
69

 CHAPTER 4  OBJECTIVE FUNCTIONS

 4.1 Introduction

In this chapter, the objective functions of SOURCAO are examined. Because

traffic signal algorithm is based on traffic surveillance (except fixed time control in

baseline studies), how to process the surveillance detector data to serve two objectives is

addressed in Section 4.2 and Section 4.3. The first objective of the safety consideration is

surveyed in Section 4.2. The next four sections ( 4.3- 4.7) are formulated for the

fulfillment of the second objective: traffic signal optimization near grade crossings.

Section 4.3 introduces the traffic surveillance data for the objective function. Section 4.4

formulates the objective function assuming that all the variables are available. Section 4.5

presents how to forecast the objective functions with historical data of some variables by

neural network. Section 4.6 establishes the neural network weight training scheme.

Finally, neural network implementation is highlighted in Section 4.7.

 4.2 Safety Surveillance

In SOURCAO, the traffic signal control agent promotes the safety of HRGCs.

The intelligent agent within SOURCAO perceives the environment through the

surveillance detectors. The selection of the next phase is based on queues near grade

crossings and overall traffic assessment. The different detector positions in the links

configure the different surveillance functions. SOURCAO fosters four types of

surveillance as shown in Table 4-1.

As shown in Figure 4-1, two types of surveillance are needed for the two different

lane groups (the left turning bay lane and the through right lane) to foster the left turn

phase and through/right turn phase. For the left lane, turning movement surveillance is

configured. While for the through/right turn lane groups, queue detection is set up. A

special surveillance, full detection, which takes advantage of data from queue detection,

provides important information for the inference engine. In addition, a presence detector
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is added to detect whether vehicles are stopped at a grade crossing before the arrival of a

train.

Table 4-1 Types of Surveillance in SOURCAO

Type Surveillance Output Detection Description
1 Queue 0=No vehicle

1= At least one vehicle
The number of vehicles queued in
the link

2 Full -1=Full
0=Not full

The link is full of vehicles or not

3 Turning
movement

0=No turning vehicle detected
1= At least one vehicle at
turning bay

The number of vehicles queued on
the turning bay

4 Grade
Crossing Stall
Vehicle

0= No stall vehicle detected
1= At lease one stalled vehicle
detected

Any stalled vehicle on  grade
crossing

Figure 4-1 Layout of Link Surveillance Detectors
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4.2.1 Turning Vehicle Detection

As shown in Figure 4-1, a series of the present detectors (numbered 3, 4 and 5)

sense the turning vehicles. The distance between the detectors is three times the average

vehicle length. If a vehicle is sensed by any detector, the surveillance function reports ‘1’;

otherwise, ‘0’ is reported.

4.2.2 Vehicle Queue Length Detection

As shown in Figure 4-1, in any time, the number of vehicles in the link is

measured by:

D(t)=D(t-1)+ De(t)-Dx(t)-DT(t)

(4-1)

Where:

D(t) is the number of the current vehicles in the link. If D(t) is more than one, the

surveillance detector outputs 1;

D(t-1) is the number of the vehicles in the link in the previous time step;

De is the number of the entrance detector counts (Detector 2 in Figure 4-1);

Dx is the number of the exit detector counts (sum of Detectors 6 and 7 in Figure

4-1);

DT is the number of the turning vehicle counts, as measured in Section 4.2.1.
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4.2.3 Full Detection

The purpose of this detection is to check if a link is full of vehicles. As shown in

Figure 4-1, the maximum number of through vehicles (Nmax) can be estimated by dividing

the length between Detector 2 and 6 (LL) by the average vehicle length (Lv) and the

number of lanes (NL). In addition, two adjacent detectors are placed at the appropriate

position near the entrance of the link to detect the speed of vehicles. If the speed is below

a threshold value and the number of the detected vehicles in (4-1) divided by the number

of vehicles in (4-2) is above a threshold value (0.8), the link is considered “full”.

VL

L

LN

L
N

•
=max

(4-2)

4.2.4 Grade Crossing Detector

If the presence detector on a grade crossing is continuously “on,” the grade

crossing is considered  “occupied.”

