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A multi-attribute supply chain network resilience assessment framework 

based on SNA-inspired indicators 

ABSTRACT 

This study proposes a supply chain resilience assessment framework at the network (i.e. structural) 

level based on quantifying supply chain networks’ structural factors and their relationships to different 

resilience strategies, by using a hybrid DEMATEL-ANP approach. DEMATEL is used to quantify 

interdependencies between the structural resilience factors, and between the resilience strategies. ANP 

is then used to quantify the outer-dependencies among these elements and to construct the limit super-

matrix from which the global weights of all the decision network’s elements are estimated. To create 

the structural resilience factors, different network factors are selected and adopted from the social 

network analysis and supply chain resilience literatures. A case study is then performed to assess the 

performance of the proposed approach and to derive important observations to support future decision 

making. According to the results, the proposed approach can suitably measure the resilience 

performance of a supply chain network and help decision makers plan for more effective resilience 

improvement actions. 

Keywords: Supply Chain Resilience, Social Network Analysis, Structural Analysis, DEMATEL-

ANP. 

1. Introduction 

Supply chains are composed of different facilities and other entities that are connected by the 

physical flow of materials or products (Gong et al., 2014).  As such, we may represent them 

as complex interconnected networks consisting of, for example, suppliers, manufacturers, 

warehouses, retailers, and customers. The complexity of such networks is growing, and 

therefore global supply chains are becoming ever more exposed to disruptions with 

unanticipated consequences (Craighead et al., 2007). The United States’ Hurricane Katrina in 

2005, Japan’s tsunami in 2011, the Thai flood in 2011, and the great earthquakes occurring in 

Nepal in April and May of 2015, are all examples of some of the recent disruptions worldwide. 

To illustrate the importance of such disasters’ impacts on supply chains, one may 

investigate Toyota’s supply chain disruption during 2011 and 2012. After the Japanese 

tsunami, Toyota was faced with a serious supply disruption for six months due to a supply 

shortage from some of their Japanese suppliers. This led to the need for Toyota to idle some 
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of their North American plants (Kim et al., 2011). In addition, as reported by The Economic  

Times,  “Japan's Toyota Motor [Company]…cut production at its Indian subsidiary by up to 

70% between April 25 and June 4 due to disruption of supplies” (Bureau, 2011). 

Research on supply chain resilience has largely focused on assessing vulnerabilities 

that facilities may face and/or capabilities that they need to have to manage these 

vulnerabilities (Ellis et al., 2010). However, in many instances, like with Toyota’s supply 

chain disruption during 2011 and 2012, supply disruptions (i.e. shortages of incoming material 

flow) are not initiated from a facility, but rather from its supply chain network (SCN) structure. 

Also, disruptions at the local level do not necessarily lead to network level disruptions (Kim 

et al., 2011, 2015).  In order to prevent or lessen the impacts of potential disruptions, managers 

therefore also have begun to study the interrelationships between facilities and the underlying 

infrastructure of the supply chain networks. By developing a better understanding of the 

relationships between these different components, they can subsequently plan to take more 

effective actions to improve the resilience of the whole SCN. Parkhe, Wasserman, and Ralston 

(2006) showed that “networks are reshaping the global business architecture”; reflecting on 

the growing nature of the network perspective on individuals, groups, organizations and 

industry interactions. This is particularly evident within management research and practice 

where networks and relational capabilities provide a fundamental tool for organizations to 

leverage global SCNs (Gulati, Lavie, and Madhavan 2011). For instance, theoretical growth 

of business networks has meaningfully enlightened the network dimensions of market-based 

transactions (Monaghan, Gunnigle, and Lavelle 2014). In this light, social network analysis 

(SNA) is increasingly being applied as an emerging methodological tool and convenient 

heuristic to map and quantify relationships between interdependent actors.  As such it has 

resulted in an array of research endorsing the theoretical and mathematical components within 

the management specific literature  (Borgatti and Cross 2003). 

Social network analysis (SNA) is the process of investigating social structures through 

the use of networks and graph theory. The SNA approach includes several factors to assess 

the behavioral aspects of complex networks. As opposed to other approaches, SNA is based 

on relational aspects of the different components of a network; therefore, the basic structural 

factors (that are key to a comprehensive analysis of complex networks), can be analyzed 

(Edwards, 2010). SNA characterizes networked structures in terms of nodes (individual 
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actors, people, or resources within the network) and the ties, edges, or links (relationships or 

interactions) that connect them. From a network perspective, a supply chain can be viewed as 

a set of actors, represented by facilities, which are linked together by different types of 

relationships, such as the physical flow of material, the virtual flow of information, 

friendships, competitions, etc. The assessed impacts of a supply disruption are then 

determined both by the effects on the individual actors and by the network structure. 

Understanding the overall network structure, and being able to differentiate between the 

impacts associated with different types of structures, can therefore lead to better management 

of disruptions, both strategically and operationally.  

Given this context, the main motivation behind this current research effort is to address 

one of the key challenges raised by contemporary supply chain researchers who argue that a 

resilient supply chain network’s structure should take heed of quantitative factors (Cardoso et 

al., 2015). The present study thus aims to contribute to the literature by identifying the major 

aspects of a resilient SCN’s structure and proposing a resilience assessment model at the 

network level that uses social network analysis (SNA)-inspired indicators in a multi-attribute 

decision making (MADM) context, to help decision makers quantify the resilience of their 

SCNs. In other words, the focus of this work is on examining the structural complexity of 

SCNs from the resilience viewpoint. With this in mind, the main findings (i.e. contributions) 

of this paper are as follows: 

• First of all, the paper presents a systematic resilience assessment framework  that uses a 

hybrid MADM methodology to investigate the interrelationships between the components 

of a SCN. When decision makers evaluate the effectiveness of different alternatives for 

improving supply chain resilience on the basis of multiple criteria, the tradeoffs between 

these criteria can complicate the problem, and thus more sophisticated methods are needed 

(Tzeng and Huang, 2011). Adopting a structured resilience assessment framework allows 

them to deal more effectively with such multi-attribute decision making (MADM) 

problems.   

One of the hybrid MADM approaches that has been shown to efficiently manage the 

difficulty of considering interdependencies / interrelationships among different criteria is 

DEMATEL-ANP (Yang and Tzeng, 2011; Fazli et al., 2015). This approach can help 
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decision makers calculate the total resilience level of a SCN and allow them to make more 

informed decisions regarding different design aspects of their SCNs, such as the average 

path length in the network, the network diameter, the overall closeness centrality of source 

nodes, the proportion of suppliers, the network density, etc. Decision makers can then 

calculate the resilience level of the overall supply chain by incorporating both available 

subjective and objective data. This study shows that increasing redundancy by adding 

extra nodes or arcs to increase the network’s density might not improve the resilience of a 

SCN. In particular, suppliers’ locations and how they are connected in the network; should 

be given careful attention. For example, in the case of adding extra suppliers to the 

network, the DMs should take into account the average path length from the candidate 

suppliers to the other nodes, in order to have a more resilient supply chain structure than 

before. The results of applying this method, as discussed below, indicate that suppliers 

become more important according to their locations and how they are connected together 

in the supply chain. 

• Secondly, in addition to validating the use of existing SNA-inspired network factors at the 

SNA literature as the SCN’s resilience indicators, the paper defines several new supply 

chain design factors, namely “overall clustering”, “overall closeness centrality”, “overall 

degree centrality”, “overall betweenness centrality”, “overall flow complexity”, and 

“overall degree centrality for source nodes,” in order to help capture additional resilience 

behaviors and make the resilience analysis more comprehensive.   

• Third, this research contributes to the supplier selection and management practices. Often, 

decision makers place emphasis on the qualities and abilities of suppliers when assessing 

supply chains. However, our study suggests taking a broader view and considering that a 

given supplier’s role in the resilience of the whole supply chain depends, to some extent, 

on its location in the network (see Observation 3). We thus show that it is important for 

decision makers to map the ties among individual suppliers in the supply chain, in order 

to accurately evaluate their effects on the network’s resilience.  

The rest of the paper is organized as follows. Section 2 reviews the related literature. Section 

3 elaborates on the proposed supply chain resilience assessment framework, which accounts 

for supply chain resilience factors, strategies, and capacity making categories, and their 
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interrelationships, using a hybrid MADM approach. Section 4 provides an application of the 

proposed approach to three sample supply chains whose factors have been borrowed from the 

literature. Finally, Sections 5 and 6 provide discussion, conclusions, and future research 

avenues. 

2. Literature review 

Our literature review focuses on two main research streams: supply chain resilience and 

social network analysis, including SNA for investigating supply chain structural behavior. 

2.1 Supply chain resilience 

The concept of supply chain resilience can be defined to be the capability of the supply chain 

to prepare for unexpected events, respond to any associated disruptions, and then recover from 

those disruptions by maintaining continuity of operations at the desired level of connectedness 

and control over structure and function (Ponomarov and Holcomb, 2009, Sabahi and Parast, 

2019). Nowadays an increasing number of papers are being published in the domain of 

resilient SCN design, and this topic has been recognized as a hot and emerging research area 

by academics (Fahimnia et al., 2015). According to Vugrin et al. (2011), the resilience 

capacity of a system is normally measured through three dimensions: absorptive, adaptive and 

restorative. An example of applying this perspective is provided in Hosseini and Barker 

(2016), in which they propose a Bayesian network model for supplier evaluation and selection 

that considers several criteria falling into the primary (or traditional), green, and resilience 

categories.  Their model quantifies resilience in terms of absorptive, adaptive, and restorative 

capacities. The details of these three types of capacities are provided below. 

Absorptive resilience capacity: Geographical segregation of suppliers, prepositioning 

surplus inventory, and contracting with backup suppliers are some examples of absorptive 

strategies (Hosseini and Barker, 2016). According to Vugrin et al. (2011), the absorptive 

capacity is an endogenous feature of the system. For example, holding extra inventories in 

distribution centers can enhance the absorptive capacity as supplying the customers can be 

continued from the prepositioned inventory while the disrupted supplier recovers. Based on 

the quantitative analysis of supply chain resilience provided by Hosseini et al. (2019a), the 

absorptive capacity of a supply chain can be divided into four categories, namely: supplier 



7 
 

segregation  (Hosseini and Barker 2016, Hosseini et al. 2019b), multiple sourcing strategies 

(Yoon et al. 2018; Ivanov et al., 2017a; Ivanov et al.,  2017b), inventory prepositioning 

(Khalili et al., 2017; Elluru et al., 2019; Turnquist and Vugrin, 2013), and multiple 

transportation channels (Kamalahmadi and Parast, 2016). 

