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Applied Nonlinear Control of Unmanned
Vehicles with Uncertain Dynamics

Yannick Morel

Abstract

The presented research concerns the control of unmanned vehicles. The results introduced
in this dissertation provide a solid control framework for a wide class of nonlinear uncertain
systems, with a special emphasis on issues related to implementation, such as control input
amplitude and rate saturation, or partial state measurements availability. More specifically,
an adaptive control framework, allowing to enforce amplitude and rate saturation of the
command, is developed. The motion control component of this framework, which works in
conjunction with a saturation algorithm, is then specialized to different types of vehicles.
Vertical take-off and landing aerial vehicles and a general class of autonomous marine ve-
hicles are considered. A nonlinear control algorithm addressing the tracking problem for a
class of underactuated, non-minimum phase marine vehicles is then introduced. This motion
controller is extended, using direct and indirect adaptive techniques, to handle parametric
uncertainties in the system model. Numerical simulations are used to illustrate the efficacy
of the algorithms. Next, the output feedback control problem is treated, for a large class of
nonlinear and uncertain systems. The proposed solution relies on a novel nonlinear observer
which uses output measurements and partial knowledge of the system’s dynamics to recon-
struct the entire state for a wide class of nonlinear systems. The observer is then extended
to operate in conjunction with a full state feedback control law and solve both the output
feedback control problem and the state observation problem simultaneously. The resulting
output feedback control algorithm is then adjusted to provide a high level of robustness to
both parametric and structural model uncertainties. Finally, in a natural extension of these
results from motion control of a single system to collaborative control of a group of vehicles,
a cooperative control framework addressing limited communication issues is introduced.
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Chapter 1

Introduction

1.1. Motivation and Current Methodologies for Con-

trol of Autonomous Vehicles

Autonomous vehicles have proven proficient in handling a considerable variety of tasks.

For instance, Autonomous Marine Vehicles (AMVs) are utilized to perform oceanographic

surveys, coastal patrols, and pipeline maintenance. In addition, use of unmanned vehicles in

military operations is steadily increasing. The Office of Naval Research is considering mobile

robotic solution to minimize human involvement in hazardous areas such as minefields. Sim-

ilarly, Unmanned Aerial Vehicles (UAVs) have been employed in recent conflicts for scouting

and surveillance missions, and Unmanned Ground Vehicles (UGVs) are expected, in the

near future, to provide improved combat effectiveness and personnel safety to ground forces.

Missions assigned to autonomous vehicles typically require or greatly benefit from a high

degree of agility and maneuverability, which can only be provided by a high performance

motion control system.
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Uncertain Systems

Design of motion control algorithms for uncertain systems is a challenging endeavor. In

particular, numerous models exist which characterize the dynamical behavior of the consid-

ered systems, many of which include parametric and/or structural uncertainties. Numerous

techniques addressing issues stemming from uncertainties on the system’s model can be

found in the literature. One of such techniques is known as adaptive control and is divided

in two distinct categories. Direct adaptive methods ([10–16]) consist in replacing uncertain

constant parameters in a control law by time varying estimates. The procedure relies on a

certainty equivalence principle ([10,12]), the essence of which is that, given a few assumptions

on the form of the control command (such as that the uncertain parameters appear linearly,

for instance), it is possible to derive estimate update laws providing stability guarantees in

spite of the uncertainty. Indirect adaptive techniques ([13–16]) distinguish themselves from

the direct ones in that the uncertain parameters are estimated as part of the system model,

as opposed to being estimated as part of the control command. While both approaches

provide the same functionality, direct adaptive results are prevalent in the literature. Struc-

tural uncertainties, which imply that the uncertainty on the system model is not limited to

constant parameters, are classically handled using Neural Network (NN) based techniques

([15,17]), which rely on the capacity of a Single Hidden Layer NN (SHL-NN) to approximate

continuous functions with arbitrary accuracy ([15]). Robust control techniques ([18–22])

constitute a powerful alternative to adaptive algorithms in addressing model uncertainties.

The approach typically relies on the existence and knowledge of an upper bound of the norm

of the uncertainty. The control algorithm is then designed with consideration for this upper

bound, in order to achieve stability even in a worst case situation. While robust control
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techniques originate from linear control theory ([18]), they have been extended to various

classes of nonlinear systems ([23, 24]), such as, for instance, systems in the so-called robust

strict-feedback form ([10]).

Control Input Saturation

Additional difficulties arise from the fact that actuation systems for autonomous vehicles

only provide a limited amount of control authority, resulting in rate and amplitude saturation

of the control command. Most control algorithms for autonomous vehicles in the literature

do not account for this saturation, which can result in poor performance when implemented.

The importance of addressing saturation constraints in the control design is even greater for

adaptive algorithms. As the adaptation mechanism is left free to operate while the feedback

loop is severed by actuator saturation, unstable controller modes are allowed to drift, poten-

tially leading to severe windup effects and instability. The research literature on adaptive

control with actuator saturation effects is rather limited. Notable exceptions include [25–33].

However, the results reported in [25–32] are confined to linear plants with amplitude sat-

uration. Of particular interest is the positive µ-modification framework introduced in [32],

which was applied to a specific class of nonlinear systems in [33]. The result presented in [33],

however, does not consider rate saturation. Many practical applications involve nonlinear

dynamical systems with simultaneous control amplitude and rate saturation, which may fur-

ther exacerbate the control problem. For example, in advanced tactical fighter aircraft with

high maneuverability requirements, pilot induced oscillations ([34, 35]) can cause actuator

amplitude and rate saturation in the control surfaces, leading to catastrophic failures.
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Separation Principle

Another difficulty stems from the fact that, while motion controllers are more conve-

niently derived assuming full state measurements, full state information is not necessarily

available for feedback. The literature features a wide variety of results solving the output

feedback control problem; that is, solving the control problem when full state measurements

are unavailable ([10,36]). Reliance on a separation principle is a popular and effective scheme

to address the problem. The procedure consists in dividing the output feedback problem

into two relatively simpler problems. More specifically, the approach commonly involves

derivation of a full state feedback control law as a first step. Then, since the full state is not

available for feedback, the unavailable states are estimated and these estimates are used in

place of the actual states in the control law. Hence, following this separation principle, one

can effectively solve the output feedback problem by designing a full state feedback controller

and a state observer.

Observers for Nonlinear Systems

The observation problem for linear systems has received considerable attention from the

research community over the years, and a wide range of results can be found in the literature,

with outstanding contributions from Kalman ([37, 38]) and Luenberger ([39, 40]), to name

but a few. However, models for unmanned vehicles are typically nonlinear in nature, and

the observation problem for nonlinear systems constitutes a challenging problem which is

still largely open.

The strength of the observation techniques developed for linear systems naturally led to

attempts at extending them to nonlinear systems. Extended Kalman filtering ([41, 42]), for

4



instance, is the result of one such tangent, and has shown its utility in a number of cases

([43]). Alternately, when only the output appears nonlinearly in the system’s dynamics,

it is possible to construct an observer for which the observation error dynamics are linear

([10, 44]). Linear techniques can thus be used to solve the observation problem for this

particular type of systems, which are sometimes referred to as being in output feedback

form ([10]).

The observation problem becomes more difficult if the considered nonlinear system is not

in output feedback form, that is, if unmeasured states appear nonlinearly in the system’s

dynamics. High gain observers ([44,45]) can be used to address the problem for such systems.

Such techniques essentially consist in selecting observer gains sufficiently large such that the

negative influence of nonlinearities on the observation errors is overcome. The approach can

however lead to large transient observation errors, due to an issue referred to as peaking phe-

nomenon ([44]). In [46], the authors present an alternate design methodology for nonlinear

observers applicable to systems which are not in output feedback form, with an approach

taking advantage of the notions of immersion and invariance ([47]). Although the technique

is of great interest, it requires solving a set of partial differential equations, which, quoting

the authors, can be “extremely difficult.” Nevertheless, observers for a number of nonlinear

systems can be constructed using the approach, a pair of them being presented in [46].

Output Feedback Control

The practice of relying on a separation principle to solve the output feedback problem

originates from linear control theory. Indeed, for linear systems, existence of such a separa-

tion principle is well established ([48]). Its implications are that one can solve the optimal

5



linear quadratic gaussian problem by separately solving the optimal estimation and control

problems. However, this separation principle does not in general hold for nonlinear systems

([10]), and substituting observed states for their actual counterparts in a full state feedback

control law can in some instances lead to finite escape time, even in the case of exponen-

tially decaying observation errors, as shown in [10]. Issues stemming from observation errors

can in some cases be addressed by adjusting the state feedback control law, using nonlinear

damping to offset observation errors. However, this particular technique requires exponen-

tially convergent nonlinear observers, which are generally limited to systems linear in the

unmeasured states, thus limiting the scope of the procedure to some extent ([10]).

Alternately, the existence of a separation principle for a wide class of nonlinear systems

was investigated and established for specific types of observers. In [49, 50], the authors

demonstrated that estimates of unmeasured states obtained from high-gain observers ([44])

can be used in state feedback laws. The resulting closed-loop trajectory is shown to ap-

proach the state feedback trajectory (i.e. the hypothetical trajectory obtained if full state

information was available and used in the control law) as the observation gains increase. The

philosophy of the approach is to generate a time-scale separation between observation and

control algorithms. In other words, the observation errors are made to decay rapidly enough

that their impact on the controller’s performance is limited. The approach is powerful and

has been successfully applied to a large number of problems (see [45,51,52] for a few exam-

ples). However, high-gain observers suffer from a well documented issue, known as peaking

phenomenon ([53]). The issue originates from the observer’s high gains, which can lead to

large peaks during the observer’s transient. These can in turn find themselves propagated

to the actual system through the control command. The issue is significant and can lead to

6



instability, but can oftentimes be accounted for by saturating the control input ([50]).

Approaches similar to the above high-gain observer based output feedback can be found

in [54,55]. A subtle but significant difference is that the systems considered are in canonical

form, such that the states are successive derivatives of the system output. Hence, the problem

of reconstructing the entire state using only output measurements is reduced to estimating

the successive derivatives of the available output. Several techniques allowing to estimate

derivatives with arbitrary accuracy can be found in the literature ([54, 56, 57]). The results

in [54,55] rely on the High-Order Sliding Mode Differentiator (HOSMD) introduced in [54].

While the resulting control algorithms were shown to perform well when applied to particular

experimental setups ([55]), the algorithms rely on the assumption that the HOSMD can

provide an exact estimate of the derivatives with finite convergence time. Although this

property of HOSMDs is theoretically demonstrated in [54], whether it holds for practical

applications appears to be arguable. Practical restrictions can indeed significantly complicate

the problem, to an extent that, in the opinion of the authors of [55], “exact derivative

reconstruction is not achievable” in practice.

Output Feedback Control of Uncertain Systems

Design of output feedback controllers for uncertain nonlinear systems is a challenging

task which still constitutes an active topic of research to this day ([58–60]). Difficulties

essentially stem from two different issues, which are the lack of full state measurements,

and the uncertainty on the system’s dynamics. While either one of this problems has been

treated extensively in the literature, fewer algorithms address both simultaneously.

A number of results addressing the output feedback control problem for uncertain systems

7



can be found. The problem can, in some instances, be solved by extending previously

discussed output feedback techniques using either adaptive or robust techniques to handle

system uncertainty. For example, in [58], the authors present a robust state feedback control

algorithm, which is used with a high gain observer. This robust separation-based approach

guarantees uniform ultimate boundedness of the tracking errors, in spite of uncertainty on

the system model. Alternately, in [60], the authors develop an adaptive separation-based

algorithm, in which a full state feedback controller, developed using dynamic surface control (

[61]), operates in conjunction with a neural-based adaptive observer. While separation-based

techniques still appear to be prevalent, alternate approaches can be found. For instance,

in [62], the authors avoid design of a state observer by reconstructing the system’s output

dynamics using a single-hidden-layer neural network.

In [10], the authors introduce the concept of observer backstepping, in which an observer

providing exponentially decreasing observation errors is constructed. Then, a backstepping

based control algorithm is designed. However, whereas in classical separation-based schemes

the control law is designed to control the actual system, in the observer backstepping ap-

proach, it is constructed for a new system, composed of a combination of the actual system

and of the observer. More specifically, the system which is controlled corresponds to the real

system, but the equations for the unmeasured states are replaced by their counterparts from

the observer. While the approach is powerful, it requires systems which are linear in the

unmeasured states. In [59], the authors extend the above idea by constructing an adaptive

output predictor and explicitly designing their control algorithm to control this predictor.
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1.2. Contribution of the Dissertation

The objective of the presented work is to produce a control framework for unmanned

vehicles, with special emphasis on issues related to implementation. Reaching this objective

is only possible through the combination and synergy of a significant number of results, a

number of which have a contribution to the current state of the art extending beyond control

of autonomous vehicles.

Control Input Saturation

Chapter 2 introduces a model reference direct adaptive control framework, accounting

for amplitude and rate saturation of the control command ([1]). The algorithm is presented

in two successive steps. First, a Model Reference Adaptive Controller (MRAC, [11]) is intro-

duced. Then, the trajectories of the reference system are reshaped to allow operation of the

control algorithm within the actuation system’s limitations, while maintaining established

stability guarantees. The obtained control algorithm applies to a wide variety of nonlinear

dynamical systems with parametric uncertainties. Few control algorithms account for actu-

ator saturation. The only alternate algorithm relevant to nonlinear systems is itself limited

to amplitude saturation ([32]). The algorithm presented in Chapter 2 improves upon the

state of the art by allowing to account for both amplitude and rate saturation of the control

input.

Control of Unmanned Quadrotor Aerial Vehicles

Chapter 3 presents a more specialized direct adaptive controller ([2]), designed to solve

the tracking control problem for a quadrotor, which is a particular type of vertical take-off
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and landing autonomous vehicle. The presented control algorithm provides an improvement

over other adaptive control algorithms designed for this specific type of vehicle ([63,64]), in

particular by explicitly addressing actuator dynamics. In addition, the algorithm in Chapter

3 can readily be augmented to include the saturation algorithm introduced in Chapter 2,

further strengthening its contribution.

Control of Autonomous Marine Vehicles

Chapters 4 to 6 are concerned with the control of marine vehicles. Chapter 4 introduces

a neural-based adaptive controller, addressing the tracking problem for a wide variety of

autonomous marine vehicles ([3]). While the algorithm itself constitutes an application of

classical nonlinear and adaptive control techniques, it provides a useful control framework

which is robust to uncertainties. In

Figure 1.1: Examples of non-minimum phase
AMVs, Squid1 AUV (left), Squid2 AUV (right).

Chapter 5, this framework is special-

ized to a particular class of marine

vehicles, which exhibit unstable in-

ternal dynamics (non-minimum pha-

se marine vehicles, see [5, 6, 65] and

Figure 1.1). The non-minimum phase nature of the class of vehicles considered is rarely

addressed in the literature on marine vehicles, with [66] being a notable exception. The

presented approach improves upon the result in [66], as the latter is limited to way-point

maneuvering, while the proposed controller solves the trajectory tracking problem. The

control algorithm in Chapter 5 is then modified in Chapter 6, using both direct ([4, 5]) and

indirect ([6]) adaptive control techniques, to address parametric uncertainties in the vehicle’s

10



model. Two distinct direct adaptive control algorithms are derived, and both perform re-

markably well in simulation ([4,5]). However, derivation of these algorithms relies on specific

approximations. The indirect adaptive algorithm introduced in Chapter 6 constitutes an in-

teresting alternative to the presented direct adaptive controllers. Indeed, while performing

comparably in simulations, it removes the aforementioned approximations and offers rigor-

ously derived stability guarantees. The indirect adaptive control algorithm in Chapter 6 is

based on the control strategy presented in the early part of Chapter 5, but relies on a partial

state predictor to solve the tracking problem in spite of parametric uncertainties ([6]).

Nonlinear Observer

While Chapters 2 through 6 address full state feedback control problems, Chapter 7 to

9 are concerned with the output feedback problem. The approach pursued is similar to

that in separation-based algorithms. More specifically, the problem is solved by designing

a state observer (or output predictor), to work in conjunction with a state feedback control

law (such as those presented in Chapters 2 to 6). One of the difficulties in pursuing the

approach lies in the design of an observer for nonlinear systems. The most commonly found

nonlinear observers in the literature are high gain observers ([44,45]), which suffer from the

peaking phenomenon. Alternative schemes relevant to large classes of systems are few and

far between. The algorithm in [46] provides one such alternative, but it requires solving a

set of partial differential equations, which can in general prove difficult, and thus limits the

practicality of the approach. The novel nonlinear observer introduced in Chapter 7 provides

an attractive solution to the considered problem, as it relaxes high-gain requirements and

proposes a solution which, while still fairly general, is also eminently practical.
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Observer Based Output Feedback

The output feedback control algorithm introduced in Chapter 8 builds upon the result in

Chapter 7, and introduces a state observer whose output is guaranteed to predict the actual

system’s output with arbitrary accuracy, for any admissible control signal. Then, a state

feedback controller is designed to control the observer ’s output. In that extent, the con-

trol algorithm fundamentally differentiates itself from classical separation-based controllers,

which directly control the actual system’s output. This intrinsic difference allows to effec-

tively and elegantly circumvent issues inherent to separation-based algorithms, such as the

peaking phenomenon. The algorithm in Chapter 8 is then modified in Chapter 9 to handle

model uncertainties, which further strengthens the contribution of the scheme.

Collaborative Control of Underwater Vehicles

As previously mentioned, a single autonomous vehicle is able to perform a considerable

variety of missions. However, depending on the task to be performed, several simple coop-

erating autonomous robotic systems can provide an easier, cheaper, more flexible and more

fault tolerant solution than a single, more powerful robot ([67]). A wide range of problems

have been identified as being solvable through a robotic-team approach ([68]). Some of these,

such as exploration, foraging ([69]), and material handling tasks ([70]), have been shown to

benefit from multiple-robot swarm solutions. Others require more involved collaboration

between two or more robots working as a team.

Design of cooperative control algorithms is an involved process. Particular care has to be

given to communication related issues. Indeed, communication requirements and bandwidth

limitations have proven to be the Achilles’ heel of many cooperative control approaches avail-
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able in the literature. Chapter 10 ([9]) presents a general framework for cooperative control of

autonomous vehicles, satisfying limited-bandwidth, short range and asynchronous communi-

cation requirements ([9]). The presented algorithm proposes the use of additional computing

power to allow for significantly reduced bandwidth utilization. Cooperation between vehi-

cles is obtained through coupling of their respective reference systems. This technique of

introducing coupling through a reference system is referred to as indirect cooperation. It

has been successfully applied to the control of dynamically interconnected systems ([71–73]),

but has yet to be applied to cooperative control of autonomous vehicles.

Future Research

While the results presented in this dissertation form a solid framework for control of

unmanned vehicles, the proposed solutions could be extended and improved in a number of

ways. Suggestions for future research are offered in Chapter 11.
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Chapter 2

Adaptive Control for Nonlinear
Uncertain Systems with Actuator
Amplitude and Rate Saturation
Constraints [1]

The result presented in this chapter was the object of an article published in the International

Journal of Adaptive Control and Signal Processing in January 2009 ([1]). This work was

also presented at the 2007 ASME International Mechanical Engineering Conference and

Exposition ([74]).

2.1. Introduction

In light of the increasingly complex and highly uncertain nature of dynamical systems

requiring controls, it is not surprising that reliable system models for many high performance

engineering applications are unavailable. While model based control techniques have shown

their efficacy in solving a considerable number of problems, uncertainty of the considered

system’s model complicates the control problem. Robust controllers can be used to address
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issues stemming from such uncertainties. However, they may unnecessarily sacrifice system

performance. Adaptive controllers offer similar benefits, but can tolerate greater system

uncertainty levels and provide improved closed-loop performance. However, an implicit

assumption inherent to most adaptive control frameworks is that the adaptive control law

is implemented without any regard to actuator amplitude and rate saturation constraints.

In practice, electromechanical control actuation devices are subject to amplitude and/or

rate constraints, leading to saturation nonlinearities reflecting the corresponding limitations

on control amplitudes and control rates. As a consequence, actuator nonlinearities arise

frequently in practice and can severely degrade closed-loop system performance, in some

cases driving the system to instability.

In this chapter, a direct adaptive control framework for adaptive tracking of multivari-

able nonlinear uncertain systems with amplitude and rate saturation constraints is presented.

In particular, the Lyapunov-based direct adaptive control framework developed in [75, 76]

is extended to guarantee asymptotic stability of the closed-loop tracking system; that is,

asymptotic stability with respect to the closed-loop system states associated with the track-

ing error dynamics in spite of actuator amplitude and rate saturation constraints. More

specifically, a reference (governor or supervisor) dynamical system is constructed to address

tracking and regulation by deriving adaptive update laws that guarantee that the error sys-

tem dynamics are asymptotically stable, and the adaptive controller gains are Lyapunov

stable. In the case where the actuator amplitude and rate are limited, the adaptive control

signal to the reference system is modified to effectively robustify the error dynamics to the

saturation constraints, thus guaranteeing asymptotic stability of the error states.

This chapter is organized as follows. Section 2.2 introduces a nonlinear control law rel-
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evant to a wide variety of systems. Using a direct adaptive control technique, the control

algorithm is then extended to account for parametric uncertainties in the system model.

The controller is further modified in Section 2.3, in which a dynamic compensator is used

to generate the control command. Section 2.4 describes the algorithm allowing the con-

troller derived in Section 2.3 to account for amplitude and rate saturation of the command.

Numerical simulation results are presented in Section 2.5. Section 2.6 concludes this chapter.

2.2. Adaptive Tracking for Nonlinear Uncertain Sys-

tems

In this section, the problem of characterizing adaptive feedback tracking control laws

for a general class of nonlinear uncertain systems is considered. Specifically, the controlled

nonlinear uncertain system G, given by

ẋ(t) = f(x(t)) + Bu(t), x(0) = x0, t ≥ 0, (2.1)

will be considered, where x(t) ∈ Rn, t ≥ 0, is the state vector, u(t) ∈ Rm, t ≥ 0, is the

control input, f : Rn → Rn, the matrix B ∈ Rn×m is of the form B =
[

0m×(n−m) BT
s

]T
,

with Bs ∈ Rm×m full rank and such that there exists Λ ∈ Rm×m for which BsΛ is positive

definite. The control input u(·) in (2.1) is restricted to the class of admissible controls

such that (2.1) has a unique solution forward in time. Here, it is assumed that a desired

trajectory xd(t), t ≥ 0, is given and the aim is to determine the control input u(t), t ≥ 0, so

that limt→∞ ‖x(t)− xd(t)‖ = 0.

In order to achieve this, a reference system Gr is constructed. It is given by

ẋr1(t) = Arxr1(t) + Brr(t), xr1(0) = xr10 , t ≥ 0, (2.2)
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where xr1(t) ∈ Rn, t ≥ 0, is the reference state vector, r(t) ∈ Rm, t ≥ 0, is the reference input,

and Ar ∈ Rn×n and Br ∈ Rn×m are such that the pair (Ar, Br) is stabilizable. In the following,

a command u(t), t ≥ 0, and a bounded piecewise continuous reference function r(t), t ≥ 0,

will be designed such that limt→∞ ‖x(t) − xr1(t)‖ = 0 and limt→∞ ‖xr1(t) − xd(t)‖ = 0,

respectively, so that limt→∞ ‖x(t)−xd(t)‖ = 0. Theorem 2.2.1 provides a control architecture

that achieves tracking error convergence in the case where the dynamics in (2.1) are known.

The case where G is uncertain is addressed in Theorem 2.2.2. The statement of this result

requires definition of the tracking error e(t) , x(t) − xr1(t), t ≥ 0, whose dynamics are

described by

ė(t) = (f(x(t)) + Bu(t))− (Arxr1(t) + Brr(t)), e(0) = x0 − xr0 , e0, t ≥ 0. (2.3)

Theorem 2.2.1. Consider the nonlinear system G given by (2.1) and the reference sys-

tem Gr given by (2.2). Assume there exist gain matrices Θ∗ ∈ Rm×s and Θ∗
r ∈ Rm×m, and a

continuously differentiable function F : Rn → Rs such that

0 = f(x) + BΛΘ∗F (x)− Arx, x ∈ Rn, (2.4)

0 = BΛΘ∗
r −Br. (2.5)

Furthermore, let K ∈ Rm×n be given by

K = −R−1
2 BT

r P, (2.6)

where the n× n positive definite matrix P satisfies

0 = AT
r P + PAr − PBrR

−1
2 BT

r P + R1 (2.7)

and R1 ∈ Rn×n and R2 ∈ Rm×m are arbitrary positive definite matrices. Then the feedback

control law

u(t) = Λ (Θ∗
1ϕ1(t) + Θ∗

rr(t)) , t ≥ 0, (2.8)
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where

Θ∗
1 ,

[
Θ∗, Θ∗

r , ΛTBT
] ∈ Rm×(m+n+s), (2.9)

ϕ1(t) ,
[

FT(x(t)), eT(t)KT, −1
2
kλe

T(t)P
]T ∈ Rm+n+s, t ≥ 0, (2.10)

with kλ > 0, guarantees that the zero solution e(t) ≡ 0, t ≥ 0, of the error dynamics given

by (2.3) is globally asymptotically stable.

Proof . Substituting the feedback control law given by (2.8) into (2.3), we obtain

ė(t) = f(x(t)) + BΛΘ∗
1ϕ1(t) + BΛΘ∗

rr(t)− Arxr1(t)−Brr(t), e(0) = e0, t ≥ 0, (2.11)

which, using (2.9) and (2.10), can be rewritten as

ė(t) =
(
Ar + BΛΘ∗

rK − 1

2
kλBΛΛTBTP

)
e(t) + (f(x(t)) + BΛΘ∗F (x(t))− Arx(t))

+ (BΛΘ∗
r −Br) r(t), e(0) = e0, t ≥ 0. (2.12)

Now, using (2.4) and (2.5), it follows from (2.12) that

ė(t) = (Ar + BrK − 1

2
kλBΛΛTBTP )e(t), e(0) = e0, t ≥ 0. (2.13)

Next, consider the Lyapunov function candidate

V (e) = eTPe, (2.14)

where P > 0 satisfies (2.7). Note that V (0) = 0 and, since P is positive definite, V (e) > 0

for all e 6= 0. Now, letting e(t), t ≥ 0, denote the solution to (2.13) and using (2.7), it follows

from (2.13) that the Lyapunov derivative along the closed-loop system trajectories of (2.13)

is given by

V̇ (e(t)) = −eT(t)(R1 + KTR2K + Ke)e(t) < 0, t ≥ 0, (2.15)
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where Ke , kλPBΛΛTBTP ≥ 0. Hence, the zero solution e(t) ≡ 0 of the error dynamics

given by (2.13) is globally asymptotically stable. ¤

Theorem 2.2.1 provides sufficient conditions for characterizing tracking controllers for

a given nominal nonlinear dynamical system G. The next result shows how to construct

adaptive gains Θ1(t) ∈ Rm×(m+n+s) and Θr(t) ∈ Rm×m, t ≥ 0, which allow to achieve tracking

control in spite of system uncertainty. This result does not require explicit knowledge of the

gain matrices Θ∗ and Θ∗
r ; all that is required is the existence of Θ∗ and Θ∗

r such that the

matching conditions (2.4) and (2.5) hold.

Theorem 2.2.2. Consider the nonlinear system G given by (2.1) and the reference

system Gr given by (2.2). Assume there exist unknown gain matrices Θ∗ ∈ Rm×s and

Θ∗
r ∈ Rm×m, and a continuously differentiable function F : Rn → Rs such that (2.4) and

(2.5) hold. Furthermore, let K ∈ Rm×n be given by (2.6), where P =
[

P1 P2

]
> 0 satis-

fies (2.7) with P1 ∈ Rn×(n−m) and P2 ∈ Rn×m. In addition, let Γ1 ∈ R(m+n+s)×(m+n+s) and

Γr ∈ Rm×m be positive definite. Then the adaptive feedback control law

u(t) = Λ (Θ1(t)ϕ1(t) + Θr(t)r(t)) , t ≥ 0, (2.16)

where Θ1(t) ∈ Rm×(m+n+s), t ≥ 0, and Θr(t) ∈ Rm×m, t ≥ 0, are estimates of Θ∗
1 and Θ∗

r ,

respectively, with update laws

Θ̇1(t) = −PT
2 e(t)ϕT

1 (t)Γ1, Θ1(0) = Θ10, t ≥ 0, (2.17)

Θ̇r(t) = −PT
2 e(t)rT(t)Γr, Θr(0) = Θr0, (2.18)

guarantees that the closed-loop system given by (2.3), (2.17), and (2.18), with control input

(2.16), is Lyapunov stable, and e(t) → 0 as t →∞.
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Proof . With u(t), t ≥ 0, given by (2.16) it follows from (2.4) and (2.5) that the error

dynamics e(t), t ≥ 0, are given by

ė(t) = (Ar + BrK − 1

2
kλBΛΛTBTP )e(t) + BΛ (Θ1(t)−Θ∗

1) ϕ1(t) + BΛ (Θr(t)−Θ∗
r ) r(t),

e(0) = e0, t ≥ 0.(2.19)

Now, consider the Lyapunov function candidate

V (e, Θ1, Θr)=eTPe + tr
[
BsΛ(Θ1−Θ∗

1)Γ
−1
1 (ΘT

1 −Θ∗T
1 )

]
+ tr

[
BsΛ(Θr−Θ∗

r )Γ
−1
r (ΘT

r −Θ∗T
r )

]
,

(2.20)

where P > 0 satisfies (2.7), and Γ1 and Γr are positive definite. Note that V (0, Θ∗
1, Θ

∗
r ) = 0

and, since P , Γ1, Γr, and BsΛ are positive definite, V (e, Θ1, Θr) > 0 for all (e, Θ1, Θr) 6=
(0, Θ∗

1, Θ
∗
r ). Now, letting e(t), t ≥ 0, denote the solution to (2.19) and using (2.7), it follows

that the Lyapunov derivative along the closed-loop system trajectories is given by

V̇ (e(t), Θ1(t), Θr(t)) = eT(t)P ė(t) + ėT(t)Pe(t) + 2tr[BsΛ(Θ1(t)−Θ∗
1)Γ

−1
1 Θ̇T

1 (t)]

+2tr[BsΛ(Θr(t)−Θ∗
r )Γ

−1
r Θ̇T

r (t)]

= 2eT(t)PBΛ(Θ1(t)−Θ∗
1)ϕ1(t) + 2tr[BsΛ(Θ1(t)−Θ∗

1)Γ
−1
1 Θ̇T

1 (t)]

+2eT(t)PBΛ(Θr(t)−Θ∗
r )r(t) + 2tr[BsΛ(Θr(t)−Θ∗

r )Γ
−1
r Θ̇T

r (t)]

+eT(t)P (Ar+BrK)e(t)+eT(t)(Ar+BrK)TPe(t)−eT(t)Kee(t). (2.21)

Next, using (2.17) and (2.18) and the fact that PB = P2Bs, we obtain

V̇ (e(t), Θ1(t), Θr(t)) = −eT(t)(R1+KTR2K+Ke)e(t)+2tr[BsΛ(Θ1(t)−Θ∗
1)(ϕ1(t)e

T(t)P2

+Γ−1
1 Θ̇T

1 (t))] + 2tr[BsΛ(Θr(t)−Θ∗
r )(r(t)e

T(t)P2 + Γ−1
r Θ̇T

r (t))]

= −eT(t)(R1 + KTR2K + Ke)e(t) ≤ 0, t ≥ 0. (2.22)
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Hence, the closed-loop system given by (2.3) and (2.16)–(2.18) is Lyapunov stable, and, by

the LaSalle-Yoshizawa theorem ([10], see also Appendix A), limt→∞ eT(t)(R1 + KTR2K +

Ke)e(t) = 0, and hence, limt→∞ e(t) = 0. ¤

Remark 2.2.1. Note that the conditions in Theorem 2.2.2 imply that e(t) → 0 as

t → ∞, and hence, it follows from (2.17) and (2.18) that Θ̇1(t) → 0 and Θ̇r(t) → 0 as

t →∞.

It is important to note that the adaptive law (2.16)–(2.18) does not require explicit knowl-

edge of the gain matrices Θ∗ and Θ∗
r . Furthermore, no specific knowledge of the structure

of the nonlinear dynamics f(x) or the input matrix B are required to apply Theorem 2.2.2;

all that is required is the existence of F (x) and Λ such that the matching conditions (2.4)

and (2.5) hold for a given reference system Gr. If (2.1) is in normal form with asymptoti-

cally stable internal dynamics [77], then a function F : Rn → Rs, matrix Λ ∈ Rm×m, and

stabilizable pair (Ar, Br) such that (2.4) and (2.5) hold without requiring knowledge of the

system dynamics can always be constructed. In order to see this, assume that the nonlinear

uncertain system G is generated by

q
(ri)
i (t) = fui(q(t)) + biu(t), q(0) = q0, t ≥ 0, i = 1, . . . , m, (2.23)

where q
(ri)
i denotes the rth

i time derivative of qi, ri denotes the relative degree with respect to

the output qi, fui(q) = fui(q1, . . . , q
(r1−1)
1 , . . . , qm, . . . , q

(rm−1)
m ), the row vector bi ∈ Rm, and

q ∈ Rr̂, where r̂ = r1 + . . . + rm is the (vector) relative degree of (2.23). Furthermore, since

(2.23) is in a form where it does not possess internal dynamics, it follows that r̂ = n. The

case where (2.23) possesses input-to-state stable internal dynamics can be handled as shown

in [75].
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Next, define xi ,
[
qi, . . . , q

(ri−2)
i

]T

, xm+1 ,
[
q
(r1−1)
1 , . . . , q

(rm−1)
m

]T

, and x,
[
xT

1 , . . . , xT
m+1

]T
,

i = 1, . . . ,m, so that (2.23) can be described as (2.1) with

f(x) = Ãx + f̃u(x), Bs =
[

bT
1 . . . bT

m

]T
, (2.24)

where

Ã =

[
A0

0m×n

]
, f̃u(x) =

[
0(n−m)×1

fu(x)

]
,

A0 ∈ R(n−m)×n is a known matrix of zeros and ones capturing the multivariable controllable

canonical form representation [78], and fu : Rn → Rm and B ∈ Rm×m are unknown. In

addition, fu(x) can be parameterized as follows, fu(x) = Θ̀ x + Θǹ fǹ (x), where fǹ : Rn →
Rq, x ∈ Rn, and Θ̀ ∈ Rm×n and Θǹ ∈ Rm×q are uncertain constant matrices.

Next, to apply Theorem 2.2.2 to the uncertain system (2.1) with f(x) and Bs given by

(2.24), let Br =
[
0m×(n−m) Br

T
s

]T
, where Brs ∈ Rm×m, let Ar =

[
AT

0 , ΘT
n

]T
, where Θn ∈ Rm×n

is a known matrix, let Θ∗ ∈ Rm×(n+q) be given by

Θ∗ = (BsΛ)−1[ Θn − Θ̀ , −Θǹ ], (2.25)

and let

F (x) =

[
x

fǹ (x)

]
. (2.26)

In this case, it follows that, with Θ∗
r = (BsΛ)−1Brs,

BΛΘ∗
r = Br (2.27)

and

f(x) + BΛΘ∗F (x) = Ãx + f̃u(x) +

[
0(n−m)×m

Bs

]
Λ(BsΛ)−1

[
Θnx− Θ̀ x−Θǹ fǹ (x)

]

= Ãx +

[
0(n−m)×1

Θnx

]
= Arx, (2.28)
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where Ar is in multivariable controllable canonical form. Hence, choosing Ar and Br such

that (Ar, Br) is stabilizable and choosing R1 > 0 and R2 > 0, it follows that there exists a

positive definite matrix P satisfying the Riccati equation (2.7).

2.3. Dynamic Adaptive Tracking for Nonlinear Uncer-

tain Systems

In this section, the results of Section 2.2 are extended by constructing an adaptive,

dynamic controller for (2.1), with stability properties identical to those given by Theorem

2.2.2. The ultimate objective is to be able to account for both amplitude and rate saturation

constraints in the control input. In order to be able to account for rate saturation, it is

necessary to consider the time derivative of the command u(t), t ≥ 0. Amplitude saturation

will be accounted for by setting this time derivative to zero. To that end, the command u(t),

t ≥ 0, will be generated by a dynamic compensator of the form

ẋc(t) = fc(x(t), xr(t), xc(t)), xc(0) = xc0, t ≥ 0, (2.29)

u(t) = xc(t), (2.30)

where xc(t) ∈ Rm, t ≥ 0, is the compensator state, x(t) ∈ Rn, t ≥ 0, is the system state,

xr(t) ∈ Rm+n, t ≥ 0, is a reference state, and fc : Rn × Rm+n × Rm → Rm. In order to

account for the compensator state, the reference system (2.2) is modified as

ẋr(t) =

[
Ar Br

0m×n −T−1
r

]
xr(t) +

[
0n×m

T−1
r

]
r(t), xr(0) =

[
xr10

xr20

]
, t ≥ 0, (2.31)

where xr(t) =
[

xT
r1(t) xT

r2(t)
]T

, t ≥ 0, with xr1(t) ∈ Rn, xr2(t) ∈ Rm, t ≥ 0, and Tr ∈
Rm×m is positive definite.

Next, consider the following desired control input, which is identical to the expression of

23



u(t), t ≥ 0, obtained in the previous section, given by

u∗d(t) , Λ (Θ∗
1ϕ1(t) + Θ∗

rxr2(t)) , t ≥ 0, (2.32)

where u∗d(t), t ≥ 0, is such that for u(t) = u∗d(t), t ≥ 0, Theorem 2.2.1 guarantees that e(t),

t ≥ 0, converges to zero. In the classical backstepping literature (see for example [10]), this

desired control input is referred to as a “virtual command.” Note that r(t), t ≥ 0, in (2.8) is

replaced by xr2(t), t ≥ 0, in (2.32) to account for the modification to the reference system.

With this definition for u∗d(t), t ≥ 0, the error dynamics (2.3) become

ė(t) = (Ar + BrK + Ke)e(t) + B (u(t)− u∗d(t)) , e(0) = e0, t ≥ 0. (2.33)

Defining the error e∗u(t) , u(t)−u∗d(t), t ≥ 0, the remaining problem is to find the appropriate

expression for fc(·) such that e∗u(t), t ≥ 0, converges to zero.

Note that a number of constant parameters in (2.32) are uncertain and need to be es-

timated, with appropriate update laws similar to those in Theorem 2.2.2. Ultimately, the

expression u(t), t ≥ 0, should converge to is given by

ud(t) = Λ (Θ1(t)ϕ1(t) + Θr(t)xr2(t)) , t ≥ 0, (2.34)

where Θ1(t) ∈ Rm×(m+n+s) and Θr(t) ∈ Rm×m, t ≥ 0, are estimates of Θ∗
1 and Θ∗

r , respec-

tively. To this end, define the tracking error eu(t) , u(t)− ud(t), t ≥ 0.

Statement of the next result requires a closed form expression of u̇d(t), t ≥ 0. Using

the update laws given by Theorem 2.2.2, and Θ1(t) =
[

Θ11(t) Θ12(t)
]
, t ≥ 0, with

Θ11(t) ∈ Rm×s and Θ12(t) ∈ Rm×(m+n), t ≥ 0, yields

u̇d(t) = Λ
(
− PT

2 e(t)
(
ϕT

1 (t)Γ1ϕ1(t) + xT
r2(t)Γrxr2(t)

)
+ Θ11(t)F

′(x(t))(f(x(t)) + Bu(t))

+Θ12(t)

[
K

−1
2
kλP

]
ė(t) + Θr(t)T

−1
r (r(t)− xr2(t))

)
, t ≥ 0, (2.35)
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where F ′(x(t)) denotes the Fréchet derivative of F (·) at x(t), t ≥ 0, Γ1 ∈ R(m+n+s)×(m+n+s),

Γr ∈ Rm×m, Γ1 > 0, and Γr > 0. Note that the above expression can be rewritten as

u̇d(t) = g(t) + h(t)Θ∗
2ϕ2(t), ud(0) = Λ (Θ10ϕ1(0) + Θr0xr20) , t ≥ 0, (2.36)

where

h(t) , ΛΘ1(t)




F ′(x(t))
K

−1
2
kλP


, Θ∗

2 , B
[ −ΛΘ∗, Im

]
, ϕ2(t) ,

[
F (x(t))

u(t)

]
, (2.37)

and

g(t),Λ
(
− PT

2 e(t)
(
ϕT

1 (t)Γ1ϕ1(t) + xT
r2(t)Γrxr2(t)

)−Θ12(t)
[

KT, −1
2
kλP

]T
ẋr1(t)

+Θr(t)T
−1
r (r(t)− xr2(t))

)
+ h(t)Arx(t). (2.38)

Note that (2.36) allows to isolate the unknown term Θ∗
2 in u̇d(t), t ≥ 0. In addition, (2.29),

(2.30) and (2.36) yield the following expression for the time derivative of the new tracking

error eu(t), t ≥ 0,

ėu(t) = fc(t)− g(t)− h(t)Θ∗
2ϕ2(t), eu(0) = eu0, t ≥ 0. (2.39)

By choosing fc(t), t ≥ 0, the error dynamics (2.39) can be reshaped as desired. In particular,

if ėu(t), t ≥ 0, is assigned, it follows from (2.39) that the corresponding dynamic compensator

(2.29) is given by

fc(t) = g(t) + h(t)Θ∗
2ϕ2(t) + ėu(t), t ≥ 0. (2.40)

The following result presents an expression for fc(t), t ≥ 0, which is similar to (2.40), with

ėu(t), t ≥ 0, replaced by an appropriate function which guarantees convergence of eu(t),

t ≥ 0, to zero.
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Theorem 2.3.1. Consider the controlled nonlinear system G given by (2.1) and reference

system (2.31). Assume there exist unknown gain matrices Θ∗ ∈ Rm×s and Θ∗
r ∈ Rm×m,

and a continuously differentiable function F : Rn → Rs such that (2.4) and (2.5) hold.

