
 

 

Estimation of Uncertain Vehicle Center of Gravity using 

Polynomial Chaos Expansions 
 

 

Darryl Price 

 

Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University 

in partial fulfillment of  the requirements for the degree of 

 

 

Master of Science 

in 

Mechanical Engineering 

 

 

Dr. Steve Southward, Chairman 

Dr. Adrian Sandu 

Dr. Corina Sandu 

 

 

 

June 3, 2008 

Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 

 

Keywords: polynomial chaos expansion, center of gravity, 8-post test, Galerkin method 

 

Copyright 2008, Darryl Price 



Estimation of Uncertain Vehicle Center of Gravity using Polynomial 

Chaos Expansions 

 

Darryl Price  

 

Abstract 

 

The main goal of this study is the use of polynomial chaos expansion (PCE) to analyze 

the uncertainty in calculating the lateral and longitudinal center of gravity for a vehicle 

from static load cell measurements. A secondary goal is to use experimental testing as a 

source of uncertainty and as a method to confirm the results from the PCE simulation. 

While PCE has often been used as an alternative to Monte Carlo, PCE models have 

rarely been based on experimental data. The 8-post test rig at the Virginia Institute for 

Performance Engineering and Research facility at Virginia International Raceway is the 

experimental test bed used to implement the PCE model. Experimental tests are 

conducted to define the true distribution for the load measurement systems’ uncertainty. 

A method that does not require a new uncertainty distribution experiment for multiple 

tests with different goals is presented. Moved mass tests confirm the uncertainty analysis 

using portable scales that provide accurate results. 

 

The polynomial chaos model used to find the uncertainty in the center of gravity 

calculation is derived. Karhunen-Loeve expansions, similar to Fourier series, are used to 

define the uncertainties to allow for the polynomial chaos expansion. PCE models are 

typically computed via the collocation method or the Galerkin method. The Galerkin 

method is chosen as the PCE method in order to formulate a more accurate analytical 

result. The derivation systematically increases from one uncertain load cell to all four 

uncertain load cells noting the differences and increased complexity as the uncertainty 

dimensions increase. For each derivation the PCE model is shown and the solution to the 

simulation is given. Results are presented comparing the polynomial chaos simulation to 

the Monte Carlo simulation and to the accurate scales. It is shown that the PCE 

simulations closely match the Monte Carlo simulations.  
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1. INTRODUCTION 

 

This chapter discusses the motivation behind the research. The objectives of the research 

are discussed next, and the chapter ends with an outline of the remainder of the thesis.  

 

1.1 Motivation 

 

In research and design it is necessary to know the confidence one has in a measurement, 

a parameter, or a design. If not properly analyzed and considered, an uncertain parameter 

can have unforeseen impacts on other parameters or dynamics of the system. There are 

various methods of analyzing these uncertainties. One common method is the Monte 

Carlo simulation.  

 

The Monte Carlo simulation finds the uncertain parameters uncertainty distribution 

through trial events. As long as each parameter is represented with its proper uncertainty 

distribution and enough attempts are made, the correct uncertain parameter distribution 

can be attained. It requires thousands to millions of trials may be needed to find a good 

approximation of the true distribution And may  take a lot of computational power and 

time.  

 

To analyze uncertainties the NASA-VIPER research team has been implementing other 

methods, one of which,  is the polynomial chaos approach. There are several polynomial 

chaos approaches including collocation and the Galerkin method, each of which, has 

distinct advantages and will be discussed later.  

 

Polynomial chaos has been shown to work for dynamic and static simulations, but rarely 

have the simulations been directly related to real world tests. The direct correlation 

between reality and simulation must exist for the simulation to be useful.  This study will 

use the 8-post rig at the Virginia Institute for Performance Engineering and Research 
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(VIPER) Lab to test the validity of the polynomial chaos approach against real world 

results. 

 

The VIPER Lab has recently built an 8-post rig at its facility at VIR (Virginia 

International Raceway). An 8-post rig is a vehicle dynamics rig that is used to analyze a 

vehicle’s suspension dynamics. The rig has the ability to put the vehicle through 

numerous tests to determine the vehicle’s ability to negotiate different road or terrain 

conditions. This is done through its four wheel shakers and four aero loaders. The wheel 

shakers are hydraulically driven and provide the road input. The four aero loaders are 

pneumatically powered and can provide other forces to the vehicle chassis such as: 

inertial forces from braking, cornering, and accelerating and aerodynamic forces. The 8-

post rig has been designed to operate with race vehicles to vehicles larger than a military 

Humvee. The equipment is designed to operate under dynamic situations and therefore 

measures high loads. This brings into question the accuracy of the load cells on the rig. 

Each load cell system is built to handle loads as high as 10,000 lbs to accommodate the 

dynamic forces of a heavy vehicle, while a static center of gravity test may measure 

loads as small as 400  pounds to a wheel. 

 

An important parameter to vehicle characteristics is its center of gravity. It would be 

useful to find this parameter by using the load cell system on the 8-post rig since this rig 

is used to define many vehicle parameters. However, the uncertainties for a lighter 

vehicle sitting statically may be significant. Each wheel pan would be working around 

5% of total capacity for a vehicle that weighs a ton. The uncertainties in these 

measurements create a useful test bed to implement polynomial chaos theory to an 

experimental situation.  

 

1.2 Objective 

 

The objective of this study is to setup a method to use polynomial chaos expansion to 

analyze the uncertainties in a real world situation based upon the calculation of a known 
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parameter. This objective will be achieved by using VIPER’s 8-post rig as a test bed. 

The method in achieving this goal is to use polynomial chaos expansion to propagate the 

uncertainty in the wheel load through the center of gravity equation. A distribution will 

be found to represent the wheel load uncertainty from vehicle testing and used in the 

PCE model. The simulation will be confirmed through a Monte Carlo Simulation and 

with accurate portable wheel scales.  

 

1.3 Outline 

 

The following thesis begins with a background of the subjects in the study. This includes 

a literature review of techniques used to find the center of gravity of a vehicle as well as 

other studies using polynomial chaos expansion theory. Chapter four details the 8-post 

rig at the VIPER facility and describes the experimental testing and the results from 

those tests. Chapter five derives the polynomial chaos expansion model for two separate 

uncertain wheel loads. Then the results of simulations are shown to show how an 

uncertainty impacts the center of gravity uncertainty. Also, results from the 8-post 

experiment are used for some of these simulations. Chapter six derives the polynomial 

chaos expansion model for multiple uncertain wheel loads using data collected in the 

experimental testing is used in the polynomial chaos simulations. The results from these 

simulations are discussed in chapter six as well. The thesis concludes with the results 

and recommendations in chapter seven. 
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2. LITERATURE REVIEW 

 

This section presents the results of previous literature in the areas of vehicle center of 

gravity calculation and error analysis and polynomial chaos theory. The differences 

between previous literature and those presented in this paper are also discussed. 

 

2.1 Center of Gravity Calculation 

 

Locating the center of gravity of a vehicle is important for anticipating the vehicle’s 

behavior in different situations. The easiest way to find the lateral and longitudinal 

coordinates of the center of gravity is to place the vehicle on four individual level scales. 

First, the track and the wheelbase of the vehicle are recorded. Then the weight at each 

wheel is recorded. The weight from each wheel and geometry are used in moment 

calculations to find the center of gravity in the longitudinal and lateral equations. This 

method is shown in more detail in Milliken’s Race Car Vehicle Dynamics [1] and is 

discussed more in Chapter 3. 

 

The most difficult center of gravity coordinate to attain in a vehicle is the height. There 

are multiple methods to attain this parameter, one of which, is to lift the rear axle of the 

vehicle so the front to rear wheel centerline creates a certain angle,θ , with the 

horizontal. A diagram of this is shown in the following figure which was reproduced 

with permission from Milliken. 
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Figure 2.1: Modified Reaction Method for Locating Vehicle CG Height   

(Milliken, 1995) 

 

The new configuration will cause a shift in vehicle weight towards the front wheels thus 

presenting a new center of gravity position. Knowledge of the vehicle parameters such 

as wheelbase ( l ), radius of front ( LFR ) and rear wheels ( LRR ), total weight of vehicle 

(W ), and longitudinal distance of the center of gravity ( a )of the vehicle are required. 

Special care must be taken in these tests such as the suspension motion must be locked. 

This prevents the suspension from impacting the results through stiction in the springs 

and damper.. The solution for vehicle height is given by equation (2.1). 

 

 
tan

F

L

W l Wb
h R

W θ
− 

= +  
 

 (2.1) 

 

LR  is the radius of the front tires, W is the total weight of the vehicle, and FW  is the 

weight of front of the vehicle during the test. A more complex equation is required if the 

front and rear wheels have different radii. A more in depth look at this method can be 

found in references [1, 3, and 4].  
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The above method of finding the center of gravity height can be used on a four post rig. 

The accuracy of test depends on the θ  that is achieved in tilting the vehicle. In general a 

greater θ  will achieve better accuracy. High accuracy can be achieved if the vehicle can 

be tilted forty degrees or more. More accurate results are produced for heavy vehicles, 

ones that weigh more than 1500 kg, than lighter ones. One advantage of using this 

method is that it requires very little specialty equipment. One simply needs vehicle 

scales and a way to lift the rear of the vehicle. If the vehicle can be lifted to high angles, 

forty degrees or more, accuracy of ( )2%±  can be attained for large vehicles. Other more 

difficult methods to locating the center of gravity height require special rigs.  

 

Four different methods of finding center of gravity height are compared to each other in 

Error Analysis of Center-of-Gravity Measurement Techniques by Shapiro, Dickerson, et 

al [3]. The modified reaction method has already been discussed. The null point method 

requires a platform that has two parallel knife edges several inches apart from each 

other. In this method the vehicle is placed so the center of gravity is between the two 

knife edges. The vehicle is then tilted in either direction until the vehicle balances on one 

knife edge. This indicates when the vehicle CG has rotated outside the stable zone 

between the knife edges. Therefore, the CG height can be calculated from the two tilt 

angles. This method is more accurate than the modification reaction method, but requires 

a special rig. 

 

Another method is the weight balance method. This method balances the vehicle on a 

rotating platform. Then a known mass is added to the platform to provide a torque. The 

amount the platform rotates will allow the height of the vehicle CG to be derived. Like 

the null point method, the weight balance method is very accurate, but requires a special 

rig [2]. The last method analyzed is the pendulum method. This method swings the 

vehicle at the end of a pendulum. Then the length of the pendulum arms is changed. 

Once again the vehicle is swung on the pendulum. The change in the period of the 

oscillation will allow the center of gravity of the vehicle to be attained. The advanced rig 
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for this test does not provide significant increases in accuracy over the modified reaction 

method.  

The goal of this thesis is to use polynomial chaos expansions to analyze the uncertainty 

in the load cell measurement system in the 8-post rig. Therefore, the distribution of the 

output from the load cell system will be used to analyze the uncertainty in the load 

measurement system. This information will be propagated through the perfect center of 

gravity calculation process to impact the lateral and longitudinal center of gravity 

coordinates of a vehicle.  

 

2.2 Polynomial Chaos Expansion  

 

Polynomial chaos expansion is a method that can be used to represent random variables 

as functions. The random variable can be represented by orthogonal polynomial chaos 

series. This series is constructed in the much the same way that the Fourier series is 

constructed except the functions are an orthogonal set of polynomials instead of complex 

combinations of sines and cosines. The series for polynomial chaos is created by the 

Karhunen-Loeve Expansion [7, 8, 11, 13, 15, 16].  

 

 ( ) ( ) ( )
0

, n n

n

x f xω θ λ ξ θ
∞

=

=∑  (2.2) 

 

This expansion was derived independently by Karhunen in 1947, Loeve in 1948, and 

Kac and Siegert in 1947. ( )nξ θ  is a set of random variables, nλ  is a constant, and ( )f x  

is an orthonormal set of deterministic functions, also know as basis functions [8].  

 

The basis functions ( )( )jφ ξ θ  are Askey-Weiner polynomial chaos expansions. They 

are in terms of the random variable,ξ . Multiple orthogonal polynomial sets are known 

that can represent different distributions. While theoretically any orthogonal polynomial 

set can represent any distribution, different sets more naturally represent a certain 
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distribution as shown in Table 2.1. These sets also converge faster to the solution 

because they require less polynomials to represent the distribution [7-9]. 

Table 2.1: Askey-Weiner Polynomial Chaos Basis Function Sets [9] 

Distribution Orthogonal Basis Function Set

Gaussian Hermite

Gamma Laguerre

Uniform Legendre

Beta Jacobi

Poisson Charlier

Negative Binomial Meixner

Binomial Krawtchouk

Hypergeometric Hahn  

 

The highlighted uniform and beta distributions in Table 2.1 are used in for this study. 

