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Verifying a Quantitative Relaxation of LinearizabilityarRefinement

Kiran Adhikari

(ABSTRACT)

Concurrent data structures have found increasingly wigashuse in both multicore and distributed
computing environments, thereby escalating the prioatyerifying their correctness. The thread
safe behavior of these concurrent objects is often destniseng formal semantics known as
linearizability, which requires that every operation in a concurrent obgpgiears to take ef-
fect between its invocation and respons@uasi linearizabilityis a quantitative relaxation of
linearizability to allow more implementation freedom for performance opation. However,
ensuring the quantitative aspects of this new correctr@sditton is an arduous task. We propose
the first method for formally verifying quasi linearizabyliof the implementation model of a
concurrent data structure. The method is based on chedkéngefinement relation between the
implementation model and a specification model via expdizite model checking. It can directly
handle multi-threaded programs where each thread can mihkiealy many method calls, without
requiring the user to manually annotate for the linearmrapoints. We have implemented and
evaluated our method in the PAT model checking toolkit. Ogregiments show that the method

is effective in verifying quasi linearizability and in deteng its violations.
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Chapter 1

Introduction

Concurrent programming has engulfed the broad horizon tf thee multi-core and distributed
computing environments. As Moore’s law starts to pay litligidend in improving the per-
formance of sequential applications, programmers needléptathe concurrent programming
paradigm to help reduce the memory contention and improgestialability and throughput of
the applications significantly. This has led to the increglsi widespread use of concurrent data
structures in domains spanning from embedded computingstakiited systems. However, it
is often difficult to build and test the thread safe composédat the concurrent programming
environment without placing undue synchronization ovatheThe often large number of thread
interleavings, along with the subtle interactions of canent operations, makes it difficult to
obtain the correct implementations. This has escalategribety for verifying the correctness

of these concurrent data structures.
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Over the past two decades, researchers have focused onlu&agzability as a correctness
condition for concurrent data structures. A concurrenaddtucture is linearizable if each of
its operations or method calls appears to take effect itemt@ously at some point in time between
its invocation and response. Although being linearizaldesdnot necessarily ensure the full-
fledged correctness of the implementation, linearizabiliblations are clear indicators that the
implementation is buggy. In this sense, linearizabilityves as a useful criterion for implementing
concurrent data structures. However, ensuring lineailigabf highly concurrent data structures is
a difficult task, due to the subtle interactions of concurogrerations and the often astronomically

many interleavings.

Although linearizability is non-blocking[10], it often ippses unnecessarily tight synchronization
requirement on the implementation and therefore limit tidggmance and scalability. Realizing
that a more relaxed correctness condition than lineatipabuffices in many applications, Afekt

al. [1] have defined a new notion callgdiasi linearizability Quasi linearizability is a quantitative
relaxation of linearizability [9, 12, 17] to allow for more=Kibility in how the data structures are
implemented. While preserving the basic intuition of lineability, quasi linearizability relaxes
the semantics of the data structures to achieve increasicheuperformance. For example, when
implementing a queue for a task scheduler in a thread pasloften the case that we do not need
the strict first-in-first-out (FIFO) semantics; instead, way want to allow the dequeue operations
to be overtaken occasionally if it helps improving the romgiperformance. The only requirement
here is that such out-of-order execution should be boungledfixed number of steps. Similarly,

when implementing data caching in web applications, we n@tyneed the strict semantics of
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standard data structures, since getting stale data oo@dlgics acceptable as long as the delay is
bounded. Furthermore in distributed systems, the countegénerating unique identifiers may

also be allowed to return out-of-order values occasionally

1.1 Motivation

Despite the advantages of quasi linearizability and itmgigpopularity (e.g., [9, 12, 17]), such
relaxed consistency property is difficult to test and verifyspit of being an important property
of concurrent data structures, there does not yet exist fegtige way of formally verifying this

relaxed correctness condition.

Although there is a large body of work on formally verifyingsdard linearizability, for example,
the methods based on model checking [15, 14, 24, 5], runtienécation [4], and mechanical
proofs [22, 23], they cannot directly verify quasi lineatidity. Because of the inherent non-
determinism in the quasi linearizable data structureseheaditional verification methods do not
have the capability of checking teh quasi linearizabilgyrantics. In addition to the requirement
of covering all possible interleavings of concurrent esemine needs to accurately analyze the
guantitative aspects of these interleavings to verify gliasarizability. Another reason why
formal verification methods for quasi linearizability ascking is because quasi linearizability

is relatively new and still under development.

In this thesis, we fill the gap by developing an effecient rodtto verify this quantitative relaxation

of the linearizability for concurrent data structures.
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1.2 Contribution

We propose the first automated method for formally verifygu@silinearizability in the imple-
mentation models of concurrent data structures. Theresgsra technical challenges. First, since
the number of concurrent operations in each thread is urdemrthe execution trace of a multi-
threaded program that uses the concurrent data structagdeninfinitely long. This precludes
the use of existing methods such as LineUp [4] because tleelyamed on checking permutations
of finite length execution histories. Second, since the oettieeds to be fully automated, we do
not assume that the user will provide hints or annotate theahization points of each method.
This precludes the use of existing methods that are baseithen eser guidance (e.g., [22, 23]) or

annotated linearization points (e.g., [24]).

To overcome these challenges, we rely on explicit state habgeeking. That is, given an imple-
mentation modelV/;,,,,, and a specification modél/,,.., we check whether the set of execution
traces of)M,,,,, is a subset of the execution tracesidf,... Toward this end, we extend a classic
refinement checking algorithm so that it can check for thelpeefinedquantitative relaxatiorof

standard refinement relation.

Consider a quasi linearizable queue as an example. Stdraongthe pair of initial states of

a FIFO queue specification model and its quasi linearizabl@amentation model, we check
whether all subsequestate transition®f the implementation model can match some subsequent
state transition®f the specification model. To make sure that the verificapmblem remains

decidable, we bound the capacity of the data structure imibdel, to ensure that the number of
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states of the program is finite.

We have implemented the new method in the Process AnalysikiTdPAT) [20], which is a
model checker for analysing concurrent systems. PAT pesvile basic infrastructure for parsing
and analyzing the specification and implementation modeétsen in a process algebra language
that resembles Tony Hoare’s Communicating SequentialeBess (CSP) [11]. Our new method
is implemented as a module in PAT, and is compared againsgxising module for checking
standard refinement relation. Our experiments on a set aflapponcurrent datastructures, such
as queues, stacks or priority queues show that the new meheftective in detecting subtle
violations of quasi linearizability. When the implemematmodel is indeed correct, our method

can also generate the proof of correctness quickly.

To sum up, this thesis make the following contributions:

e Propose the first method for formally verifying quasi lineability of concurrent data struc-
tures. This is accomplished by designing a new algorithnth@cking a relaxed version of
the refinement relation between the implementation andfsgaon models.

¢ Implement the new method in a software tool called PAT andatestrate its effectiveness
on a set of quasi linearizable concurrent data structurenpbes including queues, stacks,

and priority queues.
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1.3 Organization

The remainder of this thesis is organized as follows.

Chapter 2 provides the overview of the notations and reviesvexisting refinement checking

algorithm for verifying the standard linearizability.

Chapter 3 introduces the overall flow of our new relaxed lirzedility checking method. This
chapter also presents a manual approach for verifying duasirizability based on the standard
refinement checking algorithm. This approach is proved tdaber intensive and error prone,

therefore motivating us to design a fully automated method.