Furthermore, let K ∈ Rm×n be given by (2.6), where P =
[

P1 P2

]
> 0 with P1 ∈ Rn×(n−m)

and P2 ∈ Rn×m, satisfies (2.7). Consider the control input u(t), t ≥ 0, generated by (2.29)

and (2.30), where

fc(t) = g(t) + h(t)Θ2(t)ϕ2(t)− 2Θ3(t)Pe(t)−Kueu(t), t ≥ 0, (2.41)

where ϕ2(t) and h(t) ∈ Rm×n, t ≥ 0, are given by (2.37), g(t) ∈ Rm, t ≥ 0, is given by

(2.38), Ku ∈ Rm×m is positive definite, and Θ2(t) and Θ3(t), t ≥ 0, are estimates of Θ∗
2

and Θ∗
3 , BT ∈ Rm×n, respectively. The estimates Θ1(t) ∈ Rm×(m+n+s), Θr(t) ∈ Rm×m,

Θ2(t) ∈ Rn×(m+s), and Θ3(t) ∈ Rm×n, t ≥ 0, are given by

Θ̇1(t) = −PT
2 e(t)ϕT

1 (t)Γ1, Θ1(0) = Θ10, t ≥ 0, (2.42)

Θ̇r(t) = −PT
2 e(t)xT

r2(t)Γr, Θr(0) = Θr0, (2.43)

Θ̇2(t) = −h(t)Teu(t)ϕ
T
2 (t)Γ2, Θ2(0) = Θ20, (2.44)

Θ̇3(t) = eu(t)e
T(t)PΓ3, Θ3(0) = Θ30, (2.45)

where Γ1 ∈ R(m+n+s)×(m+n+s), Γr ∈ Rm×m, Γ2 ∈ R(m+s)×(m+s), and Γ3 ∈ Rn×n are positive

definite matrices. In this case, the control input u(t), t ≥ 0, generated by (2.29) and (2.30)

with (2.41), guarantees that the closed-loop system given by (2.3), (2.42)–(2.45), is Lyapunov

stable and (e(t), eu(t)) → (0, 0) as t →∞.

Proof . From (2.34) and the definition of eu(t), t ≥ 0, it follows that

u(t) = Λ (Θ1(t)ϕ1(t) + Θr(t)xr2(t)) + eu(t), t ≥ 0, (2.46)
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or, equivalently, using (2.10),

u(t) = Λ (Θ∗F (x(t)) + Θ∗
r (xr2(t) + Ke(t)))− 1

2
kλΛΛTBTPe(t) + Λ(Θ1(t)−Θ∗

1)ϕ1(t)

+Λ(Θr(t)−Θ∗
r )xr2(t) + eu(t). (2.47)

Substituting (2.4), (2.5), and (2.47) into (2.3), we obtain

ė(t) = (Ar + BrK − 1

2
kλBΛΛTBTP )e(t) + BΛ(Θ1(t)−Θ∗

1)ϕ1(t) + BΛ(Θr(t)−Θ∗
r )xr2(t)

+Beu(t), e(0) = e0, t ≥ 0. (2.48)

Similarly, from (2.39), (2.41) and Θ∗
3 = BT, we obtain

ėu(t) = −2BTPe(t)−Kueu(t) + h(t)(Θ2(t)−Θ∗
2)ϕ2(t) + 2(Θ∗

3 −Θ3(t))Pe(t),

eu(0) = eu0, t ≥ 0. (2.49)

Next, consider the Lyapunov function candidate

V (e, eu, Θ1, Θ2, Θ3, Θr) = eTPe +
1

2
eT

u eu + tr
[
BsΛ(Θ1 −Θ∗

1)Γ
−1
1 (ΘT

1 −Θ∗T
1 )

]

+tr
[
(Θ2 −Θ∗

2)Γ
−1
2 (ΘT

2 −Θ∗T
2 )

]
+ tr

[
(Θ3 −Θ∗

3)Γ
−1
3 (ΘT

3 −Θ∗T
3 )

]

+tr
[
BsΛ(Θr −Θ∗

r )Γ
−1
r (ΘT

r −Θ∗T
r )

]
, (2.50)

where P > 0 satisfies (2.7). Note that V (0, 0, Θ∗
1, Θ

∗
2, Θ

∗
3, Θ

∗
r ) = 0 and, since P , Γ1, Γ2, Γ3,

Γr, and BsΛ are positive definite, V (e, eu, Θ1, Θ2, Θ3, Θr) > 0 for all (e, eu, Θ1, Θ2, Θ3, Θr) 6=
(0, 0, Θ∗

1, Θ
∗
2, Θ

∗
3, Θ

∗
r ). Then, using (2.7) and (2.42)–(2.45), it follows that the Lyapunov

derivative along the closed-loop system trajectories is given by

V̇ (e(t), eu(t), Θ1(t), Θ2(t), Θ3(t), Θr(t)) = eT(t)P ė(t) + ėT(t)Pe(t) + eu(t)
Tėu(t)

+2tr[BsΛ(Θ1(t)−Θ∗
1)Γ

−1
1 Θ̇T

1 (t)]
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+2tr[(Θ3(t)−Θ∗
3)Γ

−1
3 Θ̇T

3 (t)]

+2tr[BsΛ(Θr(t)−Θ∗
r )Γ

−1
r Θ̇T

r (t)]

+2tr[(Θ2(t)−Θ∗
2)Γ

−1
2 Θ̇T

2 (t)]

= eT(t)P (Ar + BrK)e(t) + eT(t)(Ar + BrK)TPe(t)

−eT(t)Kee(t)− eT
u (t)Kueu(t)

+2tr[(Θ3(t)−Θ∗
3)(Γ

−1
3 Θ̇T

3 (t)− Pe(t)eT
u (t))]

+2tr[BsΛ(Θ1(t)−Θ∗
1)(Γ

−1
1 Θ̇T

1 (t) + ϕ1(t)e
T(t)P2)]

+2tr[BsΛ(Θr(t)−Θ∗
r )(Γ

−1
r Θ̇T

r (t) + xr2(t)e
T(t)P2)]

+2tr[(Θ2(t)−Θ∗
2)(Γ

−1
2 Θ̇T

2 (t) + ϕ2(t)e
T
u (t)h(t))]

= −eT(t)(R1 + KTR2K + Ke)e(t)− eT
u (t)Kueu(t)

≤ 0, t ≥ 0. (2.51)

Hence, the closed-loop system given by (2.3), (2.39), (2.42)–(2.45) is Lyapunov stable.

Furthermore, it follows from the LaSalle-Yoshizawa theorem [10] that limt→∞ eT(t)(R1 +

KTR2K + Ke)e(t) + eT
u (t)Kueu(t) = 0, and hence limt→∞ e(t) = 0 and limt→∞ eu(t) = 0. ¤

Remark 2.3.1. Note that a parallel can be drawn between (2.29) and the actuator

dynamics of a physical system. In particular, the form of (2.29) was chosen to be an integrator

for simplicity; however, (2.29) can be modified to represent the actuator dynamics of a

particular system. Hence, the presented approach can account for actuator dynamics in the

control framework.

The expression for fc(·) given by (2.41) implicitly depends upon the form of u̇d(t), t ≥ 0.

The control algorithm can be significantly simplified by using an estimate of u̇d(t), t ≥ 0, as
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detailed in the following corollary. The resulting control algorithm then guarantees ultimate

boundedness of e(t) and eu(t), t ≥ 0; that is, convergence of e(t) and eu(t), t ≥ 0, to a

neighborhood of the origin.

Corollary 2.3.1. Consider the controlled nonlinear system G given by (2.1) and ref-

erence system (2.31), and assume that the hypothesis of Theorem 2.3.1 hold with kλ >

λmin(ΛΛT). In addition, define ud1(t) , ΛΘ1(t)ϕ1(t), t ≥ 0, and assume that u̇d1(t), t ≥ 0,

can be approximated by ν̇(t), t ≥ 0, such that ‖ud1(t)−ν(t)‖ ≤ ε ∈ R, t ≥ 0. Finally, define

ûd(t) , ν(t) + ΛΘr(t)xr2(t) and êu(t) , u(t) − ûd(t). Then, the control input generated by

(2.29) and (2.30) with

fc(t) = fûd
(t)− 2Θ3(t)Pe(t)−Kuêu(t), (2.52)

where

fûd
(t) , ν̇(t) + Λ

(−PT
2 e(t)xT

r2(t)Γrxr2(t) + Θr(t)T
−1
r (r(t)− xr2(t))

)
, t ≥ 0,(2.53)

along with update laws (2.42), (2.43), and

Θ̇3(t) = êu(t)e
T(t)PΓ3, Θ3(0) = Θ30, t ≥ 0, (2.54)

guarantees ultimate boundedness of the tracking errors e(t) and êu(t), t ≥ 0, with an ultimate

bound given by De , {e, êu : eT(R1 + KTR2K)e + êT
u Kuêu ≤ ε2}.

Proof . From the definitions of ud1(t), ûd(t), and êu(t), t ≥ 0, it follows that

u(t) = Λ (Θ1(t)ϕ1(t) + Θr(t)xr2(t)) + ν(t)− ud1(t) + êu(t), t ≥ 0, (2.55)
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or, equivalently, using (2.10),

u(t) = Λ (Θ∗F (x(t)) + Θ∗
r (xr2(t) + Ke(t)))− 1

2
kλΛΛTBTPe(t) + Λ(Θ1(t)−Θ∗

1)ϕ1(t) + ν(t)

−ud1(t) + Λ(Θr(t)−Θ∗
r )xr2(t) + êu(t). (2.56)

Substituting (2.4), (2.5), and (2.56) into (2.3), we obtain

ė(t) = (Ar + BrK − 1

2
kλBΛΛTBTP )e(t) + BΛ(Θ1(t)−Θ∗

1)ϕ1(t) + BΛ(Θr(t)−Θ∗
r )xr2(t)

+B(ν(t)− ud1(t)) + Bêu(t), e(0) = e0, t ≥ 0. (2.57)

Similarly, from (2.29), (2.30), (2.53), and the definition of ûd(t) and êu(t), t ≥ 0, we obtain

˙̂eu(t) = fc(t)− fûd
(t), êu(0) = êu0, t ≥ 0, (2.58)

which, using (2.52) and Θ∗
3 = BT, can be rewritten as

˙̂eu(t) = −2BTPe(t)−Kuêu(t) + 2(Θ∗
3 −Θ3(t))Pe(t), êu(0) = êu0, t ≥ 0. (2.59)

Now, consider the Lyapunov function candidate

Vs(e, êu, Θ1, Θ3, Θr) = eTPe +
1

2
êT

u êu + tr
[
BsΛ(Θ1 −Θ∗

1)Γ
−1
1 (ΘT

1 −Θ∗T
1 )

]

+tr
[
(Θ3 −Θ∗

3)Γ
−1
3 (ΘT

3 −Θ∗T
3 )

]
+ tr

[
BsΛ(Θr −Θ∗

r )Γ
−1
r (ΘT

r −Θ∗T
r )

]
.

(2.60)

Note that Vs(0, 0, Θ
∗
1, Θ

∗
3, Θ

∗
r ) = 0 and, since P , Γ1, Γ3, Γr, and BsΛ are positive definite,

we have Vs(e, êu, Θ1, Θ3, Θr) > 0 for all (e, êu, Θ1, Θ3, Θr) 6= (0, 0, Θ∗
1, Θ

∗
3, Θ

∗
r ). Now, using

(2.7), (2.42), (2.43), and (2.54), it follows that the Lyapunov derivative along the closed-loop

system trajectories is given by

V̇s(e(t), êu(t), Θ1(t), Θ3(t), Θr(t), t) = eT(t)P (Ar + BrK)e(t) + eT(t)(Ar + BrK)TPe(t)
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−êT
u (t)Kuêu(t)− kλe

T(t)PBΛΛTBTPe(t)

+2tr[BsΛ(Θ1(t)−Θ∗
1)(Γ

−1
1 Θ̇T

1 (t) + ϕ1(t)e
T(t)P2)]

+2tr[BsΛ(Θr(t)−Θ∗
r )(Γ

−1
r Θ̇T

r (t) + xr2(t)e
T(t)P2)]

+2tr[(Θ3(t)−Θ∗
3)(Γ

−1
3 Θ̇T

3 (t)− Pe(t)êT
u (t))]

−2eT(t)PB(ud1(t)− ν(t))

= −eT(t)(R1+KTR2K)e(t)−2eT(t)PB(ud1(t)−ν(t))

−êT
u (t)Kuêu(t)−kλe

T(t)PBΛΛTBTPe(t), t≥0, (2.61)

which, by completing the square, gives

V̇s(e(t), êu(t), Θ1(t), Θ3(t), Θr(t), t) = −eT(t)(R1 + KTR2K)e(t)− êT
u (t)Kuêu(t)

−‖BTPe(t) + (ud1(t)− ν(t))‖2 + ‖ud1(t)− ν(t)‖2

−eT(t)PB
(
kλΛΛT − Im

)
BTPe(t), t ≥ 0, (2.62)

where Im is the m×m identity matrix. Since, by assumption, ‖ud1(t)− ν(t)‖ ≤ ε, t ≥ 0, we

obtain

V̇s(e(t), êu(t), Θ1(t), Θ3(t), Θr(t), t) 6 −eT(t)(R1 + KTR2K)e(t)− êT
u (t)Kuêu(t) + ε2,

t ≥ 0. (2.63)

It follows from (2.63) that the Lyapunov derivative is strictly negative outside De, which

guarantees ultimate boundedness of (e(t), êu(t)), t ≥ 0, with an ultimate bound given by De

([79,80]). ¤

One technique which allows one to estimate the derivative of ud1(t), t ≥ 0, can be found

in [56]. In particular, provided there exists c > 0 such that u̇d1(t) ≤ c, t ≥ 0, the technique
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in [56] leads to an ε-estimate of ud1(t), t ≥ 0, and allows for the determination of an

approximate value of c. More specifically, the algorithm in [56] can be used to approximate

a signal v(t) by ν(t), with bounded estimation error s(t) , v(t) − ν(t), t ≥ 0, where ν(t),

t ≥ 0, is given by

ν̇(t) = k0sgn(s(t)) + k1(s(t)− ε sat(s(t)/ε)) + k2(t)sat(s(t)/ε)), ν(0) = ν0, t ≥ 0, (2.64)

where the constants k0, k1 and ε are positive, sgn(s) , |s|/s, for s 6= 0, and sgn(0) , 0. In

addition,

sat(s) ,
{

sgn(s), for ‖s‖ > 1,
s, for ‖s‖ ≤ 1,

(2.65)

and the gain k2(t), t ≥ 0, is given by the update law

k̇2(t) =

{
γ‖s(t)‖, for ‖s‖ > ε,
0, for ‖s‖ ≤ ε,

k2(0) = k20, t ≥ 0, (2.66)

with γ > 0. It is shown in [56] that, for sufficiently small η > 0, there exist ε < η and t∗ ≥ 0

such that ‖s(t)‖ < η, t ≥ t∗.

2.4. Adaptive Tracking with Actuator Amplitude and

Rate Saturation Constraints

In this section, the adaptive control framework presented in Section 2.3 is extended

to account for actuator amplitude and rate saturation constraints, following the approach

layed out in Figure 2.1. Recall that Theorem 2.2.2 guarantees asymptotic convergence of

the tracking error e(t), t ≥ 0, to zero; that is, the state vector x(t), t ≥ 0, converges

asymptotically to the reference state vector xr1(t), t ≥ 0. Furthermore, it is important to

note that the compensator dynamics fc(·) given by (2.41) depend on the reference input
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r(t), t ≥ 0, through ẋr2(t), t ≥ 0. Since for a fixed set of initial conditions there exists a

one-to-one mapping between the reference input r(t), t ≥ 0, and the reference state xr1(t),

t ≥ 0, it follows that the control signal in (2.16) guarantees asymptotic convergence of the

state x(t), t ≥ 0, to the reference state xr1(t), t ≥ 0, corresponding to the specified reference

input r(t), t ≥ 0.

Of course, the reference input r(t), t ≥ 0, should

Reference
State x  (t)

Compensator
Dynamics

Reference
Input r(t)

sat

+

r

u(t) = H(r(t),t)

Control
Input u(t)

Is u(t) above
saturation?

Yes

No
u(t) = u

Inverse Compensator
Dynamics

r(t) = H   (u(t),t)-1

Reference
Input r(t)

Reference
Dynamics

System
Dynamics

System
State x(t)

Tracking
Error

-

Figure 2.1: Saturation algorithm
flowchart.

be chosen so as to guarantee asymptotic convergence

to a desired state vector xd(t), t ≥ 0. However, the

choice of such a reference input r(t), t ≥ 0, is not

unique since the reference state vector xr1(t), t ≥ 0,

can converge to the desired state vector xd(t), t ≥ 0,

without matching its transient behavior.

The following presents a framework wherein a fam-

ily of reference inputs r(t), t ≥ 0, with associated ref-

erence state vectors xr1(t), t ≥ 0, are constructed and

guarantee that a given reference state vector within

this family converges to a desired state vector xd(t),

t ≥ 0, in the face of actuator amplitude and rate sat-

uration constraints.

From (2.29) and (2.30), it is clear that u̇(t), t ≥ 0, is explicitly dependent on fc(t), t ≥ 0,

which in turn depends upon the reference signal r(t), t ≥ 0. More specifically, from (2.29),

(2.30), (2.38), and (2.41),

u̇(t) = H(s(t), r(t))
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= g1(t) + h(t)Θ2(t)ϕ2(t)− 2Θ3(t)Pe(t)−Kueu(t)

−ΛΘr(t)T
−1
r r(t), t ≥ 0, (2.67)

where s(t) , (x(t), xr(t), Θr(t), Θ2(t), Θ3(t), e(t), eu(t)) and

g1(t) , Λ
(
− PT

2 e(t)
(
ϕT

1 (t)Γ1ϕ1(t) + xT
r2(t)Γrxr2(t)

)

−Θ1(t)
[

0n×s KT −1
2
kλP

]T
ẋr1(t)+Θr(t)T

−1
r xr2(t)

)

+h(t)Arx(t). (2.68)

Using (2.67), the reference input r(t), t ≥ 0, can be expressed as

r(t) = H−1(s(t), u̇(t))

= TrΘ
−1
r Λ−1(g1(t) + h(t)Θ2(t)ϕ2(t)− 2Θ3(t)Pe(t)

−Kueu(t)− u̇(t)). (2.69)

The above expression relates the reference input to the time rate of change of the control

input.

Next, it is assumed that the control signal is amplitude and rate limited so that |ui(t)| ≤
umax and |u̇i(t)| ≤ u̇max, t ≥ 0, i = 1, . . . ,m, where ui(t) and u̇i(t) denote the ith component

of u(t) and u̇(t), respectively, and umax > 0 and u̇max > 0 are given. Amplitude saturation

of the command u(t), t ≥ 0, will be enforced by adjusting the rate of change of u(t), t ≥ 0,

to zero. For the statement of the main result the following definitions are needed. For

i ∈ {1, . . . , m} define

σ(ui(t), u̇i(t)) ,
{

0 if |ui(t)| = umax and ui(t)u̇i(t) > 0, t ≥ 0,
1 otherwise,

(2.70)

σ∗(ui(t), u̇i(t)) , min

{
σ(ui(t), u̇i(t)),

u̇max

|u̇i(t)|
}

, t ≥ 0. (2.71)
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Note that for i ∈ {1, . . . , m} and t = t1 > 0, the function σ∗(·, ·) is such that the following

properties hold:

i) If |ui(t1)| = umax and ui(t1)u̇i(t1) > 0, then u̇i(t1)σ
∗(ui(t1), u̇i(t1)) = 0.

ii) If |u̇i(t1)| > u̇max and |ui(t1)| < umax or if |u̇i(t1)| > u̇max and |ui(t1)| = umax and

ui(t1)u̇i(t1) ≤ 0, then u̇i(t1)σ
∗(ui(t1), u̇i(t1)) = u̇maxsgn(u̇i(t1)),

iii) If no constraint is violated, then u̇i(t1)σ
∗(ui(t1), u̇i(t1)) = u̇i(t1).

Finally, define the component decoupled diagonal nonlinearity Σ(u, u̇) by

Σ(u(t), u̇(t)) , diag[σ∗(u1(t), u̇1(t)), σ
∗(u2(t), u̇2(t)), . . . , σ

∗(um(t), u̇m(t))]. (2.72)

Theorem 2.4.1. Consider the controlled nonlinear system G given by (2.1) and refer-

ence system (2.31). Assume there exist gain matrices Θ∗ ∈ Rm×s and Θ∗
r ∈ Rm×m, and a

continuously differentiable function F : Rn → Rs such that (2.4) and (2.5) hold. Further-

more, let K ∈ Rm×n be given by (2.6), where P > 0 satisfies (2.7). In addition, for a given

desired reference input rd(t), t ≥ 0, let the reference input r(t), t ≥ 0, be given by

r(t) = H−1(s(t), Σ(u(t), u̇∗(t))u̇∗(t)), t ≥ 0, (2.73)

where s(t) = (x(t), xr(t), Θr(t), Θ2(t), e(t), eu(t)) and u̇∗(t) , H(s(t), rd(t)). Then the adap-

tive feedback control law (2.41), with update laws (2.42)–(2.45) and reference input r(t),

t ≥ 0, given by (2.73), guarantees that the following statements hold:

i) The zero solution (e(t), eu(t)) ≡ (0, 0) to (2.3) and (2.39) is asymptotically stable.

ii) |ui(t)| ≤ umax for all t ≥ 0 and i = 1, . . . ,m.
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iii) |u̇i(t)| ≤ u̇max for all t ≥ 0 and i = 1, . . . ,m.

Proof . Statement i) is a direct consequence of Theorem 2.3.1 with r(t), t ≥ 0, given by

(2.73). To prove ii) and iii) note that it follows from (2.67), (2.69), and (2.73) that

u̇(t)=H(s(t), r(t))=H(s(t), H−1(s(t), Σ(u(t), u̇∗(t))u̇∗(t)))=Σ(u(t), u̇∗(t))u̇∗(t), t≥0, (2.74)

which implies u̇i(t) = σ∗(ui(t), u̇
∗
i (t))u̇

∗
i (t), i = 1, . . . ,m, t ≥ 0. Hence, if the control input

ui(t), t ≥ 0, with a rate of change u̇∗i (t), i = 1, . . . , m, t ≥ 0, does not violate the amplitude

and rate saturation constraints, then it follows from (2.71) that σ∗(ui(t), u̇
∗
i (t)) = 1 and

u̇i(t) = u̇∗i (t), i = 1, . . . ,m, t ≥ 0. Alternatively, if the pair (ui(t), u̇
∗
i (t)), i = 1, . . . , m, t ≥ 0,

violates one or more of the input amplitude and/or rate constraints, then (2.70), (2.71), and

(2.74) imply

i) u̇i(t) = 0 for all t ≥ 0 if |ui(t)| = umax and ui(t)u̇
∗
i (t) > 0; and

ii) u̇i(t) = u̇maxsgn(u̇∗i (t)) for all t ≥ 0 if |u̇∗i (t)| > u̇max and |ui(t)| < umax or if |u̇∗i (t)| >

u̇max and |ui(t)| = umax and ui(t)u̇i(t) ≤ 0;

which, for ui(0) ≤ umax, guarantee that |ui(t)| ≤ umax and |u̇i(t)| ≤ u̇max for all t ≥ 0 and

i = 1, . . . ,m. ¤

Note that it follows from Theorem 2.4.1 that if the desired reference input rd(t), t ≥ 0, is

such that the actuator amplitude and/or rate saturation constraints are not violated, then

r(t) = rd(t), t ≥ 0, and hence, x(t), t ≥ 0, converges to xd(t), t ≥ 0. Alternatively, if

there exists t = t∗ > 0 such that the desired reference input drives one or more of the

control inputs to the saturation boundary, then r(t) 6= rd(t), t > t∗. However, as long
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as the time interval over which the control input remains saturated is finite, the reference

signal ultimately reverts to its desired value, and the tracking properties are preserved. Of

course, if there exists a solution to the tracking problem wherein the input amplitude and

rate saturation constraints are not violated when the tracking error is within certain bounds,

then the approach is guaranteed to work.

2.5. Illustrative Numerical Examples

This section presents three numerical examples to demonstrate the utility of the proposed

direct adaptive control framework for adaptive stabilization and tracking in the face of

actuator amplitude and rate saturation constraints.

Example 2.5.1. Consider the uncertain controlled Liénard system given by

z̈(t)+µ(z4(t)−α)ż(t)+βz(t)+γ tanh(z(t))=bu(t), z(0) = z0, ż(0) = ż0, t ≥ 0, (2.75)

where µ, α, β, γ, b ∈ R are unknown. Note that with x1 = z and x2 = ż, (2.75) can be written

in state space form (2.1) with x = [x1, x2]
T, f(x) = [x2, −βx1 − γ tanh x1 − µ(x4

1 − α)x2]
T,

and B = [0, b]T. Here, it is assumed that f(x) and B are unknown and can be parameterized

as f(x) = [x2, θ̀ x + θǹ 1 tanh x1 + θǹ 2x
4
1x2]

T and B = b [0, 1]T, where θ̀ ∈ R2, θǹ 1 ∈ R, and

θǹ 2 ∈ R are unknown. Next, let F (x) = [xT, tanh(x1), x4
1x2]

T, Ar = [AT
0 , θT

n ]T, Br = [0, br]
T,

br ∈ R, Λ = 1, Θ∗
r = br

b
, and Θ∗ = [θn − θ̀ , −θǹ 1, −θǹ 2]/b, where A0 = [0, 1] and θn is an

arbitrary vector, so that

BΛΘ∗
r =

[
0
b

]
· 1 · br

b
=

[
0
br

]
= Br,

BΛΘ∗F (x) =

[
0
b

]
1

b
[θn − θ̀ , −θǹ 1, −θǹ 2]F (x) = Arx− f(x),
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Figure 2.2: Stabilization of the Liénard system with no saturation constraints.

and hence, (2.4) and (2.5) hold. Now, it follows from Theorem 2.3.1 that the adaptive

feedback controller (2.41) guarantees that e(t) → 0 as t →∞ in the face of input amplitude

and rate saturation constraints. In addition, θn = [−4,−1.6], R1 = I2, and R2 = 1, and a

pair K and P satisfying (2.6) and (2.7) are given by

P =

[
1.2434 0.1036
0.1036 0.1891

]
, K =

[ −0.4142 − 0.7562
]
. (2.76)

In order to analyze this design it is assumed that µ = 2, α = 1, β = 1, γ = 1, b = 3,

with initial condition x(0) = [1, 1]T, u(0) = 0, xr1(0) = [0, 0]T, xr2(0) = 0. First, a

regulation problem is considered; that is, stabilization to the origin. The initial parameter

estimates are chosen as Θ10 = [−1, −1, 0, 1, 1, 0, 4], Θr0 = 2, Θ20 =

[
0 0 0 0 0
3 3 −1 −1 3

]
,

and Θ30 = [0, 4]. Figure 2.5.2.2 shows the case where no input saturation constraints are

considered and Figure 2.5.2.3 shows the case where umax = 1 and u̇max = 2.
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Figure 2.3: Stabilization of the Liénard system with amplitude and rate saturation con-
straints.
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Figure 2.4: Tracking of the Liénard system with no saturation constraints.
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Figure 2.5: Tracking of the Liénard system with amplitude and rate saturation constraints.

Next, tracking of the signal zd(t) = sin(π/5 t) is considered. Figure 2.5.2.4 shows the

case where no input saturation constraints are considered, while Figure 2.5.2.5 shows the

case where umax = 0.6 and u̇max = 2. As seen in Figure 2.5, the control algorithm is

able to achieve perfect tracking, in spite of the actuation constraint. Should the constraint

prove too restrictive to physically allow the system to track the given desired trajectory,

while the proposed formulation still guarantees that x(t) → xr1(t) as t → ∞, it cannot

be guaranteed that xr1(t) → xd(t) as t → ∞. However, the approach provides a “close”

agreement between the desired signal to be tracked and the achieved tracked signal for the

given saturation levels, as illustrated by Figure 2.6. The amplitude saturation constraint

is chosen as umax = 0.53, which, with u̇max = 2, is too restrictive to allow perfect tracking

of the given desired trajectory. At these amplitude and rate saturation levels, the control

signal remains periodically saturated, and xr1(t), t ≥ 0, is unable to perfectly track the
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desired trajectory. However, Figure 2.6 shows that the control algorithm still provides as

close an agreement between the trajectory x(t), t ≥ 0, and xd(t), t ≥ 0, as made possible

by the saturation constraint. Finally, consider a case where µ = −0.1, α = 0, β = 1,

γ = 1, b = 3, with umax = 4 and u̇max = 1. Figure 2.7 shows the results of a fifteen

second numerical simulation (left), obtained with the adaptive controller of Theorem 2.3.1

and the reference input as described in Theorem 2.4.1. The resulting trajectory, represented

by a solid line, converges smoothly towards the desired trajectory. However, if the reference

input is not modified as described in Theorem 2.4.1, which implies that the adaptation

mechanism in Theorem 2.3.1 is not aware of the saturation, then the closed-loop system’s

trajectory diverges. This is shown in Figure 2.7 by a dashed line, and is particularly clear

when focusing on the first five seconds of the simulation (right).

Example 2.5.2. Consider the nonlinear dynamical system representing a controlled

rigid spacecraft given by

ẋ(t) = −I−1
b XIbx(t) + I−1

b u(t), x(0) = x0, t ≥ 0, (2.77)

where x = [x1, x2, x3]
T represents the angular velocities of the spacecraft with respect to the

body-fixed frame, Ib ∈ R3×3 is an unknown positive definite inertia matrix of the spacecraft,

u(t) = [u1, u2, u3]
T is a control vector with control inputs providing body-fixed torques

about three mutually perpendicular axes defining the body-fixed frame of the spacecraft,

and X denotes the skew-symmetric matrix

X ,




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (2.78)

Note that (2.77) can be written in state space form (2.1) with f(x) = −I−1
b XIbx and
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Figure 2.6: Tracking of the Liénard system with excessive amplitude and rate saturation
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B = I−1
b . Since f(x) is a quadratic function, f(x) can be parameterized as f(x) = Θǹ fǹ (x),

where Θǹ ∈ R3×6 is an unknown matrix and fǹ (x) = [x2
1, x2

2, x2
3, x1x2, x2x3, x3x1]

T.

Next, let F (x) = [xT, fǹ (x)T]T, Br = I3, Λ = I3, Θ∗
r = Ib, and Θ∗ = Ib[Ar, Θǹ ], so that

BΛΘ∗
r = I−1

b I3Ib = I3 = Br,

f(x)−BΛΘ∗F (x) = f(x)− I−1
b Ib[Ar, Θǹ ]F (x) = −Arx,

and hence, (2.4) and (2.5) hold. Now, it follows from Theorem 2.4.1 that the dynamic adap-

tive controller (2.29)–(2.30), (2.41), guarantees that e(t) → 0 as t → ∞ when considering

input amplitude and rate saturation constraints. Specifically,

Ar =




0 1 0
0 0 1
−8 −12 −6


 ,

R1 = I3, and R2 = 0.1I3, so that K and P satisfying (2.6) are given by

P =




0.3738 0.1340 −0.0369
0.1340 0.4401 −0.0359
−0.0369 −0.0359 0.0709


 , K = −10P.

In order to analyze this design it is assumed that

Ib =




20 0 0.9
0 17 0

0.9 0 15


 , Q1 = Q2 = I3,

with initial condition x(0) = [0.4, 0.2, −0.2]T, xr1(0) = x(0), Θ10 =
[

I3 03×6 I3 03×3

]
,

Θ20 =
[ −I3 03×9

]
, and Θ30 = 03×3, and Θr0 = I3. Figure 2.5.2.8 shows the angular

velocities versus time for the case where no saturation constraints are enforced and the case

where umax = 1 and u̇max = 0.5. The corresponding control inputs and their time rate of

change are shown in Figure 2.9 and Figure 2.10 . The control algorithm successfully regulates

the system, in spite of the actuator saturation.
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rated.

Example 2.5.3. In this example, the proposed approach is compared with the µ−modi-

fication technique developed in [33]. Consider the system

ẋ(t) = θ1x(t) + θ2x
3(t)− θ3e

−10(x(t)+1/2)2 − θ4e
−10(x(t)−1/2)2 + θ5 sin(2x(t)) + θ6u(t),

x(0) = x0, t ≥ 0, (2.79)

where θi, i = 1, . . . , 6, are unknown parameters. For the simulation, it is assumed that

Θ , [ θ1 θ2 θ3 θ4 θ5 θ6 ] =
[

1/5 1/100 1 1 1/2 2
]
. The system given by (2.79) is

considered in [33]. Defining f(x) , 1
5
x+ 1

100
x3−e−10(x+1/2)2−e−10(x−1/2)2 + 1

2
sin(2x), B = 2,

and choosing Ar = −6 and Br = 6, it follows that

f(x)−Arx = [ 31/5, 1/100, 1, 1, 1 ][ x, x3, −e−10(x+1/2)2 , −e−10(x−1/2)2 , sin(2x) ]T. (2.80)
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Then, with

Θ∗ =
1

2
[ 31/5, 1/100, 1, 1, 1/2 ], (2.81)

F (x) = [ x, x3, −e−10(x+1/2)2 , −e−10(x−1/2)2 , sin(2x) ]T, (2.82)

and Λ = 1, (2.4) holds. In addition, (2.5) holds with Θ∗
r = 3. Choosing R1 = 5 and R2 = 0.1

yields P = 0.1024 and K = −6.1414. In addition, the gains are chosen as follows, Ku = 400,

Γ1 = 15.5I7, Γ2 = 15.5I6, and Γ3 = Γr = 15.5. The amplitude saturation constraint is

chosen at umax = 0.94. The initial conditions are x0 = u0 = 0 and Θr(0) = 5, while all

other parameter estimates are initially set to zero. The desired trajectory is defined as

xd(t) , 0.7(sin(2t) + sin(0.4t)), t ≥ 0.

When no rate saturation is enforced, the control law from Theorem 2.3.1 yields results

very similar to those obtained by the µ−modification algorithm presented in [33]; see Figure

2.11. The choice of design parameters for the µ−algorithm are identical to those given

in [33], and the obtained results replicate those shown in Figure 1.a of [33]. When enforcing

amplitude saturation only, the two algorithms perform comparably. However, in addition

to amplitude saturation, the proposed framework allows for rate saturation, whereas the

µ−modification framework of [33] does not account for rate saturation. Figure 2.12 shows

the results for umax = 0.94 and u̇max = 3. The trajectory and corresponding control effort are

again compared to those obtained from the µ−modification approach. As seen in Figure 2.12,

the performance of the µ−modification algorithm is significantly degraded by the presence

of the rate saturation constraint, whereas the performance degradation using the proposed

controller is marginal.
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Figure 2.11: State and control input, with umax = 0.94 and no rate saturation
(· · · desired trajectory, −− µ−modification [33], −−− Theorem 2.3.1).
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Figure 2.12: State and control input, with umax = 0.94 and u̇max = 3
(· · · desired trajectory, −− µ−modification [33], −−− Theorem 2.3.1).
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2.6. Conclusion

A direct adaptive nonlinear tracking control framework for multivariable nonlinear un-

certain systems with actuator amplitude and rate saturation constraints was developed. By

appropriately modifying the reference input to the reference system dynamics, the proposed

approach guarantees asymptotic stability of the error system dynamics in the face of actu-

ator amplitude and rate limitation constraints. Three numerical examples were presented

to show the utility of the proposed adaptive tracking scheme. The proposed motion control

algorithm is modular to some extent, in the sense that a general adaptive motion controller

(described in Theorem 2.3.1) is augmented with a saturation algorithm (presented in The-

orem 2.4.1). While the controller designed here is relevant to a wide variety of systems,

following chapters will present more specialized control algorithms, dedicated to particular

types of unmanned vehicles. Even if not explicitly shown (for brevity of exposition), these

controllers will be augmented with the saturation algorithm presented in Theorem 2.4.1.
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Chapter 3

Nonlinear Direct Adaptive Control
Algorithm for Quadrotor Aerial
Vehicles [2]

The work featured in this chapter was presented at the 2006 ASME International Mechanical

Engineering Conference and Exposition ([2]).

3.1. Introduction

Numerous research groups have in recent years focused on control of Unmanned Aerial

Vehicles (UAVs). This family of vehicles can be divided in two distinct classes. Airplanes can

reach considerable speeds, allowing them to cover long distances in a relatively short amount

of time. These vehicles naturally lend themselves well to missions pertaining to surveillance

of extensive areas. They can be distinguished from Vertical Take-Off and Landing (VTOL)

vehicles, as the latter are not able to reach comparable speeds, but are physically able to

hover in the vicinity of an arbitrary entity. They are therefore particularly well suited for

missions involving the monitoring of stationary or slow moving targets.
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Focusing on the VTOL category of aircrafts, another distinction can be made between

classical helicopters, which essentially use a single main rotor for lift, in conjunction with

an auxiliary tail rotor used to adjust the vehicle’s attitude, and quadrotors (see Figure 3.1),

which use a combination of four rotors for both lift and attitude control. Although quadrotors

feature more rotors than classical helicopters, they are of a simpler mechanical design, as the

latter require a tilting mechanism to orient the main rotor to adjust pitch and roll, which

is more easily accomplished, for quadrotors, using differential lift on pairs of rotors. This

simplified mechanical design however puts the onus on the control system to provide levels

of agility and maneuverability comparable to that of classical helicopters.

Controlling the motion of a quadrotor UAV is a chal-

Figure 3.1: Quadrotor helicopter
Banshee.

lenging task. The interaction of the air flows generated

by the four rotors contribute to complex aerodynamic

forces affecting the vehicle’s motion. The system’s dy-

namics are not only nonlinear, but also difficult to satis-

factorily characterize, due to the complexity of the sys-

tem’s aerodynamic properties. In addition, the vehicle’s

propulsion system (i.e. the rotors) can only provide a

finite level of control authority.

Due to the nonlinear nature of the system, linear control techniques are expected to

perform relatively poorly ([81]), as they can not account nor compensate for nonlinear phe-

nomenon affecting the vehicle’s dynamics. In [82], a Proportional Integral Derivative (PID)

controller and a Linear Quadratic (LQ) controller were implemented and proved capable of

regulating the system. However, these designs rely on a linearized version of the vehicle’s
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model. The controllers perform adequately if the vehicle is in a configuration close to that

the model was linearized about, but the performance dramatically deteriorates if the vehicle

state significantly differs from this desired equilibrium. As a result, these controllers have

difficulties in handling perturbations, and seem unlikely to allow for trajectory tracking.

A nonlinear controller should prove better suited to handle and account for nonlinearities

in the vehicle’s model. Indeed, a backstepping technique ([10]) yielded a control algorithm

that, when implemented on the same system as that considered in [82], outperformed the

PID and LQ controllers ([83]). Similarly, in [84, 85], feedback linearization ([77]) and a

different backstepping approach were used and allowed to satisfactorily control the vehicle’s

altitude and yaw.

As previously mentioned, due to the presence of intricate aerodynamic forces, obtaining

a mathematical model satisfactorily describing a quadrotor dynamical behavior is a difficult

task. To handle uncertainties in the model, a robust feedback linearization approach was

used in [63]. The obtained control law was shown to provide some level of robustness to

parameter uncertainties through numerical simulation.

Alternatively, model uncertainties can be handled using adaptive techniques. In [62], a

Single Hidden Layer Neural Network (SHL-NN) is used to compensate for unknown dynamics

and allows implementation of the obtained controller with limited knowledge of the system’s

dynamics. The approach was extended in [64], allowing the control algorithm to satisfy

control input saturation constraints, and successfully implemented on a physical system.

The algorithm is however limited to control of the vehicle’s pitch.

In the previous chapter, a model reference control framework relevant to a wide range of

systems was developed (Section 2.2 and Section 2.3). The reference trajectory was modified
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to ensure that the command remained within the capacities of the actuation system (Section

2.4). This chapter presents an alternative to the control algorithm in Theorem 2.3.1, which

targets autonomous vehicles in general, and quadrotor UAVs in particular. This adaptive

control algorithm solves the attitude and altitude tracking control problem for quadrotor

aerial vehicles and accounts for the effects of actuator dynamics. A direct adaptive control

law is derived, using an integrator backstepping technique ([10]). Section 3.2 details the

considered mathematical model. The main result is presented in Section 3.3, along with a

stability analysis. Results of numerical simulations are presented in Section 3.4 and illustrate

the performance of the controller.