Adaptive resilience capacity: Rerouting through a different transportation/delivery 

method during a disruption is an example of adaptive capacity. Adaptive capacity could be 

considered as the second line of defense against disruption and as a part of a temporary post-

disaster strategy. It is a set of properties that reflects activities that result from extra effort over 

time, often in response to a catastrophic situation. It reflects the ability of the system to change 

endogenously during the recovery period. Suppose that a portable manufacturing system can 

be reconfigured to produce a variety of products on demand. This system could be rapidly 

deployed to generate the products needed to handle an unexpected situation, or to prevent 

shortages caused by the supplier’s plant shutdown. Hosseini et al. (2019a) divided adaptive 

resilience capacity into backup suppliers (Torabi et al., 2015; Chakraborty et al., 2019), 

rerouting (Hosseini and Al Khaled, 2019; Wang et al., 2016), communication (Scholten and 

Schilder, 2015; Mandal et al., 2016; Levalle and Nof, 2015), and substitution (Mancheri et al. 

2018). 

Restorative resilience capacity: In the case of massive catastrophic events, a supply 

network may not be able to repair itself quickly enough to avoid unacceptably large 

consequences. Hosseini and Barker (2016) discussed suppliers’ restoration budgets and 

technical resource restorations as two arms of restorative resilience capacity, which 

significantly helps suppliers to recover quickly. Restorative strategies usually restore the 

system to near its original pre-event state, but can also restore the system to a completely new 

state or regime that anticipates future system requirements. 

Recent research efforts have begun to focus on issues related to the interconnectedness 

of supply chain networks, such as the "ripple effect" that occurs when a localized disruption 

propagates across a SCN (Hosseini and Ivanov, 2019, 2020; Hosseini et al., 2020b).  The 

network dependencies that bind the failure of some network components to the failure of other 

network components can reduce network robustness, the absorptive capacity of the network, 

while recovery schemes can improve the restorative capacity. The effect of both dependencies 



8 
 

and recovery schemes on network resilience has only recently begun to be addressed (Bai et 

al., 2017; Hosseini et al., 2020a). 

To enhance resilience capacities, a number of different supply chain resilience 

strategies have been introduced, such as collaborative relationships among supply chain 

partners (CRSCP) (Scholten et al., 2014; Scholten and Schilder, 2015), diversification 

strategies (Sheffi and Rice, 2005; Urciuoli et al., 2014), business continuity management 

systems (Sahebjamnia et al., 2015, Namdar, 2020), distributed power (Sheffi and Rice, 2005), 

information sharing (Christopher and Peck, 2004; Tang, 2006), unbreakable relationships with 

the key suppliers (Sheffi and Rice, 2005; Tang, 2006), flexible supply base and multiple 

sourcing (Chopra and Sodhi, 2004; Johnson et al., 2013), suppliers' risk awareness 

(Christopher and Peck, 2004), identical plant design/process and facilities (Tang and Tomlin, 

2008; Tang, 2006), reduced recovery time through preparedness and anticipation 

(Sahebjamnia et al., 2015), multiple transportation routes (Fiksel, 2003; Tang, 2006), and 

multi-modal transportation (Tang, 2006).   

Much of the current work on supply chain resilience has primarily addressed the use 

of mitigation strategies. Such strategies generally aim at reducing the likelihood and/or the 

impacts of disruptions via developing proactive plans in advance of a disruption, and thus they 

imply a focus only on absorptive capacity as described by Vugrin et al. (2011).  It is important 

to recognize, however, that resilience behavior also may be associated with a supply chain's 

adaptive and restorative capacities (i.e. its post-disruption resilience capabilities). Therefore, 

strategies that can strengthen such capacities also need consideration. However, empirical 

research in this area has been affected by the lack of a validated measurement model. In this 

context, Chowdhury and Quaddus (2017) suggested that supply chain managers take proactive 

approaches towards resilience, design a supply chain that can reduce vulnerabilities, and 

develop reactive capabilities to respond and recover quickly from vulnerabilities.  

The following studies are among the first attempts to develop a comprehensive 

measurement and assessment tool for analyzing the resilience level of supply chains. They do 

so by incorporating relevant resilience factors (measurable aspects of the supply chain that 

can serve as indicators of resilience), resilience strategies, and resilience capacity-making 

categories into a supply chain resilience assessment framework. Soni et al. (2014) first 

proposed a model using graph theory that analyzes the enablers of resilience and their 
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interrelationships using an Interpretive Structural Modeling approach. The nine enablers are 

agility, collaboration, visibility, risk management culture, adaptive capability, risk and 

revenue sharing, trust among players, information sharing, and sustainability. The Soni et al. 

(2014) ISM methodology ultimately resulted in the creation of a supply chain resilience index 

(SCRI).  In this particular research effort, however, they did not consider the interrelationships 

among different resilience strategies.  

Falasca et al. (2008) proposed a simulation-based framework that incorporates 

concepts of resilience into the process of supply chain design. The focus of the model was on 

design considerations concerning the flow of materials within the supply chain, as impacted 

by disruptive changes in the environment that propagates through the physical infrastructure 

of the supply chain. Simulation has been proven to be a practical tool to test supply chain 

responses to different strategies for improving disaster resilience. 

Chowdhury and Quaddus (2015) subsequently developed a 0–1 multi-objective 

optimization model based on a QFD-based methodology. They applied their methodology to 

three companies in Bangladesh. Their results show that lack of materials (high dependence on 

imported materials), disruptions in utility supply, increased competition (and hence 

competitive pressure), impact of economic recession, and reputation loss are the top-most 

vulnerabilities of the Bangladesh Readymade Garment (RMG) industry. The most preferred 

resilience strategies to mitigate the vulnerabilities are shown to be: back-up capacity, building 

relationships with buyers and suppliers, quality control, skill and efficiency development, ICT 

adoption, demand forecasting, responsiveness to customers, and security system 

improvement. 

More recently, Chowdhury and Quaddus (2017) introduced a new measurement 

instrument for supply chain resilience. They showed that supply chain resilience can be 

modeled as a multidimensional and hierarchical construct, consisting of three primary 

dimensions: proactive capability, reactive capability, and supply chain design quality. 

Interestingly, however, although their suggested resilience dimensions are in line with Vugrin 

et al.’s (2011) absorptive and adaptive categories, they also fail to consider the complex 

interrelationships between the different dimensions.  

In a related study, Pournader et al. (2016) argued that as the resilience of the overall 

SCN depends on the resilience level of individual nodes, it is important to develop a resilience 
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metric that can evaluate resilience of supply chains at the overall and node levels. They 

developed a fuzzy data envelopment analysis (DEA) model to assess the resilience at the 

individual tiers and the overall SCN. The proposed model accounts for different types of risk 

in different tiers such as network risks, external risks, and organizational risks and provides 

four efficiency scores (resilience/risk ratio) for a three-tier supply chain: the upstream, 

organizational, downstream efficiencies and the overall efficiency.  However, they did not 

consider available resilience strategies in different levels of a SCN in their study. For further 

information on supply chain resilience, the interested readers are referred to Hosseini et al. 

(2016) and Hosseini et al. (2019a). 

2.2 Social network analysis 

SNA is a term that emerged from the social sciences and that has become very important in 

modern sociology. It generically refers to a group of elements and the nature and extent of the 

connections, relationships, or interactions between those elements. It is important to examine 

how structural relationships among supply chain partners impact the performance of firms 

using a network analytic lens (Basole et al., 2018). In addition, according to Akgul et al. 

(2017), SNA can be used to better understand the collaborative networks in different markets 

and within supply chains of differing sizes. 

In general, SNA aims to describe the interactions between individuals within a group. 

It thus has been used to characterize friendship structure, disease spread, and communication 

patterns, along with other applications in economics, geography, history, information science, 

organizational studies, political science, and development studies.  Moreno (1934) conducted 

one of the first formal social network analyses, and developed a quantitative method called 

Sociometry that was used to measure social relationships and psychological well-being. 

Recently, Basole et al. (2018) focused on structural prominence and density and  their 

association with firm operating performance.  

SNA provides a theoretical framework for formally studying network factors and 

properties. It allows researchers to identify important components of a network, measuring 

patterns of contacts and comparing different networks through a number of standard metrics. 

Table 1 illustrates the most common used SNA metrics and their definitions. The potential of  
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Table 1. A summary of some well-known metrics in SNA 

Category Metric Definition Reference 

D
ia

m
et

er
 Diameter-Largest 

geodesic distance 

The graph diameter is the shortest distance between the 

most distant nodes in the network, or the longest 

among all the shortest path length in the network that 

backtrack, detour, or loop are excluded from 

consideration. 

(Jackson, 

2008) 

Average path 

length 

The average number of steps along the shortest paths 

for all possible pairs of nodes.  

(Jackson, 

2008) 

D
eg

re
e
 

Degree 
The degree of a node is the number of links that 

involve that node, which is the same as the cardinality 

of its neighborhood. 

(Jackson, 

2008) 

Density 
Density can be defined as the ratio between the number 

of total links in the network and the number of 

potential links. 

(Jackson, 

2008) 

Flow complexity 
Flow complexity is the average number of flows out of 

any node 

(Adenso-

Diaz et al., 

2012) 

C
lu

st
er

in
g

 

clustering 

Clustering is a measure of the extent to which nodes in 

a graph tend to be grouped together. The overall 

clustering is based on triplets of nodes, where a triplet 

consists of three nodes that are connected by either two 

or three undirected ties. A triangle consists of three 

closed triplets, and the overall clustering is the number 

of closed triplets over the total number of triplets. 

(Jackson, 

2008) 

C
en

tr
a

li
ty

 

Closeness 

centrality 

The closeness centrality measure keeps track of how 

close a given node is to another node. 

(Jackson, 

2008) 

Degree centrality 
Degree centrality is a measure of the position of a 

given node in a network 

(Jackson, 

2008) 

Betweenness 

centrality 

Betweenness centrality is a measure of centrality that is 

based on how well situated a node is in terms of the 

paths that it lies on. 