Chapter 4 presents the fully automated method, which istbasea new algorithm for checking

the relaxed refinement relation. This chapter also presleatsxperimental results.

Chapter 5 gives the conclusions and outlines the future svork



Chapter 2

Background

In this chapter, the notion of linearizability and quasielmizability are defined by using the
refinement relations between an implementation model aadsgiecification model. We also
present the process algera semantics of the models iroretatthe CSP. Finally, we introduce the
standard refinement checking algorithm as an approach iy vlee linearizability. The method
relies on model checking of finite state systems specifiedoaswrent processes with shared
variables and take advantage of a new trace refinement ctietkiverify the relaxed version of

linearizable data structures.

Given a two labeled transition systems, the following setaxplains the formal semantics defin-
ing standard and quasi linearizability, and review an exgsdlgorithm for checking the refinement

relation between those two labeled transition systems.
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2.1 Linearizability

Linearizability [10] is a safety property of concurrent 8ms, over sequences of actions cor-
responding to the invocations and responses of the opesatio shared objects. We begin by

formally defining the shared memory model.

Definition 1 (System Model3. A shared memory modé! is a 3-tuple structurdO, inito, P),
whereQ is a finite set of shared objectsiit,, is the initial valuation ofO, and P is a finite set of

processes accessing the objects. O

Every shared object has a set of states. Each object suppsetsofoperations which are pairs

of invocations and matching responses. These operatierte@only means of accessing the state
of the object. A shared object deterministicf, given the current state and an invocation of an
operation, the next state of the object and the return vdltieecoperation are unique. Otherwise,
the shared object ison-deterministic A sequential specificatidrof a deterministic (resp. non-
deterministic) shared object is a function that maps evary gf invocation and object state to a

pair (resp. a set of pairs) of response and a new object state.

An execution of the shared memory model = (O, inito, P) is modeled by a history, which is a
sequence of operation invocations and response actionsahde performed o@® by processes
in P. The behavior ofM is defined as the sel/, of all possible histories together. A history
€ H induces an irreflexive partial order, on operations such thap, <, op if the response

of operationop; occurs inc before the invocation of operatiamp,. Operations inr that are not

IMore rigorously, the sequential specification is fdypeof shared objects. For simplicity, however, we refer to
both actual shared objects and their types interchang@atiys paper.
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related by<, are concurrent. A history is sequential iff <, is a strict total order.

Let o|; be the projection ob on process;, which is the subsequence of consisting of all
invocations and responses that are performeg; lny P. Let o|,, be the projection of on object
o; In O, which is the subsequence @fconsisting of all invocations and responses of operations
that are performed on objeat. Every historyos of a shared memory modél = (O, inito, P)

must satisfy the following basic properties:

e Correct interaction: For each process, € P, o|; consists of alternating invocations
and matching responses, starting with an invocation. Thiggrty preventpipelining

operations.

e Closednes& Every invocation has a matching response. This propertyeptepending

operations.

A sequential history is legal if it respects the sequential specifications of the objedtare
specifically, for each objeet, there exists a sequence of stalgss, s, . . . of objecto;, such that
s Is the initial valuation of;, and for allj = 1,2,... according to the sequential specification
(the function), thej-th invocation inc|,, together with state;_; will generate thej-th response
in o|,, and states;. For example, a sequence of read and write operations of jautablegal if

each read returns the value of the preceding write if thesaés and otherwise it returns the initial

2Pipelining operations mean that after invoking an openati@ process invokes another (same or different)
operation before the response of the first operation.

3This property is not required in the original definition aféiarizability in [10]. However adding it will not affect
the correctness of our result because by Theorem 2 in [10]a feending invocation in a linearizable history, we
can always extend the history to a complete one and preseearizability. We include this property to obviate the
discussion for pending invocations.
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value.

Given a historyo, a sequential permutation of o is a sequential history in which the set of

operations as well as the initial states of the objects a@sdme as in.

Definition 2 (Linearizability ). GivenamodeM = (O = {oy,...,0x},inito, P = {p1,...,pn})-
Let H be the behavior oM. M is linearizable if for any history in H, there exists a sequential

permutationr of o such that

1. foreach object; (1 < i < k), 7|, is alegal sequential history.é., = respects the sequential

specification of the objects), and

2. for everyop; andop, in o, if op; <, ops, thenop; <, ops (i.e., © respects the run-time

ordering of operations). O

Linearizability can be equivalently defined as follows. urery historyo, if we assign increasing
time values to all invocations and responses, then evematipe can be shrunk to a single time
point between its invocation time and response time sudlitibaperation appears to be completed

instantaneously at this time point [16, 3]. This time postalled itdinearization point

2.2 Quasi Linearizability

For two historiess ando’ such that one is the permutation of the other, we define thstarte

as follows. Letr = ey, es,€3,...,e, ando’ = €}, e}, ¢, ..., el,. Letole] ando’[e] be the indices
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of the event in historiesc ando’, respectively. The distance between the two historiespteen

A(o,0’), is defined as follows:

A(o,0") = maz.c.{|o'[e] — ole]|} .

In other words, the distance betweemands’ is the maximum distance that an eventimas to

move to arrive at its position ia’.

While measuring the distance between two histories, wenaiéee about only a subset of method
calls. For example, in a concurrent queue, we may care abeubrdering ofenqueue and
dequeue operations while ignoring calls tei ze operation. In the remaining of this work, we
use wordsnq anddeq for the interests of space. Furthermore, we may allew operations to

be executed out of order, but keepq operations in order. In such case, we need a way to add

ordering constraints on a subset of the methods of the slofjedt.

Let Domain(o) be the set of all operations of a shared objectLet d C Domain(o) be a
subset of operations. Létowerset(Domain(o)) be the set of all subsets @lomain(o). Let

D C Powerset(Domain(o)) be a subset of the powerset.

Definition 3 (Quasi Linearization FactarA quasi-linearization factas a function@p : D — N,

whereD is a subset of the powerset aiids the set of natural numbers.

Example 1. For a bounded queue that stores a 3ebf non-zero data items, we hall®main(queue) =
{eng.xz,deq.z,deq.0 | = € X}, whereeng.x denotes thenqueue operation for dataz, deq.x

denotes thelequeue operation for datar, anddeq.0 indicates that the queue is empty. We may
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define two subsets @dfomain(queue):

di ={enqyly €Y},

dy ={deqy|yecY}.

Let D = {di,d>}, whered, is the subset odleq events andi, is the subset ofnq events. The
distance betweenm ando’, after being projected to subsetsandd,, is defined ag\(c|4,, 0’ |4, )-
If we require that thenq calls follow the FIFO order and theéeq calls be out-of-order by at most

K steps, the quasi-linearization factQqueue) : D — N is defined as follows:

Q{queue} (dl) =0 )

Q{queue} (d2) =K.

Definition 4 (Quasi Linearizability) Given a modelM = (O = {oy,...,0x},initp, P =
{p1,-..,pn}). Let H be the behavior ofM. M is quasi linearizable under the quasi factor

Qo : D — Niffor any historys in H, there exists a sequential permutatiomf o such that

e for everyop; andop; in o, if op; <, ops, thenop,; <, opsy (i.e., 7w respects the run-time

ordering of operations), and

e for each objecy; (1 < i < k), there exists another sequential permutatidof = such that

1. ©'|,, is a legal sequential history (i.er’ respects the sequential specification of the

objects) and

2. A((m

;)

;)

1) < Qo(d) foralld € D.

ds (7T,
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This definition subsumes the definition for linearizabiligcause, if the quasi factordg, (d) = 0

forall d € D, then the objects behaves as a standard linearizable dattuse, e.g., a FIFO queue.