3.2. System Model

Kinematics

Considering motion in six degrees of freedom, the vehicle’s position is described by

η1 ,
[

xN yE z
]T

, (3.1)

where (xN, yE) denotes the position of the vehicle in a two dimensional frame. The xN axis

is arbitrarily chosen to point North, the yE axis East, while the z axis is pointing downward.

The vector η1 is expressed in an Earth Fixed Frame (EFF) of arbitrary origin. The vehicle’s

attitude is described by

η2 ,
[

φ θ ψ
]T

, (3.2)

where φ, θ and ψ denote the vehicle’s roll, pitch, and yaw, respectively. Position and attitude

are grouped in η ,
[

ηT
1 ηT

2

]T
. The body-fixed velocities are introduced with the following
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notation,

ν1 ,
[

u v w
]T

, ν2 ,
[

p q r
]T

, (3.3)

where u, v and w are the forward, lateral and downward velocities, expressed in the Body

Fixed Frame (BFF, [86]), while p, q and r are the angular velocities in roll, pitch and yaw, re-

spectively. Linear and angular velocities are grouped in the velocity vector ν ,
[

νT
1 νT

2

]T
.

The overall state of the vehicle is described by the state vector x ,
[

ηT νT
]T

.

The time derivatives of (3.1) and (3.2) are related to the velocities in (3.3) as follows

([86,87]),

η̇1 = J1(η2)ν1, (3.4)

η̇2 = J2(η2)ν2, (3.5)

where

J1(η2) ,




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


 , (3.6)

J2(η2) ,




1 sφtθ cφtθ
0 cφ −sφ

0 sφ/cθ cφ/cθ


 , (3.7)

and sς , cς , and tς denote the sine, cosine and tangent of the angle ς, respectively. Equations

(3.4) and (3.5) constitute the kinematic equations of the considered system.

Dynamics

The equations characterizing the dynamic behavior of the system are of the form ([87])

ν̇1(t) =
1

m
C1(ν2(t))ν1(t) + fg(φ(t), θ(t)) +

1

m

[
0 0 fz(t)

]T
, ν1(0) = ν10, t > 0, (3.8)

ν̇2(t) = I−1C2(ν2(t))ν2(t) + I−1τ(t), ν2(0) = ν20, (3.9)
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where m is the mass of the vehicle,

I ,




ix 0 0
0 iy 0
0 0 iz


 , (3.10)

is the rotational inertia matrix,

C1(η2) ,




0 r −q
−r 0 p
q −p 0


 , C2(η2) ,




0 −izr iyq
izr 0 −ixp
−iyq ixp 0


 , (3.11)

are Coriolis matrices, fg(φ, θ) , g
[ −sθ cθsφ cθcφ

]T
is the vector of restoring forces, g

is gravity’s acceleration, fz is the thrust provided by the propulsion system, and τ regroups

the torques and moments generated by the propellers.

The dynamical system (3.8)–(3.9) is augmented with the following equation, which repre-

sents the dynamical behavior of the actuation system, describing the effect of a Pulse Width

Modulation (PWM) command on the produced thrust,

˙̃τ(t) = T−1
(
−τ̃(t) + g2

mB̃Λ−1p2(t)
)

, τ̃(0) = τ̃0, t > 0, (3.12)

where T ∈ R4×4 is a diagonal matrix of time constants, T > 0, τ̃ ,
[

fz τT
]T

, gm ∈ R,

B̃ ,




k 0 0 0
0 lk 0 0
0 0 lk 0
0 0 0 d


 , Λ , 1

4




1 0 2 1
1 −2 0 −1
1 0 −2 1
1 2 0 −1


 , (3.13)

where k, l and d ∈ R, and, finally, p2 ∈ R4 regroups the squares of the PWM command

provided to the four motors.
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Reference System

The control algorithm presented in this chapter follows a model reference framework.

The following linear reference system is considered,

ẋr(t) = Arxr(t) + Brrs(t), t ≥ 0, (3.14)

where xr(t) ∈ R2m is the reference state, Ar ∈ R2m×2m, Br ∈ R2m×m are constant matrixes,

and rs(t) ∈ Rm is the reference input.

The reference system considered here is composed of three uncoupled second order oscil-

lators. Each oscillator is characterized by a damping coefficient ζi > 0, i = 1, ..., m, and a

natural frequency w0i > 0, i = 1, ..., m. This choice was mostly motivated by the simplicity

of the corresponding reference dynamics. The dynamics of the ith oscillator are given by

ẍri(t) + 2ζiω0iẋri(t) + ω2
0ixri(t) = ω2

0irsi(t), t ≥ 0, i = 1, ...,m. (3.15)

Thus, the reference system can be rewritten as

[
ẋ1r(t)
ẋ2r(t)

]
=

[
0m Im

−ω2
0 −Arm

] [
x1r(t)
x2r(t)

]
+

[
0m

ω2
0

]
rs(t), t ≥ 0, (3.16)

where

x1r(t) ,
[

xr1(t) ... xrm(t)
]T

, t ≥ 0, (3.17)

x2r(t) ,
[

ẋr1(t) ... ẋrm(t)
]T

, t ≥ 0, (3.18)

and

Arm , diag(2ζ1ω01, ..., 2ζmω0m), ω0 , diag(ω01, ..., ω0m). (3.19)
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Finally, the desired trajectory for the vehicle may be written as

xd(t) =
[

xd1(t) ... xdm(t)
]T

, t ≥ 0. (3.20)

By choosing

rs(t) = ω−2
0 (ẍd(t) + Armẋd(t) + ω2

0xd(t)), t ≥ 0, (3.21)

it follows that

[
ẋ1r(t)− ẋd(t)
ẋ2r(t)− ẍd(t)

]
= Ar

[
x1r(t)− xd(t)
x2r(t)− ẋd(t)

]
, t ≥ 0. (3.22)

Since

Ar ,
[

0m Im

−ω2
0 −Arm

]
, (3.23)

is Hurwitz, it follows that x1r(t) − xd(t) → 0 and x2r(t) − ẋd(t) → 0 as t → ∞, i.e., the

reference state converges to the desired trajectory. The remaining problem is to design a

control command, τ(t) ∈ Rm, such that the tracking error converges to a fixed neighborhood

around the origin. Considering that the mass, Coriolis/centrifugal and damping matrices

of the real system contain unknown parameters and unknown terms, a control signal that

accounts for these uncertainties needs to be considered.

3.3. Direct Adaptive Control Algorithm

This section introduces the considered tracking errors and presents the main result, which

provides a control law solving the considered tracking problem, followed by a proof of sta-

bility.
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Tracking Errors

Define ηs ,
[

ηT
2 kszz

]T
, where ksz ∈ R is a scaling constant. The position of the

reference system is given by xr1 ,
[

xT
ra kszxrz

]T
, where xra ∈ R3 corresponds to three

reference angles, and xrz ∈ R is a reference altitude. The considered position error is of the

form

ep(xr1, ηs) , xr1 − ηs. (3.24)

A backstepping procedure ([10]) yields the following velocity error,

ev(xr2, x, χ1) , J−1
3 (η2)xr2 + χ1 − νs, (3.25)

with νs ,
[

νT
2 kszw

]T
,

J3(η2) ,
[

J2(η2) 03×1

01×3 cφ cθ

]
, (3.26)

where 0i×j denotes the i× j dimensional zero matrix, and χ1 is obtained from the filter

T1χ̇1(t) + χ1(t) = J−1
3 (η2(t))

(
ksz

[
03×1

u(t)sθ(t)− v(t)sφ(t)cθ(t)

]
+ G1ep(t)

)

+
1

2
JT

3 (η2(t))ep(t), χ1(0) = χ10, t > 0, (3.27)

where T1, G1 ∈ R4×4, G1 > 0.

In addition, the acceleration error is of the form

eτ (xr, x, χ2, τ̃ , Θ1) , B̂TΘ1ϕ1(xr3, η2, χ2)− τ̃ , (3.28)

where

B̂ ,




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 , (3.29)
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Θ1 is an estimate of Θ∗
1 ,

[
diag

[
iz − iy, ix − iz, iy − ix, 1

]
M

]
, obtained from the

update law

Θ̇1(t) = ev(t)ϕ
T
1 (t)Γ1 − σ1‖ev(t)‖2Θ1(t), Θ1(0) = Θ10, t > 0, (3.30)

where Γ1 ∈ R8×8, σ1 ∈ R, Γ1, σ1 > 0, and

ϕ1(xr3, η2, χ2) , χ2 +

[
04×1

J−1
3 (η2)xr3

]
. (3.31)

Furthermore, xr3 , ẋr2, and χ2 is obtained from the filter

T2χ̇2(t) + χ2(t) = fev(t) +

[
04×1

JT
3 (η2(t))ep(t) + G2ev(t)

]
, χ2(0) = χ20, t > 0, (3.32)

where T2, G2 ∈ R4×4, G2 > 0,

fev(xr, x, α1) ,




[
qr pr pq pv − qu

]T

kszg

[
03×1

−cφcθ

]
+

(
d
dt

J−1
3 (η2)

)
xr2 + T−1

1 α1


 , (3.33)

and α1 is the filtering error associated with filter (3.27) given by

α1(xr1, x, χ1) , J−1
3 (η2)

(
ksz

[
03×1

usθ − vsφcθ

]T

+ G1ep(xr1, ηs)

)
+

1

2
JT

3 (η2)ep(xr1, ηs)− χ1.

(3.34)

In addition, define

α2(ep, ev, xr, x, χ2, α1) , fev(xr, x, α1) +

[
04×1

J−1
3 (η2)ep + G2ev

]
− χ2, (3.35)

which is the filtering error corresponding to filter (3.32). Finally, define the error vector

e ,
[

eT
p eT

v eT
τ

]T
, which regroups the three tracking errors.

Remark 3.3.1. The above velocity and acceleration errors were obtained following an

integrator backstepping procedure similar to that presented in [10]. The procedure was
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modified to simplify the expression of the final control command. In particular, using a

technique derived from Dynamic Surface Control (DSC, [61]), specific parts of the virtual

control commands ([10]) are replaced by their filtered equivalent (obtained from filters (3.27)

and (3.32)). The resulting derivatives of the virtual control commands, which can be found

in the control law, are significantly simplified.

Control Command

The main result of the chapter is stated in the following Theorem.

Theorem 3.3.1. Consider the dynamical system formed by (3.24), (3.25) and (3.28),

and control law

p2(t) , ΛΘ2(t)ϕ2(t), t > 0, (3.36)

where Θ2 ∈ R4×12 is an estimate of Θ∗
2 , 1

g2
m
B̃−1T

[
T−1 B̂TM−1 I4

]
, Ij is the jth dimen-

sional identity matrix, M ,
[

I 03×1

01×3
m
ksz

]
, and

ϕ2(t) ,
[

τ̃T(t) eT
v (t) ϕ̃T

2 (t)
]T

, t > 0, (3.37)

ϕ̃2(xr, x, Θ1, χ2, α2, rs, eτ ) , B̂T
(
Θ̇1(xr, x, Θ1)ϕ1(xr3, η2, χ2) + Θ1T

−1
2 α2

+Θ12

(
d

dt
J−1

3 (η2)

)
xr3 + Θ12J

−1
3 (η2)ẋr3(xr, rs)

)
+ G3eτ ,(3.38)

where Θ12 is the (1, 4) × (5, 8) block of Θ1, and G3 ∈ R4×4, G3 > 0. Finally, consider the

update law

Θ̇2(t) = eτ (t)ϕ
T
2 (t)Γ2 − σ2‖eτ (t)‖2Θ2(t), Θ2(0) = Θ20, t > 0, (3.39)

where Γ2 ∈ R12×12, σ2 ∈ R, Γ2, σ2 > 0.
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The control command (3.36) with update laws (3.30) and (3.39) guarantees convergence

of (e, Θ̃1, Θ̃2) to the compact set

M,
{
(e, Θ̃1, Θ̃2) : eTGe 6 1

2
ᾱ2

1+‖evM
−1Θ∗

1‖ᾱ2, tr[M−1Θ̃1Γ
−1
1 Θ̃T

1 ] 6 tr[M−1Θ∗
1Γ

−1
1 Θ∗T

1 ],

tr[B̄Θ̃2Γ
−1
2 Θ̃T

2 ] 6 tr[B̄Θ∗
2Γ

−1
2 Θ∗T

2 ]
}

, (3.40)

where Θ̃1 , Θ1 − Θ∗
1, Θ̃2 , Θ2 − Θ∗

2 are estimation errors, G , diag
[

G1 G2 G3

]
, ᾱi is

an upper bound to the filtering error αi, i = 1, 2, and B̄ , g2
mT−1B̃.

Proof . Consider the Lyapunov function candidate

V (e, Θ̃) , 1

2
eTe +

1

2
tr

(
M−1Θ̃1Γ

−1
1 Θ̃T

1

)
+

1

2
tr

(
B̄Θ̃2Γ

−1
2 Θ̃T

2

)
, (3.41)

where Θ̃ ,
[

Θ̃1 Θ̃2

]
. Note that V (e, Θ̃) is C1 for all e ∈ R12 and Θ̃ ∈ R4×20, V (e, Θ̃) > 0

for all (e, Θ̃) ∈ R12 ∪R4×20 \ {0}, and V (0, 0) = 0.

Note that the expression (3.25) of ev allows to write the time derivative of ep as

ėp(e, η2, α1) = −G1ep + J3(η2)(α1 + ev − 1

2
JT

3 (η2)ep). (3.42)

Similarly, (3.28) allows to express the time derivative of ev as

ėv(e, xr, x, χ2, α2, Θ̃1) = −JT
3 (η2)ep −G2ev + M−1(Θ∗

1α2 − Θ̃1ϕ1(xr3, η2, χ2) + B̂eτ ).(3.43)

Finally, the control command (3.36) allows to write the time derivative of eτ as

ėτ (t) = −B̂TM−1ev(t)−G3eτ (t)− B̄Θ̃2(t)ϕ2(t), t > 0. (3.44)

Using (3.42), (3.43) and (3.44), we obtain the following expression for the time derivative of

the Lyapunov function candidate,

V̇ (t)=−eT
p (t)G1ep(t) +eT

p (t)J3(η2(t))(α1(t)− 1

2
JT

3 (η2(t))ep(t))−eT
τ (t)B̄Θ̃2(t)ϕ2(t)

60



+eT
v (t)M−1(Θ∗

1α2(t)− Θ̃1(t)ϕ1(t)) + tr[M−1Θ̃1(t)Γ
−1
1 Θ̇T

1 (t)]

+tr[B̄Θ̃2(t)Γ
−1
2 Θ̇T

2 (t)]− eT
v (t)G2ev(t)−eT

τ (t)G3eτ (t), t > 0, (3.45)

which can be rewritten as

V̇ (t) = −eT(t)Ge(t) +
[

eT
p (t) eT

v (t)
]
P (η2(t))α(t)− 1

2
eT
p (t)J3(η2(t))J

T
3 (η2(t))ep(t)

+tr[M−1Θ̃1(t)(Γ
−1
1 Θ̇T

1 (t)− ϕ1(t)e
T
v (t))] + tr[B̄Θ̃2(t)(Γ

−1
2 Θ̇T

2 (t)− ϕ2(t)e
T
τ (t))],

t > 0, (3.46)

where

P (η2) ,
[

J3(η2) 04×8

04×4 M−1Θ∗
1

]
, α ,

[
αT

1 αT
2

]T
. (3.47)

Using update laws (3.30) and (3.39), (3.46) can be transformed into

V̇ (t) = −eT(t)Ge(t) +
[

eT
p (t) eT

v (t)
]
P (η2(t))α(t)− 1

2
eT
p (t)J3(η2(t))J

T
3 (η2(t))ep(t)

−σ1‖ev(t)‖2tr[M−1Θ̃1(t)Γ
−1
1 ΘT

1 (t)]− σ2‖eτ (t)‖2tr[B̄Θ̃2(t)Γ
−1
2 ΘT

2 (t)], t > 0. (3.48)

Note that, by completion of the square,

eT
p J3(η2)α1 = −1

2
(JT

3 (η2)ep − α1)
T(JT

3 (η2)ep − α1) +
1

2
eT
p J3(η2)J

T
3 (η2)ep +

1

2
‖α1‖2. (3.49)

In addition, for ‖Ti‖ sufficiently small, ‖αi(t)‖ < ᾱi, t > 0, i = 1, 2, and we obtain the

following upper bound on V̇ ,

V̇ (t) 6 σ2

2
‖eτ (t)‖2(tr[B̄Θ∗

2Γ
−1
2 Θ∗T

2 ]− tr[B̄Θ̃2(t)Γ
−1
2 Θ̃2(t)

T]) +
1

2
ᾱ2

1 + ‖ev(t)M
−1Θ∗

1‖ᾱ2

−e(t)TGe(t) +
σ1

2
‖ev(t)‖2(tr[M−1Θ∗

1Γ
−1
1 Θ∗T

1 ]− tr[M−1Θ̃1(t)Γ
−1
1 Θ̃T

1 (t)]), t>0.(3.50)

Hence, V̇ (t), t ≥ 0, is strictly negative outside of M, which guarantees convergence of (e, Θ̃)

to the compact set M ([88]). ¤
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Figure 3.2: Orientation and altitude, actual, desired and reference trajectories.

3.4. Numerical Simulation

The control law (3.36) presented in Section 3.3 was tested through numerical simulations.

The reference system used is of the form given by (3.16), with ω0 = 10.2I4, and Ar4 = 38.8I4.

In addition, the following values were used in the vehicle’s model, m = 6, ix = 5, iy = 5,

iz = 1, gm = 10, l = 0.25, k = 2, d = 0.1, g = 9.81, T = 0.01 I4. The control gains were

chosen to be G1 = G2 = G3 = 10 I4, and the learning coefficients Γ1 = I8, Γ2 = I12.

The chosen initial conditions are as follows, η10 =
[

0 0 10
]T

, η20 = π
8

[
1 1 1

]T
,

ν = 06×1, xr0 = π
16

[
1 1 1 01×9

]T
, and the desired trajectory that xr1 is tracking is of

the form xd(t) =
[

a sin(bt) −a sin(bt) a
2
sin(bt) −10

]T
, t > 0, with a = π

12
, b = 2π

10
. This

reference trajectory has the vehicle elevating in altitude while its orientation is oscillating.

As seen on Figure 3.2, the actual roll (top left), pitch (bottom left) and yaw (top right)
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converge rapidly and smoothly to their corresponding desired trajectory. Similarly, the

altitude converges to its desired value (bottom right).

3.5. Conclusion

This chapter presented a novel direct adaptive controller solving the tracking control

problem for quadrotor UAVs. A stability analysis proving convergence of the tracking errors

to a neighborhood of the origin was provided, and the obtained control law was successfully

tested through numerical simulations. This example illustrates the efficacy of backstepping

and direct adaptive control techniques in solving the tracking problem for unmanned vehicles.

In following chapters, similar techniques are used to solve the tracking problem for alternate

types of autonomous vehicles.
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Chapter 4

Neural-based Adaptive Control of
Autonomous Marine Vehicles [3]

The result presented was the object of a chapter in the book “Current Trends in Nonlinear

Systems and Control”, published by Birkhäuser in 2004 ([3]).

4.1. Introduction

This chapter presents a neural-based MRAC algorithm for autonomous marine vehicles.

The development of control algorithms for marine vehicles is the focus of a number of research

groups across the world, and a variety of results can be found in the literature. Regulation

problems have received significant attention. For instance, three different stabilization al-

gorithms are introduced in [89] for a model of underactuated hovercraft. While providing

interesting results, the control algorithms are designed for a specific model of hovercraft,

whose model is significantly simpler than that of more common marine vehicles, as it does

not contain many of the nonlinear, coupled drag terms that these generally feature.

Tracking controllers can also be found in the literature (see for example [90–96]). In [96],
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the case of a surface ship equipped with a pair of propellers is considered. This controller

showed interesting performance in simulation. However, the desired trajectory is limited to

straight lines and circles. A similar problem is considered in [95], where the authors derive a

controller that uses a state estimator to handle uncertainty on the state measurements. In

[90], a global controller, which accounts for control amplitude saturation effects, is designed.

Then, in [91], a velocity observer is added to the control framework, allowing the algorithm to

operate without velocity measurements. A different type of propulsion system is considered

in [93], which presents a controller for an underactuated AUV equipped with a propeller

and a side thruster. The resulting controller handles constant and slowly varying external

perturbations. Although these results are of interest, the majority of them rely on somewhat

restrictive assumptions, such as that the system’s model is fully known.

Such knowledge assumptions are natural and understandable, as the design of a motion

controller very often relies on a mathematical model of the system to control. However,

in the case of marine vehicles, it can prove rather challenging to obtain a model that will

satisfactorily capture the dynamic behavior of the system. This is due in no small part to

a number of hydrodynamic phenomenons such as skin friction about the vehicle’s hull and

propeller induced cavitation. Such occurrences contribute to a difficult modeling problem, to

such an extent that current modeling techniques appear only partially capable of describing

the dynamics of marine vehicles. Modeling of these can prove particularly challenging when

the vehicle’s velocity is varying, such as when it is following a search pattern or when

its desired path is unsteady. To compensate for the corresponding uncertainties in the

geometric and hydrodynamic parameters characterizing the system’s model, adaptive control

techniques can be used.
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The design of adaptive controllers for marine vehicles has been widely studied. For

example, in [97], a nonlinear model-based adaptive output feedback controller was developed

for a surface vessel. Global asymptotic position tracking was achieved assuming the structure

of the mathematical model was of a particular form, with constant inertia and damping

matrices. This structure was also extended to include a bias term representing drift, currents

and wave load. Simulations were presented, but fell short of demonstrating the controller’s

robustness to unmodeled dynamics.

In the following, we introduce a Neural Network Model Reference Adaptive Controller

(NN-MRAC), whose learning capabilities allow adaptation to the particular system’s model

and operating conditions, thus improving tracking performance of the closed-loop when faced

with limited system information. The controller is dynamic, in that it features time varying

gains, whose update mechanism is derived using Lyapunov stability theory. The resulting

control command, in conjunction with these update laws, guarantees ultimate boundedness

of parameter estimates and tracking errors. The algorithm relies on the use of a Single

Hidden Layer Neural Network (SHL-NN), which allows to solve the tracking problem in

spite of structural uncertainties in the system model.

Section 4.2 presents a model for the class of dynamical systems considered in this chapter.

The main results are introduced in Section 4.3, which presents the two derived control

algorithms along with stability proofs. Concluding remarks are offered in Section 4.3.

4.2. Marine Vehicle Model

This section presents a generic mathematical model of a marine vehicle. In particular, the

model assumes that pitch, roll and heave motions are negligible and feature only the three
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degrees of freedom corresponding to surge, sway and yaw motions. Because of this choice,

it will be assumed that the vehicle’s state space D coincides with R6, although the control

algorithm can be easily extended to higher dimensions. The notation used for the vehicle’s

generalized equations of motion follows [86], but is reduced to motion in the horizontal plane.

The Earth Fixed Frame (EFF), denoted by xe, ye and ze, is chosen so that the vehicle’s center

of gravity is at the origin at time t = 0. The xe and ye axes are directed toward the North

and the East, respectively, while the ze axis points downward in accordance with the right

hand rule. This frame is assumed to be inertial, the acceleration due to the earth’s rotation

being considered negligible. The vehicle’s configuration in the EFF is

η(t) , [xN(t), yE(t), ψ(t)]T, t ≥ 0, (4.1)

where xN(t) ∈ R and yE(t) ∈ R describe the distance traveled along the xe and ye directions

respectively, and ψ(t) ∈ R describes the rotation about the ze axis.

The Body Fixed Frame (BFF) has its origin fixed at the vehicle’s center of gravity, the xb

axis points forward, the yb axis starboard, and the zb axis downward. The vehicle’s velocity

is defined in the BFF as

ν(t) , [u(t), v(t), r(t)]T, t ≥ 0, (4.2)

where u(t) ∈ R and v(t) ∈ R are the components of the absolute velocity in the xb and yb

directions respectively, and r(t) ∈ R describes the angular velocity about the zb axis. The

vectors η(t) and ν(t) are related by the kinematic equation [86],

η̇(t) = J(η(t))ν(t), t ≥ 0, (4.3)

where

J(η) ,




cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


 , (4.4)

67



is the rotation matrix from BFF to EFF.

Using the form introduced in [86] and the previous notation, the marine vehicle’s equation

of motion is given by

Mν̇(t) + C(ν(t))ν(t) + D(ν(t))ν(t) + g(η(t)) = B̂τ(t), t ≥ 0, (4.5)

where M ∈ R3×3 is the mass matrix (including added mass, see [86]), C(ν(t)) ∈ R3×3

contains Coriolis and centripetal terms, D(ν(t)) ∈ R3×3 is the damping matrix, g(η(t)) ∈ R3

is the vector of restoring forces and moments, τ(t) ∈ Rm is the input vector, and B̂ ∈ R3×m

characterizes how the control inputs affect the vehicle’s dynamics.

While the rigid body inertia, Coriolis, centripetal, and gravitational terms are described

in [86], the hydrodynamic terms are much more challenging to model and depend on the

particular geometry of the considered vehicle. In general, even very thorough hydrodynamic

modeling efforts are only able to partially describe the dynamic behavior of a marine vehicle.

In light of these considerations, the considered vehicle dynamics are of the form

ν̇(t) = f(x(t)) + Bτ(t), t ≥ 0, (4.6)

where x , [ ηT νT ]T is the state vector and

B , M−1B̂,

f(x) , −M−1[C(ν) + D(ν)]ν −M−1g(η),

are assumed to be unknown.

In addition, the results in Section 4.3 will make use of the following reference system,

[
ẋ1r(t)
ẋ2r(t)

]
=

[
0m Im

−ω2
0 −Arm

] [
x1r(t)
x2r(t)

]
+

[
0m

ω2
0

]
rs(t), t ≥ 0, (4.7)
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where x1r(t), x2r(t) ∈ Rm, t ≥ 0, and

Arm , diag(2ζ1ω01, ..., 2ζmω0m), ω0 , diag(ω01, ..., ω0m). (4.8)

4.3. Control Command

Theorem 2.2.1 and Theorem 2.2.2 provided control algorithms for a large class of nonlin-

ear systems. In this section, we introduce a pair of control laws which provide comparable

functionalities, but for a more specialized class of systems, whose general form is given by

(4.3) and (4.6).

Theorem 4.3.1. Consider the vehicle dynamics (4.3), (4.6) and the reference dynamics

(4.7). Introduce a tracking error e1(η, x1r) ∈ Rm, where η ∈ Rn and x1r ∈ Rm represent the

vehicle and reference configuration, respectively, such that e1(η(t), x1r(t)) ≡ 0, t ≥ 0, if and

only if perfect tracking is achieved. Assume that the error dynamics can be written in the

form

ė1(t) = Q1(η(t), x1r(t))q2(x(t), xr(t), χ(t)), t ≥ 0, (4.9)

where χ(t) ∈ Rm is an exogenous signal, x(t) ∈ D is the state of the system, xr(t) ∈ R2m

is the reference state, Q1 : Rn × Rm → Rm×m, and q2 : R2n × R2m × Rm → Rm is such

that ∂q2(x,xr,χ)
∂ν

B ∈ Rm×m is invertible. In addition, assume there exists a Lyapunov function

candidate Vs(e1) such that V ′
s (e1) = 0 if and only if e1 = 0. Next, consider the control

command

τ ∗(x, xr, χ, rs) = −Λ [H(x, xr, χ)w(x, xr, χ, rs) + δ∗(x)] , (4.10)

where τ ∗(x, xr, χ, rs) ∈ Rm, Λ ∈ Rm×m is invertible, and

H(x, xr, χ) ,
(

∂q2(x, xr, χ)

∂ν
BΛ

)−1

∈ Rm×m, (4.11)
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w(x, xr, χ, rs) , ∂q2(x, xr, χ)

∂η
J(η)ν +

∂q2(x, xr, χ)

∂xr

ẋr +
∂q2(x, xr, χ)

∂χ
χ̇− q̇2des(x, xr)

+e2(x, xr, χ) + G−1
2 QT

1 (η, x1r)V
′T
s (e1) ∈ Rm, (4.12)

δ∗(x) ,
(

∂q2(x, xr, χ)

∂ν
BΛ

)−1
∂q2(x, xr, χ)

∂ν
f(x) ∈ Rm, (4.13)

with

q2des(η, x1r) , −α(η, x1r)G1Q
T
1 (η, x1r)V

′T
s (e1) ∈ Rm, (4.14)

e2(x, xr, χ) , q2(x, xr, χ)− q2des(η, x1r) ∈ Rm, (4.15)

where α : Rn × Rm → R+, G1 ∈ Rm×m is positive definite. Then the zero solution of the

error dynamics associated with the closed loop given by (4.3), (4.6), (4.7), and (4.10) is

asymptotically stable.

Proof . Using (4.9), the derivative of the Lyapunov function candidate Vs(e1) is given

by

V̇s(t) = V ′T
s (e1(t))Q1(η(t), x1r(t))q2(x(t), xr(t), χ(t)), t ≥ 0, (4.16)

Using a backstepping approach derived from that presented in [10], we will use q2(x, xr, χ)

as a virtual control command. Ideally q2(x, xr, χ) would be equal to q2des(η, x1r) defined by

(4.14), such that

V̇s(t) |q2=q2des
= −α(η(t), x1r(t))V

′
s (e1(t))Q1(η(t), x1r(t))G1Q

T
1 (η(t), x1r(t))V

′T
s (e1(t)), t ≥ 0,

(4.17)

which is negative definite. Next, consider a new Lyapunov function candidate,

V ∗(e1, e2) = Vs(e1) +
1

2
eT
2 G2e2, (4.18)
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where G2 ∈ Rm×m is positive definite and e2 is defined by (4.15). The time derivative of

(4.18) is of the form

V̇ ∗(t) = V̇s(e1(t)) + eT
2 (t)G2ė2(t), t ≥ 0, (4.19)

Next, taking the derivative of (4.15) and substituting the kinematic and dynamic equations,

(4.3) and (4.6), we find the error dynamics to be of the form

ė2(x, xr, χ, rs, τ
∗) =

∂q2(x, xr, χ)

∂η
J(η)ν +

∂q2(x, xr, χ)

∂ν
(f(x) + Bτ ∗) +

∂q2(x, xr, χ)

∂xr

ẋr

+
∂q2(x, xr, χ)

∂χ
χ̇− q̇2des(x, xr), (4.20)

which, after substituting the control input (4.10), provides the following closed loop error

dynamics

ė1(x, xr, χ) = Q1(η, x1r)q2(x, xr, χ), (4.21)

ė2(x, xr, χ) = −e2(x, xr, χ)−G−1
2 QT

1 (η, x1r)V
′T
s (e1). (4.22)

Therefore, (4.19) becomes

V̇ ∗(t) = −α(η(t), x1r(t))V
′
s (e1(t))Q1(η(t), x1r(t))G1Q

T
1(η(t), x1r(t))V

′T
s (e1(t))− eT

2(t)G2e2(t),

t ≥ 0, (4.23)

which is negative definite, proving asymptotic stability of the closed loop error dynamics.

This concludes this proof. ¤

Remark 4.3.1. The matrix H(·) and function δ∗(x) in (4.10) are unknown, while the

vector w(x, xr, χ, rs) is a known function of the states and reference input.
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The following result relies on the assumption that ∂q2(x,xr,χ)
∂ν

is constant, and that Λ

is constructed such that H(x, xr, χ) = Θ∗ ∈ Rm×m is positive definite for all (x, xr, χ) ∈
R2n × R2m × Rm. Since Θ∗ and δ∗(x) from Theorem 4.3.1 are unknown, their estimates

need to be introduced. In particular, Θ∗ in (4.10) will be replaced by an estimate Θ(t),

t ≥ 0. Following the approach described in [98], the vector function δ∗(x) is approximated

by the output of a linearly parameterized neural network W (t)σ(x(t)), t ≥ 0, with maximum

approximation error ε∗ > 0.

Theorem 4.3.2. Consider the system, tracking error and virtual command described

in Theorem 4.3.1. Assume that ∂q2(x,xr,χ)
∂ν

is constant, and that Λ is constructed such that

H(x, xr, χ) =
(

∂q2(x,xr,χ)
∂ν

BΛ
)−1

= Θ∗ ∈ Rm×m is positive definite for all (x, xr, χ) ∈ R2n ×
R2m ×Rm. Then, consider the following control law,

τ(t) = −Λ [Θ(t)w(x(t), xr(t), χ(t), rs(t)) + W (t)σ(x(t))] , t ≥ 0, (4.24)

where Θ(t) ∈ Rm×m and W (t) ∈ Rm×q, t ≥ 0, are parameter estimates, and σ(x) ∈ Rq,

x ∈ Rn, is such that there exists W ∗ ∈ Rm×q for which W ∗σ(x) = δ∗(x) − ε(x), with

‖ε(x)‖ < ε∗ for all x ∈ R2n. Furthermore, let the parameter update laws be

Θ̇(t) = G2e2(t)w
T(x(t), xr(t), χ(t), rs(t))Γ1 − σ1Θ(t), Θ(0) = Θ0, t ≥ 0, (4.25)

Ẇ (t) = G2e2(t)σ
T(x(t))Γ2 − σ2W (t), W (0) = W0, (4.26)

where Γ1 ∈ Rm×m and Γ2 ∈ Rq×q are positive definite σ1 > 0, and σ2 > 0. Then the tracking

error and the parameter estimates are ultimately bounded with a domain of convergence

defined as

Mc , {(e1, e2, Θ̃, W̃ ) : V (e1, e2, Θ̃, W̃ ) ≤ ς}, (4.27)
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where Θ̃(t) , Θ(t)−Θ∗, and W̃ (t) , W (t)−W ∗, t ≥ 0. In addition,

V (e1, e2, Θ̃, W̃ ) = Vs(e1)+
1

2
eT
2 G2e2+

1

2
tr[Θ∗−1BΛΘ̃Γ−1

1 Θ̃T]+
1

2
tr[Θ∗−1BΛW̃Γ−1

2 W̃T], (4.28)

and

ς , max
(e1,e2,Θ̃,W̃ )∈M

V (e1, e2, Θ̃, W̃ ), (4.29)

M , {(e1, e2, Θ̃, W̃ ) : tr[BΛ1W̃Γ−1
2 W̃T] ≤ tr[BΛ1W

∗Γ−1
2 W ∗T],

tr[BΛ1Θ̃Γ−1
1 Θ̃T] ≤ tr[BΛ1Θ

∗Γ−1
1 Θ∗T],

∥∥∥G
1
2
2 e2(x, xr, χ)

∥∥∥ ≤
∥∥∥∥G

1
2
2

∂q2(x, xr, χ)

∂ν
BΛ1

∥∥∥∥ ε∗}. (4.30)

Proof . The tracking error e1(t), t ≥ 0, is obtained from (4.9). In addition, e2(t), t ≥ 0,

is obtained from

ė2(x, xr, χ, rs, τ
∗) =

∂q2(x, xr, χ)

∂η
J(η)ν +

∂q2(x, xr, χ)

∂ν
(f(x) + Bτ) +

∂q2(x, xr, χ)

∂xr

ẋr

+
∂q2(x, xr, χ)

∂χ
χ̇− q̇2des(x, xr). (4.31)

Substituting (4.24) into (4.31) and using the fact that H(x, xr, χ) = Θ∗ allows to rewrite

(4.31) as

ė2(x, xr, χ, rs, Θ,W ) =
∂q2(x, xr, χ)

∂η
J(η)ν +

∂q2(x, xr, χ)

∂ν
f(x) +

∂q2(x, xr, χ)

∂xr

ẋr − q̇2des(x, xr)

+
∂q2(x, xr, χ)

∂χ
χ̇−Θ∗−1 [Θw(x, xr, χ, rs) + Wσ(x)] . (4.32)

Note that the assumption that ∂q2(x,xr,χ)
∂ν

is constant leads to a constant Θ∗, which is key in

obtaining a control law that is linear in the unknown parameters, thus allowing application

of the certainty equivalence principle. Substituting (4.12) and (4.13) into (4.32), we obtain

ė2(x, xr, χ, Θ̃, W̃ , rs)=−e2(x, xr, χ)−G−1
2 QT

1 (η, x1r)V
′T
s (e1)−Θ∗−1γ(x, xr, χ, Θ̃, W̃ , rs), (4.33)
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where

γ(x, xr, χ, Θ̃, W̃ , rs) , Θ̃w(x, xr, χ, rs) + W̃σ(x)− ε(x). (4.34)

To show ultimate boundedness of the closed loop error dynamics given by (4.9) and

(4.33), the Lyapunov function candidate (4.28) is considered. The corresponding Lyapunov

derivative is given by

V̇ (t) = −α(η(t), x1r(t))V
′
s (e1(t))Q1(η(t), x1r(t))G1Q

T
1(η(t), x1r(t))V

′T
s (e1(t))− eT

2(t)G2e2(t)

+eT
2 (t)G2Θ

∗−1ε(x(t)) + tr[Θ∗−1Θ̃(t)(Γ−1
1 Θ̇T(t)− w(x(t), xr(t), χ(t), rs(t))e

T
2 (t)G2)]

+tr[Θ∗−1W̃ (t)(Γ−1
2 ẆT(t)− σ(x(t))eT

2 (t)G2)], t ≥ 0.

Finally, the update laws (4.25) and (4.26) provide the following bound for the Lyapunov

derivative,

V̇ (t)≤−σ1

2
tr[Θ∗−1Θ̃(t)Γ−1

1 Θ̃T(t)] +
σ1

2
tr[Γ−1

1 Θ∗T]− σ2

2
tr[Θ∗−1W̃ (t)Γ−1

2 W̃T(t)]

+
σ2

2
tr[Θ∗−1W ∗Γ−1

2 W ∗T]−
∥∥∥G

1
2
2 e2(t)

∥∥∥ (
∥∥∥G

1
2
2 e2(x, xr, χ)

∥∥∥−
∥∥∥∥G

1
2
2

∂q2(x, xr, χ)

∂ν
BΛ1

∥∥∥∥ ε∗).

(4.35)

It follows that the solution of (4.25), (4.26), (4.9), and (4.33) is ultimately bounded and

converges to the compact set Mc ([88]). ¤

Remark 4.3.2. The assumptions taken ensure that one can always construct a design

parameter Λ such that Θ∗ is positive definite.

Remark 4.3.3. The condition that ∂q2(x,xr,χ)
∂ν

be constant is satisfied for a choice of q2(·)
that is linearly dependent on the system’s velocity. In that sense, q2(·) is itself a velocity,
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which is consistent with the fact that the tracking error e2(t), t ≥ 0, whose definition is the

difference between q2(·) and its desired value, is a velocity error. For instance, consider the

case of a fully actuated vehicle, with the generic position error e1(t) = xr1(t) − η(t), t ≥ 0.

It follows from (4.3) and (4.7), that ė1(t) = xr2(t)− J(ψ(t))ν(t), t ≥ 0. Hence, by choosing

Q1(t) = J(ψ(t)), q2(t) = JT(ψ(t))xr2(t)− ν(t), t ≥ 0, (4.36)

it directly follows that ∂q2(x,xr,χ)
∂ν

= −I3.

Remark 4.3.4. Note that, if a particular choice of σ(x) is known, for which there exists

W ∗ such that δ∗(x) = W ∗σ(x), then σ1 and σ2 can be chosen equal to zero and LaSalle-

Yoshizawa theorem can be used to conclude Lyapunov stability of the tracking error dynam-

ics’ zero solution, asymptotic convergence of these errors to zero, and boundedness of the

estimates Θ(t) and W (t), t ≥ 0.

Remark 4.3.5. Note that requiring that ∂q2(x,xr,χ)
∂ν

be constant leads to a command that

is linear in the uncertain parameters. This linearity facilitates proof of Theorem 4.3.2, which

results from the application of the equivalence certainty principle. For some specific choices

of tracking errors however, it becomes difficult to ensure that ∂q2(x,xr,χ)
∂ν

is indeed constant.

As will be shown in a later chapter, the flexibility provided by the inclusion of the exogenous

signal χ(t), t ≥ 0, can be used to judiciously alter the choice of tracking errors, resulting in

a command linear in the uncertain parameters.

4.4. Conclusion

A neural network based MRAC algorithm was developed. Lyapunov stability theory was

used to demonstrate that parameter estimates and tracking errors are ultimately bounded.
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Use of a SHL-NN allowed derivation of a control algorithm in spite of structural uncertain-

ties and thus severely limited knowledge of the system’s dynamics. The presented control

algorithm is relevant to a wide variety of marine vehicles, such as surface crafts and un-

derwater vehicles. In addition, it was designed to accommodate both fully actuated and

underactuated vehicles with stable internal dynamics. Application of the presented control

framework to underactuated vehicles with unstable internal dynamics, although possible, is

not necessarily straightforward, and will be addressed in the next chapter.
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Chapter 5

Nonlinear Control of Non-Minimum
Phase Autonomous Marine
Vehicles [4, 5]

The following results were presented at the 4th Asian Control Conference in 2002 ([4]) and

at the 2003 IEEE Conference on Decision and Control ([5]).

