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“I fully agree with you about the significance and educational value of methodology as 

well as history and philosophy of science. So many people today—and even professional 
scientists—seem to me like somebody who has seen thousands of trees but has never seen a 
forest. Knowledge of the historic and philosophical background gives that kind of independence 
from prejudices of his generation from which most scientists are suffering. This independence 
created by philosophical insight is—in my opinion—the mark of distinction between a mere 
artisan or specialist and a real seeker after truth.” (Einstein to Thornton, 7 December 1944, 
Einstein Archives, 61–574). 

 
1  Introduction 
 
The above quotation from Einstein’s reply to Robert Thornton, a young philosopher of 

science who began teaching physics at the university level in 1944, encapsulates succinctly the 
importance of examining the methodology, history and the philosophical foundations of different 
scientific fields to avoid missing the forest for the trees. The history of a scientific field gives 
researchers a glimpse of its roots and evolution, but more importantly, it provides researchers 
with a balanced perspective on the current ‘paradigm’ they find themselves engaged in, as well 
as its potential growth and development. Broadly speaking, a paradigm is a conceptual 
framework that includes theories, beliefs, values, research methods, objectives, the professional 
and educational structure of a scientific field, as well as standards for what constitutes legitimate 
contributions to a field. Philosophy of science emphasizes skills that are often absent from the 
training of scientists in most fields, including attentiveness to conceptual clarification and 
coherence, vigilance against equivocation, the accuracy of expression and weak links in 
arguments, the capacity to detect gaps in traditional arguments and devise novel perspectives, 
as well as the ability to frame alternative conceptual perspectives. Successful scientific fields, 
such as physics, chemistry, astronomy, and biology, have repeatedly redefined their conceptual 
framework over time, along with their goals, methods, and tools. Such conceptual revisions are 
the result of long periods of reflection revolving around the incessant dialogue between theory 
and data and guided by the systematic re-examination of the current methodology, and 
philosophical foundations. 

The field of interest in the discussion that follows is modern econometrics whose roots 

 
1 Thanks are due to Julian Reiss for several comments and suggestions that improved the discussion substantially. 



can be traced back to the early 20th century; see Morgan (1990), Qin (1993), Spanos (2006a). 
Econometrics is primarily concerned with the systematic study of economic phenomena 
employing observed data in conjunction with statistical models and substantive subject matter 
information. The philosophy of econometrics relates to methodological issues concerning to the 
effectiveness of econometric methods, and procedures used in empirical inquiry, as well as 
ontological issues concerned with the worldview of the econometrician; see Hoover (2006). 
Hence, its success should be evaluated with respect to its effectiveness in enabling practitioners 
to ‘learn from data’ about such phenomena, i.e. the extent to which econometric modeling and 
inference gives rise to trustworthy evidence that transforms tentative substantive conjectures 
into reliable knowledge about economic phenomena. One transforms tentative conjectures into 
real knowledge by testing the cogency of the substantive information using observable data given 
rise to by the phenomenon of interest. From this perspective econometric modeling and 
inference provides a statistical framework with a twofold objective: to account for the chance 
regularity patterns in data and to construct ‘provisional’ substantive models that shed adequate 
light (explain, describe, predict) economic phenomena of interest. 

When assessed on such grounds current econometric methodology would be judged to 
be an inauspicious failure, or so it is argued in what follows. That makes the task of a meta-level 
appraisal of the methods, procedures, and strategies employed in studying economic 
phenomena using econometrics all the more urgent. It is often forgotten that scientific fields do 
not have a methodology written in stone with well-defined objectives and a fixed conceptual 
framework, even though it might look that way for newcomers to the field. The history of science 
teaches us that all these components evolve toward (hopefully) better science, sometimes after 
long digressions. 

 
2  Descriptive statistics and induction 
 
The problem of induction in the sense of justifying an inference from particular instances 

to realizations yet to be observed, has been bedeviling the philosophy of science since Hume’s 
(1748) discourse on the problem. In its simplest form, induction by enumeration boils down to 
justifying the straight-rule: if the proportion of red marbles from a sample of size 𝑛𝑛 is (𝑚𝑚/𝑛𝑛), 
infer that approximately a proportion (𝑚𝑚/𝑛𝑛) of all marbles in the urn are red”; see Salmon 
(1967), p. 50. The key feature of inductive inference is that it is ampliative in the sense that it 
goes beyond the observed data (𝑚𝑚/𝑛𝑛) to the unknown 𝜃𝜃 = ℙ(𝑅𝑅) – that reflects the proportion 
of red (𝑅𝑅) marbles in the urn – enhancing our knowledge about the underlying set-up that gave 
rise to the observed data. Numerous attempts to justify this inductive rule have failed, and the 
problem of induction is still unresolved in philosophy of science; see Henderson (2020), Reiss 
(2013, 2015) inter alia. 

A case can be made that Karl Pearson’s approach to descriptive statistics (Yule, 1916), can 
be viewed as a more sophisticated form of induction by enumeration. The approach is data-driven 
in search of a model in the sense that one would begin with the raw data 𝐱𝐱0: = (𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛), and 
in step 1 one would summarize 𝐱𝐱0  using a histogram with 𝑚𝑚 ≥ 10 bins. In step 2 one would 
select a frequency curve 𝑓𝑓(𝑥𝑥;𝛉𝛉), 𝑥𝑥 ∈ ℝ𝑋𝑋 ⊂ ℝ -real line, from the Pearson family whose 
members are generated by: 



 [𝑑𝑑ln𝑓𝑓(𝑥𝑥;𝛉𝛉)/𝑑𝑑𝑑𝑑] = [(𝑥𝑥 − 𝜃𝜃1)/(𝜃𝜃2 + 𝜃𝜃3𝑥𝑥 + 𝜃𝜃4𝑥𝑥2)], 𝑥𝑥 ∈ ℝ, (1) 

aiming to describe the data even more succinctly in terms of four unknown parameters 𝛉𝛉: =
(𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4); note that (1) includes several well-known distributions, such as the Normal, the 
Student’s 𝑡𝑡, the Beta, the Gamma, etc. This is achieved in step 3 by estimating 𝛉𝛉 using the first 
four data raw moments, 𝜇̂𝜇𝑘𝑘 = 1

𝑛𝑛
∑𝑛𝑛
𝑡𝑡=1 𝑥𝑥𝑡𝑡𝑘𝑘 , 𝑘𝑘 = 1,2,3,4,and solving a system of four equations 

stemming from (1) for 𝛉𝛉�(𝐱𝐱0); see Spanos (2019), p. 551. In step 4 one would use the estimates 
𝛉𝛉�(𝐱𝐱0) to select a member of this family 𝑓𝑓(𝑥𝑥;𝛉𝛉�) that ‘best’ describes the data. In step 5 one would 
evaluate the ‘appropriateness’ of 𝑓𝑓(𝑥𝑥;𝛉𝛉�) using Pearson’s goodness-of-fit chi-square test, based 
on the difference (𝛉𝛉�(𝐱𝐱0) − 𝛉𝛉0) , where 𝛉𝛉0  denotes the selected 𝑓𝑓(𝑥𝑥;𝛉𝛉0), 𝑥𝑥 ∈ ℝ𝑋𝑋   known 
parameters. Pearson’s justification of his statistical analysis was based on the fact that the chosen 
frequency curve 𝑓𝑓(𝑥𝑥;𝛉𝛉�), 𝑥𝑥 ∈ ℝ𝑋𝑋 ,  is the ‘best’ on goodness-of-fit grounds, and that could justify 
going beyond the data in hand 𝐱𝐱0. Although his approach to statistical induction was Bayesian in 
spirit, his use of uniform priors routinely enhanced the role of 𝑓𝑓(𝑥𝑥;𝛉𝛉�), 𝑥𝑥 ∈ ℝ𝑋𝑋 . 

Similarly, Pearson’s approach to correlation and regression amounts to curve-fitting 
guided by goodness-of-fit with a view to describe succinctly the association between data series, 
say 𝐳𝐳0: = {(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡), 𝑡𝑡 = 1,2, . . . ,𝑛𝑛} . The conventional wisdom underlying the Pearson-type 
statistics is summarized by Mills’s (1924) who distinguishes between ‘statistical description vs. 
statistical induction’. In statistical description measures such as the ‘sample’ mean 𝑥𝑥 =
1
𝑛𝑛
∑𝑛𝑛
𝑡𝑡=1 𝑥𝑥𝑡𝑡, variance 𝑠𝑠𝑥𝑥2 = 1

𝑛𝑛
∑𝑛𝑛
𝑡𝑡=1 (𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑛𝑛)2, and correlation coefficient: 

 𝑟𝑟 = ��∑𝑛𝑛
𝑡𝑡=1 (𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑛𝑛)(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑛𝑛)�/�[∑𝑛𝑛

𝑡𝑡=1 (𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑛𝑛)2]�∑𝑛𝑛
𝑡𝑡=1 (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑛𝑛)2�� , (2) 

‘provide just a summary for the data in hand’ and “may be used to perfect confidence, as accurate 
descriptions of the given characteristics” (p. 549).  However, when the results are to be extended 
beyond the data in hand - statistical induction - their validity depends on certain inherent a priori 
stipulations, such as (a) the ‘uniformity’ for the population and (b) the ‘representativeness’ of the 
sample (pp. 550-2). That is, statistical description does not invoke the validity of any assumptions, 
but if the same data are used to go beyond the data in hand (inductive inference), one needs to 
invoke (a) and (b). 

What Pearson and Mills did not appreciate sufficiently is that, even for descriptive 
purposes, going from the raw data 𝐱𝐱0 to the histogram invokes the assumptions of Independence 
and Identically Distributed (IID). When these assumptions are invalid the histogram will provide 
an inappropriate description of 𝐱𝐱0, and the frequency curve that is chosen on goodness–of-fit 
grounds will be highly misleading. Similarly, correlation and regression assume that the data 𝐳𝐳𝑡𝑡: =
(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡), 𝑡𝑡 = 1,2, . . . ,𝑛𝑛, are IID over the ordering 𝑡𝑡 . When these assumptions are invalid, the 
summary statistics will be spurious; see Spanos (2019). 

 
3  Model-based statistical modeling and inference 
 
 
3.1  Model-based statistical induction 
 



Fisher’s (1922) recasting of statistics open the door for the standpoint that data 𝐱𝐱0: =
(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) can be viewed as a typical realization of a stochastic processes {𝑋𝑋𝑡𝑡, 𝑡𝑡 ∈ ℕ} to be 
integrated into modern statistics properly, although most of the statistical models introduced by 
Fisher were based random samples (IID). The way he recast modern statistics was to turn 
Pearson’s approach on its head. Instead of commencing with the raw data 𝐱𝐱0: = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) in 
search of a statistical model, he would view data as a typical realization of a prespecified 
statistical model ℳ𝛉𝛉(𝐱𝐱) (he called a ‘hypothetical infinite population’) and answer the question: 
“Of what population is this a random sample?” (p. 313). This is not just a re-organization of 
Pearson’s approach, but a complete reformulation of statistical induction from generalizing 
observed ‘events’ described by summary statistics to unobserved data events, to modeling the 
underlying ‘process’ in the form of a stochastic mechanism ℳ𝛉𝛉(𝐱𝐱) that gave rise to data 𝐱𝐱0, and 
not to summarize/describe 𝐱𝐱0. 

Modern model-based frequentist inference revolves around a prespecified parametric 
statistical model, generically defined by: 

 ℳ𝛉𝛉(𝐱𝐱) = {𝑓𝑓(𝐱𝐱;𝛉𝛉), 𝛉𝛉 ∈ Θ ⊂ ℝ𝑚𝑚}, 𝐱𝐱 ∈ ℝ𝑋𝑋
𝑛𝑛 , 𝑛𝑛 > 𝑚𝑚, (3) 

where 𝑓𝑓(𝐱𝐱;𝛉𝛉), 𝐱𝐱 ∈ ℝ𝑋𝑋
𝑛𝑛  denotes the joint distribution of the sample 𝐗𝐗: = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛),  ℝ𝑋𝑋

𝑛𝑛  
denotes the sample space and Θ the parameter space. This represents a statistical generating 
mechanism specified in terms of the observable stochastic process {𝑋𝑋𝑡𝑡, 𝑡𝑡 ∈ ℕ: =
(1,2, . . . , 𝑛𝑛, . . . )} underlying data 𝐱𝐱0: = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). The unknown parameters 𝛉𝛉 are viewed as 
constants and the interpretation of probability is frequentist, firmly anchored on the Strong Law 
of Large Numbers (SLLN). As argued in Spanos (2013), some of the criticisms of the frequentist 
interpretation of probability, including (i) the circularity of its definition, (ii) its reliance on 
‘random samples’, (iii) its inability to assign ‘single event’ probabilities, and (iv) the ‘reference 
class’ problem (Salmon, 1967, Hajek,(2007), stem from conflating the model-based frequentist 
interpretation anchored on the SLLN with the von Mises (1928) interpretation. In Bayesian 
statistics, by contrast, 𝛉𝛉 is viewed as a random variable (vector) and probability is interpreted as 
‘degrees of belief’. 

