design points than coefiicients

to be estimated. These designs can be useful when cost constraints limit the number of exper-

imental points. The performance of these three classes will be compared amongst each other.

2.5.4 Small Composite Designs

Small composite designs, as originally defined by Hartley (1959), are very similar to central

composite designs. Small composite designs consist of a factorial portion, an axial portion and
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center points. The designs with just the factorial and axial portions are saturated or near saturated.

The factorial portion of these designs is always a special fraction. This chosen fraction makes use

of the fact that axial points can be used to estirnate ürst order and pure quadratic coeiiicients and

factorial points can be used to estirnate interaction coefiicients. An example of a k= 3 variable

small composite design is given by

*8 *8 *8

8 8 *8

8 *8 8

*8 8 8
— er 0 0

a 0 0 . (2.47)

0 — a 0

0 a 0

0 0 — a

0 0 a

Q Q .0

2.5.5 Hybrid Designs

Roquemore (1976) developed this class of designs that are saturated or near saturated when

considered without the use of center points. The designs consist of a central composite design in

k-1 variables with the values of the
k“‘

variable chosen to achieve the same degree of orthogonality

among the k variables as a central composite design. The general form of Hybrid design is given

bv
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ig ig „ ig a

zi: u Q Q lz

Q :1: a Q Q

. . . . . (2.48)

Q Q i er b

Q Q Q d

Q Q Q Q

One can notice the central composite design for the first k·l variables. The values of a, b, c and d

are chosen such that all odd design moments are equal to zero and all pure second moments are

equal.

2.5.6 Notz Designs

Notz (1982) constructed saturated or near saturated designs that perform well in terms of
l

D-efliciency relative to other saturated design classes. Notz designs consist of a 2* factorial design,

or some part of it, augmented with a k dimensional identity matrix. A Notz design for k= 3 vari-

ables is given by
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*8 *8 *8

*8 *8 8

*8 8 *8

*8 8 8

8 *8 *8

g —g g . (2.49)

8 8 *8 .

8 8 8

1 0 0

° 0 l 0

0 0 1

Notz uses the levels of gi; 1 to achieve good D-eliiciencies. The work performed here will al-

low the factorial levels to vary over the range 0 < g 5 l for designs that are of the identical structure

given by Notz. The D·elliciency values for these designs will be less than that achieved by Notz,

but other gaius in performance of the designs will be shown.
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Chapter III

III. A Lack of Fit Criterion and First Order Designs

In this chapter, in conjunction with the sequential strategy, a new class of robust first order

experimental designs will be developed using the A,* optimality criterion. These designs offer the
A

best power of the lack of fit test for a design with a given integrated bias. The flexibility of this

design class will be shown by optimizing the design parameters with respect to several optimality

criteria. In addition, the design class will be compared to standard design classes. However, the

next section will begin with a brief review of the lack of fit and integrated mean squared error ·

properties of experimental designs.

3.1 Lack ofFit and Integrated Mean Squared Error
Revisited

The general design philosophy ofaccounting for potential bias in the integrated mean squared

error criterion appears to contradict that of maximizing the power of the lack of fit test. This can

most easily be seen for the case of k = l variable, where the fitted model is of first order and the

model one protects against is of second order. Technically, the fitted model is ß = /3,, + Ä,x and the
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assumed model is y = ßo + ß,x + ßuxz. If it is assumed that an orthogonal first order design will

be used, then the design moment matrices are given by

1 [1] 1 o 1
°M"_i[1I| [11]]

_
[0 [ll]

_
0 ä' (ll)

M _ [11] _ [11] 32
°

12 ' [lu] " 0
* v ( · )

and

Also, for the region of interest given by the interval [-1,1], the region moment matrices are given

by

1 0
#11 = L ·

(3-4)
0 3

'

#12 = 3•0

and

l#22 = g' - (3-6)

The conditions for a minimum bias design given by (2.35) are satisfied by designing

[1 1] =ä= This implies that the data would be chosen such that the points are restricted

in their distance from the design center.
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A design which maximizes the power of the lack of fit test is constructed such that the

noncentrality parameter is a maximum. The noncentrality parameter for k= 1 variable is given by,

2 2 2 2
ni}-([1111]-[11]’)=-'£gl[2x"-E?-1. (3.7)

6 6

This would be maximized regardless of ßl, by spreading out the design points as much as possible

(i.e. the design points are at -1, + l and 0).

The conflict between the two criteria is obvious since designs which account for bias restrict

the spread of the design points whereas designs which maximize the power of the lack of fit test

correspond to the maximum attainable spread in the design points (i.e., in the comers of the oper-

ability region). Also, it appears that designs which have good bias properties will have poor lack

of fit power properties and vice versa. This general conflict extends to the case of k 2 2 variables

in a similar fashion to what has been displayed for the k = 1 variable case.

Despite this conflict, many times an experimenter is uncertain of how to specify his model.

When this uncertainty exists, as it often does, one usually will estirnate the response with a simple

model (i.e, first order) then perform a lack of fit test for detection of model terms of order one

higher (i.e., second order terms). If a significant lack of fit is observed, the higher order model

(d= 2) is used to estimate the response. lf a nonsignificant lack of fit is observed, then the simple

model (d = 1) is used to estirnate the response.

ln experimental problems that are described by the above scenario, an experimental design

that will provide a high quality lack of fit test and in addition, provide some protection due to po-

tential bias when a nonsignificant lack of fit is obscrved are desired.
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3.1.1 Two Variable Example

Consider the followingexample in k = 2 variables. The design region, where design points can be

placed will be characterized by a unit square. The region of interest for prediction, R will also be

the unit square. The integrated mean squared error of prediction, J, and the noncentrality pararn·

eter of the lack of iit test can be written as, T

2wJ = 1 +4+l [wi, + ßi,)([zqi - 2w„[ii] + wm,)
Bü ai (:1.6)

+ 2181 1ß22([ü]2 ‘ 2WuÜÜ + Wzw) + ßizwuy]

A =· ßämwa — 1106 +2ßr1ßzz([ié17]for

symmetric designs with odd moments through order 4 equal to zero.

If we assume the second order coeflicients are known and given by,

ß ß ß

then choosing a design with pure second moment, [ii], equal to 0.40 will perform well in terms of _

mean squared error. Recall table 2.1 which indicated that designs with second moments slightly

greater than the minimum bias second moment will perform well in terms of mean squared error.

A factorial design with [ii] = 0.4 and with four center points is given by
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-0.8944 -0.8944
-0.8944 0.8944

0.8944 -0.8944

D = 0.8944 0.8944 .
0 0 °
0 0‘
0 0
0 0

The four center points included in this design allow for a lack of fit test to be perfonned with 3

degrees of freedom for an error estimate. The noncentrality parameter for the lack of fit test given

by (3.9) will equal 24.317 and this yields a power of 0.7078 at a = 0.05 for the detection of second

order terms.

The conflict between bias and power discussed above suggests that one needs to decide which

criterion is most important and use the design that is optimal with respect to that criterion. For-
1 I

tunately, a criterion that accounts for both the power of the lack of fit test and the mean squared

error will be developed and used to select robust designs with respect to mean squared error and

power of the lack of fit. This criterion is used when an experimenter is unsure about the model and

begins the investigation in the sequential manner previously described. A first order design allows

for a first order model to be fit and a lack offit test to be performed to check the adequacy ofa first

order model. The lack of fit test is used to decide upon a first order (nonsigrificant lack of fit) or

a second order (significant lack of fit) model. Good power of the lack offit test is desired since the

important decision of a model form is dependent upon this test. In addition, if the lack of fit test

is nonsignificant and a first order model is used, then good mean squared error of prediction is de-

sired.
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3.1.2 Az-Optimality — Review

The A,-optimality criterion maximizes the average value of the noncentrality parameter ofthe

lack of fit test over a region of model inadequacy. The region of model inadequacy is given by,

' P
· <|>={,Q,:g%&-=6,6>0}. (3.10)

6

The A, criterion maximizes

Ad{
Ä’

6:r[1>"1.]im = ——·······— . (3.11)Ida. **2
o

Choosing a design that maximizes (3.11) is equivalent to choosing a design which maxirnizes the ·

tr[P"L] since p, and 6 are independent of the design. Jones uses the A, criterion with a model

inadequacy measure that is independent of the design, that is, the P matrix is not design dependent.

An altemative approach to design, which accounts for the lack of fit performance and po-

tential bias, is to redefine the measure of model inadequacy to be the integrated bias or the inte-

grated mean squared error.

In the next section, we will develop a new design criterion denoted by A,*, that represents a

modification of the A, criterion. The A,* criterion will consider the average noncentrality param-

eter of the lack of fit test over a region of fixed integrated bias, B, or integrated mean squared error,

J. This new criterion will then be applied to ordinary factorial designs to select the factorial designs

that perform best in terms of the lack of fit test for a given bias. In addition, the A,* criterion will

be utilized in developing a new class of experimental designs which offer improved lack of lit per-
f

formance compared to factorial designs.
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3.2 A Lack ofFit/Mean Squared Error Criterion

The A, criterion developed by Jones attempts to consider the noncentrality parameter of the

lack of fit test accounting for the unknown second order coefficients. Unfortunately, Jones’ ap-

proach considers the second order coeflicients through some measure of model inadequacy (3.10)

that is somewhat artificial. A more reasonable measure of model inadequacy is given by the inte-

gated bias in prediction. Therefore, one can consider the A, criterion modified such that the region

of model inadequacy is determined by the integrated bias of prediction. The A,* criterion is a

modification of the A, criterion defined as,

<b*={g,: %2-=6,6>0}

fM1,
hä- (3.12)

fde
°I

=
647***1,]

.

Again, since 6 and p, are desip independent, the A,* criterion uses as a basis for desip se-

lection, tr[T**L]. This criterion evaiuates the performance of the lack of fit test, through the

noncentrality parameter, conditional upon the bias properties of a design being fixed. A detailed

derivation of this criterion is given in Appendix B.

If the bias properties of a desip are fixed, then since T depends only upon second order de-

" sip moments, the fixed bias condition corresponds to fixing the second order desip moment. In

addition, one can see from (3.8) that if the second order design moment is fixed, then the prediction

properties (i.e., V, B and J) ofa design for a first order model are completely determined. The lack

of fit properties, given by the noncentrality parameter of (3.9) are a function of second order and

fourth order desip moments. Ifthe second order moments are fixed, then the A,* criterion is used
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to select the fourth order design moments that achieve the maximum average noncentrality pa-

rameter.

This research will involve utilization of the A,* criterion when the prediction properties for

a first order model are fixed. Therefore the second order design moment is chosen according to

some prediction property (bias, variance or mean squared error). Empirical optimization of A,*

criterion will be performed in evaluating the parameters of certain design classes and also to com-

pare among the classes. The design region in which data points can be placed will be considered

to be a unit cuboidal region.

3.3 Factorial Designs

· The Az" criterion is applied to the class of first order 2* factorial designs with n„ center runs.

The criterion is used to choose the fourth order design moments for factorial designs with the sec~

ond moment chosen according to one of three prediction properties of interest (Bias, Variance,

Mean Squared Error). Factorial designs for k = 2, 3 and 4 will be investigated. The k = 4 design

is a one half fraction of a
2‘

design with defining contrast I = ABCD.

Table 3.1 provides a summary of the evaluation of k= 2, 3 and 4 variable factorial desigis.

Minimum bias, minimum variance and mean squared error efficient factorial designs are evaluated

in terms of the Af criterion for various sample sizes, n. One can use the results of Table 3.1 to

select a design of one of the three types (minimum bias, minimum variance or mean squared error

efficient) that performs well in terms of the lack of fit test based upon the A,* criterion.
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Table 3.1 - Evaluation of Factorial Designs in Terms of A2* Criterion

Minimum Bias Minimum Variance Mean Squared Error Eßicient
k- 2
n g ¢r[T·‘L] I1 g tr[T"L] n g tr[T*‘L]

V 7 0.7638 3.6250 7 · 1.0 7.5643 7 0.8346 4.9746
8 0.8165 4.5000 8 1.0 7.9615 8 0.8944 6.1527
9 0.8660 5.3750 9 1.0 8.3478 9 0.9487 7.3309
10 0.9129 6.2499 10 1.0 8.5091 10 1.0 8.5091
11 0.9574 7.1250 11 1.0 8.3739 1 1 1.0 8.3739
12 1.0000 8.0000 12 1.0 8.0 12 1.0 8.0 _

k- 3
n g tr[T"L] I1 g zr[T·‘L] n g !r[T*‘L]

10 0.6455 4.6875 10 1.0 22.2467 10 0.7331 7.4264
1 1 0.6770 5.5312 11 1.0 20.7096 11 0.7689 8.6435
12 0.7071 6.3750 12 1.0 19.5789 12 0.8031 9.8605
13 0.7360 7.2187 13 1.0 18.7831 13 0.8359 11.0776
14 0.7638 8.0625 14 1.0 18.2657 14 0.8675 12.2947 .
15 0.7906 8.9063 15 1.0 17.9745 15 0.8979 13.5117
16 0.8165 9.7500 16 1.0 17.8549 16 0.9274 14.7288
17 0.8412 10.5937 17 1.0 17.8460 17 0.9559 15.9458
18 0.8660 11.4375 18 1.0 17.8824 18 0.9836 17.1629

k- 4
Il g tr[T"L] I1 g tr[T"L] Il g tr[T*‘L]

10 0.6455 8.7500 10 1.0 43.8667 10 0.7500 15.0815
11 0.6770 10.1250 11 1.0 40.3907 11 0.7866 17.1548
12 0.7071 11.5000 12 1.0 37.6667 12 0.8216 19.2281
13 0.7360 12.8750 13 1.0 35.5563 13 0.8551 21.3014
14 0.7638 14.2500 14 1.0 33.9606 14 0.8874 23.3746
15 0.7906 15.6250 15 1.0 32.8000 15 0.9186 25.4479
16 0.8165 17.0000 16 1.0 32.0000 16 0.9487 27.5212
17 0.8416 18.3750 17 1.0 31.4792 17 0.9779 29.5944
18 0.8660 19.7500 18 1.0 31.1428 18 1.0000 31.1428
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3.4 Rotated Designs

A class of first order designs which outperferms the class ofordinary facterial designs in terms

of the A,* criterien is the class ef rotated factorial designs. These rotated facterial designs are

fractiens of 4·level designs within the experimental region,

-1 $::,5 1 for i= 1,2,...,k.

These rotated designs can be considered as factorial designs rotated through an angle 0 such that

the design points a.re en the beundary of the experimental design regen. Figure 3.1 shows a fac~

torial design with level g = 0.80 and a corresponding rotatien design.
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Figure 3.1 · Two Variable Factorial Design and Corresponding Rotation Design
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The design matrix corresponding to the factorial design given in Figure 3.1 is given by

-8 -8

-8 8
D = . (3. I3)

8 -8

8 8

lf this design is rotated through an angle 0, the transformation matrix is given by,

cos 0 sin 0‘ R = (3.14)
— sin 0 cos 0

and the new design matrix has the form,

—g(cos0-sin0) —g(cos0+sin0)

s -g(cos0+sin0) g(cos0-sin0)
RD = . (3.15)

g(cos0+sin0) —g(oos0-sin0)

g(cos0—sin0) g(cos0-sin0)

The four levels of this design can then be appropriately scaled to the values, 1, -1, d and -d by

reexpressing the transformation matrix as

d+1 —d+1
2g 2sR ‘ .1-1 4+1 @*6*

.. 2g 2g

and the design matrix as
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-d -1

d 1
D = . (3.17)

-1 d

1 —d

The design points of (3.17) are all located on the boundary of the experimental design region.

The value of d is arbitrary but bounded by 0 S dS 1. (d= 1 corresponds to a factorial design with

g= l). The value of d can be specified to achieve the desired properties (i.e., bias, variance, etc.)

for a design. These properties will be discussed for the rotated design class.

The rotated designs developed for k = 2 variables above are easily extended for the case of

k > 2 variables. The designs are just rotations of the ordinary factorial designs. For k = 3 variables

the transforrnation matrix is given by,

(d+ 1)/28 (-11+ 1)/28 11

R = (d- 1)/2g (d+ 1)/2g 0 (3.18)

p o o . //4* +2)/2g

yielding the design

-4 -1 - +1)/2
-4 -1 «/ (4* + 1)/2

-1 4 - .//4* +1)/2

-1 4 . //4* + 1)/2 (3 19)
1 -d -.//4*+1)/2

1 -

1 -d . //4* + 1)/2
*1 1 -.//4* +1)/2
*1 1 .//4* +1)/2
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Notice that two variables have been rotated, while the third has just been rescaled to guarantee

symmetry.
g

The transformation matrix for k = 4 variables is given by,

(d + 1)/2g 0 (—d + 1)/2g 0

0 (d + 1)/28 0 (d — 1)/28
R = (3.20)(—d+ 1)/2g 0 (d+ 1)/2g 0

0 (d — 1)/28 0 (d + 1)/28

yielding the design

-d -d -1 -1
—d d -1 1

d -d 1 -1 ·

d d 1 1

1 1 -d —d

l -1 -d d
-1 1 d -d

-1 -1 d d
. (3.21)

-d -1 -1 d
d 1 1 -d

—d 1 -1 -d

d -1 l d

-1 d d 1
1 -d —d -1

-1 -d d -1
1 d -d 1
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A fractional factorial design for k = 4 variables with defining contrast I=ABCD is also often

used when the experimenter is limited in the number of allowable experimental runs. The corre~

sponding rotation design of this one-half fraction is given by

—d —d -1 -1

-d d -1 1

d d l -1

d d 1 1
. (3.22)

1 1 -d —d

1 -1 -d d

-1 1 d -d

-1 -1 d d

The general pattern shown in the designs for k= 2, 3 and 4 variables can be extended to

construct rotation designs for k 2 5 variables. Only k = 2, 3 and 4 variable designs are studied here,

although one would expect similar results to hold for k 2 5 variables.

Consistent with the sequential framework of experimentation, the prediction and lack of fit

properties of the rotation designs are now investigated.

3.4.1 Effect of Rotation on Bias and Mean Squared Error

The effect of rotation on the integrated prediction bias, B and the integrated mean squared

error of prediction, J is summarized by the following theorems.

Theorem 1:

The integrated bias, B, is invariant to an orthogonal rotation of an orthogonal symmetric first

order design when protecting against a second order model.
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Proof: .

Recall from (2.34)

B = ;%a·2u·„ — 2n··„Mn‘M„ + M*„Mn‘»·11M6‘M„1.qn -

Only M,, and M,, are affected by the design, therefore it must be shown that M,, and M,, are

unalfected by rotation.

(i) To show that M,, is unaffected by rotation, recall that M,, = X',X,/n, where

L = [1,;,,;,..5,]. The design D is given by [5,,;,...;,,] therefore X, = [MD]. The orthogonal

rotation of D by the transformation matrix R is given by

D' = RD.

The rotated AQ matrix is then of the form,

X1 ° = [llD*]

where AQ and AQ" are related by the transformation matrix H,

l 0 0

0

H =
~

. R

0

so that

XI * = HX,.
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Now,

Mll*
lll

and since R and therefore also H is an orthogonal rotation,

H'H = I

which implies that

M1; =X’]IX,/n
•

·= XIIX} In

=Mll ·

(ii) To show that M" is unaffected by rotation, recall that M" consists of the design moments

[ii], [iii] and [iii]. [ii] is unaifected by the rotation since the [ii] are the diagonal elements in M".

The moments [iii] = [iii] = 0 for a first order symmetric design. It is assumed that the design center

can be centered and scaled to 5 = Q. For any design point 5 of a symmetric design there also exists

the design point — 5.

Now consider a design point 5 from a symmetric experimental design D. Since D is sym-

metric, the point — 5 must also be a design point in D. Consider the orthogonal rotation of D using

the transformation matrix R . For the point 5, z corresponds to the rotation of 5,

z = R; -

For the point — 5, the rotation corresponds to

R(-x)=-R2¢=—Z·

Therefore, for any design points 5 and — 5 in the design D, the corresponding rotated points in

D" will be z and — z. Therefore D* will also be symmetric, and [iii] = [iii] = 0, which leads to

A Lack Of Fit Criterion and First Order Designs 46

t



M12 = M12* ·

The integrated bias for a rotated factorial design will be equal to the integrated bias of the
V

corresponding factorial design.

Theorem 2:

The integrated mean squared error, J, is invariant to an orthogonal rotation ofan orthogonal

symmetric first order design when protecting against a second order model.

Proof:

Recall

J= V+ B

and that B is unaffected from the result of Theorem 1. Also, V= rr(;4„Mü‘) is a function of the

design only through the matrix M„. lt has been shown in the proof of theorem l that M„ is un-

affected by rotation. Therefore V and subsequently J are unaffected by rotation.

Theorem 1 and 2 show that the prediction properties pertaining to a first order model for

rotation designs are equivalent to the prediction properties for an ordinary factorial design.