The uniform distribution can be represented by the Legendre polynomials. The uniform 

distribution only needs two of these polynomials to represent the distribution [7, 8, 10]. 

 

 ( )
( ) ( ) ( )

2

2

1 0

11
1

1/ 2 3 1 22 !

n
n

n n n

n

n

nn

ζ
φ ζ ζ

ζζ

=
 =  ∂ 

= − =    − =∂  

 ⋮ ⋮

 (2.3) 

 

The beta distribution is best represented by Jacobian polynomials. These polynomials 

are chosen by α  and β  that define the beta distribution. The Askey-Weiner 

polynomials and Karhunen-Loeve expansions can be placed into ODE’s, state-space 

models and other processes to represent uncertain variables or distributions as functions. 

There are two methods for solving these functions, Galerkin and Collocation [7, 8, 14, 

15]. 

 

The overall differences in these methods are the Galerkin method provides an analytical 

result, but the Collocation method decreases the computational requirements in plotting 

the distribution and does not provide as an exact of a solution. The Galerkin method can 

efficiently solve for the analytical results, but the distributions can take longer to 

compute than the collocation method. The collocation method decreases the number of 
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runs the solution must take by using pseudo-spectral methods. This method does not 

provide an analytical solution and requires some guess work in choosing collocation 

points. Still, it can significantly reduce the processing time over Monte Carlo or Galerkin 

methods and provide a good result. Since our process is static, computation time was 

less of a focus than arriving at a true solution. Therefore, the Galerkin method is used in 

this study. It should be noted that solving for the analytical equation via the Galerkin 

method is very fast, but plotting the solution is not as fast as the collocation method [7, 

14]. 
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3. PROBLEM DEFINITION 

 

This section will define the problem and derive the equations used to find the center of 

gravity of a vehicle in the lateral and longitudinal directions. Polynomial chaos 

expansions will be used to analyze uncertain variables in the center of gravity equation 

in later chapters. 

 

3.1 Calculation of Vehicle Center of Gravity 

 

The longitudinal and lateral center of gravity positions of a vehicle can be determined by 

knowing the effective normal forces of the vehicle at each wheel. This method is used as 

the simplest method to find the lateral and longitudinal center of gravity of a vehicle. It 

assumes the vehicle is completely static while the forces are measured. Any movement 

would create dynamic forces that would significantly impact the accuracy of the test.  

 

 

Figure 3.1: Force Diagram of Vehicle 
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Figure 3.1 shows the force diagram of a stationary vehicle. 1 2 3 4, , ,F F F F  are the normal 

forces at each wheel of the vehicle, x and y relate to the center of gravity, CG, 

coordinates of the vehicle, and L and T are the wheelbase and track of the vehicle. Static 

force and moment equations can be used to find the center of gravity coordinates 

independently of each other. 

 

 
2 3 1 4

1 2 3 4

( )( ) ( ) 0

( ) ( )( ) 0

x

y

M F F L x F F x

M F F y F F T y

= + − − + =

= + − + − =

∑
∑

 (3.1) 

 

Solving for x and y. 

 

 
2 3 2 3 1 4

1 2 3 4 3 4

( ) ( ) ( ) 0

( ) ( ) ( ) 0

F F L F F x F F x

F F y F F T F F y

+ − + − + =

+ − + + + =
 (3.2) 

 

 
1 2 3 4 2 3

1 2 3 4 3 4

( ) ( )

( ) ( )

F F F F x F F L

F F F F y F F T

+ + + = +

+ + + = +
 (3.3) 

 

 

2 3

1 2 3 4

3 4

1 2 3 4

( )

( )

( )

( )

F F L
x

F F F F

F F T
y

F F F F

+
=

+ + +

+
=

+ + +

 (3.4) 

 

Equation (3.4) is used to find the longitudinal and lateral center of gravity positions of a 

vehicle. The vertical CG position is found through other methods such discussed in the 

literature review. From the above derivation, it is clear that the lateral CG equation is 

nearly identical with the longitudinal CG equation. The differences between the two 

equations are the two different forces and the multiplication by different lengths in the 

numerator. The reasons for the differences in the equations are strictly due to the 

geometry of the vehicle.  
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3.2 Process Definition 

 

Parameters within equation (3.4) can have uncertain values, but the process itself is 

perfectly deterministic. The wheelbase, L , and track, T , of the vehicle are set and well 

known due to the geometry of the chassis. The four force inputs are impacted by changes 

in the position of the mass or if it is added or subtracted from the vehicle. This process 

looks like the system below.  

 

 

Figure 3.2: Lateral and Longitudinal CG Calculation Process 

 

The process shown above has no uncertainty included in the system. This would be the 

ideal case and is often assumed while calculating the CG of a vehicle. In the real world, 

there are no certain measurements. While engineers strive to ensure that the uncertainty 

from measurement devices is negligible, there will be cases where this assumption is not 

applicable. The wheelbase and track of the vehicle can be measured very accurately with 

simple equipment. Significant error can be found while measuring the four normal forces 

if the load cells are made to perform an array of tasks beyond simply weighing vehicles 

in the same mass range. Uncertainties from the four wheel loads will be analyzed using 

polynomial chaos in the following sections. 
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4. UNCERTAINTY CHARACTERIZATION: 8-POST TEST RIG 

 

The VIPER 8-post rig at Virginia International Raceway (VIR) is a one of a kind shaker 

for testing vehicle suspension performance under a controlled laboratory environment. 

This rig has 4-hydraulic shakers, one for each wheel, that can independently input a 

displacement and velocity into each wheel of the vehicle. It also has four pneumatic 

loaders, also known as aero loaders, that can apply other forces to the vehicle chassis to 

simulate aerodynamic forces as well as vehicle inertial forces.  

 

An important first step in characterizing a vehicle’s performance is to find the center of 

gravity of that vehicle. The 8-post test rig has a load measurement system for each 

wheel. This provides the information needed to solve for the lateral and longitudinal CG 

positions of the vehicle, equation (3.4). The problem for this rig is the significant amount 

of uncertainty in the measurement of the loads at each wheel.  

 

There are several reasons for the uncertainty in the load measurement system. The four 

load measurement systems, one for each wheel, are composed of the following 

components: four load cells, data distribution and summing system, and data acquisition 

system. Each of these components introduces uncertainty to the load measurement 

system and further complicates the uncertainty’s distribution. Each of the four load cells 

within the wheel pan has a load capacity of 10,000 lbs, so the system can meet the 

demands of large vehicles under dynamic conditions. Testing large off road vehicles on 

the 8-post rig can cause very large loads under dynamic conditions. The large range due 

to this fact causes problems for the accuracy of the system for many typical cars and 

motorsport vehicles. For these cars the load measurement system can be working under 

5% of the total capacity of the system during static conditions, the same conditions a 

center of gravity test would be taken under. If the load measurement system is accurate 

to even 0.1% of its total capacity the error range would be 10 lbs, with 1% accuracy 

error would be 100 lbs. This is just the uncertainty created by the load sensors. Since 

each load pan has four load sensors as shown in the figure below, there must be a data 
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distribution and acquisition system for each measurement system. A, B, C, and D 

represent each of the four wheel load sensors. 

 

 

Figure 4.1: Wheel Pan with Four Load Sensors 

 

The data distribution impacts the uncertainty in that it sums the four load sensors 

together. Also, the actual digital resolution can impact the uncertainty of the load 

measurement system. The data distribution and acquisition methods are largely unknown 

due to the black box system, the analytical characterization of uncertainty in the 

measurement is unclear. Therefore, a test would provide the best means to characterize 

the uncertainty in the measurement. 

 

4.1  Characterization of Load Measurement System Uncertainty  

 

Characterizing the uncertainty of the load measurement system involves taking multiple 

load measurements of the vehicle on the 8-post rig. The vehicle used is a retired 

NASCAR Sprint Cup car that was donated by Petty Racing.   
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Figure 4.2: NASCAR Cup Car used for Uncertainty Characterization (Car donated 

by Petty Racing Team, permission to use photo granted) 

 

This car was one of two donated by the Petty Racing Team. It is missing the engine and 

transmission, but the chassis and suspension are complete. The lack of engine and 

transmission will impact the total weight of the vehicle and move the weight distribution 

towards the rear of the vehicle. The impact on our tests for this situation is simply that 

the measurements will be taken on a vehicle lighter than a typical cup car and not fall 

within a typical CG location.  

 

The goal of this test is to characterize the uncertainty of each wheel’s load measurement 

system by simulating the center of gravity under normal conditions. The CG test could 

be run either before or after dynamic tests with the vehicle wheels located anywhere 

safely on the wheel pan. Enough tests would also be conducted to get an adequate 

approximation of the distribution of the load uncertainty. 
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Figure 4.3: Load Measurement Output Display 

 

In order to accomplish these goals the following procedure was taken. First, the vehicle 

was be placed on the 8-post rig ensuring that all wheels are on the wheel pan with no 

weight being held by any other object or platform. Then a measurement was taken from 

the measurement panel seen in Figure 4.3. The top four display outputs relate to the 

wheels as an overhead view with the front of the car at the top of the display so the LF 

wheel is the top left output. The bottom two outputs relate to relative weight 

distributions. Several different methods were used to move the vehicle on and off the 8-

post test rig. The vehicle was either rolled on and off the 8-post rig or hydraulic jacks 

were used to lift each side of the vehicle and lower it back onto the rig. This put a bit of 

randomness into the vehicle positioning on the wheel pan. After the vehicle was moved 

on and off, the suspension was depressed at all four corners to remove stiction in the 

suspension. 

 

This process was repeated until fifty measurements had been taken for the load at each 

wheel. Fifty measurements should provide enough data to attain a distribution for each 
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load measurement system. The last step in this process is to have an actual value for the 

wheel loads in order to have a direct comparison between that and the load measurement 

system’s distribution.  

 

Longacre Computerscales DX was used to find a much more accurate “true” value for 

the vehicle weight at each wheel. These scales are specifically designed specifically to 

measure the weight of a vehicle to find vehicle characteristics such as the center of 

gravity. Therefore, they are very accurate within the range of a vehicle’s weight. Each of 

the four scales has a maximum weight capacity of 1500 lbs and accuracy within a pound 

of the true value.  

 

  

Figure 4.4: Longacre Computerscales DX 

 

The procedure for weighing a vehicle with Longacre Computerscales DX [19]: 

 - Set scale pads next to wheels. 

 - Place control box in convenient place, uncoil cables, and plug into pads. 

 - Turn on computerscales box and allow to warm up. 

 - Zero all 4 pads. 

 - Lift vehicle and place pads under each wheel. 

 - Shake each corner of the vehicle to remove stiction in the shock absorbers. 

 - Record vehicle weight at each wheel. 
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4.2 Load Measurement System Distribution Results 

 

The first test was conducted to characterize the distributions of the four force 

measurement systems. From that information, the ideal polynomial chaos basis functions 

can be chosen to best fit the distribution.  

 

The following distribution histograms were created by finding the minimum and 

maximum recorded forces for each wheel load cell. This range was divided into equal 

histogram bins and the number of force records was counted in each bin. The vehicle 

weight from the accurate Longacre Computerscales DX is included in the figure to give 

a comparison of the vehicle load cell distributions to the portable scales weight. 
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Figure 4.5: Force Distributions from Test 1 
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From the above figures, the left front and right rear distributions appear to resemble a 

skewed Gaussian distribution. The force clearly has a greater possibility of occurring at 

the high end of the force range than in the center. Also, the force tapers off on the lower 

side for each wheel and the left front and right rear wheels have a point 10-15 lbs  lower 

than the rest. The right front wheel distribution has a less distinctive distribution. One 

could draw the conclusion that this distribution is uniform with merely more hits on one 

number in the center by chance or that the distribution is Gaussian. The left rear load 

distribution is also not  distinctive. Analyzing this distribution one can arrive at one of 

two conclusions: the distribution consists of two peaks or the distribution is a skewed 

Gaussian distribution like the left front and right rear distributions. To arrive at the 

second conclusion, to the test would be consided imperfect; therefore, it is possible for 

the data to land in one position more than another just for this test, thus skewing results. 

Based on the data from the left front and right rear, the left rear distribution is also a 

skewed Gaussian distribution with a testing error within the second bin.  

 

The actual load at each wheel reveals that there is also a bias error in the load 

measurement system. This error causes the system to underestimate the vehicle’s weight 

at three of the four wheels. The distributions for the LF, RF, and RR do not include the 

actual load for these wheels. The left rear distribution does include it, but this 

distribution is the largest of the four at sixty pounds. The bias of the load measurement 

system should be factored into the final solution of the distribution. Table 4.1 provides 

an overview of many of the statistical properties of each distribution without 

modification for the bias error. It also includes the true measure of the load at each 

wheel. 