€& Enqg(X) = &—Deq(X)=> €& Deq(Y)=>
€& Enq(Y) =—>

&= Enq(X) =>» €—Deq(Y)=—> €—Deq(X)=—>
€—Enq(Y) —>

& Enqg(X) =>» €—Deq(Z)=—>
EEnqV)=> < _Enq)—>

Only the first trace (at the top) is linearizable. The secoadkt is not linearizable, but is 1-quasi
linearizable. The third trace is only 2-quasi linearizable

Figure 2.1: Execution traces of a queue.

Example 2. Consider the concurrent execution of a queue as shown initheFL. In the first
part, it is clear that the execution is linearizable, becaitss a valid permutation of the sequential
history whereEnq( Y) takes effect beforBeq( X) . The second part is not linearizable, because
the first dequeue operation Bq(Y) but the first enqueue operationEnq( X) . However, it is
interesting to note that the second history is not far fronin@drizable history, since swapping
the order of the two dequeue events would make it linearzabtherefore, flexibility is provided
in dequeue events to allow them to be reordered. Similastythfe third part, if the quasi factor
is 0 (no out-of-order execution) or 1 (out-of-order by at mbstep), then the history is not quasi
linearizable. However, if the quasi factor is 2 (out-of-erdoy at most 2 steps), then the third

history in Fig.2.1 is considered as quasi linearizable.
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2.3 Linearizability as Refinement

Linearizability is defined in terms of the invocations andpenses of high-level operations. In
a real concurrent program, the high-level operations apeémented by algorithms on concrete
shared data structures, e.g., a linked list that implemarsisared stack object [21]. Therefore,
the execution of high-level operations may have complatateerleaving of low-level actions.
Linearizability of a concrete concurrent algorithm reggithat, despite low-level interleaving, the
history of high-level invocation and response actions$lstis a sequential permutation that respects

both the run-time ordering among operations and the seiglispecification of the objects.

For verifying standard (but not quasi) linearizability, axisting method [15, 14] can be used
to check whether a real concurrent algorithm (we refemg@ementationn this work) refines
the high-level linearizable requirement (we refersggcificationin this work). In this case, the
behaviors of the implementation and the specification ardelea as labeled transition systems

(LTSs), and the refinement checking is accomplished by usipgjcit state model checking.

Definition 5 (Labeled Transition Systen). A Labeled Transition System (LTS) is a tuple=
(S,init, Act,—) whereS is a finite set of statesnit € S is an initial state; Act is a finite set of

actions; and— C S x Act x S is a labeled transition relation.

For simplicity, we writes > s’ to denote(s,a,s’) € —. The set of enabled actions atis
enabled(s) = {a € Act | 3s' € S. s = s'}. A pathr of L is a sequence of alternating states and
actions, starting and ending with states- (sq, ay, s1, @, - - - ) such thak, = init ands; EAY Sit1

for all i. If 7 is finite, then|w| denotes the number of transitionsin A path can also be infinite,
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DD DD

Figure 2.2: An LTS example

i.e., containing infinite number of actions. Since the nunddestates are finite, infinite paths are

paths containing loops. The set of all possible pathd.farwritten aspaths(L).

A transition label can be either a visible action or an irbisione. Given an LT3, the set of
visible actions inL is denoted byvis; and the set of invisible actions is denotedbyis;. A
T-transition is a transition labeled with an invisible acaticA states’ is reachablefrom states if
there exists a path that starts frenand ends withy’, denoted bys = s’. The set ofr-successors
isT(s) ={s' € S|s>s Aacinvisy}. The set of states reachable frarby performing zero
or morer transitions, denoted as(s), can be obtained by repeatedly computingtksiccessors
starting froms until a fixed point is reached. We write 55 s iff s’ is reachable frons via
only -transitions, i.e., there exists a path, a;, s1, as, - -+, s,) such thats, = s, s, = s and

S; AN siv1 N a1 € inwisy, for all ¢ . Given a pathr, we can obtain a sequence of visible actions
by omitting states and invisible actions. The sequenceptéeasrace(r), is a trace ofL.. The

set of all traces of, is written asraces(L) = {trace(w) | = € paths(L)}.

LTSs can often be shown graphically, e.g., Fig. 2.2 showxamele LTS, where invisible transi-
tion labels are omitted for simplicity. We define the refinetrelation between two LTSs, usually

called trace refinement, as follows.

Definition 6 (Refinemen). Let L,; and L, be two LTSs.L; refinesL,, written aslL; Jp Lo iff
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traces(Ly) C traces(Ls). O

In [15], we have shown that if;,,, is an implementation LTS and,,.. is the LTS of the

linearizable specification, thel,,,,; is linearizable if and only if;,,,,; 37 Lpec-

Given two labeled transition systemé,,.. and M;,,,,,, representing specification and implementa-
tion LTS respectively, we say that,,,, refinesi/,,.. if and only if the set of execution traces in
M., 1s a subset of the execution traces\ify,... So, the idea in refinement checking is to establish
the (weak) simulation relationship between the speciboatiodel and the implementation model.
The main approach is to perform the exhaustive search fatéte space that is build of combined
the specification-implementation. We compare every rdaehstate of the implementation with
that of the specification reachable via same trace. If thiglitmn suffices, we say that th¥,..

refinesM,,,,;, otherwise we get a counterexample which violates the check

€4

el es
€6
er €2 er
€9 ( :: f———
€8

)

—

Figure 2.3: Specification model Figure 2.4: Implementation model

We start by presenting an example that illustrates the mefme checking. Fig. 2.3 shows the
specification model and Fig. 2.4 shows the implementatiodehdStarting from the initial state

s} in the implementation model, we check the existence of & stéh an enabled event from
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the s; in the specification model. As, tHgpecL. TS also has the same transition from statewe
continue the search by grabbing the next state. We can useltBr&irst Search (BFS) or Depth-
First Search (DFS) to search the children. Considering awills visible events: and invisible

eventsr, formally, we can grab the children of a state as follows:

1. if impl = impl’, wherer is an internal event, thespec’ = spec;

2. if impl < impl’, wheree is a method call event, theqpec = spec’;

We continue the check till all states of the implementatiaded is exhausted. In the given exam-
ple, all the traces in implementation model shown in Fig.@&elcontained within the specification

model shown in Fig. 2.3, meaning implementation refinesifpation.

2.4 Realization of a Model

We use a tool called PAT to modebec andimpl. It is a framework that supports the specification
and verification of concurrent models. We model concurrgstesns using a process algebra that
is a variant of CSP. A LTS generated describes the behavibleahodel. Basically CSP syntax is
used in our model with the extension of shared variable. erakdl shows the process definitions
used in our model. Here CSP is extended such that sharedlesriare modeled alongside the

processes to implement the different behaviors of the nsodel

Refinement checking is the method to verify if the behavidisplementation follow the specifi-

cation. In PAT, an assertion is specified to check the behswaittwo processes. Consider the two
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Table 2.1: Process Definitions

| Process | Definition
P() = Stop A process that communicates nothing.
It is also called the deadlock process.
P() = Skip Terminates an eventkip is termination process.