Therefore, rotation designs can be used to achieve the same prediction properties as factorial de-

signs.
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3.4.2 Effect of Rotation on Lack of Fit

A first order factorial design with the addition of center runs allows for a lack of fit test to

be performed on second order coefficients (ßu and ß„). The general linear model form of the test

statistic and the nonoentrality parameter have been previously given. This test statistic is for testing

the general linear hypothesis

HOZ HE2 = Q

which forms the testable hypotheses (i.e., estimable functions) of the second order coefiicients

contained in Q,. A k = 2 , first order factorial design with center runs has the testable lack of fit

hypothesis in the second order coefiicients given by

Oi = . .~ „ "‘= 1, (323)
ßll + ßzz

The development of these testable hypotheses is given in Myers (1976). A k = 2 variable rotated

factorial design of the class previously discussed, has the testable lack of fit hypothesis in the second

order coefiicients given by,

ß — ——“° dz) ßHo; " d Z2 = Q . (3.24)
ßll + ß22

The development of these testable hypotheses is given in Appendix A. The rotated factorial design

detects additional information based on the pure second order coefficients while sacrificing the de-

tection of some interaction information. The lack of fit testable hypothesis for k > 2 variables have

a similar structure to the k = 2 variable case. For k = 3, a factorial design with center runs has the

lack of fit testable hypothesis
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ßI2
ß13

Ho: = Q . (3.25)
ßza

ßll + ß22 + ßss

The k = 3 rotated design has the testable lack of fit hypothesis,

1 - 62 1 - 62
ßll "‘7"ß22—"jßsa

Ho: ßß = Q . (3.26)

ßza
ßll + ß22 + ßsa

For k = 4, a factorial design with center runs has the testable lack of fit hypothesis

ß12
ß13
1614

Ho: ßzs = Q . (3.27)

ßza

ßsa
1611+ ßzz + ßas + ßu

The k = 4 rotated design has the testable lack of fit hypothesis,
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ß12

1 — 4* 1 — 4* 1 - 4*ßrs +""2Tß22 +°T—ß33 +"Tß44
ß14

H0: ßza = Q . (3.28)

1 — 4* 1 - 4*ß24 ··Q-ß22 +Q-ß44

ßsa

1611 + ß22 + ßas + ß44

The factorial designs allow for testing the interaction coeliicients separate from the sum of the

pure quadratic coefiicients. The rotated factorial designs allow for testing a combination of the

interaction and pure quadratic coellicients in addition to the sum of the pure quadratic coefiicients.

The power properties can be measured by tr[T·‘L] which is the A,* criterion. A design, D,,

which has larger tr[T"L] than another design, D,, will have larger average power than that of D,.

The class of rotated factorial designs consistently provides larger value for tr[T*‘L] as compared

with the corresponding factorial designs.

3.4.3 Az' Criterion Applied to the Rotated Design Class

The A,* criterion is applied to the class of iirst order rotated factorial designs with n, center

runs. The criterion is used to choose the fourth order design moments for rotated factorial designs

with the second moment chosen according to one of three prediction properties of interest (Bias,

Variance, Mean Squared Error). Rotated factorial designs for k = 2, 3 and 4 are investigated here.

The k = 4 design is a rotation of a one half fraction of a
2‘

factorial design with defining contrast l

= ABCD.

Table 3.2 provides a summary of the evaluation of k= 2, 3 and 4 variable rotated designs.

Minimum bias, minimum variance and mean squared error eüicient rotated designs are evaluated
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in terms of the A,* criterion for various sample sizes, n. One can use the results of Table 3.2 to

select a design of one of the three types (minimum bias, minimum variance or mean squared error

efficient) that performs well in terms of the lack of fit test based upon the Af criterion.

i
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Table 3.2 · Evaluation of Rotated Designs in Terms of A2* Cxitexion

Dlinimum Bias Minimum Variancc Mean Squared Error Eßicient
k- 2 - '
n . d tr[T"‘L] n d tr[T"L] n d tr[T"L]

7 0.4082 4.9643 7 1.0 7.5643 7 0.6325 5.6688
8 0.5773 5.2499 8 1.0 7.9615 8 0.7746 6.4227
9 0.7071 5.7499 9 1.0 8.3478 9 0.8944 7.3909
10 0.8165 6.4000 10 1.0 8.5091 10 1.0000 8.5091
11 0.9129 7.1591 11 1.0 8.3739 11 1.0000 8.3739
12 1.0000 8.0000 12 1.0 8.0000 12 1.0000 8.0000

k· 3
n d tr[T"L] n d tr[T·‘L] n d tr[T·'L]

10 * * 10 1.0 22.2467 10 0.2739 9.7366
11 * * 11 1.0 20.7096 11 0.4272 10.2839
12 0 8.6250 12 1.0 19.5789 12 0.5385 10.9948
13 0.2887 8.9639 13 1.0 18.7831 13 0.6305 11.8315
14 0.4082 9.4018 14 1.0 18.2657 14 0.7106 12.7672
15 0.5000 9.9187 15 1.0 17.9745 15 0.7826 13.7820
16 0.5774 10.5000 16 1.0 17.8549 16 0.8485 14.8611
17 0.6455 11.1342 17 1.0 17.8460 17 0.9097 15.9937
18 0.7071 11.8125 E 18 1.0 17.8824 18 0.9670 17.1702

k=- 4
n d tr{T·‘L] n d tr[T"L] n d tr[T"L]

10 * * 10 1.0 43.8667 10 0.3536 19.2159 .
1 1 * * 1 1 1.0 40.3907 1 1 0.4873 20.0000
12 0.0000 16.0000 12 1.0 37.6667 12 0.5916 21.1293
13 0.2887 16.3654 13 1.0 35.5563 13 0.6801 22.5014
14 0.4081 16.9286 14 1.0 33.9606 14 0.7583 24.0713
15 0.5000 16.4500 15 1.0 32.8000 15 0.8292 25.7995
16 0.5774 18.5000 16 1.0 32.0000 16 0.8944 27.6562
17 0.6455 19.4559 17 1.0 31.4792 17 0.9553 29.6188
18 0.7071 20.5000 18 1.0 31.1428 18 1.0 31.1428

* · Minimum Bias Designs do not exist

i
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3.5 Comparison ofFactorial and Rotation Designs

Tables 3.1 and 3.2 provide a summary of facterial and retated designs that achieve minimum

bias, minimum varianee and efficient mean squared error values. A comparison of factorial designs

and rotation designs based upon Tables 3.1 and 3.2 indicates that rotation designs can achieve the

same first order predictien properties (minimum bias, minimum variance or mean squared error

eäicient) but attain better lack of fit properties as measured by the A2" criterion. Minimum bias

and mean squared error efiicient designs in Table 3.2 of a given sample size, n, are just rotations

of the corresponding designs gven with Table 3.1. The minimum variance designs of Tables 3.1

and 3.2 are identical since a rotation design with d = 1 is exactly a factorial design with g = 1.

Example Revisited

Consider the example of section 3.1.1 in the following context. A chemist is interested in

studying the viscosity of star block copolymers. He is interested in how the variables temperature

and compression affect the viscosity. The temperature can be set from 130°C to 230°C and the

compression as measured by percentage can range from 5 to 25 percent. The cuboidal design regen

is then gven by,

130 S Temp S 230

S S Comp.% S 25 . '

This regen can then be eentered and scaled by defining the design variables,

Temp — 180°‘¤ = —"§6‘—

_ Comp.% — 15X2 —110 .
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Therefore the variables x, and x, are in the region

*1 S X] S I

*1 S X2 S 1 •

The chemist is unsure ofhow the variables temperature and compression affected viscosity. If a first

order model in temperature and compression is inadequate, then a second order model will be

adopted. The uncertainty of the model is cause for concern about bias in a first order model and

also for concern about the performance of a lack of fit test. A rotated design with 4 center runs

will provide a design that attempts to address the integrated mean squared error and power of the

lack of fit test. A rotated design in the design variables is given by,

1} X;

-0.7746 -1

0.7746 1

1 -0.7746

-1 0.7746

0 0

0 0

0 0 I

in terms of the natural variables, temperature and compression percentage, the design is

Temg. Comg.%

141.27 5

218.73 25

230 7.254

130 22.746

180 15

180 15

180 15
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The rotated design given above has second order design moment, [ii] equal to 0.4. This design

represents a rotation of the factorial design given in the example of section 3.1.1. lfwe assume the

same second order coeüicients as previously considered, then the noncentrality parameter for the

lack of lit test is equal to 27.2382 which yields the power for detection of second order terms equal

to 0.7519 at a = 0.05. The rotation design given here allows for approximately a 7% increase in the

power of the lack of lit test in comparison to the factorial design given in section 3.1.1. Since the

second order moment, [ii], for both designs is 0.40, the prediction properties of both designs are

equivalent.
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' Chapter IV .

IV. Augmentation Of First Order Designs

'The previous chapter considers the- use of factorial designs and rotation designs for estimating

a first order response function model. Prediction properties of the first order model estimate

(minimum bias, minimum variance, mean squared error efficient) were considered in selecting a

specific design within each class. The rotation design class was introduced as a class ofexperimental

designs which possesses first order model prediction properties equivalent to that of the factorial

design class. But, the rotation design class was shown to have superior lack of fit properties for the

detection of second order model terms.

This chapter examines procedures for augmentation ofboth factorial and rotation designs that

allows for estimation of a second order response function model. These augmentations can be

utilized when a significant lack of fit is observed based upon the observed responses corresponding

to a first order design.
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4.I Sequential Design Procedure

As previously mentioned in chapter 2, an experimental design strategy that is consistent with

the sequential framework given by Box and Wilson is developed throughout this work. When an

experimenter is uncertain of the best characterization for the response variable, then a sequential

design strategy should be implemented. In such cases, usually the simplest model form, a first order

model, is initially considered for the response. An appropriate experimental design plan is chosen

and responses observed corresponding to such a plan. Factorial designs er rotation designs are two

design classes that can be used for considering first order models. Observed responses correspond-

ing to a first order design are used to obtain a first order model estimate.

The uncertainty on the part of the experimenter in terms of the best model characterization

for the response leads to the need for checking fer inadequacy of the first order model. The ob-

served responses from a first order design can be used to perform a lack of fit test for checking the

adequacy of a first order model. The lack of fit test described in section 2.4.5 is for the detection

of second order model terms. lf a nonsignificant lack of fit is observed, then the observed data

suggests that a first order polynomial model is an adequate approximation of the true response

function. A first order model estimate is then employed to predict and explore the response variable

within a regen of interest in the design variables.

If a significant lack of fit is observed, then the data suggests that a first order model is net an

adequate approximation for the response function since second order variable contribution appears

to be present in the response system. In such a case, a second order model cannot be estimated

using the observations obtained from a first order design. An experimenter could then employ an

entirely new second order design to obtain a second order model estimate. Altematively, the data

obtained from the first order design could be augrnented with additional experimental points that

allow for estimation of a second order model.
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Augmentations of both factorial and rotated designs according to various properties of a sec-

ond order model are considered here. These augmentations are consistent with the sequential

framework ofexperimentation described and are employed when a signiiicant lack of fit is observed.

4.2 Second Order Design Criteria

Many criteria exist for evaluating a second order experimental design. Three general concepts

which are of great interest within the sequential experimental framework are orthogonal blocking,

second order prediction variance properties and variance properties of the estimated regression co-

efficients.

4.2.1 Orthogonal Blocking

Orthogonal blocking is an important property of experimental designs constructed in a se-

quential manner when a first order design is augmented with experimental points that allow for

estimation of a second order model. These additional points are usually observed at a later time,

under possibly different experimental conditions than the original first order design points. A block

effect could exist due to the possibly different experimental conditions. Orthogonally blocked de-

signs are of the form such that block effects are orthogonal to the model terms, allowing for esti-

mation and testing of the model terms free of any block effects. Box and Hunter (1957) developed

the general conditions for orthogonal blocking of a second order design. These conditions are given

by,
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(1) Each block must form a first order orthogcnal design.

· (2) The contribution to the sum cf squares of each variable
(4 1)

il

(Z xä,) from each block is proportional to the block size.
u=1

4.2.2 Prediction Properties and Coefficients Estimation

The choice of an experimental design used for prediction purposes with respect to a second

order model are generally based upon the prediction variance. Two general prediction variance

criteria which are chen used in relation to a second order model are rotatability and G~optirnality.

Both criterion are discussed in general within section 2.4.2 . Rotatability assures that the predicted

values of points equal distance from the design center will have equal prediction variances. G-

optimality is a design criterion based upon the maximum prediction variance within a region of

interest, R. The properties of experimental designs that assure rotatability will be discussed here.

Another chen used property for selecting second order experimental designs is based upon

the quality of the estimated regression coefiicients. D·optimality and D,-optimality, discussed in

section 2.4.2 are frequently adopted criteria for evaluating the quality cf estimated coefiicients for

a second order model.

4.3 Augmentation ofFactorial Designs - Central
Composite Designs

Central composite designs, introduced by Box and Wilson (1951) are the most commonly

used second order designs. These designs are discussed in general in section 2.5.2 . Central com-

posite designs can be partitioned into a factorial section, an axial section and center points. A fac-

torial design used in the initial stage of experimentation can be augmented with axial points and

Augmentation of First Order Designs S9



possibly additional center points to form a central composite design. The general structure of a

central composite design is given by (2.45). The axial points allow for estimation of the pure

quadratic coefiicients, ß„, which could not be previously estimated using a factorial design.

The central composite design is a very flexible design that can be made to satisfy several op-

timality criteria. The flexibility of these designs is a result of the freedom to select the values of g,

a and n„, the number of center points. Initially, the values of g and n„ are selected to satisfy some

criterion of interest pertaining to a first order model. Here, the value of g and n,, will be chosen

according to some first order prediction property. lf a significant lack of fit is observed, then the

axial points are added with possibly additional center points. The value of (1 and the number of

additional center points are deterrnined by some criterion of interest of a second order model.

Orthogonal blocking, rotatability, D-optimality and D,-optirnality are the cxiteria for selecting a and

the number of additional center points investigated within this work.

4.3.1 Orthogonally Blocked Central Composite Designs
I

The conditions for orthogonal blocking given by (4.1) can easily be attained for central

composite designs of the form (2.45). Appropriate selection of g, a and n„ will guarantee orthogonal

blocking. Central composite designs in two blocks can be constructed for all values of k. The first

block of n, experimental points consists of the factorial plus center points design. The aug-

mentation of axial and additional center points to complete the central composite design consists

of the second block of ra, experimental points. The values of g, 21,, a and rr, are selected to achieve

orthogonal blocking. The first condition of orthogonal blocking given in (4.1) will always hold for

a central composite design in two blocks. The second condition of (4.1) requires that the following

expression in the design parameters holds.

ä= -il-lg (4.2)
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The value of g and rr, are selected based upon some criterion of interest for a first order model

(i.e., prediction). If augmentation of the factorial design is necessary, then the possibility of a block

effect exists among the factorial block and the axial block. The values of a and rt, can then be

chosen according to (4.2) to obtain orthogonal blocking for the given first block with g and n,. For

the example given in section 3.l, the factorial design with g= 0.8944 and rz, = 8 can be augmented

with an axial section with a = 0.8944 and zero center points (n,= 4) or er = 1.00 with one center

point (n,= 5) to form an orthogonally blocked central composite design in two blocks.

4.3.2 Rotatable Central Composite Designs

The conditions for rotatability given by Box and Hunter can be satisfied by selecting appro-

priate values for g and a of a central composite design. Rotatability can be achieved if,

a=4„/2kg . (4.3)

Again, the value of g is selected based upon some criterion of interest for a first order model.

lf augmentation of the factorial design is necessary, then prediction properties pertaining to a second

order model are of interest. The value of a can be chosen such that the central composite design

will be rotatable. Note that the conditions for rotatability are not a function of the number of

center runs. Therefore, by choosing an appropriate number of center runs, a rotatable central

composite design can be constructed to also block orthogonally.

4.3.3 D and Ds Efficient Central Composite Designs

Central composite designs in general can be constructed to be very efficient with respect to

second order coefiicient estimation as measured by D-efiiciency and D,·efliciency. These designs

, 'Augmentation
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which contain few or no center points achieve D-efficiency and D,·efliciency values of 0.90 and

above. ln addition, these designs have values of g= 1 and a = 1. In general, within the sequential

experimental framework it has been previously discussed that g is chosen according to some first

order model property. Within this work g is chosen according to first order prediction properties.

If the variance of prediction for a first order model is used for selecting g, then g will equal

1.0 and efficient central composite designs can be constructed by augrnenting these designs with

axial points at a = 1.0. If prediction bias or mean squared error for a first order model is used for

selection of g, then g will usually be less than one and the central composite design formed by

augmenting with axial points at a = 1.0 will not be as D-efficient or D, -eflicient as 'variance’ de-

signs. Table 4.1 provides some D~efIiciency and D,-eiiiciency values for designs with factorial

sections that are mean squared error eflicient as given in Table 3.1 . The designs given in Table

4.1 show that the central composite designs with lower values for g and smaller n perform poorly

in terms of the D-efficiency and D,·efficiency. The better performing central composite designs have

higher values of g and larger sample sizes, n.
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Table 4.1
D·eHiciency and Ds-efiiciency for Central Composite

Designs Created By Augmentation of Mean Squared Error Eüicient
Factorial Designs

k• 2
n g a D-efliciency D,-efliciency
10 0.77 1.00 0.6065 0.5009
11 0.84 1.00 0.6621 0.6011
12 0.89 1.00 0.7068 0.6890
13 0.95 1.00 0.7454 0.7694
14 1.00 1.00 0.7817 0.8473

k-
3

n g a D-efliciency D,-etiiciency
16 0.73 1.00 0.4632 0.3869
17 0.77 1.00 0.4988 0.4360
18 0.80 1.00 0.5268 0.4765
19 0.84 1.00 0.5508 0.5126
20 0.87 1.00 0.5732 0.5467
21 0.90 1.00 0.5925 0.5771
22 0.93 1.00 0.6138 0.6104
23 0.96 1.00 0.6306 0.6378
24 0.98 1.00 0.6489 0.6673

k-· 4
n g an D·ef1iciency D,-efiiciency

25 0.71 1.00 0.3985 0.3322
26 0.75 1.00 0.4428 0.3822
27 0.79 1.00 0.4870 0.4330
28 0.82 1.00 0.5623 0.5229
29 0.86 1.00 0.5623 0.5229
30 0.89 1.00 0.5990 0.5678
31 0.92 1.00 0.6325 0.6096
32 0.95 1.00 0.6610 0.6461
33 0.98 1.00 0.6998 0.6951 .

1
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4.4 Augmentation ofRotated Designs - Second Order
Rotated Designs

The first order rotation designs discussed in section 3.4 can be augmented to form a class of

second order rotated designs. These second order rotated designs are essentially rotations of central

composite designs. The transformation matrices given by (3.16), (3.18) and (3.20) can be applied

to central composite designs to create the second order rotated designs. For k = 2, 3 and 4 variables,

second order rotated designs are given by,

—d —l

d 1
— 1 d

1 —d

' -« -«(äg-) , (4.4)
« «(li)

1-d 1+d <=
a( —a

0 Q h
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4 -1 - ,/(4* +1)/2
-4 1 - ,

/(4’
+ 1)/2

-1 - -4 „ /(4’ + 1)/2

1 4 „ /(4“ + 1)/2
_ 4 -1 ,/(4’+1)/2

-4 1 ,
/(4‘

+ 1)/2 ·

-1 -4 - „/(4“ + 1)/2
1 4 - „ /14* + 1)/2 , (4.5)

·“ ·“·<%>
°1 - 4l_d“ “<m>
°“<m> ·“
°

·“<%ii?> “
°

0 0 —a·

0 0 4'
0 0 0
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-d —d -1 -1

-d d -1 1

d . -d 1 -1

_ d d 1 1

1 1 -d -d

1 -1 -d d

-1 1 d -d

-1 -1 d d

-d -1 -1 d

d 1 1 -d

-d 1 -1 —d

d -1 1 d
‘ · -1 d °d 1 , (4.6)

1 -d 0 -d -1

-1 —d d -1

1 d —d 1

-0 0 -0( {ig-) 0
° 0 0 0( {ig-) 0

0 -0 0-0(0
0 0 14-%-%%)

0( 0 -0 0
-0( {I-g-) 0 0 0

0 0(gig-) 0 -0
0 -0(äg) 0 0
0 Q Q Q
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respectively.

The first order rotated designs used during the initial stage of experimentation can be aug-

mented with dual axial points and possibly additional center points to create a second order design.

The dual axial points have two variables chosen at specific levels (3; er and 3; a(
éä-))

and the

remaining k - 2 variables set to zero. The dual axial points allow for estimation of the second order

coeiiicients, ßu and ß„, free of the effects of aliasing.

The second order rotated designs are very flexible and can be made to satisfy several opti-

mality criteria. This flexibility is the result of the freedom to select the values of d, a and n,,, the

number of center points. The values of d and n„ are initially selected according to some criterion

of interest for a Erst order model. The selection of d and n„ based upon some prediction property

of a first order model has been previously discussed. This choice ofd and n,, is also consistent with

the sequential framework of experimentation. If a sigaificant lack of fit is observed based upon the

observations of the first order rotated design, then the dual axial points are added along with pos-

sibly additional center points. The value of a, 0 S a S 1, and the number ofadditional center points

are determined by some criterion of interest pertaining to a second order model.

Orthogonal blocking, rotatability, D·efficiency and D,·efficiency are the second order criteria

investigated here. Where possible, comparisons will be made of the second order rotated designs

to central composite designs.

4.4.1 Orthogonally Blocked Second Order Rotated Designs

The conditions for orthogonal blocking given by (4.1) can easily be established for second

order rotated designs of the forms (4.4)·(4.6). Appropriate selection of the design parameters, d, a

and n,, can guarantee orthogonal blocking. Second order rotated designs in two blocks can be

constructed for all values of k. The first block of rz, experimental points consists of the initial first

l
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order rotated design with center points. The augrnentation of dual axial and additional center

points to complete the second order rotated design comprise the second block of fl; experimental

points. The values of d, n,, a. and rx, are selected to achieve orthogonal blocking. The first condi·

tion for orthogonal blocking given in (4.1) will always hold for a second order rotated design in two

blocks. Both blocks as described above are first order orthogonal. The second condition in (4.1)

requires that the following relationship among the design parameters holds.