 4.3 Traffic Delay Surveillance

In SOURCAO, the delays are modeled according to lane groups in a link. The

vehicles on different lane groups respond to different phases. If more than one lane

groups serve the same link, turning bay delays are calculated first, and the main approach

delay is the difference of the link delays and the turning bay delays. This section presents

the turning bay surveillance in Section 4.3.1, and the link delay surveillance in Section

4.3.2. The link delay model is discussed in Section 4.4.
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4.3.1 The Turning Bay Delay Surveillance

As shown in Figure 4-1, the turning bay delay surveillance is configured the same

as turning movement surveillance in Section 4.2. If a vehicle is presented in the first

detector, the number of vehicles in the queue is counted as three. Likewise, if two

detectors are actuated, the number of vehicles in the queue is counted as six, etc. It is

reasonable to assume that the turning vehicles stop close to the stop bar. In this way, the

error for counting the turning vehicles might be limited to the number of presence

detectors. After the number of vehicles in the queue is collected, the delays of the turning

vehicles are accumulated by multiplying the number of vehicles by the polling interval.

In SOURCAO, the detector surveillance data are polled in every simulation step (1

second/step).

4.3.2  Link Delay Surveillance

According to the delay model in Section 4.4, the surveillance data needed are the

number of the vehicles and the time stamps recorded at the entrance and the exit

detectors. For example, the link delay surveillance in Figure 4-1 is implemented through

Detectors 6, 7 and 2.

Since SOURCAO is evaluated through CORSIM, CORSIM detector data are

utilized. Detector 2 is the entrance detector and Detectors 6 and 7 are the exit detectors.

All link surveillance detectors are coded as the passage detectors in CORSIM. As shown

in Figure 3-1, the detector counts are accessed through the DTCON variable in

FORTRAN.

The input from the surveillance detectors is the only source of data needed for the

delay model in Section 4.4. The surveillance detectors are the most common and

economic available data sources. Therefore, it is possible to implement the system in the
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real traffic world. In addition, the number of vehicles D(t) in the link at time t can be

calculated from (4-1). D(t) is used as Multilayer Perceptron (MLP) input.

 4.4 Delay Model Formulatio n

Based on the surveillance data available from Section  4.3, the objective function

is formulated in this section. Section 3.2.3 establishes the relationship between

Measurements of Effectiveness (MOEs) and the delay objective function. The

assumptions and symbols of delay function are presented in Section 4.4.1. The rest of the

section is the details of the proposed mathematical formula to calibrate the delays.

4.4.1 Assumptions

The following assumptions and symbols are made to model the proposed traffic

delay calibration:

• The delay is defined in Section 3.2.3, and the acceleration delays are

excluded;

• The projected time interval is (ta, tb), during which the link delays are

accumulated. In SOURCAO, ta is always the current simulation time and tb is

two minutes (120 seconds) after that;

• The time stamps for a vehicle (i) entering (ti1) and exiting (ti2) the link can be

recorded and forwarded to the system to process the delays;

• When the vehicles enter a link, they obey first-in/first-out queue definition.

This rule is applied to approximately match the exit time and entry time;

• The vehicle length is LL, the link length is L, and the free flow speed is  Vf;

• m1+ m3 is the number of the vehicles that are in the queue before the start of

the interval (ta, tb);

• m1 is the number of the vehicles exiting during the interval;

• m3 is the number of the vehicles that could not exit during the interval ;
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• m1+ m21+m22 is the number of the vehicles exiting from the link during the

interval;

• m1 is the number of the vehicles that are in the queue before the start of the

interval;

• m21 is the number of the vehicles in the link but not in the queue before the

start of the interval;

• m22 is the number of the vehicles entering the link during the interval;

• m22+ m42+m52 is the number of the vehicles entering the link during the

interval;

• m22 is the number of the vehicles exiting the link during the interval;

• m42 is the number of the vehicles entering the queue before the end of the

interval, but could not exit;

• m52 is the number of the vehicles entering the link but could not join the

queue at the end of the interval;

• m21+m41+m51 is the number of the vehicles in the link but not in the queue

before the start of the interval;

• m21 is the number of the vehicles exiting the link during the interval;

• m41 is the number of the vehicles that could not exit the link but moving to

the queue before tb;

• m51 is the number of the vehicles that enter the link after ta, could not reach

the queue before tb, and could not exit the link;

• m3 + m41+m42 is the number of the vehicles that reach the queue but could not

exit the link during the interval;

• m3 is the number of the vehicles in the queue at the time ta;

• m41 is the number of the vehicles in the link but not in the queue at the

time ta;

• m42 is the number of the vehicles entering the link during the interval;

• m2= m21+m22 is the number of the vehicles exiting the link during the interval.