(Freeman, 

1977)  

Freeman 

centralization 

The Freeman centralization of any network is a 

measure of how central its most central node is in 

relation to how central all the other nodes 

are. Centralization measures (a) calculate the sum in 

differences in centrality between the most central node 

in a network and all other nodes; and (b) divide this 

quantity by the theoretically largest such sum of 

differences in any network of the same size 

(Freeman, 

1977)  
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SNA to characterize a SCN structure is of growing interest in supply chain management, 

although the related literature provides few empirical investigations (Kao et al., 2017).  

Supply chain management has traditionally focused on linear relationships between  

buyers and suppliers. However, while  a linear perspective may be useful for planning certain 

mechanical  aspects of transactions between buyers and suppliers, it fails to  capture the 

complexity needed to understand a firm’s strategy or  behavior, as both depend on a larger 

SCN in which the firm  is embedded (Choi and Kim, 2008). From a network perspective, the 

relative position of entities with respect to one another influences both strategy and the 

behavior of the network (Borgatti and Li, 2009). A further example is provided by Zhang et 

al. (2015), in which they investigated the role of network topology on a transportation system’s 

ability to cope with disruptions. They used six typical graph theoretic network measures to 

analyze 17 network structures against disruptions and quantified the resilience level of these 

network structures in terms of throughput, connectivity and compactness. From their 

numerical experiments, the higher the degree and cyclic metrics (i.e. Connectivity Cyclomatic 

number2), the greater the resilience level was. Similarly, Cardoso et al. (2015) considered 

eleven indicators, some of which were derived from SNA, to assess supply chain resilience. 

A case study from a European multi-echelon supply chain, including a plant, multiple 

warehouses, multiple suppliers, multiple disassembly lines, and multiple markets, was used to 

illustrate the main factors that a manager should consider when designing and planning 

resilient supply chains.  

SNA's ability to quantify the complexity of modern supply chain relationships is 

justified by a number of studies. Kao et al. (2017) identified those SNA measures that are most 

closely associated with supply chain efficiency, using archival inter-firm relationship data 

collected from U.S. public companies in multiple industries. Shao et al. (2018) proposed a 

data-analytics framework for identifying and classifying nexus suppliers by combining 

various network centrality measures to capture and reflect different aspects of a supplier's 

structural importance. The framework discussed by Zhao et al. (2019) allows managers to 

assess topologies of their SCNs in a range of disruptive situations, thus proactively managing 

 
2 Number of fundamental circuits in the network (µ = 𝑒 − 𝜈 + 𝐺), where 𝑒-number of links in the graph, v-

number of nodes in the graph, and G-number of sub-graphs in the network). 
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the SCN to understand vulnerabilities of the network before a disruption occurs. Pagano et al. 

(2018) proposed a framework to assess the resilience of a water distribution system of a city. 

In this paper, they used the well-known graph theory metrics. The results from the case study 

demonstrated that the method described in this work, due to its capability to address the 

multidimensional nature of the system resilience, can help the decision-makers in identifying 

the main criticalities in both soft and hard infrastructural systems. 

2.3 MADM approach 

MCDM problems can be classified into two main clusters: multi objective decision making 

(MODM) and multi attribute decision making (MADM). MADM deals with those decision 

problems involving discrete decision variables and a finite number of alternatives. Among the 

different MADM techniques, the Analytic Hierarchy Process (AHP) and the Analytic 

Network Process (ANP) (Saaty, 2001) are the most popular methods applied in the supply 

chain management area (Tseng, 2009).   

MADM techniques use a weighted vector of attributes and a decision matrix indicating 

the performance of each alternative with respect to each criterion. These individual 

performance measures are combined using different aggregation functions in order to rank the 

alternatives and determine the one which is most preferred.  This current research effort aims 

to evaluate the performance of a limited number of alternatives (i.e. the resilience level of 

several competing SCNs) based on discrete information (i.e. using a number of structural 

resilience factors inspired by SNA metrics). Thus, this problem can be viewed as an MADM 

problem.  

The Decision-making trial and evaluation laboratory (DEMATEL) method handles 

and structures complicated causal relationships among variables by using a combination of 

matrices and/or graphs (Hsu et al. 2013). Compared to other MADM methods like AHP, 

where factors are considered to be independent, DEMATEL is a method of structural 

modeling that seeks to characterize interdependence amongst the elements of a system through 

a causal diagram (Wu et al., 2010).  For more information on MADM methods, we refer 

interested readers to Zavadskas et al. (2014). 

2.4 Gap analysis 
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Despite increasing interest in the approach, there are currently only a few applications of SNA 

in operations and supply chain management. Kim et al. (2011), for example, proposed a 

theoretical framework that relates the key SNA metrics to supply network constructs so that 

each supply network is analyzed in terms of both material flow and contractual relationships. 

Similarly, Kim et al. (2015) showed that node/arc-level disruptions do not necessarily lead to 

network-level disruptions, and demonstrated the importance of differentiating a node/arc 

disruption vs. a network disruption. They also indicated that network structure significantly 

determines the likelihood of disruption.  More recently, Li et al. (2019) examined the issue of 

risk propagation in a supply network and analyzed the impact of different network factors on 

different types of resilience behavior. 

Because of the difficulties in obtaining data, there have been few detailed studies of 

real life supply chains. Recently, however, researchers are increasingly accepting SNA for its 

potential to investigate the behavior of a given supply chain against disruptions. For example, 

Borgatti and Li (2009) claimed that SNA concepts are particularly suitable for studying the 

network structure of interrelationships in a supply chain and for studying the management of 

material flow and diffusion of information.   

In this study, we develop a comprehensive SCN resilience assessment framework that 

uses a hybrid MADM methodology as well as several SNA-inspired metrics to investigate the 

interrelationships between the different components of a SCN. The proposed framework 

incorporates different resilience strategies for evaluating the overall resilience of a SCN and 

can be used to study the impacts of applying a resilience improvement action in one part of a 

SCN on the overall resilience of that network. More specifically, what is new about our 

approach is the use of SNA-inspired metrics within a hybrid MADM framework in the context 

of supply chain resilience at the network level. That is, using the proposed framework, we can 

calculate and investigate the composite resilience index of some alternative/competing supply 

chain networks considering the resilience factors, strategies, and capacities, and their inter-

relationships. 

3. Supply chain resilience assessment framework 

We adopt an SNA-based approach to characterizing the structural complexity of SCNs from 

the resilience viewpoint, which naturally leads to viewing the resilience assessment process 
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as a multi-attribute decision making (MADM) problem. In general, this approach requires 

defining appropriate evaluation criteria and identifying a number of feasible alternatives, 

evaluating the performance of each alternative with respect to each criterion, applying a 

normative multi-criteria analysis method, and finally ranking the alternatives and selecting the 

best one (Opricovic and Tzeng, 2003).  Such an approach requires incorporating expert 

assessments into the decision process in order to manage the complexity of dealing with 

multiple factors and multiple criteria. We adopt this approach for our SCN resilience 

assessment framework.   

Applying the framework begins with identifying the measurable SNA-related 

resilience factors that may be associated with resilient behavior, along with a set of potential 

resilience strategies that can be implemented to improve the resilience of the SCN.  Because 

of the complexity of the interactions between the multiple resilience factors and resilience 

strategies, the proposed framework then leverages the knowledge of subject area experts to 

capture the tradeoffs and interactions between these elements.  In particular, it uses a hybrid 

approach that combines DEMATEL and ANP techniques (Gölcük and Baykasoğlu, 2016).   

The DEMATEL technique can help experts evaluate both the strength of the internal 

dependency (i.e. inner-dependency) among the resilience factors, and the corresponding inner-

dependency among the resilience strategies (represented by the dotted arrows in Figure 1). 

The experts are asked to assess the external dependencies (i.e. outer-dependencies) that exist 

between each strategy and different resilience factors, as well as the outer-dependencies that 

relate each resilience capacity (i.e. absorptive, adaptive, and restorative resilience capacity) to 

different strategies (represented by the solid arrows between the three central components in 

Figure 1). This results in a number of pairwise comparison matrices (PCMs) to obtain either 

the local weights of resilience factors and strategies with respect to other factors or strategies, 

or the local weights of resilience strategies with respect to a given resilience capacity, or the 

weights of different resilience capacities with respect to the overall measure of resilience (i.e. 

composite resilience index). ANP is then used to create a single super-matrix that combines 

these PCMs, which is then converted into a limit weighted super-matrix (LWSM) that captures 

both the direct and indirect influence flows between the different components.  

Generally speaking, constructing a composite resilience index (CRI) begins with the 

weighting and the aggregation of the pre-defined factors (Hatefi and Torabi, 2010). There are 
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various MADM techniques in the literature that are associated with creating composite 

indicators (CIs), such as those which use the common  data envelopment analysis (CW-DEA) 

technique (e.g. Hatefi and Torabi, 2010). Within our hybrid DEMATEL-ANP approach, the 

elements of the LWSM provide the generalized weights of the different resilience capacities, 

strategies, and factors (see Figure 1).  Once these weights are calculated, the measured values 

of the SNA-based resilience factors for an actual SCN under consideration can be weighted 

and combined in order to generate a composite resilience index (CRI) value for that network. 

Individual CRI values can then be used to rank different SCNs under consideration from a 

resilience perspective. 

It is important to recognize that what differentiates this result from a simple weighted 

combination of the measured resilience factors is the fact that the final ranking also 

incorporates the relationship between these resilience factors and the range of possible 

resilience strategies (Adobor, 2019).  Furthermore, the ranking also captures the relationships 

between resilience strategies and resilience capacities associated with the SCN. It is because 

of the complexity of such a wide range of relationships that the input of experts, and thus an 

MADM approach such as ANP, is necessary for assessing the relationships and for 

quantifying their relative contributions by combining a set of experts’ assessments (Bonyani 

et al., 2019). 

We summarize the steps of the proposed hybrid DEMATEL-ANP approach below, 

while referring the reader to the Supplementary material for a detailed discussion of Step 3.  

 

Step 1: Identify the resilience factors and resilience strategies 

Step 2: Use subjective judgements of experts to evaluate the inner- and outer-

dependencies between the resilience capacities, factors, and strategies using 

the DEMATEL method 

Step 3: Calculate the relative weights for the capacities, strategies, and factors using 

the ANP method (details provided in the Supplementary material) 

Step 4: Use SNA-inspired measures to calculate the values of competing supply 

chain networks’ resilience factors 

Step 5: Combine the resilience factors’ values with the weights to generate the 

Composite Resilience Index scores for the competing SCNs 
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Figure 1. The resilience assessment framework 

The following discussion provides more details about the types of resilience strategies and 

resilience factors that might be considered within the process above, in order to clarify the 

type of information available to the experts as they participate in the hybrid DEMATEL-ANP 

process. The case study in the following section then elaborates further on implementing the 

proposed method within the overall SCN resilience assessment framework. 