1+ dz _ jl
az - nz . (4.7)

The values ofd and rz, are selected based upon some criterion of interest for a first order model

(i.e., prediction). lf augmentation of the first order rotated design is necessary, then the possibility

of a block effect exists among the initial first order rotated design and the augmented dual axial

section. The relationship for orthogonal blocking (4.7) can be used to select values of a and rt,

based upon the d and Ill used in the first order rotated design.

For the example given in section 3.5, the first order rotated design with d= 0.7746 and lll = 8

can be augnented with dual axial points and center points that satisfy (4.7). These values of a and

rr, are given by the followirng:

ra, a

4 0.6661
5 0.7447
6 0.8158
7 0.8811

·· 8 0.9420
9 0.9991 .

Any of the above combinations of a and rz, will guarantee orthogonal blocking.
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4.4.2 Rotatable Second Order Rotated Designs

The conditions for rotatability given by Box and Hunter can be achieved by selecting ap-

~ propriate values of d and a of a second order rotated design. Rotatability can be achieved for de-

signs of the form (4.4)-(4.6) if,

_ [ k(1 +
d)“

°‘ " 4
(4.8)

k 1 4*with „· = , rer k oda

Consistent with the sequential framework, d is chosen according to some criterion of interest

for a first order model. lf augmentation of the first order rotated design is needed, then prediction

properties pertaining to a second order model are addressed by selecting a such that rotatability is A

achieved. Notice that the conditions for rotatability are not a function of the number of center

points. The selection of an appropriate number of center points can be based upon other criterion

for a second order model.

4.4.3 D and Ds Efficient Second Order Rotated Designs

Second order rotated designs can be constructed to be very efficient with respect to coefiicient

estimation for a second order model. These designs which perform well in terms of D-efiiciency

and D,·efiiciency contain few or no center points with d= l and an = 1. In general, within the se·

quential experimental framework it has been previously discussed that d is chosen according to

some Erst order model property. Here, first order prediction properties are used for selecting d. If

the first order model prediction variance is used, then d= 1.0 is chosen and D·efficient and D,-efii-

cient second order designs can be constructed by augmenting with axial points at a = 1.0. If pre-

diction bias or mean squared error for a first order model is used for selecting d, then d will usually

Augmentation of First Order Designs
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be less than one and the second order rotated designs constructed by augmenting with dual axial

points at an = 1.0 will not be as D-eilicient or D,·eHicient as ’variance’ designs. Table 4.2 provides

some D-eliiciency and D,-efliciency values for designs with first order rotated sections (i.e., d) that

are mean squared error eüicient as given in Table 3.2. The designs given in Table 4.2 show that

second order rotated designs with lower values for d and smaller sample sizes, n, perform poorly in

terms of D-eiliciency and D,-efiiciency. The better performing designs have larger values for d and

n.
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Table 4.2
D·efHciency ar1d D,-emciency for Second Order Rotated

Designs Created By Augmentation of Mean Squared Error Eüicient
First Order Rotated Designs

k• 2
n d a D·efüciency D,-efliciency
10 0.45 1.00 0.6574 0.5642
1 1 0.63 1.00 0.6800 0.6252
12 0.77 1.00 0.7128 0.6976
I3 0.89 1.00 0.7466 0.7713
14 1.00 1.00 0.7817 0.8473

k- 3
n d a D-efficiency D,-efiiciency
16 0.27 1.00 0.5082 0.4368
17 0.43 1.00 0.5226 0.4641
18 0.54 1.00 0.5411 0.4942
19 0.63 1.00 0.5595 0.5238
20 0.71 1.00 0.5782 0.5534
21 0.78 1.00 0.5952 0.5809
22 0.85 1.00 0.6151 0.6121
23 0.91 1.00 0.6311 0.6385
24 0.97 1.00 0.6489 0.6673

k-4
n d a D-etiiciency D,-efliciency

25 0.1 1 1.00 0.4798 0.4182
26 0.35 1.00 0.4812 0.4258
27 0.49 1 .00 0.5096 0.4599
28 0.59 1.00 0.5383 0.4945
29 0.68 1.00 0.5707 0.5335
30 0.76 1.00 0.6036 0.5738
31 0.83 1.00 0.6348 0.6126
32 0.89 1.00 0.6620 0.6474
33 0.96 1.00 0.6999 0.6953
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The value of a is chosen to be one for all augmentations since this value will provide for the

best D·efliciency and D,-efiiciency. In general, the larger the value ofa, the better the two efliciency

measures will be.

' A comparison of the information provided in Tables 4.1 and 4.2 shows that the second order

rotated designs can be made more D·efiicient or D,-efficient than a corresponding central composite

design. The values of g and d in both tables are selected such that the second order design moment,

[ii], equals 0.43. Designs with second moments slightly greater than 1/3 are generally considered to

be mean squared error efficient as discussed in section 2.4.3. In addition, the first order prediction

properties for the factorial designs are equivalent to those of the first order rotated designs. But,

from Tables 4.1 and 4.2 it is clear that the second order rotated designs always outperform the

central composite designs in terms of second order coeflicient efiiciencies (D and D,) if the axial

points of both designs are chosen to maximize these efliciencies.
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Chapter V
’

V. A Mean Squared Error Criterion

l
Experimental designs which perform well in terms of the traditional integated mean squared

error ofprediction, J given by (2.1) can be improved in terms of lack of fit performance by utilizing

the A,* criterion discussed in Chapter Ill. Conditional upon asecond order design moment chosen

based upon some prediction property for a first order model, the lack of fit properties for a design

are be measured by the Af criterion.

This chapter examines an experimental design criterion that considers the integated mean

squared error ofprediction conditional upon the lack offit properties. Box and Draper (1959, 1963)

have discussed experimental designs which perform well in terms of the unconditional mean

squared error of prediction. The work here is in the same spirit except that lack of fit properties

are incorporated into the evaluation of the integrated mean squared error, J. This conditiornal in-

tegrated mean squared error is consistent with the sequential framework of experimentation.
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5.1 One Variable Case

Consider the case of a k = l variable response model. Within the sequential framework, for

a first order response model estimate the integrated mean squared error of prediction is given by,

_ 1 nßir
Ii

. 2 _g_
1

J- 1 ([1i] - 1/3) + 45 (5.1)

and the noncentrality parameter of the lack of fit test for the detection of the quadratic coefficient

ßu is given by

2
1 =fi} ([iiiü - [ii]2) . (5.2)

6

The quantity J is used to evaluate the prediction capabilities of a first order response_model

estimate. The noncentrality parameter, 2. , is used to evaluate the lack of fit properties. Notice that

both J and 1. are functions of the quadratic coeflicient ß,,. For a given experimental design,

,1 and J can be evaluated in terms of ß„.

Consider J and J. for the following example with an experimental design.consisting of five

experimental points given by

{1,-1,0, 0,0} . (5.3)

This design in one variable has a second moment equal to 0.4 and the three center runs allow

for a lack of fit test to be performed with two degrees of freedom for the pure error term in the

denominator. This design is thought to perform well in terms of the integrated mean squared error

of prediction, J, as examined by Box and Draper (1959, 1963). Box and Draper suggest that the

use of a second moment slightly greater than the minimum bias second moment will perform well

in terms of J. Recall from section 2.4.4 that the optimal design in terms of J is a function of the
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quadratic coefficient, ß„, which is unknown. Figure 5.1 provides a plot of J vs. for the

design given above. In addition, Figure 5.2 provides a plot of the power of the lack of fit test vs.

·

Figure 5.2 shows that for large values of -x/éiä-, the power of the lack of fit test for this de-

sign is quite large. In fact, for greater than 13.5 the power is greater than 0.9. Therefore,

for these large values of -@·, it is highly probable that we will observe a significant lack of fit

and subsequently fit a second order response model. When the value of@ is not so large,

there exists a reasonable chance of observing a nonsignificant lack of fit despite the fact that ß„ is

not zero. For these values of a first order model estimate would likely be used, and the

prediction properties of this model are characterized by J .

The quantity J depends upon the second order coefficient, ßu , but for the experimental de-

sign given it can be seen from Figures 5.1 and 5.2 that values of J are only important over a range

of ß„ where the power of the lack of fit is not large. Within the sequential framework, when the

power of the lack of fit test becomes large, J, which is a prediction measure for a first order model

is no longer of great interest since it is highly likely a second order model will be lit when the true

ß„ is in this range.

This example provides the motivation for the next section which discusses a measure that

evaluates the integrated mean squared error of prediction (J) over a region of low power for the lack

of fit test. This measure is developed in general for any number of variables k and any design class.

This measure will be used throughout this chapter for evaluation of first order prediction properties

of several design classes.
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Figure 5.1 · Integrated Mean Squared Error of Prediction vs. The Second Order Coeüicient
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5.2 Power Conditional Average and Power Conditional
Maximum Mean Squared Error

A As discussed within the context of the one variable example of section 5.1, the mean squared

error of prediction for a first order model is of interest only when the first order response model

estimate is used for prediction and exploration. When the lack of fit test is significant, indicating

that a second order response model is to be used, then J is not of interest. The procedure suggested

here is to evaluate the performance of J restricted to a regon of second order coefficients such that

the power of the lack of fit test is not large. The J-optimal design depends upon the second order

coefiicients which in general are unknown. Box and Draper (1959, 1963) consider the performance

of J over all possible values of the second order coefficients. Their results indicate that designs

which perform well in terms ofJ over many possible values for the second order coefficients have U

second order design moments that are slightly greater than the minimum bias second moment.

Here within this work, the consideration of J is restricted to values of the second order coef-

ficients that result in low power of the lack of fit test. This evaluation of J is consistent with the

sequential experimental framework. A criterion similar to the A,* criterion of section 3.2.2 is de-

veloped. The A,* criterion considers the average noncentrality parameter of the lack of fit test

conditional upon the integrated mean squared error of prediction being fixed. The A,* criterion

can be used to improve upon the lack of fit test performance. If one considers the class of designs

with a gven integrated mean squared error, J, for a f'1rst order model the A,* criterion can be used

to select the designs of this class that perform best in terms of the lack of fit test.

An idea similar to the A,* criterion is to consider the average J over a regon of fixed power

for the lack of fit test. This criterion is called the power conditional average mean squared error

of prediction, denoted by Jpc, Consider for a first order response model estimate the integrated

mean squared error of prediction gven by,
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- E' TEJ= "(l·*11M11]) +"gii
· (SA)

G

Also consider the noneentrality parameter of the lack of fit test for detection of second order model

terms given by

' L1 -
gig- . (5.5)

6

The sequential experimental framework previously discussed specifies that a first order re-

sponse model estimate is initially considered and based upon the lack of fit test, either a first order

or a second order model will be used for prediction and exploration of the response variable. lf the

lack of fit test is nonsignificant, a measure of the prediction properties for a first order model is given

by J. If the lack of fit test is significant, then a second order model is used for estimating the re-

sponse and J is no longer of interest. Therefore, within the sequential framework, the quantity J

is only of interest when a nonsignificant lack of fit is observed, i.e., when the wrong model is being

fit. Hence, a measure of the prediction properties of an experimental design pertaining to a first

order response model estimate is the average value of J over the values of the second order coefii-

cients that will result in low power for the lack of fit test.

Recall from section 2.4.4 that the optimal integrated mean squared error design when fitting

a first order model is a function of the unknown second order coefiicients. The 1,,;, criterion of

averaging the integrated mean squared error over a region in the second order coefficients where the

power is low accounts for the dependency of J on the second order coefficients. Formally, the

1,,;, criterion is defined as the following.

.1,,} where .1,, ns the noncentralrty parameter required to aclueve a

specified power of the lack of fit test.
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I
JdßzJpc.4d

6 E2 (5.6)

- 1 ¢r[L"7]

The derivation of 1,6, is given in Appendix B. JM, measures the prediction capabilities of

a design pertaining to a first order model.

In addition to the power conditional average mean squared error, J,c_,, one may also consider

the power conditional maximum mean squared error to evaluate the prediction properties. The

maximum J over the region G will occur somewhere on the boundary of (9, therefore a measure

associated with this maximum J is given by,

J1·cM.4x = mgx J

I 1
(5.7)

)+ .1o(max eigenvalue (L' 7)) .

The derivation of J„_-„„ is also given in Appendix B.

5.3 Application of 1,,6, and .],,6,,,,,, to First Order Factorial
Designs

The J,c_, and J,C„„ criteria developed in section 5.2 are used here to evaluate the first order

model prediction performance for factorial designs. Jm, and J„_-„„ can be used to select the val-

ues of the design parameters g and n, , the number of center points. Factorial designs with center

points often comprise the initial experimental design used to estimate a first order model and to

perform a lack of fit test. Viäthin the sequential framework, if a significant lack of fit test is ob-

served, then these factorial designs are supplemented with axial points in order to fit a second order

model.
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Consider Jpc, and Jpcmx given by (5.6) and (5.7). Both are a function of the lack of lit

matrix L and the bias matrix T. The L and T matrices for a factorial design with center points can

be expressed as the following.

T
L _ <2"g">1»«1 °‘ 21; 4 lr 2 2 . „ ($8)

0 [gln-(2.:/¤)]1141;

w [ 0
r= T (5.9)

0 Q

2kg) 2 2l¢+lgZ
where TQ is a k x k matrix with diagonal elements equal to — ——L;— w„ + w,„, and off di-

agonal elements equal to - w„ + ww,. I 18 an identity matrix ofdimensionThe

L matrix given by (5.8) is not of full rank since all second order coefiicients cannot be

estirnated (or tested) with a factorial design. Since L is not of full rank, it appears that both Jm,

and J,c„„ cannot be applied to factorial design since both require the existence of L".

For factorial designs, consider the following expressions of the integrated mean squared error,

J and the noncentrality parameter, 2 :

1 = % [tzßämwu - um + 2(§./ßuß,0)(Uä7] — um + (2ßä)<¤w1>] . <s.w>
0

_ kwa L 2 . 2 . 1 . 2 .J — 1 +"*‘ + 2 (E/Ü1)(['Ü ' 2”u[‘Ü + Wuu) + 2(Zß1aß33)(['Ü ‘ 2Wu[‘Ü + W53)

+(Zßä)(W11y)] ·

Note that both 2 and J can be expressed in terms of the same ftmctions of the second order

coefiicients. Therefore, the form of the second order model can then be reparameterized in terms

of the functions of the second order coefiicients given in (5.10) and (5.11). These new 'parameters'
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are Zßß, 2ß„ß„ and Zßä and represent the functions of the second order coeüicients that are
I<j

testable hypotheses for a factorial design.

This reparameterized model is given by,

i=X.ß„ +X;a§+¤

ßo

ß‘ Zßä
where Q] =

.
and Q2" = äßlißß . (5.12)

_ Zßä

ßk

Using this reparameterized model the noncentrality parameter of the lack of lit test can be

expressed as s _

V WL
*

8
Ä = ,(5-G

[iiiü — mz 0 0
where L* = 0 [iyj] — [ifjz 0 .

0 0 UW]!

The expression given by (5.13) is equivalent to that given by (5.10). The advantage of the

reparametexized model is that the matrix L* in the quadratic form of (5.13) is of full rank and its

inverse exists.

The mean squared error, J, can also be expressed in the terms of the repararneterized model
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— n **7,* I
J= ”(#11M11l) (5-14)

C

ÜÜ2 — 2Wu + Wm 0 0
where T* = 0

[iüz — 2wll[ii] + wlw O .

Q 0 WIWI .

k
Where I is an identity matrix of dimension ( ) in both L* and T". The expression gven by (5.14)

2
is equivalent to that gven by (5.11). This reparameterization of the mean squared error, J, allows

for conformability between the lack of ht matrix L* and the bias matrix T*.

Based upon this reparameterized model for factorial designs, the JPG and JPGMX values can

be expressed as the quantities gven by (5.6) and (5.7) with L replaced by L" and T replaced by

T*. The design parameters for a factorial design can then be chosen such that JPG or JPGMX is a

These designs would correspond to designs which achieve the minimum average or

minimum maximum mean squared error of prediction over the regon of low power for the lack

of lit test.

The investigation of factorial designs is considered for k = 2 to k = 5 variables, considering

both the hill and a one half fraction of the k = 5 factorial. In addition both cuboidal and spherical

design regons are considered. That is the design points are considered to be within a k-dimensional

unit cube or unit sphere. The regon of interest in the design variables for exploration, R, is also

considered to be a unit cuboidal or unit spherical regon. Three combinations ofdesign regon and

regon of interest are examined. These combinations are a cuboidal design regon with a cuboidal

regon of interest, a spherical design regon with a spherical regon of interest and a cuboidal design

regon with a spherical regon of interest.

Appendix C contains summary tables of factorial designs. The reader is referred to Appendix

C for details of comparing factorial designs based upon the JPG and JPCMP values. The values of
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Jpc, calculated in Appendix C are for the average mea.n squared error over the second order coef-

ficient regon such that the power of the lack of lit test is less than or equal to 0.90. Jpc, was also

examined for regions in which the power was less than 0.75 and 0.50. No substantial dilferences

in terms of conclusions existed among the 0.90, 0.75 and 0.50 regons. Of course the value of Jpc,

will change, but cornparisons of the designs within each of these three regons yielded nearly iden-

tical results. The 0.90 'power' regon is selected for design comparison throughout this work.

5.3.1 Factorial Designs with Cuboidal Regions for the Design and
Exploration

When both the design regon and the regon of interest are cuboidal the conclusions and rec-

ommendations drawn from Appendix C for the Jpc, criterion are the following.

(1) The addition of several center points dramatically decreases the values of Jpc,. This

result is probably due to the fact that the degrees of freedom and hence the power of the

lack of fit test will increase when the number of center points increases. Although the op-

timal values of Jpc, are achieved for designs with an extraordinary number of center points,

Jpc, values fairly close to the optimal values can be obtained with more reasonable num-

bers of center points. For k = 2 variables, 4-7 center points will yield acceptable values for

Jpc,. For k = 3, 5-ll center points will yield acceptable values for Jpc,. For k = 4 at least

6 center points and for k = 5 at least 7 center points will yield acceptable values for Jpc, .

In addition, for k = 5, a one half fractional factorial design achieves consistently smaller

values for Jpc, than the complete factorial.

(2) The optimal values ofg for the recommended number of center points gven in (1) are

1.0. The center points allow for a better lack of fit test with more degrees of freedom and

also reduce the second order design moments to values which perform well in terms ofJ

for values ofg at the extremes of 1.0.

The conclusions drawn about the Jrcudx criterion are:

(1) The addition of several center points drarnatically decreases the values of Jpc„,,„.

Reasonable number of center points which provide for near optimal values of Jpc„,,„ are
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given by 5 to 8 center points for k = 2 variables, at least 6 for k = 3, at least 8 for k = 4 and

at least l0 for k = 5. In addition, for k = 5, a one half fractional factorial design achieves

consistently smaller values of JPCMX than the complete factorial.

(2) The optimal values ofg for k = 2 and k = 3 is l.0. For k = 4 and k = 5 smaller values

of g will yield the best performing designs in terms of Jpcmx.

5.3.2 Factorial Designs With Spherical Regions for the Design and
Exploration

When both the design regen and the region of interest are spherical the conclusions and

recommendations drawn from Appendix C for the JM, criterion are the following.

(1) The addition of several center points dramatically decreases the values ef .I,c„. Again

this result is probably due to the gain in performance of the lack of lit test and hence a

smaller regen in the second order coefficients that J is averaged over. The recommended

number of center points that will guarantee optimality er near optimality in terms ef J„_-_,

are for k = 2, 4 to 6 center points. For k = 3, 4 and 5 the recommended number of center

points are 5-9, at least 7 and at least 7 respectively. A k = 5 one half fractional factorial

achieves consistently smaller values of J,C„, than the complete factorial.

(2) The optimal values ofg fer all numbers efcenter points and all k a.re the largest possible

values within the k·dimensienal unit sphere. These values are g = ll«/k- .

The conclusions drawn about the J,c„„ criterion are:

(1) The addition of several center points dramatically decreases the values ofJ„_-„„. Again

this result is probably due to the gain in performance of the lack of fit test and hence a

smaller regen in the second order coeßicients that J is averaged over. The recommended

number of center points that will guarantee optimality er near optimality in terms of

J„_-„„ are fer k = 2, 4 to 6 center points. For k = 3, 4 and 5 the recommended number

of center points are 5-9, at least 7 and at least 7 respectively. A k = 5 one half fractional

factorial achieves consistently smaller values of Jpcmx than the complete factorial.
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(2) The optimal values ofg for all number of center points and all k are the largest possible

values within the k-dirnensional unit sphere. These values are g = 1/„/k .

5.3.3 Factorial Designs within a Cuboidal Design Region and Spherical
Region of Interest

- When the design region is represented by a unit cuboidal region and the region of interest is

a unit sphere or hypersphere within the design region then the conclusions and recommendations

drawn from Appendix C for the J,c_, criterion are the following.

(1) The addition of several center points dramatically decreases the values ofJ,cA. The gain

in performance of the lack of fit test through the additional center points is rellected in a

decrease in J,C_,. The recommended number of center points that will guarantee optimality

or near optimality in terms of lm, for k = 2 through 5 variables are 4 to 9, at least 5, at
l

least 6 and at least 7 respectively. A k = 5 one half fractional factorial achieves consistently

smaller values of JM, than the complete factorial.