 

Table 4.1: Distribution Statistics  

Mean (lbs) Median (lbs) Range (lbs) Variance(lbs) Actual (lbs)

LF 497.6 500 47 58.4 505

RF 547.6 548 12 10.5 558

LR 833.2 841 60 354.4 830

RR 746.9 749 36 58.6 775  
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A skewed Gaussian distribution is defined as a probability from negative infinity to 

positive infinity. The force measurement system will never grow that far out of range of 

the actual measurement. If it did, the measurement would be rejected as incorrect or an 

outlier. A more realistic distribution would have limits outside the measurement range to 

limit the possible measurements from attaining impossible or clearly incorrect values. In 

order to create a more realistic distribution, a beta distribution is used.  

 

Beta distributions are characterized by the coefficients α  and β . The general shape of a 

beta distribution is defined via α  and β  in the following table. 

 

Table 4.2: Beta Distribution General Shape 

U-shaped Distribution

Decreasing

Decreasing

Convex

Straight Line

 Concave

Uniform Distribution

Unimodal

1α < 1β <
1α < 1β ≥
1α = 1β >
1α = 2β >
1α = 2β =
1α = 1 2β< <
1α = 1β =
1α >

1β ≤

1α > 1β >
1α <

1β <  

 

The reverse of the distributions in Table 4.2 can be attained by switching α  and β . 

From this table a unimodal distribution would best characterize the load measurement 

system’s distribution. The unimodal distribution can be varied by choosing any 

combination of α  and β  greater than one. 

 

A (5,2) beta distribution was chosen to best fit the overall data collected. This 

distribution does not need to perfectly fit the data since the polynomial chaos basis 

functions allows precise alteration in the shape of the distribution to model the collected 

data. The orthogonal polynomial basis functions will be chosen based on this 

distribution.   
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Figure 4.6: Beta (5,2) Distribution 

 

The next step in the application of this distribution to the data from test one involves 

choosing the coefficients to the orthogonal polynomial basis functions. Choosing the 

orthogonal basis functions will be discussed in chapter 5, but for now it will be stated 

that Mathematica was used to find the jacobian basis functions. 
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These basis functions can define the distributions for each parameter via the following 

equations. Equation (4.2) relates the forces to the proper wheel locations as indicated 

previously in Figure 4.9. 
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The basis functions are given to the 7
th
 order in the appendix. The coefficients (a,b,c,d) 

of these basis functions are chosen to create an accurate representation of the collected 

data. s  is the highest order of the basis functions used to define the input distributions.  

 

It is known that the data is imperfect, but ultimately captures the trend of the real world 

distribution. Therefore, the goal is to not to exactly recreate these distributions precisely, 

but to create distributions that capture the overall trend of the real distributions. 
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Figure 4.7: Experiment Data vs Polynomial Chaos Estimated Distributions 

 

In the figure above, the histogram bar plots are the experimental data and the blue 

curved lines represent the estimated polynomial chaos distribution for each wheel load 

cell. The wheel load from the portable scales is represented by the black line. These 

polynomial chaos distributions provide an accurate representation of the true data. The 

LR and RR distributions closely match the beta distribution however it can be seen that 

these distributions do not include the true wheel load found from the Longacre 

Computerscales DX. The following table gives the coefficients of the polynomial basis 

functions for the four distributions.  
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Table 4.3: Polynomial Coefficient Values to Define Input Distributions 

Wheel 

Location

Force 

Label

Zeroth 

order

1st 

order

2nd 

order

3rd 

order

4th 

order 

5th 

order

6th 

order

LF F2 529.25 3 0.25 0.05 0 0 0

RF F3 467.5 6 0.25 0 0 0 0

LR F1 708 25 0.5 0 0 0 0

RR F4 690 12 0.25 -0.1 0 0 0

Polynomial Coefficient Values

 

 

A bias error in the input distributions exists, preventing them from including the true 

value of the wheel load. Bias error is different from random error in that it is repeatable. 

The simplest way to take into account the bias value is to shift the PCE distribution to 

center over the true value. This can be done by changing the first coefficient which only 

multiplies by one. The bias error can be calculated by finding the difference between the 

actual value and the highest value found from the experiment.  

 

 
actual highprob

bias

median

F F
Error

F

− 
=  
 

 (4.3) 

  

To adjust the distribution to account for the bias error, the median value is multiplied by 

the bias error plus one.  

 

 ( )1shifted highprob bias actualF F Error F= + =  (4.4) 

 

Accounting for the bias error in the polynomial chaos functions involves, adding the 

difference between the actualF and highprobF to the first coefficient in the PCE model.  

 

 ( )0adjusted actual highproba a F F= + −  (4.5) 
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Figure 4.8: Bias Corrected Distributions 

 

Figure 4.8 shows the PCE model distribution shifted to have the greatest probability at 

the portable wheel scales. The actual shape of this distribution has not been changed 

from the initial distribution test since only the first polynomial chaos coefficient has 

been changed. 

 

The bias error will not be included in the moved mass tests. However, the method should 

be noted in case one is dealing with a system with improper calibration to cause a bias 

error. 
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4.3 Moved Mass Test 

 

The second test was completed while the vehicle was in a slightly different 

configuration. The aero loaders were not attached to the vehicle in the distribution test. 

However, for the moved mass tests all four aero loaders were attached, two on each side 

of the vehicle. The aero loaders force output is set to zero, but this force can vary as 

much as thirty pounds. Therefore, the previous distribution test may not provide the 

correct distribution for the moved mass tests. The aero loaders can add a significant 

amount of uncertainty to the system which is considered in the tests. It is assumed that 

the distribution is uniform, but an analysis describing the distribution includes the 

previously described tests. These distributions will be described in the results section of 

this chapter.  

 

The goal of this test is to create a real world situation to which the polynomial chaos 

expansion method can be applied. Multiple mass distributions were created to ensure 

that the method works for many situations. To create multiple center of gravity locations, 

lead shot bags will be moved around the vehicle to create a different center of gravity. 

Data is then collected to determine the range of the force distribution for each different 

moved mass test. Once the range is known, the distribution can either be recreated from 

the information collected from the initial distribution shapes or from an assumed 

uniform distribution. The actual loads at each wheel can be checked with the Longacre 

Computerscales DX system.  

 

The procedure for this test is to first record the weight of the vehicle without the sixteen 

twenty-five pound lead shot bags. The output for each wheel load cell is observed for 

thirty seconds. The output updates approximately every second to provide thirty outputs. 

The lowest output and the highest output are recorded to create a range of possible 

outputs from the wheel load system. After this is done, the vehicle is moved on and off 

the wheel loaders by jacking up each side of the vehicle. The vehicle is also depressed at 

each corner to remove stiction in the suspension. The outputs are recorded as previously 

stated. This will test the system’s variability between placements on the rig. The vehicle 
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is moved on and off the wheel pan four times so that five outputs can be recorded for 

each moved lump mass test. For each mass distribution the vehicle is also weighed on 

the Longacre Computerscales DX system to provide for an accurate weight at each 

wheel.  

 

This process is repeated five times for each of the four different mass distributions. After 

the test with no added lead shot bags is complete, the lead shot bags are placed in the 

trunk of the vehicle, then half the weight is moved forward into the passenger area, and 

lastly the remaining lead shot bags are moved to the passenger area as well. The process 

is repeated for each of these mass distributions. This totals to four different mass 

distributions to test the system on.  

 

There were four different locations that the weight was placed at within the vehicle. 

These locations are given in the following figure and table. 

 

 

Figure 4.9: Locations of Lumped Masses 
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Table 4.4: Coordinates of Locations Points for Lumped Masses 

Location x (in) y (in)

A 63 15

B 63 45

C -36 4

D -36 56  

 

The lumped mass additions to the four different mass distribution tests are: 

 

Table 4.5: Lump Mass Locations for Each Mass Distribution Test 

Test A B C D

1 0 0 0 0

2 0 0 200 200

3 100 100 100 100

4 200 200 0 0

Location Weights (lbs)

 

 

These moved lumped masses could cause a significant shift in the location of the center 

of gravity. The results from these tests will be presented in the following section.  

 

4.4 Moved Lump Mass Test Results 

 

The moved lumped mass test was performed to test the polynomial chaos expansion’s 

ability to estimate the center of gravity position based on results from the test data. The 

test data used in the polynomial chaos expansion is analyzed and coefficients for the 

polynomial chaos model are chosen in this section. The polynomial chaos results will be 

given in following chapters based on the test results in this section.  

 

Also, the actual weight at each wheel is found by weighing the vehicle with the 

Longacre Computerscales DX, they are shown as black solid lines. The minimum and 

maximum range averages were found and are presented in this section. The maximum 

and minimum points for each record are shown as stem plots with the stems projecting 

from the corresponding average minimum or average maximum value. The output 



 

 29 

ranges from each of the four moved lump mass test are given in Figure 4.10 through 

Figure 4.13.  

 

 

Figure 4.10: Moved Lump Mass Test 1 
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Figure 4.11: Moved Lump Mass Test 2 

 

Figure 4.12: Moved Lump Mass Test 3 
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Figure 4.13: Moved Lump Mass Test 4 

 

As seen from the above data there appears to be several different kinds of uncertainty in 

the load measurement. The output range varies which is shown by the minimum force 

and maximum forces. This range is generally thirty and forty pounds, but in several 

cases was as great as fifty or sixty pounds. A table of the range for each record and the 

average range for each test is given in Table 4.6. There are several possible causes for 

this uncertainty. The first is noise within the load cell measurement system. This can be 

caused from noise within the electronics or the accuracy of the load cells. 
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Table 4.6: Range Between Minumum and Maximum Force Outputs for each 

Record 

Test 1 2 3 4 5 Mean 

Range

1 2 3 4 5 Mean 

Range

1 45 60 46 44 43 47.6 34 41 44 34 30 36.6

2 34 37 42 41 43 39.4 33 30 43 24 29 31.8

3 34 34 29 36 42 35 59 48 25 32 25 37.8

4 50 47 44 45 49 47 36 29 49 33 32 35.8

Test 1 2 3 4 5 Mean 

Range

1 2 3 4 5 Mean 

Range

1 30 27 27 31 49 32.8 36 35 25 40 22 31.6

2 38 32 44 29 39 36.4 35 22 28 29 38 30.4

3 25 39 44 27 21 31.2 34 37 30 42 38 36.2

4 34 39 38 54 33 39.6 44 33 80 42 48 49.4

RR Record Range (lbs)

RF Record Range (lbs)LF Record Range (lbs)

LR Record Range (lbs)

 

 

The second source of uncertainty is developed each time the vehicle moves on and off 

the wheel pan. There are several possible causes of this uncertainty, not all of which are 

due to the wheel load measurement system. First, the vehicle shocks are actually sticking 

and preventing the vehicle from getting accurate center of gravity measurements. This 

effect can be seen clearly in the LR and RR wheel loads in Test 3, Figure 4.12. The 

weight appears to shift back and forth between the two rear wheel loads. Other possible 

causes include, a shift in the load cells between tests, the four load sensors being 

incorrectly calibrated within the load cell, or changes in the aero loaders force due to the 

vehicle being lifted. This would cause different force outputs as the wheel is moved over 

the wheel pan. The combined range from both sources of uncertainty can create a much 

lbroader range than that from the noise uncertainty as shown in Table 4.6. Since these 

uncertainties are likely not due to the load measurement system, but stiction in the 

suspension of the vehicle and aero loaders they will not be used in the PCE model. The 

mean of the five records will be used to lower the impact of the uncertainty between 

tests. The exact cause of these uncertainties is not further explored since the goal of 

these tests are just to provide a test bed for the Galerkin polynomial chaos method. It 

should also be noted that the scale does not actually prevent the error from the aero 

loaders and the stiction in the shocks of the vehicle from occurring; therefore, it can not 

be taken as the true value for the load. 
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Table 4.7: Total Wheel Load Range for each Lumped Mass Test 

Test LR RF LR RR

1 96 70 79 72

2 92 93 48 85

3 42 74 133 92

4 51 79 106 89

Total Range (lbs)

 

 

Polynomial chaos expansion coefficients can be created for each moved mass location 

based on the data collected in the moved mass and the distribution tests. As stated 

earlier, characterization of the moved mass distribution can be accomplished by 

assuming a uniform distribution over the range or using the beta distribution that was 

found in the distribution test.  The previous test did not include the aero loaders; 

therefore, its distribution can not be justifiably correct here. To show that polynomial 

chaos works with any distribution, both distributions will be considered. 