5.1. Introduction

As mentioned in the previous chapter, research on motion control of AMVs has received

considerable attention from the community over the past decades ([92–96,99–103]). However,

the tracking problem for one of the most commonly encountered class of marine vehicles (i.e.

marine vehicles equipped with a fixed thruster and a rudder, [104]) is rarely considered.

Notable exceptions include [100], which contains simplifying assumptions removing relevant

dynamic behaviors.

The lack of a systematic study of this particular problem can be partially explained

by the difficulty in solving the full motion control problem for an AMV equipped with
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a fixed thruster and a rudder. Typically, the design of a motion controller relies on a

mathematical model of the system to control. However, in the case of marine vehicles,

obtaining a model that will satisfactorily capture the dynamic behavior of the system is

fairly difficult. Another issue arises from the fact that the magnitude of the control effort

generated by propulsion systems on AMVs is not only finite, but rather limited. Finally,

considering motion in the horizontal plane exclusively, it is apparent that the considered class

of AMVs feature three degrees of freedom (surge, sway and yaw), while the aforementioned

propulsion system only provides two independent control inputs (surge force and either sway

force or yawing moment). Hence, having one fewer independent control input than degree

of freedom, the system is underactuated. Furthermore, the zero-dynamics ([105]) implied

by this underactuation have proven to be intrinsically unstable ([5, 93]). This means that if

the control approach is not carefully chosen, the behavior of the zero-dynamics might not

be acceptable and the obtained controller will be of no practical use. A system featuring an

unstable zero-dynamics is referred to as a non-minimum phase system ([106]).

Nevertheless, a number of control algorithms designed for underactuated marine vehicles

can be found in the literature (for instance, [92–96]). In [92], a surface ship equipped with

a pair of propellers is considered, and external disturbances such as ocean currents, are

accounted for. In [93], a controller for an underactuated AMV equipped with a propeller

and a side thruster is designed. The corresponding vehicle’s model is fairly similar to that of

a vehicle with a thruster and rudder, as it includes a coupling between sway force and yawing

moment. The controller also handles constant and slow varying external perturbations.

In [103], the authors present a control framework relying on a particular error variable

corresponding to the angle between the vehicle’s longitudinal axis and the direction of the

78



vehicle’s desired position, noted β. The resulting controller solves the regulation problem

for an underactuated AMV. The introduction of this relative orientation is progressively

spreading through the literature. It can be found in [66] and, more recently, in [107]. The

control algorithm presented in this chapter builds upon the approach introduced in [103],

using the same error variable β, but extending the problem to trajectory tracking, and

dealing with unstable zero-dynamics. The control of underactuated marine vehicles with

an unstable zero-dynamics (or underactuated non-minimum phase marine vehicles) is rarely

treated. This control problem is considered in [66], however, the result in [66] is limited to

way-point maneuvering and requires full knowledge of the system’s model.

To solve the trajectory tracking problem for the considered class of systems, a back-

stepping procedure is used ([10]). As mentioned previously, special care has to be taken

in choosing the tracking errors since this choice affects the stability properties of the in-

ternal dynamics. More specifically, an inadequate choice of tracking errors can lead to an

unstable behavior of the internal dynamics ([93, 104]). To address this issue, the presented

approach builds upon that introduced in [103], following a control strategy similar to that

presented in the previous chapter. In particular, the tracking errors are chosen as the dis-

tance between current and desired position, and relative direction of this desired position.

The resulting behavior of the internal dynamics is investigated by assessing the stability of

the zero-dynamics.

This chapter introduces a nonlinear control algorithm solving the tracking problem for

the considered class of non-minimum phase marine vehicles. In Section 5.2, a control law

guaranteeing good tracking performance for the considered error variables, assuming full

knowledge of the system’s model, is derived. The control algorithm is derived using a back-
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stepping procedure ([10]). The stability of the resulting zero-dynamics is studied in Section

5.3. Section 5.4 concludes this chapter.

5.2. Nonlinear Control Algorithm

The control algorithm in Chapter 4 relied on a neural network to compensate for the

system’s dynamics. Accordingly, the specific form of M , C(ν), D(ν) and g(η) in (4.5) does

not directly affect the expression of the control laws in Theorem 4.3.1 and Theorem 4.3.2. In

this chapter however, the aim is to develop a nonlinear control algorithm, the form of which

depends upon that of the various terms in (4.5). In the following, it will be assumed that

([86])

M =




m1 0 0
0 m2 m23

0 m23 m3


 , D(ν) =




dl1 + dq1|u| 0 0
0 dl2 + dq2|v| dl23 + dq23|r|
0 dl23 + dq23|v| dl3 + dq3|r|


 , (5.1)

C(ν) =




0 0 −m2v −m23r
0 0 m1u

m2v + m23r −m1u 0


 , (5.2)

where mi, dli, dqi, i = 1, 2, 3, m23, dl23 and dq23 are uncertain constant parameters. In

addition, the vector of restoring forces and moments will be assumed to be the three-by-one

zero matrix 03×1, and the input matrix B̂ is given by

B̂ ,




1 0
0 −1/l
0 1


 , (5.3)

where l > 0 represents the arm of the sway force generated by the rudder with respect to the

center of gravity of the vehicle. Finally, the control input is τ(t) ,
[

τ1(t) τ2(t)
]T ∈ R2,

t ≥ 0.

The dynamics (4.5) can be expressed in a more compact form by factorizing the uncertain
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parameters,

ν̇(t) = Θ∗
1ϕ1(ν(t)) + Θ∗

2τ(t), ν(0) = ν0, t ≥ 0, (5.4)

with

Θ∗
1 , −M−1




dl1 0 0 dq1 0 0 0 0 −m2 −m23

0 dl2 dl23 0 dq2 dq23 0 m1 0 0
0 dl23 dl3 0 dq23 dq3 m2 −m1 m23 0 0


 , (5.5)

Θ∗
2 , M−1B̂ =




θ∗21 0
0 θ∗22

0 θ∗23


 , ϕ1(ν) ,

[
νT |u|u |v|v |r|r uv ur vr r2

]T
, (5.6)

Consider the following tracking errors,

ed(η, xr1) , ‖xr1 −
[

x y
]T ‖, (5.7)

β(η, xr1) , atan2(xr12 − y, xr11 − x)− ψ, (5.8)

where xr11 and xr12 are the components of xr1, so that xr1 ,
[

xr11 xr12

]T
, atan2(α1, α2) ,

arg(α1 + iα2), for all (α1, α2) ∈ R2 \ (0, 0), and arg(z) is the argument of z ∈ C, such that

arg(z) = ϕ whenever z = |z|eiϕ, with ϕ ∈ (−π, π] and i ,
√−1.

The above errors are of particular geometric significance. More specifically, ed(·) ∈ R+

represents the distance between system and reference position, while β(·) ∈ (−π, π] cor-

responds to the angle from the longitudinal, u−axis of the body fixed frame to the direc-

tion from system to the reference position. Note that, when ed(·) = 0, β(·) is undefined

(atan2(α1, α2) is undefined for α1 = α2 = 0).

The control objective is bounded-error tracking, or, more specifically, (ed(t), β(t)) →
(a, 0) as t →∞, with a > 0. These errors are grouped in e1(η, xr1) , [ed(η, xr1), β(η, xr1) ]T,

whose time derivative, following the notations used for Theorem 4.3.1, can be written as

ė1(t) = Q1(e1(t))q2(η(t), ν(t), xr(t)), e1(0) = e1(η0, xr10), t ≥ 0, (5.9)
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where

Q1(e1) ,
[

1 0
0 1/ed

]
JT

s (β), q2(η, ν, xr) , JT
s (ψ)xr2 + Be(e1(η, xr1))ν, (5.10)

with

Js(·) ,
[

cos(·) − sin(·)
sin(·) cos(·)

]
, Be(e1) ,

[ −1 0 ed sin(β)
0 −1 −ed cos(β)

]
. (5.11)

Now consider the following Lyapunov function candidate,

Vs(e1) , ed sin2(β/2) +
1

2
(ed − a)2. (5.12)

Note that Vs(e1) = 0 if and only if ed = a and β = 0. In addition, it follows from (4.14) and

(5.12), choosing α(η, xr1) = ed(η, xr1) and G1 = g1I2, with g1 > 0, that

q2des(e1) = −edJs(β)G1γ(e1), (5.13)

where γ(e1) ,
[
sin2(β/2) + ed − a sin(β)/2

]T
. The time derivative of q2des(t), t ≥ 0, is of

the form

q̇2des(t) = JsG1(β(t))(

[
ed(t) sin(β(t))/2

0 cos(β(t))/2

]
+

[
γ(e1(t)) G̃γ(e1(t))

]
)JT

s (β(t))(e2(t)

−ed(t)Js(β(t))G1γ(e1(t))), t ≥ 0, (5.14)

with

S ,
[

0 1
−1 0

]
, G̃ , G−1

1 STG1, e2(t) = q2(η(t), ν(t), xr(t))− q2des(e1(t)), t ≥ 0. (5.15)

The velocity error dynamics is of the form

ė2(t) = JT
s (ψ(t))(−ω2

0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2
0rs(t)) + r(t)Sq2(t)− q̇2des(e1(t), e2(t))

+Be(e1(t))Θ
∗
1ϕ1(ν(t)) + Be(e1(t))Θ

∗
2τ(t), e2(0) = e2(η0, ν0, xr0), t ≥ 0. (5.16)
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Finally, choosing Λ = I2 and χ(t) ≡ 0, t ≥ 0, it follows from Theorem 4.3.1 that the control

command

τ ∗(t)=−(Be(e1(t))Θ
∗
2)
−1

(
JT

s (ψ(t))(−ω2
0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2

0rs(t)) + r(t)Sq2(t)

−q̇2des(e1(t), e2(t)) + e2(t) + G−1
2 Js(β(t))γ(e1(t)) + Be(e1(t))Θ

∗
1ϕ1(ν(t))

)
, t≥0,(5.17)

guarantees that the solution
[

ed(t) β(t)
]T ≡ [

a 0
]T

, e2(t) ≡ 0, t ≥ 0, to (5.9) and

(5.16), is asymptotically stable.

5.3. Internal Dynamics Analysis

The control law presented in the previous section is such that the tracking error e1(η, xr1)

asymptotically converges to
[

a 0
]T

. However, the stability analysis which led to the proof

of Theorem 4.3.1 does not account for the behavior of the internal dynamics, which is essential

in assessing the merit of the control approach.

Zero-dynamics

Consider the following change of coordinates,

Φ(s) =




ξ1
1(s)

ξ1
2(s)

ξ2
1(s)

ξ2
2(s)

ς1(s)
ς2(s)




,




ed(s)
Lfed(s)

β(s)
Lfβ(s)

ψ
m4v + m5r




, (5.18)

where s , (η, ν, xr), f(s) ,
[

νTJT(η) ϕT
1 (ν)Θ∗T

1 xT
r AT

r

]T
, m4 , lm2 + m23, m5 ,

m3 + lm23, and Lfh(s) , h′(s)f(s) denotes the Lie derivative of h(s) with respect to f(s).

Note that Φ(·) maps the six states (x, y, ψ, u, v, r) into six new states (ξ1
1 , ξ

1
2 , ξ

2
1 , ξ

2
2 , ς1, ς2),
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while xr ∈ R4, for the purpose of this analysis, represents an exogenous signal. Computing

Φ−1(·), it follows that

η(ξ, ς, xr) =
[

xr11 − ξ1
1 cos(ξ2

1 − ς1) xr12 − ξ1
1 sin(ξ2

1 − ς1) ς1
]T

, (5.19)

ν(ξ, ς, xr) =
1

m6(ξ)



−m6(ξ) m4ξ

1
1 sin(ξ2

1) ξ1
1 sin(ξ2

1)
0 −m5 −ξ1

1 cos(ξ2
1)

0 m4 1







ξ1
2 cos(ξ2

1)− ξ1
1ξ

2
2 sin(ξ2

1)− xr21 cos(ς1)− xr22 sin(ς1)
ξ1
2 sin(ξ2

1) + ξ1
1ξ

2
2 cos(ξ2

1) + xr21 sin(ς1)− xr22 cos(ς1)
ς2


, (5.20)

where ξ ,
[

ξ1
1 ξ1

2 ξ2
1 ξ2

2

]T
, ς ,

[
ς1 ς2

]T
, and m6(ξ) , m5 −m4ξ

1
1 cos(ξ2

1).

Next, let X0 , {(η, ν) : ξ = ξ0} ⊂ R6, where ξ0 ,
[

a 0 0 0
]T

. Note that when

(η, ν) ∈ X0, Φ−1 : (ξ, ς, xr) → (η, ν, xr) is well defined if ξ1
1 6= 0 and a 6= m5/m4. The

zero-dynamics is defined as the dynamics of the uncontrolled states ςi(t), t ≥ 0, i = 1, 2,

when ξ(t) ≡ ξ0, t ≥ 0, and it is given by

ς̇1(t)=
1

m5 − am4

(
ς2(t) + m4

[
sin(ς1(t)) − cos(ς1(t))

]
x2r(t)

)
, ς1(0) = ψ0, t ≥ 0, (5.21)

ς̇2(t)=[ l 1 ] (D0(ξ0, ς(t))+C0(ξ0, ς(t))) [ v(ξ0, ς(t)) r(ξ0, ς(t)) ]T, ς2(0) = m4v0 + m5r0,(5.22)

where

D0(ξ0, ς),
[

dl2 + dq2|v(ξ0, ς)| dl23 + dq23|r(ξ0, ς)|
dl23 + dq23|v(ξ0, ς)| dl3 + dq3|r(ξ0, ς)|

]
, C0(ξ0, ς),u(ξ0, ς)

[
0 m1

m2 −m1 m23

]
. (5.23)

To illustrate the effect of the maximum allowable error a > 0 on the zero-dynamics, consider

a simple reference trajectory with a constant xr2. The motion of a marine vehicle along

a straight line is a control problem of importance, especially in the context of way-point

maneuvering ([66]). The equilibrium configuration of interest for the zero-dynamics is the

following,

ς1,eq = atan2 (xr22, xr21) , (5.24)
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ς2,eq = 0, (5.25)

as it corresponds to the vehicle traveling along the straight desired trajectory with a pos-

itive velocity u(t), t ≥ 0. The corresponding linearization of (5.21) and (5.22) about that

equilibrium configuration yields

[
ς̇1(t)
ς̇2(t)

]
=

[ ∂ς̇1
∂ς1
|eq ∂ς̇1

∂ς2
|eq

∂ς̇2
∂ς1
|eq ∂ς̇2

∂ς2
|eq

] [
ς1(t)
ς2(t)

]
, ς(0) =

[
ς1(0) ς1(0)

]T
, t ≥ 0, (5.26)

where

∂ς̇1
∂ς1

∣∣∣∣
eq

=
m4ue

m5−am4

,
∂ς̇1
∂ς2

∣∣∣∣
eq

=
1

m5−am4

, (5.27)

∂ς̇2
∂ς1

∣∣∣∣
eq

=
ue

m5−am4

(
m4(ldl3+dl23)−m5(ldl2+dl23)+ue(m4(lm1+m23)−m5(m2−m1))

)
, (5.28)

∂ς̇2
∂ς2

∣∣∣∣
eq

=
1

m5−am4

(
ldl3 + dl23 − a(ldl2 + dl23) + ue (m1(l + a) + m23 − am2)

)
, (5.29)

and ue ,
√

x2
r21 + x2

r22.

Minimum Value of a

Studying the stability of the linear system (5.26), the range of values for a that would

guarantee stability of the considered equilibrium point as a function of the various constant

parameters characterizing the system’s dynamics can be obtained. However, given the com-

plexity of the obtained expressions, the presented analysis will be limited to a numerical

estimation of the range of a using the values of the aforementioned constant parameters cor-

responding to the Silent Quick Unmanned Intelligent Diver 2 (SQUID-2, [104]). The values

used are the following,

M =




53.1748 0 0
0 87.4858 12.254
0 12.254 7.3346


 , (5.30)
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Figure 5.1: Eigenvalues of the Jacobian matrix in (5.26) versus a.

D(ν) =




6.855 + 8.246|u| 0 0
0 25.094 + 48.329|v| 10.668 + 14.649|r|
0 10.668 + 14.649|v| 4.002 + 7.331|r|


 , (5.31)

and l = 0.5. In addition, choose ue = 1.

As seen in Figure 5.1, the eigenvalues of the state matrix display a singular behavior at

as = m5

m4
' 0.1964. For a < as, both eigenvalues λ1 and λ2 are positive and the considered

equilibrium point is unstable. However, for a > as, the eigenvalues are strictly negative. As

emphasized earlier, the introduction of the maximum allowable position error a allowed to

stabilize the zero-dynamics. Indeed, without this position error, the zero-dynamics equilib-

rium configuration of interest is unstable, while it becomes stable for a > as.
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5.4. Conclusion

The presented result addresses trajectory tracking in the horizontal plane for marine

vehicles equipped with a fixed thruster and a rudder, or, equivalently, a vectored thruster.

Such vehicles are characterized by a non-minimum phase type behavior. To overcome the

unstable nature of the system’s internal dynamics, special tracking errors were selected.

A nonlinear control algorithm which guarantees global asymptotic stability of the tracking

errors was introduced. Then, the impact of the chosen control strategy on the internal

dynamics was assessed. It was shown that the proposed control framework, through design

of a constant design parameter, guarantees local stability of the zero-dynamics for a simple

maneuver.
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Chapter 6

Adaptive Control of Non-Minimum
Phase Autonomous Marine
Vehicles [4–6]

The results featured in this chapter were presented at the 4th Asian Control Conference in

2002 ([4]), at the 2003 IEEE Conference on Decision and Control ([5]), and were the object

of an article to appear in the International Journal of Adaptive Control and Signal Processing

([6]).

6.1. Introduction

The mathematical model of the system under consideration in this chapter remains the

same as in Chapter 5. However, while the algorithm presented in the previous chapter

assumed knowledge of the constant parameters characterizing the vehicle’s model, the con-

trollers introduced in this chapter will relax that assumption, using adaptive techniques.

This additional challenge can be handled using the result from Theorem 4.3.2, however, the

controller obtained in Chapter 5 depends nonlinearly on some of the unknown parameters,
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and consequently, the certainty equivalence principle cannot be applied to derive a direct

adaptive control law. This nonlinear parameterization is a direct result of the choice of track-

ing errors (5.7) and (5.8), which lead to a non-constant ∂q2(x,xr,χ)
∂ν

. This situation illustrates

how critical the choice of tracking errors is when considering an adaptive control problem.

To allow derivation of a direct adaptive controller, Section 6.2 alters the control law

from Section 5.2 in such a way that it becomes linear in the uncertain parameters. The

resulting adaptive controller shows interesting performance in simulation. Alternatively,

this nonlinear parametrization can be addressed using Dynamic Surface Control (DSC, [61],

also see [5]). In this case, the tracking errors are modified, using filters designed in addition

to the backstepping procedure. These filters not only simplify the expressions involved in

the derivations, but also lead to a command linear in the uncertain parameters. Section 6.3

presents a step by step derivation of the control algorithm. Results of numerical simulations

illustrating the performance of this particular adaptive controller are presented.

In the DSC case, proof of stability relies on an elaborate design of the time constant ma-

trices of such filters (design omitted in Section 6.3, see [61]), to an extent that the technique

can be of limited practical use. To remedy this situation, an indirect adaptive approach is

proposed. The algorithm relies on a partial state predictor (similar to that used in [108]) to

determine the appropriate command to the system, as opposed to relying on the uncertain

portion of the actual model. As described in following sections, the use of this technique

gives rise to a new issue. Indeed, the closed form of the control command includes the inverse

of a matrix which is function of the estimates. To avoid singularity of this matrix, a pro-

jection algorithm ([109]) is used to constrain the estimates to acceptable values. Section 6.4

introduces an indirect adaptive control law, which guarantees Lyapunov stability and con-
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vergence of the tracking errors in spite of parametric uncertainties, and details the projection

algorithm used to avoid singularity of the command. Results of numerical simulations are

presented. Section 6.5 concludes this chapter.

6.2. Direct Adaptive Control Algorithm for Linear in

the Uncertain Parameters Control Law [4]

The system under consideration remains the same as that in the previous chapter; that

is, using previously established notations,

η̇(t) = J(η(t))ν(t), η(0) = η0, t ≥ 0, (6.1)

ν̇(t) = −M−1 (C(ν(t)) + D(ν(t))) ν(t) + M−1Bτ(t), ν(0) = ν0. (6.2)

The control law derived for this system in the previous chapter is of the form

τ ∗(t)=−(Be(e1(t))Θ
∗
2)
−1

(
JT

s (ψ(t))(−ω2
0xr1(t)+(r(t)S−2ζω0)xr2(t)+ω2

0rs(t))+r(t)Sq2(t)

−q̇2des(e1(t), e2(t))+e2(t)+G−1
2 Js(β(t))γ(e1(t))+Be(e1(t))Θ

∗
1ϕ1(ν(t))

)
, t≥0. (6.3)

The model of the system features parametric uncertainties, contained in matrices M , C(·),
D(·) and B of (6.2). Consequently, the value of Θ∗

1 and Θ∗
2 in (6.3) are unknown, and

the corresponding command can not be computed. To address this issue, a direct adaptive

technique can be used. However, due to the presence of (Be(e1(t))Θ
∗
2)
−1, t ≥ 0, in (6.3), the

command is nonlinear in the uncertain parameters, which makes it difficult to apply classical

direct adaptive techniques. As previously mentioned, this nonlinearity in the parameters is

a direct consequence of the particular choice of tracking errors (5.7) and (5.8), which lead to

the expression of q2(·) given by (5.10). For this particular expression of q2(·), it follows that

∂q2(x,xr,χ)
∂ν

= Be(e1), which is function of the tracking error e1.
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To simplify the problem, it will be assumed that the off-diagonal terms in M and D(ν(t)),

t ≥ 0, are negligible. In addition, τ ∗(t), t ≥ 0, will be altered by substitution of Bea ,

Be(a, 0) for Be(ed(t), β(t)), t ≥ 0. In order to assess the stability of the corresponding

closed-loop system, consider the following Lyapunov function candidate,

V (e1, e2) , ed sin2(β/2) +
1

2
(ed − a)2 +

1

2
eT
2 G2e2. (6.4)

The control command

τ ∗a (t),−(BeaΘ
∗
2)
−1

(
BeaΘ

∗
1ϕ1(ν(t)) + JT

s (ψ(t))(−ω2
0xr1(t) + (r(t)S − 2ζω0)xr2(t)

+ω2
0rs(t))−q̇2des(e1(t), e2(t))+r(t)Sq2(t)+G−1

2 Js(β(t))γ(e1(t))+e2(t)
)
, t ≥ 0, (6.5)

results in the following time derivative of (6.4),

V̇ (t)=−ed(t)γ
T(e1(t))G1γ(e1(t))− eT

2 (t)G2e2(t) + eT
2

[
0 l

m3

]
τ ∗a (t)S

[
ed cos(β)− a

ed sin(β)

]
,

t ≥ 0. (6.6)

Note that, for small tracking errors, the third term on the right-hand side of (6.6) is also

small. Consequently, manipulation of the right-hand side of (6.6), through completion of

the squares, for instance, could allow to conclude ultimate boundedness of the tracking

errors. Indeed, outside of a given domain, the sum of the first two negative quadratic

terms in (6.6) can be shown to be greater in norm than the last term. This will not be

shown rigorously at this time, as the objective is to design of a direct adaptive control

algorithm performing adequately in simulation, providing insights which will allow the design

of adaptive algorithms with rigorously proven stability guarantees in later sections.
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Direct Adaptive Control Law

Following the notations of Chapter 4, the command (6.5) can be rewritten as

τ ∗a (t) = −Θ∗w(t)−W ∗σ(t), t ≥ 0, (6.7)

where σ(t) = ϕ1(t), t ≥ 0,

Θ∗ = (BeaΘ
∗
2)
−1, (6.8)

W ∗ = (BeaΘ
∗
2)
−1BeaΘ

∗
1, (6.9)

w(t) = JT
s (ψ(t))(−ω2

0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2
0rs(t))− q̇2des(e1(t), e2(t))

+r(t)Sq2(t) + G−1
2 Js(β(t))γ(e1(t)) + e2(t), t ≥ 0, (6.10)

Using Theorem 4.3.2, the control command (6.7) is replaced with the following,

τa(t) = −Θ(t)w(t)−W (t)σ(t), t ≥ 0, (6.11)

where Θ(t) and W (t), t ≥ 0, are estimates of Θ∗ and W ∗, given by the update laws

Θ̇(t) = G2e2(t)w
T(t)Γ1 − σ1Θ(t), Θ(0) = Θ0, t ≥ 0, (6.12)

Ẇ (t) = G2e2(t)σ
T(t)Γ2 − σ2W (t), W (0) = W0. (6.13)

The efficacy of the resulting control algorithm was tested through numerical simulations, as

described in the following subsection.
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Numerical Simulations

Circular Trajectory

The first maneuver attempted is a counterclockwise circle of radius 10m at a velocity

0.5m/s, with the following initial conditions,

η =
[

0 0 0
]T

, ν =
[

0 0 0
]T

.

The natural frequency and damping of reference system (4.7) are chosen to be

w0 = 0.2I2, ζ = 0.9I2.

The initials conditions chosen for the estimates are

Θ0 = 200I2, W0 =
[

100I2 50I2 250I2 I2 I2

]
.

Furthermore, Γ1 = Γ2 = 10I2, a = 2.25, and G1 = G2 = I2. For the dynamic model of the

vehicle, the numerical values provided in [110] were used. Finally, the initial position of the

desired trajectory is

ηds(0) =
[

7.0711 7.0711
]T

.

As shown in Figure 6.1, in spite of the controller modification, the tracking performance is

excellent, and the vehicle is moving in a coherent fashion (the arrows show the orientation

of the vehicle). The algorithm of Chapter 2 was used to enforce control amplitude and rate

saturation, and was successful in keeping the control efforts at reasonable levels, as shown

in Figure 6.1.
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Figure 6.1: Circular trajectory and corresponding control commands.

Octomorphic Trajectory

For a second maneuver, consider an eight-shaped (octomorphic) trajectory. The initial

conditions are the same as for the previous example. The desired trajectory is of the form

ηd(t) = 10
[

sin(ωt) sin(ωt/2)
]T

, t ≥ 0, (6.14)

with ω = 0.1, with zero initial velocity and initial position ηd(0) =
[

0 0
]T

.

The result of this simulation are displayed in Figure 6.2. The tracking performance is

very good, and the vehicle is still moving in a coherent fashion. The control efforts are shown

in Figure 6.2.
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Figure 6.2: Octomorphic trajectory and corresponding control commands.

6.3. Direct Adaptive Control Law with Dynamic Sur-

face Control [5]

Although the algorithm in the previous section showed interesting results in simulation,

it does rely on the approximation that Be(ed(t), β(t)) ' Bea, t ≥ 0. This section presents an

alternate control design, removing this approximation. In particular, derivations will follow

the strategy presented in Section 5.2, and use a technique derived from DSC ([61]), following

the same method that was used in Chapter 3.

Nonlinear Control Law

Consider the following Lyapunov function candidate,

Vs(e1) = ed sin2 (β/2) +
1

2
(ed − a)2. (6.15)
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In this section, derivations will rely on a different choice of q2(t), t ≥ 0, from that in Section

5.2. In particular, Q1(t) and q2(t), t ≥ 0, are chosen as

Q1(t) ,
[

1 0
0 1/ed(t)

]
JT

s (β(t)), t ≥ 0, (6.16)

q2(t) , J−1
s (ψ(t))xr2(t) + B0ν(t) + χ(t), (6.17)

where

B0 ,
[ −I2 02×1

]
. (6.18)

and χ(t), t ≥ 0, is obtained from the filter

T χ̇(t) + χ(t) = r(t)S
[

ed(t) cos(β(t)) ed(t) sin(β(t))
]T

, t ≥ 0, (6.19)

with T > 0 a diagonal matrix whose elements are positive constants and constitute the

filter’s time constants.

The expression chosen for q2(t), t ≥ 0, differs from the one used in the previous chapter

(see (5.10)) so that ∂q2(x,xr,χ)
∂ν

= B0 is constant. This was achieved by breaking up Be(e1) into

a constant part B0, which remains in (6.17), and a time varying part, which is accounted

for by χ(t), t ≥ 0. This adjustment to q2(t), t ≥ 0, leads to a constant ∂q2(x,xr,χ)
∂ν

, which,

using Theorem 4.3.1, yields a control law that is linear in the unknown parameters. This

modification allows to satisfy one of the most important assumptions in Theorem 4.3.2.

The velocity error corresponding to the above choice of q2(t), t ≥ 0, is of the form

e2f(t) , J−1
s (ψ(t))xr2(t) + B0ν(t) + χ(t)− q2des(e1(t)), t ≥ 0, (6.20)

where q2des(e1(t)) is given by (5.13). The time derivative of this velocity error is given by

ė2f(t) = JT
s (ψ(t))(−ω2

0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2
0rs(t)) + χ̇(t)− q̇2des(t)

+B0(Θ
∗
1ϕ1(t) + Θ∗

2τ(t)), t ≥ 0, (6.21)
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The control law is designed using Theorem 4.3.1, and is of the form

τ ∗(t)=−(B0Θ
∗
2)
−1

(
JT

s (ψ(t))(−ω2
0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2

0rs(t)) + χ̇(t)− q̇2des(t)

+B0Θ
∗
1ϕ1(t)+e2f(t)+G−1

2 Js(β(t))

[
sin2 (β(t)/2) + ed(t),

1

2
sin(β(t))

]T )
, t≥0.(6.22)

Adaptive Control Law

Following a procedure similar to that used in the previous section, the command (6.22)

is rewritten as

τ ∗(t) = −Θ∗w(t)−W ∗σ(t), t ≥ 0, (6.23)

where σ(t) = ϕ1(t), t ≥ 0, and

Θ∗=(B0Θ
∗
2)
−1, (6.24)

W ∗=(B0Θ
∗
2)
−1B0Θ

∗
1, (6.25)

w(t)=JT
s (ψ(t))(−ω2

0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2
0rs(t)) + χ̇(t)− q̇2des(e1(t), e2(t))

+r(t)Sq2(t)+G−1
2 Js(β(t))

[
sin2 (β(t)/2) + ed(t)

1
2
sin(β(t))

]T
+e2(t), t≥0. (6.26)

Using Theorem 4.3.2, the control command (6.23) is replaced by

τ(t) = −Θ(t)w(t)−W (t)σ(t), t ≥ 0. (6.27)

where Θ(t) and W (t), t ≥ 0, are estimates of Θ∗ and W ∗, given by the update laws

Θ̇(t) = G2e2f(t)w
T(t)Γ1 − σ1Θ(t), Θ(0) = Θ0, t ≥ 0, (6.28)

Ẇ (t) = G2e2f(t)σ
T(t)Γ2 − σ2W (t), W (0) = W0. (6.29)

The tracking performance of the resulting control algorithm was tested through numerical

simulations, as described in the following subsection.
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Numerical Simulations

As in the previous section, the first maneuver attempted is a counterclockwise circle of

radius 10m, but here at a velocity of 1m/s, with the following initial conditions,

η =
[

0 0 0
]T

, ν =
[

0 0 0
]T

. (6.30)

The reference model’s initial conditions are

xr10 =
[

0.6 0
]T

. (6.31)

The initials conditions chosen for the estimates are

Θ0 =

[
15 0
0 50

]
, W =

[ −5 0 −5 0 40 0 1 0 1 0
0 10 0 10 0 10 0 1 0 1

]
. (6.32)

Furthermore, Γi = I2, i = 1, 2, a = 0.6, and G1 = G2 = I2. The dynamic model of the

vehicle corresponds to the Silent Quick Unmanned Intelligent Diver [104]. The values for

the constant parameters in M , D(ν) and C(ν) are given in (5.31). Finally, the initial position

of the desired trajectory is

ηds(0) =
[

7.0711 7.0711
]T

.

As shown in Figure 6.3, the tracking performances are excellent, and the vehicle is moving

in a coherent fashion. In addition, the framework introduced in Chapter 2 was used to enforce

command input amplitude saturation, and keep the control efforts at a reasonable level, as

shown in Figure 6.3. Finally, the estimates converge quickly and remain stable (Figure 6.4).
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Figure 6.3: Circular trajectory and corresponding control efforts.
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6.4. Indirect Adaptive Algorithm [6]

It is clear from (6.3) that, in order to compute the value of the given control law, knowl-

edge of the exact values of Θ∗
1 and Θ∗

2 would be required. Since this information is not

necessarily available, it is desirable to obtain a control law only requiring estimates of these

parameters. However, classical direct adaptive techniques rely on a linearly parameterized

command (to allow the application of the equivalence certainty principle). As discussed in

previous sections, the term (Be(e1(t))Θ
∗
2)
−1 is nonlinear in the uncertain parameters, which

makes it difficult to apply direct adaptive techniques. In this section, this issue will be

addressed using an indirect adaptive approach.

In particular, the presented approach makes use of the partial state predictor

˙̂ν(t) = Θ1(t)ϕ1(ν(t)) + τd(t)Θ2v(t) + up(t), ν̂(0) = ν0, t ≥ 0, (6.33)

where Θ1(t) ∈ R3×10, and Θ2v(t) ,
[

θ21(t) θ22(t) θ23(t)
]T ∈ R3×1, t ≥ 0, are estimates

of Θ∗
1 and Θ∗

2v ,
[

θ∗21 θ∗22 θ∗23

]T
, respectively, ν̂(t) ,

[
û(t) v̂(t) r̂(t)

]T
, t ≥ 0, and

finally τd(t) , diag(
[

τ1(t) τ2(t) τ2(t)
]
), t ≥ 0. The predictor signal up(t) ∈ R3, t ≥ 0,

will be designed to improve performance of the predictor, allowing (6.33) to emulate the

dynamics in (4.5).

Adaptive Control Command

Consider the error

eν(t) , ν(t)− ν̂(t), t ≥ 0, (6.34)
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which reflects the difference between the vehicle’s velocity and its estimate, provided by the

state predictor (6.33). The time derivative of (6.34) is given by

ėν(t) = Θ∗
1ϕ1(ν(t))+Θ∗

2τ(t)−Θ1(t)ϕ1(ν(t))−Θ2(t)τ(t)−up(t)

= (Θ∗
1 −Θ1(t))ϕ1(ν(t)) + τd(t)(Θ

∗
2v −Θ2v(t))− up(t), eν(0)=ν0−ν̂0, t≥0. (6.35)

The velocity error defined by (5.15) is then modified so that the control algorithm relies on

the fully known state predictor, instead of the actual system’s dynamics, which are uncertain.

To do so, define the new velocity error

ê2(t) , ϕ0(η(t), ν̂(t), xr(t)) + ed(t)Js(β(t))G1γ(e1(t)), t ≥ 0, (6.36)

which is similar to (5.15), the only difference being its dependence upon ν̂(t), t ≥ 0, as

opposed to ν(t), t ≥ 0. Note that, using (5.11) and (6.34), it is possible to rewrite (6.36) as

ê2(t) , ϕ0(η(t), ν(t), xr(t))−Be(e1(t))eν(t) + ed(t)Js(β(t))G1γ(e1(t)), t ≥ 0. (6.37)

The time derivative of (6.36) is given by

˙̂e2(t) = JT
s (ψ(t))(−ω2

0xr1(t) + (r(t)S − 2ζω0)xr2(t) + ω2
0rs(t)) + Be(e1(t))Θ2(t)τ(t)

+r̂(t)Sϕ0(t) + Be(e1(t))(Θ1(t)ϕ1(ν(t)) + up(t)) + ϕ2(e1(t), e2(t)), t ≥ 0, (6.38)

where

Θ2(t) ,




θ21(t) 0
0 θ22(t)
0 θ23(t)


 , t ≥ 0. (6.39)

Note that (6.38) is similar to (5.16), however, a significant difference is that the uncertain

parameters Θ∗
1 and Θ∗

2 have been replaced by their estimates Θ1(t) and Θ2(t), t ≥ 0.
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The following result presents commands τ(t) and up(t), t ≥ 0, along with update laws

Θ̇1(t) and Θ̇2v(t), t ≥ 0, that will guarantee Lyapunov stability of the error dynamics (5.9),

(6.35) and (6.38), as well as convergence of e1(t), t ≥ 0, to
[

a 0
]T

, in spite of the para-

metric uncertainties in (4.5).

Theorem 6.4.1. Consider the system given by (5.9), (6.35) and (6.38), and assume that

Be(e1(t))Θ2(t), t ≥ 0, is nonsingular. Then, the feedback control laws

up(e1, eν) = BT
e (e1)Js(β)γ(e1) + Gνeν , (6.40)

τ(t) = (Be(e1(t))Θ2(t))
−1

(
−Be(e1(t))(Θ1(t)ϕ1(ν(t)) + up(t))− JT

s (ψ(t))(−ω2
0xr1(t)

+(r(t)S − 2ζω0)xr2(t) + ω2
0rs(t))− ϕ2(e1(t), e2(t))− r̂(t)Sϕ0(η(t), ν(t), xr(t))

−Js(β(t))γ(e1(t))−G2ê2(t)
)
, t ≥ 0, (6.41)

along with update laws

Θ̇1(t) = eν(t)ϕ
T
1 (ν(t))Γ1, Θ1(t) = Θ10, t ≥ 0, (6.42)

Θ̇2v(t) = τd(t)eν(t)Γ2, Θ2v(t) = Θ2v0, (6.43)

where Γ1 ∈ R10×10 is a positive definite matrix and Γ2 > 0, guarantee Lyapunov stability

of the solution
[

ed(t) β(t)
]T ≡ [

a 0
]T

, ê2(t) ≡ 0, eν(t) ≡ 0, Θ1(t) ≡ Θ∗
1, Θ2v(t) ≡

Θ∗
2v, t ≥ 0, of the dynamics given by (5.9), (6.38), (6.35), (6.42) and (6.43). In addition,

(ed(t), β(t)) → (a, 0) and (e2(t), eν(t)) → (0, 0), as t →∞.

Proof . Substituting the feedback control law (6.41) into (6.38), we obtain

˙̂e2(t) = −Js(β(t))γ(e1(t))−G2ê2(t), t ≥ 0. (6.44)
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Next, consider the Lyapunov function candidate

V (e1, ê2, eν , Θ1, Θ2) , ed sin2(β/2) +
1

2
(ed − a)2 +

1

2
êT
2 ê2 +

1

2
tr

[
(Θ1 −Θ∗

1)Γ
−1
1 (Θ1 −Θ∗

1)
T
]

+
1

2
eT

ν eν +
1

2
tr

[
(Θ2v −Θ∗

2v)Γ
−1
2 (Θ2v −Θ∗

2v)
T
]
, (6.45)

which is a positive definite function of ed − a, β, ê2, eν , Θ1 − Θ∗
1, and Θ2v − Θ∗

2v. The

Lyapunov derivative along the closed-loop system trajectories is given by

V̇ (t)=−ed(t)γ
T(e1(t))G1γ(e1(t)) + γT(e1(t))J

T
s (β(t))ê2(t)− êT

2 (t)(Js(β(t))γ(e1(t))

+G2ê2(t)) + γT(e1(t))J
T
s (β(t))Be(e1(t))eν(t)− eT

ν (t)((Θ1(t)−Θ∗
1)ϕ1(ν(t))

+BT
e(e1(t))Js(β(t))γ(e1(t))+τd(t)(Θ

∗
2v−Θ2v(t))+Gνeν(t))+tr[(Θ1(t)−Θ∗

1)Γ
−1
1 Θ̇T

1(t)]

+tr[(Θ2v(t)−Θ∗
2v)Γ

−1
2 Θ̇T

2v(t)]

=−ed(t)γ
T(e1(t))G1γ(e1(t))− êT

2 (t)G2ê2(t)− tr[(Θ1(t)−Θ∗
1)ϕ1(ν(t))eT

ν (t)]

−eT
ν (t)Gνeν(t) + tr[(Θ1(t)−Θ∗

1)Γ
−1
1 Θ̇T

1 (t)]− tr[(Θ2v(t)−Θ∗
2v)e

T
ν (t)τd(t)]

+tr[(Θ2v(t)−Θ∗
2v)Γ

−1
2 Θ̇T

2v(t)]

=−ed(t)γ
T(e1(t))G1γ(e1(t)) + tr[(Θ1(t)−Θ∗

1)(Γ
−1
1 Θ̇T

1 (t)− ϕ1(ν(t))eT
ν (t))]

−êT
2(t)G2ê2(t)−eT

ν(t)Gνeν(t)+tr[(Θ2v(t)−Θ∗
2v)(Γ

−1
2 Θ̇T

2v(t)−eT
ν(t)τd(t))], t≥0. (6.46)

Substituting update laws (6.42) and (6.43) into (6.46), we obtain

V̇ (t) = −ed(t)γ
T(e1(t))G1γ(e1(t))− êT

2 (t)G2ê2(t)− eT
ν (t)Gνeν(t) 6 0, (6.47)

which, according to the LaSalle-Yoshizawa Theorem ([10,44]), proves the final statement of

the Theorem. ¤
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Projection Algorithm

Note that in (6.41), the closed form of the command includes the term (Be(e1)Θ2)
−1,

whose existence was one of the assumptions of Theorem 6.4.1. To remove this assumption,

a projection algorithm ([109]) will be used. Note that

Be(e1)Θ2 =

[ −θ21 −ed sin(β)θ23

0 −θ22 − ed cos(β)θ23

]
, (6.48)

whose eigenvalues are −θ21, and −θ22 − ed cos(β)θ23. Following the technique introduced

in [109], define

fλ(Θ2v) =
1

r2
to − r2

ti

(
(θ21 − ct)

2 + (θ22 − ct)
2 + (θ23 − ct)

2 − r2
ti

)
, t ≥ 0, (6.49)

where ct > 0 and 0 < rti < rto. In addition, define the projection operator Po(ζ0) : Cn → Cn,

where Cn denotes the set of continuous n−valued functions, such that ([109])

Po(ζ0(t)) , ζ0(t)− f ′Tλ (Θ2v(t))

‖f ′λ(Θ2v(t))‖2
f ′λ(Θ2v(t))ζ0(t)fλ(Θ2v(t)), t ≥ 0, (6.50)

where f ′λ(Θ2v) denotes the Fréchet derivative of fλ(Θ2v) with respect to Θ2v. The update

law for Θ2v(t), t ≥ 0, is modified as follows ([109]),

Θ̇2v(t)=

{
Po(ζ(t)), if fλ(Θ2v(t)) ≥ 0 and f ′λ(Θ2v(t))ζ(t) > 0,

ζ(t), otherwise,
Θ2v(t) = Θ2v0, t≥0,(6.51)

where ζ(t) , τd(t)eν(t)Γ2, t ≥ 0. Since the update law (6.51) only adds a negative term to

the Lyapunov derivative (6.46) ([109]), the stability properties established in Theorem 6.4.1

are not modified.

