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ABSTRACT Traditional DOA estimation algorithms have poor adaptability to antenna errors. To enhance
the direction of arrival (DOA) estimation performance for moving target echo signals in the environment
of multiple type illuminators of opportunity, a DOA estimation framework leveraging deep learning net-
works (DLN) is proposed. In the proposed framework, the DLN is divided into two main components,
including linear classification networks (LCN) and convolutional neural networks (CCN). The LCN is
utilized to identify the spatial subregion of received signals and divide the signals from each subregion into
corresponding output modules. Then, the output of the LCN after matrix transformations will be input into
multiple parallel CNNs, where DOA estimations are carried out. Extensive simulation studies are conducted,
demonstrating that our proposed method has excellent estimation performance and strong universality with
high estimation accuracy even under large antenna defects.

INDEX TERMS Convolutional neural networks, deep learning networks, direction of arrival estimation,
illuminator of opportunity, linear classification networks.

I. INTRODUCTION complicated electromagnetic environments [ 1]-[3]. Direction

In the moving target detection, illuminators of opportu-
nity are fundamental and important for observation data
information, which may be realized by heterogeneous radi-
ation sources, such as FM radio, communication base sta-
tions, digital TV, and satellites. Unfortunately, due to a fact
that radiation sources may result in complicated electro-
magnetic environments, it is difficult to carry out target
detections in such an environment. Therefore, some scholars
have begun to study the target detection technology under
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of arrival (DOA) estimation is one of technologies in the
moving target detection. The basic idea behind the DOA
estimation is to estimate the wave direction by using the
measurement data received by the sensor array arranged in a
certain way. Obviously, the position parameters of the moving
target could be more precisely estimated with both DOA esti-
mations and the time delay difference considered compared
to only relying on either of them. However, DOA estimations
in the moving target detection is very challenging because of
complicated electromagnetic environments. Therefore, in this
paper, we focus on studying DOA estimations in the moving
target detection under multiple illuminators of opportunity.
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Recently, more and more scholars have participated in the
research on the DOA estimation and made great progress
[4]-[6]. One of representative work is the MUSIC algo-
rithm and the corresponding improved methods, like
ROOT-MUSIC [7]. In addition, rotation invariant subspace
based methods have also been proposed to address DOA
estimation problems [8], [9]. in [10] DOA estimation was per-
formed using the MUSIC method and the ESPRIT method,
and the performance of the MUSIC and ESPRIT algorithms
were compared according to the required calculation time and
estimated DOA resolution. although the ESPRIT algorithms
can effectively avoid a large number of calculations, such
as spectral peak search, and improve the parameter estima-
tion efficiency, this method cannot always possess preferable
performance, which has a slightly worse estimation accu-
racy than the MUSIC algorithm. Notably, traditional DOA
estimation methods have to depend on the strong assump-
tions of specific antenna array types or the antenna array
geometry, making these method unable to adapt to general
cases. For example, the methods introduced in [11]-[13], are
merely applicable in particular antenna array patterns and
may not be able to achieve good performance in other cases
and correct the errors caused by unsuitable antenna array
patterns. To overcome these problems, some scholars have
proposed some methods that do not need to correct array
errors [14], [15].

Deep learning technologies and artificial neural network
have been used in array signal processing and array antenna
technologies [16]. The DOA estimation method based on
multilayer perception have been proven to be able to real-
ize high resolution in DOA estimations [17], [18]. In [19],
the authors proposed a DOA estimation method based on
radial basis neural network (RBFNN) for uncorrelated and
related signals, which have proven that can greatly reduces
the CPU time for DOA estimations, but there is some decrease
in estimation accuracy Furthermore, to enhance the position-
ing accuracy of the RBFNN method, DOA estimation meth-
ods based on back propagation (BP) neural network were
proposed, in which the particle weight algorithm (PSO) was
used to optimize the weight and threshold [20]. In addition,
the convolutional neural networks are used for sound source
DOA estimation [21]-[23], when there are sufficient training
samples, good estimation performance can be obtained by
using convolutional neural networks. The authors in [24]
proposed a DOA estimation method based on deep neural
networks (DNN), which can achieve a higher estimation
accuracy compared to the methods based on support vec-
tor machine (SVM). Unfortunately, this method is appli-
cable only when the signal angle is in the range of 6 €
[—60, 60]. Apparently, existing traditional DOA estimation
methods are designed for particular antenna array patterns
and are not applicable in general cases. While deep learning
based methods are used for DOA estimations, the network
generalization burden is very large and input data can not
be fully utilized, resulting in low accuracy of the estimation
performance.
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Thus, in this paper a deep learning networks (DLN) frame-
work is proposed for DOA estimation, consisting of two main
components, a linear classifier networks (LCN) and a con-
volutional neural networks (CNN). The LCN is leveraged to
conduct preliminary classification, in which the output units
of the LCN are comprised of P groups. Each group of output
units represents a spatial subregion of a certain angular range.
The signals are processed by LCN and output into different
units. Then the CNN is responsible for DOA estimations
in each subregion. The main innovative contributions of the
proposed method are summarized as follows:

+ A novel DOA estimation method using deep learning
networks (DLN) is put forward consisting of linear
classification networks (LCN) and convolutional neural
networks (CCNs).

o The LCN is employed to simplify the burden of CNN
and improve estimation performance. Additionally, L1
regularization terms are deployed in LCN to address the
overfitting issue. CNNs are applied to perform DOA
estimations, where CNNs take fully advantages of the
connection between the real and imaginary signals for
the DOA estimation performance improvement.

o The parameters in neural networks and deep learning are
optimized by extensive simulation studies.

The rest of this paper is organized as follows. The system
model and signal model are presented in Section II. The
preprocessing of received signals is expressed in Section III.
The DLN framework and DOA estimation method are intro-
duced in Section IV. The DLN training precess is described in
Section V. Section VI shows the numerical examples to verify
the estimation performance. Finally, Section VII concludes
the main work of this paper.

Il. SYSTEM MODEL AND SIGNAL MODEL

A. SYSTEM MODEL

As shown in Fig. 1, areceiver will receive two types of signals
through two channels, a surveillance channel and a reference
channel. One is echo signals which is generated by the irra-
diation of illuminators of opportunity from a moving target.
Another one is direct waves from multiple type illuminators
of opportunity directly. Echo signals and direct waves are
received on a surveillance channel and a reference channel,
respectively. Since the position of the illuminator of opportu-
nity is known, we are only concerned with the condition of the
surveillance channel. In practice, on a surveillance channel,
the receiver will receive not only echo signals, but also direct
wave signals and multipath signals.

As the power of direct wave interference signals and multi-
path interferenc signals are much stronger than echo signals,
echo signals may be submerged in the interference. There-
fore, we need to suppress the direct path interference (DPI)
and the multiple path interference (MPI) on the surveillance
channel. Since the current research on suppression technol-
ogy is quite mature, many existing DOA estimation methods
are based on the assumption that interference signals could be
effectively suppressed [25]. Without loss of generality, in this
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FIGURE 1. System model.

paper it is assumed that interference signals are suppressed
with the method introduced in [26].

B. SIGNAL MODEL
An array antenna composed of antenna elements receives
echo signals. These echo signals are a mixed signal composed
of independent illuminator of opportunity reflected by the
target. After DPI and MPI suppression, the received signal
can be expressed as

K

x() =Y a@)s(t)+n(1), e

k=1

where si(t) represents various illuminators of opportunity
signal components in the echo signals, a(6y) represents the
array responding function, and 6y is the angular information
of the echo signal of each illuminator of opportunity. Since
the propagation path of the echo signal is from the target to
the observation antenna, the incident angle 6 = 6, = ... =
6r = 0, and n(t) stands for zero mean Gaussian noise.

After the received signal being sampled, it can be expressed
as follows

K

xX(tg) = Y a@)spltg)+nlty), forg=1,---,0, (2)

k=1

where t, represents sampling time.

In actual scenarios, due to the influence of various error
factors, the preset array responding function often cannot
accurately correspond to the actual antenna. e is used as
the error parameter, then the model of the signal can be
expressed as

K

xX(tg) = Y a, e)siltg)+nlty), forg=1,---,0, ()

k=1
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where a(0, e) represents the array responding function con-
taining the error parameter and ||a(@, e)||, = 1, ||e]|, is the I»
norm.

