
Interactive Machine Learning for Refinement and
Analysis of Segmented CT/MRI Images

Erol Sarigul

A doctoral dissertation submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

A. Lynn Abbott, Chair

Daniel L. Schmoldt

Amy E. Bell

Earl Kline

Richard Conners

Anbo Wang

17th September, 2004

Blacksburg, Virginia

Keywords: Image segmentation, machine learning, decision trees,

postprocessing, user interface.

Interactive Machine Learning for Refinement and Analysis of
Segmented CT Images

Erol Sarigul

(ABSTRACT)

This dissertation concerns the development of an interactive machine learning method

for refinement and analysis of segmented computed tomography (CT) images. This method

uses higher-level domain-dependent knowledge to improve initial image segmentation results.

A knowledge-based refinement and analysis system requires the formulation of domain

knowledge. A serious problem faced by knowledge-based system designers is the knowledge

acquisition bottleneck. Knowledge acquisition is very challenging and an active research topic

in the field of machine learning and artificial intelligence. Commonly, a knowledge engineer

needs to have a domain expert to formulate acquired knowledge for use in an expert system.

That process is rather tedious and error-prone. The domain expert’s verbal description can

be inaccurate or incomplete, and the knowledge engineer may not correctly interpret the

expert’s intent. In many cases, the domain experts prefer to do actions instead of explaining

their expertise.

These problems motivate us to find another solution to make the knowledge acquisition

process less challenging. Instead of trying to acquire expertise from a domain expert verbally,

we can ask him/her to show expertise through actions that can be observed by the system.

If the system can learn from those actions, this approach is called learning by demonstration.

We have developed a system that can learn region refinement rules automatically. The

system observes the steps taken as a human user interactively edits a processed image, and

then infers rules from those actions. During the system’s learn mode, the user views labeled

images and makes refinements through the use of a keyboard and mouse. As the user

manipulates the images, the system stores information related to those manual operations,

and develops internal rules that can be used later for automatic postprocessing of other

images. After one or more training sessions, the user places the system into its run mode.

The system then accepts new images, and uses its rule set to apply postprocessing operations

automatically in a manner that is modeled after those learned from the human user. At any

time, the user can return to learn mode to introduce new training information, and this will

be used by the system to updates its internal rule set.

The system does not simply memorize a particular sequence of postprocessing steps

during a training session, but instead generalizes from the image data and from the actions

of the human user so that new CT images can be refined appropriately.

Experimental results have shown that IntelliPost improves the segmentation accuracy of

the overall system by applying postprocessing rules. In tests two different CT datasets of

hardwood logs, the use of IntelliPost resulted in improvements of 1.92% and 9.45%, respec-

tively. For two different medical datasets, the use of IntelliPost resulted in improvements of

4.22% and 0.33%, respectively.

To My Family

Acknowledgments

I am extremely thankful to my advisor Prof. A. Lynn Abbott, for his patience and valuable

guidance in this study. Without his support, patience, and understanding, this dissertation

would not be exist. I owe a lot to him. His support and assistance during years of this study

will not be forgotten.

I would like to thank my committee members: Dr. Schmoldt, Dr. Conners, Dr. Bell, Dr.

Kline, and Dr. Wang for their feedback and stimulating question during the course of this

research. I would like to specially thank to Phil Araman and Matt Winn for their help for

creating the reference images fo hardwood log dataset and training part of IntelliPost. My

sincere appreciation goes to Phil Araman for giving me financial support to help me finish

this research.

I would like to thank my family especially my wife, Emine for her emotional support,

patience, and love during this research. I would like to thank her help by taking care of our

sons so that I could more time to study to finish it. No words would be enough to express

how her help is appreciated. My sons, Alperen and Yusuf, are my emotional inspiration to

finish this study. When I needed emotional support, they were there to give it enough.

Special thanks and appreciation go to also my good friends: Anbumani Subramanian,

and Sang-Mook Lee for taking time to have stimulating discussion for my research, their

help, and friendship.

I would like to express my deepest appreciation to my parents, and their emotional

support and patience during this study and never ending prayer for me. Plain words are

not enough to express my feeling for them. Finally, I would not be able to finish this thesis

without the help of God. My ultimate appreciation goes to him.

List of Figures

1.1 Overall CT based sawmill system (adapted from [33]). 2

1.2 Overall image segmentation system. 6

1.3 The architecture of the ANN classifier. The normalized values are collected
within a neighborhood of each pixel and then fed to the trained ANN classifier
to determine the class of that pixel. The Max function is used after the output
layer to select the class assignment of the pixel. The 5× 5 window at the left
is drawn out of proportion for the sake of clarity. 6

1.4 Typical output of ANN classifier for red oak log. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type. 7

1.5 Using just density information is not enough, as illustrated with this sugar
maple log slice. The ANN classifier can be misled by density alone. This
result demands postprocessing that could use high level information. Light tan
color represents sapwood, beige color represents heartwood, yellow represents
split defects, green represents decay, red represents knot, and dark tan color
represents live bark. 8

1.6 Putting the human user into the loop. Adding an interactive postprocessing
module makes the overall image segmentation system adaptable. 16

2.1 Screenshot of Pygmalion. Implementation of factorial procedure (reprinted
from [169]). 26

2.2 Tinker screenshot (reprinted from [107]) . 29

2.3 Metamouse user manual and teaching the system sort boxes by height (reprinted
from [121]) . 31

2.4 Trigger’s workspace (reprinted from [145]) 34

2.5 Modifying web page (reprinted from [145]) 35

2.6 Chimera’s match tools (reprinted from [99]). 37

2.7 Workspace of Mondrian (reprinted from [106]). 38

2.8 SmartEdit screen. User is deleting all HTML comments that begin with <!–
and end with –!> (reprinted from [108]). 39

2.9 SmartEdit performs editing (reprinted from [108]). 40

vi

3.1 Postprocessing system overview . 43

3.2 A binary image that contains two regions as sets A and B. 45

3.3 Basic binary (Boolean) operations on two images. 47

3.4 Illustration of translation and reflection. (a) Region A. (b) Set A translated
by vector x. (c) Set B. (d) The reflection of B. 48