Numerical Simulations

This subsection presents results from numerical simulations illustrating the efficacy of the

proposed control algorithm. In particular, results using the above indirect adaptive algorithm

104



are presented, which show convergence of the trajectory to the reference one, boundedness

of the estimates, and behavior of the eigenvalues of Be(e1)Θ2. The control algorithm is used

for tracking a circular trajectory and an octomorphic trajectory.

Circular Trajectory

The simulation uses initial estimates Θ10 = 03×10 and

Θ20 =
1

10




1.3 0
0 −1
0 1


 , (6.52)

where Θ20 is chosen different from 03×2 to avoid singularity of Be(e1(0))Θ20. To accommodate

the values of the entries of Θ∗
2, while still being able to force the eigenvalues not to cross zero,

set ct = 10, rti = ct − 10−3, rto = ct − 2× 10−3. The chosen desired trajectory is circular, of

radius 10 meters, with a constant traveling speed of 1 meter per second. The vehicle’s initial

position is at the center of this circle, its initial velocity is zero. The reference trajectory’s

initial position is chosen slightly off of the vehicle’s, to show convergence of the tracking

errors, xr10 =
[

0.6
√

2 −0.6
√

2
]T

. The gains are chosen as follows, G1 = 10I2, G2 = 0.1I2,

Gν = 10I3, Γ1 = 0.3I10, and Γ2 = 0.3I2. The reference signal is of the form

rs(t) = ω−2
0 (ẍd(t) + ω2

0xd(t) + 2ζω0ẋd(t)), t ≥ 0, (6.53)

where xd(t) denotes the desired position in the xy-plane at time t ≥ 0, ζ = 1.2I2 and

ω0 = 0.7I2. Finally, the constant parameters in M , D(ν) and C(ν) are given by (5.31), and

a = 0.2 > as.

The tracking errors converge smoothly to their expected steady state values. Figure

6.5 shows that the position error ed(t), t ≥ 0, converges to a = 0.2, while β(t) and e2(t),

t ≥ 0, converge to zero. Figure 6.6 compares the actual and estimated body-fixed velocities,
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Figure 6.5: Tracking errors e1(t) and e2(t), t ≥ 0, circular trajectory.

ν(t) and ν̂(t), t ≥ 0. Note that, the purpose of the state predictor (6.33) and update

laws (6.42) and (6.43) is not necessarily to accurately estimate ν(t), t ≥ 0, but rather

to allow construction of the control command (6.41), in spite of parametric uncertainties.

Nevertheless, Figure 6.6 shows that the estimated velocities match the actual ones.

Figure 6.7 shows the trajectory of the actual system (solid curve) converging smoothly

to the reference (dashed), which in turn converges to the desired trajectory (dotted). Orien-

tation of the vehicle is represented using black arrows, which demonstrate that the system

moves in a coherent fashion. Indeed, the arrows indicate that the vehicle is moving bow first,

which is corroborated by the fact that, as seen in Figure 6.6, the surge velocity u(t), t ≥ 0,

remains positive throughout the simulation.

Figure 6.6 shows that the projection algorithm of Subsection 6.4 is effective in preventing

the eigenvalues of Be(e1(t))Θ2(t), t ≥ 0, from crossing zero, thus ensuring that the inverse of

this matrix is well defined. The effects of the projection algorithm are particularly evident

for the first eigenvalue, which is constrained away from zero by the projection.
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Figure 6.6: Actual and estimated body-fixed velocities, ν(t) and ν̂(t), t ≥ 0, left, and
eigenvalues of Be(e1(t))Θ2(t), t ≥ 0, right (circular trajectory).

The control input is shown in Figure 6.7. The saturation technique discussed in Chapter

2 was applied to constrain the amplitude of the control effort to reasonable values. Figure

6.8 shows Θ2v(t), t ≥ 0, and illustrates the boundedness of the estimates.

Octomorphic Trajectory

The second maneuver considered is an octomorphic trajectory, identical to that in Sub-

section 6.2. The initial position is η0 =
[ −1 0 0

]T
, while the initial reference position

is xr10 =
[

0.2 0
]T

. All other initial conditions, gains and parameters remain identical to

what was chosen for the previous example.

As shown in Figure 6.9, the behavior is similar to that observed with a circular desired

trajectory. The vehicle converges smoothly to the desired trajectory, and the orientation,

still indicated by black arrows, remains appropriate. The control command can be found in

Figure 6.9, and the estimate Θ2v(t), t ≥ 0, in Figure 6.10.
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mand τ(t), t ≥ 0, right (circular trajectory).
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Figure 6.8: Elements of the parameter estimate vector Θ2v(t), t ≥ 0, circular trajectory.
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6.5. Conclusion

The results presented in this chapter build upon that in Chapter 5, which addressed

trajectory tracking in the horizontal plane for a class of non-minimum phase marine vehicles.

Since the control law obtained in Section 5.2 depends on uncertain parameters, adaptive

control algorithms were derived. Furthermore, the unknown parameters appear nonlinearly

in the command, which lead to difficulties in deriving a direct adaptive algorithm. This

nonlinear parametrization was overcome using two different approaches; that is, linearization

of the command with respect of the uncertain parameters, as described in Section 6.2, and

DSC, as seen in Section 6.3. Both direct adaptive controllers showed interesting performance

in simulations. Next, an indirect adaptive algorithm was presented. The obtained adaptive

control algorithm guarantees convergence of the tracking errors and Lyapunov stability of

the dynamics, in spite of the parametric uncertainties. Numerical simulations illustrate

the excellent performance of the indirect adaptive control algorithm in the case of circular

and octomorphic trajectories. In addition, simulation results correlate with the presented

stability analysis of the zero-dynamics from the previous chapter, as they show the vehicle

moving bow first, meaning that the system’s velocity in surge remains positive.
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Chapter 7

Prediction-based Observation of
Nonlinear Systems Non-affine in the
Unmeasured States [7]

The following result was the object of an article submitted to Automatica (currently under

review) and a conference paper submitted to the 2009 IEEE Conference on Decision and

Control (currently under review).

7.1. Introduction

The control algorithms presented in previous chapters require full state measurements.

However, in practice, it is not uncommon that only partial state measurements are available.

Accordingly, the following chapters will address the output feedback control problem, for a

wide class of uncertain nonlinear systems. The final result in Chapter 9 relies on an output

predictor, based upon the nonlinear observer introduced in the following.

More specifically, this chapter presents a novel nonlinear observer design which, while

concerned with a smaller class of systems than the immersion and invariance based technique
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introduced in [46], has the advantage of being systematic and relatively simple to apply. In

a departure from high gain observation techniques such as those in [44, 45], the presented

approach relaxes high gain requirements by using derivative estimates ([56,57]). The observer

relies on a partial state predictor, which compares predictions on the measured states with

actual measurements. The prediction error is then used to estimate the unmeasured states.

The design of this predictor-observer relies on specific prediction-observation errors, designed

using a backstepping technique ([10]). A Lyapunov stability analysis of the errors’ dynamics

shows that they are Lyapunov stable, and converge to a neighborhood of the origin. The

size of this neighborhood depends upon the accuracy of the derivative estimate, as well as

on a number of design constants. Accordingly, the errors can be made arbitrarily small by

using a high performance derivative estimator, and/or selecting appropriate gains.

This chapter is structured as follows. Section 7.2 describes the class of systems considered

and presents the observation strategy. The predictor-observer is then introduced in Section

7.3. Performance of the obtained observer was tested through numerical simulations for two

different nonlinear oscillators, and a three degree of freedom helicopter model. Simulation

results are presented in Section 7.4 and illustrate the efficacy of the proposed observer. The

algorithm was also tested experimentally, on a three degree of freedom helicopter setup.

Implementation results are given in Section 7.5. Section 7.6 concludes this chapter.

7.2. Problem Statement and Observation Strategy

Consider a system of the form

ẋ(t) = f(x(t), t), x(0) = x0, t ≥ 0, (7.1)

y(t) = Cx(t), (7.2)
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where x(t) ∈ Rn, t ≥ 0, is the system’s state vector, y(t) ∈ Rm, t ≥ 0, the measured output

vector, with m ≥ n/2, and C =
[

Im 0m×p

]
, with p = n−m ≤ m.

A sufficient condition for system (7.1)–(7.2) to be observable is that rank[J(x(t), t)] = n,

t ≥ 0, ([111,112]), where

J(x(t), t) ,




∇y(t)
∇y(1)(t)

...
∇y(n−1)(t)


 , t ≥ 0, (7.3)

with∇g(x) , dg(x)
dx

, and (·)(i) denotes the ith derivative with respect to time. In the following,

we focus on a subset of the set of observable systems as defined by the above condition. More

specifically, we consider systems for which rank[Js(x(t), t)] = n, t ≥ 0, where

Js(x(t), t) ,
[ ∇y(t)
∇ẏ(t)

]
, t ≥ 0. (7.4)

The goal of the presented work is to reconstruct the entire state vector x(t), t ≥ 0, using

the information provided by the output measurement y(t), t ≥ 0, and partial knowledge of

the form of the right-hand-side of (7.1). To reach this goal, we define x1(t) , y(t), t ≥ 0,

and decompose the state vector as x(t) =
[

xT
1 (t) xT

2 (t)
]T

, t ≥ 0, where x2(t) ∈ Rp, t ≥ 0,

denotes the unmeasured states which we attempt to reconstruct. Furthermore, the dynamics

of the measured states are described by

ẋ1(t) = f1(x1(t), x2(t), t), x1(0) = Cx0 , x10 = y(0), t ≥ 0, (7.5)

where f1(x1(t), x2(t), t) , Cf(x(t), t), t ≥ 0. Note that, using (7.2) and (7.5), we can rewrite

(7.4) as

Js(x, t) ,
[

Im 0m×p
∂f1(x1,x2,t)

∂x1

∂f1(x1,x2,t)
∂x2

]
, (7.6)

113



PredictorObserver

Plant
y

x̂
1

+

-

Errors 

Computation

e
1

x̂
2

Derivative

Estimator

e  ,
1

e
2 z

~ Predictor/observer ~

Figure 7.1: Block diagram of the presented observation algorithm.

and the above observability condition reduces to the condition that rank[∂f1(x1, x2, t)/∂x2] =

p. In addition, from (7.2) and (7.5), we have that

ẏ(t)− f1(y(t), x2(t), t) = 0, t ≥ 0. (7.7)

According to the implicit function theorem ([113]), if rank[∂f1(x1, x2, t)/∂x2] = p, there

exists a unique function g : Rm × Rm × R → Rp, such that g(y, ẏ, t) = x2. However,

obtaining a closed form expression of this function can prove challenging, and its existence

can only be guaranteed locally. In addition, while y(t), t ≥ 0, is measured and hence known,

ẏ(t), t ≥ 0, is not necessarily available. Thus, directly working in terms of the above g(·)
does not constitute a viable option.

Instead, we will indirectly work in terms of g(·). In particular, we will construct an

estimate x̂2(t) of x2(t), t ≥ 0, which uniformly converges to a neighborhood of g(y(t), ẏ(t), t),

t ≥ 0. In addition, since ẏ(t), t ≥ 0, is not measured, we will estimate its value, using

measured information (i.e. y(t), t ≥ 0) and a derivative estimator (such as those in [56,57]).

The resulting estimate x̂2(t), t ≥ 0, is then further refined by adjusting it according to a

prediction error, as described in Figure 7.1. The latter is computed as the difference between
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the measured output and a predicted x̂1(t), t ≥ 0, obtained by integrating a partial state

predictor whose form is similar to (7.5), with x2(t) replaced by x̂2(t), t ≥ 0.

7.3. Nonlinear Observer Design

Following the approach delineated in Section 7.2, we construct a partial state predictor,

with the following Luenberger form ([13]),

˙̂x1(t) = f1(x1(t), x̂2(t), t)−De1(t), x̂1(0) = x10, t ≥ 0, (7.8)

where D ∈ Rm×m, e1(t) , x1(t)− x̂1(t), t ≥ 0, is a prediction error, and x̂2(t) ∈ Rp, t ≥ 0, is

designed so that x̂1(t) ∈ Rm, t ≥ 0, provides a predicted value of x1(t), t ≥ 0. In addition,

to provide more flexibility in the design procedure, the algorithm will rely on an auxiliary

signal ω(t) ∈ Rm, t ≥ 0, obtained from

ω̇(t) = Wa(x1(t), x̂2(t), t)v(t), ω(0) = 0m, t ≥ 0, (7.9)

where v(t) ∈ Rm−p, t ≥ 0, and Wa(·) ∈ Rm×(m−p) is designed so that W2(x1, x̂2, t) ,
[

∂f1(x1,x̂2,t)
∂x̂2

Wa(x1, x̂2, t)
]
∈ Rm×m is nonsingular for all x1 ∈ Rm, x̂2 ∈ Rp, t ≥ 0.

In the following, we will construct ˙̂x2a(t) ,
[

˙̂x
T

2 (t) vT(t)
]T

∈ Rm, t ≥ 0, so that

the origin of the prediction-observation error dynamics is Lyapunov stable and e1(t), t ≥ 0,

asymptotically converges to a neighborhood of the origin, uniformly in time.

For the statement of the following theorem, we will use the notations

W1(x1, x̂2, t) , ∂f1(x1, x̂2, t)

∂x1

, W3(x1, x̂2, t) , ∂f1(x1, x̂2, t)

∂t
, (7.10)

as well as the following lemma,
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Lemma 7.3.1. [114] Let A, Σ ∈ Rm×m be Hurwitz, and Q , RTR, with R ∈ Rm×m

full rank. If

H ,
[

A ΣΣT

−Q −AT

]
, (7.11)

has no eigenvalues on the imaginary axis, then there exists P ≥ 0 such that

ATP + PA + Q + PΣΣTP = 0. (7.12)

In addition, if (A, R) is observable, P > 0.

Theorem 7.3.1. Consider the system given by (7.1)–(7.2), and the partial state pre-

dictor (7.8). Assume that a continuously differentiable signal z(t) is available such that

z(t) = ẏ(t) + ω(t) − ε(t), with ‖ε(t)‖ ≤
√

ε/3, ε > 0, t ≥ 0. Then, consider the estimated

trajectory x̂2(t), t ≥ 0, generated by

˙̂x2a(t) = W−1
2 (x1(t), x̂2(t), t)

[
P−1

2 P1e1(t)− A1((A1 + P−1
1 K)e1(t)− e2(t)) + ż(t) + A2e2(t)

−W1(x1(t), x̂2(t), t)
(
z(t)−ω(t)+

1

2
WT

1 (x1(t), x̂2(t), t)P2e2(t)
)
−W3(x1(t), x̂2(t), t)

]
,

x̂2a(0) = 0m, t ≥ 0, (7.13)

x̂2(t) =
[

Ip 0p×(m−p)

]
x̂2a(t), (7.14)

where A1, A2, and K are chosen Hurwitz, e2(t) , f1(x1(t), x̂2(t), t) + ω(t) + A1e1(t)− z(t),

t ≥ 0, the matrices P1, P2 ∈ Rm×m are obtained from the following Riccati equations,

AT
1 P1 + P1A1 + Q1 + P 2

1 = 0, (7.15)

AT
2 P2 + P2A2 + Q2 + P2A1A

T
1 P2 = 0, (7.16)

and Q1 , RT
1 R1 > 0, Q2 , RT

2 R2 > 0, are chosen such that

H1 ,
[

A1 Im

−Q1 −AT
1

]
, H2 ,

[
A2 A1A

T
1

−Q2 −AT
2

]
, (7.17)
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have no eigenvalues on the imaginary axis and (A1, R1), (A2, R2) are observable. In addition,

the auxiliary signal ω(t) is obtained from (7.9), with v(t) ,
[

0(m−p)×(p) Im−p

]
˙̂x2a(t), t ≥ 0.

Finally, choose D = P−1
1 K, define Q̄1 , Q1 −K −KT,

M ,
[

Q̄−1
1 P1 0m×m

0m×m Q−1
2 P2

]
, (7.18)

and let λmax(M) denote the maximum eigenvalue of M . The solution x̂2a(t), t ≥ 0, to (7.13)

guarantees uniform ultimate boundedness of (e1(t), e2(t)), t ≥ 0, with an ultimate bound

given by D ,
{
(e1, e2) : eT

1 P1e1 + eT
2 P2e2 ≤ ελmax(M)

}
.

Proof . The time derivative of the prediction error e1(t), t ≥ 0, is given by

ė1(t) = f1(x1(t), x2(t), t)− f1(x1(t), x̂2(t), t) + P−1
1 Ke1(t), t ≥ 0, (7.19)

which, by definition of e2(t), t ≥ 0, can be rewritten

ė1(t) = f1(x1(t), x2(t), t) + ω(t) + P−1
1 Ke1(t)− z(t) + A1e1(t)− e2(t)

= (A1 + P−1
1 K)e1(t)− e2(t) + ε(t), t ≥ 0. (7.20)

In addition, the time derivative of the observation error e2(t), t ≥ 0, is of the form

ė2(t) = A1ė1(t)+W1(x1(t), x̂2(t), t)ẋ1(t)+W2(x1(t), x̂2(t), t) ˙̂x2a(t)+W3(x1(t), x̂2(t), t)−ż(t)

= A1ε(t) + A1((A1 + P−1
1 K)e1(t)− e2(t)) + W1(x1(t), x̂2(t), t)(z(t)− ω(t) + ε(t))

−ż(t) + W3(x1(t), x̂2(t), t) + W2(x1(t), x̂2(t), t) ˙̂x2a, t ≥ 0. (7.21)

Substituting (7.13) into (7.21), we obtain

ė2(t) = A1ε(t) + A1((A1 + P−1
1 K)e1(t)− e2(t)) + W1(x1(t), x̂2(t), t)(z(t)− ω(t) + ε(t))

−ż(t) + W3(x1(t), x̂2(t), t) + P−1
2 P1e1(t)− A1((A1 + P−1

1 K)e1(t)− e2(t))
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+ż(t)+A2e2(t)−W1(x1(t), x̂2(t), t)
(
z(t)− ω(t)+

1

2
WT

1 (x1(t), x̂2(t), t)P2e2(t)
)

−W3(x1(t), x̂2(t), t)

= P−1
2 P1e1(t) + A2e2(t) + W1(x1(t), x̂2(t), t)

(
ε(t)− 1

2
WT

1 (x1(t), x̂2(t), t)P2e2(t)
)

+A1ε(t), t ≥ 0. (7.22)

Then, consider the following Lyapunov function candidate,

V (e1, e2) = eT
1 P1e1 + eT

2 P2e2, (7.23)

where P1, P2 > 0 are obtained from (7.15) and (7.16), respectively. The time derivative of

(7.23) along the trajectories of (7.20) and (7.22) is given by

V̇ (t) = eT
1 (t)(AT

1 P1 + P1A1)e1(t) + eT
2 (t)(AT

2 P2 + P2A2)e2(t) + eT
1 (t)(K + KT)e1(t)

+2eT
2 (t)P2

(
A1ε(t) + W1(x1(t), x̂2(t), t)

(
ε(t)− 1

2
WT

1 (x1(t), x̂2(t), t)P2e2(t)
)

+P−1
2 P1e1(t)

)
− 2eT

1 (t)P1(e2(t)− ε(t))

= 2eT
2 (t)P2W1(x1(t), x̂2(t), t)

(
ε(t)− 1

2
WT

1 (x1(t), x̂2(t), t)P2e2(t)
)

+ 2eT
2 (t)P2A1ε(t)

−eT
1(t)(Q1−K−KT+P 2

1 )e1(t)−eT
2(t)(Q2+P2A1A

T
1P2)e2(t)+2eT

1(t)P1ε(t), t≥0.(7.24)

Next, using the completion of the square rule, we obtain

2eT
1 P1ε = −(P1e1 − ε)T(P1e1 − ε) + eT

1 P 2
1 e1 + εTε, (7.25)

2eT
2 P2A1ε = −(AT

1 P2e2 − ε)T(AT
1 P2e2 − ε) + eT

2 P2A1A
T
1 P2e2 + εTε, (7.26)

2eT
2 P2W1(x1, x̂2, t)ε = eT

2 P2W1(x1, x̂2, t)W
T
1 (x1, x̂2, t)P2e2 + εTε

− (
WT

1 (x1, x̂2, t)P2e2 − ε
)T (

WT
1 (x1, x̂2, t)P2e2 − ε

)
. (7.27)

It follows that

V̇ (t) ≤ −eT
1 (t)(Q̄1 + P 2

1 )e1(t) + eT
1 (t)P 2

1 e1(t)− eT
2 (t)(Q2 + P2A1A

T
1 P2)e2(t)
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+eT
2 (t)P2A1A

T
1 P2e2(t) + eT

2 (t)P2W1(x1(t), x̂2(t), t)W
T
1 (x1(t), x̂2(t), t)P2e2(t)

−eT
2 (t)P2W1(x1(t), x̂2(t), t)W

T
1 (x1(t), x̂2(t), t)P2e2(t) + 3εT(t)ε(t)

≤ −eT
1 (t)Q̄1e1(t)− eT

2 (t)Q2e2(t) + ε, t ≥ 0. (7.28)

Hence, V̇ (t), t ≥ 0, is strictly negative outside of
{
(e1, e2) : eT

1 Q̄1e1 + eT
2 Q2e2 ≤ ε

}
, which

allows to conclude ultimate boundedness of (e1(t), e2(t)), t ≥ 0 ([44, 88]). In addition,

the ultimate bound can be characterized by α , min(eT
1 P1e1 + eT

2 P2e2), subject to the

constraint eT
1 Q̄1e1 + eT

2 Q2e2 = ε. This constrained minimization problem is easily solved

using Lagrange multipliers, yielding α = ελmax(M), which proves uniform convergence of

the error trajectories to D and concludes this proof. ¤

Remark 7.3.1. Note that, in the ideal case that ε(t) ≡ 0, t ≥ 0, we would obtain that

(e1(t), e2(t)) → 0 as t → ∞. Hence, from the definition of e2(t), t ≥ 0, we would obtain

convergence of x̂2(t) to the implicit function g(y(t), ẏ(t), t), t ≥ 0, defined by (7.7).

Remark 7.3.2. In Theorem 7.3.1, it is assumed that m ≥ n/2. In the particular case

that m = n/2, the design procedure is simpler. Indeed, in such a situation, the auxiliary

signal ω(t), t ≥ 0, becomes superfluous, K can be chosen to be zero, and x̂2a(t) = x̂2(t),

t ≥ 0.

7.4. Illustrative Numerical Examples

To obtain an estimate z(t) of ẏ(t)+ω(t), t ≥ 0, we will use the Adaptive Integral Variable

Structure Derivative Estimator (AIVSDE) described in [57]. The object of the technique is,

using measurements of a signal r(t), t ≥ 0, to obtain an estimate of its time derivative ṙ(t),

t ≥ 0. This is achieved by constructing a signal γ(t), t ≥ 0, which converges to r(t), t ≥ 0.
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The signal γ(t), t ≥ 0, is obtained from

γ̇(t) = kr(t)sign(σ(t)) + kbσ(t)− k1k
−1
2 γ(t), γ(0) = γ0, t ≥ 0, (7.29)

σ(t) = k2(r(t)− γ(t)) + k1

∫ t

0

(r(τ)− γ(τ))dτ, (7.30)

where kb, k1, k2 ≥ 0, the adaptive gain kr(t), t ≥ 0, is obtained from

k̇r(t) =

{
αr for‖σ(t)‖ ≥ µ,
0 for‖σ(t)‖ < µ,

, kr(0) = kr0, t ≥ 0, (7.31)

where αr ≥ 0 and µ ≥ 0. The estimate of ṙ(t) is given by γ̇(t), t ≥ 0. In our case, setting

r(t) = y(t) +
∫ t

0
ω(τ)dτ , and z(t) = γ̇(t), t ≥ 0, we obtain an estimate z(t) of ẏ(t) + ω(t),

t ≥ 0.

In the following, we will apply the predictor-observer described in Section 7.3, in con-

junction with the above AIVSDE technique, to address the observation problem for three

distinct systems. In a first example, we consider a system with state [x1(t) x2(t)]
T ∈ R2,

t ≥ 0, where x1(t), t ≥ 0, is measured, and we attempt to construct an estimate x̂2(t) of the

unmeasured x2(t), t ≥ 0. This example illustrates performance of the presented approach,

and in particular, the domain of convergence obtained in Theorem 7.3.1 is shown to be con-

servative. In a second example, we apply the technique to a case where m < p; that is, a

case in which there are more measured states than unmeasured ones. Finally, we address the

same observation problem for a system with state [ηT(t) νT(t)]T ∈ R6, t ≥ 0, with output

η(t) ∈ R3, t ≥ 0. The estimate ν̂(t) is shown to converge to neighborhood of the unmeasured

ν(t), t ≥ 0.

Example 7.4.1. Consider the following system,

ẋ1(t) = a sin(x1(t) + x2(t)) + b(tanh(πx2(t)− 2) + tanh(x3
2(t)/10) + x3

2(t)/100),
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x1(0) = x10, t ≥ 0, (7.32)

ẋ2(t) = c tanh(x1(t))− dx3
2(t), x2(0) = x20, (7.33)

y(t) = x1(t), (7.34)

where x1(t), x2(t) ∈ R, t ≥ 0, and a, b, c, d ∈ R. Note that, for the above system, m = p = 1.

It is therefore unnecessary to construct an auxiliary signal ω(t), t ≥ 0, K can be chosen to

be zero, and the design procedure is simplified. More specifically, we construct the following

predictor-observer,

˙̂x1(t) = a sin(x1(t) + x̂2(t)) + b(tanh(πx̂2(t)− 2) + tanh(x̂3
2(t)/10) + x̂3

2(t)/100),

x̂1(0) = x10, t ≥ 0, (7.35)

˙̂x2(t) =
(
p1e1(t)/p2 − A1(A1e1(t)− e2(t)) + ż(t) + A2e2(t)− w1(x1(t), x̂2(t))z(t)

−1

2
w1(x1(t), x̂2(t))w

T
1 (x1(t), x̂2(t))p2e2(t)

)
/w2(x1(t), x̂2(t)), x̂2(0) = 0, (7.36)

where e1(t) = x1(t)− x̂1(t), e2(t) = ˙̂x1(t) + A1e1(t)− z(t), t ≥ 0, w1(x1, x̂2) , a cos(x1 + x̂2),

w2(x1, x̂2) , a cos(x1 + x̂2)+b(πsech2(πx̂2−2)+sech2(x̂3
2/10)(3x̂2

2/10)+3x̂2
2/100). Note that

w2(x1, x̂2) > 0, for all x1 ∈ R, x̂2 ∈ R.

Since in this example m = 1, The Riccati equations (7.15)–(7.16) simplify to

p2
1 + 2A1p1 + q1 = 0, (7.37)

A2
1p

2
2 + 2A2p2 + q2 = 0, (7.38)

where Ai, pi and qi, i = 1, 2, are scalars. From (7.37)–(7.38), we obtain that p1 = (−A1 ±
√

A2
1 − q1) and p2 = (−A2 ±

√
A2

2 − A2
1q2)/A

2
1. We thus need to choose q1 ≤ A2

1, and

q2 ≤ A2
2/A

2
1. We choose A1 = −10, A2 = −100, q1 = 10, q2 = 80, and obtain p1 = 0.5132,

p2 = 0.5528. The parameters of the AIVSDE are chosen as follows, k1 = kb = 10, k2 = 20,

αr = 0, µ = 1, γ0 = x10 and kr0 = 145.
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Figure 7.2: Actual and predicted/observed trajectories.

-1 0 1 2
-4

0

4

8

e
1

e
2

 -0.2  -0.1 0 0.1 0.2

 -0.2

 -0.1

0

0.1

0.2

e
1

e
2

Figure 7.3: Prediction and observation error trajectories.
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For the purpose of numerical simulation, we chose the following parameters for the system

model, a = 0.4, b = 10, c = −1 and d = 0.1. Note that, with this choice of parameters,

w2(x1, x̂2) 6= 0, for all x1, x̂2 ∈ R. In addition, we choose x10 = x20 = 2, x̂10 = 1, x̂20 = 0,

and z(0) = 0. The resulting system and predictor-observer trajectories are shown in Figure

7.2.

The predicted x̂1(t) closely matches the measured x1(t), t ≥ 0, as seen in Figure 7.2.

More interestingly, the observed x̂2(t) also closely matches the unmeasured x2(t), t ≥ 0, and

converges as quickly as its predicted counterpart. Note that the initial condition for the

prediction x̂10 could have been chosen as x10, since x1(t), t ≥ 0, is measured. This would

have resulted in a decreased overshoot of x̂2(t), t ≥ 0. The initial prediction was however

chosen different from x10 to illustrate convergence of x̂1(t) to x1(t), t ≥ 0.

The level of performance of the observer is intrinsically dependent upon that of the chosen

numerical derivative estimator (through ε). The AIVSDE estimator performs well, with a

maximum error of less than ε = 0.38 (discarding large early estimation errors due to arbitrary

choice of initial condition z0 = 0). In addition, from our choice of design parameters, we

have that λmax(M) = 0.051. Hence, the predictor-observer designed as in Theorem 7.3.1

guarantees convergence of the error trajectories to D , {(e1, e2) : eT
1 P1e1 + eT

2 P2e2 ≤ 0.019}.
The error trajectory is shown in Figure 7.3 (left), where the dashed ellipse delimits D. As

expected, the error trajectory enters and remains within D. In addition, D itself appears to

be a fairly conservative estimate of the actual domain of convergence (see Figure 7.3, right).

This is in part due to the fact that non-positive terms in V̇ (t), t ≥ 0, resulting from the

completion of the square, were omitted to facilitate estimation of the ultimate bound.
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Example 7.4.2. Consider the system

ẋ11(t) = −x3
11(t) + tanh(x12(t)) + 3 sin(x2(t)), x11(0) = x110, t ≥ 0, (7.39)

ẋ12(t) = 4 tanh(x11(t))− 2 tanh(x12(t))− 3 cos(x2(t)), x12(0) = x120, (7.40)

ẋ2(t) = −x3
2(t)− 2 tanh((x11(t) + x12(t))

2), x2(0) = x20, (7.41)

y(t) = x1(t), (7.42)

where x1(t) ,
[

x11(t) x12(t)
]T ∈ R2, and x2(t) ∈ R, t ≥ 0. Applying the technique

described in Theorem 7.3.1, we construct the following predictor-observer,

˙̂x1(t) =

[ −x3
11(t) + tanh(x12(t)) + 3 sin(x̂2(t))

4 tanh(x11(t))− 2 tanh(x12(t))− 3 cos(x̂2(t))

]
− P−1

1 Ke1(t),

x̂1(0) = x10 ,
[

x110 x120

]T
, t ≥ 0, (7.43)

˙̂x2a(t) = W−1
2 (x2(t))

[
P−1

2 P1e1(t)− A1((A1 − P−1
1 K)e1(t)− e2(t)) +ż(t)+A2e2(t)

−W1(x1(t))
(
z(t)− ω(t) +

1

2
WT

1 (x1(t))P2e2(t)
)]

, x̂2a(0) = x̂2a0, (7.44)

where e1(t) = x1(t) − x̂1(t), e2(t) = ˙̂x1(t) + P−1
1 Ke1(t) + ω(t) − z(t) + A1e1(t), t ≥ 0, the

auxiliary signal ω(t), t ≥ 0, is obtained from (7.9), with Wa(x̂2) = 3[ − sin(x̂2) cos(x̂2) ]T,

and K = −150I2. In addition,

W1(x1) =

[ −3x2
11 sech2(x12)

4sech2(x11) −2sech2(x12)

]
, W2(x̂2) = 3

[
cos(x̂2) − sin(x̂2)
sin(x̂2) cos(x̂2)

]
. (7.45)

Choosing A1 = −10I2, Q1 = 10I2, A2 = −30I2, and Q2 = 8I2, we obtain, from (7.15)–(7.16),

P1 = 0.5132I2, P2 = 0.2I2. The parameters used for the AIVSDE are identical to that in

the previous example. The initial conditions for the system are chosen as x10 =
[

2 2
]T

,

and x20 = −1. Finally, the initial prediction is x̂10 =
[

0 0
]T

, while the initial estimate

is chosen as x̂20 = 0. As seen in Figure 7.4, the predicted trajectory x̂1(t), t ≥ 0, quickly
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Figure 7.4: Actual and predicted trajectories.

converges to the actual trajectory x1(t), t ≥ 0. Similarly, after a short transient, the observed

trajectory x̂2(t), t ≥ 0, matches the unmeasured state x2(t), t ≥ 0, very closely, as observed

from Figure 7.5.

Example 7.4.3. Consider the system

η̇(t) = J(η(t))ν(t), η(0) = η0, t ≥ 0, (7.46)

ν̇(t) = Θ∗
1ϕ(η(t)) + Θ∗

2τ(t), ν(0) = ν0, (7.47)

y(t) = η(t), (7.48)

where η(t) ,
[

φ(t) θ(t) ψ(t)
]T ∈ R3, t ≥ 0, is the measured output, ν(t) ∈ R3, t ≥ 0, is

not measured, and τ(t) ∈ R2, t ≥ 0, is the control input applied to the system. In addition,
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Θ∗
1 ∈ R3×2 and Θ∗

2 ∈ R3×2 are unknown constant matrices, and

J(η) ,




1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


 , (7.49)

ϕ(η) ,
[

cos(θ) cos(φ) − cos(θ) sin(φ)
]T

. (7.50)

Applying the technique described in Theorem 7.3.1, we construct the following predictor-

observer,

˙̂η(t) = J(η(t))ν̂(t), η̂(0) = η0, t ≥ 0, (7.51)

˙̂ν(t) = J−1(η(t))
(
P−1

2 P1e1(t)− A1(A1e1(t)− e2(t)) + ż(t) + A2e2(t)−W1(η(t), ν̂(t))z(t)

−1

2
W1(η(t), ν̂(t))WT

1 (η(t), ν̂(t))P2e2(t)
)
, ν̂(0) = ν̂0, (7.52)

where e1(t) , η(t)− η̂(t), e2(t) , A1e1(t)− z(t) + J(η(t))ν̂(t), t ≥ 0, and W1(η, ν̂) , ∂J(η)ν̂
∂η

.
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Figure 7.6: Actual and predicted trajectories of η(t), t ≥ 0.

We choose A1 = −4I3, A2 = −40I3, Q1 = 12I3, Q2 = 40I3, and obtain, from (7.15) and

(7.16), P1 = 6I3, P2 = (2.5 +
√

15/2)I3. The AIVSDE parameters are chosen as follows,

k1 = 10, k2 = 15, kb = 1/2, αr = 0, µ = 1, γ0 = x10 and kr0 = 1.

In addition, we use the following for plant parameters,

Θ∗
1 =



−2.6828 3.2966
9.8298 9.9455

0 −20


 , Θ∗

2 =




0.25 0
0 −0.575
0 0


 . (7.53)

The initial conditions are chosen as η0 = [ 5 − 27 10 ]T, ν0 = 03, η̂0 = η0 + [ 1 1 1 ]T,

ν̂0 = [ 5 5 5 ]T, and z(0) = 03. The trajectories η(t) and ν(t), t ≥ 0, are shown in Figure 7.6

and Figure 7.7, respectively. As was the case with Example 7.4.1, the algorithm performs

admirably. The predicted and observed trajectories closely match the real ones, with a short

transient.
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Figure 7.7: Actual and observed trajectories of ν(t), t ≥ 0.

7.5. Experimental Test

The previous section presented numerical simulation results, illustrating the performance

of the algorithm. Performance was further tested by implementing the presented predictor-

observer algorithm on the Quanser “3DOF helicopter” setup. Equations (7.46)–(7.48) pro-

vide a model of the setup’s dynamics. Hence, we will apply the algorithm as designed

for Example 7.4.3. However, a significant hurdle in the way of implementation is the fact

that the measurements provided by the experimental setup are discrete and quantized, with

quantization intervals of π/2048.

The observation of systems with quantized outputs constitutes a challenging problem

(as discussed in [115]), which remains essentially open. The presented predictor-observer

technique does not account for quantization of the measurements, and application of the
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technique as is to such a system yields poor results. This poor performance is mainly due

to the difficulty in obtaining a signal z(t), t ≥ 0, providing a reasonable approximation of

ẏ(t), t ≥ 0. In particular, when the measurements change from a level of quantization to

the next, most numerical derivation techniques lead to large spikes in the estimate of the

derivative. In an attempt to compensate for this issue, we used a second order low-pass

filter to smooth-out the measurements. This filter has a damping coefficient ζ =
√

2/2 and

a natural frequency ωn = 10. This simple addition to the algorithm significantly improved

experimental results, to an extent that performance of the algorithm when subjected to

quantized measurements became comparable to that without quantization (see Figure 7.8 for

simulation results showing actual and observed ν(t), t ≥ 0, with quantized measurements),

and allowed implementation of the presented algorithm.

Experimental results are shown in Figure 7.9. Note that the body fixed velocity vector

ν(t), t ≥ 0, is not measured. Hence, to assess performance of the presented algorithm, we

compare the observed ν̂(t), t ≥ 0, to an estimate of ν(t), t ≥ 0, obtained from the output of

the AIVSDE, z(t), t ≥ 0. Since z(t) is an estimate of η̇(t), t ≥ 0, it can be pre-multiplied by

J−1(η(t)), t ≥ 0, to obtain an estimate of ν(t), t ≥ 0. As seen in Figure 7.9, the observed

trajectories are in practice significantly noisier than in simulation. The algorithm however

yields promising results. In particular, the transient shows that the observer reacts more

quickly than the output of the AIVSDE to large changes in velocity.

7.6. Conclusion

This chapter presented a prediction-based observer, relevant to a wide class of nonlinear

systems, including systems whose unmeasured states appear nonlinearly in the system dy-
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Figure 7.8: Numerical simulation with measurement quantization, actual and observed
trajectories of ν(t), t ≥ 0.

namics. The algorithm relies on a pair of prediction-observation errors, constructed using a

backstepping technique. Lyapunov’s second method was used to prove Lyapunov stability

of these errors, as well as their convergence to a neighborhood of the origin. The algorithm

makes use of a derivative estimator, which allows to relax high gain requirements commonly

found in observation techniques for nonlinear systems. In addition, the relationship between

the ultimate bound on the prediction-observation errors and the derivative estimator’s level

of performance, as well as a number of relevant design constants, was made explicit. While

the algorithm is itself of interest, it essentially constitutes toward solving the output feedback

problem. In following chapters, the observer presented here will be modified and comple-

mented with control laws to solve the problem.
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Chapter 8

Observer-Based Output Feedback
Control of Nonlinear Systems
Non-Affine in the Unmeasured
States [8]

The following results were the object of a conference paper submitted to the 2009 ASME

Dynamic Systems and Control Conference (currently under review). In addition, it will be

submitted for consideration to the IEEE Transactions on Control Systems Technology.

8.1. Introduction

The work presented in this chapter builds upon the nonlinear observer introduced in

Chapter 7 to solve the output feedback control for a class of nonlinear systems. The result

aims to alleviate a number of issues inherent to separation-based algorithms. It relies on the

same premise of dividing to rule, in the sense that the output feedback control problem is split

into the two simpler problems of observer and state feedback design. However, in a departure

from classical procedures, the control law is not designed to control the system’s output, but
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Figure 8.1: Scheme comparison between separation based algorithms (left), and the pro-
posed indirect approach (right).

rather that of the observer, as described in Figure 8.1. Existing separation-based techniques

use estimates in the stead of unmeasured states, hence pursuing a “certainty equivalence”

design similar to that used in adaptive control ([10]). The output feedback algorithm pre-

sented, although sharing a similar observer/controller structure, distinguishes itself from

separation-based approaches in the extent that the control law’s form is dependent upon

that of the observer, hence breaking separation. While design flexibility is accordingly re-

duced, any “certainty equivalence” (or lack thereof) related issue is effectively circumvented.