(2) The optimal values of g for designs with the recommended number of center points

given in (1) are oüen less than the maximum allowed of 1.0.

The conclusion drawn about the J,C,„X criterion are:

(1) The addition of several center points dramatically decreases the values of J,C„„. The

recommended number of center points that will guarantee optimality or near optimality in

terms of .l,c„„ for k = 2,3,4 and 5 variables are 5 to 9, at least 7, at least 9 and at least

10 respectively. A k = 5 one half fractional factorial achieves consistently small values of

J,c„„ than the complete factorial.

(2) The optimal values of g for designs with the recommended number of center points

gven in (1) are often less than the maximum allowed of 1.0.
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5.4 Robust Second Order Designs

l The sequential framework utilized throughout this work can be adjusted to the special needs

of an experirnenter. The framework previously described initially employs a first order design for

fitting a first order response model estimate. If a lack of fit test for second order departures is sig-

nificant then additional sample observations are needed, consisting of either an augmentation of the

existing first order design or a new second order design. If additional sample observations carmot

be obtairned by an experimenter, then the initial design must have the capabilities of fitting a second

order model. This is not the case with the first order desigrs discussed previously (factorial or ro-

tated). This section will consider experimental situations when additional observations cannot be

taken after some initial stage.

Speciücally, the
’one

experiment' framework considered within this section is given by the

following. The experimenter is uncertain as to the best characterization for the response variable.

lnitially, a first order response model estimate will be used, if this model is found to be inadequate

based upon a signilicant lack of fit test, then a second order model will be adopted. Within this

framework only one experimental design can be employed to accomplish the objectives mentioned

above.

Atkinson (1972, 1973) has previously considered the use of second order designs within the

’one experiment' framework. Atkinson discusses the use of the IL] criterion for evaluating exper-

imental designs in terms of the performance of the lack of fit test and also as a D, measure to

evaluate the quality of the second order coefficient estimates. He points out that experimental de-

signs which perform well in terms of IL] , designs with good D,-efficiency as given in (2.27), may

perform poorly in terms of the quality of the first order coefiicient estirnates. Therefore, Atkinson

derives an efliciency measure similar to that of D,·efliciency for first order model terms. He then

constructed experimental designs that will have the largest IL] conditional upon achieving a lower
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bound for the first order efliciency measure. These designs are considered to perform well in terms

of the lack of fit test, IL! , and also in terms of estimating a first order model or a second order

model depending on the outcome of the lack of fit test. This robust design selection of choosing

a design that will perform well in terms of both a first order and second order model based upon

the results of the lack of fit test will now be considered using the JPCA criterion to evaluate the

performance of a first order response model estimate in terms of prediction capabilities. D, -efli-

ciency for second order terms and D-efliciency for the full second order model are simultaneously

considered for evaluation of second order model performance.

Two often used second order design classes, central composite designs and Box-Behnken de-

signs, are evaluated and compared using the robust selection criteria of Jpc, or JPCMAX combined

with D,·efliciency and D·efiiciency. The designs discussed here are therefore robust in terms of

providing good performance of the lack of fit test and additionally providing good prediction per-

formance for a first order model and good model estimation for a second order model depending

upon the result of the lack of fit test.

Appendix C contains summary tables of Jpc,, Jpc„_,p, D,-efiiciency and D·ef1iciency for cen-

tral composite designs and Box-Behnken designs. The reader is referred to Appendix C for the

details of the evaluation and comparison of central composite and Box-Behnken designs. As with

the factorial designs of section 5.3, the values of Jpc, and Jpc„_,, are calculated for the region in the

second order coefiicients, E), such that the power of the lack of fit test is less than or equal to 0.90.

Similar results were obtained for other values of the power examined but not presented within this

work.

5.4.1 Second Order Designs Within a Cuboidal Desigrn Region for a
Cuboidal Region of Interest

When both the design region and the region of interest are best represented by a unit cuboidal

region, then the conclusions and recommendations drawn from the tables of Appendix C are the

following.
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(1) Central composite designs that perform best in terms of all the robust selection criteria,

J,C,,J,C„_„, D,·e£liciency and D-elliciency possess the values of g and a to be 1.0. The

Box-Behnken designs that perform best possess the value ofg equal to 1.0.

(2) The addition of center points at first dramatically decreases the values of

Jpc, and J,c„„, but with each additional center point the D, -efficiency and D·efficiency

will also decrease. Therefore to maintain robustness, consideration of all four measures

sirnultaneously yields the following recommendations for the number ofcenter points. For

k = 3, 4 and 5 variables 6 to 8, 8 to 10 and 9 to 12 center points respectively will provide

designs which perform best in terms of the four design criteria.

(3) For k = 3 variables, the two design classes are generally equivalent. For k = 4 and

k = 5 variables, the central composite design outperforms the Box-Behnken design. For

k = 5 a one-half liaction of a 2* factorial design used for the factorial portion within the

central composite design performs the best.

5.4.2 Second Order Designs Within a Spherical Design Region for a
Spherical Region of Interest

When both the design region and the region of interest are best represented by a unit sphere

or hypersphere, then the conclusions and recomrnendations drawn from the tables of Appendix C

are the following.

(1) Central composite designs that perform best in terms of all the robust design selection

criteria have the values of g equal to
ü

and an = l. These designs are such that all non

center points are on the sphere of radius one among the design variables. The Box-

Behnken designs that perform best utilize the value ofg equal

to(2)For both design classes the addition of center points at first drarnatically decreases the

values ofJ,C_, and J,C„_,
X , but with each additional center point the D-elliciency will also

decrease. The following recommendations for the number of center points is based upon

simultaneous consideration of Jpc, or J,C„„ with the D-efliciency. For k = 3,4 and 5
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variables, 6 to 10, 7 to ll and 8 to 12 center points respectively will provide for designs that

perform well in a robust sense.

(3) For k = 3 variables the central composite design outperforms the Box-Behnken with

respect to all four criteria. For k = 4, the central composite design and Box-Belmken de-

sign are exactly equivalent. This result for k = 4 is a consequence of the fact the central

composite and Box-Behnken designs are rotations of each other for k = 4 . The Box-

Behnken design is most robust for k = 5 although a central composite design containing a

one-half fraction performs well in terms of J,c_, and .I,C„„ but suffers from poor second

order model properties, as measured by the D-efficiency.

5.4.3 Second Order Designs Within a Cuboidal Design Region for a
Spherical Region of Interest

When the design region is best characterized by a cuboidal regon and the regon of interest

is best characterized by a spherical regon the following conclusions and recommendations are

drawn from the tables of Appendix C.

(1) Central composite designs that perform best in terms of the robust design selection

criteria have the values of g and a equal to 1.0. The Box-Behnken designs that perform

best utilize the value ofg equal to 1.0. '

(2) The addition of center points dramatically decreases the value of J,c_, and JPCMX at

first. With each additional center point the D,-efiiciency and D-eliiciency simultaneously

decrease, resulting in the following recommendations for the number of center points. For

k = 3,4 5 variables, 6 to 9, 8 to ll and 8 to ll center points respectively will provide

robust designs with respect to all four design criteria.

(3) The central composite and Box-Behnken designs are approxirnately equivalent for

k = 3 variables. The central composite designs outperform the Box-Behnken for k = 4 and

k = 5 with a one-half fraction used within the k = 5 central composite.
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5.5 Economical Robust Second Order Designs

The experimental situation described within section 5.4 is further investigated within this

section for second order designs that are more economical than central composite or Box-Behnken

designs. These designs are saturated or near saturated with respect to estimation of a second order
_

response model when no center points are used. Without center points, these designs do not pos-

sess the capabilities for performing a lack of fit test. Within this section, small composite, Hybrid

and Notz type designs which are saturated or near saturated experimental design classes will be

examined in a similar fashion as central composite and Box-Behnken designs in section 5.4. These

three design classes will be considered in the context of a 'one experiment' sequential framework.

g The need for a lack of fit test within this framework results in consideration of the three design

classes with the addition of center points. These designs with center points are no longer saturated

or near saturated for estimation of a second order model, but they provide economical alternatives

to central composite and Box-Behnken designs.
i

The economical designs examined here have the advantage of containing fewer experimental

points than central composite or Box-Behnken designs. Unfortunately the performance of the

economical designs in terms of the J,C_,, J„_-_,,_,x_ D, ·etliciency and D·efiiciency is much worse than

the central composite or Box-Behnken. An experimenter should therefore consider using the eco-

nomical designs only when he or she is limited in the number of experimental points and cannot

accommodate the needs for a central composite or Box-Behnken design.

A general examination and comparison of the three economical design classes in terms of

J,C_,, J,c„„, D,-elliciency and D-etiiciency is now considered. Appendix C contains summary

tables of these four design criteria for the small composite, hybrid and Notz designs with the addi-

tion of center points. Consistent with the comparisons for factorial, central composite and Box-
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Behnken designs the values of Jpc, and J„_-MM. calculated in Appendix C are for a regen in the

second order coefiicients, (-3, such that the power ef the lack of fit test is less than er equal to 0.90.

5.5.1 Economical Second Order Designs Within a Cubeidal Design Region
for a Cuboidal Region of Interest

When both the design regen and the regen ef interest are best represented by a unit cuboidal '

regen, then the cenclusions and recemmendations drawn from the tables of Appendix C are gven

by the following.

(1) Small composite and Netz designs that perform best in terms of the

J„_-‘,J,c„„, D,-eüiciency and D-efficiency possess the values of g and a equal to one.

Fer the hybrid designs, the designs gven by Roquemore (1976) with gven values fer

g, a, b, c, and d are scaled such that the largest possible value of these five design param-

eters is equal to one. This will guarantee that all design points are within the unit cube.

(2) The addition of center points at first dramatically decreases the value _ of

Jpc) and Jpcmx, but with each additional center peirnt the D,-efiiciency and D-efliciency

will also decrease. In order te maintain robustness in terms of the four design criteria, si-

multaneous censideration of all four criteria yield the following recommendations fer the

number of center points. For k = 3 and k = 4 variables, 6 to 8 and 8 to 10 center points

respectively provide for designs which perferrn well in terms ef the four design criteria.

(3) For k = 3 variables, the Netz design perferms extremely well in terms of the four cri-

teria. lt eutperforms the other design classes in terms of the criteria by a good margn.

The small composite desigr performs best for k = 4 variables.

5.5.2 Economical Second Order Designs Within a Spherical Design Region
for a Spherical Region of Interest

When both the design regen and the regen of interest are best represented by a unit sphere

er hypersphere, then the conclusions and recemrnendatiens drawn from the tables ef Appendix C

are gven by the following.
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(1) The small composite and Notz type designs that perfemn best possess the values of g

and a equal to 7%- and 1.0. The hybrid designs that perform best are such that fer the

designs gven by Roquemore, the experimental point wlnich is the farthest distance from the

center of the design is scaled such that it falls en the sphere in the design variables with

radius one. All other design points are scaled using the same scaling factor as the farthest

point, this will guarantee that all experimental points are within the unit sphere.

(2) The addition of center points drarrnatically decreases the values ofJpc, and Jpcmx, but

with each additional center point the D·efliciency will also decrease. Fer k = 3 and k = 4

variable designs, 6 to 8 and 7 to 9 center points respectively will result in designs that per-

form well in terms of the four design criteria.

(3) Among the design classes, the hybrid designs perferm best. The hybrid 31 IB and 4l6C

are the best performing test for k = 3 and k = 4 variables.

5.5.3 Economical Second Order Designns Within a Cuboidal Design Region
With a Spherical Region of Interest

When the design regen is best characterized by a cuboidal regen and the regen of irnterest

is best represented by a spherical regen the following conclusions and recemmendatiens are drawn

from the tables efAppendix C. _

(I) Small composite and Netz type designs that perform best in terms of the four design

criteria have the values efg and a equal to one. The hybrid designs of the form gven by

Roquemore are scaled such that the largest value of g, a, c and d is scaled such that it is

equal to one.

(2) The addition of center points dramatically decreases the values ofJpc, and .I,C„„, but

with each additional center point the D,·etl'iciency and D-efiiciency will also decrease. The

following recemmendations for the number of center points will provide robust designs in

terms of the four design criteria. For k = 3 and k = 4 variables, 6 to 9 and 7 te 10 center

points respectively will provide fer robust design performance.
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(3) Among the design classes, the Notz type design performs well for k = 3 variables and

the small composite performs best for k = 4 variables.
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Chapter VI

VI. Surmnary, Conclusions and Further Research

l
The objective of this research was to investigate sequential response surface design strategies.

Due to the nature of the sequential design framework, lack of fit properties and first order response

model prediction properties are important features ofa first order experimental design. Uncertainty

of the best characterization for the response model brings about the need for a lack of fit test.

Prediction and exploration goals in a response surface experiment bring about the need for high

quality first order prediction properties.

The A, design criteria which addresses the lack of fit properties of an experimental design was

modified to account for the first order mean squared error of prediction. The A,* criterion which

maximizes the average noncentrality parameter of the lack of fit test for second order coefficients

conditioned upon a fixed first order integrated prediction bias, B, was utilized as a design selection

criterion for frrst order designs. Based upon A,* , the rotation design class was developed and first

order model properties of these designs were investigated.

The sequential design framework specifies that if a significant lack of fit is observed then a

second order response model estimate is employed. Augmentations of frst order designs con-
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structed using the Az" criterion were investigated using various second order model properties.

Augnentations of rotation designs based upon this criterion were given and compared to

factorial/central composite designs. .

l
Finally, the JPG, and J,c„„ criteria were developed as methods for evaluating first order

•
prediction properties of experimental designs. The ./,c_, and J,c„„ criteria incorporate the per-

forrnance of the lack of fit test into the evaluation of the first order integrated mean squared error

of prediction. These two design criteria were used to construct factorial designs for use within the

sequential experimental framework. In addition, 1,,;, and J„_-MM were considered in conjunction

with D,-efiiciency and D-efficiency in defining a robust design selection procedure for evaluation

of second order designs within the sequential framework limited to the 'one experiment' (no aug-

mentation or redesigning) case.

This chapter surrnmarizes the developments and results of the A,*, Jm, and Jpcmx criteria.

A summary of the results for the construction of various designs applying these three criteria will

be given.

6.1 A2' and Rotated Designs

The A,* criterion has been used in this work as a design selection criterion for choosing re-

sponse surface designs that perform well in terms of the lack of fit properties while accounting for

first order prediction properties. As formally defined, the A,* criterion is
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E =
f göldßz

(6.1)

= ötr[T"L]
·

The use of E for design selection reduces to evaluating tr{T·‘L]. Designs which achieve large

values of tr{T"L] will perform well in terms of the power of the lack of fit test. The evaluation of

factorial designs based upon tr[T·‘L] resulted in designs with g= 1.0 performing the best for the lack

of fit purposes. When inconporating the first order prediction properties (integated bias, integated

variance or integrated mean squared error) of a factorial design into the evaluation of the design

performance, the designs which perform best have g= 1.0 with the number of center points chosen

so that the prediction properties are satisfied.

In some cases, i.e., minimum bias and minimum mean squared error efiicient, the factorial

designs with g= 1.0 required the addition of quite a number of center points. In order to achieve

the prediction property of interest (bias or mean squared error) the value of g must be reduced if

less center points are to be used. For these designs with fewer center points and g < 1.0, the power

properties are reduced as measured by tr[T"L]. Fortnmately, for these situations the power prop-

erties were irnproved upon by consideration of the class of first order rotated designs. These designs

represent factorial designs with g < 1.0 transforrned or rotated such that all design points fall on the

outer edges of a cuboidal region.

These first order rotated designs were first shown to achieve better lack of fit properties as

measured by tr[T·‘L] than the corresponding g< 1.0 factorial designs. In addition, the prediction

properties of the rotation designs as measured by the first order prediction variance, first order

prediction bias or the first order prediction mean squared error were shown to be identical to those
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of the corresponding g< 1.0 factorial designs. The rotation design class provides a robust altema-

tive in terms of the lack of fit and prediction properties to ordinary factorial designs.

The first order rotation design class was shown to be easily augmernted with dual axial type

points for estimation of a second order response model. These designs formed the second order

rotated design class. It was shown that second order rotated designs can be constructed to block

orthogonally and be rotatable. Also, these designs were shown to be more D·efiicient for a full

second order model and more D,-efficient for second order coefiicients within a cuboidal design

region than central composite designs.

6.2 JPC, and JPCMAX Deszgn Crrterza

The Jm, and J,c„„ criteria have been used in this work as design selection criteria for

choosing designs that perform well in terms of the first order integated mean squared error of

prediction, J. The evaluation of J is restricted to a region in the second order coefficients where it

is somewhat likely that a first order model will be used for prediction based upon the outcome of

the lack of fit test. The importance of good prediction for optimization purposes and the lack of

fit test for model uncertainty purposes within the sequential experimental framework are addressed

by the Jm, and ./,c„„ criteria. Formally, JM, and .l,c„„ were defined as,

_f . Jag,
Sf

· dßz%S»., (62)
1 tr[L'lT]= Mur(Mi)and
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Jpcuax J
62 0

(6.3)

= tr(;t, ,M{l) + ).o( max eigenvalue(L°lT))

where 1,, is the noncentrality parameter needed to achieve a specified power for the lack of fit test.

JPG, and JPcP,_,, were first utilized to evaluate the performance of first order factorial designs.

Construction of factorial designs based upon JPG, and JPG„_,P was studied in Section 5.3. These

factorial designs were examined in both cuboidal and spherical design and interest regions.

JPG, and JPG„„ were also examined along with D, -efiiciency and D-efficiency to construct

robust second order experimental designs used within the experimental framework when only one

experiment can be performed. These designs can be utilized for testing second order departures

from a first order model and for estimating either a first or second order model depending upon the

result of the lack of fit test. Central composite and Box-Behnken designs were compared in

cuboidal and spherical design and interest regions. The results are presented in Section 5.4. The

central composite designs were shown to be more robust with respect to the four criteria except for

the case of k= 5 variables for a spherical design region and a spherical region of interest, where the

Box-Behnken performs better.

The robust design selection procedure of evaluating JPG,, JPG-„,,, , D,·efiiciency and D-

efiiciency was also applied to the construction of economical second order designs. Small com-

posite, hybrid and Notz designs were evaluated and compared for k = 3 and k= 4 variables. Again,

cuboidal and spherical design and interest regions were examined in the design evaluation. The

results of the evaluations are presented in Section 5.5.
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6.3 Areas ofFurther Research

As is common with many types of research work similar to this one, several areas of further

research are open for investigation. Some of these areas are listed as follows.

(1) The first order rotation design class developed within this work was employed within

the sequential experimental framework. When a significant lack of fit is observed, aug-
‘

mentation of the first order rotated designs with dual axial type points will allow for esti-

mation of the second order coefficients. The second order rotated design class constructed

by the augmentation of a first order rotated design with dual axial points often will consist

of an excessive number of design points that an experimenter is unable to obtain. An in-

. vestigation ofmore economical augmentations of first order rotated designs is needed when

the number of experimental points is limited.

(2) The Jim and J„_—„_,X criteria have been applied to several well established experimental

design classes. 'These criteria have not been investigated for the rotated design classes.

Preliminary investigations indicate that a reparameterization for first order rotated designs

similar to that of a factorial design will not produce conformability among the integrated

bias and the noncentrality parameter. A more complete investigation of the possible use

of these two criteria within the rotated class is warranted.

(3) The J,C_, and J,C„„ criteria present summary or overall norrns on the performance

of the integrated mean squared error. A possible investigation of the performance ofJ over

all possible values of the noncentrality parameter could display interesting features not

obtainable from overall norrns such as Jpc, and J,„„,. Plots of J vs. .1 could provide for an

overall description of the mean squared error performance relative to the lack of fit per-

formance.

Surnmary, Conclusions and Further Research l00
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Appendix A

Appendix A

The development of the testable hypotheses for the first order rotated design class is given

by the following.

Graybill (1976) gives the following results conceming testable hypotheses for the general lin-

ear model.

When considering the general linear model of the form 2 = XQ + e,

(1) Elements of (X'X)Q are testable hypotheses.

(2) Any linear combination of testable hypotheses is a testable hypothesis.

Consider Q to be the vector of all coeflicients of a second order model.

E = Eu
Ess
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where

Q, is the l x (k + 1) vector of ürst order coefilcients.
k

Q,] is thezl x ( ) vector of interaction coeflicients.
2

ß„ is the-1 x k vector of pure quadratic coefücients.