 

The uniform distribution will be simpler to model from the data collected than the beta 

distribution. A uniform distribution is defined with the average wheel load and the 

determined range as the coefficients of the polynomial chaos expansion. The range is 

presented as the mean range in Table 4.6 and the average wheel load value is given in 

the following table. 

 

Table 4.8: Average Wheel Load for each Moved Mass Test 

Test LF RF LR RR

1 484.2 399.7 533 634.4

2 426.9 307.9 753.4 907

3 496.3 383.9 701.2 823.1

4 545.5 480.9 615.4 739.3

Average (lbs)

 

 

A uniform distribution can be defined with the Karhunen-Loeve Expansion as 
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where oa  is the average value and 1a  is the range of the uniform distribution [10].  

 

The beta distribution is not simple to model the uniform distribution because the beta 

distribution requires multiple polynomials to define it. Based on the previous distribution 

and the information collected in the moved mass test a solution can be found. However, 

this distribution may not be correct due to the changes in the experimental setup. The 

beta distribution is performed to further understand the ability of applying experimental 

data to any type of distribution without running a full distribution test each time. 

 

The distribution test found the polynomial coefficients for a beta distribution to the 3
rd
 

order polynomial. If it is assumed that the shape of the load uncertainty distribution does 

not significantly change, the first two polynomial coefficients can be adjusted creating a 

solid model for the distribution. The first two polynomial coefficients will not directly 

convert as seen in the uniform distribution using the Legendre polynomials. The method 

for determining the zeroth and first order polynomial coefficients for the beta 

distribution is dependent on the boundary conditions of the moved mass tests. 

 

The boundary value method for solving the polynomial coefficients is done with the 

knowledge of the range of the test and from previous distributions. By knowing the test 

range, the maximum and minimum values of ζ  can be inputted into the polynomial 

chaos expansion equation with the corresponding test values, maxF and minF . This creates 

two equations and two unknowns, allowing the determination of the zeroth and first 

order polynomials of the distribution. This process is shown in the following equations. 
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After restructuring to solve for the coefficients 0C and 1C  the equation becomes: 
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⋯

⋯
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The coefficients can then be solved for by moving the other polynomial chaos 

coefficients to the other side of the equation and then multiplying by the inverse of the 

basis functions. 
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⋯

⋯
 (4.9) 

 

1C  and 2C  are the first two coefficients in the polynomial chaos expansion for each 

moved mass test. maxF and minF  are the maximum and minimum output values for each 

test and P  represents the polynomial chaos coefficients previously defined in the 

distribution test.  It should be noted that this method will only work with finite 

distributions such as the uniform and beta distributions.  

 

The polynomial chaos coefficients to define all the moved mass tests are given in the 

appendix. The beta distributions coefficients for the first test are given in the following 

table, Table 4.9. 

  

Table 4.9: Polynomial Coefficient Values for Test 1 

Wheel 

Location

1st order 2nd order 3rd order 4th order 5th order

LF 449.63 6.986 0.25 0.05 0

RF 371.03 6.953 0.25 0 0

LR 509.3 4.93 0.5 0 0

RR 601.5 10.97 0.25 -0.1 0

Polynomial Coefficient Values Test 1

 

 

To show the differences in the two distributions, the following plots were constructed to 

compare the uniform and beta distributions to the wheel load measured from the 

Longacre Computerscales DX. 
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Figure 4.14: Estimated Distributions vs. Longacre Computerscales DX Wheel Load 

for Test 1 

 

Figure 4.15: Estimated Distributions vs. Longacre Computerscales DX Wheel Load 

for Test 2 
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Figure 4.16: Estimated Distributions vs. Longacre Computerscales DX Wheel Load 

for Test 3  

 

Figure 4.17: Estimated Distributions vs. Longacre Computerscales DX Wheel Load 

for Test 4 
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From the above figures, it can be seen that the distributions include the value from the 

scales for most the wheel loads. However, a few of the distributions do not include this 

value such as the RF and RR loads in test 1 and the LF in test 2. The cause of this is the 

uncertainty between the separate records. These uncertainties were previously described, 

but it can be seen in several cases that the large range between records distorts the test 

enough to place the average minimum and maximum off the value from the scale. As 

previously stated,  the value from the scales may not be the true value since the errors 

from the aero loaders and stiction in the suspension of the vehicle are present on the 

scales as well. Since the scales do not prevent error from the aero loaders and the stiction 

in the suspension from occurring, it can not be seen as the “true” value. 

 

The information from the scales in test four would appear to make the beta distribution is 

still applicable to the moved mass tests. However, this is not enough information to draw 

such a conclusion since the other tests are located throughout the distribution and in the 

zero probability area. These distributions will be used to in the PCE simulations in 

chapters five and six.  
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5. CALCULATION OF VEHICLE CENTER OF GRAVITY WITH 

ONE UNCERTAIN FORCE INPUT 

 

This section analyzes the uncertainty caused from the input of one uncertain force on the 

calculation of the vehicle center of gravity using equation (3.4). Polynomial chaos 

expansion is the method used to analyze the process. Two cases will be examined, the 

case where 1F , LR, is uncertain and the case that 2F , RR, is uncertain. The results for the 

uniform and beta distributions are presented. Also, a comparison between the 

polynomial chaos and the Monte Carlo methods is performed to show the accuracy of 

the polynomial chaos expansions. 

 

5.1 Polynomial Chaos Expansion Model with Uncertain Input F1  

 

To gain a full understanding of polynomial chaos, we will first look at the simplest case 

for our process. For our problem, only one input force is uncertain is the simplest case. 

We will define 1F  so it can represent any distribution.  

 

 � ( ) ( )1 1 1

0

s

i i

i

F aζ φ ζ
=

=∑   (5.1) 

 

1ζ  is a random variable over some domain space representing a distribution, and �1F  

represents the random variable of the force input. While �1F  is uncertain, the model itself 

is deterministic. �1F is defined by polynomial chaos coefficients, ia , and the orthogonal 

basis functions, ( )1iφ ζ . 

 

 Any error or uncertainties in the result draw directly from �1F  as it propagates through 

the definite model. If this is the case, then the resulting uncertain distribution would be 

the same as the input distribution. It is found that the nonlinear effects within the 
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equation cause the distribution to be skewed. Implementing �1F  into equation 4.2 yields 

the following equation: 

 

 

( )
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 (5.2) 

 

( )1x ζ  and ( )1y ζ  will also be represented by distributions. The polynomial chaos 

expansion can be implemented to solve for ( )1x ζ  and ( )1y ζ . This system analyses a 

static process. This is different from most polynomial chaos expansion (PCE) models 

which uses a PCE to find a parameter over time. Unlike many PCE’s, this system has an 

uncertain input instead of an uncertain parameter. 

 

There are two different methods to creating a polynomial-chaos model; The Galerkin 

projection and the collocation method.  The Galerkin projection method solves for the 

solution analytically, while the collocation method uses certain solution points to run the 

simulation and interpolates between them [7,10]. This particular problem should be 

solved using a direct analytical approach to see how the force distribution impacts the 

final position of the center of gravity. The Galerkin approach can produce information 

about the distribution without having to plot the distribution. 

 

Basis functions need to be set to create a polynomial chaos expansion. These basis 

functions are required to be orthogonal to each other over a certain range. There are 

many sets of polynomials that meet this demand such as, Jacobian, Legendre, Hermite; 

However, certain sets can more simply define specific distributions. For a uniform input 

distribution, Legendre polynomials work best [7, 8, 10]. Legendre polynomials are 

orthogonal over the range[ ]1 1− . 

 



 

 41 

 
( ) ( ) ( )

2

2

1 0

1
1

( ) 1 1
2 ! 3 1 2

2

n
n

n n n

n

n

n n

ζ
φ ζ ζ

ζ ζ

=
 =  ∂ 

= − =    ∂ − = 

 ⋮ ⋮

 (5.3) 

 

Equation (5.3) defines the Legendre polynomials used in the PCE model. The orthogonal 

basis functions to define the beta distributions from our experimental distribution test are 

Jacobian. These orthogonal basis functions were previously mentioned, but a detailed 

discussion is now presented. Jacobian polynomials are chosen based on the shape of the 

beta distribution. This means a beta (2,2) distribution would have different basis 

functions from a beta (3,4) distribution. Our data is best characterized by a beta (5,2) 

distribution. Its orthogonal basis functions are: 
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 (5.4) 

 

�
1F was previously defined by equation (5.1) for the case where the input distribution is 

defined by an s order basis function. The resulting center of gravity distributions is 

redefined as a series expansion of basis functions based on the Karhunen-Loeve 

Expansion. The basis functions are the same as those chosen to define the input 

distribution. These will need to be taken to a higher order since the resultant distribution 

may be of a higher order than the input distribution. 
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 (5.5) 
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r defines the order of the resultant center of gravity basis functions. We can now create 

the PCE model since all the base variables have been redefined to the basis functions. 

This model be shown in just the longitudinal direction since the solution is nearly 

identical for both. Replacing �1F  and X  with basis functions: 

 

 ( ) ( ) ( )1 2 3 4 1 2 3

0 0

s r

i i j j

i j

a F F F x F F Lφ ζ φ ζ
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Now we must project nφ  according to the Galerkin method being sure to take the 

appropriate inner product. 
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 (5.8) 
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 (5.9) 

 

Bringing the constants out of the integral the equation is simplified to: 
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This leaves the integration to a matrix or array of integrals that can be calculated once. 

Since the basis functions are orthogonal, many of the integral matrices will be largely 

filled with zeros. The integral with two basis functions will be all zeros except along the 

diagonal where the basis function is multiplied by itself. The integrals with one or three 

basis functions require calculation at all points because it is not obvious where zeros will 

be located. 

 

 ( ) ( ) ( ) ( )
1

1
ijn i j n wδ φ ζ φ ζ φ ζ ζ ζ

−
= ∂∫  (5.11) 

 

 ( ) ( ) ( )
1
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= ∂∫  (5.12) 

 

 ( ) ( ) ( )
1

1
in i n wδ φ ζ φ ζ ζ ζ

−
= ∂∫  (5.13) 

 

 ( ) ( )
1

1
n n wδ φ ζ ζ ζ

−
= ∂∫  (5.14) 

 

Integrals are often solved numerically in computer models, but these were solved 

analytically using Matlab’s symbolic toolbox. This provides an exact solution, and 

minimizes error due to computational error.  This Matlab code can be found in Appendix 

A. The weighting function ( )w ζ  is different for different sets of basis functions. The 

weighting function for Legendre polynomials is 1, while the weighting function for 

Jacobian polynomials is given in equation (5.15). 

 

 ( ) ( ) ( )1 1w
α β

ζ ζ ζ= − +  (5.15) 

 

We can think of theseδ ’s as matrices with an order equal to the number ofφ ’s within 

the integral. So, ijnδ  is a i j n× × , 3-dimensional matrix, jnδ is a j n×  matrix, and nδ  is a 

n-dimensional array. 
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To reduce the three dimensional matrix to two dimensions, a new matrix is created with 

ψ  as a constant. 
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 (5.16) 

 

This can be placed in a matrix in the following order. 

 

 

00 01 0

10 11

0

r

nr

r rr

ψ ψ ψ
ψ ψ

ψ

ψ ψ

 
 
 =
 
 
 

⋯

⋮

⋮ ⋱ ⋮

⋯ ⋯

 (5.17) 

 

Now that equation (5.10), has been simplified, the equation can be written as matrices 

and arrays to be solved the problem with linear algebra.  
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 (5.19) 
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Equation (5.20) gives us the relationship for X  with each basis function via the 

coefficient x described in equation (5.5). For this uncertain input the equation for Y  is 

nearly identical.  
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 (5.21) 

   

The solution for x  and y are the analytical equations that the Galerkin method supplies. 

This is the advantage of the Galerkin method compared to the collocation method. This 

equation can provide insight into the uncertainty without having to plot the PDF.  

 

The simplest input case is 1F , so it would also be of interest to investigate the situation 

where 2F  is the uncertain input because it would increase the complexity of the problem. 

In this case, the uncertain input will be in the numerator and denominator of equation 

(3.4).  