The primary objective of frequentist inference is to use the sample information, as 
summarized by 𝑓𝑓(𝐱𝐱;𝛉𝛉), 𝐱𝐱 ∈ ℝ𝑋𝑋

𝑛𝑛 ,  in conjunction with data 𝐱𝐱0 , to narrow down Θ as much as 
possible, ideally, to a single point: 

 ℳ∗(𝐱𝐱) = {𝑓𝑓(𝐱𝐱;𝛉𝛉∗)}, 𝐱𝐱 ∈ ℝ𝑋𝑋
𝑛𝑛 , 

where 𝛉𝛉∗ denotes the ‘true’ value of 𝛉𝛉 in Θ; ‘the true value of a parameter 𝛉𝛉’, in this context, is 
shorthand for saying that the generating mechanism specified by ℳ∗(𝐱𝐱) could have generated 
data 𝐱𝐱0. In practice, this ideal situation is unlikely to be reached, except by happenstance, but 
that does not preclude learning from 𝐱𝐱0. Learning from data about 𝛉𝛉∗ is often referred to as 
accurate ‘identification’ of the generating mechanism ℳ𝛉𝛉(𝐱𝐱) that could have given rise to 𝐱𝐱0. 

Example 1. The simple Normal model is specified by: 

 𝑋𝑋𝑡𝑡 ∽ NIID(𝜇𝜇,𝜎𝜎2),𝛉𝛉: = (𝜇𝜇,𝜎𝜎2) ∈ Θ: = (ℝ × ℝ+), 𝑥𝑥𝑡𝑡 ∈ ℝ, 𝑡𝑡 ∈ ℕ}, (4) 

where 𝜇𝜇 = 𝐸𝐸(𝑋𝑋𝑡𝑡), 𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡), and NIID are the assumptions comprising ℳ𝛉𝛉(𝐱𝐱). 
Example 2: The simple Bernoulli model: 

 



𝑋𝑋𝑘𝑘 ∽ BerIID(𝜃𝜃,𝜃𝜃(1 − 𝜃𝜃)), 𝑥𝑥𝑘𝑘 = 0,1, 𝐸𝐸(𝑋𝑋𝑘𝑘) = 𝜃𝜃 ∈ [0,1], 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑘𝑘) = 𝜃𝜃(1 − 𝜃𝜃), 𝑘𝑘 ∈ ℕ. (5) 
 

The initial choice (specification) of a statistical model ℳ𝛉𝛉(𝐱𝐱) is based on rendering 𝐱𝐱0 a 
typical realization thereof, or equivalently, the probabilistic assumptions selected for the 
stochastic process {𝑋𝑋𝑡𝑡, 𝑡𝑡 ∈ ℕ} underlying ℳ𝛉𝛉(𝐱𝐱) would reflect the chance regularity patterns 
exhibited by data 𝐱𝐱0. The search for patterns is not as unyielding as it might seen at first sight 
because that there are three broad categories of chance regularity patterns and corresponding 
probabilistic assumptions: distribution, dependence and heterogeneity; see Spanos (2006b). It is 
worth noting that the simple Normal model in (4) has one probabilistic assumption from each 
category, and the same applies to all statistical models in the model-based (ℳ𝛉𝛉(𝐱𝐱)) approach. 

What is particularly interesting from the philosophy of science perspective is that Fisher’s 
specification process echoes Charles Saunders Peirce’s process of abduction “ ... there are but 
three elementary kinds of reasoning. ... The first, which I call abduction ... consists in examining 
a mass of facts and in allowing these facts to suggest a theory. In this way we gain new ideas; but 
there is no force in the reasoning.” (8.209).2 “Abduction is the process of forming an explanatory 
hypothesis. It is the only logical operation which introduces any new idea; for induction does 
nothing but determine a value, and deduction merely evolves the necessary consequences of a 
pure hypothesis.” (5.172) 

One can make a strong case that the specification of ℳ𝛉𝛉(𝐱𝐱) relates directly to Peice’s 
abduction in the sense that ‘examining a mass of facts’ comes in the form of detecting the chance 
regularity patterns exhibited by data 𝐱𝐱0, and abduction suggests an explanatory hypothesis in 
the form of ℳ𝛉𝛉(𝐱𝐱) that comprises the probabilistic assumptions aiming to account for these 
regularities. Also, the next step of validating the initial choice is in sync with that of Fisher when 
Peirce argues that: “ A hypothesis adopted by abduction could only be adopted on probation, 
and must be tested.” (7.202). Hence, the crucial role of Mis-Specification (M-S) testing; testing 
the validity of the probabilistic assumptions comprising ℳ𝛉𝛉(𝐱𝐱) vis-a-vis data 𝐱𝐱0. Related to that 
is another important insight about induction from Peirce: “... [inductive] reasoning tends to 
correct itself, and the more so the more wisely its plan is laid. Nay, it not only corrects its 
conclusions, it even corrects its premises.” (5.575); see Mayo (1996). That is, the key to model-
based statistical induction consists in ‘selecting ℳ𝛉𝛉(𝐱𝐱)  wisely’ to account for all the chance 
regularities in data 𝐱𝐱0, combined with validating its premises. 

This insight has not been heeded by modern statisticians, even though the early pioneers 
were clear about the importance of validating ℳ𝛉𝛉(𝐱𝐱); see Neyman (1952), p. 27. 

Example 1 (continued). In the case of (4), the NIID assumptions need to be validate vis-a-
vis data 𝐱𝐱0. 

Diagram 1 depicts the form of model-based induction described above, with ℚ(𝛉𝛉;𝐱𝐱) 
denoting inferential propositions, such as optimal (i) estimators, (ii) confidence intervals and (iii) 
tests, that are derived deductively from ℳ𝛉𝛉(𝐱𝐱). 

Example 1 (continued). ℚ(𝛉𝛉;𝐱𝐱), 𝐱𝐱 ∈ ℝ𝑋𝑋
𝑛𝑛  could refer to the estimators 

 𝑋𝑋𝑛𝑛 = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖, 𝑠𝑠2 = 1

𝑛𝑛−1
∑𝑛𝑛
𝑖𝑖=1 (𝑋𝑋𝑛𝑛 − 𝑋𝑋𝑖𝑖)2  being optimal because they satisfy certain 

properties, such as unbiasedness, consistency, efficiency and sufficiency; these properties stem 
from their sampling distributions (Lehmann and Romano, 2005): 

 
2 All references to Peirce are to his Collected Papers, and are cited by volume and paragraph number; see Burks (1958). 



 𝑋𝑋𝑛𝑛 ∽ N(𝜇𝜇, 𝜎𝜎
2

𝑛𝑛
), [(𝑛𝑛−1)𝑠𝑠2

𝜎𝜎2
] ∽ χ2(𝑛𝑛 − 1), (6) 

where χ2(𝑚𝑚) denotes a chi-square distribution with 𝑚𝑚 degrees of freedom. 
Fisher’s enduring contributions to model-based induction includes devising a general way 

to ‘operationalize’ the reliability of inference by (a) deductively deriving error probabilities from 
ℳ𝛉𝛉(𝐳𝐳), and (b) providing a measure of the procedure’s ‘effectiveness’ in learning from data 
about 𝛉𝛉∗. The form of induction envisaged by Fisher and Peirce is one where the reliability of the 
inference is stemming from the ‘trustworthiness’ of the inference procedure – how often it errs; 
see Mayo (1996). 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:ℳ𝛉𝛉(𝐳𝐳) = {𝑓𝑓(𝐳𝐳;𝛉𝛉), 𝛉𝛉 ∈ Θ ⊂ ℝ𝑚𝑚}, 𝐱𝐱 ∈

ℝ𝑋𝑋
𝑛𝑛1𝑐𝑐⇑ ABDUCTION𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 𝐳𝐳0 = (𝑧𝑧1, 𝑧𝑧2, . . . , 𝑧𝑧𝑛𝑛)𝑐𝑐DEDUCTION Inferential

propositions:ℚ(𝛉𝛉; 𝐳𝐳) ⟵

  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
Inference:
⟹   ℚ(𝛉𝛉; 𝐳𝐳0)
↙                            

1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
 

The inferential propositions in ℚ(𝛉𝛉; 𝐳𝐳)  are deductively valid when the truth of the 
premises (ℳ𝛉𝛉(𝐱𝐱)) ensures the truth of the conclusions (ℚ(𝛉𝛉;𝐱𝐱)), assured by valid mathematical 
derivations. ℚ(𝛉𝛉; 𝐳𝐳)  is rendered sound by securing the statistical adequacy of ℳ𝛉𝛉(𝐱𝐱)  – the 
validity of its probabilistic assumptions vis-a-vis data 𝐱𝐱0 – which can be established by thorough 
misspecification testing. Statistical adequacy in turn guarantees the statistical reliability of the 
inference results ℚ(𝛉𝛉; 𝐱𝐱0) based on 𝐱𝐱0; see Spanos (2019). 

Example 1 (continued). ℚ(𝛉𝛉;𝐱𝐱), 𝐱𝐱 ∈ ℝ𝑋𝑋
𝑛𝑛  represents sound inferential propositions only 

when the NIID assumptions are valid; see Spanos (2019). 
Fisher (1922) identified the ‘problems of statistics’ to be: (1) specification, (2) estimation 

and (3) distribution, and emphasized that addressing (2)-(3) depends crucially on dealing with (1) 
successfully first. That is, the key to learning from data is an apropos specification: ‘how 
appropriate’ (or wise per Peirce) the initial selection of ℳ𝛉𝛉(𝐱𝐱) is. Fisher (1922, 1925) laid the 
foundations of an optimal theory of (point) estimation introducing most of the desirable 
properties. Under distribution Fisher included all forms of inferential propositions based on 
sampling distributions of estimators and test statistics, including “statistics designed to test the 
validity of our specification.” (p. 8). 

In an attempt to address the statistical adequacy of ℳ𝛉𝛉(𝐱𝐱), error statistics refines the 
Fisher’s approach to frequentist inference by separating the modeling from the inference facet. 
The modeling facet includes the specification, estimation, M-S testing, and respecification with a 
view to arrive at a statistically adequate model. This is because the inference facet presumes the 
validity of ℳ𝛉𝛉(𝐱𝐱) when posing substantive questions of interest to the data; see Mayo and 
Spanos (2004), Spanos (2018). This ensures that the inference procedures enjoy the optimal 
properties invoking the validity of ℳ𝛉𝛉(𝐱𝐱); see Spanos (2019). 

The effectiveness and reliability of inference procedures is evaluated using ascertainable 
error probabilities stemming from the sampling distribution 𝑓𝑓(𝑦𝑦𝑛𝑛;𝛉𝛉),  of statistics (estimator, 
test, predictor) of the form 𝑌𝑌𝑛𝑛 = 𝑔𝑔(𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑛𝑛) derived via: 



 𝐹𝐹𝑛𝑛(𝑌𝑌𝑛𝑛 ≤ 𝑦𝑦) = ∫ ∫ ⋅⋅⋅ ∫�������
{𝐱𝐱:  ℎ(𝐱𝐱)≤𝑦𝑦}

𝑓𝑓(𝐱𝐱;𝛉𝛉)𝑑𝑑𝐱𝐱, ∀𝑦𝑦 ∈ ℝ, (7) 

The value of 𝛉𝛉  in (7) is always prespecified taking two different forms stemming from the 
underlying reasoning: 

(i) Factual (estimation and prediction): the true value of 𝛉𝛉, say 𝛉𝛉∗, whatever that happens 
to be in 𝚯𝚯. Confidence Intervals (CIs) are derived under 𝛉𝛉 = 𝛉𝛉∗. 