P() = event{assignments} — P() | Describes thatvent is performed first and then it behaves
like a processP().

P() = Pi(); P(); It is the sequential composition of two processgsand P
P () is executed first ané, () is executed after that.
P() = P()|||P() It is the interleaved composition of the two processes

P () and Py().

processe®() and)(). The statementassert P() refines () checks ifthere is a refinement
relationship between these two procesBésand()(). The reachability analysis is conducted by
exploring the product state transition8f) andQ(), wherein the state that violates the refinement

relationship is searched.

2.5 Related Work

In the literature, although there exists a large body of wamkformally verifying linearizability

in models of data structure implementations, none of themveaify quasi linearizability. For
example, Liu et al. [15, 14] use a process algebra based doatrify that an implementation
model refines a specification model — the refinement relatigplies linearizability. Vechev et
al. [24] use the SPIN model checker to verify linearizapilit a Promela model. Cerny et al. [5]
use automated abstractions together with model checkivgrify linearizability properties. There

also exists some work on proving linearizability by consting mechanical proofs, often with
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significant manual intervention (e.qg., [22, 23)).

There are also runtime verification algorithms such as WUpd4], which can directly check the
actual source code implementation but for violations onnoled executions and deterministic
linearizability. However, quasi linearizable data stures are inherently nondeterministic. For
example, theleq operation in a quasi queue implementation may choose toraty of the first

k items in a queue. To the best of our knowledge, no existindiatetan directly verify quasi

linearizability for execution traces of unbounded length.

Besides (quasi) linearizability, there also exist manyeottonsistency conditions for concurrent

computations, including sequential consistency [13]egoént consistency [2], and eventual con
sistency [25]. Some of these consistency conditions incjla may be used for checking the
correctness of data structure implementations, althoogfars none of them is as widely used
as (quasi) linearizability. These consistency conditidasiot involve quantitative aspects of the
properties. We believe that it is possible to extend our egfient algorithm to verify some of these

properties. However, we leave it for future work.

Outside the domain of concurrent data structusesializability and atomicity are two popular
correctness properties for concurrent programs, espeatalhe application level. There exists a
large body of work on both static and dynamic analysis foedktg violations of such properties
(e.0., [8, 6] and [27, 7, 18, 26]). These existing methodg#ferent from ours because they are
checking different properties. Although atomicity andalkability are fairly general correctness
conditions, they have been applied mostly to the correstoéshared memory accesses at the

load/store instruction level. Linearizability, in cordgtadefines correctness condition at the method
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call level. Furthermore, existing methods for checkingratity and serializability do not deal with

the quantitative aspects of the properties.

2.6 Summary

This chapter presented a brief overview of linearizabifihd quasi linearizability in relation to
refinement. The idea of model checking by building the ladb#&iensition systems and refinement
checking was introduced. The chapter also included théegklork on formal verification of

linearizable data structures.



Chapter 3

Verifying Quasi Linearizability via

Refinement Checking

This chapter presents our two new approaches for verifyuasiginearizability. We first explore
two possible paths that allow us to verify quasi lineariigbi First, we present the detailed
description of a manual verification approach and showntgédtions. This motivates our work in
next chapter, which is extending the standard refinemermkamg algorithm to build an automated

guasi linearizable checker.

21
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3.1 Two Approaches of Verification

Our verification problem is defined as follows: Given an inmpéstation model;,,,,,;, a specifi-
cation model\/,,.., and a quasi factap,, decide whethet/,,,,; is quasi linearizable with respect

to M,,.. under the quasi factdap,.

Sequential Concurrent Sequential Concurrent
Specification Implementation Specification Implementation
QF oF
- ' ‘/ '
Create Manually §
Relaxing the
Transitions
— On Demand
Quasi—-Lin Spec
Model $
‘ New Checking Algorithm ‘
L] L]
Standard Refinement Checking Quasi Refinement Checking
(Impl vs. Q-Lin Spec) (Impl vs. Spec)
Yes/No Yes/No

Figure 3.1: Verifying quasi linearizability: manual appah (left) and automated approach (right).

The straightforward approach for solving the problem ietelage the procedure in Algorithm 3.
However, since the procedure checks for standard refinerakation, not quasi refinement rela-

tion, the user has to manually construct a relaxed speddicanodel, denoted/’ ., based on

spec?
the given specification modél/;,.. and the quasi factaf)o. This so-callednanual approachs
illustrated by Fig. 3.1 (left). The relaxed specificationdeb)M’ .. must be able to produce all

spec

histories that can be produced BY;,.., as well as the new histories that are allowed under the

relaxed consistency condition in Definition 4.

Unfortunately, there is no systematic method, or generalajne, on constructing such relaxed
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specification models. Each/(,.. may be different depending on the type of data structures to
be checked. And there is significant amount of creativityunesgl during the process, to make
sure that the new specification model is both simple enoudlparmmissive enough. For example,
to verify that akK-segmented queue [1] is quasi linearizable, we can creatiaxed specification
model whoselequeue method randomly removes one of the fikStdata items from the otherwise

standard FIFO queue. This new modé][ .. will be more complex than/;,.., but can still be

pec

significantly simpler than the full-fledged implementatmandel 1/;,,,,;, which requires the use of

a complex segmented linked list.

Since the focus of this thesis is on designing a fully aut@ehaerification method, we shall briefly
illustrate the manual approach in this chapter, and themsfoa developing an automated approach

in the subsequent chapter.

Our automated approach is shown in Fig. 3.1 (right). It issbasn designing a new refinement
checking algorithm that, in contrast to Algorithm 3, canedity check aelaxed versiorof the
standard refinement relation betweef,,, and M,,... Therefore, the user does not need to
manually construct the relaxed specification mod£l,... Instead, inside the new refinement
checking procedure, we systematically extend states amgitions of the specification model
M. SO that the new states and transitions as requiretf/ by, are added on the fly. This would
lead to the inclusion of a bounded degree of out-of-ordecitien on the relevant subset of
operations as defined by the quasi faafy. A main advantage of our new method is that the
procedure is fully automated, thereby avoiding the userugntion, as well as the potential errors

that may be introduced during the user’s manual modelingge®. Furthermore, by exploring the
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relaxed transitions oneed-tdasis, rather than upfront as in the manual approach, wesdaice

the number of states that need to be checked.

3.2 The Manual Verification Approach

In this section, we will briefly describe the manual approacdk then focus on presenting the
automated approach in the subsequent chapter. Althouglwetdntend to promote the manual
approach — since it is labor-intensive and error prune —gbeion will illustrate the intuitions

behind our fully automated verification method.

Given the specification modél,.. and the quasi factap,, we show how to manually construct
the relaxed specification modeéf_ . in this section. We use the standard FIFO queue and two

versions of quasi linearizable queues as examples. Theraotisn needs to be tailored case by

case for the different types of data structures.