3.5 Common structuring elements: (a) rectangle, (b) disk, and (c) diamond. . . 49

3.6 The dilation of set A by structuring element B: (a) before dilation, (b) after
dilation. 50

3.7 The erosion of set A by structuring element B: (a) before erosion, (b) after
erosion. 51

3.8 Opening of binary image A by structuring element B: (a) before, (b) after
(reprinted from [171]). 54

3.9 Closing of a binary image A by structuring element B: (a) before applying
closing operation, (b) after closing. The dashed line shows filled background
pixels (reprinted from [171]) . 55

3.10 End-point detection by a hit-or-miss operation: (a) input image, (b) shows
four structuring elements for end-point detection (hatched boxes show BBG),
(c) the union of four operations (adapted from [171]). 57

3.11 Decision tree for the golf problem. 61

3.12 The entropy function in binary classification. 64

4.1 System operation during learn mode. A human operator edits a segmented
image, as the system observes and extracts information to be used later. . . 72

4.2 Various properties of a binary region: major and minor axes, perimeter, area,
convex hull of the region. 75

4.3 The convex hull region of a star. Gray shaded areas show convex hull of the
region. 78

4.4 The major and minor axes of a ellipsoid. The vectors e1, and e2 represent
eigenvectors of the covariance matrix. 79

4.5 The remove operation re-assign a region’s pixels to an adjacent region. Here,
R1 is combined with R2, because their shared border is the longest. 80

4.6 The smooth operation. (a) Input image. (b) The result smoothing which
shows rounded edges, and the removal of small openings. 81

4.7 The enlargement of a region along its boundary. The dashed lines indicate
the enlarged region. 82

4.8 Merging two regions. (a) Two regions are selected. (b) Boundary sets are
obtained. (c) Two points that give the shortest distance are found, and the
directional line structuring is constructed with orientation information. (d)
Iterative dilation of R1 until it merges with R2. 84

4.9 System operation during run mode. The user provides segmented image, and
the system automatically modifies the image in a manner similar to the user’s
earlier editing steps. 86

4.10 Training samples for OC-SEP decision tree algorithm. 92

4.11 The first step of the algorithm. (a) Samples are divided into two partitions,
(b) The corresponding decision tree at this step, leaf of the tree represents
training samples. 93

4.12 The final step of the algorithm. (a) All training samples are separated com-
pletely. (b) The final decision tree contains two decision nodes, denoted by
P1 and P2, and every leaf represents a separate class. 94

4.13 Region analysis algorithm. The initial segmented image is separated into
binary images (layers). Connected component analysis is used to distinguish
separate regions for each layer. Geometric features are determined to populate
a data structure for region refinement analysis. 96

4.14 (a) A typical segmented image (b) The region adjacency graph with numbers
in graph nodes indicating region identification numbers. (c) The region ad-
jacency matrix, in which each nonzero entry rij in the matrix indicates that
region ri is adjacent to rj. 97

4.15 Overall region processing algorithm for the run mode of IntelliPost. 98

5.1 Comparing segmentation improvement between presegmented image and the
result image. A reference image is generated by a human expert for obtaining
segmentation performance measures. 103

5.2 Macromedia’s Fireworks screenshot for outlining defect’s boundaries. 104

5.3 Two different regions that give the same area similarity measure with respect
to ground truth. (a) Ground truth region. (b) Rectangular region that yields
Sarea = 2

3
. (c) Ground truth. (d) a different region that gives the same area

similarity measure. 112

5.4 ROC points for each defect type. (a) ROC points for clear wood. (b) ROC
points for knot. Each point represents one training step and the corresponding
classification performance. 134

5.5 ROC points for each defect type. (a) ROC points for split. (b) ROC points
for decay. Each point represents one training step and the corresponding
classification performance. 135

5.6 ROC points for bark. Each point represents one training step and the corre-
sponding classification performance. 136

5.7 Visual comparison of RK01 dataset slice number 3. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Tan color is clear wood, brown is bark, green is decay,
and red is knot defect type. 145

5.8 Visual comparison of RK12 dataset slice number 5. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Tan color is clear wood, brown is bark, green is decay,
and red is knot defect type. 146

5.9 Visual comparison of 2048 dataset slice number 15. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type. 147

5.10 Visual comparison of 2049 dataset slice number 5. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type. 148

5.11 Visual comparison of 2051 dataset slice number 1. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type. 149

5.12 Visual comparison of 5357 dataset slice number 3. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type. 150

5.13 Visual comparison of bille3-1 dataset slice number 7370557. (a) Original slice.
(b) Manual segmentation (ground truth). (c) The result of ANN segmenta-
tion. (d) IntelliPost result. Light tan color represents sapwood, beige color
represents heartwood, yellow represents split defects, green represents decay,
red represents knot, and dark tan color represents live bark. 151

5.14 Visual comparison of 567b dataset slice number 4127003. (a) Original slice.
(b) Manual segmentation (ground truth). (c) The result of ANN segmenta-
tion. (d) IntelliPost result. Light tan color represents sapwood, beige color
represents heartwood, yellow represents split defects, green represents decay,
red represents knot, and dark tan color represents live bark. 152

5.15 Visual comparison of 578a dataset slice number 4133900. (a) Original slice.
(b) Manual segmentation (ground truth). (c) The result of ANN segmenta-
tion. (d) IntelliPost result. Light tan color represents sapwood, beige color
represents heartwood, yellow represents split defects, green represents decay,
red represents knot, and dark tan color represents live bark. 153

5.16 Visual comparison for medical CT dataset. (a) Original CT slice. (b) Ground
truth.The corresponding ground truth. (c) Initial segmentation from the
ANN. (d) The final result after postprocessing. Pixels from the stands sup-
porting the head were included in the corresponding class in confusion ma-
trices. Brown represents skin, red represents skull, and tan color represents
brain. 154

5.17 Visual comparison for medical MRI dataset. (a) Original MRI slice. (b) The
corresponding ground truth. (c) Initial segmentation from the ANN. (d) The
final result after postprocessing. 155

List of Tables

2.1 The summary of surveyed systems. 41

3.1 Golf anyone? A simple machine learning problem. The data is used for the
construction of a decision tree (adapted from [149]). 60

3.2 ID3 Decision Tree induction algorithm (reprinted from [128]). The best at-
tribute is the one with highest information gain, as defined in Equation 3.31. 63

4.1 An excerpt from the knowledge base that has been used in IntellPost. User-
selected operations are indicated in the first column. Initial region types,
as assigned by the initial segmentation system, are in the second column.
Geometric features are shown in the remaining columns. 73