(ii) Hypothetical (hypothesis testing): various hypothetical scenarios based on 𝛉𝛉 taking 
different prespecified values under 𝐻𝐻0: 𝛉𝛉 ∈ 𝚯𝚯0 vs. 𝐻𝐻1: 𝛉𝛉 ∈ 𝚯𝚯1, where 𝚯𝚯0 ∪ 𝚯𝚯1 = 𝚯𝚯, 𝚯𝚯0 ∩ 𝚯𝚯1 =
⌀; the relevant error probabilities include the type I and II, the power as well as the p-value; see 
Spanos (2019). 

The effectiveness of frequentist inference is defined in terms of the optimal properties of 
a statistic (estimator, test, predictor) 𝑌𝑌𝑛𝑛 = 𝑔𝑔(𝐗𝐗), and framed in terms of its sampling distribution 
𝑓𝑓(𝑦𝑦𝑛𝑛;𝛉𝛉), 𝑦𝑦𝑛𝑛 ∈ ℝ.  These optimal properties, however, assume that ℳ𝛉𝛉(𝐱𝐱)  is statistically 
adequate: its probabilistic assumptions are valid for 𝐱𝐱0. 

Unreliability of inference. When any of these assumptions are invalid, 𝑓𝑓(𝐱𝐱;𝛉𝛉) will be 
erroneous, the optimality of the statistic 𝑌𝑌𝑛𝑛 = 𝑔𝑔(𝐗𝐗) and the reliability of any inference based on 
it –the approximate equality of the actual error probabilities with the nominal ones – will be 
undermined. Applying a . 05  significance level test when the actual type I error (due to a 
misspecified ℳ𝛉𝛉(𝐳𝐳)) is closer to . 97, will lead that inference astray by inducing inconsistency in 
estimators and/or sizeable discrepancies between the actual and nominal (assumed) error 
probabilities (type I, II, p-values). 

Simulation example - Spanos and McGuirk (2001). To get some idea how misleading the 
inferences can be when ℳ𝛉𝛉(𝐳𝐳) is misspecified, consider the case of the Linear Regression (LR) 
model: 

 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡, (𝜀𝜀𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) ∽ NIID(0,𝜎𝜎2),    𝑡𝑡 ∈ ℕ, (8) 

(see table 4 for more details relating to the assumptions), where data 𝐳𝐳0: = {(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡), 𝑡𝑡 =
1, . . . ,100} are replicated (𝑁𝑁 = 10000) by simulation under two scenarios. In scenario 1, all the 
LR probabilistic assumptions [1]-[5] are valid, and in scenario 2 assumption [5] is invalid ([1]-[4] 
are valid), stemming from mean-heterogeneity exhibited by 𝐳𝐳0  (e.g. the term . 14𝑡𝑡  is missing 
from (8)). The estimate of 𝛽𝛽0 is 𝛽̂𝛽0 = .228(.315) with its standard error in brackets indicating 
that 𝛽𝛽0 is statistically insignificant since 𝜏𝜏𝛽𝛽0(𝐳𝐳0) = .724 and the p-value is 𝑝𝑝(𝐳𝐳0) = .470, when 
the true value is 𝛽𝛽0∗ = 1.5. Also the nominal error type I probability is 𝛼𝛼 = .05 but actual one is 
. 968. On the other hand, 𝛽̂𝛽1 = 1.989(.015), 𝜏𝜏𝛽𝛽0(𝐳𝐳0) = 298.4, 𝑝𝑝(𝐳𝐳0) = .0000, when the true 
value is 𝛽𝛽1∗ = 0.5,  and the actual type I error probability is 1.0 – rejecting a true null hypothesis 
100% of the time; see Spanos and McGuirk (2001). It is important to note that most of the 
published results using the LR model are likely to have more than one invalid assumption among 
[1]-[5]! 

It is important to emphasize that when ℳ𝛉𝛉(𝐳𝐳)  is statistically misspecified, it will 
undermine not just frequentist inference, but also Bayesian since the posterior is defined by 
𝜋𝜋(𝛉𝛉|𝐱𝐱0) ∝ 𝜋𝜋(𝛉𝛉) ⋅ 𝑓𝑓(𝐱𝐱0;𝛉𝛉), 𝛉𝛉 ∈ Θ, where 𝜋𝜋(𝛉𝛉) is the prior. It will also undermine Akaike-type 
model selection procedures since they depend on the likelihood 𝐿𝐿(𝛉𝛉;𝐱𝐱0), 𝛉𝛉 ∈ Θ; see Spanos 
(2010a). 



Modern statistical inference, as a form of induction, is based on data that exhibit inherent 
chance regularity patterns. They differ from deterministic regularities in so far as they cannot be 
accounted for (described) using mathematical equations. More specifically, chance regularities 
come from recurring patterns in numerical data that can be accounted for (modeled) using 
probabilistic assumptions from three broad categories: Distribution, Dependence and 
Heterogeneity; see Spanos (2019). 

Model-based statistical induction differs from other forms of induction, such as induction 
by enumeration (Henderson, 2020), in three crucial respects. 

First, the inductive premises of inference, ℳ𝛉𝛉(𝐱𝐱),  represents a stochastic generating 
mechanism that could have given rise to data 𝐱𝐱0 that provides the cornerstone for the ampliative 
dimension of model-based induction; see Spanos (2013). This should be contrasted with 
enumerative induction and Pearson’s descriptive statistics which rely on the straight rule and 
summarizing the data 𝐱𝐱0. This relates to Hacking’s (1965) questions Salmon’s claim about the 
straight rule: “Salmon and Reichenbach maintain that if long-run frequencies exist, the straight 
rule for estimating long-run frequencies is to be preferred to any rival estimator. Other 
propositions are needed to complete their vindication of induction, but only this one concerns 
us. Salmon claims to have proved it. This is more interesting than mere academic vindications of 
induction; practical statisticians need good criteria for choosing among estimators, and, if Salmon 
were right, he would have very largely solved their problems, which are much more pressing than 
Hume’s.” (p. 261). 

Example 2 (continued). Viewing the straight rule in the context of model-based statistics, 
where ℳ𝜃𝜃(𝐱𝐱) is the simple Bernoulli model in (5), where with ℙ(𝑋𝑋𝑘𝑘 = 1) = 𝜃𝜃 and ℙ(𝑋𝑋𝑘𝑘 = 0) =
(1 − 𝜃𝜃), the straight rule ration (𝑚𝑚/𝑛𝑛) = 1

𝑛𝑛
∑𝑛𝑛
𝑘𝑘=1 𝑥𝑥𝑘𝑘 ,  and thus 𝜃𝜃�(𝐱𝐱0) = (𝑚𝑚/𝑛𝑛) constitutes an 

estimate of 𝜃𝜃, the observed value of the estimator 𝜃𝜃�(𝐗𝐗) = 1
𝑛𝑛
∑𝑛𝑛
𝑘𝑘=1 𝑋𝑋𝑘𝑘 when evaluated at the data 

point 𝐱𝐱0. Hence, in the context of ℳ𝜃𝜃(𝐱𝐱) in (5), 𝜃𝜃�(𝐗𝐗) is the Maximum Likelihood estimator of 𝜃𝜃 
and enjoys all optimal properties, including unbiasedness, full efficiency, sufficiency and 
consistency; see Spanos (2019). Regrettably, the optimality of any estimator 𝜃𝜃�(𝐗𝐗) does not entail 
the claim 𝜃𝜃�(𝐱𝐱0) ≃ 𝜃𝜃∗, for a large enough 𝑛𝑛. Therefore, the straight rule, when viewed in the 
context of model-based inference, is just a fallacious assertion. This unwarranted claim 
undermines the appropriateness of estimation-based effects sizes that are widely viewed as a 
replacement for p-values in the current discussions on the replicability and trustworthiness of 
evidence; see Spanos (2020). 

Second, in the context of model-based induction Hacking’s (1965) “Other propositions 
needed to complete their vindication of induction” include (i) the validity of the inductive 
premises (IID) for data 𝐱𝐱0  that ensures the trustworthiness of evidence, as well as (ii) the 
optimality of the particular estimator 𝜃𝜃�(𝐗𝐗), that secures the effectiveness of the inference; both 
issues lie at the core of inductive (statistical) inference: how we learn from data about 
phenomena of interest. 

Third, the justification of model-based induction does not invoke a priori stipulations such 
as the ‘uniformity’ of nature and the ‘representativeness’ of the sample, as in the case of 
enumerative induction and Karl Pearson’s curve-fitting, but relies on establishing the validity of 
model assumptions   using comprehensive Mis-Specification (M-S) testing. As Fisher (1922) 
argued: “For empirical as the specification of the hypothetical population [statistical model] may 



be, this empiricism is cleared of its dangers if we can apply a rigorous and objective test of the 
adequacy with which the proposed population represents the whole of the available facts.” (p. 
314). 

 
3.2  Model-based frequentist statistics: foundational issues 
 
Model-based frequentist statistics, as cast by Fisher (1922, 1925) and extended by 

Neyman and Pearson (1933), and Neyman (1937), has been plagued by several foundational 
problems that have bedeviled its proper implementation since the 1930s, including the following 
two. 

Foundational issue 1. How one could secure statistical adequacy: the validity of the 
probabilistic assumptions comprising the chosen ℳ𝛉𝛉(𝐱𝐱) vis-a-vis data 𝐱𝐱0. 

The statistics and econometric literature paid little attention to the systematic testing of 
the validity of the model assumptions (M-S testing), and what would one do when any of the 
assumptions are found wanting (respecification); see Spanos (1986). 

Foundational issue 2. When data 𝐱𝐱0 provides good evidence for or against a hypothesis 
or an inferential claim? (Mayo, 1996). Fisher’s p-value and Neyman-Pearson’s accept/reject 𝐻𝐻0 
results did not provide a coherent evidential interpretation that could address this question. 

Error statistics refines the Fisher recasting of frequentist inference by embracing the 
distinction between the modeling and the inference facet, to address issue 1; see Mayo and 
Spanos (2004). In an attempt to address issue 2, error statistics extends  the F-N-P approach by 
distinguishing between pre-data and post-data phases of frequentist testing to supplement the 
original framing with a post-data severity evaluation of testing results. This provides a sound 
evidential account that can be used to address several misconceptions and problems raised about 
F-N-P testing, including the large 𝑛𝑛 problem; see Mayo and Spanos (2006). 

Foundational issue 3. What is the nature of the reasoning underlying frequentist 
inference? Spanos (2012) made a case for two types of reasoning. Factual reasoning (used in 
estimation and prediction), under 𝜃𝜃 = 𝜃𝜃∗,  whatever the value 𝜃𝜃∗  happens to be in Θ,  which 
underlines the evaluation of the sampling distributions of estimators, pivotal functions and 
predictors. Hypothetical reasoning (used in testing), underlying the evaluation of sampling 
distributions of test statistics under the scenarios, (null) 𝐻𝐻0: 𝜃𝜃 ∈ Θ0, and (alternative) 𝐻𝐻1: 𝜃𝜃 ∈ Θ1. 
Parenthetically, these forms of reasoning underlying frequentist inference are at odds with the 
universal reasoning, for all 𝜃𝜃 ∈ Θ, underlying Bayesian inference; see Spanos (2017). 