Those vehicles are not in the queue at the start of interval;
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• m21 is the number of the vehicles in the link but not in the queue before the

start of the interval;

• m22 is the number of the vehicles entering the link during the interval;

• m4 = m41+m42 is the number of the vehicles that reach the queue but could not

exit the link during the interval. Those vehicles are not in the queue at the start

of interval;

• m41 is the number of the vehicles in the link but not in the queue at the

time ta;

• m42 is the number of the vehicles entering the link during the interval;

• m5= m51+ m52 is the number of the vehicles not even reached the queue during

the interval (ta, tb); therefore they could not exit the link;

• m51 is the number of the vehicles not in the queue but in the link at the

time ta;

• m52 is the number of the vehicles that enter the link during the interval;

4.4.2 Vehicles Left in the Link in Past (before ta start)

There are five cases where the vehicles enter a link before time ta. In the proposed

research, tb is always 120 seconds after ta.

• Being in the link and in the queue before ta and exit the link before tb (m1);

• Being the link and in the queue before ta but could not exit the link before tb

(m3);

• Being in the link, not in the queue before ta but exit the link before tb (m21);

• Being in the link, not in the queue before ta but join the queue and could not

exit the link before tb(m41);

• Being in the link, not in the queue before ta but could not join the queue

before tb (m51).
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Case one

There are (m1+m3) vehicles in the queue at the time ta. m1 vehicles in the queue

exit the link before tb and m3 vehicles could not exit the link. Delays for corresponding

vehicles can be expressed as (4-3), Where m1 should be found according to (4-4).
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Case two

In this case, (m1 + m3) vehicles are in the queue before ta, of which m1 vehicles are

processed in Case 1. Unfortunately, some vehicles could not exit (m3). The distance

traveled by m3 vehicles is m1*LL, Where m3 should be found according to (4-6).
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Case three

   For m21 vehicles entering the link before ta and having not reached the queue,

the distance to the stop bar at time ta is L- (ta-ti1)*Vf., Where m21 should be found

according to (4-8).  Since those vehicles exit at time ti2, the delay d can be approximated

in (4-7).
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 (4-8)

Case four:

Like Case 3, for the vehicles that enter the link before ta but have not reached the

queue, the distance to the stop bar at time ta is L- (ta-ti1)*Vf.. However, m41 vehicles could

not exit although they joined the queue before the stop bar.
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Case five:

If the vehicles could not reach the queue (m51) at the end of tb, the delay needs not

be accumulated.

4.4.3 Vehicles Entering a Link During (ta, tb)

There are three cases for the vehicles entering a link before time ta:

• Entered and exited the link in the interval of  (ta, tb);

• Entered and joined the queue in the interval, but could not exit the link;

• Entered and could not join the queue.

Case six

If m22 vehicles exit the link during (ta, tb), the delay can be approximated as:

∑∑

∑

−−=











−−=

2222

22

22
12

12

m f
i

m
i

m f

L
ii

V

Lm
tt

V

L
ttd

(4-10)

where:

ti1>=ta and ti2<=tb

      21mB tt >



80

Case seven

In this case, there are m42 vehicles entering the queue. (4-11) could be applied for

the delay calibration.
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Case eight

In this case, there are m52 vehicles entering the link. Since they have not reached

the queue, the delay is zero.

 4.5 Neural Network Delay Forecasting

One recent development in artificial intelligence is the neural network, in which

the human brain is mimicked in some ways. The neural network is defined as a massively

parallel-distributed processor that has a natural propensity for storing experimental

knowledge and making it available for use. It resembles the brain in two respects:

• Through a learning process, the network acquires knowledge;

• Inter-neuron connection strengths, known as “the synaptic weights,” are used to

store the knowledge.
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The neural network is extremely useful in pattern recognition, in which case the

stall vehicles could be detected through the neural network architecture. It was also used

in traffic forecasting and traffic signal control (Section 2.5.1).

4.5.1 The Objective Function by Neural Network Forecasting

In Section 4.4, the objective function is defined as the summation of the link

delays in the next two minutes. In the same section, the delays d from time ta to tb can be

approximated from the link surveillance input.

)(Sfd =

(4-12)

Where

( )T
nssssS ...,,, 321=

(4-13)

si is the collection of number of vehicles entering and exiting the link and the time

stamps;

N is the time step (1 second in SOURCAO) during the projected time intervals ta

and tb.

The relationship f(S) is established in Section 4.4 based on available surveillance

data. Unfortunately, the next two-minute surveillance detector data are not available until

two minutes later. This chapter is formulated to resolve such an issue -- forecasting the

delays in the next two minutes by applying an artificial neural network.