Algorithm 1 Enqueue and Dequeue Pseudo code for Quasi-Specificatiosl mod
1: Procedure deqAbs(tid) :=
2: randomvalue = randomget();

1: Procedure engAbs(tid) := 3: deqvalueftid] = randonvalue;
_ 4: if (HA > deqgvalueftid])then
2. 1f (HA < SIZE ABS+1)then 5. deq.tid.(HA-deqvalue[tidjHA=HA
3:  enq.tid.(HA+1){HA= HA+1;} 13}
4. end if 6: else if(HA == 0) then
7. deg.tid.false

8: end if
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Figure 3.2: Implementations of a 4-quasi queue

3.2.1 Specification ModelV/,,..

The standard FIFO queue with a bounded capacity can be inepleah by using a linked list,
wheredeq operation removes a data item at one end of the list calledh¢laelnode, ancenq
operation adds a data item at the other end of the list callethil node. When the queue is full,
enqg does not have any impact. When the queue is enggty, returns NULL. As an example,
consider a sequence of four enqueue eventg 1) , enq(2), enq(3), enqg(4), the subsequent
dequeue events would beq. 1, deq. 2, deq. 3, deq. 4, which obey the FIFO semantics. This is

illustrated by the first historiil- a in Fig. 3.3.

In the PAT model checking environment, the specification ehdd,,.. is written in a process
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Here,deq can be out-of-order by 1. The firdeq randomly returns a value from the ddt 2} and
the secondieq returns the remaining one. Then the thikely randomly returns a value from the
set{3, 4} and the forthdeq returns the remaining one.

Figure 3.3: Valid histories of &-quasi linearizablegueue
algebra language, named CSP# [19]. Algorithm 1 shows thaldétexplaination for creating an

abstract model in the PAT tool environment.

3.2.2 Implementation ModelM;,,,,,:

The bounded quasi linearizable queue can be implementedibg a segmented linked list. This
is the original algorithm proposed by Afalt al.[1]. A segmented linked list is a linked list where
each list node can holf" data items, as opposed to a single data item in the standdetlliist.
As shown in Fig. 3.2 (lower half), thed€ data items form @degmentin which the data slots are
numbered as 1, 2, ., K. In general, the segment size needs to be sgpio+ 1), whereQF' is the
maximum number of out-of-order execution steps. The exammdFig. 3.2 has the quasi factor set
to 3, meaning that deq operation can be executed out of order by at most 3 steps.eGoastly,

the size of each segment is set to (3+1)=4. Si@G&.cue} (Deng) = 0, Meaning that thenq
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Algorithm 2 Enqueue and Dequeue Pseudocode for Quasi-implementatidel m
1: Enq(tid) :=
2. cur_node(tid] = 0; curseg[tid] =0
3: while cur_seg[tid] < SIZE_SEG do
while cur_nodeltid] < QF do
if flag_implcur_seg[tid]][cur_node[tid]] == 0 then
flag imp[cur_seq[tid]][curnode]tid]] = 1
item_count++
eng.tid.itemcount
break
10: else
11 cur.node++
12: end if
13:  end while
14: curnode =0
15:  curseg++
16: end while
17:
18: Deq(tid) :=
19: cur_seg[tid] = 0; curnode[tid] =0
20: while cur_seg < SIZE_SEG do
21:  while cur_node < QF do

e N akr

22: cur_nodeltid] = perm1[cumodel[tid]]

23: if flag_-imp|cur_segltid]|[cur _nodeltid]] == 1 then
24: flag.imp[cur_seg[tid]][curnode]tid]]= 0

25: item_count- -

26: deq.tid.(itemcount+1)

27: break

28: else

29: cur.node++

30: end if

31:  end while

32: curseg++

33: cur.node=0

34: end while

35: if item_count == 0 then
36: deq.tid.false

37: end if




Kiran Adhikari Chapter 3. Verifying Quasi Linearizabilitya Refinement Checking 28

operations cannot be reordered, the data items are enquegiddrly in the empty slots of one
segment, before theeadpoints to the next segment. But foeq operations, we randomly remove
one existing data item from the current segment. Algorithem@ws the detailed explaination for

creating an implementation model in the PAT tool environimen

3.2.3 Relaxed Specification Mode)’

spec*

Not all execution traces af/;,,,,; are traces of\/,,... In Fig. 3.3, histories other thatl- a are
not linearizable. However, they are all quasi linearizabider the quasi factor 1. They may be
produced by a segmented queue where the segment size is21HDb) verify that)M,,,,, is quasi
linearizable, we construct a new model, .., which includes not only all histories dff,.. but
also the histories that are allowed only under the relaxesistency condition. In this example,
we choose to construct the new model by slightly modifying stendard FIFO queue. This is
illustrated in Fig. 3.2 (upper half), where the fidfstdata items are grouped into a cluster. Within
the cluster, theleq operation may remove any of tihedata items based on randomization. Only
after the firstk data items in the cluster are retrieved, will theq move to the nexk data items
(a new cluster). The external behavior of this model is etggeto match that of the segmented

queue inM;,,,,;: both arel-quasi linearizable
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Algorithm 3 Standard Refinement Checking
1: Procedure Check-Refineméntpl, spec)
2: checked )

3: pending.push(init i, iNitspec))
4: while pending# () do

5. (impl, spec) := pending.pop()

6: if enabled(impl) L enabled(spec) then
7 return false

8. endif

9:  checked := checked{(impl, spec)}

10:  forall (impl’, spec’) € next(impl, spec) do
11: if (impl’, spec’) ¢ checkedhen

12: pending.pusk(impl’, spec’))

13: end if

14:  end for

15: end while

16: return true

3.2.4 Checking Refinement Relation:

OnceM,,.. is available, checking whethér,,,, refinesM,.. is straightforward by using Algo-
rithm 3. Algorithm 3 shows the pseudo code of the refinementkimg procedure in [15, 14].
Assume that.,,,,, refinesi;,.., then for each reachable transitionif,,,,;, denoted asmpl N
impl’, there must exist a reachable transitiorZip.., denoted aspec — spec’. Therefore, the
procedure starts with the pair of initial states of the twodels, and repeatedly checks whether
they have matching successor states. If the answer is nchéuok at Lines 6-8 would fail, meaning
that Z;,,,,,; is not linearizable. Otherwise, for each pair of immediaiecessor statdsmpl’, spec’),

we add the pair to thpendinglist. The entire procedure continues until either (1) a noatching

transition inL,,,,, is found at Lines 6-8, or (2) all pairs of reachable stateschszked, in which

caseL;,,, is proved to be linearizable.
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In Algorithm 3, the subroutineext(impl, spec) is crucially important. It takes the current states
of L;ny @and Ly, as input, and returns a set of state pairs of the fampl’, spec’). Here each
pair (impl’, spec’) is one of the immediate successor state paifgopl, spec). They are defined

as follows:

1. if impl = impl’, wherer is an internal event, then Igbec’ = spec;

2. if impl < impl’, wheree is a method call event, thepec = spec’;

We have assumed, without loss of generality, that the spatidn modelL,,.. is deterministic.
If the original specification model is nondeterministic, ean always apply standastdibset con-

struction(of DFAS) to make it deterministic.

3.3 Experimental Results

For the segmented queue implementation [1], we have manemtistructedV/_,.. and checked

the refinement relation in the PAT model checking environm@mir experimental results are sum-
marized in Table 3.1. Column 1 shows the different quasbfactColumn 2 shows the number of
segments — the capacity of the queugjd”+ 1) x Seg. Column 3 shows the refinement checking
time in seconds. Column 4 shows the total number of visitatestduring refinement checking.
Column 5 shows the total number of state transitions aetduring refinement checking. The

experiments are conducted on a computer with an Intel Gz GHz processor and 8 GB RAM

running Ubuntu 10.04.
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Table 3.1: Experimental results for standard refinementlihg.