3.1 Supply chain resilience strategies 

Namdar et al. (2020) proposed a new quantitative framework for the business continuity-

inspired resilient SCN design problem. They categorized the resilience strategies in four 

classes including Anticipation, Preparation, Robustness, and Recovery. We first provide 

examples of specific supply chain resilience strategies that were chosen among those 

previously discussed by Namdar et al. (2020). These strategies were classified into four 

categories relating to the different echelons in a supply chain, as given below. It is important 

to note that these particular strategies were chosen simply to help illustrate the proposed 

resilience assessment framework, and that there are many other combinations (or subsets) of 

supply chain resilience strategies that could have been considered instead, in order to illustrate 

other factors of supply chain resilience. When applying the SCN resilience assessment 

framework, decision makers may include other relevant resilience strategies based on factors 

of their SCN and industry.  
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3.1.1 Strategies affecting the whole supply chain 

Collaborative relationships among the supply chain partners (CRSCP): Cooperative 

relationships among supply chain partners are considered to be one of the key factors that can 

increase the resilience of the whole supply chain. The purpose of such cooperation is to share 

resources, expertise, knowledge, and information between the supply chain’s facilities. In 

order to reduce or effectively manage supply chain risks, organizations need to establish 

communication and collaboration among different parties, and particularly the key partners 

(Christopher and Peck, 2004; Sheffi and Rice, 2005; Tang, 2006).   

Diversification strategies (DS): The literature demonstrates that using a diversification (i.e. 

redundancy) strategy in selecting the supply base and/or other facilities (e.g. manufacturing 

and distribution sites) can reduce the risk of supply chain disruptions significantly. However, 

such strategies are often very expensive due to their high implementation cost (Sheffi and 

Rice, 2005).  

Establishment of supply chain business continuity management systems (SCBCMS): It is 

almost impossible to predict a disruption’s nature, time, and extent. Therefore, a supply chain 

needs to be proactively equipped with a business continuity management system (BCMS) to 

protect itself against the outcomes of disruptive events (Sahebjamnia et al., 2015). 

Sahebjamnia, Torabi, and Mansouri (2015) proposed a novel framework for integrated 

business continuity and disaster recovery planning for efficient and effective resumption and 

recovery of critical disrupted operations. Christopher and Peck (2004) also argued that the 

establishment of supply chain continuity teams should go beyond the level of organizational 

risk management and address business continuity management across the whole supply chain.  

Distributed power (DP): Distributing power among supply chain partners means creating and 

empowering partners to make fast decisions in emergency situations, and thus enabling each 

of them to reduce the impact of disruptions. Without the need to wait for instructions from 

other key partners, each participant can make suitable decisions to reduce the disruption's 

effects (Sheffi and Rice, 2005).   

Information sharing (IS): One of the most important strategies for effective management of a 
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supply chain is information sharing among the supply chain partners. Information sharing 

increases the flexibility and responsiveness of each supply chain member, and enables them 

either to avoid or to reduce the risk of a disruption (Christopher and Peck, 2004; Sheffi and 

Rice, 2005; Tang, 2006).  

3.1.2 Strategies affecting the supply echelon 

Unbreakable relationships with the key suppliers (URKS): The business continuity of a supply 

chain is often highly dependent on a number of key suppliers. Therefore, a deep and close 

relationship with those suppliers can enhance the resilience level of the whole supply chain. 

This kind of relationship can help to manage the potential supply risks in the supply chain  and 

it enables the suppliers to overcome the interruptions more effectively (Tang, 2006).  

Flexible supply base and multiple sourcing (FSBMS): This strategy creates a flexible supply 

chain, as flexibility enables a firm to reallocate available supply sources quickly and smoothly 

in response to a disruptive event (Chopra and Sodhi, 2004). 

Suppliers' risk awareness (SRA): Suppliers' risk awareness is one of the most important factors 

in supplier selection. The predicament of Land Rover, a subsidiary of Ford, in January 2002 

illustrates this point. Land Rover’s production was endangered by the collapse of its supplier. 

That supply chain was actually at risk because of the supplier's failure, not directly due to a 

problem between the supplier and its customers.  

3.1.3 Strategies affecting the production echelon 

Identical plant design/process and facility (IPDPF): Having identical plants and facilities 

increases flexibility in the face of disruptions, especially those disruptions related to changes 

in demand. This flexibility means that products can be moved between supply partners to cope 

with changes in demands(Tang and Tomlin, 2008; Tang, 2006).  

Reduced Recovery Time by Preparedness and Anticipation (RRTPA): Appropriate 

preparedness for responding to disruptions requires proper contingency planning and the use 

of available resources during the pre-disruption phase, through the design and implementation 

of effective business continuity plans (BCPs) (Sahebjamnia et al., 2015).  This includes 

conducting business impact analysis (BIA), risk assessment (RA) and business continuity 
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planning. These management efforts increase the supply chain’s preparedness (i.e. readiness) 

level against disruptions, which ultimately leads to reducing both the impact of damages and 

the length of time needed to recover (Pettit et al., 2013; Tang, 2006).  

3.1.4 Strategies affecting the distribution echelon 

Multiple transportation routes (MTR): In order to cope with transportation related disruptions 

and ensure the continuity of material flows through the supply chain in any circumstances, 

many companies consider alternative transportation routes (Fiksel, 2003; Tang, 2006). 

Multi-modal transportation (MMT): A multi-modal transport system can also be very effective 

in the face of a transportation mode’s disruption (Tang, 2006). 

It should be mentioned that no company or supply chain can afford to adopt all of these 

strategies. Different supply chain conditions affect the appropriateness of the various 

strategies. Managers must understand the advantages and disadvantages of the various 

resilience strategies, and in what circumstances they could be beneficial. Managers should 

also consider the composition of risk management teams, in terms of functions and 

orientations represented, to assess and manage global supply chain risks. 

3.2 Quantitative resilience factors 

Measuring resilience in supply chains is a problematic task because the interrelationships 

among supply chain resilience strategies and factors are difficult to understand and manage. 

Nevertheless, in this paper, we aim to conduct a comprehensive quantitative supply chain 

resilience analysis and investigate the resilience behavior of some competing supply chains 

against potential disruptions. For doing so, eleven different network factors are selected and 

adopted from the social network analysis literature and supply chain resilience literature and 

applied to interpreting different aspects of the interrelationships between supply chain 

resilience strategies and factors. These factors include: network complexity, source criticality, 

supplier complexity, density, node criticality, flow reliability, flow complexity, and network 

centralization.  

We also define some new supply chain design factors, namely “overall clustering”, 

“overall closeness centrality”, “overall degree centrality”, “overall betweenness centrality”, 

“overall flow complexity”, and “overall degree centrality for source nodes” to make this 
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analysis more comprehensive. The following discussion presents the quantitative metrics by 

which we may measure each of these network factors. 

Network complexity: Birkie et al. (2017) showed that complexity of SCNs has a 

moderating impact on resilience capabilities and performance after disruptions. SCN 

complexity can be represented by the network’s size, which is determined by the number of 

nodes in the network: 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (3) 

 

Source criticality: Source criticality, or the crucial importance of the source nodes in the 

supply chain, is a category that includes the following factors. 

Average path length in the network:  The average path length is defined as the average number 

of steps along the shortest paths for all likely pairs of nodes in the network. It is also a measure 

of the efficiency of information or mass transport on a network.    

Diameter:  Diameter in social network analysis is the largest number of nodes which must be 

traversed in order to travel from one node to another when any backtrack, detour, or loop are 

excluded from consideration (i.e. the longest geodesic) 

     𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑚𝑎𝑥𝑢.𝑣𝑑(𝑢. 𝑣) (4) 

where 𝑑(𝑢. 𝑣) is the distance between node 𝑢 and node 𝑣. 

Overall closeness centrality of source nodes:  Concern with centrality in social network 

analysis stems from the idea that a person who is close to others will have access to more 

information, has more power, has higher status or has greater influence than others (Freeman 

et al., 1991). Closeness centrality keeps track of how close a given node is to other nodes and 

can be measured as follows (Jackson, 2008):  

     𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 =
𝑛 − 1

∑ 𝑙(𝑖. 𝑗)𝑗≠𝑖
 

(5) 

where 𝑙(𝑖, 𝑗) is the number of steps in the shortest path between node 𝑖 and 𝑗 . While n is the 

total number of nodes in the supply chain. Consequently, overall closeness centrality of source 

nodes can be defined as the summation of closeness centrality of source nodes: 

     𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠 = ∑
𝑛 − 1

∑ 𝑙(𝑖. 𝑗)𝑗≠𝑖𝑖∈𝑆 

 
(6) 
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Based on our observations, the average path length in the network, diameter, and the overall 

closeness centrality are the most common factors that are used in designing an economic 

supply chain in the literature. However, these factors are not specific in a supply network, 

while their factors are very important in the suppliers’ echelon. So, in this paper, we use these 

factors to measure the source criticality. 

Overall degree centrality for source nodes: Degree centralization originated from graph 

theory simply measures the position of a given node in a network via its degree. The degree 

of a node is the number of edges which it touches. The degree centrality of a node is simply 

defined as: 𝑑𝑖(𝑔) 𝑛 − 1⁄  where 𝑑𝑖(𝑔) is the degree of node i and n defines the total number 

of nodes in the graph (Jackson, 2008). So, overall degree centrality for source nodes is defined 

as follows: 

     𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠 = ∑
𝑑𝑖(𝑔)

𝑛 − 1
𝑖∈𝑆

 
(7) 

The overall degree centrality for source nodes can enhance the adaptive and restorative 

capacities.  

 

Supplier complexity: Some researchers have defined supplier complexity as the percentage 

of nodes that act as supplier (Adenso-Diaz et al., 2012; Wang et al., 2005). So, 

     𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
 

(8) 

As we can see in Eq. 6 source nodes are the nodes that supply the network and have no 

demands 

 

Density: According to the literature of social network analysis and graph theory, density can 

be defined as the ratio between the number of total links in the network and the number of 

potential links.  

     𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑖𝑛𝑘𝑠
 

(9) 

Noteworthy, density is calculated on all nodes but "overall degree centrality of source nodes" 

is calculated only on source nodes. 
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Node criticality: This factor calculates the criticality of all nodes in the network. Since in a 

supply chain suppliers play a more important role (as well as in disruptions), in this paper we 

discuss them separately (see source criticality). Node criticality includes the following factors: 

Overall clustering: In the social network analysis literature, the clustering coefficient is a 

measure of the extent to which nodes in a graph tend to cluster together (Jackson 2008). The 

overall clustering is based on the triplets of nodes. In other words, “overall clustering can be 

measured by looking across all situations where two links both emanate from the same node, 

so for instance 𝑖 − 𝑗 and 𝑖 − 𝑘 edges both involve node 𝑖, and ask what proportion of the time 

it is that 𝑗 − 𝑘 is then also in the network”.  

     𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 =
∑ #{𝑗𝑘 ∈ 𝑔|𝑘 ≠ 𝑗, 𝑗 ∈ 𝑁𝑖(𝑔), 𝑘 ∈ 𝑁𝑖(𝑔)} 𝑖

∑ #{𝑗𝑘|𝑘 ≠ 𝑗, 𝑗 ∈ 𝑁𝑖(𝑔), 𝑘 ∈ 𝑁𝑖(𝑔)}𝑖
 

(10) 

The overall clustering factor in a supply chain can measure the node criticality in such a way 

the greater the overall clustering coefficient is, the fewer the number of critical nodes in the 

network would be.   

Percentage of critical nodes: A node is considered to be critical when the sum of its inbound 

and outbound links (i.e. its degree) is higher than a determined target value provided by the 

top manager (Cardoso et al., 2015): 

     𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑛𝑜𝑑𝑒𝑠 =  
# 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑛𝑜𝑑𝑒𝑠

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠
 

(11) 

 

Flow reliability: Flow reliability can be defined as the mean reliability of flows (i.e. reliability 

of links and roads between entities) (Adenso-Diaz et al., 2012). Betweenness centrality of a 

node is a key centrality indicator in the social network analysis that is equal to the number of 

shortest paths from all nodes to all others that pass through that node. A node with high 

betweenness centrality has a large influence on transferring flows through the network. 

Betweenness centrality of node 𝑘 can be defined as follows (Jackson, 2008): 

     𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑘 = ∑
𝑃𝑘(𝑖𝑗)/𝑃(𝑖𝑗)

(𝑛 − 1)(𝑛 − 2)/2
𝑖𝑗:𝑖≠𝑗.𝑘∉{𝑖.𝑗}

 
(12) 

where 𝑃(𝑖𝑗) denotes the number of shortest paths connecting node 𝑖 to node 𝑗, 𝑃𝑘(𝑖𝑗)  
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Table 2. Summary of the resilience factors  

Num. factor Abbreviation How to measure  

1 Size of the network SON 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

2 

Average path length in 

the network 

APLN 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 𝑎𝑙𝑜𝑛𝑔 

𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑖𝑘𝑒𝑙𝑦 𝑝𝑎𝑖𝑟𝑠 

𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑛𝑜𝑑𝑒𝑠 

 

Diameter DI 𝑚𝑎𝑥𝑢,𝑣𝑑(𝑢, 𝑣)  

Overall closeness 

centrality of source nodes 

OCCSN 
∑

𝑛 − 1

∑ 𝑙(𝑖, 𝑗)𝑗≠𝑖𝑖∈𝑆 

  

Overall degree centrality 

for source nodes 

ODCSN 
∑

𝑑𝑖(𝑔)

𝑛 − 1
𝑖∈𝑆

  

3 
The proportion of 

suppliers 

PS 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
  

4 Density 
D the number of total links in the network

the number of potential links
  

5 

 

Overall clustering 

 

OC ∑ {𝑗𝑘 ∈ 𝑔|𝑘 ≠ 𝑗, 𝑗 ∈ 𝑁𝑖(𝑔), 𝑘 ∈ 𝑁𝑖(𝑔)}𝑖

∑ #{𝑗𝑘|𝑘 ≠ 𝑗, 𝑗 ∈ 𝑁𝑖(𝑔), 𝑘 ∈ 𝑁𝑖(𝑔)}𝑖
  

Percentage of critical 

nodes 

PCN # 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑛𝑜𝑑𝑒𝑠

# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
  

6 
Overall betweenness 

centrality of nodes 

OBCN 

∑ ∑

𝑃𝑘(𝑖𝑗)
𝑃(𝑖𝑗)

(𝑛 − 1)(𝑛 − 2)
2𝑖𝑗:𝑖≠𝑗,𝑘∉{𝑖,𝑗}𝑘

  

7 Overall flow complexity 
OFC 

∑
𝑑𝑖

+(𝑔)

𝑛 − 1
𝑖

  

8 Freeman centralization 
FC ∑ (𝑑𝑖

∗(𝑔) − 𝑑𝑖(𝑔))𝑖

max (∑ (𝑑𝑖
∗(𝑔) − 𝑑𝑖(𝑔))𝑖

  

 

Denotes the number of these paths that node k lies on and n denotes the total number of nodes. 

In this way, the overall betweenness centrality of nodes can be defined as:  

     𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 = ∑ ∑
𝑃𝑘(𝑖𝑗)/𝑃(𝑖𝑗)

(𝑛 − 1)(𝑛 − 2)/2
𝑖𝑗:𝑖≠𝑗.𝑘∉{𝑖.𝑗}𝑘

 
(13) 

  

Overall flow complexity:  Adenso-Diaz et al. (2012) defined flow complexity as the average 

number of flows out of any node. In the social network analysis literature, flow complexity 
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can be defined as the average out degree of nodes. Kim et al. (2011) mentioned this factor as 

out-degree centrality. So, we develop overall flow complexity as follows: 

     𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑓𝑙𝑜𝑤 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ∑
𝑑𝑖

+(𝑔)

𝑛 − 1
𝑖

 
(14) 

where 𝑑𝑖
+(𝑔) is out degree of node 𝑖 and 𝑛 is the total number of nodes in the supply chain. 

 

Network centralization: The network centralization indicators are based on the number and 

intensity of the flows adjacent to each node (Cardoso et al., 2015). The freeman centralization 

of a network is a measure of how central its most central node is in relation to how central all 

the other nodes are  (Freeman 1979). According to the above definition, the higher a given 

network’s freeman centralization, the more importance of a central node would. The freeman 

centralization can be measured as below: 

     𝐹𝑟𝑒𝑒𝑚𝑎𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑥 =
∑ (𝑑𝑖

∗(𝑔) − 𝑑𝑖(𝑔))𝑖

max (∑ (𝑑𝑖
∗(𝑔) − 𝑑𝑖(𝑔))𝑖

 
(15) 

where 𝑑𝑖
∗(𝑔) is the maximum degree centrality in the network. 

4. Case study: Unveiling the structure of Honda, Acura, and Daimler Chrysler’s supply 

chains 

Any MADM based method requires rich and detailed data for practical application and thus 

data collection is a major limitation in conducting a thorough analysis. In this section, 

therefore, the performance of the suggested resilience factors and the proposed hybrid MADM 

approach (i.e. the hybrid DEMATEL-ANP) is investigated with respect to three automotive 

supply chains whose required data has been borrowed from the literature. Choi and Hong 

(2002) and Kim et al. (2011) reported three automobile supply chains, including the three 

center console assemblers of Honda Accord, Acura CT/TL, and Daimler Chrysler (DCX) 

Grand Cherokee, and derived some observations regarding the behavioral factors of these 

supply chains based on their networks’ topologies.  

 According to Choi and Hong (2002), all data were gathered through visiting the related 

companies where the data came primarily from three sources including semi-structured 
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interviews, relevant documents (e.g. bill-of-materials (BOMs), vendor agreements, pre-source 

package forms (PSFs)), and direct observations (via conducting plants’ tours). Figures 3 to 5 

illustrate the material flow supply chains for the Accord, the Acura CT/TL, and the Daimler 

Chrysler (DCX) Grand Cherokee, respectively. 

In the Accord’s material flow supply chain for the center console assembly (see Figure 

3), CVT and JFC are top tier suppliers. Considering other second-tier and third-tier suppliers 

selected by Honda, all together there are 28 network entities (i.e. suppliers) in this supply 

chain. According to Figure 4, in the material flow supply chain for the Acura CT/TL's center 

console assembly, Intek is the top tier supplier and the directed sourcing strategy is used at the 

other tiers. Altogether, there are 34 entities in this supply chain. Figure 5 illustrates the 

material flow supply chain for the DCX Grand Cherokee's  center console assembly. In this 

network, Textron plays a crucial role as the sole top tier supplier by integrating other parts’ 

suppliers and sub-assemblers. Altogether, there are 27 network entities in this supply chain. 
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Figure 3. Accord’s material flow supply chain (adopted from Kim et al., 2011) 
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Figure 4. Acura CT/TL’s material flow supply chain (adopted from Kim et al., 2011) 

 

Ashland Chemical

Sota tech

AES

G-Lakes Fastener

Gen Fastener

Mico

Midland Mold

GR Spring & Stamping

Leon Plastics

Irwin

ER-Wagner

A-Schulman

Pan Tech

OSI

Armada

Stanley Fastener

Unique Fab

Bayer

Camcar Textron

Takata

Uniform Color

Air Products

Diamler

Dow

GE Polymerland

Rand Whitney

Textron

 

Figure 5. DCX Grand Cherokee’s material flow supply chain (adopted from Kim et al., 2011) 
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Table 3. Calculated resilience factors for the three supply chains  

Num. Resilience factors Accord Acura CT/TL 
DCX Grand 

Cherokee 

 

1 Size of the network (SON) 28 34 27  

2 

Average path length in the network (APLN) 2.902116 2.516934 2.381766 
 

Diameter (DI) 7 4 4  

Overall closeness centrality of source nodes 

(OCCSN) 
0.197609 0.286749 0.361324 

 

Overall degree centrality for source nodes 

(ODCSN) 
0.642857 0.882353 0.851852 

 

3 The proportion of suppliers (PS) 0.571429 0.735294 0.851852  

4 Density (D) 0.082011 0.073084 0.074074  

5 

Overall clustering (OC) 0.013889 0.027888 0  

Percentage of critical nodes (PCN) 0.071429 0.205882 0.074074  

6 
Overall betweenness centrality of nodes 

(OBCN) 
3.764550 2.756090 2.763533 

 

7 Overall flow complexity (OFC) 2.296296 2.484848 2 

8 Freeman centralization (FC) 25.733333 31.473684 25.437500 

 

The resilience factor values for each of these three supply chains were all calculated 

in MATLAB, and Dijkstra's algorithm was specifically used to derive the overall betweenness,   

centrality of source nodes, the average path length, the diameter, and the overall closeness 

centrality of source nodes (Bondy and Murty, 1976; Dijkstra, 1959; Jackson, 2008). The 

results of these calculations are shown in Table 3. 