Ill. PREPROCESSING OF RECEIVED SIGNALS

In the DOA estimation, the signal without additional pro-
cessing is usually not directly sent to the neural network for
training [27], but the covariance matrix of the signal is used
as the input of the neural network [19], [24]. The covariance
matrix of the received signal is expressed as

Ry = Elx(1g)x" (1,)] = ASA™ + Ry, )

where E[e] and (o) represent the expectation and conjugate
transformation, A is the array response function, and S and
Ry are the signal covariance matrix and noise matrix, which
can be expressed as following

S = E[s(0)s" (1)1, )
Ry = E[n(t)n” (1)]. (©6)

The noise obeys zero mean Gaussian distribution, so the noise
matrix also expressed as

Ry = oI, @)

where o represent the noise variance, and the covariance
matrix is rewritten as

Ry = Elx(t)x" (1)) = ASAM + o1, (8)

where Ry, is a symmetric matrix, so we are only interested in
the upper triangle part of the covariance matrix. The normal-
ized elements of upper triangle part can be expressed as

r=E[Ri2R13...RiuR23...Ropm .. ~RM71,M]Ta &)
r = E[Real {FT}, Imag {FT}]T/IIFIIz, (10)

where R; ; represents the element in the i-th row and the j-th
column in the covariance matrix, and Real {e} and Imag {e}
are the real part and the imaginary part, respectively.

IV. FRAMEWORK OF DEEP LEARNING NETWORKS

In this section, a DLN DOA estimation framework is pro-
posed to address the DOA estimation problem, which consists
of a LCN and a CNN. The angular space where signals may
exist is divided into P regions, and the function of the LCN
is to divide the received signals into corresponding regions.
Each region is adopted a CNN. The output of the LCN will
be input to the corresponding multiple CNNs after matrix
transformation, and the DOA estimation after performing a
spectral peak search operation on the output of the CNN. The
design of the entire DLN framework is shown in Fig. 2.

A. LINEAR CLASSIFICATION NETWORKS

The autoencoder can extract the key information by reducing
the dimension of the data, and obtain accurate results when
the network structure is relatively simple [28]. The purpose
of introducing a LCN is to divide the received signal into the
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FIGURE 2. Framework of deep learning networks.

spatial subregion where it comes from, the form of input data
will not be changed during this process, so we consider using
autoencoder networks to build this LCN.

An autoencoder networks consists of an encoder and a
decoder, where the encoder compresses the input vector to a
lower dimension to extract the principal components from the
original input, and then the decoder restores it to its original
size. Different from general autoencoder networks, the output
dimension and input dimension of the LCN are different. This
is because we want to output the input vector at different
decoders, each decoder corresponds to a spatial subregion.
Therefore, the output dimension of the LCN is P times the
input dimension.

Although there are only unidirectional signals in the scene,
the design principle of the auto-encoder network is to recover
the signals from different regions at different decoders. Based
on this design principle, we think the network should have
superimposed properties. And we expect that no matter what
the input signal is, there will be a decoder with the same
output as the input signal, so the network should also be
homogeneous. For the above considerations, the classifica-
tion network should be the LCN.

For the LCN, the effect of one hidden layer is the same as
that of multiple hidden layers. Therefore, the LCN has only
three layers of structures, namely the input layer, the hidden
layer and the output layer. The input of the LCN is the real
and imaginary parts of the upper triangular elements of the
normalized covariance matrix. The input layer and the hidden
layer are fully connected, the connection between the hidden
layer and the output layer as

f =Wc+b, (11)

where ¢ represents the neuron of the previous network layer,
W represents the weight matrix, b is the amount of paranoia,
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f stands for the neuron that the current network. In order to
avoid overfitting, L1 regularization term can be added as a
penalty term.

B. INTELLIGENT INFORMATION REPRESENTATION

Each decoder output can be connected into a one-dimensional
matrix. The decoder output corresponding to the subregion
where the echo signal exists is 7. In view of ¥ = r, the ele-
ments in matrix 7 are composed of the upper triangular ele-
ments of the covariance matrix R,, under ideal conditions.
Therefore, it can be transformed into the covariance matrix
R, through an inverse transformation. Considering that the
CNN may not be able to identify complex terms, it is nec-
essary to separate the real and imaginary part of the signal
into two matrices, which the real matrix R and the imaginary
matrix R are shown as

"Ri1 -+ Riwm
R=|: -. , (12)
Ry Ryt m
[Rii -+ Rim ]|
R=|: - , (13)
Ry Ry

where R = Real {F"} and R = Imag{7"}. Since the
covariance matrix is symmetrical, all elements in the real
matrix R and imaginary matrix R can be restored from the
output of decoders.