Example 1 (contained). For the simple Normal model in (4), assuming 𝜎𝜎2 is known for 
simplicity, (6) implies that: 

 √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇)
𝜎𝜎

∽ N(0,1). (9) 

What is not so obvious is how to interpret (9), since 𝑑𝑑(𝐗𝐗; 𝜇𝜇) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇)
𝜎𝜎

 involves the unknown 

parameter 𝜇𝜇, and why 𝐸𝐸(𝑑𝑑(𝐗𝐗; 𝜇𝜇)) = 0 is not apparent. A simple answer is that since 𝑋𝑋𝑛𝑛 is an 

unbiased estimator of 𝜇𝜇 , i.e. 𝐸𝐸(𝑋𝑋𝑛𝑛) = 𝜇𝜇∗, and thus 𝐸𝐸(√𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇)
𝜎𝜎

) = 0. For that to be the case, 
however, (9) must be evaluated under 𝜇𝜇 = 𝜇𝜇∗, which is known as factual reasoning. Hence, a 
more informatory way to specify (9) is: 



 𝑑𝑑(𝐗𝐗; 𝜇𝜇∗) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇∗)
𝜎𝜎

∽
𝜇𝜇=𝜇𝜇∗

N(0,1). (10) 

For estimation and prediction the underlying reasoning is factual. For hypothesis testing, 
however, the reasoning is hypothetical and take the form: 

 𝑑𝑑(𝐗𝐗; 𝜇𝜇0) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇0)
𝜎𝜎

∽
𝜇𝜇=𝜇𝜇0 N(0,1), 𝑑𝑑(𝐗𝐗;𝜇𝜇1) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇0)

𝜎𝜎
∽

𝜇𝜇=𝜇𝜇1 N(0, 𝛿𝛿1), (11) 

where 𝛿𝛿1 = √𝑛𝑛(𝜇𝜇1−𝜇𝜇0)
𝜎𝜎

,  for 𝜇𝜇1 ≠ 𝜇𝜇0, 𝜇𝜇𝑖𝑖 ∈ ℝ, 𝑖𝑖 = 0,1; see Spanos (2019). 
 
3.2.1  Estimation (point and interval) 
 
Example 1 (continued). For the simple Normal model in (4) with 𝜎𝜎2 known, the Maximum 

Likelihood (ML) estimator of 𝜇𝜇 is 𝜃𝜃�𝑀𝑀𝑀𝑀(𝐗𝐗) = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖. Its optimality revolves around its sampling 

distribution evaluated using factual reasoning (𝛉𝛉 = 𝛉𝛉∗): 

 𝜃𝜃�𝑀𝑀𝑀𝑀(𝐗𝐗) = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖 ∽

𝜇𝜇=𝜇𝜇∗
N(𝜇𝜇∗, 𝜎𝜎

2

𝑛𝑛
). (12) 

It can be shown that (12) implies that 𝜃𝜃�𝑀𝑀𝑀𝑀(𝐗𝐗) is unbiased, sufficient, fully efficient, and strongly 
consistent; see Lehmann and Romano (2005). 

Confidence Intervals (CIs), [𝐿𝐿(𝐗𝐗), 𝑈𝑈(𝐗𝐗)]  are evaluated in terms of their capacity 
measured by the coverage probability (1 − 𝛼𝛼)  to overlay 𝜃𝜃∗  between the lower and upper 
bounds (Neyman, 1952): 

 ℙ(𝐿𝐿(𝐗𝐗) ≤ 𝜃𝜃 < 𝑈𝑈(𝐗𝐗);   𝜇𝜇 = 𝜇𝜇∗) = 1 − 𝛼𝛼. 
 

Example 1 (continued). For (4) with 𝜎𝜎2 known, the (1 − 𝛼𝛼) CI takes the form: 

 ℙ(𝑋𝑋𝑛𝑛 − 𝑐𝑐𝛼𝛼
2
( 𝜎𝜎
√𝑛𝑛

) ≤ 𝜇𝜇 < 𝑋𝑋𝑛𝑛 + 𝑐𝑐𝛼𝛼
2
( 𝜎𝜎
√𝑛𝑛

);   𝜇𝜇 = 𝜇𝜇∗) = 1 − 𝛼𝛼, (13) 

stemming from the distribution of the pivot: 

 𝑑𝑑(𝐗𝐗; 𝜇𝜇) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇∗)
𝜎𝜎

∽
𝜇𝜇=𝜇𝜇∗

N(0,1). (14) 
 

 
3.2.2  Neyman-Pearson (N-P) testing 
 
Example 1 (continued). Consider testing the hypotheses: 

 𝐻𝐻0: 𝜇𝜇 ≤ 𝜇𝜇0vs.𝐻𝐻1:𝜇𝜇 > 𝜇𝜇0, (15) 

in the context of the simple Normal model in (4) with 𝜎𝜎2 known. It is important to emphasize 
that the framing of 𝐻𝐻0 and 𝐻𝐻1 should constitute a partition of ℝ, because for N-P testing the 
whole range of values of 𝜇𝜇 is relevant for statistical inference purposes, irrespective of whether 
only a few values are of substantive interest. 

A 𝛼𝛼-significance level Uniformly Most Powerful (UMP) test is defined by (Lehmann and 
Romano, 2005): 



 𝑇𝑇𝛼𝛼: = {𝑑𝑑(𝐗𝐗) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇0)
𝜎𝜎

, 𝐶𝐶1(𝛼𝛼) = {𝐱𝐱:𝑑𝑑(𝐱𝐱) > 𝑐𝑐𝛼𝛼}}, (16) 

where 𝑐𝑐𝛼𝛼 is the 𝛼𝛼-significance level threshold based on: 

 𝑑𝑑(𝐗𝐗) = √𝑛𝑛(𝑋𝑋𝑛𝑛−𝜇𝜇0)
𝑠𝑠

∽
𝜇𝜇=𝜇𝜇0 N(0,1). (17) 

The type I error probability and the p-value are evaluated using (17): 

 ℙ(𝑑𝑑(𝐗𝐗) > 𝑐𝑐𝛼𝛼;   𝜇𝜇 = 𝜇𝜇0) = 𝛼𝛼, ℙ(𝑑𝑑(𝐗𝐗) > 𝑑𝑑(𝐱𝐱0);   𝜇𝜇 = 𝜇𝜇0) = (𝐱𝐱0). 

The power of 𝑇𝑇𝛼𝛼 , defined by: 

 𝒫𝒫(𝜇𝜇1) = ℙ(𝑑𝑑(𝐗𝐗) > 𝑐𝑐𝛼𝛼;   𝜇𝜇 = 𝜇𝜇1), forall𝜇𝜇1 > 𝜇𝜇0, (18) 

is based on the distribution: 

 𝑑𝑑(𝐗𝐗) = √𝑛𝑛�𝑋𝑋𝑛𝑛−𝜇𝜇0�
𝜎𝜎

∽
𝜇𝜇=𝜇𝜇1 N(𝛿𝛿1, 1), 𝛿𝛿1 = √𝑛𝑛(𝜇𝜇1−𝜇𝜇0)

𝜎𝜎
, forall𝜇𝜇1 > 𝜇𝜇0, (19) 

where 𝛿𝛿1 is the non-zero mean parameter. It is important to emphasize that the power of a test 
provides a measure of its generic (for any sample value  𝐱𝐱 ∈ ℝ𝑋𝑋

𝑛𝑛) capacity to detect discrepancies 
from 𝐻𝐻0. Also, none of the above error probabilities (type I, II, power) are conditional on values 
of 𝜇𝜇 since it is neither an event nor a random variable; 𝑑𝑑(𝐗𝐗) is evaluated under hypothetical 
values of 𝜃𝜃; see Spanos (2019). 

Two crucial features of N-P testing are often flouted by statistical textbooks and 
practitioners alike giving rise to several confusions and misinterpretations. These features can be 
found in the classic paper by Neyman and Pearson (1933) who proposed two crucial 
preconditions for the effectiveness of N-P testing in learning from data which relate to the 
framing of hypotheses: (i) 𝐻𝐻0 and 𝐻𝐻1 should constitute a partition of Θ, in a way that renders (ii) 
the type I error probability as the most serious; see also Neyman (1952). The partition of Θ is 
crucial in light of the primary objective of frequentist inference since the ‘true’ value 𝜃𝜃∗ might lie 
outside the union of 𝐻𝐻0 and 𝐻𝐻1, turning an N-P test into a wild goose chase. 

Example 1 (continued). For the simple Normal model in (4), Berger and Wolpert (1988) 
invoke the N-P lemma to frame the hypotheses as: 

 𝐻𝐻0: 𝜇𝜇 = 1 vs.𝐻𝐻1: 𝜇𝜇 = −1, (20) 

Unfortunately, the N-P lemma assumes a partition Θ: = {𝜃𝜃0,𝜃𝜃1}; see Spanos (2011). Condition 
(ii) suggests that when no reliable information about the potential range of values of 𝜃𝜃∗  is 
available, the N-P test is likely to be more effective by using: 

 𝐻𝐻0:𝜃𝜃 = 𝜃𝜃0vs.𝐻𝐻1:𝜃𝜃 ≠ 𝜃𝜃0. (21) 

When such reliable information is available, however, the N-P test will be more effective by using 
a directional framing for 𝐻𝐻0 and 𝐻𝐻1, as in (15), ensuring that 𝐻𝐻1 includes the potential range of 
values of 𝜃𝜃∗ as departures from the null value, say 𝜃𝜃0. This is because the power of the test – its 
capacity to detect discrepancies from 𝜃𝜃0– should be defined over the range most called for, the 
potential range of values of 𝜃𝜃∗. 

 
3.3  Statistical adequacy and Mis-Specification (M-S) testing 
 



The current state of affairs on model validation is insightfully described by Freedman 
(2010), p. 16: “Bayesians and frequentists disagree on the meaning of probability and other 
foundational issues, but both schools face the problem of model validation. Statistical models 
have been used successfully in the physical and life sciences. However, they have not advanced 
the study of social phenomena. How do models connect to reality? When are they likely to 
deepen understanding? When are they likely to be sterile and misleading? ... I believe model 
validation to be a central issue. Of course many of my colleagues will be found to disagree. For 
them, fitting models to data, computing standard errors, and performing significance test is 
"informative," even though the basic statistical assumptions (linearity, independence of errors, 
etc.) cannot be validated. This position seems indefensible, nor are the consequences trivial. 
Perhaps it is time to reconsider.” 

Establishing the statistical adequacy of ℳ𝛉𝛉(𝐱𝐱)  calls for testing the validity of its 
probabilistic assumptions vis-a-vis data 𝐱𝐱0, such as NIID in the case of (4). The most effective way 
to secure statistical adequacy is to separate the modeling, which includes (a) specification – the 
initial choice of ℳ𝛉𝛉(𝐱𝐱) –, (b) M-S testing and (c) respecification when any of its assumptions are 
found wanting, from the inference facet because (i) the latter presumes the statistical adequacy 
of ℳ𝛉𝛉(𝐱𝐱),  and (ii) they pose very different questions to the data; see Spanos (2018). The 
modeling facet aims to secure the validity of ℳ𝛉𝛉(𝐱𝐱) , and the inference facet ensures the 
optimality of inference procedures with a view to secure the reliability and precision of inferential 
results. Treating the two as a single combined inference problem is akin to conflating the 
construction of a boat to given specifications (modeling) with sailing it in a competitive race 
(inference). The two are clearly related since the better the construction the more competitive 
the boat, but imagine trying to build a boat from a pile of plywood in the middle of the ocean 
while racing it. 

Since inference presupposes the validity of ℳ𝛉𝛉(𝐱𝐱),  statistical adequacy needs to be 
secured before optimal inference procedures can be reliably employed. Neyman-Pearson (N-P) 
constitutes testing within ℳ𝛉𝛉(𝐱𝐱)  aiming to narrow down Θ  to a much smaller subset, 
presupposing its validity. In contrast, M-S testing poses the question whether the particular 
ℳ𝛉𝛉(𝐱𝐱) could have give rise to data 𝐱𝐱0, for any value of 𝛉𝛉 ∈ 𝚯𝚯, and constitutes testing outside 
ℳ𝛉𝛉(𝐱𝐱) since the default null is ℳ𝛉𝛉(𝐱𝐱) is valid vs. its negation ¬ℳ𝛉𝛉(𝐱𝐱): = [𝒫𝒫(𝐱𝐱) −ℳ𝛉𝛉(𝐱𝐱)], i.e. 
some other statistical model in [𝒫𝒫(𝐱𝐱) −ℳ𝛉𝛉(𝐱𝐱)], where 𝒫𝒫(𝐱𝐱) is the set of all possible statistical 
models that could have given rise to 𝐱𝐱0.  The problem is practice is how to operationalize 
[𝒫𝒫(𝐱𝐱) −ℳ𝛉𝛉(𝐱𝐱)] to render possible comprehensive M-S testing; see Spanos (2018). 