In particular, this scheme significantly alleviates the pressure placed upon the observer. The

only requirement on such an observer is that it must be capable of predicting the actual

system’s output to a given accuracy for all admissible control inputs and is controllable.

The approach shares similarities with that presented in [62, 64], where a neural network is

employed to emulate the system’s dynamics, which is comparable to the role of the observer

in the approach presented here.

This observer is designed as an extension of that introduced in Chapter 7. The latter

relies on predictions of the measured output to observe the unmeasured states of a wide class

of nonlinear systems. The observer designed here shares the same overall structure, but is
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capable of handling controlled systems. As previously mentioned, the observer-predictor

is a dynamical system which is constructed in such a way that its output converges to an

arbitrarily small neighborhood of the actual system’s output, for any admissible control

input. Once that is achieved, a backstepping-based ([10]) control algorithm is designed for

the obtained observer system. Ultimately, it is shown that the observer’s structure guarantees

convergence of its output to a neighborhood of the output of the actual system, while the

control input guarantees convergence of the same observer output to a neighborhood of a

given desired trajectory. It follows that the actual system’s output approaches the desired

trajectory. This indirect control technique, in which one does not directly control the actual

system but rather an observer (or predictor), constitutes an extension of that used in [6,108],

where the input is designed to control a state predictor. The approach presented here is

conceptually similar, with the difference that the input is designed to control a predictor-

observer, in an extension from state feedback to output feedback.

This chapter is structured as follows. Section 8.2 describes the class of nonlinear systems

considered and provides further details on the control strategy employed. Design of the

observer-predictor is presented in Section 8.3, followed by that of the control law in Section

8.4. Numerical simulation results are provided in Section 8.5 for three examples and illustrate

the efficacy of the control scheme. Section 8.6 concludes this chapter.

8.2. Problem Statement and Control Strategy

Consider a system of the form

ẋ(t) = f(x(t), t) + g(x(t), t)u(t), x(0) = x0, t ≥ 0, (8.1)

y(t) = Cx(t), (8.2)
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where x(t) ∈ Rn, t ≥ 0, is the system’s state vector, y(t) ∈ Rm, t ≥ 0, the measured output

vector, with m ≥ n/2, u(t) ∈ Rm, t ≥ 0, the control input, and C =
[

Im 0m×p

]
, with

p = n−m ≤ m. The object of the presented work is to design the control input u(t), t ≥ 0,

such that the output y(t), t ≥ 0, uniformly converges to an arbitrarily small neighborhood

of a given yd(t) ∈ Rm, t ≥ 0. In order to simplify the notation, define Λi ,
[

Ii 0i×(m−i)

]

and Λ̄i ,
[

0(m−i)×i Im−i

]
, i = 1, . . . , m− 1.

Let x1(t) , y(t), t ≥ 0, denote the measured states, and x2(t) ∈ Rp, t ≥ 0, denote

the unmeasured states. In the following, we will assume that the system’s outputs have well

defined relative degrees one or two. The technique can be extended to handle greater relative

degrees, but we will limit ourselves to this case for ease of exposition. More specifically,

assume that q ≤ m of the m measured states are of relative degree one. Ordering the

measured states vector x1(t), t ≥ 0, by increasing relative degree, we can rewrite (8.1) as

ẋ1(t) = f1(x1(t), x2(t), t) + g1(x1(t), x2(t), t)u1(t), x1(0) = x10, t ≥ 0, (8.3)

ẋ2(t) = f2(x1(t), x2(t), t) + g2(x1(t), x2(t), t)u2(t), x2(0) = x20, (8.4)

where g1(x1(t), x2(t), t) , ΛT
q g1s(x1(t), x2(t), t), u1(t) ∈ Rq and u2(t) ∈ Rm−q, t ≥ 0, so that

u(t) =
[

uT
1 (t) uT

2 (t)
]T

, t ≥ 0.

In the following, we will first design a predictor-based observer for system (8.3)–(8.4),

building upon the technique introduced in Chapter 7. The intent is to construct a system,

with the same input u(t), t ≥ 0, as (8.3)–(8.4), and whose state x̂(t) ,
[

x̂T
1 (t) x̂T

2 (t)
]T ∈

Rn, t ≥ 0, is such that x̂1(t) ∈ Rm, t ≥ 0, converges to an arbitrarily small neighborhood of

x1(t), t ≥ 0, for any admissible control signal u(t), t ≥ 0. Next, we will design the control

input u(t), t ≥ 0, so that x̂1(t), t ≥ 0, asymptotically converges to a given yd(t), t ≥ 0,

uniformly in time. As a result, we will obtain that x̂1(t) will simultaneously converge to
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both x1(t) and x̂1(t), t ≥ 0. Hence, we will obtain that x1(t) → yd(t), t → ∞. The results

presented in the following sections rely on several assumptions. In particular, in the design

of the observer, we will assume that rank[W2s(x1, x̂2, t)] = p for all x1 ∈ Rm, x̂2 ∈ Rp,

and t ≥ 0, where W2s(x1, x̂2, t) , ∂f1(x1, x̂2, t)/∂x̂2 . This assumption implies that the

class of systems considered is a subset of the set of all observable systems ([7, 111, 112]).

In addition, we assume that g1s(x1, x̂2, t) ∈ Rq×q is nonsingular for all x1 ∈ Rm, x̂2 ∈ Rp,

and t ≥ 0. Finally, we require that there exists a constant matrix B ∈ Rp×(m−q), such that

Λ̄qW2s(x1, x̂2, t)B is nonsingular for all x1 ∈ Rm, x̂2 ∈ Rp, t ≥ 0. The latter assumption is

equivalent to assuming that the system is controllable through backstepping ([10]), and is

needed to ensure controllability of the observer-predictor to be designed.

8.3. Nonlinear Observer Design

Building upon the approach in Chapter 7, we construct a partial state predictor, with

the following Luenberger form ([13]),

˙̂x1(t) = f1(x1(t), x̂2(t), t) + g1(x1(t), x̂2(t), t)u1(t)−De1o(t), x̂1(0) = x10, t ≥ 0, (8.5)

where D ∈ Rm×m is chosen Hurwitz, e1o(t) , x1(t)− x̂1(t), t ≥ 0, is a prediction error, and

x̂2(t) ∈ Rp, t ≥ 0, is designed so that x̂1(t) ∈ Rm, t ≥ 0, provides a predicted value of x1(t),

t ≥ 0. In addition, to provide more flexibility in the design procedure, the observer-predictor

will rely on an auxiliary signal ω(t) ∈ Rm, t ≥ 0, obtained from

ω̇(t) = Wa(x1(t), x̂2(t), t)v(t), ω(0) = 0m, t ≥ 0, (8.6)

where v(t) ∈ Rm−p, t ≥ 0, and the matrix Wa(·) ∈ Rm×(m−p) is designed such that

W2(x1, x̂2, t) ,
[

W2s(x1, x̂2, t) Wa(x1, x̂2, t)
] ∈ Rm×m is nonsingular for all x1 ∈ Rm,
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x̂2 ∈ Rp, t ≥ 0. In the following, we will construct ˙̂x2a(t) ,
[

˙̂x
T

2 (t) vT(t)
]T

∈ Rm, t ≥ 0,

so that the origin of the observation error dynamics is Lyapunov stable and e1o(t), t ≥ 0,

asymptotically converges to a neighborhood of the origin, uniformly in time.

Theorem 8.3.1. Consider the system given by (8.1)–(8.2), and the partial state predic-

tor (8.5). Assume that a continuously differentiable signal z(t) is available such that z(t) =

ẏ(t) + ω(t) − ˙̂xu(t)− ε(t), with ‖ε(t)‖ ≤
√

ε/3, ε > 0, t ≥ 0, where ˙̂xu(t) , ˙̂xu1(t) + ˙̂xu2(t),

t ≥ 0, and x̂u1(t) and x̂u2(t), t ≥ 0, are obtained from

˙̂xu1(t) = g1(x1(t), x̂2(t), t)u1(t)− α1x̂u1(t), x̂u1(0) = 0m, t ≥ 0, (8.7)

¨̂xu2(t) = W2s(x1(t), x̂2(t), t)Bu2(t)− α2
˙̂xu2(t)− α3x̂u2(t), ˙̂xu2(0) = x̂u2(0) = 0m, (8.8)

where αi > 0, i = 1, 2, 3, and the matrix B ∈ Rp×(m−q) is chosen so that Λ̄qW2s(x1(t), x̂2(t), t)

B ∈ R(m−q)×(m−q) is nonsingular for all t ≥ 0. Then, consider the estimated trajectory x̂2(t),

t ≥ 0, generated by

˙̂x2a(t) = W−1
2 (x1(t), x̂2(t), t)

[
P−1

2o P1oe1o(t)− A1o((A1o + P−1
1o K)e1o(t)− e2o(t)) + ż(t)

+A2oe2o(t)−W1(x1(t), x̂2(t), t)
(
z(t)+ ˙̂xu(t)−ω(t)+

1

2
WT

1 (x1(t), x̂2(t), t)P2oe2o(t)
)

−α1
˙̂xu1(t)− α2

˙̂xu2(t)− α3x̂u2(t)−W3(x1(t), x̂2(t), t) + W2s(x1(t), x̂2(t), t)Bu2(t)
]
,

x̂2a(0) = 0m, t ≥ 0, (8.9)

x̂2(t) = Λpx̂2a(t), (8.10)

where A1o, A2o, and K are chosen Hurwitz,

e1o(t) , x1(t)− x̂1(t), t ≥ 0, (8.11)

e2o(t) , f1(x1(t), x̂2(t), t) + ω(t)− ˙̂xu2(t) + α1x̂u1(t) + A1oe1o(t)− z(t), (8.12)
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the matrices P1o, P2o ∈ Rm×m are obtained from the following Riccati equations,

AT
1oP1o + P1oA1o + Q1o + P 2

1o = 0, (8.13)

AT
2oP2o + P2oA2o + Q2o + P2oA1oA

T
1oP2o = 0, (8.14)

and Q1o , RT
1 R1 > 0, Q2o , RT

2 R2 > 0, are chosen such that

H1o ,
[

A1o Im

−Q1o −AT
1o

]
, H2o ,

[
A2o A1oA

T
1o

−Q2o −AT
2o

]
, (8.15)

have no eigenvalues on the imaginary axis and (A1o, R1), (A2o, R2) are both observable. In

addition, the auxiliary signal ω(t), t ≥ 0, is obtained from (8.6), with v(t) , Λ̄p
˙̂x2a(t), t ≥ 0.

Finally, choose D = P−1
1o K, define Q̄1o , Q1o −K −KT,

No ,
[

Q̄−1
1o P1o 0m×m

0m×m Q−1
2o P2o

]
, (8.16)

and let λmax(No) denote the maximum eigenvalue of No. The solution x̂2a(t), t ≥ 0, to (8.9)

guarantees uniform ultimate boundedness of (8.11)–(8.12) with an ultimate bound given by

Do , {(e1o, e2o) : eT
1oP1oe1o + eT

2oP2oe2o ≤ ελmax(No)}.

Proof . The time derivative of the prediction error e1o(t), t ≥ 0, is given by

ė1o(t) = f1(x1(t), x2(t), t)+g1(x1(t), x2(t), t)u1(t)−f1(x1(t), x̂2(t), t)−g1(x1(t), x̂2(t), t)u1(t)

+P−1
1o Ke1o(t), t ≥ 0, (8.17)

which, using ẏ(t) = z(t) + ˙̂xu(t)− ω(t) + ε(t), ˙̂xu(t) = ˙̂xu1(t) + ˙̂xu2(t), t ≥ 0, and (8.7), can

be rewritten as

ė1o(t) = z(t)+ ˙̂xu(t)+ε(t)+P−1
1o Ke1o(t)−(f1(x1(t), x̂2(t), t)+ω(t))−g1(x1(t), x̂2(t), t)u1(t)

= z(t)+ ˙̂xu2(t)−α1x̂u1(t)+P−1
1o Ke1o(t)+ε(t)−(f1(x1(t), x̂2(t), t)+ω(t)), t ≥ 0. (8.18)

138



Furthermore, substituting (8.12) into (8.18), we obtain

ė1o(t) = (A1o + P−1
1o K)e1o(t)− e2o(t) + ε(t), t ≥ 0. (8.19)

The time derivative of the observation error e2o(t), t ≥ 0, is of the form

ė2o(t) = A1oė1o(t) + W1(x1(t), x̂2(t), t)ẋ1(t) + W2(x1(t), x̂2(t), t) ˙̂x2a(t) + W3(x1(t), x̂2(t), t)

−ż(t)−W2s(x1(t), x̂2(t), t)Bu2(t) + α1x̂u1(t) + α2
˙̂xu2(t) + α3x̂u2(t)

= A1oε(t) + A1o((A1o + P−1
1o K)e1o(t)− e2o(t))− ż(t) + W1(x1(t), x̂2(t), t)(z(t)− ω(t)

+ ˙̂xu(t)+ε(t))+W3(x1(t), x̂2(t), t)−W2s(x1(t), x̂2(t), t)Bu2(t) + α1
˙̂xu1(t) + α2

˙̂xu2(t)

+α3x̂u2(t) + W2(x1(t), x̂2(t), t) ˙̂x2a(t), t ≥ 0. (8.20)

Substituting (8.9) into (8.20), we obtain

ė2o(t) = A1oε(t) + A1o((A1o + P−1
1o K)e1o(t)− e2o(t))− ż(t) + W1(x1(t), x̂2(t), t)(z(t)− ω(t)

+ ˙̂xu(t)+ε(t))+W3(x1(t), x̂2(t), t)−W2s(x1(t), x̂2(t), t)Bu2(t)+P−1
2o P1oe1o(t)+ż(t)

+α1
˙̂xu1(t) + α2

˙̂xu2(t) + α3x̂u2(t)−W3(x1(t), x̂2(t), t)−W1(x1(t), x̂2(t), t)
(
z(t)

+ ˙̂xu(t)−ω(t)+
1

2
WT

1 (x1(t), x̂2(t), t)P2oe2o(t)
)

+A2oe2o(t)+W2s(x1(t), x̂2(t), t)Bu2(t)

−A1o((A1o + P−1
1o K)e1o(t)− e2o(t))− α1

˙̂xu1(t)− α2
˙̂xu2(t)− α3x̂u2(t)

= P−1
2o P1oe1o(t) + A2oe2o(t)−W1(x1(t), x̂2(t), t)

(1

2
WT

1 (x1(t), x̂2(t), t)P2oe2o(t)− ε(t)
)

+A1oε(t), t ≥ 0. (8.21)

Next, we consider the following Lyapunov function candidate,

V (e1o, e2o) = eT
1oP1oe1o + eT

2oP2oe2o, (8.22)

where P1o, P2o > 0 are obtained from (8.13) and (8.14), respectively. The time derivative of
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(8.22) along the trajectories of (8.19) and (8.21) is given by

V̇(t)=eT
1o(t)(A

T
1oP1o + P1oA1o)e1o(t) + eT

2o(t)(A
T
2oP2o + P2oA2o)e2o(t) + eT

1o(t)(K + KT)e1o(t)

+2eT
2o(t)P2o

[
A1oε(t) + W1(x1(t), x̂2(t), t)

(
ε(t)− 1

2
WT

1 (x1(t), x̂2(t), t)P2oe2o(t)
)

+P−1
2o P1oe1o(t)

]
− 2eT

1o(t)P1o(e2o(t)− ε(t))

=2eT
2o(t)P2oW1(x1(t), x̂2(t), t)

(
ε(t)− 1

2
WT

1 (x1(t), x̂2(t), t)P2oe2o(t)
)

+2eT
2o(t)P2oA1oε(t)

−eT
1o(t)(Q̄1o+P 2

1o)e1o(t)−eT
2o(t)(Q2o+P2oA1oA

T
1oP2o)e2o(t)+2eT

1o(t)P1oε(t), t≥0.(8.23)

Using the completion of the square rule, we obtain

2eT
1oP1oε=−(P1oe1o − ε)T(P1oe1o − ε) + eT

1oP
2
1oe1o + εTε, (8.24)

2eT
2oP2oA1oε=−(AT

1oP2oe2o−ε)T(AT
1oP2oe2o−ε)+eT

2oP2oA1oA
T
1oP2oe2o+εTε, (8.25)

2eT
2oP2oW1(x1, x̂2, t)ε=eT

2oP2oW1(x1, x̂2, t)W
T
1 (x1, x̂2, t)P2oe2o + εTε

− (
WT

1 (x1, x̂2, t)P2oe2o − ε
)T (

WT
1 (x1, x̂2, t)P2oe2o − ε

)
. (8.26)

Substituting (8.24)–(8.26) in (8.23), it follows that

V̇ (t) ≤ −eT
1o(t)(Q̄1o + P 2

1o)e1o(t) + eT
1o(t)P

2
1oe1o(t)− eT

2o(t)(Q2o + P2oA1oA
T
1oP2o)e2o(t)

+eT
2o(t)P2oA1oA

T
1oP2oe2o(t) + eT

2o(t)P2oW1(x1(t), x̂2(t), t)W
T
1 (x1(t), x̂2(t), t)P2oe2o(t)

−eT
2o(t)P2oW1(x1(t), x̂2(t), t)W

T
1 (x1(t), x̂2(t), t)P2oe2o(t) + 3εT(t)ε(t)

≤ −eT
1o(t)Q̄1oe1o(t)− eT

2o(t)Q2oe2o(t) + ε, t ≥ 0. (8.27)

Hence, V̇ (t), t ≥ 0, is strictly negative outside of
{
(e1o, e2o) : eT

1oQ̄1oe1o + eT
2oQ2oe2o ≤ ε

}
,

which allows to conclude ultimate boundedness of (e1o(t), e2o(t)), t ≥ 0 ([44,88]). In addition,

the ultimate bound can be characterized by α , min(eT
1oP1oe1o + eT

2oP2oe2o), subject to the

constraint eT
1oQ̄1oe1o +eT

2oQ2oe2o = ε. This constrained minimization problem is easily solved
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using Lagrange multipliers, yielding α = ελmax(No), which proves convergence of the error

trajectories to Do and concludes this proof. ¤

8.4. Nonlinear Controller Design

In the previous section, we designed an observer-predictor, which provides a prediction

x̂1(t) of x1(t), t ≥ 0. This prediction can be made arbitrarily accurate, for any admissible

input u(t), t ≥ 0. Next, we will design the input u(t), t ≥ 0, so that the origin of the tracking

error dynamics is Lyapunov stable and e1t(t) , yd − x̂1(t), t ≥ 0, asymptotically converges

to a neighborhood of the origin, uniformly in time. More specifically, we design a controller

for the following system,

˙̂x1(t) = f1(x1(t), x̂2(t), t)−De1o(t) + g1(x1(t), x̂2(t), t)u1(t), x̂1(0) = x10, t ≥ 0,(8.28)

˙̂x2(t) = ΛpW
−1
2 (x1(t), x̂2(t), t)γ(t) + Bu2(t), x̂2(0) = 0p, (8.29)

where D = P−1
1o K and

γ(t) , P−1
2o P1oe1o(t)−A1o((A1o+P−1

1o K)e1o(t)−e2o(t))+ż(t)+A2oe2o(t)−W3(x1(t), x̂2(t), t)

−W1(x1(t), x̂2(t), t)
(
z(t)+ ˙̂xu(t)−ω(t)+

1

2
WT

1 (x1(t), x̂2(t), t)P2oe2o(t)
)
− α1

˙̂xu1(t)

−α2
˙̂xu2(t)− α3x̂u2(t), t ≥ 0. (8.30)

In the following, we require that the contribution of the control signal u2(t), t ≥ 0, to the

observer’s dynamics be topologically equivalent to its contribution to the actual system’s

dynamics. This is achieved by requiring that uT
2 BTg2(x1, x2, t)u2 > 0, for all u2 ∈ Rm−q\{0},

x1 ∈ Rm, x2 ∈ Rp, and t ≥ 0. This requirement is verified if B is constructed such that the

symmetric part of BTg2(x1, x2, t) is positive definite for all x1 ∈ Rm, x2 ∈ Rp, and t ≥ 0.
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Note that in the scalar case, this is equivalent to assuming that B and g2(x1, x2, t) share

the same sign for all x1 ∈ Rm, x2 ∈ Rp, and t ≥ 0. This assumption is similar to that

introduced in [58], where the authors assume knowledge of the signs of the leading minors

of g2(x1, x2, t).

The problem of designing a control algorithm for system (8.28)–(8.29) can be solved using

a backstepping procedure, as described in [10]. This type of approach leads to the following

result.

Theorem 8.4.1. Consider system (8.28)–(8.29), and the control input u(t) = [ uT
1 (t),

uT
2 (t) ]T, t ≥ 0, given by

u1(t) = g−1
1s (x1(t), x̂2(t), t)Λq(ẏd(t)− f1(x1(t), x̂2(t), t) + De1o(t)− A1te1t(t)), t ≥ 0, (8.31)

u2(t) = (Λ̄qW2s(x1(t), x̂2(t), t)B)−1[Λ̄q(−W1(x1(t), x̂2(t), t)(z(t)− ω(t) + ˙̂xu(t))

+ÿd(t)−W2s(x1(t), x̂2(t), t)ΛpW
−1
2 (x1(t), x̂2(t), t)γ(t)−W3(x1(t), x̂2(t), t)

+D((A1o+D)e1o(t)−e2o(t))−A1t(A1te1t(t)−Λ̄T
q e2t(t)))+P−1

2t Λ̄qP1te1t(t)+A2te2t(t)

−1

2
Λ̄q(W1(x1(t), x̂2(t), t)−D)(W1(x1(t), x̂2(t), t)−D)TΛ̄T

q P2te2t(t)], (8.32)

where yd(t) ∈ Rm, t ≥ 0, is a given desired output, ω(t), t ≥ 0, is obtained from (8.6),

x̂u(t) = x̂u1(t) + x̂u2(t), t ≥ 0, is obtained from (8.7)–(8.8), γ(t), t ≥ 0, is given by (8.30),

e2t(t) , Λ̄qf1(x1(t), x̂2(t), t) − Λ̄q(ẏd(t) + De1o(t) − A1te1t(t)), the matrices A1t and A2t are

chosen Hurwitz, and P1t, P2t > 0, are solutions to

AT
1tP1t + P1tA1t + Q1t = 0, AT

2tP2t + P2tA2t + Q2t = 0, (8.33)

where Q1t and Q2t are chosen positive definite. Finally, define

Nt ,
[

Q−1
1t P1t 0m×m

0m×m Q−1
2t P2t

]
. (8.34)
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Then, the control input (8.31)–(8.32) guarantees uniform ultimate boundedness of the track-

ing errors (e1t(t), e2t(t)), t ≥ 0, with an ultimate bound given by Dt , {(e1t, e2t) : eT
1tP1te1t +

eT
2tP2te2t ≤ ελmax(Nt)/3}.

Proof . The time derivative of the tracking error e1t(t), t ≥ 0, is given by

ė1t(t) = ẏd(t)− f1(x1(t), x̂2(t), t)− g1(x1(t), x̂2(t), t)u1(t) + De1o(t), t ≥ 0. (8.35)

Note that

Λqė1t(t) = Λq(ẏd(t)− f1(x1(t), x̂2(t), t) + De1o(t))− g1s(x1(t), x̂2(t), t)u1(t), t ≥ 0.(8.36)

Substituting (8.31) in the above, we obtain

Λqė1t(t) = ΛqA1te1t(t), t ≥ 0. (8.37)

In addition, by definition of e2t(t), t ≥ 0,

Λ̄qė1t(t) = Λ̄qA1te1t(t)− e2t(t), t ≥ 0. (8.38)

Combining (8.37) and (8.38), and observing that [ ΛT
q Λ̄T

q ] = Im, we obtain

ė1t(t) = A1te1t(t)− Λ̄T
q e2t(t), t ≥ 0. (8.39)

The time derivative of e2t(t), t ≥ 0, is given by

ė2t(t) = Λ̄q(W1(x1(t), x̂2(t), t)ẋ1(t) + W2s(x1(t), x̂2(t), t) ˙̂x2(t) + W3(x1(t), x̂2(t), t)− ÿd(t)

+A1tė1t(t)−Dė1o(t))

= Λ̄q

(
W1(x1(t), x̂2(t), t)(z(t)− ω(t) + ˙̂xu(t) + ε(t)) + W3(x1(t), x̂2(t), t)− ÿd(t)

+W2s(x1(t), x̂2(t), t)ΛpW
−1
2 (x1(t), x̂2(t), t)γ(t) + A1t(A1te1t(t)− Λ̄T

qe2t(t))

−D((A1o + D)e1o(t)− e2o(t) + ε(t))
)

+ Λ̄qW2s(x1(t), x̂2(t), t)Bu2(t), t ≥ 0. (8.40)
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Substituting (8.32) in (8.40) yields

ė2t(t) = −1

2
Λ̄q(W1(x1(t), x̂2(t), t)−D)(W1(x1(t), x̂2(t), t)−D)TΛ̄T

q P2te2t(t)

+A2te2t(t) + P−1
2t Λ̄qP1te1t(t) + Λ̄q(W1(x1(t), x̂2(t), t)−D)ε(t), t ≥ 0. (8.41)

Next, we consider the following Lyapunov function candidate,

V (e1t, e2t) = eT
1tP1te1t + eT

2tP2te2t, (8.42)

where P1t, P2t > 0 are obtained from (8.33). The time derivative of (8.42) along the trajec-

tories of (8.39) and (8.41) is given by

V̇ (t) = eT
1t(t)(A

T
1tP1t + P1tA1t)e1t(t) + eT

2t(t)(A
T
2tP2t + P2tA2t)e2t(t)− 2eT

1t(t)P1tΛ̄
T
q e2t(t)

−2eT
2t(t)P2t

(1

2
Λ̄q(W1(x1(t), x̂2(t), t)−D)(W1(x1(t), x̂2(t), t)−D)TΛ̄T

q P2te2t(t)

−P−1
2t Λ̄qP1te1t(t)− Λ̄q(W1(x1(t), x̂2(t), t)−D)ε(t)

)

= −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2t(t) + 2eT
2t(t)P2tΛ̄q(W1(x1(t), x̂2(t), t)−D)ε(t)

−eT
2t(t)P2tΛ̄q(W1(x1(t), x̂2(t), t)−D)(W1(x1(t), x̂2(t), t)−D)TΛ̄T

q P2te2t(t), t≥0.(8.43)

Note that

2eT
2tP2tΛ̄q(D −W1(x1, x̂2, t))ε = eT

2tP2tΛ̄q(D −W1(x1, x̂2, t))(D −W1(x1, x̂2, t))
TΛ̄T

q P2te2t

− (
(D −W1(x1, x̂2, t))

TΛ̄T
q P2te2t − ε

)T (
(D −W1(x1, x̂2, t))

TΛ̄T
q P2te2t − ε

)
+ εTε.(8.44)

Substituting (8.44) into (8.43), we obtain that

V̇ (t) ≤ −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2t(t) + εT(t)ε(t)

≤ −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2t(t) +
ε

3
, t ≥ 0. (8.45)

Following the same reasoning as that at the end of the proof of Theorem 8.3.1, we conclude

that (e1t(t), e2t(t)), t ≥ 0, is ultimately bounded and uniformly converges to Dt. ¤
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8.5. Illustrative Numerical Examples

As in the preceding chapter, the predictor-observer will use the Adaptive Integral Variable

Structure Derivative Estimator (AIVSDE) described in [57]. However, in this chapter, we

set r(t) = y(t)− x̂u(t) +
∫ t

0
ω(τ)dτ , to obtain an estimate z(t) of ẏ(t) + ω(t)− ˙̂xu(t), t ≥ 0.

Example 8.5.1. Consider the following system,

ẋ1(t) = a sin(x1(t) + x2(t)) + b(tanh(πx2(t)− 2) + tanh(x3
2(t)/10) + x3

2(t)/100),

x1(0) = x10, t ≥ 0, (8.46)

ẋ2(t) = c tanh(x1(t))− dx3
2(t) + u(t), x2(0) = x20, (8.47)

y(t) = x1(t), (8.48)

where x1(t), x2(t), u(t) ∈ R, t ≥ 0, and a, b, c, d ∈ R. Note that, for the above system,

m = p = 1. It is therefore unnecessary to construct an auxiliary signal ω(t), t ≥ 0, and

the design procedure is simplified. More specifically, we construct the following predictor-

observer,

˙̂x1(t) = a sin(x1(t) + x̂2(t)) + b(tanh(πx̂2(t)− 2) + tanh(x̂3
2(t)/10) + x̂3

2(t)/100),

x̂1(0) = x̂10, t ≥ 0, (8.49)

˙̂x2(t) = γ(t)/w2(x1(t), x̂2(t)) + u(t), x̂2(0) = 0, (8.50)

where

γ(t) = p1oe1o(t)/p2o − w1(x1(t), x̂2(t))(z(t) + ˙̂xu(t) + wT
1 (x1(t), x̂2(t))p2oe2o(t)/2)

+A2oe2o(t)− A1o(A1oe1o(t)− e2o(t)) + ż(t)− ˙̂xu(t)− x̂u(t), t ≥ 0, (8.51)

e1o(t) = x1(t)− x̂1(t), (8.52)
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e2o(t) = ˙̂x1(t) + A1oe1o(t)− z(t)− ˙̂xu(t) + x̂u(t), (8.53)

w1(x1, x̂2) = a cos(x1 + x̂2), (8.54)

w2(x1, x̂2) = a cos(x1 + x̂2) + b(πsech2(πx̂2 − 2) + sech2(x̂3
2/10)(3x̂2

2/10) + 3x̂2
2/100). .(8.55)

Choosing A1o = −10, A2o = −100, q1o = 10, q2o = 80, we obtain p1o = 0.5132, p2o =

0.5528 from (8.13)–(8.14). The parameters of the AIVSDE are chosen as follows, k1 = 10,

k2 = 20, kb = 30, αr = 0.1, µ = 0.2, γr0 = x10 and kr0 = 10. In accordance with the form of

system (8.49)–(8.50), the control law is given by

u(t)=[− w1(x1(t), x̂2(t))(z(t) + ˙̂xu(t)) + ÿd(t)− γ(t)− A1t(A1te1t(t)− e2t(t)) + A2te2t(t)

+p1te1t(t)/p2t−w1(x1(t), x̂2(t))w
T
1(x1(t), x̂2(t))p2te2t(t)/2]/w2(x1(t), x̂2(t)), t≥0,(8.56)

where e1t(t) = yd − x̂1(t), e2t(t) = ˙̂x1(t) − ẏd(t) + A1te1t(t), t ≥ 0. In addition, we chose

A1t = −5, A2t = −1, q1t = 5, q2t = 1, and obtain from (8.33), p1t = p2t = 1/2. Finally,

˙̂xu(t), t ≥ 0, is obtained from (8.8) with B = α2 = α3 = 1, and u2(t), t ≥ 0, given by (8.56).

The desired output trajectory is chosen to be yd(t) = −5 cos(t), t ≥ 0.

For the purpose of numerical simulation, we chose the following parameters for the system

model, a = 0.4, b = 10, c = −1 and d = 0.1. Note that, with this choice of parameters,

w2(x1, x̂2) 6= 0, for all x1, x̂2 ∈ R. In addition, we choose x10 = x20 = 2, x̂10 = 1, x̂20 = 0,

and z(0) = 0. The resulting system and predictor-observer trajectories are shown in Figure

8.2.

The predicted x̂1(t) closely matches the measured x1(t), t ≥ 0, as seen in Figure 8.2. In

addition, the observed x̂2(t) also closely matches the unmeasured x2(t), t ≥ 0, and converges

as quickly as its predicted counterpart. Note that the initial condition for the prediction x̂10

could have been chosen as x10, since x1(t), t ≥ 0, is measured. This would have resulted

146



0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6

 

 

0 1 2 3 4 5 6 7 8 9 10

 -1

0

1

2

3

4

Time [s]

 

 

x
1
(t

)
x

2
(t

)

actual
predicted

actual
observed

Figure 8.2: Actual and predicted/observed trajectories.
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Figure 8.3: Actual and desired output trajectories.

in a decreased initial overshoot of x̂2(t), t ≥ 0. The initial prediction was however chosen

different from x10 to illustrate convergence of x̂1(t) to x1(t), t ≥ 0. The efficacy of the

control law (8.56) is illustrated by Figure 8.3, which shows the real trajectory converging

to the desired yd(t), t ≥ 0. The control input is shown in Figure 8.4. Note that we have

employed the saturation algorithm presented in [1] to limit the command in amplitude.

Example 8.5.2. Consider the system

ẋ11(t) = −x3
11(t) + tanh(x12(t)) +

1 + x2
11(t)

1 + x2
2(t)

u1(t), x11(0) = x110, t ≥ 0,(8.57)

ẋ12(t) = 4 tanh(x11(t))− 2 tanh(x12(t)) + x2(t) + cos(x2
2(t))/2, x12(0) = x120, (8.58)

ẋ2(t) = −x3
2(t)− 2 tanh((x11(t) + x12(t))

3) +
1 + x2

11(t)

1 + x2
2(t)

u2(t), x2(0) = x20, (8.59)
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y(t) = x1(t), (8.60)

where x1(t) ,
[

x11(t) x12(t)
]T ∈ R2, and x2(t) ∈ R, t ≥ 0. Applying the technique

described in Theorem 8.3.1, we construct the following predictor-observer,

˙̂x1(t) = f1(x1(t), x̂2(t)) + g1(x1(t), x̂2(t))u1(t)−De1o(t), x̂1(0) = x10 ,
[

x110 x120

]T
,

t ≥ 0, (8.61)

˙̂x2a(t) = W−1
2 (x2(t))(γ(t) + W2su2(t)), x̂2a(0) = x̂2a0, (8.62)

where

γ(t) = P−1
2o P1oe1o(t)−A1o((A1o+ P−1

1o K)e1o(t)− e2o(t)) + ż(t) +A2oe2o(t)− ˙̂xu1(t)−x̂u2(t)

− ˙̂xu2(t)−W1(x1(t))
(
z(t)− ω(t) + ˙̂xu(t) + WT

1 (x1(t))P2oe2o(t)/2
)
, t ≥ 0, (8.63)

e1o(t) = x1(t)− x̂1(t), (8.64)

e2o(t) = f1(x1(t), x̂2(t))− ˙̂xu2(t) + x̂u1(t) + ω(t)− z(t) + A1oe1o(t), (8.65)
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the auxiliary signals ω(t) is obtained from (8.6), with v(t) ,
[

0 1
]

˙̂x2a(t), t ≥ 0, and

Wa = [ 1 0 ]T. In addition, K = −5I2,

f1(x1, x̂2) =

[ −x3
11 + tanh(x12) + 3 sin(x̂2)

4 tanh(x11)− 2 tanh(x12)− 3 cos(x̂2)

]
, g1(x1, x̂2) =

[
1+x2

11

1+x̂2
2

0

]
, (8.66)

W1(x1) =

[ −3x2
11 sech2(x12)

4sech2(x11) −2sech2(x12)

]
, W2(x̂2) =

[
0 1

1− sin(2x̂2)/2 0

]
. (8.67)

Choosing A1o = −35I2, Q1o = 35I2, A2o = −500I2, and Q2o = 160I2, we obtain, from (8.13)–

(8.14), P1o = 0.5036I2, P2o = 0.2185I2. The parameters used for the AIVSDE are identical

to that in the previous example. The initial conditions for the system and the observer are

chosen as x10 =
[

2 2
]T

, x20 = −1, and x̂2a0 = 02. The control command is of the form

u1(t) =
1 + x̂2

2(t)

1 + x2
11(t)

Λ1(ẏd(t)− f1(x1(t), x̂2(t)) + De1o(t)− A1te1t(t)), t ≥ 0, (8.68)

u2(t) =
2

2− sin(2x̂2(t))

(
Λ̄1(−W1(x1(t))(z(t)− ω(t) + ˙̂xu(t)) + ÿd(t)− γ(t)

+D((A1o+D)e1o(t)−e2o(t))−A1t(A1te1t(t)−Λ̄T
1 e2t(t)))+A2te2t(t)

+P−1
2t Λ̄1P1te1t(t)− 1

2
Λ̄1(W1(x1(t))−D)(W1(x1(t))−D)TΛ̄T

1 P2te2t(t)
)
, (8.69)

with e1t(t) = yd− x̂1(t), e2t(t) = Λ̄1f1(x1(t), x̂2(t))− Λ̄1(ẏd(t)+De1o(t)−A1te1t(t)), t ≥ 0. In

addition, we choose A1t = −10I2, A2t = −10, Q1t = 10I2, Q2t = 10, and obtain from (8.33),

P1t = I2/2, P2t = 1/2. Finally, ˙̂xu(t), t ≥ 0, is obtained from (8.7)–(8.8) with B = αi = 1,

i = 1, 2, 3, W2s = [0, 1− sin(2x̂2)/2 ]T, and g1s(x1, x̂2) = Λ1g1(x1, x̂2). The desired trajectory

is chosen to be yd(t) = [ 2 sin(2t), 1 + sin(2t)/2 ]T, t ≥ 0.

As seen in Figure 8.5, the predicted trajectory x̂1(t), t ≥ 0, quickly converges to the

actual trajectory x1(t), t ≥ 0. Similarly, after a short transient, the observed trajectory

x̂2(t), t ≥ 0, matches the unmeasured state x2(t), t ≥ 0, very closely, as observed from

Figure 8.6. Furthermore, the command (8.68)–(8.69), shown in Figure 8.7, proves effective,
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Figure 8.5: Actual and predicted trajectories.
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and x1(t), t ≥ 0, converges to the desired yd(t), t ≥ 0, as shown in Figure 8.8.

Example 8.5.3. Consider the system

η̇(t) = J(η(t))ν(t), η(0) = η0, t ≥ 0, (8.70)

ν̇(t) = Θ∗
1ϕ(η(t)) + Θ∗

2u(t), ν(0) = ν0, (8.71)

y(t) = η(t), (8.72)

where η(t) ,
[

φ(t) θ(t) ψ(t)
]T ∈ R3, t ≥ 0, is the measured output, ν(t) ∈ R3, t ≥ 0, is

not measured, and u(t) ∈ R2, t ≥ 0, is the control input applied to the system. In addition,
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Figure 8.8: Actual and desired output trajectories.
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Θ∗
1 ∈ R3×2 and Θ∗

2 ∈ R3×2 are unknown constant matrices, and

J(η),




1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


, ϕ(η),

[
cos(θ) cos(φ)
− cos(θ) sin(φ)

]
. (8.73)

Applying the technique described in Theorem 8.3.1, we construct the following predictor-

observer,

˙̂η(t) = J(η(t))ν̂(t), η̂(0) = η0, t ≥ 0, (8.74)

˙̂ν(t) = J−1(η(t))γ(t) + Bu(t), ν̂(0) = ν̂0, (8.75)

where

γ(t) = P−1
2o P1oe1o(t)− A1o(A1oe1o(t)− e2o(t)) + ż(t) + A2oe2o(t)− x̂u(t)− ˙̂xu(t)

−W1(η(t), ν̂(t))(z(t) + ˙̂xu(t) + WT
1 (η(t), ν̂(t))P2oe2o(t)/2), t ≥ 0, (8.76)

e1o(t) = η(t)− η̂(t), (8.77)

e2o(t) = A1oe1o(t)− z(t) + J(η(t))ν̂(t)− ˙̂xu(t), (8.78)

W1(η, ν̂) =
∂J(η)ν̂

∂η
, (8.79)

and we choose

B ,
[

1 0 0
0 −1 0

]T

. (8.80)

In addition, we choose A1o = −diag([ 20 10 10 ]), A2o = 10A1o, Q1o = −A1o, Q2o =

diag([ 80 60 60 ]), and obtain, from (8.13) and (8.14), P1o = diag([ 0.5064, 0.5132, 0.5132 ]),

P2o = diag([0.2764, 0.3675, 0.3675]). The AIVSDE parameters are chosen as follows, k1 = 10,

k2 = 15, kb = 1, αr = 0, µ = 0.2, γr0 = x10 and kr0 = 2.