C. ESTIMATOR BASED ON CONVOLUTIONAL

NEURAL NETWORKS

For many neural networks, there is no special relationship
between the input neurons of the neural network, and the
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input neurons are not given a special connection during the
network processing. Therefore, the relationship between the
real and imaginary elements in the one-dimensional matrix
7 is not used by these neural networks, but in fact there is a
one-to-one correspondence between the real and imaginary
elements. For example, the element in the i-th row and j-th
column of the covariance matrix Ry is R;;, which can satisfy
the following

Rij = Rj + jRy, (14)

where R,-j and le represent the real and imaginary parts of R;j,
respectively.

CNN can take advantage of the connection between I_ng and
I~€ij instead of ignoring this relationship like many other neural
networks [29]. The real matrix R and the imaginary matrix R
are sent to the convolutional neural network together, the ele-
ments in R and the elements in R will be fused in the first
convolution layer. It should be noted that the CNN treats
the matrix elements in the same position in R and R in the
same way. Therefore, we believe that the features extracted
by the CNN can better explain the relationship between the
received signals and the more accurate estimation results can
be obtained.

The input of the CNN is the real matrix R and the imag-
inary matrix 1~?, and its dimensions are M xM. The struc-
ture of the CNN includes convolutional layer, pooling layer,
and fully connected layer. The settings of each layer are as
follows:

The real and imaginary matrix corresponding to the p-th
decoder can be used as the input of the p-th CNN classifier.
The input data first passes through a convolution layer. The
structure of the convolution layer 4 is as follows

h=o(W %V +b), (15)

where V represents the input data, W is the trained con-
volution kernel, b represents the offset, and o (e) stands for
the activation function. The convolution kernel is trained by
the stochastic gradient descent method. This paper uses the
hyperbolic tangent function fanh(x) as the activation function,
which is shown as

X
tanh(x) = c e

e (1o

wherex =W %V 4 b.

After the input data passes through the convolutional layer,
a pooling operation is needed to reduce the network overhead.
Since the input of the CNN is a matrix of M x M dimensions,
and M is the number of antenna elements. It is generally not
too large, so only one or two pooling operations are required.
There are two types of pooling, which are maximum pooling
and average pooling. Because the scale of the input matrix is
small and the angle range to be estimated is wide, we choose
the average pooling method to process the data in order to
make full use of useful information.
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The input of this layer is a new vector composed of all
the feature maps output by the convolution layer, and the
connection mode is fully connected. The goal is to integrate
the local features extracted by the convolutional layer into a
high-level feature. Local vision is integrated in dense layers,
resulting in a feature based on global vision.

The output layer neurons of the CNN represent the angle
of the horizontal space. Each CNN is responsible for the
DOA estimation of a subregion. The number of neurons in
the output layer is related to the range of angles contained
in the subregion. Each neuron represents an angular grid in
horizontal space, and all the output layer neurons of each
CNN to form a one-dimensional matrix yl.Ti =12,...,P
to determine whether a signal exists in the corresponding
subregion by concatenating the outputs of P convolutional
neural networks into a one-dimensional matrix in the same
way. It should be noted that multiple CNNs work in parallel
to obtain estimation results.

When the echo signals come from only one direction, using
the SoftMax as the activation function in the output layer can
greatly improve the training speed. In order not to destroy the
mode of CNN estimators working in parallel, an activation
function must be added after each CNN, instead of only
adding an activation function after CNN. SoftMax can be
expressed as

Zi

Vi= fori=1,2,---,J, (17

>
j=1
where z; represents the value of the i-th output neuron when
no activation function is added, J is the number of neurons
in the output layer of each convolutional neural network,
and y; stands for the final output value of the neurons in the
output layer. However, using SoftMax directly will also cause
a negative impact. CNN estimator without softMax function
may cause training to fail to converge. To solve this problem,
the SoftMax function must be modified as
&5iP)
v =P ———fori=1,2,--- , Jp=1,2,--- , P, (18)

J
Z eY ®
=1

_ I,

P ~
> (7
=

w(l)) forp:],z’... P, (19)

where (o)?) represents the p-th CNN estimator, 7 repre-
sents the output of the p-th decoder in the LCN, and @®
is the proportion of the output of the p-th decoder among
all decoder outputs. The introduction of weighting factor
o can effectively alleviate the side effects of the SoftMax
function.