 
4  Empirical modeling in econometrics 
 
 
4.1  Traditional curve-fitting and respecification 
 
Empirical modeling across different disciplines involves an intricate blending of 

substantive subject matter and statistical information. The substantive information stems form 
a theory or theories about the phenomenon of interest, and could range from simple tentative 
conjectures to intricate substantive (structural) models, say ℳ𝛗𝛗(𝐳𝐳),  framed in terms of 



mathematical equations formulating the theory that are estimable in light of the available data 
𝐙𝐙0: = (𝐳𝐳1, 𝐳𝐳2, . . . , 𝐳𝐳𝑛𝑛). The substantive information has an important and multifaceted role to play 
by demarcating the crucial aspects of the phenomenon of interest (suggesting the relevant 
variables and data), as well as enhancing the learning from data when it does not belie the 
statistical information in 𝐙𝐙0 that stems from the chance regularity patterns exhibited by data 𝐙𝐙0. 
Scientific knowledge often begins with substantive conjectures based on subject matter 
information, but it becomes knowledge when its veracity is established by being tested 
thoroughly against actual data generated by the phenomenon of interest. 

The Pre-Eminence of Theory (PET) perspective, which has dominated empirical modeling 
in economics since the early 19th century, amounts to theory-driven curve-fitting guided by 
probabilistic assumptions assigned to the error term, and evaluated by goodness-of-fit measures; 
see Reiss (2008), Spanos (2009). The assignment of probabilistic assumptions to error term terms 
stems from a standpoint that relationships among the variables are mathematical (deterministic) 
in nature, but these are subject to stochastic disturbances due to simplification, approximation, 
and measurement errors. The theory-driven curve(s) are framed in terms of a structural model 
ℳ𝛗𝛗(𝐳𝐳) and the aim is to use the data 𝐙𝐙0 to quantify it by estimating 𝛗𝛗 ∈ 𝚽𝚽. In this sense, the 
data 𝐙𝐙0  play only a subordinate role in availing the quantification by attaching random error 
term(s) to transform the curves into a stochastic model amenable to statistical analysis. The 
traditional textbook approach to empirical modeling in economics is summed up by Pagan (1984) 
as follows: “Four steps almost completely describe it: a model is postulated, data gathered, a 
regression run, some t-statistics or simulation performance provided and another empirical 
regularity was forged.” (p. 103) 

 Although his description is meant to be a witty caricature of textbook econometrics, like 
all perceptive parodies, it contains more than one home truth. 

The first home truth is that the phenomenon of interest is rarely explicitly described so 
that one can evaluate the empirical findings in relation to what has been learned from data about 
that phenomenon. 

The second home truth is that the modeling begins with a prespecified substantive model 
ℳ𝛗𝛗(𝐳𝐳) – an estimable form of that theory in light of the available data – meant to provide a 
description/explanation of the phenomenon of interest. 

The third home truth is that ℳ𝛗𝛗(𝐳𝐳) is treated as established knowledge, and not as 
tentative conjectures to be tested against the data because the primary aim is to quantify ℳ𝛗𝛗(𝐳𝐳) 
by estimating the unknown structural parameters 𝛗𝛗 ∈ 𝚽𝚽 ⊂ ℝ𝑝𝑝. 

The fourth truth is that the selection of data is often ad hoc, in the sense that the theory 
variables are assumed to coincide with the particular data 𝐙𝐙0 chosen. No attempt is made to (i) 
compare the theoretical variables, often defined in terms of intentions of individual economic 
agents stemming out of an optimization problem, but the data refer to observed quantities and 
prices generated by the market, and (ii) provide a cogent bridging of the gap between them; see 
Spanos (2015). 

The fifth truth is that the estimation of 𝛗𝛗 amounts to foisting ℳ𝛗𝛗(𝐳𝐳) onto the data by 
viewing it as curve-fitting guided by probabilistic assumptions assigned to the error term, to be 
evaluated using goodness-of-fit measures. 

The sixth truth is that the estimated 𝛗𝛗 of ℳ𝛗𝛗(𝐳𝐳) and the associated statistics, such as t-



ratios and goodness-of-fit measures, are usually taken at face value without any attempt to 
secure their reliability. Indeed, the validity of the probabilistic assumptions ascribed to the error 
term is treated as an afterthought that determines the estimation method for the curve-fitting, 
and if any departures from these assumptions are indicated by the computer program output, 
such as a Durbin-Watson (D-W) statistic close to zero, all one has to do is to modify the original 
estimation method to ‘account’ for the departure designated by the alternative hypothesis of the 
D-W test. To be more specific, for the LR model in (8) the DW test operationalizes 
[𝒫𝒫(𝐳𝐳) −ℳ𝛉𝛉(𝐳𝐳)] by embedding (8) into: 

 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡, 𝑢𝑢𝑡𝑡 = 𝜌𝜌𝑢𝑢𝑡𝑡−1 + 𝜀𝜀𝑡𝑡  (𝜀𝜀𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) ∽ NIID(0,𝜎𝜎𝜀𝜀2), 𝑡𝑡 ∈ ℕ, (22) 

and testing the hypotheses: 𝐻𝐻0 : 𝜌𝜌 = 0  vs. 𝐻𝐻1 : 𝜌𝜌 ≠ 0 . When 𝐻𝐻0  is rejected, the traditional 
respecification is to accept 𝐻𝐻1, i.e. adopt (22) as the respecified model. This is fallacious because 
rejecting 𝐻𝐻0  entitles one to infer that 𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) ≠ 0  for   𝑡𝑡 > 𝑠𝑠,  but not that 
𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) = (𝜌𝜌|𝑡𝑡−𝑠𝑠|/(1 − 𝜌𝜌2))𝜎𝜎𝜀𝜀2, 𝑡𝑡, 𝑠𝑠 = 1,2, . . . ,𝑛𝑛. Such a claim will require one to 
estimate (22) and test all its probabilistic assumptions to ensure statistical adequacy; see 
McGuirk and Spanos (2009). Indeed, this traditional respecification strategy constitutes a 
quintessential example of the fallacy of rejection: (mis)interpreting reject 𝐻𝐻0 [evidence against 
𝐻𝐻0] as evidence for a particular 𝐻𝐻1; see Spanos (2019). 

A related fallacy is that of acceptance: (mis)interpreting a large p-value or accept 𝐻𝐻0 [no 
evidence against 𝐻𝐻0] as evidence for 𝐻𝐻0 – this can arise when a test has very low power (e.g. 
small 𝑛𝑛).  

 
                                                                                            𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1:𝐴𝐴𝐴𝐴(1)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 ,    𝑡𝑡 ∈ ℕ.1 
(𝑖𝑖)𝐸𝐸(𝑢𝑢𝑡𝑡) = 0, (𝑖𝑖𝑖𝑖)sup

𝑡𝑡
𝐸𝐸|𝑢𝑢𝑡𝑡|𝛿𝛿+𝜀𝜀 < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝛿𝛿 > 2, 𝜀𝜀 > 0,

(𝑖𝑖𝑖𝑖𝑖𝑖) lim
𝑛𝑛→∞

𝐸𝐸(
1
𝑛𝑛

(�
𝑛𝑛

𝑡𝑡=1

𝑢𝑢𝑡𝑡)2 = 𝜎𝜎∞2 > 0, 

(𝑖𝑖𝑖𝑖){𝑢𝑢𝑡𝑡, 𝑡𝑡 ∈ ℕ} 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝛼𝛼𝑚𝑚 →
𝑚𝑚→∞

0 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎�
∞

𝑚𝑚=1
𝛼𝛼𝑚𝑚
1−𝛿𝛿/2 < ∞. 

A case in point is the literature of unit root testing in the context of the AR(1) model traditionally 
specified as in table 1; see Choi (2015), p. 21. As Phillips and Xiao (1998) show, the unit root test 
based on 𝐻𝐻0: 𝛼𝛼1 = 1 vs. 𝐻𝐻1: 𝛼𝛼1 < 1, has very low power (< .33) for 𝑛𝑛 ≤ 100, and thus, the null 
is often erroneously accepted. Worse still, none of the invoked probabilistic assumptions (i)-(iv) 
(table 1) are testable with data 𝐲𝐲0, and thus the literature on unit root testing largely ignores the 
statistical misspecification problem; see Andreou and Spanos (2003). 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴(1)�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:     



     𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑦𝑦𝑡𝑡−1
+ 𝑢𝑢𝑡𝑡,    𝑡𝑡[1]𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: (𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−1) ∽ N(. , . ),2]𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:𝐸𝐸(𝑦𝑦𝑡𝑡|𝜎𝜎(𝑦𝑦𝑡𝑡−1))
= 𝛼𝛼0 + 𝛼𝛼1𝑦𝑦𝑡𝑡−1, 3]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻:𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡|𝜎𝜎(𝑦𝑦𝑡𝑡−1)) = 𝜎𝜎02, 4]𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: {𝑦𝑦𝑡𝑡,
𝑡𝑡
∈ ℕ}𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 5]𝑡𝑡
− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: (𝛼𝛼0,𝛼𝛼1,𝜎𝜎02)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑡𝑡, }𝑡𝑡 ∈ ℕ.𝛼𝛼0
= 𝐸𝐸(𝑦𝑦𝑡𝑡) − 𝛼𝛼1𝐸𝐸(𝑦𝑦𝑡𝑡−1) ∈ ℝ, 𝛼𝛼1 =

𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−1)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡−1)

∈ (−1,1),

𝜎𝜎02 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡) −
𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−1)2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡−1)
∈ ℝ+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝜎𝜎(𝑦𝑦𝑡𝑡−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑦𝑦𝑡𝑡−1. 

 
The specification in table 2 brings out the inappropriateness of relying on non-testable 

probabilistic assumptions relating to ‘as 𝑛𝑛 → ∞’. As argued by Le Cam (1986), p. xiv: “... limit 
theorems “as 𝑛𝑛 tends to infinity” are logically devoid of content about what happens at any 
particular 𝑛𝑛. All they can do is suggest certain approaches whose performance must then be 
checked on the case at hand. Unfortunately the approximation bounds we could get are too often 
too crude and cumbersome to be of any practical use.” In fact, the assumptions whose validity 
for 𝐲𝐲0 will secure the reliability of any test based on AR(1) are given in table 2. It is worth noting 
that when the AR(1) model is properly specified (table 2) using the probabilistic reduction 
𝑓𝑓(𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛;𝛙𝛙) = 𝑓𝑓1(𝑦𝑦1;𝛙𝛙1)∏𝑛𝑛

𝑡𝑡=2 𝑓𝑓(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1;𝛉𝛉),  stemming from the probabilistic 
assumptions Normality, Markovness and stationarity, the coefficient 𝛼𝛼1 ∈ (−1,1) and thus 𝛼𝛼1 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑡𝑡,𝑦𝑦) = 1  lies outside its parameter space. This is not unrelated to the low power 
mentioned above; see Spanos (2011). 

The seventh home truth is that the ‘empirical regularity forged’ is usually another set of 
statistically ‘spurious’ numbers added to the ever-accumulating mountain of untrustworthy 
evidence gracing prestigious journals, which stems primarily from the inadequate criteria used 
to determine success in publishing in these journals: 

[i] statistical: goodness-of-fit/prediction, statistical significance, 
[ii] substantive: theoretical meaningfulness, explanatory capacity, 
[iii] pragmatic: simplicity, generality, elegance.  
 The problem is that the criteria [i]–[iii] do not secure the reliability of inference and the 

trustworthiness of the ensuing evidence. As shown in Spanos (2007a), excellent fit is neither 
necessary nor sufficient for statistical adequacy, because the former seeks ‘small’ residuals, but 
the latter relies on non-systematic (white-noise) residuals. The criteria [i]–[iii] are not even 
sufficient for the evaluation of the cogency of ℳ𝛗𝛗(𝐳𝐳)  in shedding adequate light on the 
phenomenon of interest. The combination of [i]-[iii] neglects a fundamental criterion: 

[iv] epistemic: empirical adequacy, that relates to both statistical adequacy – validating 
the implicit statistical model ℳ𝛉𝛉(𝐱𝐱) vis-a-vis data 𝐙𝐙0, as well as substantive adequacy – probing 
the cogency of ℳ𝛗𝛗(𝐳𝐳) vis-a-vis the phenomenon of interest. Let us unpack this claim. 