4.2 Example of codes for postprocessing operations. 74

4.3 Example of codes for region types. 75

4.4 Precedence rules for overlapping layers. The first column and last row of
the table represent overlapping layer, the rest shows the winner when conflict
happens. 100

5.1 Summary of hardwood log datasets. 106

5.2 Summary of medical CT and MRI datasets. 107

5.3 Confusion matrices for slice 3 from dataset RK01. Classification accuracy
values are shown before and after postprocessing as compared with ground
truth. There are five classes: clear wood (CW), knot (KN), split (SP), decay
(DC), and bark (BR). 117

5.4 Improvement in confusion matrix after postprocessing for slice 3 from dataset
RK01. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired. 118

5.5 Confusion matrices for slice 5 from dataset RK12. Classification accuracy
values are shown before and after postprocessing as compared with ground
truth. There are five classes: clear wood (CW), knot (KN), split (SP), decay
(DC), and bark (BR). 118

xi

5.6 Improvement in confusion matrix after postprocessing for slice 5 from dataset
RK12. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired. 118

5.7 Confusion matrices for slice 15 from dataset 2048. Classification accuracy
values are shown before and after postprocessing as compared with ground
truth. There are five classes: clear wood (CW), knot (KN), split (SP), decay
(DC), and bark (BR). 119

5.8 Improvement in confusion after postprocessing for slice 15 from dataset 2048.
The difference between postprocessed and initial segmentation as compared
with ground truth. In most cases, diagonal elements increase and off-diagonal
elements decrease as desired. 119

5.9 Confusion matrices for slice 5 from dataset 2049. Classification accuracy val-
ues are shown before and after postprocessing as compared with ground truth.
There are five classes: clear wood (CW), knot (KN), split (SP), decay (DC),
and bark (BR). 119

5.10 Improvement in confusion matrix after postprocessing for slice 5 from dataset
2049. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired. 120

5.11 Confusion matrices for slice 1 from dataset 2051. Classification accuracy val-
ues are shown before and after postprocessing as compared with ground truth.
There are five classes: clear wood (CW), knot (KN), split (SP), decay (DC),
and bark (BR). 120

5.12 Improvement in confusion matrix after postprocessing for slice 1 from dataset
2051. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired. 120

5.13 Confusion matrices for slice 3 from dataset 5357. Classification accuracy val-
ues are shown before and after postprocessing as compared with ground truth.
There are five classes: clear wood (CW), knot (KN), split (SP), decay (DC),
and bark (BR). 121

5.14 Improvement in confusion matrix after postprocessing for slice 3 from dataset
5357. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired. 121

5.15 True positive rates for selected images in datasets RK01, RK12, 2048, 2049,
2051, and 5357. The true positive rates generally increase for each class after
postprocessing. There are five classes: clear wood (CW), knot (KN), split
(SP), decay (DC), and bark (BR). 122

5.16 Improvement in true positive rates (TPR) for selected images in datasets
RK01, RK12, 2048, 2049, 2051, and 5357. Positive numbers indicate improve-
ment by IntelliPost. 122

5.17 False positive rates for selected images in datasets RK01, RK12, 2048, 2049,
2051, and 5357. The false positive rates decrease after postprocessing, as
desired. There are five classes: clear wood (CW), knot (KN), split (SP),
decay (DC), and bark (BR). 123

5.18 Increase in false positive rates (FPR) for selected images in datasets RK01,
RK12, 2048, 2049, 2051, and 5357. Negative numbers are desired, and indicate
improvement by IntelliPost. 123

5.19 Confusion matrices for slice 7370557 from Forintek dataset bille3-1. Classifi-
cation accuracy values are shown before and after postprocessing as compared
with ground truth. There are eight classes: knot (KN), live bark (LB), decay
(DC), split (SP), sapwood (SW), hardwood (HW), dead knot (DK), and dead
bark (DB). 124

5.20 Improvement in confusion matrix after postprocessing for slice 7370557 from
Forintek dataset bille3-1. The difference between postprocessed and initial
segmentation as compared with ground truth. In most cases, diagonal ele-
ments increase and off-diagonal elements decrease as desired. 125

5.21 Confusion matrices for slice 4127003 from Forintek dataset 567b. Classifica-
tion accuracy values are shown before and after postprocessing as compared
with ground truth. There are eight classes: knot (KN), live bark (LB), decay
(DC), split (SP), sapwood (SW), hardwood (HW), dead knot (DK), and dead
bark (DB). Every pixel in the ground truth image belongs to sapwood (SW)
class as we see one row in confusion matrix. 126

5.22 Improvement in confusion matrix after postprocessing for slice 4127003 from
Forintek dataset 567b. The difference between postprocessed and initial seg-
mentation as compared with ground truth. In most cases, diagonal elements
increase and off-diagonal elements decrease as desired. 127

5.23 Confusion matrices for slice 4133900 from Forintek dataset 578a. Classification
accuracy values are shown before and after postprocessing as compared with
ground truth. There are eight classes: knot (KN), live bark (LB), decay (DC),
split (SP), sapwood (SW), hardwood (HW), dead knot (DK), and dead bark
(DB). 128

5.24 Improvement in confusion matrix after postprocessing for slice 4133900 from
Forintek dataset 578a. The difference between postprocessed and initial seg-
mentation as compared with ground truth. In most cases, diagonal elements
increase and off-diagonal elements decrease as desired. 129

5.25 True positive rates for Forintek datasets. Overall true positive rates increase
except knot (KN) class for bille3-1. There are eight classes: knot (KN), live
bark (LB), decay (DC), split (SP), sapwood (SW), hardwood (HW), dead
knot (DK), and dead bark (DB). 129

5.26 Improvement in true positive rates for Forintek datasets. Increase in true
positive rates is desired therefore positive numbers show improvement in seg-
mentation but negative numbers indicate decrease in true positive detection
rates. 130

5.27 False positive rates for Forintek dataset. NAN represents “not a number”.
Since denominator of false positive rates represents the total number of other
classes, which is zero, we can not find a numeric value for that specific case. 130

5.28 Improvement in false positive rates for Forintek datasets. Decrease in false
positive rates is desired therefore we would like to see negative numbers as im-
provement but positive numbers show decrease in segmentation performance.
NAN represents “not a number”. Since denominator of false positive rates
represents the total number of other classes, which is zero, we can not find a
numeric value for that specific case. 130