 

5.2 Polynomial Chaos Expansion Model with Uncertain Input F2  

 

The case where 2F  is the uncertain input complicates the polynomial chaos expansion of 

equation (3.4) for the longitudinal CG coordinate. Since the majority of the steps in this 

calculation are the same as when 1F  is the uncertain input, not all of the PCE model 
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derivation will be shown. Equation (5.22) defines the uncertain input, 2F  and is then 

inserted into equation (3.4) resulting in equation  (5.24). 
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 (5.24) 

 

The x and y coordinates can be redefined to avoid the situation where one uncertain 

input is in the numerator and denominator. However, it is interesting to see how this 

situation impacts the distribution of the CG since it will not be avoidable as more 

uncertainties are added to the equations. Expanding the polynomial chaos and projecting 

nx  gives equation (5.25). 
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One more table needs to be precomputed for the integral. This inδ  is different from jnδ  

because inδ  is a r s× matrix and jnδ is a r r× matrix. 
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We can rewrite equation (5.25) in linear algebra form to solve for x . 
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Matlab is used to solve the linear algebra equations for x and y after precomputing the 

δ matrices. First, the order of the polynomial chaos function will be taken to a high 

order to ensure that the PCE model can capture the distribution. The resulting delta 

matrix for 8
th
 order  Legendre polynomials are: 
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0 0 0 0 0 0 0 0.1333
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ijnδ  is an i j n× ×  matrix. In many cases a third order PCE is sufficient. If this is the 

case, the order of the PCE model can be adjusted so the order matches the order required 

by the output polynomial chaos coefficients. After computing nx  and ny , the distribution 

should be plotted.  
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5.3 Polynomial Chaos Probability Density Function Calculation 

 

The end goal of using polynomial chaos expansions is to have a PDF of the uncertain 

parameter. In our case, the parameter is the vehicle’s center of gravity coordinates. PCE 

Galerkin Method gives insight into the shape of the PDF without having to plot it. To 

truly see the distribution, it must be plotted. 

 

The method used to plot the PDF of the PCE was the use random points of certain PDF’s 

over a domain to represent ζ in the distribution of interest. Then bins are created to 

count all the possible CG locations within those bins. ζ is an array created via the 

random function in Matlab. ζ  must have the same PDF as the distribution it represents. 

Equation (5.31) shows the example solution for the Legendre polynomials. 

 

( ) ( ) ( ) ( )2 2

0 1 2

1
1.5 0.5 1

2 !

n
n

n n n
X x x x x

n
ζ ζ ζ ζ

ζ

   ∂
= + + − + −    ∂  

⋯  (5.31) 

 

In any one direction, the probability of the Cg falling within a bin is: 

 

 ( )
( )

( )
Number of X  in bin

Total Number of X
p x

ζ

ζ
=  (5.32) 

 

Another probability function that is important to know is the cumulative density function 

(CDF). This function is simply the integral of the PDF. 

 

 ( ) ( )
x

cdf x p u u
−∞

= ∂∫  (5.33) 

 

These calculations become a bit more interesting as we expand to two dimensions. If 

( )p x  and ( )p y  are independent of each other then  
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 ( ) ( ) ( ),p x y p x p y=  (5.34) 

 

However, it is not certain that this is the case for our distribution. While the x and y in 

the CG calculations are not directly dependent on each other, they are dependent on the 

same uncertain input. Therefore, the assumption that ( )p x  and ( )p y  are independent 

can not be made and the probability must be calculated in the same way as equation 

(5.32) but using a two dimensional bin. The PDF and CDF in two dimensions is found 

with equations (5.35) and (5.36) respectfully. 

 

 ( )
( )

( )
Number of X  in bin

,
Total Number of X

p x y
ζ

ζ
=  (5.35) 

 

 ( )( , ) ,
x y

cdf x y p u v u v
−∞ −∞

= ∂ ∂∫ ∫  (5.36) 

 

Another method to estimating the PDF is to model the uncertain parameter by selecting 

points that accurately represent the distributions CDF [10]. This method will only work 

for one uncertain input/parameter, but in that case it can greatly reduce the computations 

needed to accurately represent the distribution. It will only work for one uncertain 

parameter because combining multiple uncertainties with this method would create a 

strong coherence between them; Therefore, the model would not allow the independence 

of the multiple uncertainties. Monte Carlo’s brute force method of randomly choosing 

numbers that represent the distribution provides randomness that supply add random 

error to the estimation for small data sets. Uniform distributions are simple to model 

since every point has equal likelihood of happening. A comparison of the methods used 

to model the distributions are shown below. 
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Figure 5.1: Methods for Representing Distribution 

 

The top method uses the CDF to model the data and can efficiently be applied to one 

uncertain input. The bottom method is the Monte Carlo method which requires greater 

computations, but can be used for multiple uncertain inputs. 

 

5.4 Polynomial Chaos Results for One Uncertain Input 

 

This section covers the results for one uncertain input. First, a uniform uncertainty is 

varied over a broad range to observe the impact the uncertainty has on the center of 

gravity distribution. Then the uncertainty is varied from the results of the moved mass 

tests for a uniform distribution and a beta distribution. 
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5.4.1 Uncertain Input F1: Uniform Distribution 

 

The simplest uncertain input to model is a uniformly distributed 1F . The Monte Carlo 

method is also used in these simulations to compare to the PCE model. The initial test 

will show how uncertainty propagates through the base equation. A wide range of mean 

and range will be completed in the first test. Table 1 shows the mean and range used to 

define the uncertainty in each run.  

 

Table 5.1: Simulation Runs for Uncertain Input F1 

Test Mean Range Mean Range Mean Range Mean Range

1 700 100 700 0 700 0 700 0

2 700 700 700 0 700 0 700 0

3 1200 100 700 0 700 0 700 0

F1 F2 F3 F4

 

These tests are run in order and the results are analyzed to determine the CG distribution 

changes with a simple uniform distribution. The NASCAR vehicle dimensions are used, 

60T in=  and 110L in= , but none of the tests are meant to recreate the loads from real 

test results.  

 

The first test places equal loads of 700 pounds. on all four wheels creating a perfect 

50/50 weight distribution front to back and left to right. 1F  has a uniform distribution 

with a range of 100 pounds. Even though, 100 pounds may seem like a large range, it is 

not because the load sensors are designed to meet the requirements of many vehicles 

under dynamic loading. The four load sensors on the 8-post rig at the VIPER facility in 

Danville, VA are made to hold 10,000 pounds each. This means 100 pounds is 1% of the 

total capacity of the sensor. 
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Figure 5.2: Longitudinal Results for Test 1 - F1 Uniform Distribution 

 

Plots of the y-direction will not be shown for uncertainty in 1F  since the equations in 

uniform distribution are the same except the y-direction uses the scaling of the track 

instead of the wheelbase. Since this is the case, it was expected that the two dimensional 

plots to be symmetrical along the diagonal. Figure 5.2 shows that the PCE and Monte 

Carlo results are nearly identical except for the fringes. It should be noted that the same 

random points were used for the two different distributions to remove random errors. 

This means the differences between the plots are a result of the differences in the Monte 

Carlo method and polynomial chaos expansion method. 

 

Results for Test 1, as seen in Figure 5.3 show that the uniform input from 1F  does not 

produce a uniform result. The results appear to follow a linearly decaying probability. 

This is related to how a uniform distribution impacts equation 4.2. By analyzing the 

equation, if 1F  increases from the mean, the decrease in the center of gravity would be 
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less than the CG increase if 1F  decreases the same amount from the mean. To quickly 

look at this we will examine a 50 pound increase and decrease of 1F  from the mean of 

700 lbs. 

 

 

( )

( )

700 700 110
56.00

650 700 700 700

700 700 110
54.03

750 700 700 700

lb lb in
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lb lb lb lb

lb lb in
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+
=

+ + +
+

=
+ + +

 

 

Even though the differences from the mean of 55 inches are not significant, it does 

indicate why there is a higher probability for the lower center of gravity solutions. The 

initial test also shows that Monte Carlo and polynomial chaos expansion methods 

provide nearly identical results. The areas where the PDF difference shows the most 

error is at the corner of the distributions because the bins are not exactly the same 

between the Monte Carlo and polynomial chaos expansions. The main part of the 

distribution does not show significant error. 

 

 

Figure 5.3: Longitudinal and Lateral 2-Dimensional Plot for Simulation Test 1 
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Figure 5.3 shows the 2-Dimensional results for Test 1. A circular PDF solution for the 

probability is expected, but for one uncertain parameter this is not the case. The reason 

for the distribution on the centerline of the vehicle is that the lateral and longitudinal CG 

positions are not independent of each other. They both depend on 1F , so the solutions are 

directly related. This creates a 1-dimensional line that travels along the diagonal of LF to 

RR as the range of uncertainty increases. With a range of uncertainty of 100 pounds, the 

length of the line is 4.5 inches. This would be significant in identifying the center of 

gravity of a vehicle, mostly for a light weight vehicle. It is clear that a 2-Dimensional 

plot is not as useful as 1-dimensional plot in the case of only one uncertain parameter. 

Therefore, the remaining plots for an uncertain 1F  will be 1-Dimensional. 

 

Test 2 increases the range of the uncertainty from Test 1 to 700 pounds while 

maintaining the same mean. Range was limited to 700 pounds to not exceed the mean 

value of the distribution. As a result the CG of the vehicle was greatly increased. The 

following figure shows the resulting CG distribution. 
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Figure 5.4: Longitudinal Results for Simulation Test 2 - F1 Uniform Distribution 

 

This figure shows that the probability is not linear decreasing as seen in Test 1. Since the 

range is much larger the shape of the distributions impact is much clearer. This shows 

that the CG probability behaves like the equation 

 

 
1

y
x

=  (5.37) 

 

This is how one would expect the probability to behave when observing the distributions 

resulting from equation (5.2). Upon closer look at the limits, it is seen that as 1F  

increases to infinity the longitudinal CG location approaches a distance of zero. If 1F  is 

decreased to zero, the longitudinal CG location will increase to 73.33  inches, as seen in 

Figure 5.4. This is a result of the set weights at the other three wheel locations. 
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Test 3 was used to observe how the system would behave as the mean of the uncertainty 

was changed. Figure 5.5 shows that the mean of the distribution was shifted to around 

46.5 inches from the original 55 inches. The range of the CG distribution was also 

decreased since the 100 lb input range is a smaller percentage of 1F ’s mean value.  

 

 

Figure 5.5: Longitudinal Results for Simulation Test 3 - F1 Uniform Distribution 

 

Polynomial chaos expansion also provides an advantage over Monte Carlo in that the 

derived coefficients in the solution provide information about the distribution without 

requiring a plot of the distribution. The information from these coefficients can aid in the 

determination of the mean or median value, the range of the distribution, or other 

information like the order polynomial, which is required to accurately recreate the 

distribution. Table 5.2 provides the polynomial coefficients to the 7
th
 order polynomial.  
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Table 5.2: Polynomial Coefficients from Uncertain F1 Uniform Simulation Tests  

Direction Test 0 1 2 3 4 5 6 7

X 1 55.0234 -1.9658 0.0468 -0.001 0 0 0 0

X 2 56.1908 -14.2898 2.4212 -0.3691 0.0536 -0.0074 0 0

X 3 46.681 -1.4149 0.0286 -0.0005 0 0 0 0

Y 1 30.0128 -1.0722 0.0255 -0.0005 0 0 0 0

Y 2 30.6495 -7.7944 1.3206 -0.2013 0.0292 -0.0041 0 0

Y 3 25.4623 -0.7718 0.0156 -0.0003 0 0 0 0

Order of Polynomial Coefficients

 

Table 5.2 clearly shows the impact of the mean and the range through the polynomial 

coefficients. The first two Legendre polynomial orders indicate the mean and range. By 

simply doubling the 1
st
 order coefficient the range of the distribution is found. For 

example in the longitudinal direction test one, the mean of the distribution is 55.023 

inches and the range is two times 1.966 inches or 3.932 inches. The impact of the higher 

order polynomials is not as clear, but they still provide relevant information. It shows 

that the distribution is not a simple first order distribution. It also shows the order of the 

polynomials that are required to accurately recreate the distribution. It can be seen that 

for a uniform input with a single uncertain parameter, a fifth order polynomial is large 

enough to capture the distribution. For more realistic uncertainties, a 3
rd
 order 

polynomial is accurate enough..  

 

It is interesting to see how the center of gravity distribution is impacted if the input 

uncertainty appeared in the numerator and denominator of the center of gravity equation. 

To analyze this, the previous tests were conducted with 2F  as the unknown distribution. 

 

5.4.2 Uncertain Input F2: Uniform Distribution 
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 (5.23) 
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As seem in equation (5.23), 2F  is located in both the numerator and denominator of the 

longitudinal center of gravity equations. The direct impact of the uncertainty in the 

numerator and denominator is not easily known;  Therefore, tests are necessary for this 

situation.  

 

Table 5.3: Simulation Runs for Uncertain Input F2 

Test Mean Range Mean Range Mean Range Mean Range

1 700 0 700 100 700 0 700 0

2 700 0 700 700 700 0 700 0

3 700 0 1200 100 700 0 700 0

F1 F2 F3 F4

 

 

Figure 5.6: Longitudinal Results for Simulation Test 1 - F2 Uniform Distribution 

 

The results from simulation test 1 show that the graph is the opposite of the uncertain 1F  

simulation. This is the solution that one would be arrived at if the coordinates were 

rearranged to avoid having 2F  in the numerator and denominator. It is not previously 
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obvious that these two situations would arrive at the same solution since one situation 

has the uncertainty within the equation in the numerator and the denominator, while the 

other has the uncertainty solely in the denominator. Simulation tests two and three 

confirm that this is indeed the case. 