Chapter 3. Verifying Quasi Linearizabilitya Refinement Checking

[ Quasi Factor | #. Segment | Verification Time (s) | #. Visited State | #. Transition |

1 1 0.1 423 778

1 2 0.1 2310 4458

1 3 0.1 8002 15213
1 4 0.4 22327 41660
1 5 0.9 55173 101443
1 6 2.0 126547 230259
1 10 55.9 2488052 4421583
1 15 MOut - -

2 1 0.6 26605 58281
2 2 12.6 456397 970960
2 3 130.7 4484213 8742485
2 4 MOut - -

3 1 8.8 284484 638684
3 2 MOut - -

4 1 124.4 3432702 7906856
4 2 MOut - -

The experimental results in Table 3.1 show an exponentie¢ase in the verification time when we

increase the size of the queue or the quasi factor. For sizgerification completes as soon as 0.1

MOut means memory-out.

31

seconds. When it is increased to 2, it takes around 0.6 sedoncheck if the implementation

model refines specification or not.
exponentially as the size increases. Furthermore, as th& €actor increases, the verification
time is also significantly increased. We can see that foridaetor as small as 1, it takes only 0.1
seconds to complete the verification. But, when quasi fastmcreased to 2 and 3 subsequently,
there is tremendous increase in the visited states counhamck the verification time. Fig. 3.4
shows the relation of quasi factor and the verification tifitee horizontal axis represents the quasi

factor. Primary vertical axis represents the verificatiometfor the corresponding quasi factor and

This is inevitable sinte size of the state space grows

the segment size. And, the secondary vertical axis repieensegment size of the queue.
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Figure 3.4: Graph showing the linearizability checkingeifor different QFs and segment sizes
of a queue

3.4 Limitations of the Manual Approach

The proposed method is limited by the availability of theagfieation model in order to compare
with the implementation models. One needs to know the plessifices for a model in order to
check the correctness of the implementation model. Soptkitiod requires the user to manually

constructM’ . which is a severe limitation because it is often labor isdemand error prone. For

spec
example, consider the seemingly simple random dequeuedInmoig. 3.2. A subtle error would

be introduced if we do not use tledusterto restrict the set of data items that can be removed by
deq operation. Assume thakeq always returns one of the firstdata items in the current queue.
Although it appears to be correct, such implementation moll bek-quasi linearizable, because

it is possible for some data item to be over-taken indefwitélor example, if every timeeq

chooseghe second data item in the liste will have the followingleq sequencedeq. 2, deq. 3,
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deq. 4, ..., deq. 1, where the dequeue of value 1 can be delayed by an arbitlandytime. This
is no longer al-quasi linearizablegueue. In other words, if the user constri¢t .. incorrectly,

the verification result becomes invalid.

Therefore, we need to design a fully automated method tattireerify quasi linearizability of

M,y againstV/,,.. under the given quasi factorr.

3.5 Summary

In this chapter, we proposed a model checking approach tty\tee quasi linearizability of a
concurrent data structure. Since, this technique is latiensive and error prone, we proceed with

the fully automated approach for checking t@easi Linearizabilityin the next chapter.



Chapter 4

New Algorithm for Checking the Quasi

Refinement Relation

In this chapter, we present our automated method for vegf@uasi Linearizability We shall
start with the standard refinement checking procedure irortlym 3 and extend it to directly
check a relaxed version of the refinement relation betwdegy,, and M,,.. under a given quasi
factor. The idea is to establish the simulation relatiopghom specification to implementation
while allowing relaxation of the specification. This not yméduces the chances of committing
error during specification construction phase, but alsoraates the tool which can verify the

correctness of concurrent data structures.

34
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4.1 Motivation

The manual verification approach presented in Chapter 3 migtaan check the validity of the

concurrent data structures, but also can generate thearexatnple if the implementation model
does not refine the specification. However, this is obtainedeacost of extensive manual effort
used to model the quasi linearizable specification, whicukhcontain all the possible traces that
a relaxed linearizable implementation could have. Alse gbssibility of introducing errors while

writing the specification model is high. Therefore, we prepa new and fully automated method
which relaxes the specification of a model first and then conddiinement checking to ascertain

the correctness of the implementation model.

4.2 Linearizability Checking via Quasi Refinement

The new procedure, shown in Algorithm 4, is different frongéiithm 3 as follows:

1. We customizg@endingto make the state exploration follow a breadth-first seaBfft). In

Algorithm 3, it can be either BFS or DFS based on whefierdingis a queue or stack.

2. We replaceenabled(specyith enabledrelaxed(spec,QF)it will return not only the events
enabled at currenpec state inM/,,.., but also the additional events allowed under the relaxed

consistency condition.

3. We replacenext(impl,specyvith nextrelaxed(impl,spec,QF)t will return not only the suc-

cessor state pairs in the original models, but also the iaddit pairs allowed under the
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Algorithm 4 Quasi Refinement Checking
1: Procedure Check-Quasi-Refinementpl, spec, QF)
2: checked )
3: pending.enque€init;y,,, initspy.))
4: while pending# () do

5. (impl, spec) := pending.dequeue()

6: if enabled(impl) € enabled_relaxed(spec, QF) then
7 return false

8. endif

9: checked := checked{(impl, spec)}

10:  forall (impl’, spec’) € next_relaxed(impl, spec, QF') do
11: if (impl’, spec’) ¢ checkedhen

12: pending.enqueué&mpl’, spec’))

13: end if

14:  end for

15: end while

16: return true

relaxed consistency condition.

Conceptually, itis equivalent to first constructing a reldspecification modeéll;,.. from (M., QF')

and then computing thenabled(specand next(impl,specpn this new model. However, in this

case, we are constructing’ _. automatically, without the user’s intervention. Furtherm the

spec

additional states and edges that need to be add&d,{o are processed incrementally, oneed-to

basis.

At the high level, the new procedure performs a BFS explonator the state paitimpl, spec),
whereimpl is the state of implementation asgecis a state of specification. The initial imple-
mentation and specification events are enqueuedpetalingand each time we go through the
while-loop, we dequeue frorpendinga state pair, and check if all events enabled at stajg

match with some events enabled at stgiec under the relaxed consistency condition (line 6).
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If there is any mismatch, the check fails and we can returnumtesexample showing how the
violation happens. Otherwise, we continue upghdingis empty. Lines 10-14 explore the new

successor state pairs, by invokingxtrelaxedand add tgendingif they have not been checked.

Subroutine enabledrelaxed(spec,QF): It takes the current stateec of model M,.., along

with the quasi facto€) F', and generates all events that are enabled at gtate

Consider the graph in Fig. 4.1 a$,,... Without relaxationgnabled(s,)={e; }. This is equivalent
to enabled_relaxed(sy,0). However, wherQ F' = 1, according to the dotted edges in Fig. 4.2, the

setenabled_relaxed(sy, 1)={ey, €2, €3}.

The reason why, ande; become enabled is as follows: before relaxation, startistpdes,, there
are two length-32Q F + 1) event sequences = e, es, e5 andos = eq, e3,e4. WhenQF =1, it
means an event can be out-of-order by at most 1 step. Ther#fherpossilbe valid permutations of
o1 1S = ey, €1, e5 aNdmy = e, €5, e, and the possible valid permutationsegfis w5 = es, eq, ey
andry = e, eq, e3 for QF = 1. In other words, at statg, eventse,, ez can also be executed. We

will discuss the generation of valid permutation sequent&ection 4.3.