 
4.2  Traditional econometric techniques 
 
The dominance of the Pre-eminence of Theory (PET) perspective in applied economics 



and econometrics seem to have largely ignored Fisher’s (1922) paradigm shift of recasting Karl 
Pearson’s descriptive statistic since it shares with the latter the curve-fitting perspective 
evaluated by goodness-of-fit measures. The difference between curve-fitting a frequency curve 
vs. a structural model, ℳ𝛗𝛗(𝐳𝐳), is not as important when the trustworthiness of evidence is a 
primary objective. A case in point is the anachronistic attribution of the Method of Moments to 
Pearson by the econometrics literature (Greene, 2018), oblivious to the fact that Pearson’s 
method was designed for a very different paradigm, where one would begin with the data 𝐳𝐳0 in 
search of a descriptive model 𝑓𝑓(𝑥𝑥;𝛙𝛙� ) ∈ ℱ𝑃𝑃(𝑥𝑥;𝛙𝛙), 𝑥𝑥 ∈ ℝ, and not lead off with a prespecified 
model ℳ𝛗𝛗(𝐳𝐳), assumed to have given rise to data 𝐳𝐳0; see Spanos (2019). 

The emphasis in current applied econometrics is placed on the recipe-like mechanical 
implementation of inference procedures, such as Instrumental Variables (IV), Generalized 
Method of Moments (GMM), Vector Autoregresion (VAR), structural VAR, calibration, and 
matching moments. The probabilistic assumptions are assigned to error terms and treated as an 
afterthought when deriving Consistent and Asympotically Normal (CAN) estimators, and then 
forgotten at the inference facet. Indeed, the notion of probabilistic assumptions imposed on 
one’s data could be invalid is hardly mentioned in the recent textbooks on macroeconometrics; 
see Canova (2007). As one would expect, Canova (2007) points out the major advancements in 
the mathematical, statistical and computational tools over the last 20 years in econometrics. The 
problem is that ‘these improvements in tools’ are inversely related to the trustworthiness of the 
empirical evidence. The empirical examples used in most recent textbooks in applied 
econometrics are not exemplars of how to do empirical modeling that give rise to learning from 
data, but illustrations on how to apply recipe-like procedures, ignoring the problem of securing 
the trustworthiness of the empirical evidence when employing the proposed tools. 

In an attempt to justify the neglect of statistical model validation, traditional textbooks 
often invoke misleading robustness results. Popular examples in textbook econometrics are the 
Heteroskedasticity-Consistent (HC) and Autocorrelation-Consistent (AC) Standard Errors (SEs), as 
well as HAC SEs; see Wooldridge (2010). HAC SEs are used to justify ignoring any departures from 
homoskedasticity and no-autocorrelation assumptions such as [3] and [4] in table 4. 
Unfortunately, the claim that such SEs based on asymptotic arguments can circumvent the 
unreliability of inference problem is unfounded; see Spanos and McGuirk (2001). As shown in 
Spanos and Reade (2015), HC and HA SEs do nothing to ensure that the actual error probabilities 
approximate closely the nominal one. As argued above, the idea that a consistent estimator of 
the SE of an estimator could save an inference from unreliability stems from another 
misapprehension of asymptotic properties. 

A strong case can be made that the published literature in prestigious journals in 
econometrics, pays little to no attention to statistical adequacy: validating the estimated models. 
There are several reasons for that, including the fact that the PET perspective dominates current 
practice (Spanos, 2018): 

(i) Views empirical modeling as theory-driven curve-fitting guided by error-term 
probabilistic assumptions and evaluated using goodness-of-fit measures. 

(ii) Conflates the modeling with the inference facet, ignoring the fact that they pose very 
different questions to the data. It’s similar to conflating the construction of a boat to given 
specifications with sailing it in a competitive race! 

(iii) Blends the statistical with the substantive information/model and neglects both 



statistical and substantive adequacy. Under-appreciates the potentially devastating effects of 
statistical misspecification on the reliability of inference for both the substantive questions of 
interest as well as probing for substantive adequacy. 

(iv) M-S testing (probing outside ℳ𝛉𝛉(𝐳𝐳)) is often conflated with N-P testing (probing 
within ℳ𝛉𝛉(𝐳𝐳)), and as a result, M-S testing is often criticized for being vulnerable to pre-test bias, 
double use of data, data-mining, etc.; see Spanos (2010b). 

(v) Statistical respecification is viewed as ‘error-fixing’ based on modifying the 
probabilistic assumptions assigned to the error term {𝜀𝜀𝑡𝑡, 𝑡𝑡 ∈ ℕ}  so that one can get ‘good’ 
estimators for the curve-fitting. 

(vi) Current practice in econometrics relies unduly on asymptotics, in particular CAN 
estimators, and practitioners seem unaware that does not suffice to secure the reliability of 
inferences. Since limit theorems, such as the LLN and CLT, only tells what happens at the limit 
(∞), asymptotic properties are useful for their value in excluding totally unreliable estimators 
and tests, but they do not guarantee the reliability of inference procedures for a given data 𝐙𝐙0 
and 𝑛𝑛 . For instance, an inconsistent estimator will give rise to unreliable inferences, but a 
consistent one does not guarantee their reliability. 

(vii) There is a huge divide between a theoretical econometrician and a practitioner. An 
important contributor to the uninformed implementation of statistical procedures, such as IV, 
GMM and VAR, that continues unabated to give rise to untrustworthy evidence, is a subtle 
disconnect between the theoretician (theoretical econometrician), that leaves the practitioner 
hopelessly unable to assess the appropriateness of different methods for his/her particular data. 
The theoretician develops the statistical techniques associated with different statistical models 
for different types of data (time-series, cross-section, panel), and the practitioner implements 
them using data, often observational. As observed by Rust (2016): “It is far easier to publish 
theoretical econometrics, an increasingly arid subject that meets the burden of mathematical 
proof. But the overabundance of econometric theory has not paid off in terms of empirical 
knowledge, and may paradoxically hinder empirical work by obligating empirical researchers to 
employ the latest methods that are often difficult to understand and use and fail to address the 
problems that researchers actually confront.” Each will do a much better job at their respective 
tasks if only they understood sufficiently well the work of the other. The theoretician will be more 
cognizant of the difficulties for the proper implementation of these tools, and make a conscious 
effort to elucidate their scope, applicability, and limitations. Such knowledge will enable the 
practitioner to produce trustworthy evidence by applying such tools only when appropriate. For 
instance, in proving that an estimator is CAN, the theoretician could invoke testable assumptions 
comprising the relevant ℳ𝛉𝛉(𝐳𝐳) . This will give the practitioner a chance to appraise the 
appropriateness of different methods and do a much better job in producing trustworthy 
evidence by testing the validity of the invoked assumptions; see Spanos (2018). 

Unfortunately, empirical modeling in economics is currently dominated by a serious 
disconnect between these two since the theoretician is practicing mathematical deduction and 
the practitioner uses recipe-like statistical induction by transforming formulae into numbers 
misusing the data. The theoretician has no real motivation to render the invoked ℳ𝛉𝛉(𝐳𝐳) testable. 
If anything, the motivation stemming from the perceived esteem level reflecting his/her technical 
dexterity is to make ℳ𝛉𝛉(𝐳𝐳) even less testable and obtuse by invoking the misleading claim that 
weaker assumptions are less vulnerable to misspecification. Also, the practitioner has no real 



motivation to do the hard work of establishing the statistical adequacy of ℳ𝛉𝛉(𝐳𝐳), given that no 
journal editor asks for that, and is happy to give credit/blame to the theoretician. 

 
4.3  Traditional modeling and the trustworthiness of evidence 
 
Despite bold assertions in book titles, such as “Mostly Harmless Econometrics” by Angrist 

and Pischke (2008), ignoring the probabilistic assumptions one imposes on a particular data 𝐖𝐖0, 
is anything but ‘harmless’, when trustworthy evidence and learning from data are important 
objectives in the empirical modeling. Moreover, “better research designs, either by virtue of 
outright experimentation or through the well-founded and careful implementation of quasi-
experimental methods” (p. 26), as claimed by Angrist and Pischke (2010), will not take the ‘con’ 
out of econometrics, since the untrustworthiness of evidence stemming from imposing (implicitly 
or explicitly) invalid probabilistic assumptions on one’s data plagues modeling with experimental 
data as well; see Rust (2016). A real-life example of statistical misspecification due to ignoring 
heterogeneity in cross-section experimental data, is the case of the sleep aid Ambien. After going 
through the rigorous procedures and protocols a new medical treatment has to follow before 
approval, and several years on the market, as well as millions of prescriptions, it was discovered 
(retrospectively) that female patients are more susceptible to the risk of ‘next day impairment’ 
because their body metabolizes Ambien more slowly than male patients; see Spanos (2020). If 
the rigorous process based on the ‘gold standard’ for evidence, the Randomized Controlled Trials 
(RCTs) for a new treatment, could not safeguard the trustworthiness of evidence from statistical 
misspecification, one wonders how any impromptu “better research designs” and “quasi-
experimental methods” would do better; see Deaton (2010), Heckman (1997) and Reiss (2015) 
for further discussion. 

 
5  Recasting curve-fitting into model-based inference 
 
How does one secure reliability of inference and the trustworthiness of evidence when 

the modeling begins with a substantive model ℳ𝛗𝛗(𝐳𝐳)? By a recasting the curve-fitting approach 
into a model-based induction with a view to accommodate the substantive information 
encapsulated by ℳ𝛗𝛗(𝐳𝐳) , but distinguishing between ℳ𝛗𝛗(𝐳𝐳)  and the statisticalℳ𝛉𝛉(𝐳𝐳) , and 
ensure that its probabilistic assumptions are specified in terms of the observable process {𝐙𝐙𝑡𝑡 ,
𝑡𝑡 ∈ ℕ} and not the error term. This is needed to establish the statistical adequacy of ℳ𝛉𝛉(𝐳𝐳), 
which, in turn, will ensure the reliability of the statistical procedures used to congruously coalesce 
the two models into an empirical model, which is both statistically and substantive adequate. 

 
5.1  Statistical vs. substantive models 
 
A closer look at Fisher’s (1922, 1925) recasting of statistics reveals that in his framing there 

is always a ‘material experiment’, often specified in terms of alternative experimental designs – 
a simple ℳ𝛗𝛗(𝐳𝐳) – that is embedded into a statistical model ℳ𝛉𝛉(𝐳𝐳). It turns out that behind every 
substantive model ℳ𝛗𝛗(𝐳𝐳)  there is an implicit statistical model ℳ𝛉𝛉(𝐳𝐳)  that comprises the 
probabilistic assumptions imposed on data 𝐙𝐙0, but one needs to bring it out explicitly and test 



the validity of these assumptions. This renders the current debate between structural vs. reduce 
form models (Low and Meghir, 2017) a false dilemma, since the reduce form of any structural 
model ℳ𝛗𝛗(𝐳𝐳) comprises the probabilistic assumptions (implicitly or explicitly) imposed on data 
𝐳𝐳0, i.e. the built-in statistical model ℳ𝛉𝛉(𝐳𝐳), whose statistical adequacy determines the reliability 
of inference of the estimated ℳ𝛗𝛗(𝐳𝐳). 

In direct analogy to ℳ𝛉𝛉(𝐳𝐳) the substantive model is generically specified by: 

 ℳ𝛗𝛗(𝐳𝐳) = {𝑓𝑓(𝐳𝐳;𝛗𝛗), 𝛗𝛗 ∈ Φ ⊂ ℝ𝑝𝑝}, 𝐳𝐳 ∈ ℝ𝑍𝑍
𝑛𝑛, 𝑝𝑝 ≤ 𝑚𝑚. (23) 

A congruous blending of the two models is based on relating their parameterizations 𝛉𝛉 and 𝛗𝛗 by 
ensuring that ℳ𝛗𝛗(𝐳𝐳) is parametrically nested in ℳ𝛉𝛉(𝐳𝐳). 

The first step in that direction is to ‘transfer’ the probabilistic assumptions from the error 
term to the observable process {𝐙𝐙𝑡𝑡, 𝑡𝑡 ∈ ℕ} underlying ℳ𝛗𝛗(𝐳𝐳), and separate the statistical from 
the substantive assumptions by distinguishing between statistical and substantive adequacy: 

[a] Statistical adequacy: ℳ𝛉𝛉(𝐳𝐳) adequately accounts for the chance regularities in 𝐳𝐳0, or 
equivalently, the probabilistic assumptions comprising ℳ𝛉𝛉(𝐳𝐳) are valid for data 𝐳𝐳0. It is ‘local’ 
because it relates to the particular data and their chance regularities. 