Also consider the rotated designs of the form (3.17), (3.19) and (3.21). The elements of
- (X'X)Q for these designs are given by, .

k- 2

'*ßo+2(l+d2)ß11+2(l+d2)ß22 T1

zu +d*>ß1 T2
zu +d’>ß„ T3

s 4d’ß„+2d<1—d’>ß„ -2d<¤—d’>ß„ T.
2<1+ d’>ß„

+ wu — d’>ß„
+ zu + d">ß„ +

4d’ß„ Ts
211+ d‘>ß„ — wu — d’>ß„

+ 4d2ß11+ zu +
d‘>ß„ T.
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14-3

nßo + 40 + d2)(ß11 + ßzz + ßsa) T1

40+
d’>ß4

14
4 40+ 6*111, 1,

_ 411 T4
ßdzßu + 4d0 — d°><ß„ — ßl 1) T,

20 +
d’>’ß„4 = T,

ZU + d2)zß23 T1
40+ 4(1+ d‘*)ß,, +

sd’ß„
+ 2(1+ d2)2ß33 rs

40+ 4(1 + 41*);:2, + 2(1+ d2)2ß33 7,

40+ d2)ß0 + ZU + d2)2(ß11 + ßzz + ßas) T10
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k
-

4

”ßo+ $(1 +d2)(ß11 +ß22 +ßs3) T,

80 +4*)8„ T,
$(1+412)/*2 T,
80 +4*)84 T,
80 + 4*)84 T,
40 +4*)*844 T,
l6d2ßl3 + 8d(1— d2)(ßaa ‘ ß11) T-,

40 +4*)*844 = T,
40 +4*)*844 T,
16d2ß24+ 840 'd2)(ß44“ß22) T,,
40 +4*)*844 T,,
80 + d2)ßo — 840 — d2)ß13 + 80 + d4)ß11 + 16d2ß33 + 40 + d2)2(ß22 + 844) 744
80 + 4*)86 - 8d(1 — d2)ß24 + 40 + 4*)*044 + 844) + 80 + d4)ß22 + 16d2ß44 T13
80 + d2)ßo + 840 - 4*);:,, + l6d2ß,, + 80 + 4‘)8,, + 40 + 4*)*0,, + 8,,) T,,
80 + 4*)8,, + 8d(l - 4*)8,,, + 40 + 4*)*0,, + 8,,) + 164*8,, + 80 + 4")8,,, 7,,
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The testable hypotheses are given by,

k
-

2

X'X is of rank 5, therefore there exists 5 independent testable hypotheses.

T] T5 + T6 —
ß

**-4 (n—4)(1 +4*) °
T2„—.

= ß2(1 + 4*)
‘

Ta
—..

= ß2(1 + 4*)
“

T n(T + T)6
2 =ß11+ß22

4(n — 4)(l + d )

-(1-d2)7'1+ T4 + ~<1—d*><T5+m =ß _ (1-dz) ß2d(*¤ - 4) 44* 8d(n —4)(1 — 4*)
‘° 4 22
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k=·3

X'X is of rank 8, therefore there exists 8 independent testable hypotheses.

ll., .. ßo***8 (1—dz><~—8>
T2—-

= ß4(1+ dz) 3

Ts
= ß4(1 + dz) 3

T4ll?
4(1 + dz) 3

—(l-d3)Tl Ts n(1—d3) (1—d3) (i-dz)
d(1 + dz)(d— 8) 8d3 4d(1 + d8)8(„- 3)

ß‘z
d ßzz 2d 388

T6

T7
2(1 + dz)z 33

-2Tl +((n—8)+4(l+d3))T) _ß
+ß +ß(1 + d3)(n — 8) 2(„ - 8)(1 + dz)z "

33 88
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k=4
X'X is of rank 12, therefore there exists 12 independent testable hypothesesi

L T12 + T13 + TI4 + TIS _

**-16
—

2(n—l6)(l+d2)
—ß° ·

**3
= **3
= **3

**3
. 4(1

Iédzf = ß"

ß1a ßu)

= ß14 h

ßzs

ßza ßzz)

ßaa

=ß11 +ß22+ß33 +1644
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Appendix B

Appendix B

The development and derivation of the Af, Jm, and Jpcmx criteria are given here.

Appendix B.1 Development ofA2'

Recall from (3.12) that the A,* criterion is given by,

wg,
EBTE2 _6

2 = -ä--—— .
I de

E' TE: *6

AppemiixB110
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The development here follows closely to that of the A, criterion given by Jones (1975), the reader

is referred there for more details.

k
Let p, = k + ( ), the number of coeüicients in Q,.

2

£’2Lß2

66 Ezéz 6+ ·=° dä:
I = ~

s
6 {

dßz

65 ;6+¤
G

where

f
EIZLE2

666 =
v"/2 VET-IL] (66 _+ 6)%/2+1) _ 6%/2+1))2 Q 1/2

ÖSEHCE; $6+6 ° (p2+2)l”( 2 +l)lTI
U

and

/2

6$——@·§@= Sa. T(?+ ‘) T
G

Therefore,

6 _+ 6)%/2+1) _ 6%/2+1))
- _ (P, + 2)r(P,/2+ um "*

2 2((6 + 6)Pz/
_ 6Pz/ )

l"(p,/2+ l)lTl
’

Following the form given by Jones, applying L 'Hospita1’s r11le gives,

- _ . 1 6 + sA - gig tr[T° L] -66

6 6611**1.]
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Appendix B.2 Development ofJm

Recall from (5.6) that the JM, criterion is given by,

I f
sh

J =4'i.i_PCA
IEllgäz S10

f 1/4g,+ I III!
sag,

I f dä:

' TJ «<1»„Mn‘>dg„+ IfägäasI

f dä:
£.%ä=.S,„ I

"(+[L
115;-+—

fe;/2%;/2

11%+ l)|LI"“ ..

-
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Appendzx B.3 Development of JPCMAX

Recall li·om (5.7) that the 1,,,,,,,X critexion is given by,

. JPCMAX= J

' T= ["(#11MÜ])+g$] ·
(Er *2}-S M °

The maximum value of J within this cllipsoidal region in Q, will always occur on the boundary,
£'¤l·£¤ _

ÄU2
—

°°

Since tr(;l„Mü‘) is not dependent upon Q, this piece is constant with respect to the maximization
' T

and the evaluation of max @is all that is necessary._ E2!-E2 dz
[E2- U2

_

lo)

I L I TNote that and %· are both positive delinite quadratic forms.

Now, since L is positive deiinite, it can be expressed as

L=PLP

where P is an orthogonal matrix and L. is a diagonal matrix with the cigenvalues of L on the di-

agonal.

The positive deiinite symmetric square root ofL is given by,

1.*/* = 1>·1.J"1>

and
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I L
can bc cxprcsscdas6

6

whcrc gz =
L‘/zßz.

· Thcrcforc,

{Q;—?¤ lg) G (7** *0) 6
Q 6

= ,10 maxcigcnvaluc=

2.0 max eigcnvaluc [L"?]

and

JpcMAx= tr(pHM§l) + lo max cigcnvaluc [L°lT] .
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Table C.1
Factorial Designs — Minimum JPCA For Designs With Given

Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k- 2 _ k == 3
B E 1¤1 Jrc.4 H E Jpc.:

7 0.98 0.5488 20.5020 1 1 0.92 0.6156 63.2490
8 1.00 0.5000 9.1936 12 0.99 0.6534 23.4157
9 1.00 0.4444 6.8199 13 1.00 0.6154 14.2405

10 1.00 0.4000 6.0974 14 1.00 0.5714 10.8241
11 1.00 0.3636 5.9163 15 1.00 0.5333 9.2318
12 1.00 0.3333 5.9721 16 1.00 0.5000 8.4112

17 1.00 0.4706 7.9796
18 1.00 0.4444 7.7685
19 1.00 0.4211 7.6931

k ·- 4 H k= 5 __
¤ 2 [ul Jpc. ¤ 2 [ul Jpc.

19 0.86 0.6228 15.0769 36 0.86 0.6570 1 12.4210
20 0.92 0.6771 54.0690 37 0.90 0.7005 60.9461
21 0.98 0.7171 30.3279 38 0.95 0.7600 40.6565
22 1.00 0.7273 20.9476 39 0.99 0.8205 30.2894
23 1.00 0.6957 16.3396 40 1.00 0.8000 24.1892
24 1.00 0.6666 13.7371 41 1.00 0.7805 20.3431
25 1.00 0.6400 12.1324 42 1.00 0.7619 17.7503
26 1.00 0.6154 11.0806 43 1.00 0.7442 15.9157
27 1.00 0.5926 10.3797 44 1.00 0.7273 14.5702

k
-

5 (I/2fraction)
¤ 2 lvl Jpc.

20 1.00 0.8000 68.0726
21 1.00 0.7619 37.6649
22 1.00 0.7273 26.1520
23 1.00 0.6957 20.5324
24 1.00 0.6666 17.3695
25 1.00 0.6400 15.4270
26 1.00 0.6154 14.1662
27 1.00 0.5926 13.3196
28 1.00 0.5714 12.7413
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Table C.2
Factorial Designs ~ Minimum Jpc], For Designs With Given

Sample Size and Power < 0.90 For a = 0.05 Test
Design Regen : Spherical Regen of Interest : Spherical

k- 2 __ k= 3 Ul B 8 [Bl Jpc; B 8 [Bi Jpc;

7 0.70 0.2800 21.5691 11 0.57 0.2363 76.6960
8 0.70 0.2450 11.9769 12 0.57 0.2166 33.5343
9 0.70 0.2177 10.1611 13 0.57 0.1999 23.6721

10 0.70 0.1960 9.8506 14 0.57 0.1857 20.0628
11 0.70 0.1780 10.0499 15 0.57 0.1733 18.5157
12 0.70 0.1633 10.4772 16 0.57 0.1625 17.8690

17 0.57 0.1529 17.6877
18 0.57 0.1444 17.7756

k- 4 N k =- 5 NB 8 [Bl Jpc; B 8 [Bl Jpc;

19 0.50 0.2105 195.4490 36 0.447 0.1777 155.7200
20 0.50 0.2000 74.5790 37 0.447 0. 1730 90.3990
21 0.50 0.1905 46.6494 38 0.447 0.1684 64.7790' 22 0.50 0.1818 35.7541 39 0.447 0.1641 51.8560
23 0.50 0.1739 30.3752 40 0.447 0.1600 44.3380 ‘
24 0.50 0.1666 27.3690 41 0.447 0.1560 39.5540
25 0.50 0.1600 25.5736 42 0.447 0.1524 36.3220
26 0.50 0.1538 24.4711 43 0.447 0.1488 34.0470
27 0.50 0.1481 23.7986 44 0.447 0.1455 32.4010

k-5 (I/2ji·action)“
T

B S [Bl Jpc;

20 0.447 0.1600 125.1640
21 0.447 0.1524 78.2140
22 0.447 0.1455 59.6030
23 0.447 0.1391 50.2500
24 0.447 0.1333 44.9080' 25 0.447 0.1280 41.6220
26 0.447 0.1231 39.5190
27 0.447 0.1185 38.1530
28 0.447 0.1 143 37.2750
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Table C.3
Factorial Designs · Minimum Jpc}, For Designs With Given

Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

'·· 3 .. '<· 3 .. 3
¤ 2 lvl Jpc. ¤ 2 lvl Jpc.
7 0.81 0.3749 17.8344 1 1 0.69 0.3463 59.4860
8 0.89 0.3961 8.01 16 12 0.74 0.3651 22.0349
9 0.98 0.4268 5.5740 13 0.80 0.3938 13.2580

10 1.00 0.4000 4.5797 14 0.86 0.4226 9.6966
11 1.00 0.3636 4.1703 15 0.91 0.4417 7.8179
12 1.00 0.3333 4.0198 16 0.97 0.4705 6.6650
13 1.00 0.3077 4.0030 17 1.00 0.4705 5.8971

18 1.00 0.4444 5.3961

k- 4 H k- 5 Nn 8 1¤l Jrc.4 U 8 1¤l Jrc.4

_ 19 0.61 0.3133 155.3430 36 0.57 0.2888 114.2230
20 0.64 0.3277 52.8160 37 0.59 0.3011 61.0787
21 0.68 0.3523 29.4479 38 0.62 0.3237 40.3896
22 0.72 0.3770 20.2103 39 0.64 0.3361 29.9206
23 0.76 0.4000 15.4627 40 0.67 0.3591 23.7440
24 0.80 0.4267 12.6209 41 ' 0.70 0,3824 19.7233
25 0.84 0.4516 10.7429 42 0.72 0.3950 16.9118
26 0.88 0.4766 9.4131 43 0.75 0.4186 14.8456
27 0.92 0.5016 8.4230 44 0.78 0.4425 13.2658

k-5 (I/2_fi·action)__
¤ 2 [ul fm

20 0.65 0.3380 66.7850
21 0.70 0.3730 36.1250
22 0.74 0.3983 24.1154
23 0.79 0.4342 18.0014
24 0.84 0.4704 14.3794
25 0.89 0.5069 12.0102
26 0.95 0.5554 10.3487
27 1.00 0.5926 9.1229
28 1.00 0.5714 8.2078
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Table C.4
Factorial Designs - Minimum JpcMAX For Designs With Given

Sample Size and Power < 0.90 For a = 0.05 Test
Design Regen : Cuboidal Regen of Interest : Cuboidal

k- 2 _ k -3 __
H 8 Jpcmix U 8 [ul Jrczmx

7 1.00 0.5710 55.6974 11 0.91 0.6020 213.4180
8 1.00 0.5000 22.3424 12 0.95 0.6020 71.1770 '
9 1.00 0.4444 14.9730 13 1.00 0.6154 39.0306

10 1.00 0.4000 12.4026 14 1.00 0.5714 20.5520
11 1.00 0.3636 1 1.4089 15 1.00 0.5333 17.2044
12 1.00 0.3333 11.1056 16 1.00 0.5000 15.2055
13 1.00 0.3080 11.1612 17 1.00 0.4706 13.9674

18 1.00 0.4444 13.1961
19 1.00 0.421 1 12.7300

k
- 4 k ·· 5

B 8 1¤l Jrcmx Tl 8 lvl Jrcmx

19 0.84 0.5940 736.9390 36 0.82 0.5980 697.0200
20 0.87 0.6055 230.2840 37 0.83 0.5960 349.3640
21 0.89 0.6035 119.0520 38 0.85 0.6080 218.0470 · ·
22 0.91 0.6023 76.4968 39 0.86 0.6070 153.4230
23 0.94 0.6147 55.2868 40 0.87 0.6055 116.3290
24 0.96 0.6144 42.9645 41 0.88 0.6040 92.7825
25 0.98 0.6147 35.0564 42 0.89 0.6030 76.7415
26 1.00 0.6154 29.6127 43 0.90 0.6030 65.2266
27 1.00 0.5926 25.7379 44 0.92 0.6160 56.6030
28 1.00 0.5714 22.9060 45 0.93 0.6150 49.9575

k
-

5 (I/2 ji·aczion)__
¤ 8 lu] Jrcmx

20 0.87 0.6055 350.3980
21 0.89 0.6035 176.5420
22 0.91 0.6023 110.8970
23 0.94 0.6147 78.5911
24 0.96 0.6144 60.0335
25 0.98 0.6147 48.2527
26 1.00 0.6154 40.2252
27 1.00 0.5926 34.5485
28 1.00 0.5714 30.4258
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Table C.5
Factorial Designs - Minimum JPCMAX For Designs With Given

Sample Size and Power < 0.90 For an = 0.05 Test
Design Regen : Spherical Regen of Interest : Spherical

k =· 2 N k -= 3 N*1 8 1*11 Jrcxzx 11 8 1111 Jpcuzx

7 0.70 0.2800 99.8820 1 1 0.57 0.2363 402.9780
8 0.70 0.2450 47.7030 12 0.57 0.2166 154.8850
9 0.70 0.2177 35.9010 13 0.57 0.1999 97.5998

10 0.70 0.1960 31.9720 14 0.57 0.1857 75.4705
11 0.70 0.1780 30.7140 15 0.57 0.1733 64.7847
12 0.70 0.1633 30.6510 16 0.57 0.1625 59.0463

17 0.57 0.1529 55.8451
18 0.57 0.1444 54.1025

k- 4 N k =- 5 N*1 8 1111 Jpcuzx *1 8 1111 Jrcuzx

19 0.50 0.2105 1368.9300 36 0.447 0.1777 241.7000
20 0.50 0.2000 461.9970 37 0.447 0.1730 198.7050
21 0.50 0.1905 258.0080 38 0.447 0.1684 170.5570
22 0.50 0.1818 178.9970 39 0.447 0.1641 150.8650
23 0.50 0.1739 139.5610 40 0.4-47 0.1600 136.4370
24 0.50 0.1666 116.8450 41 0.447 0.1560 125. 5030
25 0.50 0.1600 102.5340 42 0.447 0.1240 1 17.0050
26 0.50 0.1538 92.9706 43 0.447 0.1488 1 10.2700

44 0.447 0.1455 104.8500

k-5 (I/2frac!ion)__'
*1 8 11*1 Jrcuzx

20 0.447 0. 1600 824.9000
21 0.447 0.1524 452.1370
22 0.447 0.1455 308.4680
23 0.447 0.1391 236.9620
24 0.447 0.1333 195.7930
25 0.447 0. 1280 169.8030
26 0.447 0.1231 152.3500
27 0.447 0.1185 140.1160
28 0.447 0.1 143 131.2790
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Table C.6
Factorial Designs · Minimum JPCMAX For Designs With Given

Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k- 2 U k- 3 UU 8 lvl Jrcuzx U 8 IUI Jpczeux

7 0.94 0.5050 62.0300 1 1 0.77 0.4310 255.3040
8 1.00 0.5000 23.4380 12 0.81 0.4374 84.6180
9 1.00 0.4444 14.4840 13 0.84 0.4342 46.0408

10 1.00 0.4000 1 1.1170 14 0.88 0.4425 30.8998
11 1.00 0.3636 9.5760 15 0.91 0.4417 23.1806
12 1.00 0.3333 8.8330 16 0.95 0.4513 18.5991

17 0.98 0.4520 15.6032
18 1.00 0.4444 13.5155

k- 4 H k- 5 nU 8 [UI ·]rcM.4x U S 1¤l Jrculix

19 0.67 0.3780 918.8200 36 0.62 0.3420 156.4590
20 0.69 0.3810 286.6270 37 0.62 0.3320 123.2690
21 0.70 0.3730 147.5850 38 0.63 0.3340 101.3590
22 0.72 0.3770 94.3720 39 0.64 0.3360 85.8710
23 0.74 0.3810 67.8630 40 0.65 0.3380 74.3760
24 0.76 0.3850 52.4670 41 0.66 0.3400 65.5290
25 0.78 0.3890 42.5860 42 0.67 0.3420 58.5240
26 0.79 0.3840 35.7822 43 0.68 0.3440 52.8510
27 0.81 0.3890 30.8474 44 0.69 0.3460 48.1700

k-5 (I/2ji·action)__ _
U E 1¤l Jrcimx

20 0.65 0.3380 448.8200
21 0.66 0.3320 225.2920
22 0.68 0.3360 140.8680
23 0.70 0.3410 99.3360
24 0.71 0.3360 75.4920
25 0.73 0.3410 60.3430
26 0.75 0.3460 50.0250
27 0.76 0.3420 42.6170 "
28 0.78 0.3480 37.0750
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Table C.7
Central Composite Designs - Minimum JPCA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k-2 (g= 1, a=1)
n n„ [ii] Jm, JPCM,X D,-efliciency D-eiiiciency

11 3 0.5455 38.7609 78.5108 0.9626 0.9026
12 4 0.5000 17.9518 34.3712 0.9266 0.8602”
13 5 0.4615 13.0267 26.0754 0.8870 0.8195
14 6 0.4286 1 1.1827 22.8950 0.8473 0.7814
15 7 0.4000 10.3779 21.4922 0.8090 0.7462
16 8 0.3750 10.0347 20.8943 0.7728 0.7137
17 9 0.3529 9.9336 20.7240 0.7388 0.6839
18 10 0.3333 9.9742 20.8064 0.7071 0.6565

k-3 (g= 1, a= 1)
rn n„ [ii] J,c_, J,6,,,,X D,-efliciency D·efiiciency

17 3 0.5882 95.5630 203.3764 0.9054 0.8704
18 4 0.5556 41.7049 91.4993 0.8710 0.8360
19 5 0.5263 28.3689 63.1889 0.8376 0.8035
20 6 0.5000 22.9723 51.5682 0.8057 0.7730
21 7 0.4762 20.2653 45.6698 0.7754 0.7444
22 8 0.4545 18.7554 42.3396 0.7469 0.7178
23 9 0.4348 17.8733 40.3648 0.7200 0.6928
24 10 0.4167 17.3586 39.1870 0.6947 0.6696
25 11 0.4000 17.0764 38.5156 0.6710 0.6477
26 12 0.3846 16.9501 38.1850 0.6487 0.6273
27 13 0.3704 16.9335 38.0945 0.6277 0.6081
28 14 0.3571 16.9966 38.1791 0.6079 0.5901
29 15 0.3448 17.1196 38.3955 0.5893 0.5731
30 16 0.3333 17.2887 38.7132 0.5717 0.5571
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Table C.7 (continued)
Central Composite Designs - Minimum JPCA and JPCMAX

k-4 (g= 1, a= 1)
I1 n, [ii] JPCA JMMX D,-efiiciency D·ei1iciency

28 4 0.6429 85.7819 224.7950 0.841 1 0.8380
29 5 0.6207 55.5990 146.8462 0.8184 0.8153
30 6 0.6000 43.0616 1 14.2491 0.7965 0.7934
31 7 0.5806 36.5000 97.0988 0.7754 0.7726
32 8 0.5625 32.5978 86.8517 0.7551 0.7526
33 9 0.5455 30.0906 80.2372 0.7357 0.7336
34 10 0.5294 28.3998 75.7545 0.7171 0.7155
35 11 0.5143 27.2258 72.6239 0.6993 0.6982
36 12 0.5000 26.3986 70.4027 0.6822 0.6816
37 13 0.4865 25.8152 68.8213 0.6659 0.6658
38 14 0.4737 25.4091 67.7066 0.6503 0.6507
39 15 0.4615 25.1363 66.9425 0.6353 0.6363
40 16 0.4500 24.9658 66.4484 0.6210 0.6225
41 17 0.4390 24.8757 66.1665 0.6073 0.6092
42 18 0.4286 24.8499 66.0544 0.5941 0.5966

k-4 -1/2 fraction of factorial (g= 1, a= 1)
I1 n„ [ii] J,c_, J,C„4X D,·e11iciency D-eüiciency