5.29 Overall correct segmentation rates for selected images in datasets RK01, RK12,
2048, 2049, 2051, and 5357. 131

5.30 Overall correct segmentation rates for selected images in datasets Forintek. . 131

5.31 Summary of training steps for ROC analysis. Slice number indicates which
slices were used in the corresponding training step. The last column shows
the number of postprocessing operations that were performed in that step. It
is monotonically increasing. 132

5.32 True positive rates (TPR) and false positive rates (FPR) are listed for each
defect type. 133

5.33 Region based similarity measures are listed as the area similarity measure
(ASM), the shape similarity measure (SSM), and overlap index. Region based
similarity values are shown before and after postprocessing as compared with
ground truth. Each similarity measures range from 0 to 1. The value of 0
indicates the most dissimilar and 1.0 indicates the most similar (ideal case).
The same slices were analyzed at region level as in the case of confusion matrix
analysis. 137

5.34 Confusion matrices for slice CT.29017.1 from dataset algotech-23. Classifica-
tion accuracy values are shown before and after postprocessing as compared
with ground truth. There are three classes: skin (SN), skull (SK), and brain
(BRN). 139

5.35 Improvement in confusion matrix after postprocessing for slice CT.29017.1
from dataset algotech-23. The difference between postprocessed and initial
segmentation as compared with ground truth. 139

5.36 Confusion matrices for slice 96 from brainweb dataset. Classification accuracy
values are shown before and after postprocessing as compared with ground
truth. There are nine classes: cerebral spinal fluid (CSF), gray matter (GM),
white matter (WM), fat (FT), muscle/skin (MSK), skin (SN), skull (SK), glial
matter (GLM), and connective (CN). 140

5.37 Improvement in confusion matrix after postprocessing for slice 96 from brain-
web dataset. The difference between postprocessed and initial segmentation
as compared with ground truth. 141

5.38 True positive rates for medical datasets. There are nine classes: Cerebral
Spinal Fluid (CSF), gray matter (GM), white matter (WM) or brain (BRN),
fat (FT), muscle/skin (MSK), skin (SN), skull (SK), glial matter (GLM), and
connective (CN). 141

5.39 Improvement in true positive rates for medical datasets. Positive numbers are
desired. 142

5.40 False positive rates for medical datasets. There are nine classes: cerebral
spinal fluid (CSF), gray matter (GM), white matter (WM) or brain (BRN),
fat (FT), muscle/skin (MSK), skin (SN), skull (SK), glial matter (GLM), and
connective (CN). 142

5.41 Improvement in false positive rates for medical datasets. Negative numbers
are desired. 142

5.42 Overall correct segmentation rates for selected images in medical datasets. . 143

Contents

1 Introduction 1

1.1 Problem definition and motivation . 1

1.2 Background . 4

1.3 Brief survey of image segmentation . 8

1.4 Our approach . 15

1.5 Needs . 16

1.6 Contributions of this study . 18

1.7 Possible application areas of this study . 19

1.8 Outline of the thesis . 20

2 Historical Review of Learning by Demonstration 21

2.1 Introduction . 21

2.2 Definitions and their usage . 22

2.3 Previous Experimental Systems . 26

2.3.1 Pygmalion . 26

2.3.2 U Editor . 27

2.3.3 Tinker . 28

2.3.4 Peridot . 29

2.3.5 Metamouse and Turvy . 30

2.3.6 TELS . 32

2.3.7 Triggers . 33

2.3.8 Chimera . 35

2.3.9 Mondrian . 36

2.3.10 SmartEdit . 38

2.4 Summary . 40

3 Background 42

xvi

3.1 Introduction . 42

3.2 Morphological Image Analysis . 44

3.2.1 Overview . 44

3.2.2 Image Regions as Set, and Logical Operators 45

3.2.3 Structuring Elements . 46

3.2.4 Basic Morphological Operations . 49

3.2.5 Gray Level Morphological Processing 58

3.3 Decision Trees and Rule Based Classification 58

3.3.1 The Problem of Classification and Classifiers 58

3.3.2 Induction of Decision Trees . 59

3.3.3 Proper Applications of Decision Trees 60

3.3.4 A Classical Algorithm for Building Decision Trees: ID3 61

3.3.5 Problems with Decision Trees . 66

3.3.6 Other Decision Tree Implementations 68

3.4 Summary . 69

4 IntelliPost: Intelligent Postprocessing 70

4.1 System Overview . 70

4.2 Modes of Operations . 70

4.3 Learn Mode . 71

4.3.1 Overview . 71

4.3.2 Feature Space and Feature Extraction 72

4.3.3 Postprocessing Operation Library . 79

4.4 Run Mode . 85

4.4.1 Overview . 85

4.4.2 OC-SEP Decision Tree Induction as Inference Engine 87

4.4.3 Region Feature Extraction . 95

4.4.4 Region Refinement . 96

4.5 Summary . 100

5 Results and Discussion 101

5.1 Overview . 101

5.2 Methodology for Experiments . 102

5.2.1 Experimental Evaluation . 102

5.2.2 Generation of Ground Truth . 103

5.3 CT/MRI Image Datasets . 105

5.3.1 Hardwood Log Data Sets . 105

5.3.2 Medical Brain CT/MRI Scan Data Sets 106

5.4 Segmentation Performance Metrics . 107

5.4.1 Overview . 107

5.4.2 Confusion Matrix Analysis . 108

5.4.3 ROC Analysis . 109

5.4.4 Area Similarity Measure . 110

5.4.5 Shape Similarity Measure . 111

5.5 Results for Hardwood Log Datasets . 113

5.5.1 Confusion Matrix Analysis Results 113

5.5.2 ROC Analysis . 131

5.5.3 Region Based Analysis Results . 136

5.6 Result for CT/MRI Medical Datasets . 138

5.7 Summary . 143

6 Summary and Conclusion 156

6.1 Summary . 156

6.2 Conclusion . 158

6.3 Future Directions . 159

Bibliography 160

Chapter 1

Introduction

1.1 Problem definition and motivation

Increasing demand and limited forest resources continue to drive the hardwood industry to

seek more productive means of converting logs to lumber. Conventional log sawing practices

waste considerable amounts of valuable wood, largely because most defects that adversely

affect board quality are at unknown locations inside the logs. Traditionally, the sawmill

operator chooses a sawing strategy by visually examining the exterior of the log, modifying

the strategy as sawing exposes the log interior. This method has several drawbacks. Among

the most noticeable drawbacks are the following: first, the outside bark distortion provides

only limited information about internal features to experts. Second, human experts can be

heavily affected by boredom, fatigue, and working conditions.