After getting the outputs of all CNN estimators, we connect
the outputs of all CNN estimators in order to estimate the
direction of the signal. Only the grid nodes that are expected
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to be close to the true signal direction are taken as positive
numbers, and all other grid nodes are taken as zero, and then
the spectrum peak search is performed to obtain the DOA
estimation result.

Algorithm 1 The Procedure of DOA Estimation Based on
LCN-CNN

1: Calculate the covariance matrix R,, of the received
signal x(7);

2: Extract the upper triangular elements of R,,, separate the
real and imaginary parts of each element to form a one-
dimensional matrix r;

3: Send r to the LCN and pass through a linear network
layer: h = o(W % r + b);

4: The compressed data  is restored to 7) by P decoders
through a linear network layer;

5: Calculate the proportion of the output of the p-th decoder
[ P

7 ;

Tl

6: 7P is restored into a covariance matrix through matrix
transformation, and constitutes a real matrix R and an
imaginary pmatrix R®);

7. P CNNs work in parallel, the real matrix R” and the
imaginary matrix R?) are sent to a CNN together and
passed through the convolutional layer, and activation
function is a(x):?;—zj;

8: R? and R® pass through the first convolution layer, and
the output results are superimposed as R?;

9: RW) is sent to a average pooling layer, and the output of
the pooling layer is then passed through m convolutional
layers as shown in 7;

10: The output of the last convolutional layer passes through
the fully connected layer and the output layer, and the
output of the CNN is 7P,

11: The outputs of the output layers of the P CNNs pass the
weighted SoftMax y;” = a)(p)fz;p);

» ez]-(l?)
j=1

12: Concatenate all outputs y;” tjo form a one-dimensional
matrix y;

13: Perform spectral peak search on y to get the result of
DOA estimation;

14: End.

among all decoder outputs: ®? =

In summary, the proposed DLN framework includes LCN
and CNNs. The upper triangular element of the covari-
ance matrix of the received signal is represented by a
one-dimensional matrix », which is input into the linear
neural network. The LCN will initially classify the signals
and divide the signals into corresponding subspace regions.
The output of the LCN undergoes matrix transformation to
form a real matrix R and an imaginary matrix R, which are
input to the CNN estimator for DOA estimation. The proce-
dure of DOA estimation based on LCN-CNN is summarized
in Algorithm 1.

14814

V. TRAINING OF DEEP LEARNING NETWORKS

A. TRAINING OF LINEAR CLASSIFICATION NETWORKS
During the DLN training, the input r of the LCN is the upper
triangular element of the received signal covariance matrix.
If there is an echo signal in the spatial subregion corre-
sponding to the decoder, the expected output of the decoder
is r. If there is no echo signal in the spatial subregion cor-
responding to the decoder, the values of the neurons in the
output layer of the decoder are all 0. Our proposed solution
divides the 180-degree horizontal space into 9 regions, and
each decoder corresponds to 20 degree spatial angle range.
Since the signal may come from any angle in the half-plane,
theoretically there should be an infinite number of types of
training signals, and the direction of arrival 6 € [0, 180]
is a continuous variable. It is unrealistic to send an infi-
nite number of signals to the DLN for training. Therefore,
the training set we constructed only contains signals with
an integer direction of arrival, and the noise is set to zero
mean Gaussian noise. Each set of training data is randomly
shuffled the order, and then slice it and send it to the LCN for
training.

The parameters of network training are set as follows: the
training signals are FM, DVB-T, GPS and GSM, the power
ratio of these illuminators of opportunity signals is set as 1:
0.8: 0.025: 0.025, the signal-to-noise ratio (SNR) is 10dB,
and the number of antenna elements is 10, the training step
is 0.001, the number of training is 400, and the evaluation
criterion is the root mean square error (RMSE) between the
network output and the label and the RMSE with the progress
of LCN training is shown in Fig. 3.