20 4 0.5000 72.2474 162.0387 0.7507 0.7265
21 5 0.4762 48.2983 107.8572 0.7197 0.6972
22 6 0.4545 38.4351 85.3530 0.6909 0.6701
23 7 0.4348 33.3616 73.6621 0.6640 0.6450
24 8 0.4167 30.4259 66.8110 0.6391 0.6216
25 9 0.4000 28.6139 62.5097 0.6159 0.5999
26 10 0.3846 27.4607 59.7059 0.5942 0.5796
27 1 1 0.3704 26.7251 57.8528 0.5739 0.5607
28 12 0.3571 26.2701 56.6392 0.5549 0.5430
29 13 0.3448 26.0123 55.8758 0.5371 0.5263

. 30 14 0.3333 25.8984 55.4409 0.5204 0.5107
31 15 0.3226 25.8924 55.2529 0.5046 0.4960
32 16 0.3125 25.9695 55.2550 0.4898 0.4821
33 17 0.3030 26.1 119 55.4067 0.4758 0.4690
34 18 0.2941 26.3064 55.6779 0.4625 0.4566
35 19 0.2857 26.5434 56.0463 0.4500 0.4449
36 20 0.2778 26.8151 56.4947 0.4381 0.4337
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Table C.7 (continued)
Central Composite Designs · Minimum JPCA and JPCMAX

k-5 (g= 1, a= 1)
n n„ [ii] J,c_, JPCMX D,-eüiciency D-efliciency

46 4 0.7391 171.7772 539.1523 0.8178 0.8405
47 5 0.7234 107.8351 340.4260 0.8042 0.8263
48 6 0.7083 81.0202 256.7879 0.7908 0.8123
49 7 0.6939 66.7628 212.2005 0.7777 0.7987

_ 50 8 0.6800 58.0909 185.0238 0.7648 0.7854
51 9 0.6667 52.3484 166.9948 0.7522 0.7725
52 10 0.6538 48.3207 154.3290 0.7398 0.7599
53 1 1 0.6415 45.3789 145.0634 0.7278 0.7477
54 12 0.6296 43.1661 138.0836 0.7162 0.7358
55 13 0.6182 41.4658 132.7119 0.7048 0.7243
56 14 0.6071 40.1388 128.5132 0.6937 0.7131
57 15 0.5965 39.0923 125.1960 0.6829 0.7022
58 16 0.5862 38.2614 122.5576 0.6724 0.6916
59 17 0.5763 37.6000 120.4529 0.6622 0.6813
60 18 0.5667 37.0741 118.7753 0.6522 0.6712
61 19 0.5574 36.6582 117.4447 0.6426 0.6615
62 20 0.5484 36.3329 116.4000 0.6331 0.6520 .
63 21 0.5397 36.0830 1 15.5935 0.6240 0.6428
64 22 0.5313 35.8966 114.9875 0.6151 0.6339
65 23 0.5231 35.7641 114.5520 0.6064 0.6252
66 24 0.5152 35.6778 1 14.2626 0.5979 0.6167
67 25 0.5075 35.6313 1 14.0993 0.5897 0.6084
68 26 0.5000 35.6195 114.0457 0.5816 0.6004

k-5 · 1/2 fraction offactoria1(g=1, a=1)
n n„ [ii] J,c_, J,„„X D,-eiliciency D-eilicicncy

30 4 0.6000 125.4781 353.2761 0.7764 0.7706
31 5 0.5806 80.5325 226.2275 0.7543 0.7491
32 6 0.5625 61.7516 172.9196 0.7334 0.7286
33 7 0.5455 51.8421 144.6750 0.7134 0.7092
34 8 0.5294 45.8854 127.6176 0.6944 0.6907
35 9 0.5143 42.0044 1 16.4431 0.6763 0.6732
36 10 0.5000 39.3396 108.7195 0.6591 0.6564
37 1 1 0.4865 37.4456 103.1848 0.6427 0.6405
38 12 0.4737 36.0693 99. 1220 0.6270 0.6253
39 13 0.4615 35.0571 96.0950 0.6120 0.6109 _
40 14 0.4500 34.3104 93.8238 0.5977 0.5970
41 15 0.4390 33.7630 92.1205 0.5841 0.5838
42 16 0.4286 33.3690 90.8545 0.5710 0.571 1
43 17 0.4186 33.0957 89.9325 0.5585 0.5590
44 18 0.4091 32.9187 89.2857 0.5465 0.5474
45 19 0.4000 32.8200 88.8626 0.5350 0.5363
46 20 0.3913 32.7859 88.6237 0.5239 0.5256
47 21 0.3830 32.8054 88.5383 0.5133 0.5153
48 22 0.3750 32.8701 88.5821 0.5032 0.5055
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Table C.8
Central Composite Designs · Minimum JPCA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Regon : Spherical Regon of Interest : Spherical .

k-2 (g=1/„/Z, a= 1)
¤ no lül fm Jim; D-¤¤i¤i¤¤¤y

1 1 3 0.3636 45.1601 93.5258 0.9689
12 4 0.3333 20.5213 32.5355 0.9318
13 5 0.3077 14.8267 24.7790 0.8927
14 6 0.2857 12.7381 21.8182 0.8545
15 7 0.2667 11.8507 20.5239 0.8183
16 8 0.2500 1 1.4921 19.9843 0.7844
17 9 0.2353 11.4087 19.8455 0.7529
18 10 0.2222 11.4855 19.9435 0.7237

k-3 (g=l/N/k._a=1) _
¤ m lu} fm Ji·c„„ D-¤fü¤¤¤¤¤>'
17 3 0.2745 116.9414 219.8223 0.9763
18 4 0.2593 49.6580 67.5760 0.9490
19 5 0.2456 33.5006 47.0447 0.9193
20 6 0.2333 27.1044 38.6966 0.8894
21 7 0.2222 23.9600 34.4871 0.8602
22 8 0.2121 22.2450 32.1349 0.8322
23 9 0.2029 21.2724 30.7629 0.8054
24 10 0.1944 20.7308 29.9674 0.7800

. 25 11 0.1867 20.4601 29.5381 0.7560
26 12 0.1795 20.3701 29.3553 0.7333
27 13 0.1728 20.4064 29.3460 0.7118
28 14 0.1667 20.5343 29.4635 0.6915
29 15 0. 1609 20.7307 29.6762 0.6723
30 16 0.1556 20.9795 29.9623 0.6541
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Table C.8 (continued)
Central Composite Designs · Minimum JPCA and JPCMAX

k·¢ (s=1/«/E. ¤¤= 1)
H fb Jrc.1 Jrcnux D'°mci°ncY

28 4 0.2143 93.1954 137.7375 0.9718
29 5 0.2069 60.0446 71.5807 0.9523
30 6 0.2000 46.5467 56.3772 0.93 18
31 7 0.1935 39.6001 48.4144 0.9111
32 8 0.1875 35.5350 43.6874 0.8905
33 9 0.1818 32.9670 40.6633 0.8703
34 10 0.1765 31.2687 38.6384 0.8507
35 11 0.1714 30.1173 37.2473 0.8317
36 12 0.1667 29.3309 36.2825 0.8133
37 13 0.1622 28.7996 35.6176 0.7955
38 14 0.1579 28.4536 35.1715 0.7784
39 15 0.1538 28.2459 34.8897 0.7620
40 16 0.1500 28.1442 34.7345 0.7461
41 17 0.1463 28.1257 34.6788 0.7309
42 18 0.1429 28.1733 34.7026 0.7162

k-4 - 1/2 fraction offactoria1(g=1/„/IT, a= 1)
n no Jrc.4 Jrcuu D'°m°i°ncY

20 4 0.2000 103.9345 152.8071 0.9007
21 5 0.1905 68.7809 102.0537 0.8707
22 6 0.1818 54.4456 80.9976 0.8413
23 7 0.1739 47.1231 70.0790 0.8130
24 8 0.1667 42.9090 63.6978 0.7861
25 9 0.1600 40.3199 59.7070 0.7606
26 10 0.1538 38.6794 57.1201 0.7365
27 11 0.1481 37.6378 55.4245 0.7137
28 12 0.1429 36.9975 54.3284 0.6923
29 13 0.1379 36.6385 53.6544 0.6720
30 14 0. 1333 36.4841 53.2883 0.6528
31 15 0.1290 36.4830 53.1538 0.6346
32 16 0.1250 36.5997 53.1974 0.6174
33 17 0.1212 36.8088 53.3812 0.6012
34 18 0.1176 37.0916 53.6772 0.5857
35 19 0.1143 37.4343 54.0642 0.5710
36 20 0.1111 37.8261 54.5263 0.5571
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Table C.8 (continued)
Central Composite Designs • Millinlunl. JPCA and JPCMAX

k·5 (s= ¤= 1)
n fb J264 JPCMAX D°¢m°ic¤cY

46 4 0.1826 154.3804 285.0650 0.9846
47 5 0.1787 96.3978 136.5835 0.9740
48 6 0.1750 72.5223 95.5941 0.9620
49 7 0.1714 60.0113 79.7376 0.9493
50 8 0.1680 52.4981 70.0991 0.9363
51 9 0.1647 47.5824 63.7277 0.9231
52 10 0.1615 44.1757 59.2718 0.9099
53 11 0.1585 41.7185 56.0302 0.8968
54 12 0.1556 39.8953 53.6049 0.8838
55 13 0.1527 38.5156 51.7539 0.8710
56 14 0.1500 37.4579 50.3219 0.8585
57 15 0.1474 36.6409 49.2048 0.8462
58 16 0.1448 36.0087 48.3300 0.8342
59 17 0.1424 35.5211 47.6458 0.8224
60 18 0.1400 35.1490 47.1142 0.8109
61 19 0.1377 34.8703 46.7065 0.7997
62 20 0.1355 34.6685 46.4010 0.7887
63 21 0.1333 34.5305 46.1804 0.7780
64 22 0.1312 34.4461 46.0316 0.7675
65 23 0.1292 34.4071 45.9435 0.7573
66 24 0. 1273 34.4071 45.9077 0.7474
67 25 0.1254 34.4406 45.9169 0.7377
68 26 0.1235 34.5033 45.9653 0.7282

k-5 · 1/2 fraction offactoria1(g=1/(/F, a= 1)
H no 1¤l J264 -]2cu4x D'¢mc*‘m°Y

30 4 0.1733 158.3653 200.1534 0.9463
31 5 0.1677 101.2030 129.3415 0.9256
32 6 0. 1625 77.5775 99.6794 0.9045
33 7 0. 1576 65.2221 84.0036 0.8836
34 8 0.1529 57.8549 74.5707 0.8630
35 9 0.1486 53.0931 68.4206 0.8431
36 10 0.1444 49.8512 64.1963 0.8238
37 11 0.1405 47.5689 61.1934 0.8052
38 12 0.1368 45.9293 59.0119 0.7872
39 13 0.1333 44.7403 57.4084 0.7700
40 14 0.1300 43.8792 56.2267 0.7534
41 15 0.1268 43.2638 55.3619 0.7374
42 16 0.1238 42.8372 54.7411 0.7221
43 17 0.1209 42.5586 54.3123 0.7073
44 18 0.1182 42.3983 54.0371 0.6931
45 19 0.1 156 42.3340 53.8867 0.6795
46 20 0. 1 130 42.3485 53.8390 0.6663
47 21 0.1106 42.4288 53.8771 0.6537
48 22 0.1083 42.5641 53.9872 0.6415
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Table C.9
Central Composite Designs - Minimum JPCA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k-2 (g=1, a= 1)
n n„ [ii] J,c_, JPCMX D,·e1}iciency D-efficieucy

11 3 0.5455 35.7090 94.1444 0.9626 0.9026
12 4 0.5000 15.5160 32.0355 0.9266 0.8602
13 5 0.4615 10.7481 24.2373 0.8870 0.8195
14 6 0.4286 8.9207 21.2349 0.8473 0.7814
15 7 0.4000 8.0741 19.8989 0.8090 0.7462
16 8 0.3750 7.6602 19.3176 0.7728 0.7137
17 9 0.3529 7.4719 19.1371 0.7388 0.6839
18 10 0.3333 7.4153 19.1935 0.7071 0.6565

k-3 (g=1, ¢= 1)
n n„ [ii] J„_-A Jpcmx D,·e1liciency D·efiiciency

17 3 0.5882 72.4166 258.8034 0.9054 0.8704
18 4 0.5556 29.7561 88.0640 0.8710 0.8360
19 5 0.5263 19.3305 47.6161 0.8376 0.8035
20 6 0.5000 15.1059 33.4224 0.8057 0.7730
21 7 0.4762 12.9569 29.6263 0.7754 0.7444
22 8 0.4545 1 1.7239 27.4812 0.7469 0.7178
23 9 0.4348 ‘ 10.9682 26.2074 0.7200 0.6928
24 10 0.4167 10.4903 25.4459 0.6947 0.6696
25 11 0.4000 10.1876 25.0100 0.6710 0.6477
26 12 0.3846 10.0020 24.7932 0.6487 0.6273
27 13 0.3704 9.8984 24.7307 0.6277 0.6081
28 14 0.3571 9.8544 24.7809 0.6079 0.5901
29 15 0.3448 9.8550 24.9157 0.5893 0.5731
30 16 0.3333 9.8899 25.1157 0.5717 0.5571
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Table C.9 (continued)
Central Composite Designs - Minimum Jpc-A and JPCMAX

k-4 (g= 1, a= 1)
n n, [ii] J,c_‘ JPCMX D,-efficiency D·ci1iciency

28 4 0.6429 50.6878 235.0764 0.841 1 0.8380
29 5 0.6207 31.6193 129.2817 0.8184 0.8153
30 6 0.6000 23.7333 85.9291 0.7965 0.7934
31 7 0.5806 19.5991 63.1614 _ 0.7754 0.7726
32 8 0.5625 17.1234 49.3736 0.7551 0.7526
33 9 0.5455 15.5130 40.2224 0.7357 0.7336
34 10 0.5294 14.4068 36.1199 0.7171 0.7155
35 11 0.5143 13.6186 34.6547 0.6993 0.6982
36 12 0.5000 13.0433 33.6159 0.6822 0.6816
37 13 0.4865 12.6170 32.8769 0.6659 0.6658

. 38 14 0.4737 12.2990 32.3567 0.6503 0.6507
39 15 0.4615 12.0621 32.0008 0.6353 0.6363

- 40 16 0.4500 11.8874 31.7715 0.6210 0.6225
41 17 0.4390 11.7616 31.6417 0.6073 0.6092
42 18 0.4286 1 1.6746 31.5915 0.5941 0.5966

' k-4 · 1/2 fraction offactoria1(g=1, a= 1)
n rr, [ii] Jm, J„_-„„ D,-eßiciency D-efiiciency

20 4 0.5000 35.2539 118.9913 0.7507 0.7265
21 5 0.4762 22.8245 64.5805 0.7197 0.6972‘ 22 _ 6 0.4545 17.7267 42.4666 0.6909 0.6701
23 7 0.4348 15.0963 35.1562 0.6640 0.6450
24 8 0.4167 13.5588 31.9489 0.6391 0.6216
25 9 0.4000 12.5925 29.9368 0.6159 0.5999
26 10 0.3846 1 1.9595 28.6267 0.5942 0.5796
27 1 1 0.3704 1 1.5368 27.7622 0.5739 0.5607
28 12 0.3571 11.2551 27.1975 0.5549 0.5430
29 13 0.3448 11.0721 26.8439 0.5371 0.5263
30 14 0.3333 10.9608 26.6442 0.5204 0.5107
31 15 0.3226 10.9034 26.5602 0.5046 0.4960
32 16 0.3125 10.8873 26.5654 0.4898 0.4821
33 17 0.3030 10.9035 26.6406 0.4758 0.4690
34 18 0.2941 10.9455 26.7719 0.4625 0.4566
35 19 0.2857 1 1.0085 26.9488 0.4500 0.4449
36 20 0.2778 1 1.0887 27.1632 0.4381 0.4337
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Table C.9 (continued)
Central Composite Designs - Minimum JPCA and JPCMAX

k-5 (g= 1, a= 1)
n :1,, [ii] Jm, J,C„„ D,-eiiiciency D·ef1iciency

46 4 0.7391 85.3845 594.6961 0.8178 0.8405
47 5 0.7234 51.9032 331.3274 0.8042 0.8263
48 6 0.7083 37.9392 222.4965 0.7908 0.8123
49 7 0.6939 30.5292 164.9392 0.7777 0.7987
50 8 0.6800 26.0193 129.8669 0.7648 0.7854
51 9 0.6667 23.0241 106.4554 0.7522 0.7725
52 10 0.6538 20.9126 89.8063 0.7398 0.7599
53 1 1 0.6415 19.3589 77.4045 0.7278 0.7477
54 12 0.6296 18.1789 67.8343 0.7162 0.7358
55 13 0.6182 17.2609 60.2409 0.7048 0.7243
56 14 0.6071 16.5334 54.0797 0.69370.713157

15 0.5965 15.9487 48.9875 0.6829 0.7022
58 16 0.5862 15.4736 44.7135 0.6724 0.6916
59 17 0.5763 15.0844 43.8683 0.6622 0.6813
60 18 0.5667 14.7639 43.2727 0.6522 0.6712
61 19 0.5574 14.4991 42.8010 0.6426 0.6615
62 20 0.5484 14.2799 42.4314 0.6331 0.6520
63 21 0.5397 14.0988 42.1468 0.6240 0.6428
64 22 0.5313 13.9496 41.9339 0.6151 0.6339
65 23 0.5231 13.8275 41.7819 0.6064 0.6252 _
66 24 0.5152 13.7286 · 41.6820 0.5979 0.6167
67 25 0.5075 13.6497 41.6272 0.5897 0.6084
68 26 0.5000 13.5882 41.6116 0.5816 0.6004

k-5 - 1/2 fraction of factorial (g= 1, a= 1)
n :1,, [ii] Jm, J,,,,,_,x D,·eHiciency D-elliciency

30 4 0.6000 53.5611 298.1942 0.7764 0.7706
31 5 0.5806 _ 33.4073 164.9548 0.7543 0.7491
32 6 0.5625 25.0266 1 10.0539 0.7334 0.7286
33 7 0.5455 20.6072 81.0971 0.7134 0.7092
34 8 0.5294 17.9432 63.5012 0.6944 0.6907
35 9 0.5143 16.1968 51.7900 0.6763 0.6732
36 10 0.5000 14.9864 43.4878 0.6591 0.6564
37 11 0.4865 14.1144 37.7393 0.6427 0.6405
38 12 0.4737 13.4693 36.2949 0.6270 0.6253
39 13 0.4615 12.9833 35.2205 0.6120 0.6109
40 14 0.4500 12.6130 34.4159 0.5977 0.5970
41 15 0.4390 12.3294 33.8142 0.5841 0.5838
42 16 0.4286 12.1125 33.3687 0.5710 0.5711
43 17 0.4186 1 1.9479 33.0460 0.5585 0.5590
44 18 0.4091 1 1.8250 32.8216 0.5465 0.5474
45 19 0.4000 1 1.7359 32.6771 0.5350 0.5363
46 20 0.3913 1 1.6747 32.5984 0.5239 0.5256
47 21 0.3830 11.6366 32.5745 0.5133 0.5153
48 22 0.3750 11.6179 32.5968 0.5032 0.5055
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Table C.10
Box·Behnken Designs - Minimum JPC}, and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k··3 (s= 1) __
n n„ [11] JPG, JPGMM D,-efliciency D·ef1iciency

15 3 0.5333 99.0171 262.9427 0.7790 0.7723
16 4 0.5000 40.8820 79.3800 0.7580 0.7452
17 5 0.4706 27.1984 40.6271 0.7330 0.7172
18 6 0.4444 21.8615 30.5696 0.7069 0.6898
19 7 0.421 1 19.2742 27.4472 0.6810 0.6636
20 8 0.4000 17.8855 25.7384 0.6558 0.6389
21 9 0.3810 17.1151 24.7761 0.6318 0.6157
22 10 0.3636 16.7018 24.2530 0.6091 0.5940
23 1 1 0.3478 16.5120 24.0090 0.5875 0.5736
24 12 0.3333 16.4706 23.9529 0.5672 0.5545
25 13 0.3200 16.5326 24.0292 0.5481 0.5366

'<·¢ <¤= 1) .. . .n n, [u] JPG, JPGMX D,-efliciency D·e1lic1ency

28 4 0.4286 102.4338 186.2390 0.4659 0.5073
29 5 0.4138 65.5830 94.0335 0.4583 0.4971
30 6 0.4000 50.5945 73.7251 0.4497 0.4864
31 7 0.3871 42.8804 63.0710 0.4405 0.4756
32 8 0.3750 38.3612 56.7314 0.4311 0.4649
33 9 0.3636 35.5001 52.6622 0.4217 0.4543
34 10 0.3529 33.6013 49.9252 0.4124 0.4441
35 1 1 0.3429 32.3072 48.0335 0.4033 0.4341
36 12 0.3333 31.4164 46.7100 0.3944 0.4245
37 13 0.3243 30.8073 45.7865 0.3857 0.4153
38 14 0.3158 30.4026 45.1546 0.3774 0.4063