 

 

Figure 5.7: Longitudinal Results for Simulation Test 2 - F2 Uniform Distribution 
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Figure 5.8: Longitudinal Results for Simulation Test 3 - F2 Uniform Distribution 

 

The coefficients from the polynomial chaos expansion also confirm that rearranging the 

coordinates does not make a difference. The 0
th
 order coefficients for the longitudinal 

direction have flipped over the midpoint of the vehicle, 55 inches. Also, the other 

coefficients have changed signs since 2F  is at the front of the vehicle. This information 

can be seen by comparing Table 5.4 to Table 5.2 

 

Table 5.4: Polynomial Coefficients from Uncertain F2 Uniform Simulation Tests 

Direction Test 0 1 2 3 4 5 6 7

X 1 54.9766 -1.9658 -0.0468 0.001 0 0 0 0

X 2 53.8092 14.2898 -2.4212 0.3691 -0.0536 0.0074 0 0

X 3 63.319 1.4149 -0.0286 0.0005 0 0 0 0

Y 1 30.0128 -1.0722 0.0255 -0.0005 0 0 0 0

Y 2 30.6495 -7.7944 1.3206 -0.2013 0.0292 -0.0041 0 0

Y 3 25.4623 -0.7718 0.0156 -0.0003 0 0 0 0

Order of Polynomial Coefficients
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5.4.3 Uncertain Input F1: Estimated Distribution 

 

The impact of a single uniform probability input distribution was detailed in the previous 

section. This section uses the PCE model to analyze the results from the data collected in 

the moved mass test. The results are presented from both the uniform and beta 

distribution results.   

 

1F ’s distribution is based on data collected from the four tests. The other three force 

values are based on the values taken from the scales. The average values from the load 

measurement system could also be used but they would add error not included in the 1F  

distribution. The moved mass tests will first be analyzed using the uniform distribution 

and then the beta distribution. The moved mass tests are given in the following table.  

 

Table 5.5: One Uncertain Input Moved Mass PCE Simulation Setup 

Test Scale 

Value (lbs)

Range 

(lbs)

Scale 

Value (lbs)

Range 

(lbs)

Average 

(lbs)

Range 

(lbs)

Scale 

Value (lbs)

Range 

(lbs)

1 496 0 380 0 533 32.8 609 0

2 455 0 313 0 753.4 36.4 901 0

3 510 0 398 0 701.2 31.2 832 0

4 565 0 481 0 615.4 39.6 755 0

LF RF LR RR

 

 

The uniform distribution results are provided in Figure 5.9 and Figure 5.10. 
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Figure 5.9: Center of Gravity Distribution from 1F  Uncertain Uniform Input 

Distribution – Longitudinal Direction 

 

 

Figure 5.10: Center of Gravity Distribution from 1F  Uncertain Uniform Input 

Distribution – Lateral Direction 
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Figure 5.9 and Figure 5.10 show that the uncertainty from one uncertain force input 

creates a center of gravity uncertainty between half an inch to an inch in the longitudinal 

direction and half an inch in the lateral direction. The distribution includes the value 

from the Longacre Computerscales DX for all tests except test 3. As uncertainties from 

more wheels are added this occurrence should decrease. It can be seen that the 

distributions hold the same shape as those in the initial simulation, Figure 5.2. 

 

This simulation can also be conducted with the beta distribution. The polynomial chaos 

coefficients for the left front wheel for each test are given in Table 5.6. 

 

Table 5.6: Polynomial Chaos Coefficients for Beta Distribution for LR Wheelpan 

Test 1st order 2nd order 3rd order 4th order 5th order

1 509.3 4.93 0.5 0 0

2 726.73 5.73 0.5 0 0

3 678.87 4.57 0.5 0 0

4 586.07 6.44 0.5 0 0

Polynomial Coefficient Values Left Rear

 

 

The distribution should have the same range as the uniform distribution, but merely 

shaped differently.  
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Figure 5.11: Center of Gravity Distribution from 1F  Uncertain Beta Input 

Distribution – Longitudinal Direction  

 

 

Figure 5.12: Center of Gravity Distribution from 1F  Uncertain Beta Input 

Distribution – Lateral Direction 
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It can be seen that the distributions have the same range. The range for the longitudinal 

direction is from half an inch to nearly an inch and approaches half an inch for the lateral 

direction. This range can be significant for a race vehicle, but it may not be of significant 

consequence for, other cars it. It can also be seen that the distribution shape reverses 

compared to 1F ’s distribution. This should be expected since a larger 1F  creates a center 

of gravity that is closer to 1F .  

 

This test confirms that multiple distributions can be applied using polynomial chaos 

expansion. The uniform and beta distribution solution encompassed the same range, but 

their shapes were significantly different.  
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6. CALCULATION OF VEHICLE CENTER OF GRAVITY WITH 

MULTIPLE UNCERTAIN FORCE INPUTS 

 

This section analyzes the uncertainty on the calculation of the vehicle center of gravity 

resulting from multiple uncertain force inputs. PCE methods are utilized during the  

analysis of this process. Two cases will be examined: the case where the distribution is 

an estimated distribution based on real data with two uncertain inputs and the case where 

four uncertain uniform inputs are used to estimate the center of gravity distribution. 

 

6.1 Polynomial Chaos Expansion Model with Two Uncertain Inputs 

 

Multiple uncertain input polynomial chaos expansion models are more complex than a 

single uncertain input. The increased complexity in the system results from several 

factors such as multiple uncertain inputs, which causes the solution to consist of a 

combination of their uncertainties. Therefore, the impact of both orthogonal basis 

functions must be considered. This is why the complexity of PCE models grows very 

quickly. Equation (6.1) defines how many basis functions are required given the order of 

the input basis functions and the number of uncertain inputs [7, 8, 9].  
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P represents the number of uncertain inputs. 

 

Table 6.1: Number of Polynomial Chaos Coefficients r 

Order of Polynomials 

(s)

P=1 P=2 P=3 P=4

5 6 21 56 126

10 11 66 286 1001

20 21 231 1771 10626  

 



 

 68 

The first problem to analyze will be a two degree of freedom polynomial chaos model. 

From there, the polynomial chaos model can easily be taken to multiple uncertain 

parameters. 

 

6.1.1 Polynomial Chaos Model: Uncertain F1 and F4 

 

The uncertain inputs will once again be defined as: 
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Application of these definitions to the center of gravity equations results in the following 

equations. 
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 (6.3) 

 

The CG locations, ( )1 4,X ζ ζ  and ( )1 4,Y ζ ζ  are redefined as polynomial chaos functions 

that are comprised of the polynomial chaos basis functions for each uncertain input. 

These basis functions need to be combined to achieve all possible combinations from the 

two possible basis functions. The grid in Figure 6.1 is used to explain this process.  

 

 

 



 

 69 

 ( )0 1φ ζ  ( )1 1φ ζ  ( )2 1φ ζ  ( )1nφ ζ  

( )0 4φ ζ  ( )0 1 4,ζ ζΦ  ( )1 1 4,ζ ζΦ  ( )3 1 4,ζ ζΦ   

( )1 4φ ζ  ( )2 1 4,ζ ζΦ  ( )4 1 4,ζ ζΦ    

( )2 4φ ζ  ( )5 1 4,ζ ζΦ     

( )4nφ ζ      

 

Figure 6.1: Basis Function to 
thn order 

 

The basis functions for ( )1 4,X ζ ζ  and ( )1 4,Y ζ ζ are the product of the basis functions 

for the two uncertain inputs [7]. For example: 

 

( ) ( ) ( )5 1 4 0 1 2 4,ζ ζ φ ζ φ ζΦ = . 

 

 In order to maintain a certain polynomial power, the polynomial chaos functions are 

applied along the diagonal of the grid. The order of the polynomial basis functions does 

not matter as long as they are consistently chosen and known. Equation (6.4) shows the 

polynomial chaos basis functions for the Legendre polynomials to the 2
nd
 power. 
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 X and Y center of gravity locations can then be redefined with the new set of basis 

functions as seen in equation (6.5). 

( )1 4,ζ ζΦ =  
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This makes the definition of 1F and 4F  complex. Even though the uncertainties in the 

forces are independent of each other, the definition in Equation (6.2) is not the easiest 

implementation of the basis functions into Equation (6.3). Another option is to define the 

forces with ( )1 4,ζ ζΦ , where coefficients are zero for all basis functions that are not 

each uncertain input’s basis functions. To further lessen the computations that must be 

completed, ( )1 4,ζ ζΦ can be ordered so the first Φ s directly correspond to the input 

basis functions. This can greatly reduce computations as higher order basis functions are 

applied. 
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Using equation (6.6), equation 5.3 can be rewritten by moving the denominator to the 

other side thus to removing the division operation. The basis functions for 1F  and 2F  

must be taken to the power 2 1s +  because the polynomial chaos functions for each must 

be unique; Therefore, the resulting equations are 
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The equation for the lateral CG location is more complex than the one for the 

longitudinal CG location because the uncertain inputs are in the numerator and 

denominator of center of gravity equation. However, it is impossible to choose a 

coordinate system for multiple uncertain inputs that does not place the uncertainty on 

both sides of the equation for either the lateral or the longitudinal CG equations. It is 

shown in section 5.4.2 this was not a issue because it did not increase the uncertainty in 

solving for the CG location. The derivation for the lateral direction is shown due to its 

relative complexity. 

 

Multiplying through equation (6.7) results in  
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 (6.8) 

 

Applying Galerkin projection with the appropriate inner product on equation (6.8): 
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These integrals can be precomputed using Matlab. In addition, multiple parts of this 

equation can be written in linear algebra form to be solved more efficiently. δ defines 

the precomputed integrals. δ is different from the δ used in one dimension in that it 

must integrate over multiple dimensions of ζ . 
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The weighting function was first defined for one dimension. The weighting function for 

multiple dimensions is a bit different, but remains simplistic in form if the two 

distributions are independent of each other [7].  

 

 ( ) ( ) ( )1 4 1 4,w w wζ ζ ζ ζ=  (6.15) 

 

The load measurement uncertainties are assumed independent between different 

systems.  The following equation shows the reduced form of equation 5.8. 
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The first few terms in equation (6.16) can be condensed to take on a linear algebra form. 

This can be done in the same way it was done for the one-dimensional case in section 

5.1.  
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 (6.17) 

 

Converting this to linear algebra form: 
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Solving for ny , the lateral CG solution is given in equation (6.18). 
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 (6.19) 
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The longitudinal center of gravity solution can be found in a similar way. 
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 (6.20) 

 

The δ matrices can be precomputed and are dependent on the choosen orthogonal basis 

functions. ijnδ  is a three dimensional matrix of dimensions s r r× × . The other δ ’s were 

described in chapter 5.  

 

nX and nY  can now be solved for equations (6.19) and (6.20). Since nX and nY  are 

known, they can be plotted using methods described in section 5.3. 

 

6.2 Polynomial Chaos Expansion Model with Four Uncertain Inputs 

 

The previous derivations were all taking steps to attain the final derivation for the 

polynomial chaos expansion for the center of gravity equation. This is the case where all 

four wheel loads are uncertain and is the real world situation. This section will provide 

the polynomial chaos expansion for four uncertain inputs.  

 

The Karhunen-Love expansion can redefine the four uncertain parameters as 
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 (6.21) 

 

Application of these definitions to the center of gravity equations results in the following 

equation: 
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 (6.22) 

 

As preformed in the previous section, the CG locations, ( )1 2, 3 4, ,X ζ ζ ζ ζ  

and ( )1 2 3 4, , ,Y ζ ζ ζ ζ  are then redefined as a polynomial chaos functions. The difference 

now is the presence of four uncertain inputs rather than just two. Therefore more 

uncertain inputs will cause the basis functions to escalate at a rate defined by equation 

6.1. Since the uncertainties are independent of each other, the basis functions for X  and 

Y are the product of the basis functions for the two uncertain inputs [7]. For example: 

 

 ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4, , ,ζ ζ ζ ζ φ ζ φ ζ φ ζ φ ζΦ =  (6.23) 
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In order to maintain a defined polynomial power, the polynomial chaos functions are 

applied along the diagonal of the grid. Figure 6.1 shows the polynomial chaos functions 

to the 2
nd
 power. X and Y center of gravity locations can then redefined with the new set 

of basis functions. 
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Again 1F , 2F , 3F  and 4F  should be adapted to the multiple uncertain parameter equation 

thus causing the basis functions to be changed to match the output basis functions as 

seen in the following system of equations. 