Developing nondestructive sensing and analysis methods that can detect and identify

interior defects with high accuracy is critical to future efficiency improvement for sawmills.

Studies have shown, for example, that the commercial value of lumber can be improved by

1

Chapter 1. Introduction 2Chapter 1. Introduction 2Chapter 1. Introduction 2

11% to 21% through the careful selection of sawing strategies, particularly if internal defect

locations were known [152, 180, 186]. Those studies assume that knowledge of internal defects

is available, and that information is used to choose the best sawing position and method.

Due to the fact that most defects of interest are internal, a nondestructive sensing tech-

nique is needed. Different sensing methods have been tried, including nuclear magnetic

resonance [34], ultrasound [76], and x-rays. Because of its efficiency, resolution, and exten-

sive usage in medicine, x-ray computed tomography has received extensive testing in round

wood applications [27, 134, 61, 74, 124, 172, 179, 205]. If complete internal information of

the log is known, it is possible to optimize the sawing strategy of the log based on both di-

mension and defect locations. Such a sawing procedure is outlined by Guddanti and Chang

[33], and is illustrated in Figure 1.1.

CT Slice

Images

Rotate

Generate

Cut Face

Identify Defects

Box Defects

Grade Face

Next Cut

Optimized Cutting

Sequence

Buffer

Head Saw

CT Scanner

Figure 1.1: Overall CT based sawmill system (adapted from [33]).

Utilizing CT (Computed Tomography) imaging technology brings several hurdles to over-

come. It is necessary to have some automated technique to interpret scan information so that

Chapter 1. Introduction 3Chapter 1. Introduction 3Chapter 1. Introduction 3

the saw operator can be presented with the information needed to make proper sawing de-

cisions. The outcome of CT imaging cannot be readily synthesized into a three-dimensional

(3D) mental model by human operators [207]. Due to these limitations, there is a need to

have an automated technique to detect, identify, and label internal defects, and then con-

struct 3D model of a log using this information. The early work on automatically labeling

internal log defects proved the feasibility of utilizing CT images for this purpose. In those

studies, a variety of methods have been employed to segment different regions of a CT image

and then identify or label those segmented regions. Quite often, image segmentation meth-

ods are based on threshold values derived from a CT image’s histogram [179, 203, 172]. In

some cases, texture-based methods have been used for defect labeling [61, 204, 18], and not

for segmentation. Knowledge-based classification [206, 202], analyzing shapes [61, 172], and

morphological operations [172] have been used to label defects.

While previous studies have demonstrated feasibility, they present some serious limita-

tions. First, classification accuracy was reported anecdotally based on training and single

test sets. No extensive statistical methods have been found in the literature. Second, they

were not designed to be used in real time operation. Third, texture and density informa-

tion are very important for human differentiation of regions in a CT/MRI. In some cases,

image segmentation algorithms can utilize texture information for detecting regions, and for

partitioning regions into defects.

These limitations have been addressed by Li, Abbott, and Schmoldt [105, 164]. They

have developed an automated detection and identification system for hardwood log defects

that has demonstrated highly accurate labeling of log defects in CT slices. In contrast to the

previous global approaches that separates the tasks of segmentation and region labeling, their

approach operates on using local pixel neighborhoods primarily, and effectively combines

segmentation and labeling into a single classification step.

Chapter 1. Introduction 4Chapter 1. Introduction 4Chapter 1. Introduction 4

Although the classification performance of the ANN based classifier was reported to be

quantitatively high, they noted that there was a need for a postprocessing module to refine

the classified image further. Because the initial ANN-based classifier depends primarily on

local information, and identifies defects on a pixel-by-pixel basis, misclassification tends to

occur at small, isolated locations. They have chosen a hard-wired, fixed postprocessing

approach that is based on mathematical morphology to process such misclassified regions.

While this approach has shown some success, it is limited in its ability to handle all cases of

postprocessing needs.

This dissertation describes a new system that replaces their fixed postprocessing module

with with an adaptive system that is capable of “learning” new sets of postprocessing rules.

The system operates by observing the postprocessing operations as a human user interac-

tively edits segmented CT/MRI images. As the user manipulates the images, the system

stores information related to those manual operations, and develops internal rules that can

be used later for automatic postprocessing of other images. After one or more training ses-

sions, the user accepts new images, and uses its rule set to apply postprocessing operations

automatically in a manner that is modelled after those learned from the human user. The

focus of this dissertation is to introduce the learning method by which the system develops

postprocessing rules, and to present results that demonstrate the efficiency of this approach.

1.2 Background

The work described in this dissertation builds on a previously developed methods that use

artificial neural networks (ANN) for image segmentation [105, 164, 163, 157, 158, 159, 161,

160]. These authors described an approach that uses ANN to classify pixels individually,

using small neighborhoods of CT density values as input and assigns a label (knot, decay,

Chapter 1. Introduction 5Chapter 1. Introduction 5Chapter 1. Introduction 5

split, bark, or clear wood) to each pixel in the image.

The overall classification system described in [105, 164, 163] consists of three modules

as shown in Figure 1.2: (1) a preprocessing module, (2) an artificial neural network (ANN)

module, and (3) a postprocessing module.

The preprocessing module distinguishes an object from background (air) and internal

voids, and normalizes CT density values to accommodate density values. The extraction

of foreground objects from background is performed by Otsu’s thresholding method [135]

using a histogram of a CT slice. This thresholding method assumes bimodal distribution of

pixel values and selects the threshold level by minimizing within-group variance. A second

objective of the preprocessing module is to normalize values, so that the ANN based classifier

can work consistently for different CT/MRI slices. Because Hounsfield numbers are directly

related to density, CT/MRI images vary dramatically for different species and by moisture

content. If normalization is not applied, there will be no consistent relationships among

similar regions across CT/MRI images, and the ANN classifier would be unable to learn

any useful patterns. To ensure consistency of similar defect regions in CT/MRI images,

histogram normalization is performed as follows:

xnorm =
1

xa

[
x0 +

xa − xcw

1 + exp a(xcw

2
− x0)

]
(1.1)

This formula transforms original density values x0 to normalized values xnorm giving approx-

imately the same density values to important areas of CT/MRI images. The translation

anchor value xa is arbitrarily selected to be greater than the peak density value (xcw) of

foreground object in the histogram. The constant a is empirically determined.