To simplify the question, it is assumed that the future vehicles entering and

exiting a link are the functions of the historical surveillance data S, the historical link

delays D and the current and future intersection traffic control device status. In
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SOURCAO, the signal phase timing P (phase ID and phase length) and grade crossing

information G (close time and open time) represent the traffic control variables.

For Sk, the past two-minute surveillance data are utilized. Calculated at the current

time, at one-minute and at two-minutes before the current time, the number of vehicles

contributes to the delay forecast. Those data are represented by S0, S-1, and S-2 by links.

The delay Dk (by phase and link) is represented by the delay in the last one-minute D0,

and the delay in one-minute before the last minute D-1. Three phases ahead (P0, P1 and

P2) are taken as the variables. Each phase is represented by the phase length. The phase is

organized by intersection. Current grade crossing closure information G0 (the open time

and the closed time) and the next time closure information G1 compose G.

Since P is optimized in SOURCAO, it is distinguished as the control variable X

(4-15). Others are named as the state variable U (4-14). In other words, the delay function

can be represented as in (4-16).

U=(S0, S-1, S-2,G0, G1, D0, D-1)

(4-14)

X=P=(P0, P1, P2)

(4-15)

d=f(X;U)

(4-16)

The above delay function (4-16) is approximated by an MLP neural network.

Section 4.5.2 describes the mathematical model of MLP and its derivation. In Section 4.6,

an approach named “back-propagation” to train the MLP weights is discussed. Following

that section, an objective-oriented implementation is introduced in Section  4.7. After the

neural network training, the delay function can be expressed in (4-17). A detailed

formation will be presented from (4-20) to (4-27):
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d=f(X;U;W)

(4-17)

Where:

W is the weights obtained from method described in this section.

4.5.2 Multilayer Perceptrons

The MLP is widely used to approximate a function. The universal Approximation

Theorem (Haykin 1999) is stated as:

Letϕ(.) be a non-constant, bounded, and monotone-increasing function. Let Im0

denote the m0-dimensional unit hypercute [0,1]m0. The space of continuous

functions on Im0 is denoted by C(Im0). Then, given any function f⊃ C(Im0) and ε>0,

there exist an integer M and sets of real constants αI, βI and wij, where I=1,…,m0

such that we may define
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as an approximate realization of f(.); that is

,
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(4-19)

for all x1, x2,…, xm0 that lie in the input space.
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By applying the above theorem, neural network approximation can be expressed

as:

)),;(( WUXfd ϕ=

(4-20)

Where

X: Control variable (phase length in SOURCAO) (4-15);

U: State variables (current and historical detector and delay input) (4-14);

W: Weights;

f: Utility function. In the proposed research, the most commonly used function

(4-21) is adapted.
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For the single layer perceptrons, usually ϕ  could be expressed in (4-22).

( )∑ += xu XWUWWUX ),;(ϕ

(4-22)

For the two-layer perceptrons, the middle-layer perceptrons V={vi} are added, as

shown in (4-23), (4-24) and (4-27):
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Where
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(4-29)

n is number of input nodes and m is the number of middle nodes.

In SOURCAO, after the training W is attained, the neural network function (4-27)

is used as the objective function. In other words, the function d=f(X;U,W) is minimized.

When searching the optimal solution of X, most of the algorithms require the first order



86

of the derivation. The rest of this section presents the derivation of the function d with

respect to X.

First of all, the utility function (4-21) could be derived as:
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Next, it is noticed that the control variable X exists in the input perceptrons only.

The perceptrons in other layers don’t connect to input perceptrons directly. The chain rule

of derivation has to be applied repeatedly. For the output layer, deriving (4-27):
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For the input layer, deriving (4-24):
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Combining (4-31) and (4-32), the final derivative (4-33) can be expressed as:
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If the number of layers is more than two, the derivation becomes tricky, as

discussed as follows.

The assumptions are made that there are N layers of the perceptrons. vi(0)

(i=1,…,m0) denotes the input perceptrons. vi(1) (i=1,…,m1) denotes the perceptrons

immediately next to the input perceptrons etc.  vi(n) (i=1,…,mn) denotes the output

perceptrons. Actually, in the proposed research case, there is only one output perceptron
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(mn=1), the network delay.  In general, on the kth layer, w(vi(k)->vj(k-1)) represents the

weight connecting perceptron vi(k) to perceptron vj(k-1).

The deriving process starts from the input layer to the output layer.