In addition, we use the following for plant parameters,

Θ∗
1 =



−2.6828 3.2966
9.8298 9.9455

0 −20


 , Θ∗

2 =




0.25 0
0 −0.575
0 0


 . (8.81)
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Note that BTΘ∗
2 > 0. In addition, since u(t) ∈ R2, t ≥ 0, we will here limit ourselves to

controlling two of the three degrees of freedom of the system. In particular, we will control

ηs(t) , [ φ(t) θ(t) ]T, t ≥ 0. This can be achieved by adjusting the control law (8.31)–(8.32)

as follows,

u(t)=BsJ
−1
1 (η(t))

(
−W1s(η(t), ν̂(t))Λ2(z(t)+ ˙̂xu(t))−J3(η(t))γ(t)−j2(t) ˙̂r(t)+ÿd(t)+A2te2t(t)

−A1t(A1te1t(t)−e2t(t))+P−1
2t P1te1t(t)−W1s(η(t), ν̂(t))WT

1s(η(t), ν̂(t))P2te2t(t)/2
)
,

t ≥ 0, (8.82)

where e1t(t) , yd(t)− η̂s(t), e2t(t) , J1(η(t))ν̂s(t)− ẏd + j2(η(t))r̂(t) + A1te1t(t), t ≥ 0,

Bs,
[

1 0
0 −1

]
, J1(η),

[
1 tan(θ) sin(φ)
0 cos(φ)

]
, Λ2 ,

[
I2 02

]
,

W1s(η, ν̂),
[
q̂ tan(θ) cos(φ)−r̂ tan(θ) sin(φ) q̂(1+tan2(θ)) sin(φ)+r̂(1+tan2(θ)) cos(φ)

−q̂ sin(φ)−r̂ cos(φ) 0

]
,

J3(η),
[

1 tan(θ) sin(φ) − sin(θ) cos2(φ)
0 cos2(φ) sin(2φ) cos(θ)/2

]
, j2(t),

[
tan(θ) cos(φ) − sin(φ)

]T
. (8.83)

In addition, we choose A1t = −5I2, A2t = −1I2, Q1t = 5I2, Q2t = 5I2, and obtain from

(8.33), P1t = P2t = I2/2. Finally, ˙̂xu(t), t ≥ 0, is obtained from (8.8) with W2s(η) = J(η),

α2 = α3 = 1, and we choose yd(t) = [ 3.3 sin(t/8), −22 cos(t/4) ]T, t ≥ 0. Note that the

control law (8.82) is based on (8.32). The latter had to be modified for this example as the

system features fewer control inputs than outputs.

The initial conditions are chosen as η0 = [ 4 − 27 10 ]T, ν0 = 03, ν̂0 = [ 1 1 1 ]T, and

z(0) = 03. The trajectories η(t) and ν(t), t ≥ 0, are shown in Figure 8.9 and Figure 8.10,

respectively. As was the case with Example 8.5.1, the observer performs well. The predicted

and observed trajectories closely match the real ones, with a short transient. The command

is shown in Figure 8.12. It is effective, and ηs(t) converges to the desired yd(t), t ≥ 0, as can

be seen in Figure 8.11.
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Figure 8.9: Actual and predicted trajectories of η(t), t ≥ 0.
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Figure 8.10: Actual and observed trajectories of ν(t), t ≥ 0.
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8.6. Conclusion

This chapter presented a novel output feedback control scheme, combining an observer-

predictor and a state feedback control law. In a first step, the observer-predictor is designed

so that its output converges to an arbitrarily small neighborhood of the actual system’s out-

put, for any admissible control input. In a second step, a control algorithm is derived, using

backstepping, to control the observer-predictor’s output. The latter is shown to converge to

an arbitrarily small neighborhood of a given desired trajectory. It thus follows that the actual

system’s output converges to the desired output. Note that the algorithm requires knowledge

of the system’s dynamics. This requirement will be relaxed in the following chapter.
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Chapter 9

Nonlinear Predictor-Based Output
Feedback Control for a Class of
Uncertain Nonlinear Systems

The following results will be submitted for consideration to the 2010 IEEE American Control

Conference and Transactions on Automatic Control.

9.1. Introduction

In the following, we build upon the observer-based output feedback algorithm introduced

in the previous chapter. The knowledge requirements the observer in Chapter 8 relied on

will be relaxed by reducing the predictor-observer to an output predictor. The approach

is comparable to that introduced in [59], in which the author rely on an adaptive output

predictor to solve the output feedback problem. However, we avoid resorting to an adaptive

technique. More specifically, we construct an output predictor, similar to that in Chapter 8,

capable of predicting the actual system’s output with arbitrary accuracy, for any admissible

control input. The prediction relies on a derivative estimator such as those found in [54,56,
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57], which is used to allow accurate predictions in spite of limited knowledge of the system’s

dynamics. Subsequently, since the predictor’s state and dynamics are constructed and hence

known, a simple state feedback control law is designed to control the predictor’s output using

backstepping. Ultimately, it is shown that the predictor’s output is made to converge to the

actual system’s outputs and to the desired output simultaneously. It thus follows that the

actual system’s output approaches the desired output. Lyapunov’s direct method is used to

show uniform ultimate boundedness of both prediction and tracking errors.

This chapter is structured as follows. Section 9.2 describes the type of system considered.

The output predictor is introduced in Section 9.3. Design of a control algorithm for this

predictor is then presented in Section 9.4. Results of numerical simulations are presented in

Section 9.5 and illustrate the efficacy of the algorithm. Section 9.6 concludes this chapter.

9.2. Problem Statement and Control Strategy

Consider a system of the form

ẋ(t) = f(x(t), t) + g(x(t), t)u(t), x(0) = x0, t ≥ 0, (9.1)

y(t) = Cx(t), (9.2)

where x(t) ∈ Rn, t ≥ 0, is the system’s state vector, y(t) ∈ Rm, t ≥ 0, the measured

output vector, with m < n, u(t) ∈ Rm, t ≥ 0, the control input, and C =
[

Im 0m×p

]
,

with p = n − m. In order to simplify the notation, define Λi ,
[

Ii 0i×(m−i)

]
and Λ̄i ,

[
0(m−i)×i Im−i

]
, i = 1, . . . ,m − 1. The object of the presented work is, using output

measurements, to design the control input u(t), t ≥ 0, such that the output y(t), t ≥ 0,

uniformly converges to an arbitrarily small neighborhood of a given yd(t) ∈ Rm, t ≥ 0, in
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spite of limited knowledge of both f(·) and g(·).

Let x1(t) , y(t), t ≥ 0, denote the measured states, and x2(t) ∈ Rp, t ≥ 0, denote

the unmeasured states. In the following, we will assume that the system’s outputs have well

defined relative degrees one or two. The technique can be extended to handle greater relative

degrees, but we will limit ourselves to this case for ease of exposition. More specifically,

assume that q ≤ m of the m measured states are of relative degree one. Ordering the

measured states vector x1(t), t ≥ 0, by increasing relative degree, we can rewrite (9.1) as

ẋ1(t) = f1(x1(t), x2(t), t) + g1(x1(t), x2(t), t)u1(t), x1(0) = x10, t ≥ 0, (9.3)

ẋ2(t) = f2(x1(t), x2(t), t) + g2(x1(t), x2(t), t)u2(t), x2(0) = x20, (9.4)

where g1(x1(t), x2(t), t) , ΛT
q g1s(x1(t), x2(t), t), u1(t) ∈ Rq and u2(t) ∈ Rm−q, t ≥ 0, so that

u(t) =
[

uT
1 (t) uT

2 (t)
]T

, t ≥ 0.

To solve the output feedback problem, we will construct an output predictor. This

predictor is constructed so that its output approaches an arbitrarily small neighborhood of

the actual system’s output for any admissible control signal. In addition, we design the

predictor in such a fashion that it is controllable. Then, we construct a full state feedback

controller using a backstepping design. The controller is designed to drive the predictor’s

output to an arbitrarily small neighborhood of a given desired output trajectory.

9.3. Output Predictor Design

Building upon the approach in Chapter 8, we construct a partial state predictor of the

form

˙̂x1(t) = ϕ1(x1(t), v(t), t) + γ1(x1(t), v(t), t)u1(t), x̂1(0) = x10, t ≥ 0, (9.5)
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where ϕ1(x1, v, t) ∈ Rm is designed so that W2(x1, v, t) , ∂ϕ1(x1, v, t)/∂v ∈ Rm×m is non-

singular for all x1 ∈ Rm, v ∈ Rm and t ≥ 0, the matrix γ1(x1, v, t) , ΛT
q γ1s(x1(t), x2(t), t) ∈

Rm×q is designed such that γ1s(x1, v, t) ∈ Rq×q is nonsingular for all x1 ∈ Rm, v ∈ Rm and

t ≥ 0, and the signal v(t) ∈ Rm, t ≥ 0, is to be designed so that x̂1(t) ∈ Rm, t ≥ 0, provides

a predicted value of x1(t), t ≥ 0.

For the statement of the following result, we will use the notations

W1(x1, v, t) , ∂ϕ1(x1, v, t)

∂x1

, W3(x1, v, t) , ∂ϕ1(x1, v, t)

∂t
. (9.6)

Theorem 9.3.1. Consider the system given by (9.1)–(9.2). Assume that a continuously

differentiable signal z(t) is available such that z(t) = ẏ(t)− ˙̂xu(t)− ε(t), with ‖ε(t)‖ ≤
√

ε/3,

ε > 0, t ≥ 0, where ˙̂xu(t) , ˙̂xu1(t) + ˙̂xu2(t), t ≥ 0, and x̂u1(t) and x̂u2(t), t ≥ 0, are obtained

from

˙̂xu1(t)=γ1(x1(t), v(t), t)u1(t)−α1x̂u1(t), x̂u1(0) = 0m, t ≥ 0,(9.7)

¨̂xu2(t)=W2(x1(t), v(t), t)γ2(x1(t), v(t), t)u2(t)−α2
˙̂xu2(t)−α3x̂u2(t), ˙̂xu2(0)= x̂u2(0)=0m,(9.8)

where α1, α2, α3 > 0, the matrix γ2(x1, v, t) ∈ Rp×(m−q) is chosen so that Λ̄qW2(x1(t), v(t), t)

γ2(x1(t), v(t), t) ∈ R(m−q)×(m−q) is nonsingular for all x1 ∈ Rm, v ∈ Rm, and t ≥ 0. Then,

consider the following state predictor,

˙̂x1(t) = ϕ1(x1(t), v(t), t) + γ1(x1(t), v(t), t)u1(t), x̂1(0) = x10, t ≥ 0, (9.9)

v̇(t) = ϕ2(t) + γ2(x1(t), v(t), t)u2(t), v(0) = 0m, (9.10)

where

ϕ2(t), W−1
2 (x1(t), v(t), t)

[
P−1

2o P1oe1o(t)− A1o(A1oe1o(t)− e2o(t)) + ż(t)−W3(x1(t), v(t), t)

162



−W1(x1(t), v(t), t)
(
z(t)+ ˙̂xu(t)+

1

2
WT

1 (x1(t), v(t), t)P2oe2o(t)
)

+A2oe2o(t)− α1
˙̂xu1(t)

−α2
˙̂xu2(t)− α3x̂u2(t)

]
, t ≥ 0, (9.11)

with A1o and A2o chosen Hurwitz,

e1o(t) , x1(t)− x̂1(t), t ≥ 0, (9.12)

e2o(t) , ϕ1(x1(t), v(t), t)− ˙̂xu2(t) + α1x̂u1(t) + A1oe1o(t)− z(t), (9.13)

the matrices P1o, P2o ∈ Rm×m are obtained from the following Riccati equations,

AT
1oP1o + P1oA1o + Q1o + P 2

1o = 0, (9.14)

AT
2oP2o + P2oA2o + Q2o + P2oA1oA

T
1oP2o = 0, (9.15)

and Q1o , RT
1 R1 > 0, Q2o , RT

2 R2 > 0, are chosen such that

H1o ,
[

A1o Im

−Q1o −AT
1o

]
, H2o ,

[
A2o A1oA

T
1o

−Q2o −AT
2o

]
, (9.16)

have no eigenvalues on the imaginary axis and (A1o, R1), (A2o, R2) are both observable.

Finally, define

No ,
[

Q−1
1o P1o 0m×m

0m×m Q−1
2o P2o

]
, (9.17)

and let λmax(No) denote the maximum eigenvalue of No. Then the solution v(t), t ≥ 0, to

(9.10) guarantees uniform ultimate boundedness of (9.12)–(9.13) with an ultimate bound

given by Do , {(e1o, e2o) : eT
1oP1oe1o + eT

2oP2oe2o ≤ ε λmax(No)}.

Proof . The time derivative of the prediction error e1o(t), t ≥ 0, is given by

ė1o(t) = f1(x1(t), x2(t), t)+g1(x1(t), x2(t), t)u1(t)−ϕ1(x1(t), v(t), t)−γ1(x1(t), v(t), t)u1(t),

t ≥ 0, (9.18)
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which, using ẏ(t) = z(t) + ˙̂xu(t) + ε(t), ˙̂xu(t) = ˙̂xu1(t) + ˙̂xu2(t), t ≥ 0, and (9.7), can be

rewritten as

ė1o(t) = z(t) + ˙̂xu(t) + ε(t)− ϕ1(x1(t), v(t), t)− γ1(x1(t), v(t), t)u1(t)

= z(t) + ˙̂xu2(t)− α1x̂u1(t) + ε(t)− ϕ1(x1(t), v(t), t), t ≥ 0. (9.19)

Furthermore, using (9.13), we obtain

ė1o(t) = z(t) + ˙̂xu2(t)− α1x̂u1(t) + ε(t)− e2o(t)− ˙̂xu2(t) + α1x̂u1(t) + A1oe1o(t)− z(t)

= A1oe1o(t)− e2o(t) + ε(t), t ≥ 0. (9.20)

The time derivative of the error e2o(t), t ≥ 0, is of the form

ė2o(t) = A1oė1o(t) + W1(x1(t), v(t), t)ẋ1(t) + W2(x1(t), v(t), t)v̇(t) + W3(x1(t), v(t), t)

−ż(t)−W2(x1(t), v(t), t)γ2(x1(t), v(t), t)u2(t) + α1
˙̂xu1(t) + α2

˙̂xu2(t) + α3x̂u2(t)

= A1oε(t) + A1o(A1oe1o(t)− e2o(t))− ż(t) + W1(x1(t), v(t), t)(z(t) + ˙̂xu(t) + ε(t))

+W3(x1(t), v(t), t)−W2(x1(t), v(t), t)γ2(x1(t), v(t), t)u2(t) + W2(x1(t), v(t), t)v̇(t)

+α1
˙̂xu1(t) + α2

˙̂xu2(t) + α3x̂u2(t), t ≥ 0. (9.21)

Substituting (9.10) into (9.21), we obtain

ė2o(t) = A1oε(t) + A1o(A1oe1o(t)− e2o(t))− ż(t) + W1(x1(t), v(t), t)(z(t)+ ˙̂xu(t)+ ε(t))

+W3(x1(t), v(t), t)−W2(x1(t), v(t), t)γ2(x1(t), v(t), t)u2(t)+P−1
2o P1oe1o(t)+ż(t)

+α1
˙̂xu1(t) + α2

˙̂xu2(t) + α3x̂u2(t)− A1o(A1oe1o(t)− e2o(t))−W3(x1(t), v(t), t)

−W1(x1(t), v(t), t)
(
z(t) + ˙̂xu(t) +

1

2
WT

1 (x1(t), v(t), t)P2oe2o(t)
)

+ A2oe2o(t)

−α1
˙̂xu1(t)− α2

˙̂xu2(t)− α3x̂u2(t) + W2(x1(t), v(t), t)γ2(x1(t), v(t), t)u2(t)

= P−1
2o P1oe1o(t) + A2oe2o(t)− 1

2
W1(x1(t), v(t), t)WT

1 (x1(t), v(t), t)P2oe2o(t)

+(W1(x1(t), v(t), t) + A1o)ε(t), t ≥ 0. (9.22)
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Next, we consider the following Lyapunov function candidate,

V (e1o, e2o) = eT
1oP1oe1o + eT

2oP2oe2o, (9.23)

where P1o, P2o > 0 are obtained from (9.14) and (9.15), respectively. The time derivative of

(9.23) along the trajectories of (9.20) and (9.22) is given by

V̇(t)=eT
1o(t)(A

T
1oP1o+P1oA1o)e1o(t) + eT

2o(t)(A
T
2oP2o+P2oA2o)e2o(t)− 2eT

1o(t)P1o(e2o(t)−ε(t))

+2eT
2o(t)P2o

[
(W1(x1(t), v(t), t)+A1o)ε(t)−W1(x1(t), v(t), t)WT

1 (x1(t), v(t), t)P2oe2o(t)/2

+P−1
2o P1oe1o(t)

]

=eT
2o(t)P2oW1(x1(t), v(t), t)(2ε(t)−WT

1 (x1(t), v(t), t)P2oe2o(t))+2eT
2o(t)P2oA1oε(t)

−eT
1o(t)(Q1o+P 2

1o)e1o(t)−eT
2o(t)(Q2o+P2oA1oA

T
1oP2o)e2o(t)+2eT

1o(t)P1oε(t), t≥0. (9.24)

Using the completion of the square rule, we obtain

2eT
1oP1oε = −(P1oe1o − ε)T(P1oe1o − ε) + eT

1oP
2
1oe1o + εTε, (9.25)

2eT
2oP2oA1oε = −(AT

1oP2oe2o − ε)T(AT
1oP2oe2o − ε) + eT

2oP2oA1oA
T
1oP2oe2o + εTε, (9.26)

2eT
2oP2oW1(x1, v, t)ε = eT

2oP2oW1(x1, v, t)WT
1 (x1, v, t)P2oe2o + εTε

− (
WT

1 (x1, v, t)P2oe2o − ε
)T (

WT
1 (x1, v, t)P2oe2o − ε

)
. (9.27)

It follows that

V̇ (t) ≤ −eT
1o(t)(Q1o + P 2

1o)e1o(t) + eT
1o(t)P

2
1oe1o(t)− eT

2o(t)(Q2o + P2oA1oA
T
1oP2o)e2o(t)

+eT
2o(t)P2oA1oA

T
1oP2oe2o(t) + eT

2o(t)P2oW1(x1(t), v(t), t)WT
1 (x1(t), v(t), t)P2oe2o(t)

−eT
2o(t)P2oW1(x1(t), v(t), t)WT

1 (x1(t), v(t), t)P2oe2o(t) + 3εT(t)ε(t)

≤ −eT
1o(t)Q1oe1o(t)− eT

2o(t)Q2oe2o(t) + ε, t ≥ 0. (9.28)

165



Hence, V̇ (t), t ≥ 0, is strictly negative outside of
{
(e1o, e2o) : eT

1oQ1oe1o + eT
2oQ2oe2o ≤ ε

}
,

which allows to conclude ultimate boundedness of (e1o(t), e2o(t)), t ≥ 0 ([44,88]). In addition,

the ultimate bound can be characterized by α , min(eT
1oP1oe1o + eT

2oP2oe2o), subject to the

constraint eT
1oQ1oe1o +eT

2oQ2oe2o = ε. This constrained minimization problem is easily solved

using Lagrange multipliers, yielding α = ελmax(No), which proves convergence of the error

trajectories to Do and concludes this proof. ¤

Remark 9.3.1. Note that the result in Theorem 9.3.1 does not require knowledge of the

dimension of the system state, n.

Theorem 9.3.1 proposes a fairly general form of output predictor, given by (9.9)–(9.10).

Provided that the assumptions are verified, it is guaranteed to generate an arbitrarily ac-

curate prediction x̂1(t) of x1(t), t ≥ 0, for any admissible input signal u(t), t ≥ 0. The

prediction algorithm is designed to handle a wide class of nonlinear systems, and, as a con-

sequence, is somewhat complex. It can however be specialized and accordingly simplified,

as described in the following corollary.

Corollary 9.3.1. Consider the system given by (9.1)–(9.2), and assume that a con-

tinuously differentiable signal z(t) is available such that z(t) = ẏ(t) − ˙̂xu(t) − ε(t), with

‖ε(t)‖ ≤
√

ε/2, ε > 0, t ≥ 0, where ˙̂xu(t) , ˙̂xu1(t) + ˙̂xu2(t), t ≥ 0, and x̂u1(t) and x̂u2(t),

t ≥ 0, are obtained from

˙̂xu1(t) = B1u1(t)− α1x̂u1(t), x̂u1(0) = 0m, t ≥ 0, (9.29)

¨̂xu2(t) = B2u2(t)− α2
˙̂xu2(t)− α3x̂u2(t), ˙̂xu2(0) = x̂u2(0) = 0m, (9.30)

where α1, α2, α3 > 0, B1 ,
[

BT
1s 0q×(m−q)

]T ∈ Rm×q and B2 ∈ Rm×(m−q), are designed so

that B1s ∈ Rq×q and Λ̄qB2 ∈ R(m−q)×(m−q) are nonsingular. Consider the following output
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predictor,

˙̂x1(t) = v(t) + B1u1(t), x̂1(0) = x10, t ≥ 0, (9.31)

v̇(t) = ϕ2(t) + B2u2(t), v(0) = 0m, (9.32)

with

ϕ2(t) = P−1
2o P1oe1o(t)− A1o(A1oe1o(t)− e2o(t)) + ż(t) + A2oe2o(t)− α1

˙̂xu1(t)− α2
˙̂xu2(t)

−α3x̂u2(t), t ≥ 0, (9.33)

where e1o(t), e2o(t), t ≥ 0, are given by (9.12)–(9.13), with ϕ1(v) , v, A1o, A2o are chosen

Hurwitz, the matrices P1o, P2o ∈ Rm×m are obtained from (9.14)–(9.15), with Q1o, Q2o,

chosen as described in Theorem 9.3.1. The solution v(t), t ≥ 0, to (9.32) guarantees ultimate

boundedness of the tracking errors (e1o(t), e2o(t)) with an ultimate bound given by Do.

Proof . After appropriate substitutions, the time derivative of (9.12)–(9.13) yields the

following error dynamics,

ė1o(t) = A1oe1o(t)− e2o(t) + ε(t), e1o(0) = 0m, t ≥ 0. (9.34)

ė2o(t) = P−1
2o P1oe1o(t) + A2oe2o(t) + A1oε(t), e2o(0) = e2o0. (9.35)

Selecting the Lyapunov function candidate given by (9.23), its time derivative long the

trajectories of (9.34)–(9.35) is given by

V̇ (t) = −eT
1o(t)(Q1o + P 2

1o)e1o(t)− eT
2o(t)(Q2o + P2oA1oA

T
1oP2o)e2o(t) + 2eT

1o(t)P1oε(t)

+2eT
2o(t)P2oA1oε(t), t ≥ 0. (9.36)

Substituting (9.25)–(9.26) into (9.36), we obtain

V̇ (t) ≤ −eT
1o(t)Q1oe1o(t)− eT

2o(t)Q2oe2o(t) + ε, t ≥ 0, (9.37)
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which, following the same reasoning as that at the conclusion of the proof of Theorem 9.3.1,

allows to conclude ultimate boundedness of (e1o(t), e2o(t)), t ≥ 0, and convergence of the

error trajectories to Do. ¤

9.4. Nonlinear Controller Design

In the previous section, we designed an output predictor, which provides a prediction

x̂1(t) of x1(t), t ≥ 0. This prediction can be made arbitrarily accurate, for any admissible

input u(t), t ≥ 0. Next, we will design the input u(t), t ≥ 0, so that the origin of the tracking

error dynamics is Lyapunov stable and e1t(t) , yd − x̂1(t), t ≥ 0, asymptotically converges

to a neighborhood of the origin, uniformly in time. More specifically, we design a controller

for the following system,

˙̂x1(t) = ϕ1(x1(t), v(t), t) + γ1(x1(t), v(t), t)u1(t), x̂1(0) = x10, t ≥ 0, (9.38)

v̇(t) = ϕ2(t) + γ2(x1(t), v(t), t)u2(t), v(0) = 0m, (9.39)

where ϕ2(t), t ≥ 0, is given by (9.11). In the following, we require that the contribution

of the control signal u(t), t ≥ 0, to the predictor’s dynamics be topologically equivalent

to its contribution to the actual system’s dynamics. This is achieved by requiring that

uT
1 γT

1 (x1, v, t)g1(x1, x2, t)u1 > 0 and u2γ
T
2 (x1, v, t)WT

2 (x1, v, t)(∂f1(x1, x2, t)/∂x2)g2(x1, x2, t)

u2 > 0, for all u ∈ Rm \ {0}, x1 ∈ Rm, x2 ∈ Rp, v ∈ Rm, and t ≥ 0. This require-

ment is verified if γ1(·) and γ2(·) are constructed such that the symmetric part of both

γT
1 (x1, v, t)g1(x1, x2, t) ∈ Rq×q and γT

2 (x1, v, t)WT
2 (x1, v, t)(∂f1(x1, x2, t)/∂x2)g2(x1, x2, t) ∈

R(m−q)×(m−q) is positive definite for all x1 ∈ Rm, x2 ∈ Rp, v ∈ Rm, and t ≥ 0. Note that

in the scalar case, the assumption on γ1(·) is equivalent to assuming that γ1(x1, v, t) and
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g1(x1, x2, t) share the same sign for all x1 ∈ Rm, x2 ∈ Rp, v ∈ Rm, and t ≥ 0. This assump-

tion is similar to that introduced in [58], where the authors assume knowledge of the signs

of the leading minors of g(x, t).

The problem of designing a control algorithm for system (9.38)–(9.39) can be solved using

a backstepping procedure, as described in [10]. This type of approach leads to the following

result.

Theorem 9.4.1. Consider system (9.38)–(9.39), and the control input u(t) = [ uT
1 (t),

uT
2 (t) ]T, t ≥ 0, given by

u1(t)=γ−1
1s (x1(t), v(t), t)Λq(ẏd(t)− A1te1t(t)− ϕ1(x1(t), v(t), t)), t ≥ 0, (9.40)

u2(t)=(Λ̄qW2(x1(t), v(t), t)γ2(x1(t), v(t), t))−1
[
P−1

2t Λ̄qP1te1t(t)−Λ̄q

(
W3(x1(t), v(t), t)

+W2(x1(t), v(t), t)ϕ2(t) + W1(x1(t), v(t), t)( ˙̂xu(t) + WT
1 (x1(t), v(t), t)Λ̄T

q P2te2t(t)/2

+z(t))− ÿd(t) +A1t(A1te1t(t)−Λ̄T
q e2t(t))

)
+A2te2t(t)

]
, (9.41)

where yd(t) ∈ Rm, t ≥ 0, is a given desired output, x̂u(t) = x̂u1(t)+ x̂u2(t), t ≥ 0, is obtained

from (9.7)–(9.8), ϕ2(t), t ≥ 0, is given by (9.11), e2t(t) , Λ̄qϕ1(x1(t), v(t), t) − Λ̄q(ẏd(t) −
A1te1t(t)), the matrices A1t and A2t are chosen Hurwitz, and P1t, P2t > 0, are solutions to

AT
1tP1t + P1tA1t + Q1t = 0, AT

2tP2t + P2tA2t + Q2t = 0, (9.42)

where Q1t and Q2t are chosen positive definite. Finally, define

Nt ,
[

Q−1
1t P1t 0m×m

0m×m Q−1
2t P2t

]
. (9.43)

Then, the control input (9.40)–(9.41) guarantees uniform ultimate boundedness of the track-

ing errors (e1t(t), e2t(t)), t ≥ 0, with an ultimate bound given by Dt , {(e1t, e2t) : eT
1tP1te1t+

eT
2tP2te2t ≤ ελmax(Nt)/3}.
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Proof . The time derivative of the tracking error e1t(t), t ≥ 0, is given by

ė1t(t) = ẏd(t)− ϕ1(x1(t), v(t), t)− γ1(x1(t), v(t), t)u1(t), t ≥ 0. (9.44)

Note that

Λqė1t(t) = Λq(ẏd(t)− ϕ1(x1(t), v(t), t))− γ1s(x1(t), v(t), t)u1(t), t ≥ 0. (9.45)

Substituting (9.40) in the above, we obtain

Λqė1t(t) = ΛqA1te1t(t), t ≥ 0. (9.46)

In addition, by definition of e2t(t), t ≥ 0,

Λ̄qė1t(t) = Λ̄qA1te1t(t)− e2t(t), t ≥ 0. (9.47)

Combining (9.46) and (9.47), and observing that [ ΛT
q Λ̄T

q ] = Im, we obtain

ė1t(t) = A1te1t(t)− Λ̄T
q e2t(t), t ≥ 0. (9.48)

The time derivative of e2t(t), t ≥ 0, is given by

ė2t(t)=Λ̄q(W1(x1(t), v(t), t)ẋ1(t)+W2(x1(t), v(t), t)v̇(t)+W3(x1(t), v(t), t)−ÿd(t)+A1tė1t(t))

=Λ̄q

(
W1(x1(t), v(t), t)(z(t) + ˙̂xu(t) + ε(t)) + W3(x1(t), v(t), t) + W2(x1(t), v(t), t)ϕ2(t)

−ÿd(t)+A1t(A1te1t(t)−Λ̄T
qe2t(t))

)
+Λ̄qW2(x1(t), v(t), t)γ2(x1(t), v(t), t)u2(t), t≥0.(9.49)

Substituting (9.41) in (9.49) yields

ė2t(t) = P−1
2t Λ̄qP1te1t(t) + A2te2t(t)− 1

2
Λ̄qW1(x1(t), v(t), t)WT

1 (x1(t), v(t), t)Λ̄T
q P2te2t(t)

+Λ̄qW1(x1(t), v(t), t)ε(t), t ≥ 0. (9.50)
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Next, we consider the following Lyapunov function candidate,

V (e1t, e2t) = eT
1tP1te1t + eT

2tP2te2t, (9.51)

where P1t, P2t > 0 are obtained from (9.42). The time derivative of (9.51) along the trajec-

tories of (9.48) and (9.50) is given by

V̇ (t) = eT
1t(t)(A

T
1tP1t + P1tA1t)e1t(t) + eT

2t(t)(A
T
2tP2t + P2tA2t)e2t(t)− 2eT

1t(t)P1tΛ̄
T
q e2t(t)

+2eT
2t(t)P2t

(
− Λ̄qW1(x1(t), v(t), t)WT

1 (x1(t), v(t), t)Λ̄T
q P2te2t(t) + P−1

2t Λ̄qP1te1t(t)

+Λ̄qW1(x1(t), v(t), t)ε(t)
)

= −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2t(t) + 2eT
2t(t)P2tΛ̄qW1(x1(t), v(t), t)ε(t)

−eT
2t(t)P2tΛ̄qW1(x1(t), v(t), t)WT

1 (x1(t), v(t), t)Λ̄T
q P2te2t(t), t ≥ 0. (9.52)

Note that

2eT
2tP2tΛ̄qW1(x1, v, t)ε = eT

2tP2tΛ̄qW1(x1, v, t)WT
1 (x1, v, t)Λ̄T

q P2te2t + εTε

− (
WT

1 (x1, v, t)Λ̄T
q P2te2t − ε

)T (
WT

1 (x1, v, t)Λ̄T
q P2te2t − ε

)
. (9.53)

Substituting (9.53) into (9.52), we obtain that

V̇ (t) ≤ −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2t(t) + εT(t)ε(t)

≤ −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2t(t) +
ε

3
, t ≥ 0. (9.54)

Following the same reasoning as that at the end of the proof of Theorem 9.3.1, we conclude

that (e1t(t), e2t(t)), t ≥ 0, is ultimately bounded and uniformly converges to Dt. ¤

In a similar fashion as was done in Corollary 9.3.1, the following corollary presents a

simpler control algorithm than that in Theorem 9.4.1.
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Corollary 9.4.1. Consider the system given by (9.31)–(9.32), and assume that there

exists B1 ,
[

BT
1s 0q×(m−q)

]T ∈ Rm×q and B2 ∈ Rm×(m−q) such that the symmetric part

of BT
1 g1(x1, x2, t) ∈ Rq×q and that of BT

2 (∂f1(x1, x2, t)/∂x2)g2(x1, x2, t) ∈ R(m−q)×(m−q) is

positive definite for all x1 ∈ Rm, x2 ∈ Rp and t ≥ 0. Then consider the control input

u(t) =
[
uT

1 (t) uT
2 (t)

]T
, t ≥ 0, given by

u1(t)=B−1
1s Λq(ẏd(t)− A1te1t(t)− v(t)), t ≥ 0, (9.55)

u2(t)=(Λ̄qB2)
−1

[
P−1

2t Λ̄qP1te1t(t)+A2te2t(t)−Λ̄q

(
ϕ2(t)− ÿd(t) +A1t(A1te1t(t)−Λ̄T

q e2t(t))
)]

,

(9.56)

where yd(t) ∈ Rm, t ≥ 0, is a given desired output, x̂u(t) , x̂u1(t)+ x̂u2(t), t ≥ 0, is obtained

from (9.29)–(9.30), ϕ2(t) = P−1
2o P1oe1o(t)−A1o(A1oe1o(t)−e2o(t))+ż(t)+A2oe2o(t)−α1

˙̂xu1(t)−
α2

˙̂xu2(t)−α3x̂u2(t), e2t(t) , Λ̄qv(t)−Λ̄q(ẏd(t)−A1te1t(t)), the matrices A1t and A2t are chosen

Hurwitz, and P1t, P2t > 0, are solutions to (9.42), with Q1t and Q2t chosen positive definite.

Then, the control input (9.55)–(9.56) guarantees Lyapunov stability and exponential

convergence to the origin of the tracking errors (e1t, e2t).

Proof . The error dynamics are of the form

ė1t(t) = A1te1t(t)− Λ̄T
q e2t(t), e1t(0) = e1t0, t ≥ 0. (9.57)

ė2t(t) = P−1
2t Λ̄qP1te1t(t) + A2te2t(t), e2t(0) = e2t0. (9.58)

The time derivative of Lyapunov function candidate (9.51) along the trajectories of (9.57)–

(9.58) is of the form

V̇ (t) = −eT
1t(t)Q1te1t(t)− eT

2t(t)Q2te2o(t), t ≥ 0, (9.59)
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which satisfies the assumptions of Theorem 4.10 in [44], and thus allows to conclude expo-

nential stability of the origin of system (9.57)–(9.58). ¤

9.5. Illustrative Numerical Examples

As in preceding chapters, the output predictor will use the Adaptive Integral Variable

Structure Derivative Estimator (AIVSDE) described in [57]. However, in this chapter, we

set r(t) = y(t)− x̂u(t), to obtain an estimate z(t) of ẏ(t)− ˙̂xu(t), t ≥ 0.

Example 9.5.1. Consider the following system,

ẋ1(t) = a sin(x1(t) + x2(t)) + b(tanh(πx2(t)− 2) + tanh(x3
2(t)/10) + x3

2(t)/100),

x1(0) = x10, t ≥ 0, (9.60)

ẋ2(t) = c tanh(x1(t))− dx3
2(t) + u(t), x2(0) = x20, (9.61)

y(t) = x1(t), (9.62)

where x1(t), x2(t), u(t) ∈ R, t ≥ 0, and a, b, c, d ∈ R. Following the result in Corollary

9.3.1, we construct the following predictor,

˙̂x1(t) = v(t), x̂1(0) = x̂10, t ≥ 0, (9.63)

v̇(t) = ϕ2(t) + Bu(t), v̂(0) = 0, (9.64)

where

e1o(t) = x1(t)− x̂1(t), t ≥ 0, (9.65)

e2o(t) = v(t) + A1oe1o(t)− z(t)− ˙̂xu(t), (9.66)

ϕ2(t) = p1oe1o(t)/p2o−A1o(A1oe1o(t)−e2o(t))+ż(t)+A2oe2o(t)−α2
˙̂xu(t)−α3x̂u(t). (9.67)
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In addition, we choose B = 5, and ˙̂xu(t), t ≥ 0, is obtained from (9.30) with B2 = B,

α2 = α3 = 10, and u2(t) = u(t), t ≥ 0, given by

u(t) = p1te1t(t)/p2t + A2te2t(t)− ϕ2(t) + ÿd(t)− A1t(A1te1t(t)− e2t(t)), t ≥ 0, (9.68)

where e1t(t) = yd − x̂1(t), e2t(t) = v(t) − ẏd(t) + A1te1t(t), t ≥ 0. Choosing A1o = −10,

A2o = −20, q1o = 10, q2o = 3, we obtain p1o = 0.5132, p2o = 0.1 from (9.14)–(9.15). The

parameters of the AIVSDE are chosen as follows, k1 = 5, k2 = 10, kb = 5, αr = 0, µ = 0.2,

γr0 = x10 and kr0 = 5. In addition, we chose A1t = −5, A2t = −1, q1t = 5, q2t = 1, and

obtain from (9.42), p1t = p2t = 1/2. Finally, the desired output trajectory is chosen to be

yd(t) = −5 cos(t), t ≥ 0.

For the purpose of numerical simulation, we chose the following parameters for the system

model, a = 0.4, b = 10, c = −1 and d = 0.1. In addition, we choose x10 = x20 = 2, x̂10 = 1,

x̂20 = 0, and z(0) = 0. The resulting system and predictor trajectories are shown in Figure

9.1 (top).

The predicted x̂1(t) closely matches the measured x1(t), t ≥ 0, as seen in Figure 9.1

(top). Note that the initial condition for the prediction x̂10 could have been chosen as x10,

since x1(t), t ≥ 0, is measured. The initial prediction was however chosen different from x10

to illustrate convergence of x̂1(t) to x1(t), t ≥ 0. The efficacy of the control law (9.68) is

also illustrated by Figure 9.1 (top), which shows the real trajectory converging to the desired

yd(t), t ≥ 0. The control input is shown in Figure 9.1 (bottom). Note that we have employed

the saturation algorithm presented in [1] to limit the command in amplitude.

Furthermore, note that ∂f1(x1(t), x2(t), t)/∂x2(t) = a cos(x1 + x̂2) + b(πsech2(πx̂2 − 2) +

sech2(x̂3
2/10) (3x̂2

2/10)+3x̂2
2/100), t ≥ 0. With the selected a, b, c and d parameters, we have

that ∂f1(x1(t), x2(t), t)/∂x2(t) > 0 for all x1, x̂2 ∈ R and t ≥ 0. In addition, in the nota-
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Figure 9.1: Actual, predicted and desired trajectories (top); control effort (bottom).
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Figure 9.3: Actual, predicted and desired trajectories (top); control effort (bottom).

tions of Corollary 9.4.1, g2(x1(t), x2(t), t) ≡ 1, t ≥ 0. Hence, BT
2 (∂f1(x1(t), x2(t), t)/∂x2(t))

g2(x1(t), x2(t), t)
T > 0 for any B > 0. In other words, the algorithm is guaranteed to perform

well for any positive choice of B. This flexibility is illustrated by Figure 9.2, which shows

the system output and control signal for various choices of B. While the transient changes

for different values of B, the system output converges to the given desired trajectory in all

cases.

In addition, note that the algorithm does not rely on knowledge of the form of the right-

hand-side of (9.60)–(9.61). This means that the algorithm is not directly dependent upon

the form of the system’s dynamics. The same predictor-controller (9.63)–(9.68) provides the

same stability guarantees for any particular form of the system’s dynamics, provided that

the system is controllable. To illustrate this point, we modify the right-hand-side of (9.60)
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as follows,

ẋ1(t) = a sin(x1(t) + x2(t)) + b(tanh(πx2(t)− 2) + tanh(x3
2(t)/10) + x3

2(t)/100) + 2x1(t),

x1(0) = x10, t ≥ 0.(9.69)

This new system is identical to the previous one, except for the addition of the (qualitatively)

destabilizing term 2x1(t), t ≥ 0, in (9.69). Applying the same predictor-controller to this

new system yielded the result shown in Figure 9.3. Due to the addition of the destabilizing

term, the transient is extended by a few seconds. However, performance of the algorithm is

ultimately identical. More specifically, we observe that x̂1(t) converges to x1(t), t ≥ 0, and

that the system’s output converges to the desired yd(t), t ≥ 0.

Example 9.5.2. Consider the system

ẋ11(t) = −x3
11(t) + tanh(x12(t)) +

1 + x2
11(t)

1 + x2
2(t)

u1(t), x11(0) = x110, t ≥ 0, (9.70)

ẋ12(t) = 4 tanh(x11(t))− 2 tanh(x12(t)) + x2(t) + cos(x2
2(t))/2, x12(0) = x120, (9.71)

ẋ2(t) = −x3
2(t)− 2 tanh((x11(t) + x12(t))

3) +
1 + x2

11(t)

1 + x2
2(t)

u2(t), x2(0) = x20, (9.72)

y(t) = x1(t), (9.73)

where x1(t) ,
[

x11(t) x12(t)
]T ∈ R2, and x2(t) ∈ R, t ≥ 0. Applying the technique

described in Corollary 9.3.1, we construct the following predictor,

˙̂x1(t) = v(t) + B1u1(t), x̂1(0) = x̂10, t ≥ 0, (9.74)

v̇(t) = ϕ2(t) + B2u2(t), v(0) = 02, (9.75)

where

e1o(t) = x1(t)− x̂1(t), t ≥ 0, (9.76)
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e2o(t) = v(t)− ˙̂xu2(t) + α1x̂u1(t)− z(t) + A1oe1o(t), (9.77)

ϕ2(t) = P−1
2o P1oe1o(t)− A1o(A1oe1o(t)− e2o(t)) + ż(t) + A2oe2o(t)− α1

˙̂xu1(t)− α2
˙̂xu2(t)

−α3x̂u1(t). (9.78)

In addition, we select αi = 10, i = 1, 2, 3, B1 = [ 4, 0 ]T, B2 = [ 0, 2 ]T, A1o = −10I2, Q1o =

10I2, A2o = −20I2, and Q2o = 3I2. We obtain, from (9.14)–(9.15), P1o = 0.5132I2, P2o =

0.1I2. The parameters used for the AIVSDE are identical to that in the previous example.