35
iy
3
'
251 %
}
s ° A
Y
z !
15 i
\
T \\
05 “\
A, T,
0 100 200 300 400 500 600 700
Sample index

FIGURE 3. Training of linear classification networks.

B. TRAINING OF CONVOLUTIONAL NEURAL NETWORKS
The training of the CNN estimator after the LCN training
completed, so when training the CNNs, the parameters of the
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LCN have been fixed. Therefore, a LCN can be considered as
a preprocessing process, which divides the signal into the spa-
tial subregion to belongs, resulting in each CNN performing
DOA estimation on the signal in only one spatial subregion,
reducing the generalization burden of CNNss.

The data received by the CNN estimator is the output of
the self-encoder, and the output is the signal distribution in
the horizontal space. There are 180 output units in the P CNN
estimator. The value of each unit represents whether there is
an incoming wave in the angular direction. Training rule of
the label as follows: if the signal’s arrival angle 6 = 6, then
only the value of the neuron in the k-th output layer is positive,
and the values of the other output layer neurons are 0. (If 6
is not an integer, for example, there is a signal at an angle
of 20.5, then the output of the 20th neuron is 21.5-20 = 0.5,
the output of the 21st neuron is 22-21.5 = 0.5, and the value
of other neurons is 0).

When training the CNN estimator, the input data needs to
pass through the LCN before entering the CNN estimator.
Therefore, during the training process, the input data of the
CNN estimator and the input data of the LCN are the same,
the expected output of the CNN estimator is not same as
the expected output of the LCN. The evaluation criterion
is the RMSE between the CNN output and the expected
output.When the number of neurons in each network layer
is not optimized, the change of RMSE with the progress of
CNN training is shown in Fig. 4.

551
50
451
40
351
w L
& 30

= s,
oc25F :

20 S

0 s s
0 50 100 150 200 250 300 350 400
Sample index

FIGURE 4. Training of convolutional neural networks.

VI. SIMULATION RESULTS AND ANALYSIS

A. ESTIMATION PERFORMANCE WITH DIFFERENT SNR

In order to verify the effectiveness of the proposed method,
the simulation experiment using MATLAB and the four
types illuminators of opportunity including FM, DVB-T,
GPS and GSM are considered. In the application scenario of
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FIGURE 5. Performance of proposed method with different SNRs.

the proposed method, the SNR is usually lower than 10dB.
We have designed an experiment to evaluate the estimation
effect of the DLN under different SNRs. The testing signals
are FM signals, DVB-T signals, GPS signals and GSM sig-
nals, the power ratio of these external radiation source signals
is 1: 0.8: 0.025: 0.025, the DOA of the test signal is 12.5,
the number of tests is 3000, the SNR region is [—10dB,10dB],
and the interval is 2. The performance of the proposed method
with different SNRs in Fig. 5. Form Fig. 5, it can be seen that
the estimation performance tends to stabilize when the SNR
more than 4, which meets the needs of the DOA estimation
scenario.

B. OPTIMIZATION OF THE NUMBER OF NEURONS

In order to optimize the network structure and pursue a
faster training speed and training effect, it is necessary to
optimize the structure of the DLN and the number of neurons
in each network layer. In the proposed DLN, the LCN has
only one hidden layer, and the network structure is relatively
simple. Therefore, its optimization is not described in detail
in this section. We are interested in the optimization of CNN
estimators. According to the application scenario, we pro-
posed a reasonable network architecture, and then selected
several different situations to optimize the number of neurons.
In view of the dimensions of the input covariance matrix
are relatively small, the size and step size of the convolu-
tion kernel are set to 2 without adjustment. Therefore, it is
necessary to optimize the number of convolution kernels of
convolution layer 1, the number of convolution kernels of
convolution layer 2, and the number of features of the fully
connected layer.

We selected several groups of neurons for comparison,
and the estimation performance with different numbers of
neurons is shown in Tab. 1. In Tab. 1, Conv1 represents the
convolution layer 1, and Conv2 represents the convolution
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TABLE 1. Estimation performance with different numbers of neurons.