The ANN module labels each non-background pixel of a slice using histogram-normalized

values from small windows, typically of size 3×3×3 or 5×5, centered on the pixel location to

Chapter 1. Introduction 6Chapter 1. Introduction 6Chapter 1. Introduction 6

Preprocessing

 Module

ANN Classifier

 Module
Postprocessing

 Module

CT/MRI

Image

Segmented

Image

Figure 1.2: Overall image segmentation system.

be classified as illustrated in Figure 1.3. Each histogram normalized value in the neighbor-

hood along with radial distance serve as an feature vector to the ANN. The radial distance

of a pixel under consideration from the centroid of the foreground region of the slice is pro-

vided as an additional input to the ANN classifier. The radial distance information provides

contextual information that helps in classification. The output nodes of the ANN represent

each class to be detected. The class associated with the output node that has the largest

value for a given input vector is assigned as corresponding label for that input.

������

Normalized Voxel Values

Figure 1.3: The architecture of the ANN classifier. The normalized values are collected
within a neighborhood of each pixel and then fed to the trained ANN classifier
to determine the class of that pixel. The Max function is used after the output
layer to select the class assignment of the pixel. The 5× 5 window at the left
is drawn out of proportion for the sake of clarity.

The classification algorithm performs the task of segmentation and labeling in a single

step. The network is trained using a conventional back-propagation method [123]. Training

samples are collected from multiple CT or MRI slices and provided as a training dataset.

Chapter 1. Introduction 7Chapter 1. Introduction 7Chapter 1. Introduction 7

Figure 1.4 shows visual results of typical output of a trained ANN classifier. It is clear from

visual inspection that ANN classifier works well for this case.

(a) (b)

Figure 1.4: Typical output of ANN classifier for red oak log. Tan color is clear wood, brown
is bark, green is decay, and red is knot defect type.

Because the ANN classification algorithm primarily uses local information along with

radial distance, spurious misclassifications can occur as shown in Figure 1.5. In this case,

the ANN classifier is misled by density information near the center of the log. Small density

changes in the center cause the ANN to label regions as heartwood instead of sapwood. Some

annual rings and low density regions are incorrectly labeled as split and decay respectively. A

postprocessing procedure can be used to correct such misclassified regions thereby improving

overall segmentation performance. They have proposed a postprocessing method that was

based on morphological image processing.

Many of these incorrect labels have negligible effect on statistical classification accu-

racy, which depends on pixel counts alone. Qualitatively, however, the removal of several

small regions and the smoothing of region contours can be desirable. Most of the needed

changes can be accomplished with relatively simple postprocessing steps. The difficulty lies

in the development of postprocessing rules that determine when to apply these simple steps.

Hard-wired postprocessing rules that indiscriminately remove all regions smaller than some

Chapter 1. Introduction 8Chapter 1. Introduction 8Chapter 1. Introduction 8

(a) (b)

Figure 1.5: Using just density information is not enough, as illustrated with this sugar
maple log slice. The ANN classifier can be misled by density alone. This
result demands postprocessing that could use high level information. Light tan
color represents sapwood, beige color represents heartwood, yellow represents
split defects, green represents decay, red represents knot, and dark tan color
represents live bark.

threshold may also remove valid defect regions such as splits, which are relatively small.

Because it is difficult to manually specify an exhaustive set of postprocessing rules that will

work well for all possible situations, the emphasis of this research has been to allow the

machine to develop its own rules, based on observations of a human user.

1.3 Brief survey of image segmentation

The main goal of this study is to improve image segmentation performance for the system

described in the previous section. Since this study is related to the image segmentation

problem, we will survey previously developed segmentation algorithms and analyze their

strengths and weaknesses.

The primary goal of segmentation is to detect and identify which parts of an image

should be grouped together according to some similarity criterion. Segmentation is a process

Chapter 1. Introduction 9Chapter 1. Introduction 9Chapter 1. Introduction 9

of partitioning the image into disjoint regions such that each region is uniform and the union

of any two adjacent regions is nonuniform.

Hundreds of image segmentation algorithms have been proposed in the literature. In

spite of this, it is still a subject of on-going investigation. Out of all previous studies, there is

no single method which can perform well for all image processing applications. Issues related

to segmentation involve selection of similarity criteria, the approach to selecting the image

partition, and the effect relative to the overall image processing system.

Since we deal with CT/MRI image segmentation, we will restrict our review primar-

ily to segmentation methods that have been developed for gray-level images. Fu and Mui

[60] categorized segmentation methods into three classes: (1) threshold-based methods, (2)

edge-based methods, and (3) region-based methods. Haralick and Saphiro [81] divide im-

age segmentation techniques as follows: (1) measurement-space guided spatial clustering,

(2) single-linkage region growing schemes, (3) hybrid-linkage region growing schemes, (4)

centroid-linkage region growing schemes, (5) spatial clustering schemes, and (6) split-and-

merge schemes. According to [81], the difference between clustering and image segmentation

is that in clustering, the grouping is done in measurement space, while segmentation is

done in the spatial domain of the image. The rest of this section follows Fu and Mui [60]

along with additional categories proposed by Pal and Pal [136]. Those categories are: (1)

threshold-based methods, (2) edge-based methods, (3) region-based methods, (4) statistical

and Bayesian methods, and (5) neural networks and fuzzy logic based methods.

Threshold-based methods

The threshold-based methods are the most intuitive, old, simple and popular for image

segmentation. Threshold-based image segmentation methods can be done using global infor-

Chapter 1. Introduction 10Chapter 1. Introduction 10Chapter 1. Introduction 10

mation such as image histograms, or local information such as a co-occurrence matrix. If a

threshold value is used for the entire image, then such method is called global thresholding.

If a separate threshold value is determined for each subregion, then it is called local thresh-

olding [156, 23, 187, 97] or adaptive thresholding [38, 132, 197]. Sahoo et al. [156] surveyed

thresholding methods and attempted to evaluate the performance of some of them.

Sometimes thresholding methods are categorized as bi-level and multi-thresholding. Bi-

level thresholding separates an image into two types of regions: object and background.

Because of this, bi-level thresholding methods are a form of two-class classification.