. 39 15 0.3077 30.1506 44.7419 0.3693 0.3978
40 16 0.3000 30.0156 44.4979 0.3615 0.3895
41 17 0.2927 29.9721 44.3865 0.3539 0.3815
42 18 0.2857 30.0015 44.3812 0.3466 0.3739
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Table C.10 (continued)
BOX'B€hHkCH Designs ' JPCA and JPCMAX

k· 5 (2= 1)
n n„ [ii] JPCA J,c„AX D,-efliciency D-efiiciency

44 4 0.3636 235.9410 376.1972 0.2913 0.3396
45 5 0.3556 147.9900 207.4228 0.2886 0.3356
46 6 0.3478 111.5351 157.5886 0.2854 0.3312
47 7 0.3404 92.3385 131.0684 0.2818 0.3265
48 8 0.3333 80.7653 1 14.9437 0.2780 0.3217
49 9 0.3265 73.1679 104.2812 0.2741 0.3169
50 10 0.3200 67.8874 96.8213 0.2702 0.3122
51 11 0.3137 64.0681 91.3919 0.2662 0.3074
52 12 0.3077 61.2268 87.3276 0.2623 0.3028
53 13 0.3019 59.0709 84.2235 0.2584 0.2982
54 14 0.2963 57.4133 81.8201 0.2545 0.2937
55 15 0.2909 56.1289 79.9430 0.2507 0.2893
56 16 0.2857 55.1313 78.4714 0.2470 0.2850
57 17 0.2807 54.3585 77.3184 0.2434 0.2808
58 18 0.2759 53.7653 76.4206 0.2398 0.2767
59 19 0.2712 53.3177 75.7300 0.2363 0.2728
60 20 0.2667 52.9899 75.2102 0.2329 0.2689
61 21 0.2623 52.7616 74.8325 0.2296 0.2651
62 22 0.2581 52.6170 74.5747 0.2264 0.2614
63 23 0.2540 52.5434 74.4187 0.2232 0.2578
64 24 0.2500 52.5307 74.3499 0.2201 0.2543
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Table C.11
Box-Behnken Designs - Minimum JPCA and JpcMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest 1 Spherical

k- 6 <g= 1/4/5; _
¤ ~¤ 1¤l fm Jpcmx D·¤f‘ü¤¤¤¢v

15 3 0.2667 125.3791 230.9081 0.9382
16 4 0.2500 54.4813 104.7706 0.9053
17 5 0.2353 37.3223 72.9049 0.8712

' 18 6 0.2222 30.5318 59.9003 0.8380
19 7 0.2105 27.2195 53.3699 0.8062
20 8 0.2000 25.4442 49.7476 0.7762
21 9 0.1905 24.4702 47.6608 0.7480
22 10 0.1818 23.9629 46.4776 0.7215
23 1 1 0.1739 23.7498 45.8685 0.6968
24 12 0.1667 23.7334 45.6460 0.6736
25 13 0.1600 23.8548 45.6958 0.6518

k- 4 <g=
no lu}fm28
4 0.2143 93.1954 137.7375 0.9718

29 5 0.2069 60.0446 71.5807 0.9523
30 6 0.2000 46.5467 56.3772 0.9318
31 7 0.1935 39.6001 48.4144 0.9111
32 8 0.1875 35.5350 43.6874 0.8905
33 9 0.1818 32.9670 40.6633 0.8703
34 10 0.1765 31.2687 38.6384 0.8507
35 11 0.1714 30.1173 37.2473 0.8317
36 12 0.1667 29.3309 36.2825 0.8133
37 13 0.1622 28.7996 35.6176 0.7955
38 14 0.1579 28.4536 35.1715 0.7784
39 15 0.1538 28.2459 34.8897 0.7620
40 16 0.1500 28.1442 34.7345 0.7461
41 17 0.1463 28.1257 34.6788 0.7309
42 18 0. 1429 28. 1733 34.7026 0.7162
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Table C.11 (continued)
BOX'B€hD.kCn Designs • Minimllnl JPCA and JPCMAX

k-5 <g=1/J5; _
¤ no [ul fm Jpcmx D·¤fü¤¤¤¤¤>'

44 4 0.1818 156.8755 269.1327 0.9750
45 5 0.1778 98.2003 128.9410 0.9635
46 6 0.1739 74.0175 91.8483 0.9508
47 7 0.1702 61.3415 76.7236 0.9374
48 8 0.1667 53.7306 67.5392 0.9238
49 9 0.1633 48.7539 61.4762 0.9100
50 10 0.1600 45.3086 57.2431 0.8963
51 1 1 0.1569 42.8274 54.1704 0.8827
52 12 0.1538 40.9902 51.8777 0.8693
53 13 0.1509 39.6037 50.1337 0.8562
54 14 0.1481 38.5444 48.7900 0.8433
55 15 0.1455 37.7299 47.7472 0.8307
56 16 0.1429 37.1033 46.9360 0.8184
57 17 0.1404 36.6240 46.3070 0.8063
58 18 0.1379 36.2620 45.8237 0.7946
59 19 0.1356 35.9952 45.4588 0.7831
60 20 0.1333 35.8065 45.1915 0.7720
61 21 0.1311 35.6829 45.0055 0.7611
62 22 0.1290 35.6139 44.8879 0.7505
63 23 0.1270 35.591 1 44.8285 0.7401
64 24 0.1250 35.6080 44.8190 0.7300
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Table C.12
Box-Behnken Designs · Minimum JPCA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Regon of Interest : Spherical

k··3 (s= 1)
xn n„ [ii] Jpm J„„_,X D,-efliciency D-efiiciency

15 3 0.5333 82.4575 445.5840 0.7790 0.7723
16 4 0.5000 29.5226 132.0811 0.7580 0.7452
17 5 0.4706 17.6791 64.8219 0.7330 0.7172
18 6 0.4444 13.1559 39.6218 0.7069 0.6898
19 7 0.421 1 10.9551 27.3362 0.6810 0.6636
20 8 0.4000 9.7374 20.3701 0.6558 0.6389
21 9 0.3810 9.0148 16.0211 0.6318 0.6157
22 10 0.3636 8.5722 13.1944 0.6091 0.5940
23 11 0.3478 8.3020 13.0796 0.5875 0.5736
24 12 0.3333 8.1445 13.0615 0.5672 0.5545
25 13 0.3200 8.0646 13.1115 0.5481 0.5366

k·¢ (s= 1)
rn n, [ii] J,c_, .l„_-MM D,·et1iciency D-efiiciency

28 4 0.4286 56.9960 421.9941 0.4659 0.5073
29 5 0.4138 32.0514 204.3381 0.4583 0.4971
30 6 0.4000 22.4722 123.2349 0.4497 0.4864
31 7 0.3871 17.7250 83.8234 0.4405 0.4756
32 8 0.3750 15.0065 61.4756 0.431 1 0.4649
33 9 0.3636 13.3020 47.4655 0.4217 0.4543
34 10 0.3529 12.1674 38.0442 0.4124 0.4441
35 11 0.3429 1 1.3808 31.3737 0.4033 0.4341
36 12 0.3333 10.8206 26.4619 0.3944 0.4245
37 13 0.3243 10.4153 22.7326 0.3857 0.4153
38 14 0.3158 10.1199 19.8309 0.3774 0.4063
39 15 0.3077 9.9053 17.5280 0.3693 0.3978
40 16 0.3000 9.7515 15.6705 0.3615 0.3895
41 17 0.2927 9.6446 14.1520 0.3539 0.3815
42 18 0.2857 9.5745 12.8967 0.3466 0.3739
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Table C. 12 (continued)
Box~Behnken Designs - Minimum Jpc, and JPCMAX

k-5 (s= 1)
n n„ [ii] JM, JMM,X D,~e11iciency D-eiiiciency

44 4 0.3636 96.0190 1005.1715 0.2913 0.3396
45 S 0.3556 52.7505 483.5712 0.2886 0.3356
46 6 0.3478 36.0876 289.9514 0.2854 0.3312
47 7 0.3404 27.7811 196.2040 0.2818 0.3265
48 8 0.3333 22.9785 143.2133 0.2780 0.3217
49 9 0.3265 19.9252 1 10.0747 0.2741 0.3169
50 10 0.3200 17.8533 87.8258 0.2702 0.3122
51 11 0.3137 16.3803 72.0829 0.2662 0.3074
52 12 0.3077 15.2964 60.4851 0.2623 0.3028
53 13 0.3019 14.4780 51.6644 0.2584 0.2982
54 14 0.2963 13.8482 44.7808 0.2545 0.2937
55 15 0.2909 13.3566 39.2937 0.2507 0.2893
56 16 0.2857 12.9690 34.8416 0.2470 0.2850
57 17 0.2807 12.6615 31.1748 0.2434 0.2808
58 18 0.2759 12.4169 28.1 159 0.2398 0.2767
59 19 0.2712 12.2225 25.5357 0.2363 0.2728
60 20 0.2667 12.0689 23.3385 0.2329 0.2689
61 21 0.2623 1 1.9486 21.4516 0.2296 0.2651
62 22 0.2581 11.8561 19.8194 0.2264 0.2614
63 23 0.2540 11.7868 18.3984 0.2232 0.2578
64 24 0.2500 11.7372 17.1541 0.2201 0.2543
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Table C.13
Small Composite Designs - Minimum ./PCA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k-3 (g= 1, a= 1)
n n, [ii] JPCA J„„„ D,-efliciency D-efficiency

13 3 0.4615 303.7775 674.5472 0.4534 0.5345
14 4 0.4286 137.3482 305.1574 0.4280 0.5050
15 5 0.4000 95.4995 21 1.7348 0.4048 0.4783
16 6 0.3750 78.5444 173.6554 0.3836 0.4542
17 7 0.3529 70.1278 154.6012 0.3642 0.4324
18 8 0.3333 65.5448 144.1019 0.3466 0.4126
19 9 0.3158 62.9853 138.1237 0.3305 0.3945
20 10 0.3000 61.6160 134.8069 0.3157 0.3780
21 1 1 0.2857 61.0029 133.1823 0.3022 0.3628
22 12 0.2727 60.8989 132.6978 0.2897 0.3488
23 13 0.2609 61.1535 133.0165 0.2782 0.3359
24 14 0.2500 61.6699 133.9218 0.2675 0.3240
25 15 0.2400 62.3829 135.2682 0.2576 0.3129

k-4 (g= 1, a= 1)
ri n„ [ii] JPQ, J,c„_,X D,-eüiciency D-elliciency

20 4 0.5000 106.6664 190.8337 0.6275 0.6447
21 5 0.4762 70.9130 126.7767 0.6015 0.6187
22 6 0.4545 56.1301 100.1566 0.5774 0.5946
23 7 0.4348 48.4868 86.3158 0.5550 0.5723
24 8 0.4167 44.0331 78.1948 0.5342 0.5516
25 9 0.4000 41.2573 73.0872 0.5147 0.5323
26 10 0.3846 39.4658 69.7494 0.4966 0.5143
27 1 1 0.3704 38.2985 67.5351 0.4797 0.4975
28 12 0.3571 37.5508 66.0766 0.4638 0.4818
29 13 0.3448 37.0981 65.1502 0.4489 0.4670
30 14 0.3333 36.8607 64.6120 0.4349 0.4532
31 15 0.3226 36.7849 64.3655 0.4218 0.4401
32 16 0.3125 36.8335 64.3438 0.4094 0.4278
33 17 0.3030 36.9798 64.4988 0.3976 0.4162
34 18 0.2941 37.2043 64.7951 0.3866 0.4052
35 19 0.2857 37.4923 65.2062 0.3761 0.3948
36 20 0.2778 37.8326 65.7120 0.3662 0.3849
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Table C.14
Small Composite Designs - Minimum JpcA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

k·3 (s=1/«//?„«=1) °
n "¤ Jrc.4 Jpcuzx D·¢Üi¢i¢¤¢Y

13 3 0.2564 236.7053 51 1.3970 0.7776
14 4 0.2381 105.8014 231.9207 0.7432
15 5 0.2222 73.3737 161.2785 0.7093
16 6 0.2083 60.3796 132.5163 0.6772
17 7 0.1961 54.0000 118.1513 0.6472
18 8 0.1852 50.5737 110.2600 0.6195
19 9 0.1754 48.6999 105.7899 0.5939
20 10 0.1667 47.7361 103.3339 0.5701
21 11 0.1587 47.3490 102.1584 0.5482
22 12 0.1515 47.3492 101.8456 0.5278
23 13 0.1449 47.6217 102.1407 0.5089
24 14 0.1389 48.0925 102.8796 0.4914
25 15 0.1333 48.7123 103.9523 0.4750

1;-1 (g=11„/1T._«=1) 7 _
¤ nu I¤1 Jpc, Jmm D·¤fü¤¤¤¤<=y

20 4 0.2000 132.9837 269.0040 0.8431
21 5 0.1905 87.8675 178.4000 0.8150I

. 22 6 0.1818 69.3800 140.7349 0.7875
23 7 0.1739 59.8886 121.1409 0.7610
24 8 0.1667 54.3934 109.6353 0.7358
25 9 0.1600 50.9909 102.3908 0.7120
26 10 0.1538 48.8116 97.6489 0.6894
27 1 1 0.1481 47.4057 94.4958 0.6681
28 12 0.1429 46.5183 92.41 15 0.6480
29 13 0.1379 45.9948 91.0795 0.6290
30 14 0.1333 45.7362 90.2966 0.611 1
31 15 0.1290 45.6762 89.9263 0.5941
32 16 0. 1250 45.7688 89.8737 0.5780
33 17 0.1212 45.9812 90.0709 0.5627
34 18 0.1 176 46.2894 90.4680 0.5483
35 19 0.1143 46.6751 91.0276 0.5345
36 20 0.1111 47.1247 91.7208 0.5215
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Table C.15
Small Composite Designs - Minimum ./PCA a.nd JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k=·3 (g= 1, a= 1)
n n„ [ii] JPCA JpcmX D,-effxciency D·efiiciency

13 3 0.4615 158.3214 306.4765 _ 0.4534 0.5345
14 4 0.4286 70.3104 139.1448 0.4280 0.5050
15 5 0.4000 48.3404 96.8431 0.4048 0.4783
16 6 0.3750 39.4546 79.6153 0.3836 0.4542
17 7 0.3529 35.0327 71.0071 0.3642 0.4324
18 8 0.3333 32.6074 66.2747 0.3466 0.4126
19 9 0.3158 31.2331 63.5907 0.3305 0.3945
20 10 0.3000 30.4756 62.1125 0.3157 0.3780
21 11 0.2857 30.1093 61.4010 0.30220.362822

12 0.2727 30.0060 61.2059 0.2897 0.3488
23 13 0.2609 30.0877 61.3748 0.2782 0.3359
24 14 0.2500 30.3043 61.8095 0.2675 0.3240
25 15 0.2400 30.6222 62.4439 0.2576 0.3129

k-4 (g= 1, a= 1)
n n„ [ii] Jpc, JpcMAX D,-eüciency D-efticiency

20 4 0.5000 49.2998 ‘ 118.9913 0.6275 0.6447
21 5 0.4762 32.0533 64.5805 0.6015 0.6187
22 6 0.4545 24.9478 42.4666 0.5774 0.5946 ·
23 7 0.4348 21.2687 35.1562 0.5550 0.5723
24 8 0.4167 19.1118 31.9489 0.5342 0.5516
25 9 0.4000 17.7521 29.9368 0.5147 0.5323
26 10 0.3846 16.8586 28.6267 0.4966 0.5143
27 1 1 0.3704 16.2598 27.7622 0.4797 0.4975
28 12 0.3571 15.8586 27.1975 0.4638 0.4818
29 13 0.3448 15.5960 26.8439 0.4489 0.4670
30 14 0.3333 15.4344 26.6442 0.4349 0.4532
31 15 0.3226 15.3485 26.5602 0.4218 0.4401
32 16 0.3125 15.3207 26.5654 0.4094 0.4278
33 17 0.3030 15.3385 26.6406 0.3976 0.4162
34 18 0.2941 15.3928 26.7719 0.3866 0.4052
35 19 0.2857 15.4767 26.9488 0.3761 0.3948
36 20 0.2778 15.5848 27.1632 0.3662 0.3849
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Table C.16
Notz Type Designs - Minimum Jpc-A and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For an = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal

k-3 (g=1, a= 1)
n Ho [ii] JPCA JpcMX D,-eüiciency D—ef1iciency

14 3 0.6429 143.5098 391.6120 0.8249 0.8433
15 4 0.6000 62.3651 176.6775 0.7888 0.8043
16 5 0.5625 42.3760 122.2979 0.7534 0.7675‘ 17 6 0.5294 34.3460 100.0759 0.7197 0.7334
18 7 0.5000 30.3610 88.8997 0.6880 0.7017
19 8 0.4737 28.1734 82.6875 0.6584 0.6726
20 9 0.4500 26.9272 79.0976 0.6309 0.6456
21 10 0.4286 26.2310 77.0509 0.6053 0.6207
22 11 0.4091 25.8824 75.9851 0.5815 0.5976
23 12 0.3913 25.7668 75.5800 0.5594 0.5761
24 13 0.3750 25.8147 75.6403 0.5388 0.5562
25 14 0.3600 25.9814 76.0405 0.5196 0.5376

k•4 (g=1, a= 1)
n n,, [ii] J,C_, J,C„_,

x D,—efficiency D-efliciency

19 4 0.6316 140.0998 365.7610 0.6328 0.6833
20 5 0.6000 92.0232 242.1681 0.6072 0.6560
21 6 0.5714 72.2116 190.7666 0.5831 0.6304
22 7 0.5455 61.9830 164.0256 0.5604 0.6066
23 8 0.5217 56.0214 148.3085 0.5392 0.5843
24 9 0.5000 52.2979 138.4157 0.5193 0.5636
25 10 0.4800 49.8843 131.9387 0.5008 0.5442
26 11 0.4615 48.2994 127.6325 0.4834 0.5261
27 12 0.4444 47.2706 124.7876 0.4671 0.5092
28 13 0.4286 46.6323 122.9614 0.4518 0.4933

. 29 14 0.4138 46.2783 121.8909 0.4374 0.4783
30 15 0.4000 46.1374 121.3889 0.4239 0.4643
31 16 0.3871 46.1604 121.3146 0.4111 0.4510
32 17 0.3750 46.3121 121.5831 0.3991 0.4385
33 18 0.3636 46.5666 122. 1242 0.3877 0.4267
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Table C.17
Notz Type Designs · Minimum JPCA and JPCMAX For Designs With

Givcn Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Spherical Region of Interest : Spherical

k-3 (g=1/„/I:-, a= 1)
¤ m lül Jpc. Jmm D-<=üi¤i¤¤¤>'

14 3 0.2619 160.4562 371.6201 0.8725
15 4 0.2444 71.0067 168.2507 0.8381
16 5 0.2292 49.1065 116.8381 0.8035
17 6 0.2157 40.3948 95.8612 0.7701
18 7 0.2037 36.1415 85.3390 0.7387
19 8 0.1930 33.8692 79.5152 0.7092
20 9 0.1833 32.6343 76.1736 0.6817
21 10 0.1746 32.0056 74.2928 0.6561

· 22 11 0.1667 31.7602 73.3406 0.6323
23 12 0.1594 31.7717 73.0138 0.6101
24 13 0.1528 31.9633 73.1277 0.5894
25 14 0.1467 32.2862 73.5634 0.5700

k·¢n
n„ [ii] JPG JPGP,P D-efiiciency

19 4 0.1974 180.1491 427.9495 0.7585
20 5 0.1875 119.7223 283.7078 0.7313
21 6 0.1786 94.8802 223.7354 0.7050
22 7 0.1705 82.1090 192.5400 0.6799
23 8 0.1630 74.7158 174.2485 0.6562
24 9 0.1563 70.1455 162.7422 0.6338
25 10 0.1500 67.2283 155.2245 0.6127
26 1 1 0.1442 65.3580 150.2343 0.5929
27 12 0.1389 64.1905 146.9564 0.5743
28 13 0.1339 63.5169 144.8804 0.5567
29 14 0.1293 63.2030 143.6675 0.5402

_ 30 15 0.1250 63.1592 143.1251 0.5246
31 16 0.1210 63.3231 143.0858 0.5099
32 17 0.1172 63.6501 143.4450 0.4959
33 18 0.1136 64.1075 144.1243 0.4827
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Table C.l8
Notz Type Designs · Minimum 1,,;. and 1,6-MAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

k-3 (g= 1, a= 1)
n n„ [ii] 1,,;. 1,,_-„„._, D,-efliciency D-efliciency

14 3 0.6429 108.3271 314.2793 0.8249 0.8433
15 4 0.6000 44.5081 113.5644 0.7888 0.8043
16 5 0.5625 29.0539 78.7033 0.7534 0.7675
17 6 0.5294 22.8650 64.4539 0.7197 0.7334
18 7 0.5000 19.7670 57.2847 0.6880 0.7017
19 8 0.4737 18.0285 53.2974 0.6584 0.6726
20 9 0.4500 16.9961 50.9910 0.6309 0.6456
21 10 0.4286 16.3737 49.6737 0.6053 0.6207
22 11 0.4091 16.0089 48.9853 0.5815 0.5976
23 12 0.3913 15.8159 48.7204 0.5594 0.5761
24 13 0.3750 15.7430 48.7539 0.5388 0.5562
25 14 0.3600 15.7572 49.0053 0.5196 0.5376