The initial conditions for the system and the predictor are chosen as x10 =
[

2 2
]T

,

x20 = −1, and x̂10 =
[

1 1
]T

. The control command is of the form

u1(t)=Λ1(ẏd(t)− v(t)− A1te1t(t))/4, t ≥ 0, (9.79)

u2(t)=
[
P−1

2t Λ̄1P1te1t(t)+A2te2t(t)−Λ̄1

(
ϕ2(t)−ÿd(t)−A1t(A1te1t(t)−Λ̄Te2t(t))

)]
/2, (9.80)

with e1t(t) = yd − x̂1(t), e2t(t) = Λ̄1v(t) − Λ̄1(ẏd(t) − A1te1t(t)), t ≥ 0. In addition, we

choose A1t = −10I2, A2t = −10, Q1t = 10I2, Q2t = 10, and obtain from (9.42), P1t = I2/2,

P2t = 1/2. Finally, ˙̂xu(t), t ≥ 0, is obtained from (9.29)–(9.29). The desired trajectory is

chosen to be yd(t) = [ 2 sin(2t), 1 + sin(2t)/2 ]T, t ≥ 0.

As seen in Figure 9.4, the predicted trajectory x̂1(t), t ≥ 0, quickly converges to the

actual trajectory x1(t), t ≥ 0. Furthermore, the command (9.79)–(9.80), shown in Figure

9.5, proves effective, and x1(t), t ≥ 0, converges to the desired yd(t), t ≥ 0, as shown in

Figure 9.4.

Example 9.5.3. Consider the system

η̇(t) = J(η(t))ν(t), η(0) = η0, t ≥ 0, (9.81)

ν̇(t) = Θ∗
1ϕ(η(t)) + Θ∗

2u(t), ν(0) = ν0, (9.82)

y(t) =
[

I2 02

]
η(t), (9.83)
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where η(t) ,
[

φ(t) θ(t) ψ(t)
]T ∈ R3, ν(t) ,

[
p(t) q(t) r(t)

]T ∈ R3, and u(t) ∈ R2,

t ≥ 0, is the control input applied to the system. In addition, Θ∗
1 ∈ R3×2 and Θ∗

2 ∈ R3×2 are

unknown constant matrices, and

J(η),




1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


, ϕ(η),

[
cos(θ) cos(φ)
− cos(θ) sin(φ)

]
. (9.84)

Applying the technique described in Theorem 9.3.1, we construct the following predictor,

˙̂x1(t) = v(t), x̂1(0) = y(0), t ≥ 0, (9.85)

v̇(t) = ϕ2(t) + B(y(t))u(t), v(0) = v0, (9.86)

where

e1o(t) = x1(t)− x̂1(t), t ≥ 0, (9.87)

e2o(t) = v(t)− ˙̂xu(t) + α1x̂u1(t)z(t) + A1oe1o(t), (9.88)

ϕ2(t) = P−1
2o P1oe1o(t)+A2oe2o(t)−A1o(A1oe1o(t)−e2o(t))+ż(t)−α2

˙̂xu(t)−α3x̂u(t), (9.89)

B(y(t)) =

[
1 − tan(θ) sin(φ)
0 − cos(φ)

]
. (9.90)

In addition, we choose A1o = −diag([ 20 10 ]), A2o = 2A1o, Q1o = −A1o, Q2o = 3I2, and

obtain, from (9.14) and (9.15), P1o = diag([ 0.5064, 0.5132 ]), P2o = diag([ 0.05, 0.1 ]). The

AIVSDE parameters are chosen as follows, k1 = 10, k2 = 15, kb = 1, αr = 0, µ = 0.2,

γr0 = x10 and kr0 = 2.

For simulation purposes, we use the following for plant parameters,

Θ∗
1 =



−2.6828 3.2966
9.8298 9.9455

0 −20


 , Θ∗

2 =




0.25 0
0 −0.575
0 0


 . (9.91)

The control law given (9.40)–(9.41) is of the form

u(t)=B−1(y(t))(−ϕ2(t)−A1t(A1te1t(t)−e2t(t))+ÿd(t)+A2te2t(t)+P−1
2t P1te1t(t)), t≥0,(9.92)
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Figure 9.6: Actual, predicted and desired trajectories of ηs(t), t ≥ 0.

where e1t(t) , yd(t)− x̂1(t), and e2t(t) , v(t)− ẏd + A1te1t(t), t ≥ 0. In addition, we choose

A1t = −5I2, A2t = −1I2, Q1t = 5I2, Q2t = 5I2, and obtain from (9.42), P1t = P2t = I2/2.

Finally, ˙̂xu(t), t ≥ 0, is obtained from (9.8) with W2γ2(y) = B(y), α2 = α3 = 10, and we

choose yd(t) = [ 3.3 sin(t/8), −22 cos(t/4) ]T, t ≥ 0.

The initial conditions are chosen as η0 = [ 4 − 27 10 ]T, ν0 = 03, v0 = [ 1 1 ]T, and

z(0) = 02. As was the case with Example 9.5.1, the predictor performs well. The predicted

trajectory closely matches the real one, as seen in Figure 9.6. The command is shown in

Figure 9.7. It is effective, and the output y(t) converges to the desired yd(t), t ≥ 0, as can

be seen in Figure 9.6.
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Figure 9.7: Control effort.

9.6. Conclusion

This chapter presented a novel output feedback control scheme for a class of uncertain

nonlinear systems. The algorithm relies on an output predictor, designed to predict the

actual system’s output with arbitrary accuracy for any admissible control signal. A derivative

estimator is used to construct the output predictor, and allows to relax most knowledge

requirements on the system model. The predictor is complemented by a backstepping-

based state feedback control algorithm. In a departure from more classical separation based

algorithms, the control law is designed to control the predictor’s output, as opposed to the

actual system’s output. Lyapunov’s direct method was used to show ultimate boundedness

of both the prediction and tracking errors, with an ultimate bound depending upon specific

design constants. Appropriate choice of these constants allows to obtain arbitrarily accurate

predictions and tracking performance.
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Chapter 10

Indirect Collaborative Control of
Autonomous Vehicles with Limited
Communication Bandwidth [9]

The result featured in this chapter was presented at the 2005 IARP International Workshop

on Underwater Robotics in November 2005 ([9]).

10.1. Introduction

While preceding chapters were concerned with motion control of a unmanned single vehi-

cle, this chapter presents a technique allowing collaboration of a group of such vehicles. The

current possible applications of collaborative controls are numerous, including search and

rescue missions, mine detection, and surveying. Development of cooperative control theory

and utilization of teams of autonomous vehicles will in the future allow the performance

of missions impossible to accomplish thus far, such as mapping the ocean floor, recover-

ing archeological artifacts, or disposing of space debris orbiting Earth. This chapter intro-

duces a general framework for cooperative control of autonomous vehicles, complying with
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limited communication bandwidth, short range and asynchronous communication require-

ments. Such requirements are inherent to underwater environments. However, application

of the presented work is not limited to heterogeneous teams of Autonomous Underwater

Vehicles, and can be effectively applied to any team of autonomous vehicles spanning any

environments, provided that they satisfy minimal communication requirements.

The presented approach does not pertain to the decision making process of a cooperative

control algorithm, but rather provides a general framework for such an algorithm, allowing

a team of vehicles to cooperatively work together in spite of poor communication channels.

In qualitative terms, the framework relies on the principle of trading computational time for

communication bandwidth. More specifically, each vehicle continuously estimates the posi-

tion of its peers in the team. It will be shown that this approach allows to drastically reduce

vehicle to vehicle communication, and efficiently addresses issues related to asynchronous

communications and communication delays. The proposed framework only requires vehicle

to vehicle communication in specific instances, such as occurrences significantly affecting the

mission. On such occasions, the decision making algorithm issues appropriate commands,

which are relayed to the vehicles. As mentioned above, the proposed framework is meant to

operate in symbiosis with such a decision making algorithm. The underlying concepts and

mechanisms of the framework were tested through numerical simulation, the results of which

are presented to illustrate the philosophy of the approach and the benefits in using it.

Numerous engineering problems have been addressed using robotic solutions. The rise in

complexity of these problems has motivated exploration of innovative solutions. About two

decades ago, researchers began investigating multiple-robot systems as a possible alternative

to conventional, single-robot systems ([116]). The notion of using multiple robots to solve
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engineering problems has triggered a significant research effort in the areas of biologically

inspired robot swarms ([117,118]) and team oriented cooperative approaches ([68]).

An extensive survey on cooperative control of mobile robots is presented in [67]. The

authors define the concept of cooperative behavior as follows, “Given some task specified by

a designer, a multiple-robot system displays cooperative behavior if, due to some underlying

mechanism (i.e., the ‘mechanism of cooperation’), there is an increase in the total utility of

the system.” The flexibility in this definition accommodates the wide range of ‘mechanisms

of cooperation’ explored in recent years.

Although offering perspectives of advantageous solutions, the field of cooperative au-

tonomous mobile robotics remains largely undeveloped and a majority of the associated

techniques are considered far from mature ([116]). Controlling multiple robots poses chal-

lenges beyond those encountered when dealing with single-robot systems. Unfortunately,

design of a traditional, single-robot control system can already prove a perplexing endeavor.

It however constitutes but a starting point toward controlling multiple vehicles, added diffi-

culties stemming from factors such as communication requirements, an increased uncertainty

in the interaction with the environment and interferences between teammates ([119]). These

engineering challenges call for more advanced control techniques.

Particular care has to be given to communication related issues. Indeed, communication

requirements and bandwidth limitations prove to be a limiting factor for many cooperative

control approaches available in the literature. In [120], the author introduces a decentral-

ized control approach which uses the average and variance of the position of a school of

Autonomous Underwater Vehicles (AUVs) to control their position. Access for each vehi-

cle to these average position and variance information requires each and every vehicle to
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continuously broadcast their position to all others. However, underwater acoustic communi-

cation is particularly onerous, and schools of AUVs have very limited communication range

and bandwidth, which could become a limiting factor when implementing the framework

introduced in [120].

Embedded computers see their computing power steadily increase and cost decrease. The

proposition of trading computing power for bandwidth is thus particularly enticing. This

chapter proposes the design of a collaborative control framework based on the above premise,

aiming to use additional computing power to allow for a significantly reduced bandwidth uti-

lization. Following a Model Reference Control (MRC) approach, each vehicle is assigned a

reference system. Each autonomous vehicle, keeping track not only of its own reference sys-

tem, but also of that associated will all other vehicles, has knowledge of the doings of its

teammates, without requiring all vehicles to continuously broadcast position information.

Coupling all reference systems through the desired trajectories they are tracking, vehicles

find themselves indirectly coupled, allowing the team of autonomous vehicles to exhibit a

cooperative behavior. This technique of introducing coupling through a reference system is

referred to as indirect cooperation. It has been successfully applied to the control of dynam-

ically interconnected systems ([71–73]), but has yet to be applied to cooperative control of

autonomous vehicles.

The presented framework does not address decision making, but functions in conjunction

with any arbitrary decision making algorithm. It could, for instance, operate within the

cooperative control architecture presented in [121] (replacing the Vehicle Agents, block one,

Figure 1, page 638). Note that, although vehicle to vehicle communications are drastically

reduced using the proposed framework, communications still occur in specific situations. In
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particular, when the decision making entity chooses to alter the mission, or when occurrences

of important significance are met, updated directives have to be communicated to the relevant

vehicles, thus closing the cooperative control loop. In the presented framework, this can be

achieved by, for example, altering the desired trajectory followed by a vehicle or modifying

its reference system.

The presented framework is designed to rely on a Model Reference Adaptive Controller

(MRAC, [11]) to handle motion control. This choice is in part motivated by the fact that the

framework relies on computation of reference systems, which a MRAC is naturally associated

with. In addition, as previously mentioned, characterizing the dynamical behavior of marine

vehicles, which constitute the intended application of the presented research, is particularly

difficult, due to hydrodynamic phenomenons such as skin friction about the vehicle’s hull

and propeller induced cavitation. As the considered vehicles’ mathematical model can thus

be uncertain, an adaptive approach, such as that presented in previous chapters, is well

suited. Note that using reference systems the motion and behavior of the team of vehicles

can easily be adjusted, and enforcing features such as, for example, obstacle and collision

avoidance becomes fairly simple.

Section 10.2 provides a description of the governing mechanisms of the proposed frame-

work, along with results of numerical simulations illustrating the performance and key fea-

tures of this framework in Section 10.3. Particular attention is given to the effect of commu-

nication delays on performance.
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10.2. Indirect Collaborative Control Framework

Any mission to be accomplished by a team of autonomous vehicles can be divided into

a succession of tasks, transition between tasks being triggered by appropriate conditions.

Such tasks include search and rescue assignments, surveying of a prescribed area, but can

also consist of global behaviors based on local relationships ([122]) leading to more concep-

tually abstract tasks, such as displacement of a passive object from one location to another

([123]). These assignments can naturally translate into specific formations for the team of

vehicles to conform to ([124]). Solutions to the problem of formation keeping available in

the literature typically require high-bandwidth communications. As mentioned previously,

a Model Reference Control approach is adopted, each vehicle being assigned a reference sys-

tem, which corresponds to a virtual vehicle whose trajectory the actual vehicle will have to

track. These reference systems are chosen in such a way that the position of that virtual ve-

hicle can easily and accurately track a prescribed desired trajectory. From a motion control

perspective, the remaining task is to generate the actual vehicle’s control input, guaranteeing

convergence of the actual vehicle’s trajectory to that of the virtual vehicle’s. What the pre-

sented framework aims to accomplish is to take advantage of this MRC approach to decrease

the amount of communication required for a team of vehicles to operate cooperatively.

10.2.1. Assumptions and Governing Principle

The proposed approach requires each vehicle to not only integrate the reference system

it is tracking, but also the ones associated with all other vehicles, as seen in Figure 10.1.

Assuming that each vehicle has knowledge of
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Figure 10.1: Block Diagram of the Algorithm for the ith Vehicle in a Team of n.

• the predetermined desired trajectories for all vehicles corresponding to each task in a

considered mission,

• the initial reference state and expression of the dynamics of all reference systems,

and assuming that each vehicle’s motion controller provides perfect tracking of the reference

trajectory, a specific vehicle can obtain a close estimate of any other vehicle’s position by

locally integrating its reference system, without requiring communication of position infor-

mation. Transition from a task to another can be decided upon either by an individual,

predetermined decision maker, if the decision making process is centralized ([125–127]), or

by just about any vehicle in the team if it is decentralized ([67,128–132]). This type of deci-

sion, as it affects all vehicles in the team, will be referred to as Global Decision. Advent of

such a decision, which in general affects all vehicles, will require communication to all mem-

bers of the team. The information systematically required to be passed along is limited to a

Task Number, uniquely identifying the new task to be pursued, and a Time Stamp specifying

the time at which the decision was taken. Upon reception of such a message, each vehicle
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modifies, in accordance with the newly appointed task, the desired trajectories tracked by

the reference systems it is locally integrating, or the reference systems themselves. The Time

Stamp ensures that, upon reception of a Global Decision message by all vehicles, they are

able to appropriately compute the reference trajectory of other team members in spite of

time delays.

Note that, as mentioned above, Time Stamp and Task Number constitute the only infor-

mation systematically required in a Global Decision message, but that, depending on the

nature of the newly pursued task, additional information, such as position of a detected

target to be intercepted or investigated (as seen in Subsection 10.3.3), might be necessary.

Additionally, if a centralized decision making process is used, events witnessed locally by a

specific member of the team that can potentially affect Global Decisions, such as detection

of a target to be intercepted or investigated, should be relayed to the Global Decision mak-

ing entity, requiring added communications, as illustrated in Subsection 10.3.3. Also note

that the framework is essentially unrelated to the decision making process. Although lend-

ing itself well to decentralized approaches, it is flexible enough to seamlessly accommodate

centralized decision making algorithms. Figure 10.1 reflects this flexibility and illustrates the

fact that decisions affecting a specific vehicle’s desired trajectory can be taken either locally

(Local Intelligence block), or come from a centralized decision maker (Centralized Decision

Making block). Note that cooperation between vehicles in the team is made possible by the

communications from and to each vehicle, as represented in Figure 10.1.

In addition, note that knowledge of reference positions does not continuously provide

knowledge of the actual position of the vehicles. In particular, during the transition periods

following emission of a Global Decision message and preceding reception of this message

190



by all vehicles and convergence of the reference trajectories to the newly appointed desired

trajectories, there exists a discrepancy in current desired and reference trajectories across

the team. During this transition period, knowledge of the reference position of a vehicle

only provides an estimate of its actual position, as seen in Subsection 10.3.1. Furthermore,

in a realistic setting, perfect tracking of the reference trajectories by the actual vehicles is

not achievable. To address this issue and avoid vehicle collisions, the framework relies on

reference systems of a particular form, which enforces separation between vehicles’ reference

positions. This separation can be adjusted in function of the tracking performance of the

motion controller to guarantee that vehicles do not collide.

The knowledge assumptions the framework relies on are equivalent to requirements in

terms of memory available for each vehicle’s electronic control system, and, as such, are

trivially justifiable. As mentioned above, the perfect tracking assumption is not satisfied

in realistic settings. However, a wealth of motion controllers providing accurate tracking

for most types of autonomous vehicles can be found in the literature ([3, 5, 66, 133–135]).

In addition, the reference systems can include terms guaranteeing strict vehicle to vehicle

separation, as detailed in Section 10.3. An additional implicit assumption is that the control

system onboard each vehicle has sufficient computational power to integrate, with arbitrary

precision, a number of differential equations proportional to the considered number of vehicles

in the team. Most modern embedded computers satisfy this requirement.

10.2.2. Advantages of the Proposed Framework

Note that no communication pertaining to vehicles’ position is necessary, which con-

siderably reduces bandwidth usage. A team of vehicles using the presented framework can
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effectively maintain a formation without communication of relative positions or handshaking

protocol. Furthermore, as a benefit of the inclusion of the Time Stamp, the punctual com-

munications required for propagation of Global Decisions throughout the team of vehicles

need not be synchronous or assumed instantaneous. In other words, the effect of communi-

cation time delays on team performance are minimal. Knowledge of all desired trajectories,

reference dynamics and Time Stamps allows any vehicle to compute the reference trajectories

of all other vehicles corresponding to the currently pursued task upon reception of a Global

Decision message, regardless of delays in reception of this message. As mentioned earlier,

a potential discrepancy between vehicles’ trajectories computed locally on different vehicles

does exist. Time delays render such discrepancies inevitable, regardless of the framework

chosen. However, following the proposed approach, the time window of existence of these

discrepancies is reduced to a short transient. Subsection 10.3.1 illustrates the approach

proficiency in handling time delays.

Additionally, the proposed approach allows for a high level of flexibility in the way mis-

sions are handled. For instance, considering a target detection and identification mission, if

a vehicle detects a potential target, it can either notify the Global Decision making entity

and let it decide how this information should affect the mission, choose to investigate the tar-

get itself before notification, thus reducing the likelihood of false alarms affecting the whole

team, or even take upon itself the task of identifying this specific target without notifying

anyone (see Subsection 10.3.3). The approach removes the requirement commonly seen in

formation control problems that each vehicle observes, measures, or receives the state of the

entire team. The presented approach allows for a level of flexibility superior to that offered

by traditional formation control frameworks.
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In addition, the presented approach provides an interesting degree of robustness to oc-

currences that are commonly seen as unsurmountable, such as partial or total failure of one

or several vehicles. Were a vehicle to be lost, this event can be communicated either to

the Global Decision making entity, or to all other vehicles, allowing the team to adjust its

behavior by switching to a different set of desired trajectories. The remaining vehicles, know-

ing that they cannot rely on the lost vehicle any longer, can modify the desired trajectories

accordingly. In the case of a survey mission, for instance, the loss of one or several team

members can potentially be made up for by increasing vehicle to vehicle spacing, allowing

to cover the same area.

Finally, modifying the vehicles’ reference systems allows to directly affect their behavior.

This was taken advantage of in preliminary simulations to enforce obstacle and collision

avoidance.

10.3. Numerical Simulations

The performance of the indirect collaborative control framework presented in Section 10.2

was tested using a simple numerical simulation. Subsection 1.2.1 will assume a centralized

decision making process. A single vehicle in the team will have Global Decision making

authority and will be referred to as Master, the remaining vehicles being referred to as

Slaves. Subsection 10.3.3 provides an example of application of the proposed framework in

the context of decentralized decision making process.

Assuming perfect tracking control performance, only desired and reference position of

each vehicle are considered. It is assumed that motion is limited to the horizontal plane.

The reference systems of the n considered vehicles are based on second order oscillators,
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generating the position ηri(t) ,
[

xri(t) yri(t)
]T ∈ R2, t > 0, of the corresponding ith

virtual vehicle along the x and y axis of an inertial frame of reference of arbitrary origin.

The dynamic equation corresponding to the ith oscillators is of the form

η̈ri(t) + Arη̇ri(t) + Ω2
0iηri(t) = Ω2

0i ri(t), ηri(0) = ηri0, t > 0, i=1, 2, ..., n, (10.1)

where

Ar , 2 ζi ω0i Id2, Ω2
0i = ω2

0iId2, i = 1, 2, ..., n, (10.2)

where ζi and ω0i represent the damping coefficient and natural frequency, respectively, for

the oscillators of the ith reference system, ri(t) corresponds to the reference signal controlling

it and Id2 denotes the two dimensional identity matrix. All reference systems are chosen to

have identical damping and natural frequency,

ζi = 0.9, ω0i = 0.7, i = 1, 2, ..., n, (10.3)

and the reference signals are computed as

ri(t) , Ω−2
0i

(
η̈di(t) + Arη̇di(t) + Ω2

0iηdi(t)
)
, t > 0, i = 1, 2, ..., n, (10.4)

where ηdi(t) represents the desired position of the ith vehicle expressed in the aforementioned

inertial frame of reference. This reference signal allows the reference system to track a

desired trajectory. The above oscillators were augmented with two additional terms, handling

collision and obstacle avoidance. Let xri(t) ,
[

ηT
ri(t) η̇T

ri(t)
]T

, t > 0. The complete

reference system associated with each vehicle is of the form

ẋri(t) = Ar4xri(t) + Brri(t) + fc(xr(t)) + fo(xri(t)), t > 0, i = 1, 2, ..., n, (10.5)
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Figure 10.2: Interaction between molecules subjected to Van der Waals forces (left), force
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where

Ar4 ,
[ −Ω2

0i 0
0 −Ar

]
, Br ,

[
0

−Ω2
0i

]
, (10.6)

the vector xr regroups the xri for all i, fc(·) and fo(·) are virtual forces enforcing collision

and obstacle avoidance, respectively. To avoid collision, each reference system is subjected

to virtual repulsion forces from all current reference positions in the team. More concretely,

a force of the form

fc(xr(t)) , α

d6(xr(t))
+

β

d12(xr(t))
, t ≥ 0, (10.7)

where α, β ∈ R, d(xr(t)), t ≥ 0, represents the distance between reference positions, is

applied to the reference system for each additional team member. Such forces, which are

similar to atomic interaction forces as modeled by Van der Waals, as described in Figure

10.2, allow to avoid vehicle collisions. The value of β can be adjusted to increase or decrease

vehicle to vehicle separation. Finally, to enforce obstacle avoidance, the term fo is composed

of virtual forces of the form

foj(xri(t)) , γ

d2
oj(xri(t))

, t ≥ 0, (10.8)
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where γ ∈ R, and doj(xri(t)) represents the distance between vehicle i’s reference position to

the jth detected obstacle.

10.3.1. Time delays

This first simulation illustrates how the presented framework handles communication

delays. Four vehicles follow a desired trajectory traveling along a straight path, with a

desired velocity η̇d(t) =
[

1 0
]T

. Their reference positions has them located randomly

in a neighborhood of the initial desired position (at the origin). Global Decision making

responsibilities are assigned to the first vehicle (Master), vehicles two to four being the

Slaves. The formation is maintained up to a time t1 = 15 seconds, time at which the Master

decides to increase vehicle to vehicle spacing.
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Figure 10.3: Formation Change under the Influence of Homogeneous Time Delay.

To clearly illustrate how time delays affect motion, consider an exaggerated communi-

cation delay of 5 seconds between the time t1 at which the Master decides the change of

formation and the time t2 at which all Slaves receive that information. During the time pe-

riod going from t1 to t2, the Slaves still maintain the previously defined separation while the

Master makes the transition to the new one. Note that from the perspective of the Master,
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the Slaves’ reference trajectories transition to the newly defined formation instantly (tra-

jectories of the Slaves from the perspective of the Master are represented using dashed lines

in Figure 10.3). Similarly, from the perspective of the Slaves, the Master is still following

the previous formation.

Upon reaching time t2, the Slaves receive the formation-change order and modify their

desired trajectories accordingly. Upon reception of the message by the Slaves, the dis-

crepancy between trajectories from Master’s and Slaves’ perspectives is rapidly shifted out,

as seen on Figure 10.3. The actual reference trajectories of the Slaves soon match their

reference trajectories as seen from the Master’s perspective.

Note that the time delay was greatly exaggerated to clearly illustrate its influence on the

behavior of the system following the occurrence of a Global Decision. The duration of this

transition, essentially corresponding to the time delay of 5 seconds, should realistically be

reduced to a fraction of a second, thus reducing the discrepancy between trajectories as seen

from Master’s and Slaves’ perspectives to a hardly noticeable level.

As seen on Figure 10.3, all vehicles are attempting to track a single desired trajectory

(in green). However, the collision avoidance term in the reference dynamics generates a

separation between vehicles, such that no one vehicle perfectly tracks the desired trajectory,

but the team follows the desired position in a compact cloud. On Figure 10.3, red dots

represent reference position of vehicles, blue curves the reference trajectories, blue crosses

the initial reference positions, the green dot is the desired position, and the green line if the

desired trajectory.
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10.3.2. Collision avoidance

In addition to allow for collision avoidance, the reference systems enforces obstacle avoid-

ance, under the assumption that vehicles are equipped with sensors allowing detection of the

aforementioned obstacles. In the following simulation, a sinusoidal desired trajectory, with

a velocity along the x−axis of 1 meter per second crosses a region containing obstacles (rep-

resented by black dots in Figure 10.4). The first simulation features a group of four vehicles,

with initial conditions located randomly about the origin. It can be seen on Figure 10.4 that

the team of vehicles crosses the region while avoiding the obstacles. The team follows the

desired position to the best of its possibilities, but gives priority to collision and obstacle

avoidance. The motion of the team is difficult to adequately illustrate using a still figure. In

particular, it can be seen that some of the reference trajectories cross each other. Collision

avoidance is however strictly enforced, which is easily observed from animations representing

the evolution of the trajectories. A second simulation illustrating the collision and obstacle

avoidance properties of the framework has two groups of three and five vehicles following

sinusoidal desired trajectories similar to the previous simulation, but with different phase.

This results in two desired trajectories that repeatedly collide. This simulation includes

obstacles as well. It can be seen on Figure 10.4 that the reference trajectories avoid all

obstacles. Movies available at the above address show that vehicle collisions are successfully

avoided.

10.3.3. Target Detection

This subsection considers a slightly more complex case. A team of four vehicles is given

the mission to survey an area, detect targets in this area and identify them. All vehicles are
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Figure 10.4: Collision avoidance.
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Figure 10.5: Target detection.

assumed to have onboard the appropriate sensing instrumentation to detect any target in a

radius of 20 meters. In addition, obstacles in the area are to be avoided.

The mission is split in two distinct tasks. The first one consists in surveying the area,

avoiding obstacle and detecting the presence of any target. Vehicles are arbitrarily set to

follow a sinusoidal desired trajectory similar to that in previous simulations. The second

task consists in identifying a target once it is detected. This is accomplished by traveling

towards the detected target, and coming within half a meter of this target.

As seen in Figure 10.5, all vehicles have initial reference position randomly distributed
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Figure 10.6: Target investigated.

about the origin. The vehicles follow the desired trajectory (in green), avoid collisions and

obstacles, until a vehicle comes within 20 meters from the target (represented as an isolated

red dot in Figure 10.5). As detection occurs, the vehicle which detected the target propagates

this information to the decision making entity, and the decision of sending a pair of vehicles

to investigate the target is taken. As a result, as seen on Figure 10.5, the two vehicles

closest to the target follow a second desired trajectory leading them to the target. The two

remaining vehicles in the team follow the original desired trajectory, in search of additional

targets.

Once identification of the target is accomplished, the two vehicles regroup with the re-

maining team members and pursue the mission, as seen in Figure 10.6.

Note that if only one vehicle is required to identify a target, or if the vehicle detecting this

target takes upon itself the responsibility of verifying the target before notifying the decision

making entity and the target detection actually was a false alarm, this vehicle need not

pass along notification of the event. All remaining team members would thus keep following

the desired trajectory, while this particular vehicle would briefly assess the target, before
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catching up with the remaining team members.

10.4. Conclusion

The presented framework presents a unifying basis upon which cooperative control algo-

rithms for a team of autonomous vehicles can be built. This framework allows cooperative

control of teams of autonomous vehicles with very limited communication capabilities in a

hostile environment, and, when augmented with an adaptive motion control algorithm such

as those presented in previous chapters, with uncertain or unknown dynamics. The possible

applications of collaborative control include search and rescue, mine detection, and survey-

ing. In addition, application of the framework is not limited to underwater vehicles, but also

relevant to ground, air, and space vehicles.
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Chapter 11

Conclusions and Future Research

This dissertation presents a number of results pertaining to control of unmanned vehicles.

In Chapter 2, a general direct adaptive control framework, allowing to account for amplitude

and rate saturation of the control command, was introduced. Chapter 3 presented a direct

adaptive control algorithm designed for a class of VTOL vehicles. Chapter 4 introduced a

neural-based direct adaptive control algorithm for a general class of AMVs, which is special-

ized to a particular (although commonly encountered) class of non-minimum phase AMVs

in Chapters 5 and 6. Chapter 5 presents a nonlinear control algorithm for the considered

system, and presents an analysis of the system’s resulting internal dynamics. Chapter 6

builds upon this result and introduces a pair of direct adaptive algorithms, as well as an in-

direct adaptive controller. The control algorithms in Chapters 2 to 6 rely on the assumption

that full state measurements are available for feedback. Chapters 7 to 9 present an alter-

nate control strategy, which solves the output feedback control problem for a wide class of

nonlinear systems. The approach is based on the nonlinear observer introduced in Chapter

7. This observer is extended in Chapter 8 to hand le controlled systems, and complemented

by a simple backstepping-based state feedback control law. The resulting algorithm allows
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to simultaneously solve the observation and output feedback control problem for nonlinear

systems non-affine in the unmeasured states. The approach is further extended in Chap-

ter 9, to handle a more general class of nonlinear systems and address issues related to

model uncertainties. The approach appears promising, as the resulting control algorithm

only requires limited knowledge of the system to guarantee arbitrarily accurate tracking. In

addition, the final algorithm is practical and reasonably simple. In Chapter 10, a cooperative

control framework, designed to handle limited inter-vehicular communication requirements

was presented, extending the scope of the results from motion control of a single vehicle, to

cooperative control of a group of vehicles.

Future Research

The output feedback scheme introduced in Chapters 7 to 9 could be extended to a larger

class of observable systems, by working in terms of the derivatives up to the order q of the out-

put y(t), t ≥ 0, where q ≤ n−1 is the smallest integer such that rank([∇yT(t), ∇ẏT(t), . . . ,

∇y(q)T(t)]T) = n. Obtaining estimates of these successive derivative could be achieved us-

ing the HOSMD introduced in [54]. Furthermore, the algorithms in Chapters 8 to 9 are

designed to handle systems whose outputs have a relative degree of two at most, yet they

could be fairly easily extended to handle systems whose outputs have greater relative degree.

In addition, while knowledge of the system’s state dimension is not required to apply the

result in Chapter 9, the structure of the state predictor emulates that of the real system. As

a result, knowledge of the vector relative degree of the output is necessary. However, one

could investigate the ability of an output predictor to predict a given system’s output in the

case that the predictor’s output relative degree does not match that of the system, e.g. can
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a predictor with an output of relative degree one accurately predict the output of a system

with relative degree two, three, or four, etc? Design of a predictor with such capacity would

allow to relax the assumption that the system’s output vector relative degree is known.

In addition, the control algorithms presented in this dissertation, as well as the major-

ity of adaptive control algorithms found in the literature, address continuous-time scenarii.

However, controllers for unmanned vehicles are typically implemented on digital computers,

which only allow discrete-time computations, and thus do not directly allow execution of

continuous algorithms. Nevertheless, continuous-time control algorithms have been success-

fully implemented on such media and have proved to perform adequately, in particular for

fast sampling frequencies. While modern computers are digital in nature and can not exe-

cute an algorithm continuously but rather at a finite frequency, they can reach ever greater

operating speeds. To such an extent that, although it remains impossible, for instance, to

continuously compute the value of a control command on a digital computer, it is possible

to discretely evaluate at a high frequency this continuous command with accuracy. Most

physical systems are of a continuous nature. However, the interface between the control

algorithm and the system to be controlled is oftentimes discrete, as sensor information and

actuator updates can, depending on the hardware used, occur at arbitrary sampling times.

A possible extension of the presented work could be the adjustment of the presented

control algorithms to allow performance in discrete-time environments, thus facilitating fu-

ture implementation on real systems. That extension would require an effort on two fronts.

Since the observer in Chapter 7 is only able to reconstruct the state from continuous output

measurements, its use would require conversion of discrete-time output measurements to a

continuous signal, which implies the need of reconstructing inter-sample output trajectories.
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There exists a wide variety of techniques allowing to achieve this reconstruction, with vary-

ing levels of accuracy. It has for instance been shown in the past that simplistic approaches,

such as linear interpolation of the raw, noisy measurements, can in practice provide suffi-

cient inter-sample information, if only for systems with relatively low time constants ([136]).

On the other end of the problem, the interface from control algorithm to the environment

could be handled using the saturation algorithm of Chapter 2. The algorithm can indeed

theoretically be used to enforce constant commands in between control updates, by virtue

of inter-sample rate saturation.
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Appendix A

Stability Theory Results

The results introduced in this dissertation rely on a number of classical stability theorems,

which are presented here for completeness. More specifically, Theorem 2.2.1 considers a

system of the general form

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (A-1)

where x(t) ∈ Rn, and f : D → Rn is locally Lipschitz. In addition, we will use the following

definitions.

Definition A.1. [44] The equilibrium point x = 0 of (A-1) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0, (A-2)

• unstable if it is not stable,

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0. (A-3)

206



Stability of an equilibrium point of (A-1) can be established using Lyapunov’s stability

theorem, as stated below.

Theorem A.1. [44] Let x = 0 be an equilibrium point for (A-1) and D ⊂ Rn be a

domain containing x = 0. Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, x ∈ D \ {0}, (A-4)

V̇ (x) ≤ 0, x ∈ D, (A-5)

then x = 0 is stable. Moreover, if

V̇ (x) < 0, x ∈ D \ {0}, (A-6)

then x = 0 is asymptotically stable.

Stability of adaptive systems can oftentimes be conveniently analyzed using the LaSalle-

Yoshizawa theorem. The class of system considered is given by

ẋ(t) = f(x(t), t), x(0) = x0, t ≥ 0, (A-7)

where x(t) ∈ Rn, and f : D ×R→ Rn is locally Lipschitz in x and piecewise continuous in

t. Statement of the theorem also requires the following definition.

Definition A.2. [44] A continuous function γ : [ 0, a ) → [ 0, ∞ ) is said to belong to

class K if it is strictly increasing and γ(0) = 0. It is said to belong to class K∞ if a = ∞ and

γ(r) →∞ as r →∞.

The stability of an equilibrium point of (A-7) can then be established using the LaSalle-

Yoshizawa theorem, as stated below.
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Theorem A.2. [10,44] Let x = 0 be an equilibrium point of (A-7) and suppose f(x, t)

is locally Lipschitz in x uniformly in t. Let V : Rn×R→ R be a continuously differentiable

function such that

γ1(|x|) ≤ V (x, t) ≤ γ2(|x|), (A-8)

V̇ =
∂V

∂t
+

∂V

∂x
f(x, t) ≤ −W (x) ≤ 0, (A-9)

for all t ≥ 0 and x ∈ Rn, where γ1 and γ2 are class K∞ functions and W is a continuous

function. Then, all solutions of (A-7) are globally uniformly bounded and satisfy

lim
t→∞

W (x) = 0. (A-10)

In addition, if W (x) is positive definite, then the equilibrium x = 0 is globally uniformly

asymptotically stable.

Finally, a number of results in this dissertation make use of the notion of ultimate bound-

edness, which is defined as follows.

Definition A.3. [88] The solution x(t), t ≥ 0, of (A-7) is ultimately bounded if there

exists b > 0 and T > 0 such that ‖x(t)‖ < b for all t > T .

Ultimate boundedness can be established using the following theorem, which is owed to

LaSalle.

Theorem A.3. [88] Let V (x) be a scalar function which for all x has continuous first

partial derivatives with the property that V (x) →∞ as ‖x‖ → ∞. If V̇ (x) ≤ −ε < 0 for all

x outside of some closed and bounded set M, then x is ultimately bounded.
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[114] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control. Prince-
ton, NJ: Princeton, 2008.



[115] D. Liberzon, “Observer-based quantized output feedback control of nonlinear systems,”
in Proc. 2007 Mediterranean Conf. on Contr. and Automation, (Athens, Greece), 2007.

[116] L. Parker, “Current state of the art in distributed autonomous mobile robotics,” 2000.

[117] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems. New York, New York: Oxford University Press, 1999.

[118] M. J. Mataric, “Designing emergent behaviors: From local interactions to collective
intelligence,” in Proceedings, From Animals to Animats, Second International Confer-
ence on Simulation of Adaptive Behavior, pp. 432–441, MIT Press, 1992.

[119] A. Martinoli, Swarm Intelligence in Autonomous Collective Robotics: From Tools to
the Analysis and Synthesis of Distributed Control Strategies. PhD thesis, Ecole Poly-
technique Federale de Lausanne, 1999.

[120] D. J. Stilwell and B. E. Bishop, “Platoon of underwater vehicles: Communication
feedback and decentralized control,” IEEE Control Systems Magazine, vol. 20, no. 6,
pp. 45–52, 2000.

[121] P. R. Chandler and M. Patcher, “Hierarchical control for autonomous teams,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit, (Montreal, Canada),
pp. 632–642, MIT Press, 2001.

[122] H. Yamaguchi, “A cooperative hunting behavior by mobile robot troops,” Int. J. Rob.
Res., vol. 18, no. 9, pp. 931–940, 1999.

[123] K. Ozaki, H. Asama, and I. Endo, “Distributed and cooperative object pushing by
multiple mobile robot based on communication,” Advanced Robotics, vol. 11, no. 5,
pp. 501–517, 1997.

[124] X. Yun, “Line and circle formation of distributed physical mobile robots,” J. Robot.
Syst., vol. 14, no. 2, pp. 63–81, 1997.

[125] S. H. Young, P. P. Budulas, and P. J. Emmerman, “Mother ship and physical agents
collaboration,” Unmanned Ground Vehicle Technology, 1999.

[126] P. P. Budulas, S. H. Young, and P. Emmerman, “Robot mother ship design,” in
Unmanned Ground Vehicle Technology II, 2000.

[127] P. P. Budulas, S. H. Young, and P. Emmerman, “Battlefield agent collaboration,” in
Unmanned Ground Vehicle Technology III, 2001.

[128] A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor, “A framework
for vision based formation control,” in IEEE Transactions on Robotics and Automation,
2001.

[129] A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor, “A vision-based
formation control framework,” in IEEE Transactions on Robotics and Automation,
2002.



[130] D. Stipanovic, G. Inalhan, R. Teo, and C. Tomlin, “Decentralized overlapping control of
a formation of unmanned aerial vehicles,” Automatica, vol. 40, pp. 1285–1296, August
2003.

[131] W. B. Dunbar, R. Olfati-Saber, and R. M. Murray, “Nonlinear and cooperative control
of multiple hovercraft with input constraints,” in European Control Conference, 2003.

[132] H. Yamaguchi, A Distributed Motion Coordination Strategy for Multiple Nonholonomic
Mobile Robots in Cooperative Hunting Operations. 2003.

[133] R. Wei and R. W. Beard, “Trajectory tracking for unmanned air vehicles with velocity
and heading rate constraints,” IEEE Transactions on Control Systems Technology,
vol. 12, no. 5, pp. 706–716, 2004.

[134] H. J. Kim, D. H. Shim, and S. Sastry, “Flying robots: Modeling, control and decision
making,” in Proc. IEEE Int. Conf. on Robotic and Automation, vol. 1, (Washington,
DC), pp. 66–71, 2002.

[135] L. Weng and D. Y. Song, “Path planning and path tracking control of unmanned
ground vehicles (ugvs),” in Proc. 37th Southeastern Symposium on System Theory,
pp. 262–266, 2005.

[136] I. Le Goff, “Design, implementation and testing of a bio-inspired propulsion system for
autonomous underwater vehicles,” Master Thesis, Florida Atlantic University, 2003.