When a gray level image contains distinct regions, its histogram usually shows different

peaks so that each indicates one region and adjacent peaks are likely separated by a deep

valley. The bottom of each valley can be chosen as a threshold. If this is the case, a thresh-

olding algorithm can perform detection of such valleys and therefore determine threshold

values that separate foreground regions from background. However, clearly separated peaks

in a histogram are not always present in real applications and selection of a threshold is not

a trivial task. Therefore many methods [155, 75, 67, 141, 156, 23, 187, 97, 178, 137, 135,

4, 50, 195, 117, 148, 153, 194, 188, 189, 48, 32, 2, 109] have been proposed to determine

optimal thresholds in such cases. For example, Otsu [135] uses class a separability measure

that is maximized. In his method, the maximized ratio of the between-class variance to the

local variance determines the threshold. Cheriet et al. [37] proposed a recursive extension

of Otsu’s thresholding algorithm. The algorithm was developed for segmentation of bank

checks. The algorithm recursively separates the largest peak from the rest of the image until

all peaks are processed. As with the Otsu’s method, this performs well for images with

bimodal histograms.

The two dimensional histogram of an image is considered by Li et al. [104] for finding a

threshold for segmentation. In a two dimensional histogram, both individual pixel values and

Chapter 1. Introduction 11Chapter 1. Introduction 11Chapter 1. Introduction 11

local gray level averages are used. The authors showed that the Fisher linear discriminant

can be used for such histogram data to obtain an optimal projection where the data clusters

are better defined and therefore easier to separate by choosing proper thresholds. But this

approach demands more computational cost than that of the one dimensional counterpart.

Edge-based methods

Edge-based methods assume that abrupt changes in gray level intensity values are present at

region boundaries. A variety of methods have been proposed [155, 75, 67, 201, 95, 92, 111,

112, 84, 140, 29, 47, 66] to find edges in an image. Edge detectors provide local information

which does necessarily form a closed path [69].

Ahuja et al.[4] developed a method that uses pixel neighborhoods for image segmentation.

Their method uses a supervised classification technique (Fisher’s linear classifier) to detect

edges. They concluded that a pixel value and its neighborhood provide rich information to

use in segmentation.

A set of algorithms was developed by Prager [146] to segment natural scenes by analyzing

edges. The main focus in these algorithms is to locate edges of an object as accurately as

possible. The output of these algorithms provide a set of line segments associated with such

attributes as length and confidence.

Edge-based methods have not been very successful because small gaps in edge-based

curves cause two dissimilar regions to be merged. Since finding edges requires differentiation

which is sensitive to noise, edge-based segmentation methods have provided limited success

for image segmentation problems.

Chapter 1. Introduction 12Chapter 1. Introduction 12Chapter 1. Introduction 12

Region-based methods

Region-based segmentation methods use region growing algorithms to perform image par-

titioning. Region growing algorithms use one or more “seed” pixels and then grow regions

by incorporating surrounding pixels based upon certain similarity criteria. If the adjacent

pixels are similar to a particular seed, they are merged with the region that belongs to the

seed point. The process continues until every pixel in the image is assigned to one region.

There are many algorithms [35, 3, 125, 10, 17, 62, 88, 110, 167] proposed in the literature.

One region growing segmentation framework is proposed by Chang and Li [35]. The seed

points are obtained by regional feature analysis. The algorithm is known as Fast Adaptive

Segmentation. The algorithm divides an image into small regions which are assumed to be

homogeneous. Then primitive regions are tested against similarity criteria. If the similarity

test is affirmative, then these regions are merged to form larger regions. The process continues

until no more merges are possible.

One can see that selection of seed points is very important in region-based segmentation

methods. The selection of seed points can be done either manually or automatically. In

the case of automatic selection, important characteristics of an image are used to determine

seed points. For example, peaks in an image histogram can be used [85] for seed point

selection. Adams and Bischof [3] studied how effective seeded region growing algorithms

are when selection is manual. They concluded that such algorithms are fairly robust, fast,

and no parameter adjustment is required. However, the order of processing heavily affects

seeded region growing algorithm performance. Mehnert and Jackway [125] addressed this

shortcoming and tried to make seeded region growing algorithm more predictable and more

parallel.

Several studies [139, 53, 22, 196, 62, 45, 71, 39, 162] were aimed at combining the strength

Chapter 1. Introduction 13Chapter 1. Introduction 13Chapter 1. Introduction 13

of edge-based and region-based segmentation methods to provide more robust segmentation

method. One survey [59] investigated available methods that combine edge and region in-

formation and compared their performance.

Statistical and Bayesian methods

Statistical and Bayesian methods use “feature space” to segment images. These methods

transform a image’s pixel data into feature space, and then partition the space based on

their statistical properties. Many studies [93, 78, 6, 72, 79, 154, 41, 42] are available in

the literature. Statistical methods in image segmentation problem have attracted many re-

searchers since it allows for formal mathematical analysis of the image segmentation problem

as opposed to using heuristic or ad hoc methods in image segmentation.

Spatial interaction models like Markov Random Field or Gibbs Random Field have been

used to segment images. Geman and Geman [63] have proposed a method for image restora-

tion based on stochastic relaxation and relaxation labeling. Derin et al. [49] improved the

one-dimensional Bayes smoothing algorithm [6] for application to two dimensional image

problems.

Comer and Delp [41] proposed a method for the segmentation of textured images using

a multiresolution Bayesian approach. Their method employs a Multiresolution Gaussian

Auto-regressive (MGAR) model for the pyramid model representation of an image. First,

Gaussian pyramid decomposition is applied to the image and decomposed images are stored

in the nodes of a binary tree. The Markov Random Field model is then used to classify

pyramid image data. Finally, an optimization criterion is used for image segmentation. This

criterion minimizes the expected number of misclassified nodes in the multiresolution lattice.

Expectation Maximization (EM) is used for parameter estimation.

Chapter 1. Introduction 14Chapter 1. Introduction 14Chapter 1. Introduction 14

A major drawback of the statistical and Bayesian based image segmentation is that

they have relatively high computational cost. Another problem with these methods is the

requirement for a stochastic image model which can be difficult to obtain in advance.

Neural networks and fuzzy logic methods

Any vision system should be reasonably fast, and reasonably robust to random noise and

component failure. Segmentation methods based on neural networks and fuzzy set theory

aims to achieve these goals.