The hybrid DEMATEL-ANP approach was then conducted to explore the inner 

dependencies among the elements of the third cluster (i.e. the resilience strategies) and the 

fourth cluster (i.e. the resilience factors) of the decision network, respectively, using an expert 

panel consisting of nine experts (including the sales managers, systems and ERP directors, 

logistics and production planning managers, as well as some academic experts) from well-

known automobile companies in Iran. The resulting weights were then combined with the 

measured factor values in Table 3 to generate a CRI value for each SCN. We avoid presenting  
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Table 4. The global weights for the competing supply chains 

Competing supply chains CRI Rank 

Accord 0.324407 2 

Acura CT/TL 0.35207 1 

DCX Grand Cherokee 0.323523 3 

   

 

Table 5. The global weights with respect to each category of resilience making capacities 

Competing 

supply chains 
Absorptive 

Rank in 

Absorptive 
Adaptive 

Rank in 

Adaptive 
Restorative 

Rank in 

Restorative 

Accord 0.325847 2 0.324186 3 0.325498475 2 

Acura CT/TL 0.356289 1 0.349564 1 0.348220293 1 

DCX Grand 

Cherokee 
0.317864 3 0.32625 2 0.32628123 3 

 

the entire limit super-matrix here and simply show the global weights for the competing supply 

chains (i.e. their CRIs) in Table 4, as well as their weights in each resilience making capacity 

category in Table 5.   

As we can see in Tables 4 and 5, the multi-attribute resilience assessment framework 

provides the ability to quantify resilience by using a single numerical index (CRI). This will 

help decision makers choose various risk mitigation strategies more effectively. The 

framework also provides flexibility in choosing resilience factors and resilience strategies, and 

thus in identifying the various relationships and interrelationships within a supply chain, with 

the result that it can be applied to a variety of different SCNs. 

5. Discussion 

In the past decade, the critical infrastructures and essential service providers that enable supply 

chains to thrive and grow have become increasingly interconnected and interdependent at both 

local and global scales. Supply chain managers have begun to focus on these 

interdependencies and on the vital connections between the supply chain and these 

infrastructures, in order to implement resilience capacity making strategies that can prevent 

or lessen the impacts of potential disruptions.  A disruption that strikes one infrastructure can 

cascade to other infrastructures (such as a disruption suffered by Arkay, in Acura CT/TL’s 

supply chain, that subsequently impacts Intek). By understanding the resilience making 
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capacity categories, resilience strategies, and resilience factors discussed above, as well as 

their interrelationships in a supply chain, the decision makers can plan for implementing more 

effective resilience improvement actions.  In particular, this requires interpreting the resilience 

factors in the context of the factors of the actual supply chains being analyzed, with their 

specific flows and relationships and node types, and in the context of strategies that are 

relevant to that type of supply chain.  With this in mind, we provide some observations below. 

 

Observation 1 (O1). Adding additional nodes may not increase the resilience of a supply 

chain. 

Adding additional nodes adds resilience only when those additional nodes supply similar 

products with other suppliers. If the additional node is the sole supplier for a component, 

adding it will increase the vulnerability of the network. As can be seen from Table 6, Acura 

CT/TL, DCX Grand Cherokee, and Accord are ranked from first to third place in terms of 

their SON (size of network) resilience factor values, whereas Accord is in second place in 

terms of the overall composite resilience index value.  Therefore, it can be concluded than an 

increase in the number of nodes (i.e. facilities) in a supply chain does not necessarily lead to 

an increase in CRI value. 

 

Table 6. Competing supply chains’ ranking in terms of SON and CRI 

Competing supply 

chains  
CRI 

Rank in 

CRI 
SON 

Rank in 

SON 

Accord 0.324407 2 0.325858 3 

Acura CT/TL 0.35207 1 0.34613 1 

DCX Grand 

Cherokee 
0.323523 3 0.328012 2 

 

Observation 2 (O2). Overall clustering plays a critical role in the resilience level of supply 

chains. 

The overall clustering reflects the overall pattern of connectedness in a network. As we can 

observe from Table 7, there is a similar ranking for competing supply chains for both the 

overall clustering and the composite resilience index, which indicates a positive correlation.  
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In our expert panel’s opinion, the higher the overall clustering degree, the lower the node 

criticality factor in a supply chain would be.  To explain this, consider the nodes as the supply 

facilities and the ties among them as the flow routes among the facilities in a supply chain. In 

the case of a disruption happening in a facility, if it belongs to a particular cluster in the 

network then the decision makers can use the capacity of other facilities within this cluster to 

maintain the flow of goods and avoid disrupting the whole supply chain. For example, 

consider Figure 6a and Figure 6b.  In the scenario represented by Figure 6a, the first facility 

is responsible for producing and transferring component A to the second and third facilities. 

The second facility in Figure 6a produces component B, but it also follows the resilience 

strategy of inventory prepositioning and contracts with a backup supplier for component A.  

In contrast, in Figure 6b, the first and second facilities are responsible for producing and 

transferring components A and B to the third facility, respectively, and there are no resilience 

strategies in place.  

 

Table 7. Competing supply chains’ ranking in terms of OC and CRI 

Competing supply 

chains 
CRI 

Rank in 

CRI 
OC 

Rank in 

OC 

Accord 0.324407 2 0.332122 2 

Acura CT/TL 0.35207 1 0.417961 1 

DCX Grand 

Cherokee 
0.323523 3 0.249917 3 
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Figure 6: An illustrative example of clustering rule in a supply network 
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In the case of a disruption to the first facility, the whole supply chain can perform 

normally in the situation given by Figure 6a, because the first facility is in a cluster in the 

network.  In Figure 6b, however, the overall supply chain's operations are disrupted. 

 

Observation 3 (O3). The suppliers’ positions and the way that they are linked up in the 

network play vital roles in calculating the CRI. 

As mentioned before, the interdependence of global suppliers and infrastructures has become 

increasingly important from the perspective of enabling supply chain resilience. The presented 

case study shows that the linkages and connectedness among a supply chain’s entities affect 

its resilience level. By understanding the adaptive and restorative capacities (e.g the locations 

of the suppliers), we can conclude that only adopting proactive and absorptive strategies (e.g. 

making the suppliers more reliable through establishing business continuity plans) may not be 

sufficient to enhance the resilience level of the whole supply chain. 

As Table 4 indicates, Acura CT/TL is the most resilient supply chain among the three 

competing supply chains according to the calculated CRIs derived from the proposed hybrid 

DEMATEL-ANP methodology.  In Table 4, Acura’s supply chain shows a comparatively high 

level of performance against disruptions compared to the Accord and DCX supply chains. In 

particular, Acura’s supply chain has a relatively high score regarding the overall clustering, 

which plays a crucial role in the resilience of the whole supply chain. A supply chain with a 

high degree of overall clustering would be expected to react somewhat confidently in the case 

of an entity or link disruption, since the network's operations will be supported by other nodes 

and links through which the materials could be temporarily moved. 

Other important factors in support of supply chains’ resilience are the average path 

length and the diameter. Based on these two factors in particular, Acura outperforms the other 

supply chains overall because there are fewer steps required to move the materials through 

Acura’s supply network.  This also indicates that Acura's network can operate more efficiently 

(e.g. with lower lead times) as it imposes less managerial attention on the firms in a central 

position. 

In summary, the use of SNA indicators to assess the resilience level of a SCN can be 

helpful when the top managers need to evaluate the post-disruption performance of a large 

SCN in real time, or when they need to compare the post-disruption performance of some 
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possible/competing topological designs of a SCN. This is because it is generally much faster 

to compute SNA metrics than to implement an optimization routine to find an optimal solution 

(Zhao et al., 2019). On the other hand, if an in-depth analysis of a SCN’s robustness is 

necessary, then pursuing an optimization-based approach may be more appropriate. Another 

conclusion that we may draw from this study is that a more resilient network structure may 

not always require mitigation in order to cope with disruptions. In particular, the results 

indicate that actively adding redundancy, which is one of the primary mitigation strategies in 

many supply chains, will not always result in the most resilient supply chain (Observation 1).  

As part of the new hybrid approach discussed above, interdependencies between the 

suggested resilience factors, as well as the considered resilience strategies, were separately 

quantified by using DEMATEL. ANP was then used to quantify the outer dependencies 

among different clusters of the decision network and to construct the limit super-matrix from 

which the global weights of all the decision network’s elements were estimated.  The resulting 

overall combination of the weights that were calculated for the competing supply chains then 

became the composite resilience indices (CRIs) by which the overall resilience ranking vector 

was determined.   

While many current efforts mostly focus on suggesting mitigation strategies to cope 

with disruptions, our findings show that decision makers and top managers should take the 

whole structure into consideration when designing/redesigning their SCNs. Previous works 

largely focus on assessing potential vulnerabilities of the network’s entities and/or the 

capabilities they need to manage these vulnerabilities. The present study, however, aims to 

quantify the resilience level of SCNs through a number of SNA-inspired factors, which can 

help in designing resilient SCNs.  

Our findings also indicate that adding extra nodes without considering the whole 

network’s structure and its entities’ linkages may not increase the supply chain’s resilience 

level. Moreover, we find that decision makers and managers should take a broader view of 

supplier selection practices since the suppliers’ locations in the network play a crucial role in 

the whole network’s resilience level. For example, a supply chain could achieve a higher 

composite resilience index by contracting between the parties to make more clusters in the 

network and thus increase the centrality of the suppliers. 
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6. Conclusions 

Today’s multi-tier, complex supply chains are prone to a variety of vulnerabilities and thus 

require to be resilient in order to cope with potential disruptions. In this regard, designing 

resilient supply chains is one of the main challenges faced by decision makers. Supply 

networks serve as important sources of resource access,  power, and trust and can also act as 

signaling mechanisms.  These sources serve as catalysts for the development and 

dissemination of new ideas, applications, and supply chain practices (Basole et al., 2018).  