[b] Substantive adequacy: the extent to which ℳ𝛗𝛗(𝐳𝐳) sheds adequate light (describe, 
explain, predict) on the phenomenon of interest. Hence, any assumptions relating to ceteris 
paribus clauses, omitted variables, causality, etc., are substantive since they encode ‘tentative 
information’ about ‘how the world really works’. In this sense, substantive adequacy is 
phenomenon-oriented because it relates to the relationship between ℳ𝛗𝛗(𝐳𝐳)  and the 
phenomenon of interest. Indeed, the traditional criteria [ii] substantive and [iii] pragmatic relate 
to the substantive adequacy. The problem is that without securing the statistical adequacy first, 
none of these criteria can be properly implemented in practice. 

It is important to emphasize at this point that the widely invoked slogan ‘All models are 
wrong, but some are useful’ attributed to George Box (1979), is invariably misinterpreted as 
suggesting that statistical misspecification is inevitable. The ‘wrongness’ Box refers to, however, 
is not statistical but substantive: “Now it would be very remarkable if any system existing in the 
real world could be exactly represented by any simple model.” (p. 202). Box, goes on to 
emphasize empirical modeling as an iterative process of selecting a model, testing its probabilistic 
assumptions using the residuals, and respecifying it when any of them are invalid! 

 
5.2  The tale of two linear regressions 
 
To illustrate the difference between a statistical and a substantive perspective let us 

compare and contrast the traditional textbook specification of the Linear Regression (LR) model 
(table 3) with the model-based specification (table 4). 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛃𝛃1⊤𝐱𝐱𝑡𝑡 + 𝜀𝜀𝑡𝑡,    𝑡𝑡 ∈ ℕ,1𝑙𝑙{1}(𝜀𝜀𝑡𝑡|𝐗𝐗𝑡𝑡 =
𝐱𝐱𝑡𝑡) ∽ N(. , . ), {2}𝐸𝐸(𝜀𝜀𝑡𝑡|𝐗𝐗𝑡𝑡 = 𝐱𝐱𝑡𝑡) = 0,1𝑙𝑙{3}  𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑡𝑡|𝐗𝐗𝑡𝑡 = 𝐱𝐱𝑡𝑡) = 𝜎𝜎𝜀𝜀2, {4}  𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑡𝑡𝜀𝜀𝑠𝑠|𝐗𝐗𝑡𝑡 = 𝐱𝐱𝑡𝑡) =
0, 𝑡𝑡 > 𝑠𝑠, 𝑡𝑡, 𝑠𝑠 ∈ ℕ. 
 

 



𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇4:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡,    𝑡𝑡 ∈ ℕ  , 𝑙𝑙𝑙𝑙𝑙𝑙[1]𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑥𝑥𝑡𝑡) ∽ N(. , . ),2]𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:𝐸𝐸(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡, 3]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻:𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 =
𝑥𝑥𝑡𝑡) = 𝜎𝜎2, 4]𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: {(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡), 𝑡𝑡 ∈ ℕ}𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 5]𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎:𝛉𝛉: =
(𝛽𝛽0,𝛽𝛽1,𝜎𝜎2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑡𝑡, }𝑡𝑡 ∈
ℕ. 1𝑙𝑙𝛽𝛽0 = 𝐸𝐸(𝑦𝑦𝑡𝑡) − 𝛽𝛽1𝐸𝐸(𝑋𝑋𝑡𝑡), 𝛽𝛽1 = (𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑦𝑦𝑡𝑡)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
), 𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡) − 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑦𝑦𝑡𝑡). 

 
In terms of their assumptions, the two specifications differ in several respects. 
First, table 3 is usually supplemented by additional assumptions that include: 
{5} 𝐗𝐗𝑡𝑡 is fixed at 𝐱𝐱𝑡𝑡 in repeated samples, 
{6} All relevant variables have been included in 𝐗𝐗𝑡𝑡, 
{7} No collinearity: rank(𝐗𝐗⊤𝐗𝐗) = 𝑚𝑚 + 1, 𝐗𝐗 = (𝟏𝟏,𝐱𝐱1, 𝐱𝐱2, . . . , 𝐱𝐱𝑚𝑚). 
Second, the Generating Mechanism (GM) in table 3 is (implicitly) substantive: how the 

phenomenon of interest generated data 𝐙𝐙0: = (𝐲𝐲0,𝐗𝐗0), but the GM in table 4 is statistical: how 
the stochastic mechanism underlying ℳ𝛉𝛉(𝐳𝐳) could have generated data 𝐙𝐙0. Equivalently, this 
could represent how one could generate data 𝑌𝑌𝑡𝑡  given 𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡  on a computer using pseudo-
random numbers for 𝑢𝑢𝑡𝑡. 

Third, the error terms 𝜀𝜀𝑡𝑡 and 𝑢𝑢𝑡𝑡 , associated with the two specifications in tables 3 and 4, 
are interpreted very differently because they represent different types of errors. For a statistical 
model, such as in (3) (table 4), the error term 𝑢𝑢𝑡𝑡 is assumed to represent the non-systematic 
statistical information in data 𝐙𝐙0: = (𝐲𝐲0,𝐗𝐗0), neglected by the systematic component 𝑚𝑚(𝑡𝑡) =
𝐸𝐸(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡); more formally, {(𝑢𝑢𝑡𝑡|𝒟𝒟𝑡𝑡), 𝑡𝑡 ∈ ℕ} is a Martingale Difference process relative to the 
information 𝒟𝒟𝑡𝑡 ⊂ ℑ  of the probability space (𝑆𝑆,ℑ,ℙ(. ))  underlying ℳ𝛉𝛉(𝐱𝐱) . Hence, the 
statistical error term 𝑢𝑢𝑡𝑡 is: [i] Derived in the sense that 𝑢𝑢𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) represents the 
non-systematic component of the orthogonal decomposition of 𝑌𝑌𝑡𝑡 defining the statistical GM: 

 𝑌𝑌𝑡𝑡 = 𝐸𝐸(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) + 𝑢𝑢𝑡𝑡, 

where by ‘design’ 𝐸𝐸(𝑢𝑢𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) = 0 and 𝐸𝐸(𝑚𝑚(𝑡𝑡) ⋅ 𝑢𝑢𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) = 0. Hence, the probabilistic 
structure of {(𝑢𝑢𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡), 𝑡𝑡 ∈ ℕ} is completely determined by that of {(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡), 𝑡𝑡 ∈ ℕ} 
([1]-[5], table 4). This implies that when any of the assumptions [1]-[5] are invalid, 𝑢𝑢𝑡𝑡 will include 
the systematic statistical information in 𝐙𝐙0 unaccounted for by 𝑚𝑚(𝑡𝑡). [ii] Data-oriented, in the 
sense that its validity/invalidity (departures from assumptions [1]-[5]) revolves solely around the 
statistical systematic information in 𝐙𝐙0. 

When table 3 is viewed in the context of curve-fitting 𝜀𝜀𝑡𝑡  is a structural error term, 
assumed to represent the non-systematic substantive information unaccounted for by 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 +
𝛽𝛽1𝑥𝑥𝑡𝑡. In this sense, 𝜀𝜀𝑡𝑡 is: [i]* Autonomous in the sense that its probabilistic structure also depends 
on other relevant substantive information that 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 might have overlooked, including 
omitted variables, unobserved confounding factors, external shocks, and systematic errors of 
measurement/approximation. [ii]* phenomenon-oriented, in the sense that the validity of the 
probabilistic structure of 𝜀𝜀𝑡𝑡  revolves around how adequately 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡  accounts for the 
phenomenon of interest. Hence, when probing for substantive adequacy one needs to consider 
the different ways 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡  might depart from the actual data generating mechanism 
giving rise to the phenomenon of interest; not just the part that generated 𝐙𝐙0. 

Fourth, when the assumptions {1}-{4} (table 3) are viewed from a purely probabilistic 



perspective one can see that they relate directly to assumptions [1]-[4] (table 4); see Spanos 
(2019). In particular: 

 {2}𝐸𝐸(𝜀𝜀𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) = 0 ⇔ [2]𝐸𝐸(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡. (24) 

On the other hand, assumption {2} (table 3) in textbook econometrics is referred to as an 
exogeneity assumption (Greene, 2018, p. 55), which reveals that {2} is viewed from a substantive 
(curve-fitting) perspective, where a potential departure can arise when 𝜀𝜀𝑡𝑡 includes an omitted 
but relevant variable, say 𝑊𝑊𝑡𝑡, such that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑊𝑊𝑡𝑡) ≠ 0, implying that ¬{2}: 𝐸𝐸(𝜀𝜀𝑡𝑡|𝐗𝐗𝑡𝑡 = 𝐱𝐱𝑡𝑡) ≠
0. This argument makes no sense when 𝜀𝜀𝑡𝑡 is viewed as a statistical error term (see (24)) since it 
has nothing to do with data 𝐙𝐙0, but it does make sense when 𝜀𝜀𝑡𝑡 is viewed as an autonomous 
substantive error term 𝜀𝜀𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑡𝑡 that includes any systematic substantive information 
neglected by 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 . This issue is particularly important in econometrics because 
𝐸𝐸(𝜀𝜀𝑡𝑡|𝐗𝐗𝑡𝑡 = 𝐱𝐱𝑡𝑡) ≠ 0 is used to motivate one of the most widely used (and abused – Spanos, 
2007b) methods of estimation, known as the Instrumental Variables (IVs) method; see 
Wooldridge (2010). Another variation on the substantive departure (¬{2}) gives rise to the so-
called omitted variable bias, which is erroneously viewed as a form of statistical misspecification 
in the econometric literature; see Spanos (2006c). 

Fifth, assumptions {5}-{7} are not probabilistic assumptions that make sense in the 
context of a statistical model, since {5} is superfluous when 𝑋𝑋𝑡𝑡  is viewed as a conditioning 
variable, {6} is a substantive assumption (Spanos, 2010c), and {7} is a condition that relates to the 
particular data 𝐙𝐙0, and not the generating mechanism; see Spanos (2019). 

Sixth, when viewed from a purely probabilistic perspective, there are two clear 
differences between tables 3 and 4. The first is that all assumptions [1]-[5] relate to the 
observable process {(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡), 𝑡𝑡 ∈ ℕ}  and are directly testable vis-a-vis data 𝐙𝐙0,  with [5] 
missing from table 3. The second difference is the implicit statistical parameterization in table 4, 
indicating what ‘statistical’ (as opposed to substantive) parameters the unknown 𝛉𝛉 represents. 
This is crucial because the statistical GM in conjunction with this parameterization separates the 
statistical from the substantive perspective, indicating that one does not need to invoke a 
substantive model to estimate the statistical model in table 4. This clear separation of the 
statistical and substantive models, ab initio, stems from viewing the former as a particular 
parameterization of the stochastic process {𝐙𝐙𝑡𝑡, 𝑡𝑡 ∈ ℕ} underlying the data 𝐙𝐙0. To derive the 
particular parameterization one can invoke the Kolmogorov extension theorem that enables one 
to fully describe the stochastic process {𝐙𝐙𝑡𝑡, 𝑡𝑡 ∈ ℕ}  using its joint distribution 
𝐷𝐷(𝐙𝐙1,𝐙𝐙2, . . . ,𝐙𝐙𝑛𝑛;𝛟𝛟); see Billingsley (1995). Note that the probabilistic reduction that relates  

𝐷𝐷(𝐙𝐙1,𝐙𝐙2, . . . ,𝐙𝐙𝑛𝑛;𝛟𝛟) =IID ∏𝑛𝑛
𝑡𝑡=1 𝐷𝐷(𝑌𝑌𝑡𝑡|𝐱𝐱𝑡𝑡;𝛗𝛗1)𝐷𝐷(𝐗𝐗𝑡𝑡;𝛗𝛗2), ∀𝐳𝐳𝑡𝑡 ∈ ℝ𝑛𝑛𝑛𝑛  to the distribution 

𝐷𝐷(𝑌𝑌𝑡𝑡|𝐱𝐱𝑡𝑡;𝛗𝛗1),  

underlying the LR model in table 4, also ensures the internal consistency of assumptions [1]-[5]; 
see Spanos (2019). 