  

 

( )
( )
( )

( )
( )
( )

( )
( )
( )

4 1
1,2, 1 1,2,

1 1 2 3 4

0 1 1,2

4 1
1,2, 2 1,2,

2 1 2 3 4

0 2 1,2

4 1
1,2, 3 1,2,

3 1 2 3 4

0 3 1,2

4 1 2

, , ,
0

, , ,
0

, , ,
0

, ,

s
s i s

i i

i i s

s
s i s

i i

i i s

s
s i s

i i

i i s

i i

a
F a

b
F b

c
F c

F d

φ ζ
ζ ζ ζ ζ

φ ζ

φ ζ
ζ ζ ζ ζ

φ ζ

φ ζ
ζ ζ ζ ζ

φ ζ

ζ ζ ζ

+

=

+

=

+

=

 Φ =
= Φ 

Φ ≠

 Φ =
= Φ 

Φ ≠

 Φ == Φ 
Φ ≠

= Φ

∑

∑

∑

⋯ ⋯

⋯

⋯ ⋯

⋯

⋯ ⋯

⋯

( )
( )
( )

4 1
1,2, 4 1,2

3 4

0 4 1,2

,
0

s
s i s

i i s

d φ ζ
ζ

φ ζ

+

=

 Φ =


Φ ≠
∑

⋯ ⋯

⋯

 (6.25) 

 

By moving the denominator to the other side to eliminate the division operation, 

Equation (6.22) can be rewritten as 
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These equations are similar in form so the derivation of one will show the methodology 

used solve the other. The longitudinal equation will be solved from this point forward. 

Multiplying through equation (6.26) results in. 
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Application of the Galerkin projection using the appropriate inner product: 
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1,2,3,4 1 2 3 4ζ ζ ζ ζ ζ∂ = ∂ ∂ ∂ ∂  

 

By assuming the uncertainties are independent results in the following weighting 

function 

  

 ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4, , ,w w w w w wζ ζ ζ ζ ζ ζ ζ ζ= = . (6.30) 

 

The integrals from equation (6.29) can be precomputed as δ . δ  is the same as in 

equation (6.11) through (6.14) except they are quadruple integrals instead of double. 
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Computing quadruple integrals is a computational intensive task, especially when it is 

repeated ( )4 1r r s× × + times. Fortunately, this task can be computed once and used as a 

precomputed table. Simplification of equation (6.29) using δ results in. 
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Transformation of equation 6.29 into a matrix form uses the same method as shown in 

Equation (6.17). This creates a solvable system of matrices. 
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The longitudinal center of gravity polynomial chaos model is 
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The lateral center of gravity polynomial chaos model is shown in equation (6.34). 
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nX and nY now are in analytical expressions that can be used to find distribution of the 

center of gravity. From this analytical expression critical information can be determined 

without plotting the distribution, which can prevent excess computational time. The 

distribution is often of interest though, so it can be plotted using the same method as 

before. 

 

6.3 Polynomial Chaos Results for Multiple Uncertain Inputs 

 

The polynomial chaos model can now be applied to the 8-post rig. This section will 

apply results from the moved lump mass test in chapter 3 to two different models to 

create PCE simulation results. The first will be a two uncertain input beta distribution 

model. The second will be a four uncertain input uniform distribution model. 

 

6.3.1 Simulation Results – 2 Uncertain Inputs  

 

The data collected in the moved mass tests can be analyzed with either a uniform or a 

beta distribution. The uniform distribution is used in the case where no information other 

than the range of the distribution is known. The beta distribution is used if it is necessary 

to use the distribution used in the first distribution test. This distribution is not likely to 
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be the case for the moved lumped mass test since the test conditions are different. The 

beta distribution and the uniform distribution will be used for this simulation to show 

that the PCE model can work for any distribution.  

 

The uncertain force inputs that are used for this test are the same ones used in the 

example from section 6.1.1, 1F  and 4F . First, the polynomial chaos coefficients must be 

input into the model. The method for finding these coefficients from real data was 

discussed in section 4.4. The coefficients used for this test are given in the following 

table. 

 

Table 6.2: Beta Distribution Polynomial Chaos Coefficients for Moved Lump Mass 

Tests 

Wheel Location Zero order 1st order 2nd order 3rd Order 4th order 

LR (F1) 509.3 4.93 0.5 0 0

RR (F4) 601.5 10.97 0.25 -0.1 0

Wheel Location Zero order 1st order 2nd order 3rd Order 4th order 

LR (F1) 726.73 5.73 0.5 0 0

RR (F4) 875.1 10.71 0.25 -0.1 0

Wheel Location Zero order 1st order 2nd order 3rd Order 4th order 

LR (F1) 678.87 4.57 0.5 0 0

RR (F4) 786.37 12 0.25 -0.1 0

Wheel Location Zero order 1st order 2nd order 3rd Order 4th order 

LR (F1) 586.07 6.44 0.5 0 0

RR (F4) 691.57 14.93 0.25 -0.1 0

Polynomial Coefficient Values Test 3

Polynomial Coefficient Values Test 4

Polynomial Coefficient Values Test 1

Polynomial Coefficient Values Test 2

 

 

The force from the more accurate scales was used in the estimation of the other two 

force inputs, 2F  and 3F . This eliminates the uncertainty in the other forces from these 

simulations and distortion in the simulation results. It should be noted that these load 

measurements may not be the true values due to stiction in the shocks and the aero 

loaders.  

 



 

 81 

The polynomial chaos expansion model was ran with these inputs. The results were 

plotted in a two dimensions since the distribution can now be placed on more than a line. 

The polynomial chaos and Monte Carlo simulation are shown in the following plots. The 

polynomial chaos model was taken to the fifth order for a total of twenty one 

polynomials in the expanded series. 

 

 

Figure 6.2: Polynomial Chaos Moved Lump Mass Test - Beta Distribution 

Test 2 

Test 3 

Test 1 

Test 4 
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Figure 6.3: Polynomial Chaos Moved Lump Mass Test - Beta Distribution 

 

The polynomial chaos and Monte Carlo distributions are nearly the same, once again 

confirming that polynomial chaos Galerkin method provides a correct distribution of the 

data by following the standard Monte Carlo. Figure 6.2 shows that the center of gravity 

from the Longacre Computerscales DX does not fall within the polynomial chaos 

distribution for tests 1, 2, or 3. Clearly there is more uncertainty in the system than has 

been accounted for in the polynomial chaos model. This is to be expected since the aero 

loaders and shock stiction effects were not considered in the range. Given this 

information, the range is not too far from the scales center of gravity estimate. Therefore, 

if the polynomial chaos estimate was created to estimate the total uncertainties in the 

vehicle, aero loader, and load measurement system this error could be accounted for.  

 

An advantage of the Galerkin method is the analytical equation it provides. provides 

information without requiring the distribution to be plotted. The first ten of twenty-one 

coefficients for the longitudinal direction and the lateral direction are given in the 

following table. 

Test 3 

Test 2 

Test 1 

Test 4 
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Table 6.3: Polynomial Chaos Coefficients Beta Distribution 

n Xn Yn

1 48.5033 35.64981

2 -0.120089 -0.086021

3 -0.01171 -0.007182

4 0.000107 6.36E-05

5 5.95E-06 3.03E-06

6 -1.01E-07 -5.00E-08

7 -0.266905 -0.160665

8 -0.003939 -0.002694

9 0.002509 0.001541

10 -5.04E-05 -2.53E-05  

 

These coefficients show the impact from each polynomial coefficient which can be seen 

by multiplying them by the expanded polynomials. This allows the determination of 

necessary information such as the range in either direction without plotting the 

distribution. This is done the same way as the range was used to determine the 

coefficients in chapter four, by using the boundary conditions.  

 

It is useful to compare the beta distribution results to the uniform distribution results. 

The uniform distribution is shown in Figure 6.4. 
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Figure 6.4: Polynomial Chaos Moved Mass Test – Uniform Distribution 

 

The uniform distribution may provide a better estimate of the distribution than the beta 

distribution for the moved mass test because it is not making any assumptions about the 

shape of the distribution. Therefore it simply finds the area of probability. The results 

from the scales in test two and four stay within the area given in the uniform distribution. 

Test one is still roughly a quarter inch outside the distribution in the longitudinal 

direction and test three is millimeters outside the distribution. These errors could be 

accounted for if the uncertainties from the other two wheels were included. The center of 

gravity uncertainty in the longitudinal direction varies two inches while the CG 

uncertainty in the lateral direction is one inch. These are within 2% of the total 

wheelbase or track for either direction. 

 

The center of gravity distribution area from the two uncertain input’s is shaped like a 

rhombus. The edges of the rhombus are parallel to the lines that connect the wheels 

diagonal to each other. This is due to a change in wheel load in a specific wheel impacts 

Test 2 

Test 3 

Test 1 

Test 4 
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the center of gravity along that diagonal line. Since there are two uncertain inputs, a 

rhombus shape is created. A more realistic center of gravity distribution is created when 

all four wheel loads are uncertain 

 

6.3.2 Simulation Results – 4 Uncertain Inputs  

 

This section compares the experimental data to the PCE models. First the distribution 

data is used through the Monte Carlo method and compared to uniform and beta 

distributions of the PCE model. Then the PCE model is used to model the moved mass 

test.  

 

6.3.2.1 Distribution Test Results- Experimental Data versus PCE Model 

 

The ultimate goal is a PCE simulation with all four wheel inputs uncertain. A 

polynomial chaos model with a uniform wheel load distribution was created to 

accomplish this task. Since the distribution is uniform, only the average and range values 

are required to define the uncertainty distribution of the load cells.  

 

The experimental data collected in the distribution test is directly compared to the 

polynomial chaos expansion model. Monte Carlo method is used to present the 

experimental data. A uniform distribution will be used to model the distribution data for 

the polynomial chaos model; the PCE coefficients are given in the following table.   

 

Table 6.4: PC Coefficients to Define Uniform Distribution for Experimental Data 

Wheel 0 1

LF 498 12

RF 548 6

LR 833 30

RR 746 18

Order of PC Coefficients
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The zeroth order coefficient is based on the average and the first order coefficient is 

based on the range for each wheel distribution. The results of the four uniformly 

distributed inputs are shown in Figure 6.5. 

 

 

Figure 6.5: Experimental Data PDF versus Uniform Polynomial Chaos Model 

 

The experimental data is shown on the left of Figure 6.5. Fifty experimental data points 

were used to create the Monte Carlo from the distribution test presented in section 4.2. 

This creates a rough distribution, but a trend can be attained. The black point represents 

the CG location measured from the portable scales. The experimental data shows that the 

highest probability is along the center of the diagonal. There also seems to be a general 

higher probability in the lower left end around the location (43.6”, 29.4”). At the upper 

right end of this distribution (44.2”, 29.9”) is the highest probability location. This is due 

to the bimodal RF and LR data collected in the distribution test shown in Figure 4.7: 

Experiment Data vs Polynomial Chaos Estimated Distributions The experimental data 

has one outlier at (42.5”, 29.9”). The distribution on the right is created from the 

polynomial chaos model with uniform load inputs. This distribution follows the real data 

in that the highest probability is down the center of the diagonal. The polynomial chaos 

expansion model appears to have a higher uncertainty area. Since there are four 
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uncertain inputs, fifty data points is not enough to draw a conclusive distribution for the 

many possible combinations of the uncertain inputs.  

 

In section 4.2 a beta distribution was chosen to represent the experimental data with the 

coefficients given in Table 4.3. This distribution is also compared to the experimental 

data in Figure 6.6.  

 

 

Figure 6.6: Experimental Data PDF versus Beta Distributed Polynomial Chaos 

 

The beta distribution has some of the same characteristics as the experimental data. The 

PCE model has greater uncertainty in the lower left end of the diagonal centered at 

(43.5”, 29.5”). If the high probability location at (44.2”, 29.9”) is considered mostly 

random chance, the beta distribution better represents the experimental data. This 

assumption resulted from choosing the beta distribution as seen in section 4.2. 

 

The main goal of this section is to show that the PCE model can accurately represent 

experimental data. This goal was accomplished in the distribution results presented in 

Figure 6.5 and Figure 6.6. The moved mass tests are presented in the following sections 

to show that the PCE model can be also be applied to that situation.  
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6.3.2.2 Moved Mass Test Results- PCE Model  

 

This section applies the PCE model to the moved mass distributions to show that the 

model can be applied to multiple loads producing accurate results. The PCE model is 

derived in chapter 6.2. The two equations used in the PCE model for moved mass tests 

are equations (6.33) and (6.34). The inputs are first order polynomials since the 

distribution is assumed to be uniform and the outputs are third order polynomials. Four 

parameters to the third order create thirty-five polynomials as calculated from equation 

(6.1). The result is a hundred thousand point probability distribution, shown in the 

following plot. 