Group | Convl | Conv2 | Fullc | Times | Size RMSE
1 8 16 32 700 1800 | 0.93771
2 16 32 64 700 1800 | 0.51687
3 32 64 128 700 1800 | 0.22017
4 64 128 256 700 1800 | 0.34673
5 128 256 512 700 1800 | 0.58008
2 T
== 8/16/32
1.8 [ | ——16/32/64 ]

32/64/128
1.6 [ | —4—64/128/256 ]
~O— 128/256/512

RMSE

FIGURE 6. Estimation performance of different schemes with different
array defects.

251 [=6=Music
—o— LON-CNN

FIGURE 7. Estimation performance comparison with mixed error.

layer 2, the Fullc is the fully connected layer. Each sample set
has 1800 signals, which are obtained by sampling 180 signals
with integer angles 10 times respectively. Each training has
a total of 700 sample sets, and the RMSE in the table is
the average RMSE of 2000 times network training. The test
signal is a mixed signal with an arrival angle of 32.5 degrees
and SNR is 5dB. From tab. 1, it can be seen that the test results
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25

—6—MusiC
=8—LCN-CNN

RMSE

FIGURE 8. Estimation performance comparison with amplitude and
phase errors.

—6—-MusiC
1.6 |—8—LCN-CNN

RMSE

rho

FIGURE 9. Estimation performance comparison with sensor position
error.

are best when the number of neurons is 32/64/128. It should
be noted that the training set only contains signals with integer
arrival angles, so the samples are insufficient. In this case,
when the network model is too complicated, overfitting will
occur, so the neurons in group 4 and group 5 are more than
in group 3, but the estimated performance is worse than
group 3.

C. ADAPTABILITY OF DPN TO ARRAY DEFECTS

The previous experiments were designed on the premise that
array defects did not exist, and the difference in the number of
neurons may lead to different adaptability to different array
defects. In order to illustrate the effect of the number of neu-
rons on the adaptability of the neural network, we preset the
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FIGURE 11. Performance comparison of different estimation methods.

basic values of amplitude error, phase error, sensor position
error, and mutual coupling, and define a multiplicative vari-
able rho as the coefficient of these errors. Therefore, when rho
takes different values, it means that the antenna array defects
are different. Estimation performance of different schemes
with different array defects in Fig. 6. From Fig. 6, it can be
seen that when the number of neurons is 32/64/128, both the
accuracy of the estimation and the stability of the estimation
are stronger than other schemes. We compared the proposed
method with the method based on MUSIC algorithm with
different array defects in Fig. 7, Fig. 8, Fig. 9, and Fig. 10.
From Fig. 7 to Fig. 10, we can see that the proposed method
can achieve good performance with different antenna array
defects.
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D. ESTIMATION PERFORMANCE COMPARISON

In order to evaluate the performance of the proposed method,
the proposed method is compared with the CNN method
without LCN and the DNN method in [24]. The angles of the
mixed echo signals are taken [—83.5, —63.5, —43.5, —23.5,
—3.5,23.5,43.5,63.5, 83.5,], and performance comparison of
different estimation methods in Fig. 11. Form Fig. 11, it can
be seen that both the proposed method and the DNN method
have better estimation performance than the CNN method.
When ||0]|; is small, the estimation performance of the pro-
posed method and the DNN method are close. However,
when ||| is large, the estimation performance of proposed
method is much better than the DNN method. Although the
angle ||6]|; is large, the effect of proposed DOA estimation
is still good. In addition, compared with the DNN method
which can only detect signals in the range of 120 degrees,
the proposed method can estimate DOA on signals in the
half-plane.

VIl. CONCLUSION

In this paper, a novel and robust DOA estimation method
is proposed for echo signals with multiple illuminators of
opportunity using linear classification networks and con-
volutional neural networks. Linear classification networks
(LCNs) are utilized to identify the spatial subregion of
received signals. Then, based on the output of LCNs,
the corresponding convolutional neural networks (CCNs)
are adopted to perform DOA estimations. With the help of
powerful neural networks, the proposed method has better
adaptability to various antenna array defects compared with
traditional methods, such as MUSIC algorithm. Extensive
simulation studies are conducted to show that the proposed
method has better estimation performance compared to other
methods based on neural network.
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