The supply chain management literature offers many quantitative metrics that could 

be adapted to provide a comprehensive quantitative analysis of different supply chain 

structures from various perspectives. This study examines the structural complexity of SCNs 

from the resilience viewpoint. For this, it proposes a new hybrid MADM approach to measure 

and compare the resilience level of several competing SCNs using a number of quantitative 

factors inspired by SNA metrics. It is important to note that combinations of supply chain 

resilience dimensions other than those that were selected could also be considered (such as 

those described in Chowdhury and Quaddus (2017)), in order to show alternate aspects of 

supply chain resilience.  

Despite its various contributions, this study has some limitations as well.  The 

discussion focused on measuring and comparing the resilience level of several competing 

supply chains, but it did not fully elaborate on the network factors that actually led to better 

performance against disruptions. For instance, the analysis did not take into account the 

possible effects on network resilience of different arc lengths (i.e. transportation routes) or 

different lead times. Variances in lead-times at the node level, and along the arcs, or 

differences between various paths through a network, would also be expected to contribute to 

the strength of a network-level disruption. Another limitation of the study is the amount of 

rich and detailed data that must be provided by managers when constructing the required 

pairwise comparison matrices (PCMs) (Supplementary material - step 1 and step 4), in terms 

of the number of pairwise comparisons that must be made. In order to tackle issues of 

cognitive overload, we suggest using the recently developed “Best-Worst method (BWM)”, 

which is a comparison-based method that conducts the pairwise comparisons in a particularly 
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structured way, so that not only less information (i.e. less pairwise comparisons) is required, 

but also the comparisons are more consistent (Rezaei, 2015). 

Since designing a resilient supply chain that is also cost efficient is of particular interest 

for top managers, our methodology could help decision makers to choose the most resilient 

supply chain among several competing network structures, while taking the cost of each 

structure into account as well.  More specifically, an interesting avenue for future research 

would be to formulate multi-objective mathematical models for making trade-off analyses 

between the well-known objective functions (i.e. the cost efficiency, the responsiveness and 

the resilience of the designed supply chain), while using the proposed resilience assessment 

method to quantify the more qualitative resilience objective. Also, simulation methods can be 

used to demonstrate the resilience of additional networks in some scenarios based on the 

proposed framework. From a practical point of view, there is also opportunity to implement 

the main findings of this study to reconfigure real supply chains, especially in those industrial 

sectors having complex multi-tier supply chains (like auto supply chains), in order to find the 

most resilient network structure, while still controlling the total cost.  
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Supplementary material for: A multi-attribute supply chain network resilience 

assessment framework based on SNA-inspired indicators 

 

The details of implementing the hybrid DEMATEL-ANP 

Step 1: Compute the average matrices. In step 1, once the inner relationships between the 

resilience factors as well as resilience strategies are separately measured by each member of 

the expert panel, the respective direct influence matrices are obtained (Table S1).  

Table S1. An example of experts’ responses for interrelationships among the resilience factors 

  SON APLN DI OCCSN ODCSN PS D OC PCN OBCN OFC FC 

SON 0 1 1 2 2 2 3 0 0 2 2 4 

APLN 0 0 4 4 0 0 0 1 0 0 0 0 

DI 0 4 0 4 0 0 0 1 0 0 0 0 

OCCSN 0 3 3 0 0 0 2 1 0 3 0 1 

ODCSN 0 2 2 2 0 0 4 3 2 4 3 1 

PS 4 0 0 3 1 0 0 0 3 0 0 0 

D 0 3 3 1 2 0 0 0 2 4 2 3 

OC 0 3 3 2 1 0 3 0 0 2 1 0 

PCN 0 0 0 0 3 0 3 0 0 1 3 1 

OBCN 0 2 2 0 1 0 2 0 3 0 0 3 

OFC 0 0 0 0 2 0 4 1 2 0 0 2 

FC 0 0 0 0 2 0 4 0 3 2 0 0 

Step 2: Calculate the normalized initial direct-relation matrices. (Table S2-S3). 

Table S2. The normalized direct-relation matrix for the resilience factors 

  SON APLN DI OCCSN ODCSN PS D OC PCN OBCN OFC FC 

SON 0.0130 0.1474 0.1474 0.1640 0.1570 0.0810 0.2536 0.0426 0.1058 0.1935 0.1346 0.2436 

APLN 0.0000 0.0753 0.2132 0.2133 0.0104 0.0000 0.0350 0.0616 0.0113 0.0398 0.0079 0.0190 

DI 0.0000 0.2132 0.0753 0.2133 0.0104 0.0000 0.0350 0.0616 0.0113 0.0398 0.0079 0.0190 

OCCSN 0.0000 0.2021 0.2021 0.0780 0.0344 0.0000 0.1359 0.0643 0.0461 0.1704 0.0231 0.0850 

ODCSN 0.0000 0.2230 0.2230 0.1837 0.0890 0.0000 0.3038 0.1632 0.1763 0.2764 0.1827 0.1422 

PS 0.1621 0.0653 0.0653 0.1688 0.0937 0.0130 0.0953 0.0253 0.1582 0.0772 0.0518 0.0676 

D 0.0000 0.2247 0.2247 0.1327 0.1479 0.0000 0.1312 0.0462 0.1655 0.2464 0.1300 0.1935 

OC 0.0000 0.2215 0.2215 0.1678 0.0797 0.0000 0.1903 0.0369 0.0529 0.1531 0.0726 0.0590 

PCN 0.0000 0.0715 0.0715 0.0484 0.1745 0.0000 0.2185 0.0353 0.0724 0.1229 0.1685 0.1063 

OBCN 0.0000 0.1475 0.1475 0.0635 0.0947 0.0000 0.1638 0.0276 0.1728 0.0713 0.0463 0.1652 

OFC 0.0000 0.0743 0.0743 0.0503 0.1391 0.0000 0.2499 0.0669 0.1431 0.0904 0.0565 0.1387 

FC 0.0000 0.0742 0.0742 0.0468 0.1393 0.0000 0.2446 0.0269 0.1831 0.1620 0.0593 0.0683 
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Table S3. The normalized direct-relation matrix for the resilience strategies  

  CRSCP DS SCBCMS DP IS URKS FSBMS SRA IPDPF RRTPA MTR MMT 

CRSCP 0.333 0.04 0.374 0.19 0.475 0.468 0.116 0.414 0.027 0.346 0.005 0.031 

DS 0.328 0.135 0.266 0.328 0.228 0.208 0.344 0.213 0.257 0.333 0.045 0.259 

SCBCMS 0.533 0.09 0.305 0.333 0.488 0.512 0.153 0.455 0.042 0.381 0.008 0.047 

DP 0.343 0.061 0.333 0.176 0.329 0.331 0.233 0.311 0.051 0.207 0.01 0.059 

IS 0.499 0.057 0.422 0.338 0.373 0.514 0.19 0.491 0.043 0.383 0.009 0.049 

URKS 0.399 0.037 0.239 0.146 0.359 0.244 0.132 0.338 0.03 0.187 0.006 0.034 

FSBMS 0.264 0.251 0.304 0.371 0.23 0.208 0.199 0.216 0.252 0.364 0.051 0.292 

SRA 0.514 0.061 0.375 0.297 0.505 0.498 0.221 0.327 0.049 0.343 0.01 0.056 

IPDPF 0.258 0.278 0.164 0.183 0.157 0.148 0.318 0.181 0.104 0.183 0.05 0.29 

RRTPA 0.31 0.03 0.305 0.181 0.342 0.232 0.084 0.288 0.02 0.168 0.004 0.023 

MTR 0.013 0.023 0.012 0.024 0.01 0.009 0.022 0.01 0.008 0.012 0.025 0.142 

MMT 0.098 0.179 0.092 0.181 0.08 0.075 0.173 0.075 0.061 0.095 0.189 0.089 

 

Step 3. Calculate the total relation matrices 

Step 4: Depict the impact-relations maps. the relationship maps between the resilience factors 

and the resilience strategies are separately represented by Figs. S1 and S2 while the related 

threshold values are set as the mean values of the entries in the respective total relation 

matrices multiplied by 1.5 in a consultation with the expert panel’s members. Noteworthy, 

Figs. S1 and S2 are just used for representing the graphical relationships between the resilience 

factors (and the resilience strategies) while they are not used in the procedure of calculating 

the global weights of decision network’s elements.   
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Figure S1. The relationship map between the resilience factors  
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Figure S2. The relationship map between the resilience strategies 

 

in Step 5, for obtaining the unweighted supermatrix through pairwise comparisons, the 

members of panel were asked to respond through a series of pairwise comparisons. The 

procedure is as follows: 

Step 5: Form an unweighted super-matrix through the pairwise comparisons.  

To calculate the resilience strategies’ local weights in respect to each resilience capacity 

making category, the PCMs of resilience strategies in respect to resilience capacity making 

categories are separately constructed (Tables S4-S6) using the Likert scale of 1 to 9 

representing the equal importance to the extreme importance (Saaty, 2001). It is worth noting 

that the geometric mean method has been used to calculate the weight vector of each PCM in 

our experiments. 