In the first layer (input layer), for any j,  the perceptron vj(1) connects to all input

perceptron vi(0)s:
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Deriving the above equation:
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Where

w(vi (1) ->vj (0)) is the weight from the perceptron v i (1) to v j (0) on the first

layer;

i=1,2,…m0 (output layer);

j=1,2,…m1 (first layer).

In the second layer, for any j, the perceptron vj(2) connects to all perceptron vi(1)s:

( ) 







•>−= ∑

i
iijj vvvwfv )1()1()2()2(

(4-36)
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Deriving the above equation:
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(4-37)

Now the chain rule is applied:
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(4-38)

The same process is applied to the third layer:
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(4-39)
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(4-40)
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(4-41)

Substituting (4-38) and (4-40) into (4-41), we can solve (4-41).

In general, the above process is applied to solve the derivation of the perceptron

function vj(l) in any layer l with respect to vk(0) if ∂vi(l-1)/∂vk(0) is obtained beforehand,

as shown below.
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In the layer l, for any j, a perceptron vj(l) connects to all perceptron vi(l-1)s with

weight w(vj(l)→vi(l-1)) on the (l-1)th layer:

( ) 




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 −•−>−= ∑
i

iijj lvlvlvwflv )1()1()()(

(4-42)

Deriving the above equation:
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(4-43)

Applying the chain rule to (4-42):
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(4-44)

In (4-44), since ∂vi(l-1)/∂v k(0) is calculated in the previous step, ∂vi(l)/∂vk(0) can

be solved.

For the output perceptron, the delay can be directly expressed as follows:

( ) 





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(4-45)

Finally, d’ can be solved since ∂vi(l-1)/∂vk(0) is already gotten in the (n-1)th layer

derivation:
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(4-46)
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To verify the correctness of the above process, for an MLP of two layers with the

number of perceptrons in (input, middle, output) layers of (3,2,1), we can use the above

notation to confirm (4-33):

Applying (4-35), we generate (4-47), (4-48) and (4-49):
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Applying (4-37), we obtain (4-50), (4-51) and (4-52):
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Applying (4-46), the following equations are generated:
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If we use the notation expressions of w above, (4-33) can be replaced by (4-56),

(4-57) and (4-58). (4-53),  (4-54) and (4-55 can be unified as (4-33).
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 4.6 Back-Propagation Train ing

Back propagation is a highly popular weight update algorithm applied to train

MLP (Haykin 1999). The weights are adjusted in a way that the error function (4-59) can

be minimized.

∑ −=
h

hh ydwE 2)(
2

1
)(

(4-59)

Where:

h is the index to the output data; in SOURCAO, h=1 since only entire network

delay is approximated. The Σ and h can be removed here and y=v(N);

yh is the hth observed delay;

dh is the calculated delay provided by (4-20), since h=1,

d=u(n)                                                                (4-59)

This section describes how the weights can be updated by using back-propagation

training. For the output layer (layer N), as shown in (4-45), the derivation of function

E(w) with respect to w can be found as follows:
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Therefore, the updating rule of w in the output layer can be expressed in (4-61)

and weights can be achieved in (4-66):
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(4-61)

Where ρ is the updating learning rate.

For the layer immediate to the output layer (Layer n-1), the derivation of the

function E(w) with respect to w can be found in:
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Combining (4-62) and (4-63), the updating rules can be expressed in (4-64) and

weights can be achieved in (4-65):
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Where

(4-65)

and

( ) ( ) ( ))1()()1()()1()( −>−∆+−>−=−>− nvnvwnvnvwnvnvw jijiji

(4-66)

From (4-66), the error in a hidden layer is back-propagated from the hidden layer

to the output layer. For the rest of the hidden layers, the same approach is used to back-

propagate the error to the output layer.

In (4-59), only one data point is considered put into training. Usually, one of the

data points is randomly withdrawn to receive the training. However, we can average

weight update ∆w in the training process by minimize the summation of the errors for all

data points in (4-67).  The approach is usually called “batch training” or “epoch training.”
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(4-67)

Where

M is the index to all training data points.
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 4.7 Multilayer Perceptrons Implementation

There are dozens of back-propagation implementations in the published neural

network books using different programming languages (FORTRAN, C, C++ and

MATLAB) in a variety of platforms (WINDOWS, UNIX etc.). One of the

implementations is particularly interesting and is chosen to interface with the

SOURCAO.