 

 

Figure 6.7: Polynomial Chaos Simulation for Moved Mass Test – 4 Uniform 

Uncertain Inputs 

 

Figure 6.7 shows that the distributions for four uniform uncertain inputs create a more 

natural probability distribution than those shown from two-uncertain parameters. The 
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center of the distribution has the highest probability, and the probability decreases as it 

approaches the outside. It can also be seen that the center of gravity found by the 

Longacre Computerscales DX either falls within or just outside the four moved mass 

distributions. All the center of gravity points from the Longacre Computerscales DX 

would be included in the distribution if the uncertainty between records was included in 

the polynomial chaos code. These uncertainties were averaged out, but this was not done 

for the Longacre Computerscales DX because only one record was taken for each moved 

mass distribution using these scales. Therefore, it is possible that the stiction in the 

vehicle shocks or differences in the aero loaders from test to test could cause these to be 

at error as well.  

 

In section 6.3.1, it was presented that the edges of the two uncertain parameters are 

parallel to the lines that connect the wheels diagonal to each other. It can also be shown 

that for four uncertain parameters there is an area where there is a chance that the CG 

can lay within a rhombus shaped area. The distribution for four uncertain parameters has 

the greatest probability in the center and decreases towards the outside as shown in 

Figure 6.8. This distribution is circular in the center, but the area of the probability is 

rhombus shaped.  
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Figure 6.8: PDF with Diagonal Edge Lines 

 

 

Figure 6.9: Area of Probability Edges versus Diagonal Wheel Line 
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The red rhombus area in Figure 6.9 shows the probability area in a stretched PCE model. 

For each diagonal direction there are two lines. The first is a line that connects the 

diagonal wheels together and the other black line shows the edge of the rhombus. It is 

seen that this diagonal line is parallel to the other diagonal line. This effect is directly 

related to the center of gravity equations and the impact of the uncertainties. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 

The goal of this thesis was to present how polynomial chaos expansion (PCE) can be 

used to analyze the uncertainty in calculating the lateral and longitudinal center of 

gravity for a vehicle from static load cell measurements. This uncertainty is propagated 

through the center of gravity equation and impacts the uncertainty of the CG location. It 

has been shown that the uncertainty in the load measurement system and methods can 

cause significant error in determining the center of gravity of a vehicle. Derived from the 

Galerkin method, the center of gravity equation provides an analytical set of equations to 

define the distribution through polynomials.  

  

The center of gravity distribution has also been plotted and compared to the Monte Carlo 

simulation. It has been shown that the polynomial chaos model and Monte Carlo 

methods provide nearly identical solutions. In addition, the polynomial chaos model 

provides an analytical solution for the model. This allows the determination of which 

sources of uncertainty have the largest impact on the solution by analyzing the equation. 

The Monte Carlo simulation would require multiple simulations to determine a 

subjective view of each uncertainties impact on the process and final solution. 

 

The uncertainty in the load measurement system was defined in the distribution test. 

From this test, it was shown that the beta distribution most accurately defines the 

uncertainty distribution. However, the aero loaders impacted the distribution for the 

moved mass tests. How? ; therefore, the assumptions of the beta distribution could not 

used for the moved mass test. A method for adjusting a distribution from test to test was 

proposed based on the range of the output. This method can be applied to many types of 

distributions because it requires the minimum and maximum value of the collected data, 

the corresponding range of the random variable and a previously determined uncertainty 
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distribution. This method allows one to adapt a distribution that maintains most of its 

shape but may vary over its useful range. 

  

7.2 Recommendations 

 

This study did not fully identify the sources of the uncertainty in the distribution. The 

amount of uncertainty caused by the aero loaders, shocks in the vehicle, shift in the load 

cell system between wheel pan loadings and general load cell measurement system was 

not determined. A test that could isolate various sources of the uncertainty would need to 

be conducted to determine these uncertainties. To find uncertainties in the load cell 

measurement system, a known mass should be used to determine the variance under 

normal loading. This mass could be moved around the wheel pan to show the impact the 

loading has on the four load sensors within each wheel pan. This mass would need to be 

of significant amount, greater than 400 pounds, to compare to the load a vehicle would 

create. The advantage of this test is that it would remove the aero loaders, and the 

possible shift in the weight distribution of a vehicle due to the vehicle’s suspension. This 

would determine if the lack of repeatability in some of the load cell measurements is a 

result of the load measurement system, if it’s from the vehicle shifting weight or the aero 

loaders.  

 

This study has derived the polynomial chaos expansion using the Galerkin method. A 

PCE model using the collocation method should be derived if a faster model is required. 

A collocation model can use fewer points to represent the distribution and find a solution 

than the Galerkin method or Monte Carlo methods. It can greatly reduce the 

computational time to resolve the problem. However, it does not provide an analytical 

solution to the center of gravity equation, and leaves the possibility of an incorrect 

solution to be found if the collocation points are chosen incorrectly. 
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APPENDIX 

 

Appendix A - Analytical Integration Matlab Code 

 

function [deltan,deltaijn,deltakn,deltain]=delta2leg(s,order)  
%s=order of inputs 
%order=order of output 

  
syms x1 x2  %symbolic 
x=[x1,x2]; 

  
%Legendre polynomials 
for i=1:2 
phi(i,:)=[1, x(i), (3/2*(x(i).^2)-1/2), (5/2)*(x(i).^3)-(3/2*x(i)), 

(1/8)*(35*(x(i).^4)-30*(x(i).^2)+3)... 
    (1/8)*(63*(x(i).^5)-70*(x(i).^3)+15*x(i)), (1/16)*(231*x(i).^6-

315*(x(i).^4)+105*(x(i).^2)-5),... 
    (1/16)*(429*x(i).^7-693*x(i).^5+315*x(i).^3-35*x(i))... 
    (1/128)*(6435*x(i).^8-12012*x(i).^6+6930*x(i).^4-1260*x(i).^2+35)]; 
end 
phi1=phi(1,:); 
phi2=phi(2,:); 

  
x=[x1,x2]; 

  

  
%Defining PHI from phi1 and phi2 
PHI(1:order+1)=phi1(1:order+1); 
PHI(order+2:2*order+1)=phi2(2:order+1); 

  
k=2*order+1; 
for j=2:order+1 
    for i=2:order+1 
        if ((i+j)<=(order+2)) 
            k=k+1; 
            PHI(1,k)=phi1(i).*phi2(j); 
        end 
    end 
end 

  
r=length(PHI); 

  
%Computing deltas 
w1=1; %weighting function 1 
w2=1; %weighting function 2 
w=w1*w2; %total weighting function 
for n=1:r 
    for i=1:2*s+1 
        for j=1:r 
            phiijn(i,j,n)=PHI(i)*PHI(j)*PHI(n)*w; 
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            deltaijn(i,j,n)=int(int(phiijn(i,j,n),x(1),-1,1),x(2),-

1,1); 
        end 
    end 
end 

  
for i=1:r;       
    PHIkn(i,i)=PHI(i)*PHI(i)*w; 
    deltakn(i,i)=int(int(PHIkn(i,i),x(1),-1,1),x(2),-1,1); 
end 

  
%Integral of phi1(i)*phi1(n) 
% deltain=zeros(length(phi3),r); 
for i=1:r 
    for n=1:2*s+1 
        PHIin(i,n)=PHI(i)*PHI(n)*w; 
        deltain(i,n)=int(int(PHIin(i,n),x(1),-1,1),x(2),-1,1); 
    end 
end 

  
%Integral of PHI(n) 
for i=1:r; 
    deltan(i,1)=int(int(PHI(i)*w,x(1),-1,1),x(2),-1,1); 
end 

  
deltan=double(deltan); 
deltaijn=double(deltaijn); 
deltakn=double(deltakn); 
deltain=double(deltain); 

  
return 
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Appendix B – Legendre and Jacobian Polynomials 
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Figure B 1: Legendre Polynomials 
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Figure B 2: Jacobian Polynomials for Beta (5,2) Distribution 
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Appendix C – PCE Coefficients for Moved Mass Test 

 

Table C 1: Moved Mass Polynomial Coefficients 

Wheel 

Location

1st order 2nd order 3rd order 4th order 5th order

LF 449.63 6.986 0.25 0.05 0

RF 371.03 6.953 0.25 0 0

LR 509.3 4.93 0.5 0 0

RR 601.5 10.97 0.25 -0.1 0

Wheel 

Location

1st order 2nd order 3rd order 4th order 5th order

LF 399.17 5.164 0.25 0.05 0

RF 283.23 5.87 0.25 0 0

LR 726.73 5.73 0.5 0 0

RR 875.1 10.71 0.25 -0.1 0

Wheel 

Location

1st order 2nd order 3rd order 4th order 5th order

LF 472.23 4.19 0.25 0.05 0

RF 354.23 7.22 0.25 0 0

LR 678.87 4.57 0.5 0 0

RR 786.37 12 0.25 -0.1 0

Wheel 

Location

1st order 2nd order 3rd order 4th order 5th order

LF 511.43 6.85 0.25 0.05 0

RF 452.9 6.78 0.25 0 0

LR 586.07 6.44 0.5 0 0

RR 691.57 14.93 0.25 -0.1 0

Polynomial Coefficient Values Test 1

Polynomial Coefficient Values Test 2

Polynomial Coefficient Values Test 3

Polynomial Coefficient Values Test 4

 

 

 

 

 

 

 

 

 



 

 100 

Appendix D – X and Y PCE Coefficients for 4-Uncertain Uniform Input Model 

 

Table D 1: nX  Basis Functions for Moved Mass Simulations 

Xn Basis 

Functions 

Test 1

Basis 

Functions 

Test 2

Basis 

Functions 

Test 3

Basis 

Functions 

Test 4

0 47.3962 33.7441 40.2657 47.4163

1 -0.3789 -0.2564 -0.2612 -0.3943

2 0.7264 0.6272 0.5076 0.6177

3 0.5586 0.5062 0.5482 0.4705

4 -0.3651 -0.2156 -0.3031 -0.4919

5 -0.0014 -0.0027 -0.0014 -0.0012

6 0 0 0 0

7 -0.0056 -0.0034 -0.0025 -0.0041

8 0.0001 0 0 0

9 0 0 0 0

10 0 0 0 0

11 -0.0011 -0.0021 -0.0015 -0.0009

12 0 0 0 0

13 -0.013 -0.0083 -0.008 -0.0093

14 0.0001 0.0001 0.0001 0.0001

15 0.0002 0.0001 0.0001 0.0001

16 -0.0033 -0.0022 -0.0029 -0.0024

17 0 0 0 0

18 0.0001 0.0001 0.0001 0.0001

19 0 0 0 0

20 0.002 0.0013 0.0011 0.0022

21 0.0058 0.0033 0.0039 0.0082

22 0 0 0 -0.0001

23 -0.0014 -0.0022 -0.0016 -0.0016

24 0 0 0 -0.0001

25 0.0001 0 0 0.0001

26 -0.001 -0.0018 0 0

27 0 0 0 0

28 0.0001 0.0001 0.0001 0.0001

29 0 0 0 0

30 0.0019 0.0009 0.0015 0.0034

31 0 0 0 0.0001

32 0 0 0 0

33 0 0 0 0

34 0 0 0 0  
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Table D 2: nY  Basis Functions for Moved Mass Simulations 

Yn Basis 

Functions 

Test 1

Basis 

Functions 

Test 2

Basis 

Functions 

Test 3

Basis 

Functions 

Test 4

0 30.2478 30.4338 30.1183 30.7472

1 -0.2419 -0.2313 -0.1954 -0.2557

2 -0.351 -0.2503 -0.2192 -0.3035

3 0.2654 0.1963 0.2349 0.2199

4 0.2292 0.1889 0.2249 0.3035

5 0.0056 0.0038 0.0028 0.005

6 0 0 0 0

7 0.0027 0.0014 0.0011 0.002

8 -0.0001 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0.0001

12 0 0 0 0

13 0 0 0 0.0001

14 0 0 0 0

15 0 0 0 0

16 -0.0016 -0.009 -0.0012 -0.0011

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

20 0.0013 0.0012 0.0008 0.0014

21 0 0 0 0.0001

22 0 0 0 0

23 0 0 0 0.0002

24 0 0 0 -0.0001

25 0 0 0 0

26 -0.0041 -0.0025 -0.0035 -0.0046

27 0 0 0 0

28 0 0 0 0

29 0 0 0 0

30 -0.0012 -0.0008 -0.0011 -0.0021

31 0 0 0 0

32 0 0 0 0

33 0 0 0 0

34 0 0 0 0  