Subroutine nextrelaxed(impl, spec, QF): It takes the current staténpl of M,,,, and the
current statespec of Mj,.. as input, and returns a set of state pairs of the feimp!’, spec’).
Similar to the definition ofiext(impl, spec) in Section??, we define each paitimpl’, spec’) as

follows:

1. if impl = impl’, wherer is an internal event, then lepec’ = spec;
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2. if impl < impl’, wheree is a method call event, thespec = spec’ where evene €

enabled_relaxed(spec, QF) is enabled atpec after relaxation.

For example, wherpec = s; in Fig. 4.1, and the quasi factor is set to 1 — meaning thatvbate
at states; can be out-of-order by at most one step — the procedexerelaxed(impls,, 1) would
return not only(impl’, s2), but also(impl’, s¢) and (impl’, s¢), as indicated by the dotted edges
in Fig. 4.2. The detailed algorithm for generation of theaxeld next states in specification is

described in Section 4.3.

4.3 Generation of Relaxed Specification

In this subsection, we show how to relax the specificafidy).. by adding new states and tran-
sitions — those that are allowed under the condition of qlinearizability — to form a new
specification model. Notice that we accomplish this autoacally, and incrementally, onaeed-to

basis.

For each statepec in M,,.., we compute all the event sequences startingpat with the length
(2QF + 1). These event sequences can be computed by using a simpletgreersal algorithm,

e.g., a breadth first search.

Fig. 4.1 shows an example for the computation of these eegutesices. The specification model
M, has the following set of stat€ss, ss, s3, 54, 55}. Suppose that the current statesis(in

step 0), then the current frontier state set{is, }, and the current event sequencegds). The
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Figure 4.1: Specification model before
adding relaxed transitions for state Figure 4.2: Specification model after adding
relaxed edges for state and quasi factor 1.

Table 4.1: Specification sequence generation at sfate

BFS Steps| (Frontier) | EventSequences

step 0 {s1} (s1)

step 1 {52} (s1 =% s9)

step 2 {83,584} (51 59 B 53051 B 55 D 54)

step 3 {s5, 592} (515 55 B 53 5 s5) (51 = 59 3 54 3 59)

results of each BFS step are shown in Table 4.1sttp 1, the frontier state set i§s,}, and the
event sequence becomés = s,). In step 2, the frontier state set iss, s4}, and the event
sequence is split into two sequences. Ongis™ s, 3 s3) and the other igs; & s, 2 s,).

The traversal continues until the BFS depth reach€s{+ 1).

After completing the ZQF' + 1) steps of BFS starting at statpec, as above, we have to gen-

erate possible valid permutations first and then we will ble &b evaluate the two subroutines:

enabled_relaxed(spec, QF) andnext_relazed(impl, spec, QF).

We transform the original specification model in Fig. 4.1 lte telaxed specification model in
Fig. 4.2 forQF = 1. The dotted states and edges are newly added to reflect tratieh.
More specifically, forQF = 1, we will reach(2QF + 1) = 3 steps during the BFS. Adtep 3,

there are two existing sequencés, es, e5} and{e, e3,e,}. For each existing sequence, we
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compute all possible valid permutation sequences. In #se cthe valid permutation sequences
are {es, e1,e5},{e1,e5,62} and{es, e1,e6}, {€1,e3,e6}. For each newly generated permutation
sequence, we add new edges and states to the specificatial. nkbdm an initial state, if

we follow the new permutatiokes, e1, e5}, as shown in Fig. 4.2, the transitien will lead to
newly formed pseudo statg, the transitiore; will lead to s; from statesg and from this state

it is reconnected back to the original statevia transitiones;. Similarly, if we follow the new
permutation{es, e1, e, }, the transitiore; will lead to newly formed pseudo stateg, the transition

e Will lead to s, from statesg and from this state it is reconnected back to stat@a transitiore,.

We continue this process of state expansion for all the yardhutation sequences. This relaxation
process needs to be conducted by using every existing s$tafg,0 as the starting point (for BFS
up to2Q F + 1 steps) and then adding the new states and edges. Note thatdbess is conducted

on the fly.

Algorithm 5 explains the high level pseudo-code for expagdhe state space for the current
specification state under the check. I981Q) = {seq, seqq, ..., seqx } be the sequences which are
reachable from the statg in M,.. such that each sequence has less than or equ&) 0+ 1
events. Each sequengey € SEQ calls agenValidPermut(seq,QR)ine 4) to generate all the
possible valid permutation paths for that trace. A new sgfermed with a new transition for
each event in the permuted sequences, hence allowing teedelefinement checking of the

implementation trace.

The valid permutations for a given sequence is generated) asi Algorithm 6 which is based on

the cost associated with the event. Initially, for each &venwherel < ¢ < n associated with the
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Algorithm 5 Pseudo-code for Expanding Specification Under Check
1: Let sy be a specification state aQ:F be the quasi factor
2: Let SEQ = {seqi, seqa, seqs, - - - , seqx } be the set of all possible event sequences reachable
from s in Mj,.. such that forl <: < k, eachsegq; has less than or equal 8QF + 1 relaxed
events
for all seqin SEQdo
PERMUTVALID = genV alid Permut(seq, QF)
for all permin PERMUTVALID do
Letperm= (e, e, -+, €,)
Let s,, be the specification state reached frenvia seq
if permis not equal teseqthen
for all e; wherel <i <ndo
10: Create a new state and a new transition from,_; to s; via evente;
11: end for
12: Create a new transition from,_; to s,, via e,
13: end if
14:  end for
15: end for

A e AR

seq the cost is initialized t&QF (line 2). We generate all possible permutations and updzge c
with respect to the relative ordering of the events for eashuffled sequences. This cost attribute
of an event stores the information on how many more stepsemt evay be postponed. Each time
an event is postponed, the cost associated with this evdatiemented by 1. On the contrary, the
event can also be chosen uglé’ steps ahead and for each step, the cost is increased by heSo, t
cost attribute of the event that is allowed for relaxatio@s < cost< 0. We check the validity

of each of these sequences using this cost attribute (lirfeii@lly, only the valid permutations are
appended iPERMUT.VALID after each check and once the check is completed for all getmu

sequences, the function returns the valid traces.