"i‘
Ic-4 (g=1,a=1)
n n,, [ii] 1,,;. 1,,;„_., D,-efliciency D-eiiiciency

P

19 4 0.6316 72.7943 211.2199 0.6328 0.6833
20 5 0.6000 46.1898 113.3264 0.6072 0.6560
21 6 0.5714 35.3336 89.4222 0.5831 0.6304
22 7 0.5455 29.7463 76.9807 0.5604 0.6066
23 8 0.5217 26.481 1 69.6721 0.5392 0.5843
24 9 0.5000 24.4236 65.0673 0.5193 0.5636
25 10 0.4800 23.0679 62.0589 0.5008 0.5442
26 1 1 0.4615 22.1535 60.0591 0.4834 0.5261
27 12 0.4444 21.5335 58.7363 0.4671 0.5092
28 13 0.4286 21.1192 57.8875 0.4518 0.4933
29 14 0.4138 20.8540 57.3973 0.4374 0.4783
30 15 0.4000 20.7003 57. 1623 0.4239 0.4643
31 16 0.3871 20.6318 57.1302 0.4111 0.4510
32 17 0.3750 20.6301 57.2597 0.3991 0.4385
33 18 0.3636 20.6815 57.5142 0.3877 0.4267
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Table C.19
Hybrid Designs - Minimum ./,,:4 and J,CM4X For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Cuboidal _

Hybrid 310
n n,, [ii] J,,:4 ./,,:„4_,, D,~ei1iciency D-efiiciency

13 3 0.3119 193.6866 324.7064 0.3232 0.3879
14 4 0.2897 88.5364 146.1705 0.3078 0.3683
15 5 0.2704 62.3537 101.6547 0.2927 0.3501
16 6 0.2535 51.8873 83.7056 0.2786 0.3334
17 7 0.2385 46.7977 74.8289 0.2654 0.3180
18 8 0.2253 44.1173 70.0141 0.2532 0.3039
19 9 0.2134 42.7067 67.3395 0.2420 0.2909
20 10 0.2028 42.0420 65.9221 0.2316 0.2790

' 21 11 0.1931 41.8507 65.3030 0.2220 0.2681
22 12 0.1843 41.9779 65.2210 0.2131 0.2580
23 13 0.1763 42.3291 65.5172 0.2048 0.2486
24 14 0.1690 42.8438 66.0897 0.1972 0.2399

Hybrid 311.4
n n„ [ii] /,,:4 J,C„44 D,·eüiciency D·ci1iciency

13 3 0.3077 226.4177 387.9108 0.2900 0.3619
14 4 0.2857 101.9399 176.9775 0.2790 0.3459
15 5 0.2667 71.1631 123.7459 0.2672 0.3301
16 6 0.2500 58.8812 102.1402 0.2555 0.3152
17 7 0.2353 52.8952 91.4064 0.2442 0.3012
18 8 0.2222 49.7204 85.5613 0.2336 0.2883
19 9 0.2105 48.0235 82.2998 0.2237 0.2764
20 10 0.2000 47.1931 80.5592 0.2144 0.2653
21 11 0.1905 46.9116 79.7856 0.2058 0.2551
22 12 0.1818 46.9989 79.6635 0.1978 0.2457
23 13 0.1739 47.3454 80.0004 0.1903 0.2369
24 14 0.1667 47.8807 80.6725 0.1833 0.2287

Hybrid 311B
n n,, [ii] ./,,:4 J,,:4,44, D,-efticiency D·ef1'iciency

13 3 0.2564 369.7226 695.4559 0.1973 0.2720
14 4 0.2381 165.9630 315.6444 0.1898 0.2599
15 5 0.2222 115.2664 219.6822 0.1818 0.2481
16 6 0.2083 94.8898 180.6437 0.1738 0.2368
17 7 0.1961 84.8573 161.1739 0.1662 0.2264
18 8 0.1852 79.4511 150.5033 0.1589 0.2167
19 9 0.1754 76.4799 144.4829 0.1522 0.2077
20 10 0.1667 74.9375 141.1999 0.1459 0.1994
21 11 0.1587 74.3013 139.6576 0.1400 0.1917
22 12 0.1515 74.2741 139.2878 0.1346 0.1846
23 13 0.1449 74.6753 139.7442 0.1295 0.1780
24 14 0.1389 75.3887 140.8039 0.1247 0.1719
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Table C. 19 (continued)
Designs ' JPCA and JPCMAX

Hybrid 416A
n n„ [ii] J„_-A J,c„_,X D,—ef1iciency D-eiliciency

20 4 0.2148 366.5304 508.9650 0.1276 0.1758
21 5 0.2046 241.8834 337.1925 0.1232 0.1695
22 6 0.1953 190.3165 265.7815 0.1188 0.1634
23 7 0.1868 163.6005 228.6362 0.1 147 0.1577
24 8 0.1790 147.9754 206.8172 0.1 107 0.1524
25 9 0.1719 138.1795 193.0767 0.1070 0.1473
26 10 0.1653 131.8006 184.0809 0.1034 0.1425
27 11 0.1591 127.5871 178.0969 0.1001 0.1381
28 12 0.1534 124.8283 174.1394 0.0970 0.1338
29 13 0.1482 123.0924 171.6083 0.0940 0.1299
30. 14 0.1432 122.1018 170.1180 0.0912 0.1261
31 15 0.1386 121.6710 169.4099 0.0885 0.1226
32 16 0.1343 121.6708 169.3042 0.0860 0.1192
33 17 0.1302 122.0088 169.6756 0.0836 0.1160
34 18 0.1264 122.6173 170.4224 0.0813 0.1130
35 19 0.1228 123.4454 171.4772 0.0792 0.1102
36 20 0.1 193 124.4542 172.7854 0.0771 0.1075

Hybrid 4I6B
n 11,, [ii] Jml JPCMX D,-efiiciency D-efliciency

20 4 0.2102 337.3317 466.9464 0.1326 0.1815
21 5 0.2002 222.8125 300.0872 0.1280 0.1750
22 6 0.1911 175.4670 236.7872 0.1235 0.1688
23 7 0.1828 150.9585 203.8751 0.1192 0.1629
24 8 0.1752 136.6401 184.5644 0.1151 0.1573
25 9 0.1682 127.6768 172.4192 0.1112 0.1521
26 10 0.1617 121.8522 164.4823 0.1075 0.1472
27 11 0.1557 118.0164 159.2169 0.1041 0.1426
28 12 0.1501 115.5167 155.7489 0.1008 0.1382
29 13 0.1450 1 13.9562 153.5460 0.0977 0.1341
30 14 0.1401 113.0802 152.2663 0.0948 0.1302
31 15 0.1356 112.7181 151.6805 0.0920 0.1266
32 16 0.1314 112.7514 151.6290 0.0894 0.1231
33 17 0.1274 113.0953 151.9975 0.0869 0.1198
34 18 0.1236 113.6874 152.7022 0.0846 0.1167
35 19 0.1201 114.4812 153.6800 0.0823 0.1138
36 20 0.1168 115.4409 154.8826 0.0802 0.1110
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Table C. 19 (continued)
Minimmn JPCA and JPCMAX

Hybrid 416C
n n, [ii] JMA JPCMx D,-efliciency D-eflicicncy

20 4 0.1976 384.0369 564.3146 0.1 174 0.1646
21 5 0.1882 253.2477 351.9961 0.1133 0.1587
22 6 0.1797 199.1609 277.5164 0.1093 0.1531
23 7 0.1719 171.1457 238.7744 0.1055 0.1477
24 8 0.1647 154.7623 216.0285 0.1019 0.1427
25 9 0.1581 144.4907 201.7094 0.0984 0.1379
26 10 0.1520 137.8011 192.3350 0.0952 0.1335
27 11 0.1464 133.3811 186.1074 0.0921 0.1293
28 12 0.1412 130.4855 181.9936 0.0892 0.1253
29 13 0.1363 128.6616 179.3676 0.0865 0.1216
30 14 0.1318 127.6186 177.8273 0.0839 0.1181
31 15 0.1275 127.1620 177.1030 0.0814 0.1148
32 16 0.1235 127.1563 177.0070 0.0791 0.1116
33 17 0.1198 127.5050 177.4051 0.0769 0.1087
34 18 0.1163 128.1369 178.1985 0.0748 0.1059
35 19 0.1129 128.9987 179.3130 0.0729 0.1032
36 20 0.1098 130.0498 180.6888 0.0710 0.1006
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Table C.20
Hybrid Designs - Minimum JPCA and JPCMAX For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Desigr Region : Spherical Region of Interest : Spherical

Hybrid 310
¤ m 1¤l fm Jpcm D·¤fü<=¤¤¤¤y
13 3 0.2158 159.3617 420.5179 0.7668
14 4 0.2004 72.8835 189.9352 0.7282
15 5 0.1870 51.4004 131.9391 0.6922
16 6 0.1753 42.8349 108.4036 0.6590
17 7 0.1650 38.6849 96.6834 0.6286
18 8 0.1559 36.5121 90.2663 0.6008
19 9 0.1476 35.3810 86.6480 0.5752
20 10 0.1403 34.8614 84.6757 0.5517
21 1 1 0.1336 34.7299 83.7489 0.5300
22 12 _ 0.1275 34.8594 83.5262 0.5100
23 13 0.1220 35.1724 83.7991 0.4914
24 14 0.1 169 35.6192 84.4339 0.4742

Hybrid 311A
B no l¤1 Jrca Jpcaux D·¢üi¢1¢¤¢Y

13 3 0.2462 122.1341 206.9597 0.8898
14 4 0.2286 54.5151 90.9279 0.8504
15 5 0.2133 38.0960 63.2156 0.8116
16 6 0.2000 31.6452 52.1889 0.7748
17 7 0.1882 28.5584 46.7791 0.7406
18 8 0.1778 26.9643 43.8685 0.7089
19 9 0.1684 26.1512 42.2703 0.6795
20 10 0.1600 25.7942 41.4414 0.6524
21 1 1 0.1524 25.7252 41.1003 0.6273
22 12 0.1455 25.8493 41.0871 0.6040
23 13 0.1391 26.1087 41.3047 0.5824
24 14 0.1333 26.4666 41.6906 0.5622

Hybrid 3118
¤ no l¤1 fm Jpmx D-¤¤i¤¤¤¤>·
13 3 0.2564 117.7045 180.9115 0.9345
14 4 0.2381 52.3036 83.3485 0.8931
15 5 0.2222 36.4644 58.7754 0.8523
16 6 0.2083 30.2493 48.8398 0.8138
17 7 0.1961 27.2766 43.9361 0.7778
18 8 0.1852 25.7408 41.2951 0.7445
19 9 0.1754 24.9562 39.8499 0.7136
20 10 0.1667 24.6099 39.1085 0.6851
21 11 0.1587 24.5402 38.8148 0.6588
22 12 0.1515 24.6559 38.8226 0.6343
23 13 0.1449 24.9014 39.0428 0.6116
24 14 0.1389 25.2413 39.4181 0.5905
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Table C.20 (continued)
JPCA and JPCMAX

Hybrid 416A
U nu Jrc.4 Jpcimx D·¢m¢i¤¤¤Y

20 4 0.1867 113.6314 244.9257 0.8156
21 5 0.1778 75.8849 165.1309 0.7863
22 6 0.1697 60.3686 131.6032 0.7583
23 7 0.1623 52.4020 114.0835 0.7318
24 8 0.1556 47.8014 103.7924 0.7068 .
25 9 0.1494 44.9684 97.3285 0.6833
26 10 0.1436 43.1708 93.1299 0.6612
27 1 1 0.1383 42.0288 90.3685 0.6405
28 12 0.1334 41.3272 88.5786 0.6209
29 13 0.1288 40.9349 87.4775 0.6024
30 14 0.1245 40.7681 86.8727 0.5850
31 15 0.1205 40.7703 86.6540 0.5686
32 16 0.1167 40.9026 86.7214 0.5531
33 17 0.1132 41.1371 87.0176 0.5384
34 18 0.1098 41.4532 87.4997 0.5244
35 19 0.1067 41.8356 88.1296 0.5112
36 20 0.1037 42.2726 88.8872 0.4986

Hybrid 416B
¤ m [ul Jpc. Jpmx D-¤fH¤¤¤¤¤y

_
20 4 0.1851 105.3513 183.5062 0.8599
21 5 0.1763 70.3730 122.2228 0.8290
22 6 0.1683 56.0176 96.8039 0.7996
23 7 0.1610 48.6590 83.6211 0.7717
24 8 0.1542 44.4177 75.9103 0.7454
25 9 0.1481 41.8123 71.0810 0.7206
26 10 0.1424 40.1648 67.9416 0.6973
27 11 0.1371 39.1236 65.8754 0.6754
28 12 0.1322 38.4893 64.5387 0.6548
29 13 0.1277 38.1410 63.7028 0.6354
30 14 0.1234 38.0008 63.2384 0.6170
31 15 0.1194 38.0168 63.0547 0.5997
32 16 0.1157 38.1530 63.0836 0.5833
33 17 0.1122 38.3835 63.2822 0.5678
34 18 0.1089 38.6893 63.6172 0.5531
35 19 0.1058 39.0563 64.0610 0.5392
36 20 0.1028 39.4736 64.5937 0.5259
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Table C.20 (continued)
JPCA and JPCMAX

Hybrid 4I6C
H Vb Jrc.4Jrczeux20

4 0.1854 105.0602 180.1981 . 0.8632
21 5 0.1766 70.1882 120.1443 0.8321
22 6 0.1686 55.8748 95.2279 0.8025
23 7 0.1612 48.5373 82.2991 0.7745
24 8 0.1545 44.3079 74.7301 0.7481
25 9 0.1483 41.7099 70.0000 0.7232
26 10 0.1426 40.0669 66.9193 0.6998
27 1 1 0.1374 39.0287 64.8974 0.6778
28 12 0.1324 38.3963 63.5848 0.6571
29 13 0.1279 38.0490 62.7710 0.6376 __
30 14 0.1236 37.9093 62.3216 0.6192
31 15 0.1196 37.9255 62.1458 0.6018
32 16 0.1159 38.0614 62.1772 0.5854
33 17 0.1124 38.2915 62.3781 0.5698
34 18 0.1091 38.5966 62.7114 0.5550
35 19 0.1060 38.9628 63.1526 0.5410
36 20 0.1030 39.3792 63.6791 0.5277
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i Table C.21
1 Hybrid Designs - Minimum JPCA and JPCMI,X For Designs With

Given Sample Size and Power < 0.90 For a = 0.05 Test
Design Region : Cuboidal Region of Interest : Spherical

Hybrid 310
n n„ [ii] JM, J,,_-„_,,, D,-efiiciency D-efiiciency

13 3 0.31 19 86.8697 209.7824 0.3232 0.3879
14 4 0.2897 38.4424 93.1488 0.3078 0.3683
15 5 0.2704 26.6832 64.6421 0.2927 0.3501
16 6 0.2535 22.0585 53.2139 0.2786 0.3334
17 7 0.2385 19.8389 47.5715 0.2654 0.3180
18 8 0.2253 18.6854 44.5094 0.2532 0.3039
19 9 0.2134 18.0892 42.8038 0.2420 0.2909
20 10 0.2028 17.8180 41.8938 0.2316 0.2790
21 11 0.1931 17.7520 41.4883 0.2220 0.2681
22 12 0.1843 17.8234 41.4221 0.2131 0.2580
23 13 0.1763 17.9910 41.5944 0.2048 0.2486
24 14 0.1690 18.2285 41.9407 0.1972 0.2399

Hybrid 311A
rr n, [ii] JPCA JMuX D,·ef11ciency D·e11iciency

13 3 0.3077 89.9824 192.1668 0.2900 0.3619
14 4 0.2857 38.4415 64.0807 0.2790 0.3459
15 5 0.2667 26.2623 42.0073 0.2672 0.3301
16 6 0.2500 21.5482 34.4312 0.2555 0.3152
17 7 0.2353 19.3102 30.8600 0.2442 0.3012
18 8 0.2222 18.1571 28.9759 0.2336 0.2883
19 9 0.2105 17.5660 27.9590 0.2237 0.2764
20 10 0.2000 17.3005 27.4453 0.2144 0.2653
21 11 0.1905 17.2393 27.2487 0.2058 0.2551
22 12 0.1818 17.3141 27.2644 0.1978 0.2457

. 23 13 0.1739 17.4840 27.4292 0.1903 0.2369
24 14 0.1667 17.7226 27.7024 0.1833 0.2287

Hybrid 311B
n rr, [ii] JM, JMMX D,·e11iciency D·e11iciency

13 3 0.2564 117.7060 180.9145 0.1973 0.2720
14 4 0.2381 52.3044 83.3499 0.1898 0.2599
15 5 0.2222 36.4649 58.7763 0.1818 0.2481
16 6 0.2083 30.2498 48.8406 0.1738 0.2368
17 7 0.1961 27.2770 43.9368 0.1662 0.2264
18 8 0.1852 25.7412 41.2958 0.1589 0.2167
19 9 0.1754 24.9566 39.8505 0.1522 0.2077
20 10 0.1667 24.6103 39.1091 0.1459 0.1994
21 11 0.1587 24.5406 38.8154 0.1400 0.1917
22 12 0.1515 24.6563 38.8232 0.1346 0.1846
23 13 0.1449 24.9018 39.0434 0.1295 0.1780
24 14 0.1389 25.2417 39.4187 0.1247 0.1718
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Table C.21 (continued)
Hybrid Designs - Minimum JPCA and JPCMAX

Hybrid 416A
n rv, [ii] JPCA J,c„„ D,-eüiciency D-efliciency

20 4 0.2148 88.0980 181.5988 0.1276 0.1758
21 5 0.2046 58.6073 124.3814 0.1232 0.1695
22 6 0.1953 46.5420 99.8379 0.1188 0.1634
23 7 0.1868 40.3715 86.8975 0.1147 0.1577
24 8 0.1790 36.8213 79.2737 0.1 107 0.1524
25 9 0.1719 34.6436 74.4908 0.1070 0.1473
26 10 0.1653 33.2683 71.3757 0.1034 0.1425
27 11 0.1591 32.4002 69.3394 0.1001 0.1381
28 12 0.1534 31.8723 68.0263 0.0970 0.1338
29 13 0.1482 31.5829 67.2331 0.0940 0.1299
30 14 0.1432 31.4672 66.8144 0.0912 0.1261
31 15 0.1386 31.4817 66.6779 0.0885 0.1226
32 16 0.1343 31.5961 66.7594 0.0860 0.1192
33 17 0.1302 31.7891 67.0142 0.0836 0.1160
34 18 0.1264 32.0447 67.4102 0.0813 0.1130
35 19 0.1228 32.3511 67.9165 0.0792 0.1102
36 20 0.1193 32.6993 68.5150 0.0771 0.1075

Hybrid 4168
n n„ [ii] J,c_, J,c„„ D,-eßicicncy D-eüiciency

20 4 0.2102 83.8791 143.0494 0.1326 0.1815
21 5 0.2002 55.7937 95.4301 0.1280 0.1750
22 6 0.1911 44.3217 75.7191 0.1235 0.1688
23 7 0.1828 38.4637 65.5062 0.1 192 0.1629
24 8 0.1752 35.0990 59.5397 0.1151 0.1573
25 9 0.1682 33.0397 55.8105 0.1112 0.1521
26 10 0.1617 31.7430 53.3945 0.1075 0.1472
27 11 0.1557 30.9281 51.8138 0.1041 0.1426

. 28 12 0.1501 30.4363 50.7917 0.1008 0.1382
29 13 0.1450 30.1709 50.1640 0.0977 0.1341
30 14 0.1401 30.0703 49.8233 0.0948 0.1302
31 15 0.1356 30.0933 49.6971 0.0920 0.1266
32 16 0.1314 30.2111 49.7417 0.0894 0.1231
33 17 0.1274 30.4033 49.9145 0.0869 0.1 198
34 18 0.1236 30.6549 50.1933 0.0846 0.1167
35 19 0.1201 30.9547 50.5580 0.0823 0.1138
36 20 0.1168 31.2942 50.9864 0.0802 0.1110
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Table C.21 (continued)
DCSigI1S • JPCA 3.Ild JPCMAX

Hybrid 4I6C
n n„ [ii] J,c_, J,c-MAX D,-efticiency D-efliciency

20 4 0.1976 93.4907 158.9163 0.1 174
”

0.1646
21 5 0.1882 62.3556 106.0865 0.1133 0.1587
22 6 0.1797 49.6040 84.1666 0.1093 0.1531
23 7 0.1719 43.0791 72.7979 0.1055 0.1477‘
24 8 0.1647 39.3247 66.1459 0.1019 0.1427
25 9 0.1581 37.0229 61.9887 0.0984 0.1379
26 10 0.1520 35.5706 59.2877 0.0952 0.1335
27 11 0.1464 34.6559 57.5192 0.0921 0.1293
28 12 0.1412 34.1016 56.3747 0.0892 0.1253
29 13 0.1363 33.8004 55.6694 0.0865 0.1216
30 14 0.1318 33.6834 55.2846 0.0839 0.1181
31 15 0.1275 33.7046 55.1407 0.0814 0.1148
32 16 0.1235 33.8320 55.1786 0.0791 0.1116
33 17 0.1198 34.0427 55.3661 0.0769 0.1087
34 18 0.1163 34.3200 55.6702 0.0748 0.1059
35 19 0.1129 34.6513 56.0659 0.0729 0.1032
36 20 0.1098 35.0270 56.5429 0.0710 0.1006
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