Rogers (1997) took an object-oriented approach to implement the neural network

architectures. Two reusable neural network base classes -- Base_Node and Base_Link

classes -- represented the perceptrons and the connections between the different layers.

Rogers unified most of the neural network architectures by taking full advantage of the

OO concepts of classes, objects, inheritance, virtual function, polymorphism, and

dynamic binding, etc.

It is natural to take a link-node view of the neural network. For example, for the

MLP, we can view the weight w as the attributes of the link and the perceptron Vi(L) as

an attribute of a node.

There are several issues in neural network implementations. This section

addresses normalization of training data, the speed of training, the architecture

parameters and the training algorithms. The test data set in this section comes from first

three evaluation cases. The input nodes are shown in Table 4-2 and the output node is the

entire network delay in seconds per vehicle. The training processes in this section are

intended to explore the training techniques only and do not converge when the tests end.
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Table 4-2 Neural Network Training Input Nodes

Variable
Type

Name Number History Number of
Variables

Control
Variables

Phase Length By the
intersection

Next three phases 3*Numberof
OptimizedSignal
=6

Phase ID and
Offset

By control
signal

Current 2*Numberof
OptimizedSignal
=4

Number of
vehicles in the link

Current, previous
second and the
second before
previous

3*Numberof
Queue=36

Number of
vehicles entered
and exited a link
during  an interval

Two intervals
before current time

4*Numberof
Queue=48

Link Delay

By the link
queue

Two intervals
before current time

2*Numberof
Queue=24

Turning Queue
Delay

By the
turning
queue

Two intervals
before current time

2*Numberof
TurningQueue=8

Network Delay Two intervals
before current time

2

State
Variables

Grade Crossing Close/open Current/next 4
Total 132

Normalization of training data. During the author’s experiences in the neural

network training, it is noticed that if the input data had not been normalized, the neural

network training would not converge.

The speed of training. The greatest challenge to neural network training is the

training time. It is especially true for a real time system like traffic control. SOURCAO

utilizes the delay forecast based on neural network training. However, for the delay

forecast, the author believes the traffic pattern on the road does not change everyday. The

trained neural network weights should last for a certain period (say, a week or a month).

Therefore, the slow convergence of the weights is not a factor limiting the neural network

application in this research.
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The architecture parameters. Some algorithms can automatically configure

some neural network architecture parameters like the number of layers and the number of

hidden nodes etc. Virtually, those algorithms take a practical approach to grow the layers

and perceptrons from a small size, for example, Cascade-correlation learning architecture

(Fahlman and Lebirere 1990) or structure-level adaptation (Lee, Peterson and Tsai 1990).

Although those algorithms are not implemented in the training process described above,

the idea is applied here by comparing the different architectures.

The different network parameters may result in different convergence speed. A

test is performed to determine two- and three-layer architectures. As shown in Figure 4-2,

the x-axle represents processor time (how much processor time that the calling process

has used) and the y-axle represents the error measured by (4-59). The Error is the

summation of the square of the difference of MLP calibrated delays (minutes/second) and

the proposed calibrated delay (minutes/second). From the test, it seems that there is

almost no difference in training speed for two- and three-layer architectures (represented

with blue and red lines, respectively). In Figure 4-2, the MLP training is intended to test

the training speed between two- and three-layer architectures only and training does not

converge at the end of test.
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Figure 4-2 Two and Three Layer MLP Training Speed3

Training algorithms. There are two approaches to train the MLP network

(Haykin 1999): Supervised Learning and the Optimization. As indicated above, the speed

of the training is not the major concern in this research. There is no comparison between

the two types of the approaches. However, a comparison is made between the two

commonly used algorithms in supervised learning category: the back-propagation and the

batch updating rules. Figure 4-3 shows the convergence of the back-propagation with

time (with the learning rate of 0.01). However, in the batch training, the error fails to

decline although there is a wide range of the learning rates: from 0.1 to 0.0000001. In

                                                
3 : The time is measured by the Microsoft Visual C++ 6.0 clock() function, with

this configuration of the computer: Intel PII 333 Mobile CPU, 64M RAM, Windows 98

OS.
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Figure 4-3, the MLP training is intended to test the training only and training does not

converge at the end of test.

Figure 4-3 Declining Error with the Time in Back-Propagation3

The simple back-propagation is usually superior to the batch since minimizing the

error in a random data point allows a wider search space and avoids the local minimum.

The complexity of the batch training does not improve the quality of the solution,

especially for such a large and sophisticated problem in SOURCAO. The test here just

demonstrates this property.