Consider the event sequenfs, e, e5} from states; beseqas shown in Fig. 4.1. IQF = 1, the

cost for each of these events is initialized tdNVe generate all possible permutations by reshuffling
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Algorithm 6 genValid Permut(seq, QF)

1: PERMUTVALID : =)

2: Initialize cost associated with each evenseqto QF

3: Generate possible permutatidPdERMUT.SEQand update cost
4: for all pin PERMUTSEQdo

5. isvValid =true

6: Letp={(ej,ea,---,en)

7. forall ¢; wherel <i < ndo

8

9

if e;.cost > 2QF V e;.cost < 0then
isValid =false

10: break
11: end if
12: end for

13: if isValidthen

14: PERMUTVALID = PERMUTVALID | p
15:  end if

16: end for

17: returnPERMUTVALID

the events and updating the cost based on the relative gnaai of the event with respect to the
initial sequence. There are as many as 6 possible perrmgatioluding the original sequence in
this case. If we consider reordering be the sequénge;, e5 }, then the cost associated with event
e IS 2 as it is chosen one step earlier. For the evgnit is postponed for one step meaning its cost
is decreased by 1 which makes the cost associated withitlBeente; is not reordered and hence
its cost is unchanged and is This sequence is valid because cost associated with edtie of
events in this sequence lies within the allowable rangeil&ily, if we consider another permuted
sequencdes, e1, €2}, then the cost associated with each of these eveqs (50} which exceeds
the allowable range. So, this permutation sequence is tiot WAle do this for all the permuted

sequences to generate the valid traces.
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4.4 Experimental Results

We have implemented and evaluated the quasi linearizabhiecking method in the PAT verifi-
cation framework [20]. Our new algorithm can directly chectelaxed version of the refinement
relation. This new algorithm subsumes the standard refinecteecking procedure that has al-
ready been implemented in PAT. In particular, whi@h = 0, our new procedure degenerates
to the standard refinement checking procedure. Wp&n> 0, our new procedure has the added
capability of checking for the quantitatively relaxed refiment relation. Our algorithm can directly
handle the implementation modgl,,,,,;, the standard (not quasi) specification modigl,.., and

the quasi factof) F’, thereby completely avoiding the user’s intervention.

Table 4.2: Statistics of the benchmark examples

Class Description Linearizable | Quasi Lin.
Quasi Queue (3) Segmented linked list implementation (size=3) No Yes
Quasi Queue (6) Segmented linked list implementation (size=6) No Yes
Quasi Queue (9) Segmented linked list implementation (size=9) No Yes
Quasi Queue (4) Segmented linked list implementation (size=4) No Yes
Quasi Queue (8) Segmented linked list implementation (size=8) No Yes
Queue buggyl Segmented queue with a bug (Dequeue on the empty No No
gueue may erroneously change current segment)
Queue buggy?2 Segmented queue with a bug (Dequeue may get No No
value from a wrong segment)
Lin. Queue A linearizable (hence quasi) implementation Yes Yes
Q. Priority Queue (6) Segmented linked list implementation (size=6) No Yes
Q. Priority Queue (9) Segmented linked list implementation (size=9) No Yes
Q. Priority Queue (4) Segmented linked list implementation (size=4) No Yes
Priority Queue buggy Segmented priority queue (Dequeue on the empty No No
priority queue may change current segment)
Lin. Stack A linearizable (hence quasi) implementation Yes Yes

We have evaluated our new algorithm on a set of models of atdreehd quasi linearizable con-
current data structures [1, 12, 17], including queueskstaguasi queues, quasi stacks, and quasi
priority queues. For each data structure, there can beaexerants, each of which has a slightly

different implementation. In addition to the implemerntas that are known to be linearizable
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Table 4.3: Results for checking quasi linearizability watthreads

Class QF | \Verification Time (s) | Number of Visited States| Number of Visited Transitions
Quasi Queue (3) 2 7.2 126,810 248,122
Quasi Queue (6) 2 21.2 237,760 468,461
Quasi Queue (9) 2 114.5 1,741,921 3,424,280
Quasi Queue (4) 3 131.6 442,558 869,129
Quasi Queue (8) 3 1517.1 1,986,924 3,754,489
Queue buggyl 2 0.4 1,204 809
Queue buggy?2 2 0.1 345 345
Lin. Queue 2 5.5 240,583 121,548
Q. Priority Queue (6) 2 34.3 472,981 918,530
Q. Priority Queue (9) 2 198.4 1,478,045 2,905,016
Q. Priority Queue (4) 3 343.1 1,408,763 2,566,427
Priority Queue buggy 2 5.4 894 894
Lin. Stack 2 0.2 2,690 6,896

and quasi linearizable, we also have versions which ifytiaere thought to be correct, but were
subsequently proved to be buggy by our verification tool. Tharacteristics of all benchmark
examples are shown in Table 4.2. The first two columns listridwme of the concurrent data
structures and a short description of the implementatidwe fiext two columns show whether the

implementation is linearizable and quasi linearizable.

Table 4.3 shows the results of the experiments. The expetgrage conducted on a computer
with an Intel Core-i7, 2.5 GHz processor and 8 GB RAM runningp®dws 7. The first column
shows the statistics of the test program, including the namaethe size of benchmark. The second
column is the quasi factor showing the relaxation boundnadtb for the model. The next three
columns show the runtime performance, consisting of théieation time in seconds, the total
number of visited states, and the total number of transtroade. The number of states and the

running time for each of the models increase with the dat siz

For 3 segmented quasi queue with quasi factor 2, the vertfic@ompletes in 7.2 seconds. It
is much faster than the first approach presented in Sectiavhdre the same setting requires

130.7 seconds for the verification. Subsequently, as tleastzeases, the time to verify the quasi
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gueue increases. For queue with size 6 and 9, verificatioongpleted in 21.2 seconds and 114.5
seconds, respectively. As the quasi factor is increased ttee3verification time for quasi queue
with size 4 and 8 is increased to 131.6 seconds 1517.1 seoespisctively, which is much higher
in comparison to the time for quasi factor 2. This is basych#cause of the significant increment
in state expansion for the higher quasi factor. For the pyigueues where enqueue and dequeue
operations are performed based on the priority, the vetidicdime is higher than the regular quasi
queue. Also, it is important to note that the counterexangpproduced with exploration of only
part of the state space for the buggy models. The verificdtea is much faster for the buggy
gueue, which shows that our approach is effective if the iduresarizability is not satisfied. In all

test cases, our method was able to correctly verify quasati@ability or detect the violations.

4.5 Conclusion

In this chapter, we presented a novel approach to automatquasi linearizability refinement
checking algorithm presented in Chapter 3. The specificatiodel is relaxed on the fly by using
our new refinement checking algorithm. This makes the methok robust and less error prone

as the specification is relaxed automatically as opposedatwally by the user.



Chapter 5

Conclusions and the Future Work

In this thesis, we have presented a new method for formalijyweg quasi linearizability of the

implementation models of concurrent data structures. We kaplored two approaches, one of
which is based on manual construction of the relaxed spatidit model, whereas the other is
fully automated, and is based on checking a relaxed verdidheorefinement relation between
the implementation model and the specification model. Tlyedea of this work is to construct

the quasi linearizable specification manually initiallyaiwalyze the bulkiness of the work and the
cases of committing errors in modeling those specificatioders. This provides us a framework
to extend the original refinement algorithm in order to wetife relaxed implementation model by

automating the checker.

Experimental results have showed that our approach is Hgtalle to verify the linearizable

models, but also the relaxed linearizable models. The comeumodels with bugs have also

46
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been identified correctly in all cases. The counterexampleets generated for the buggy models
clearly can provide us valuable information on why the medmsing buggy. Based on such
information, we have been able to fix the bugs in our originatieis to get the correct versions of

the implementation models.

The main objective of this thesis work is to develop an autechgoftware tool that can formally
verify a relaxed version of the linearizability propertythie models of concurrent data structures.
The main bottleneck of our approach is state space expameeening the state space increases
exponentially for higher number of processes as well asdizeodel. Also, itis limited by the fact
that we can only verify the model with a bounded size to enthatit has a finite state space. We
believe that the automated refinement checking algorithmbesafurther optimized to improve the
performance. For future work, we plan to incorporate adedrstate space reduction techniques

such as symmetry reduction and partial order reduction [14]
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