Table S4. PCM of resilience strategies in respect to absorptive resilience capacity making category 

Absorptive CRSCP DS SCBCMS DP IS URKS FSBMS SRA IPDPF RRTPA MTR MMT 

CRSCP 1 1 1 5 3 1 1 1 3 5 3 5 

DS 1 1 1 1 1 1 1 1 1 1 1 1 

SCBCMS 1 1 1 3 0 1 1 3 5 5 3 5 

DP 0.20 1 0.33 1 0 0.20 1 0.33 3 3 0.20 0.20 

IS 0.33 1 3 3 1 3 1 3 5 0.20 0.20 0.20 

URKS 1 1 1 5 0 1 1 3 5 0.33 3 1 

FSBMS 1 1 1 1 1 1 1 1 1 1 1 1 

SRA 1 1 0.33 3 0.33 0.33 1 1 0.20 0.33 0.20 0.20 

IPDPF 0.33 1 0.20 0.33 0.20 0.20 1 5 1 0.33 5 1 

RRTPA 0.20 1 0.20 0.33 5 3 1 3 3 1 3 3 

MTR 0.33 1 0.33 5 5 0.33 1 5 0.20 0.33 1 3 

MMT 0.20 1 0.20 5 5 1 1 5 1 0.33 0.33 1 
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Table S5. PCM of resilience strategies in respect to adaptive resilience capacity making category 

Adaptive CRSCP DS SCBCMS DP IS URKS FSBMS SRA IPDPF RRTPA MTR MMT 

CRSCP 1 1 0.33 1 1 0.33 0.2 1 0.33 5 1 1 

DS 1 1 1 1 1 1 1 1 1 1 1 1 

SCBCMS 3 1 1 1 1 0.2 0.2 1 0.2 3 1 1 

DP 1 1 1 1 1 1 1 1 1 1 1 1 

IS 1 1 1 1 1 1 1 1 1 1 1 1 

URKS 3 1 5 1 1 1 0.33 1 0.2 7 1 1 

FSBMS 5 1 5 1 1 3 1 1 1 5 1 1 

SRA 1 1 1 1 1 1 1 1 1 1 1 1 

IPDPF 3 1 5 1 1 5 1 1 1 5 1 1 

RRTPA 0.2 1 0.33 1 1 0.14 0.2 1 0.2 1 1 1 

MTR 1 1 1 1 1 1 1 1 1 1 1 1 

MMT 1 1 1 1 1 1 1 1 1 1 1 1 

Table S6. PCM of resilience strategies in respect to restorative resilience capacity making category 

Restorative CRSCP DS SCBCMS DP IS URKS FSBMS SRA IPDPF RRTPA MTR MMT 

CRSCP 1 1 1 1 1 1 1 1 1 1 1 1 

DS 1 1 7 1 1 1 3 1 1 1 1 1 

SCBCMS 1 0.14 1 1 1 1 0.14 1 1 1 1 1 

DP 1 1 1 1 1 1 1 1 1 1 1 1 

IS 1 1 1 1 1 1 1 1 1 1 1 1 

URKS 1 1 1 1 1 1 1 1 1 1 1 1 

FSBMS 1 0.33 7 1 1 1 1 1 1 1 1 1 

SRA 1 1 1 1 1 1 1 1 1 1 1 1 

IPDPF 1 1 1 1 1 1 1 1 1 1 1 1 

RRTPA 1 1 1 1 1 1 1 1 1 1 1 1 

MTR 1 1 1 1 1 1 1 1 1 1 1 1 

MMT 1 1 1 1 1 1 1 1 1 1 1 1 

Step 6: Obtain the weighted super-matrix by forming the cluster matrix V. (Table S7).  

Step 7: Calculate the global priorities using the limit super-matrix.  
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Table S7. Weighted super-matrix

 

Cluster 1

CRI Absorptive Adaptive Restorative URKS FSBMS DS RRTPA SRA CRSCP IS ESCCT MR DP IPDPF MMT SON APLN DI OCCSN ODCSN PS D OC PCN OBCN OFC FC Accord
Acura 

CT/TL

DCX 

Grand 

Cherokee

Cluster 

1
CRI 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Absorptive 0.214 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Adaptive 0.152 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Restorative 0.134 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

URKS 0.036 0.061 0.074 0.000 0.113 0.000 0.000 0.021 0.069 0.063 0.060 0.031 0.000 0.008 0.000 0.000 0.000 0.003 0.003 0.003 0.000 0.000 0.005 0.005 0.008 0.004 0.004 0.006 0.000 0.000 0.000

FSBMS 0.079 0.017 0.093 0.130 0.001 0.142 0.021 0.078 0.004 0.014 0.013 0.002 0.000 0.048 0.036 0.011 0.062 0.000 0.000 0.000 0.000 0.088 0.005 0.000 0.001 0.005 0.000 0.006 0.000 0.000 0.000

DS 0.079 0.020 0.023 0.176 0.017 0.083 0.390 0.075 0.024 0.052 0.024 0.013 0.000 0.087 0.020 0.046 0.048 0.017 0.077 0.019 0.002 0.062 0.014 0.001 0.043 0.028 0.000 0.042 0.000 0.000 0.000

RRTPA 0.019 0.040 0.055 0.000 0.002 0.000 0.000 0.094 0.002 0.025 0.029 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

SRA 0.005 0.047 0.012 0.004 0.058 0.000 0.000 0.043 0.103 0.051 0.053 0.059 0.000 0.005 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.003 0.001 0.001 0.001 0.000 0.000 0.000

CRSCP 0.033 0.098 0.117 0.063 0.153 0.062 0.002 0.104 0.134 0.154 0.139 0.149 0.012 0.071 0.024 0.097 0.004 0.140 0.080 0.158 0.140 0.006 0.080 0.040 0.087 0.052 0.161 0.081 0.000 0.000 0.000

IS 0.011 0.088 0.035 0.021 0.111 0.012 0.000 0.065 0.119 0.092 0.125 0.120 0.000 0.088 0.000 0.000 0.000 0.001 0.001 0.002 0.007 0.000 0.008 0.003 0.062 0.072 0.002 0.003 0.000 0.000 0.000

ESCCT 0.040 0.089 0.090 0.106 0.104 0.000 0.000 0.070 0.099 0.101 0.098 0.179 0.000 0.085 0.000 0.000 0.000 0.004 0.004 0.005 0.000 0.000 0.008 0.008 0.019 0.006 0.006 0.009 0.000 0.000 0.000

MR 0.011 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.440 0.000 0.000 0.020 0.000 0.036 0.036 0.000 0.000 0.000 0.101 0.150 0.000 0.022 0.000 0.019 0.000 0.000 0.000

DP 0.005 0.050 0.016 0.012 0.048 0.000 0.000 0.011 0.046 0.046 0.042 0.067 0.000 0.120 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.000 0.005 0.003 0.034 0.001 0.002 0.003 0.000 0.000 0.000

IPDPF 0.047 0.036 0.116 0.088 0.000 0.161 0.047 0.031 0.001 0.001 0.005 0.000 0.000 0.046 0.347 0.013 0.136 0.000 0.000 0.000 0.000 0.094 0.016 0.000 0.005 0.034 0.000 0.065 0.000 0.000 0.000

MMT 0.010 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.142 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SON 0.000 0.027 0.037 0.100 0.000 0.073 0.461 0.031 0.000 0.024 0.002 0.002 0.000 0.041 0.271 0.029 0.188 0.002 0.002 0.000 0.000 0.040 0.035 0.000 0.030 0.059 0.000 0.080 0.000 0.000 0.000

APLN 0.000 0.094 0.093 0.012 0.131 0.058 0.000 0.117 0.137 0.124 0.105 0.072 0.000 0.039 0.038 0.083 0.005 0.114 0.064 0.056 0.097 0.006 0.028 0.012 0.026 0.024 0.025 0.014 0.000 0.000 0.000

DI 0.000 0.057 0.062 0.012 0.073 0.030 0.000 0.091 0.077 0.077 0.068 0.039 0.000 0.030 0.005 0.068 0.003 0.047 0.098 0.048 0.000 0.004 0.007 0.007 0.008 0.003 0.005 0.007 0.000 0.000 0.000

OCCSN 0.000 0.008 0.007 0.000 0.028 0.001 0.000 0.004 0.010 0.008 0.027 0.004 0.000 0.004 0.001 0.004 0.000 0.022 0.022 0.104 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000

ODCSN 0.000 0.010 0.007 0.013 0.008 0.055 0.000 0.011 0.006 0.010 0.008 0.008 0.000 0.010 0.004 0.080 0.003 0.054 0.050 0.057 0.150 0.004 0.073 0.000 0.098 0.058 0.038 0.009 0.000 0.000 0.000

PS 0.000 0.019 0.042 0.043 0.006 0.103 0.000 0.032 0.013 0.012 0.009 0.005 0.000 0.018 0.117 0.036 0.019 0.003 0.003 0.017 0.000 0.155 0.001 0.001 0.000 0.004 0.001 0.006 0.000 0.000 0.000

D 0.000 0.043 0.053 0.100 0.055 0.025 0.000 0.051 0.058 0.053 0.059 0.141 0.000 0.074 0.009 0.097 0.000 0.066 0.069 0.020 0.000 0.000 0.087 0.000 0.015 0.083 0.000 0.104 0.000 0.000 0.000

OC 0.000 0.034 0.000 0.000 0.005 0.002 0.000 0.002 0.002 0.002 0.006 0.002 0.452 0.001 0.001 0.009 0.000 0.034 0.035 0.034 0.000 0.000 0.042 0.169 0.000 0.003 0.000 0.003 0.000 0.000 0.000

PCN 0.000 0.003 0.005 0.000 0.004 0.016 0.000 0.003 0.004 0.012 0.004 0.006 0.000 0.006 0.000 0.033 0.000 0.008 0.008 0.006 0.055 0.000 0.045 0.002 0.098 0.008 0.115 0.004 0.000 0.000 0.000

OBCN 0.000 0.000 0.004 0.007 0.000 0.028 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.091 0.000 0.000 0.000 0.000 0.000

OFC 0.000 0.010 0.007 0.013 0.007 0.027 0.000 0.004 0.007 0.006 0.006 0.012 0.000 0.038 0.000 0.044 0.003 0.003 0.003 0.000 0.000 0.004 0.028 0.000 0.004 0.003 0.123 0.003 0.000 0.000 0.000

FC 0.000 0.040 0.000 0.000 0.041 0.000 0.000 0.019 0.042 0.036 0.073 0.054 0.000 0.121 0.000 0.001 0.000 0.001 0.001 0.000 0.003 0.000 0.022 0.000 0.054 0.010 0.000 0.098 0.000 0.000 0.000

Accord 0.000 0.000 0.000 0.000 0.009 0.037 0.025 0.011 0.011 0.011 0.014 0.006 0.032 0.018 0.038 0.055 0.173 0.142 0.137 0.144 0.192 0.168 0.135 0.200 0.145 0.138 0.173 0.147 1.000 0.000 0.000

Acura 

CT/TL
0.000 0.000 0.000 0.000 0.013 0.041 0.030 0.015 0.015 0.013 0.016 0.005 0.064 0.018 0.046 0.064 0.182 0.155 0.158 0.158 0.171 0.178 0.129 0.250 0.116 0.145 0.167 0.141 0.000 1.000 0.000

DCX 

Grand 

Cherokee

0.000 0.000 0.000 0.000 0.014 0.045 0.024 0.015 0.016 0.015 0.019 0.005 0.000 0.021 0.044 0.068 0.172 0.145 0.147 0.167 0.179 0.185 0.126 0.150 0.142 0.144 0.176 0.146 0.000 0.000 1.000

Cluster 
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