The parameterization of 𝛉𝛉 provides the first link between the statistical and substantive 
models because 𝛉𝛉  is chosen in such a way to parametrically nest the substantive model 
parameters 𝛗𝛗. This relationship can be expressed in the generic form: 

 𝐆𝐆(𝛉𝛉,𝛗𝛗) = 𝟎𝟎, 𝛗𝛗 ∈ ℝ𝑝𝑝, 𝛉𝛉 ∈ ℝ𝑚𝑚, 𝑝𝑝 ≤ 𝑚𝑚. (25) 



Diagram 1 can be easily extended to accommodate a substantive ℳ𝛗𝛗(𝐳𝐳) model in addition to 
the statistical model ℳ𝛉𝛉(𝐳𝐳), as articulated above; see Spanos (2020). 

 
5.3  From statistical and substantive to empirical models 
 
As emphasized above, what renders the estimated LR model (table 4) and the associated 

statistical inference a statistical regularity is the validity of [1]-[5] and nothing else. It becomes an 
empirical regularity when a worthy substantive model explains the phenomenon of interest 
without belying the statistically adequate ℳ𝛉𝛉(𝐳𝐳). 

Kepler’s first law. Spanos (2007a) illustrates this using Kepler’s 1609 statistical regularity 
for the motion of the planets (ℳ𝛉𝛉(𝐳𝐳)) and the substantive model (ℳ𝛗𝛗(𝐳𝐳)) provided by Newton 
almost 80 years later. In particular, Kepler’s first law states that ‘a planet moves around the sun 
in an elliptical motion with one focus at the sun’. The loci of the elliptical motion based on 𝑟𝑟- 
distance of the planet from the sun, and 𝜗𝜗- angle between the line joining the sun and the planet 
and the principal axis of the ellipse. Using the polar coordinates transformations 𝑦𝑦: = (1/𝑟𝑟) and 
𝑥𝑥: = cos𝜗𝜗, Kepler’s first law becomes 𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥𝑡𝑡, which can be estimated as a LR model in 
(??). Estimating (??) using the original Brahe data for Mars (𝑛𝑛 = 28) yields: 

 𝑦𝑦𝑡𝑡 =. 662062
(.000002)

+. 061333
(.000003)

𝑥𝑥𝑡𝑡 + 𝑢𝑢�𝑡𝑡 , 𝑛𝑛 = 28, 𝑅𝑅2 = .9999, 𝑠𝑠 = .00001115, (26) 

which can be shown to be statistically adequate; see Spanos (2007a). 
The substantive interpretation of Kepler’s first law had to wait for Newton’s (1687) Law 

of Universal Gravitation (LUG):  𝐹𝐹 = [𝐺𝐺(𝑚𝑚 ⋅ 𝑀𝑀)]/𝑟𝑟2,  where 𝐹𝐹 is the force of attraction between 
two bodies of mass 𝑚𝑚 (planet) and 𝑀𝑀 (sun), 𝐺𝐺 is a constant of gravitational attraction, and 𝑟𝑟 is 
the distance between the two bodies. LUG attributed a clear structural interpretation to 𝛽𝛽0 and 
𝛽𝛽1: 𝛽𝛽0 = [𝑀𝑀𝑀𝑀/4𝜅𝜅2], where 𝜅𝜅 denotes the Kepler constant, 𝛽𝛽1 = ([(1/𝑑𝑑) − 𝛽𝛽0], where 𝑑𝑑 is the 
shortest distance between the planet and the sun; see Hahn (1998). Also, the error term 𝜀𝜀𝑡𝑡 enjoys 
a substantive interpretation in the form of ‘departures’ from the elliptical motion due to potential 
measurement errors and unmodeled effects. Hence, the assumptions {1}-{4} (table 1) could be 
inappropriate in cases where: (i) the data suffer from ‘systematic’ observation errors, (ii) the third 
body problem effect is significant, (iii) the general relativity terms (Lawden, 2002) are significant. 

Duhem’s thesis. The distinction between the statistical ℳ𝛉𝛉(𝐳𝐳) and substantive ℳ𝛗𝛗(𝐳𝐳) 
model can be used to address Duhem’s (1914) thesis that ‘no hypothesis can be tested separately 
from the set of auxiliary hypotheses’ needed for such empirical tests. The statistical assumptions 
of ℳ𝛉𝛉(𝐳𝐳)  are the only ‘auxiliary hypotheses’ needed, and their validity can be established 
independently of the substantive hypotheses in (25). Indeed, the adequacy of ℳ𝛉𝛉(𝐳𝐳) is needed 
for testing the validity of such substantive hypotheses. For instance, the statistically adequate 
model in (26), can provide the basis for testing the Copernicus hypothesis that the motion of a 
planet around the sun is circular (𝑦𝑦𝑡𝑡 = 𝛼𝛼0) using the hypotheses: 𝐻𝐻0: 𝛽𝛽1 = 0 vs. 𝐻𝐻1: 𝛽𝛽1 ≠ 0, using 
𝜏𝜏(𝐳𝐳0;𝛽𝛽1) = .061333

.000003
= 20444[.000000], which strongly rejects 𝐻𝐻0. 

The propensity interpretation of probability. The distinction between ℳ𝛉𝛉(𝐳𝐳)  and 
ℳ𝛗𝛗(𝐳𝐳)  models can also be used to address a conundrum associated with the propensity 
interpretation of probability, attributed to Popper and Peirce, as it relates to Humphreys (1985) 
paradox: the propensity interpretation has a built-in causal connection between different events, 



say 𝐴𝐴  and 𝐵𝐵,  which renders reversing conditional probabilities such as ℙ(𝐴𝐴|𝐵𝐵)  to ℙ(𝐵𝐵|𝐴𝐴) 
meaningless when 𝐴𝐴 is the effect and 𝐵𝐵 is the cause. The paradox goes away by noting that the 
propensity interpretation is associated with real-world stochastic mechanisms, such as a 
radioactive atom has a ‘propensity to decay’ that gives rise to stable relative frequencies. This 
suggests that the mechanism is viewed as a substantive model ℳ𝛗𝛗(𝐳𝐳)  that carries with it 
substantive information, including causal. Thus, even though the statistical information 
encapsulated in ℳ𝛉𝛉(𝐱𝐱) satisfies all the rules of conditional probability, in the context of ℳ𝛗𝛗(𝐳𝐳) 
the substantive causal information imposes additional restrictions (including causal) on ℳ𝛉𝛉(𝐱𝐱) 
which are often testable via (25); see Spanos (2019). Hence, there is no conflict between the 
frequentist and propensity interpretations of probability, as the former is germane to the 
statistical ℳ𝛉𝛉(𝐱𝐱), and the latter to the substantive model ℳ𝛗𝛗(𝐱𝐱). 

 
5.4  Revisiting the Koopmans vs. Vining debate 
 
Koopmans (1949), in his exchange with Vining (1949), used the historical episode of 

Kepler’s statistical regularities concerning planetary motion to criticize the primitive state of 
development of empirical business cycle modeling represented by Burns and Mitchell (1946), as 
opposed to that of theory-driven curve-fitting modeling of the Cowles Commission; see Morgan 
(1990). He called the former the ‘Kepler stage’ of empirical modeling, in contrast to the ‘Newton 
stage’, where these statistical regularities were given a substantive interpretation using Newton’s 
LUG. 

Arguably, Koopmans did not draw the right lessons from this episode, in the sense that 
the inductive process best describing it is that of data-to-theory, because the statistical regularity 
of the elliptical motion of Mars around the sun was established based on (a) meager substantive 
information, but (b) reliable statistical information using Brahe’s data, and (c) was instrumental 
in inspiring Newton to devise the LUG; Newton called the elliptical motion Kepler’s first law. 

The right lesson to be learned from this episode is that a statistically adequate ℳ𝛉𝛉(𝐳𝐳) 
provides the starting point of the statistical regularities in data 𝐳𝐳0  a worthy theory aiming to 
explain the particular phenomenon of interest needs to account for, and that’s how Newton 
understood Kepler’s statistical regularity. 

 
6  Summary and conclusions 
 
Using a philosophy of science perspective, the above discussion provides a critical view of 

current econometric modeling and inference with a view to provide a deeper understanding of 
what econometricians are engaged in and what they are trying to accomplish in empirical 
modeling. 

The primary aim of the above discussion is to place econometrics in the broader statistical 
context of model-based statistical induction and focus on issues that call for conceptual 
clarification and coherence, detect gaps in traditional econometric arguments and frame 
alternative conceptual perspectives. The success of current econometric methodology has been 
evaluated with respect to its effectiveness in giving rise to ‘learning from data’ about economic 
phenomena of interest. 



The overall assessment is that current econometric methodology has so far failed to shed 
sufficient light on economic phenomena, for a several reasons. The most important is that 
viewing empirical modeling as curve-fitting guided by impromptu stochastic error terms, and 
evaluated by goodness-of-fit will not give rise to learning from data. In hard sciences (physics, 
chemistry, geology, astronomy) curve-fitting is more successful due to several special features: 
(a) laws of nature are usually invariant with respect to the time and location. Their experimental 
investigation is: (b) guided by reliable substantive knowledge pertaining to the phenomenon of 
interest, (c) framed in terms of tried and trusted procedural protocols, and (d) empirical 
knowledge has a high degree of cumulativeness. In contrast, empirical modeling in social sciences 
pertains to (a)* fickle human behavior that is not invariant to time or location. The empirical 
modeling in the soft sciences (including economics) is: (b)* guided by tentative conjectures that 
are often misconstrued as established knowledge, (c)* by foisting a substantive model ℳ𝛗𝛗(𝐳𝐳) on 
the data without validating the implicit ℳ𝛉𝛉(𝐳𝐳). (d)* The end result is invariably an estimated 
ℳ𝛗𝛗(𝐳𝐳) that is statistically and substantively misspecified; Spanos (2007a). 

To meliorate the untrustworthiness of the evidence problem arising from curve-fitting, 
the traditional approach needs to be modified in ways that allow the systematic statistical 
information in data (chance regularities) to play a more crucial role than the subordinate one of 
‘quantifying substantive models presumed true’. Hence, the need for a much broader and more 
coherent modeling framework based on several nuanced distinctions, including (i) statistical vs. 
substantive information/model/adequacy, (ii) statistical modeling vs. inference, (iii) factual vs. 
hypothetical reasoning in frequentist inference, (iv) Neyman-Pearson testing (within ℳ𝛉𝛉(𝐳𝐳)) vs. 
M-S testing (outside ℳ𝛉𝛉(𝐳𝐳)), (v) pre-data vs. post-data error probabilities, and (vi) untestable vs. 
testable probabilistic assumptions comprising ℳ𝛉𝛉(𝐳𝐳). The cornerstone of this framework is the 
concept of a statistical model ℳ𝛉𝛉(𝐳𝐳) and its adequacy. This is crucial because the combination 
of observational data and the absence of reliable substantive knowledge pertaining to the 
phenomenon of interest, a statistically adequate model ℳ𝛉𝛉(𝐳𝐳) can provide the basic benchmark 
for what a worthy substantive model ℳ𝛗𝛗(𝐳𝐳) needs to explain to begin with. 

The above discussion calls for certain changes in the current paradigm of econometric 
modeling and inference, including the overall conceptual framework, the research methods, the 
objectives, the professional and educational subject system, as well as the standards for what 
constitutes a real contribution to trustworthy evidence in applied economics. The proposed 
framework offers suggestions for journal editors and referees on several ways to ameliorate the 
untrustworthiness of published empirical evidence. First, decline forthwith papers that ignore 
establishing the adequacy of the invoked statistical model(s) by their inferences. Second, call out 
authors for uninformed implementation of inference procedures and unwarranted 
interpretations of their results. Third, demand that authors probe adequately for any potential 
substantive misspecifications, after the adequacy of the underlying statistical model has been 
secured. Fourth, demand from theoreticians to ensure that the probabilistic assumptions 
underlying their proposed tools are testable. As argued by Rust (2016): “... journals should 
increase the burden on econometric theory by requiring more of them to show how the new 
methods they propose are likely to be used and be useful for generating new empirical 
knowledge.” 
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