Several authors [28, 138, 20, 8, 64, 43] have attempted to use neural networks for image

segmentation. One study [28] used a 3 layer feed-forward neural network. The number of

neurons in the input layer is determined by the number of features computed for each pixel,

and the number of neurons in the output layer determines the number of region types in the

segmentation problem. Their algorithm performs initial segmentation using self organizing

maps (SOM) based on color and texture information of regions. The SOM network contains

64 × 64 nodes for segmentation. Average color, position, size, rotation, texture (Gabor

filters) and shape are collected to construct feature vectors. Each feature vector is given

to a multilayer perceptron with 28 input nodes and 11 output nodes. This algorithm was

implemented for the segmentation of outdoor images.

Papamarkos et al. [138] developed another segmentation algorithm that is based on self

organizing maps. Their approach is similar to multithresholding where the output of the

network determines the number of homogeneous regions. Multilayer neural networks have

been used to segment noisy images. The weight updating rules are determined so that they

reduce fuzziness in the system. This study aimed to combine the advantages of fuzzy sets

(reasoning from imprecise/incomplete knowledge) and the robustness of neural networks.

Chapter 1. Introduction 15Chapter 1. Introduction 15Chapter 1. Introduction 15

1.4 Our approach

As we described in the beginning of the chapter, the ultimate goal of segmentation is to

partition an image into meaningful regions. Segmentation algorithms are used tasks such as

measurements, visualization, registration, content based search, and reconstruction.

A typical segmentation problem could be divided into three different steps: (1) pre-

processing which applies low level image filtering and enhancement operators to condition

an image, (2) the primary segmentation algorithm, (3) and a postprocessing step which

performs final refinement on the segmented image based on predefined requirements. The

intervention of a human operator is often necessary to check accuracy of the result produced

automatically, and to make manual correction if it is needed.

This dissertation describes the development of a postprocessing module that is built pre-

viously developed ANN based segmentation algorithm. The postprocessing module uses

higher-level domain-dependent knowledge to improve initial image segmentation results.

There are several motivations for such an approach. First, the initial ANN-based classi-

fier depends primarily on information from very small image neighborhoods, and identifies

defects on a pixel-by-pixel basis. It therefore ignores such domain specific information such

as defect shape, size, and proximity to other defects within the log. Second, the domain

expert driven postprocessing approach that we describe here can employ different form of

domain expertise for different defects. One possible solution is shown in Figure 1.6. In this

method, the user directly intervenes into the segmentation process to assist in selecting rules.

In general, the problem is difficult because of the inherently variability of wood. Although

much of the work reported above has yielded results that are good in a quantitative sense,

subjective evaluation suggests that the results could be improved in a qualitative sense

by refining the resulting shapes and extent of detected defect regions in the images. For

Chapter 1. Introduction 16Chapter 1. Introduction 16Chapter 1. Introduction 16

Preprocessing

module

ANN based

Segmentation

module

Postprocessing

module

Direct user

intervention

to postprocessing

Figure 1.6: Putting the human user into the loop. Adding an interactive postprocessing
module makes the overall image segmentation system adaptable.

example, small spurious defect regions may have only a small effect on pixel-wise statistical

classification accuracy, but are objectionable to the human observer.

1.5 Needs

A knowledge-based system is one that encodes domain specific knowledge in a form so that

the system can use for automated reasoning.

Designing a knowledge-based postprocessing system requires the formulation of domain

knowledge. A serious problem faced by knowledge-based system designers is the knowledge

acquisition bottleneck. Knowledge acquisition is very challenging and an active research

area in the artificial intelligence community. Commonly, a knowledge engineer needs to

have a domain expert to formulate acquired knowledge for use in an expert system. That

process is rather tedious and error-prone. Despite its difficulty, this process should be done

carefully, and requires lengthy interviews and discussion with a human expert. The domain

Chapter 1. Introduction 17Chapter 1. Introduction 17Chapter 1. Introduction 17

expert’s verbal description can be inaccurate or incomplete, and the knowledge engineer may

not correctly interpret the expert’s intent. In many cases, the domain experts prefer to do

actions instead of explaining their expertise.

These problems motivate us to find another solution to make the knowledge acquisition

process less challenging. Instead of trying to acquire expertise from a domain expert verbally,

we can ask him/her to show expertise through actions that can be observed by the system.

If the system can learn from those actions, this approach is called learning by demonstration

[46, 108].

There are several difficulties in designing a knowledge-based postprocessing module for

image analysis, however. Although many postprocessing steps can be easily implemented,

different situations (possibly depending on the species of wood, on particular defect types,

on the intended use of a log, and on personal preferences of the user) may require different

types and degrees of region refinement. For these reasons, we have developed the IntelliPost

system that can learn postprocessing rules automatically. The system observes the steps

taken as a human user interactively edits a processed image, and then infers rules from

those actions. During the system’s learn mode, the user views labeled images and makes

refinements through the use of a keyboard and mouse. As the user manipulates the images,

the system stores information related to those manual operations, and develops internal

rules that can be used later for automatic postprocessing of other images. After one or more

training sessions, the user places the system into its run mode. The system then accepts new

images, and uses its rule set to apply postprocessing operations automatically in a manner

that is modeled after those learned from the human user. At any time, the user can return

to learn mode to introduce new training information, and this will be used by the system to

update its internal rule set.

The system does not simply memorize a particular sequence of postprocessing steps

Chapter 1. Introduction 18Chapter 1. Introduction 18Chapter 1. Introduction 18

during a training session, but instead generalizes from the image data and from the actions

of the human user so that new CT images can be refined appropriately. Because it learns

from a human “teacher,” this approach represents a form of supervised machine learning.

However, the level of supervision is relatively mild by traditional machine-learning standards,

because the teacher does not need to be knowledgeable concerning internal feature spaces or

representations for rule selection. Because of its ability to accept new training inputs over

time, the system is said to perform “incremental” (or “dynamic” or “on-line”) learning. This

contrasts with many machine-learning systems, which require all training data to be made

available at the beginning. Such systems perform “batch” (or “static”) learning.

1.6 Contributions of this study

1. One of the first image segmentation systems based on learning by demonstration.

Many researchers have described applications which employ learning by demonstration.

Some of these include robot programming, text editing, and graphical figure editing.

The degree of interactivity, providing incremental learning capability through user

feedback, makes the system one of the first image segmentation systems to learning by

demonstration. To our knowledge this will be the first to use learning by demonstration

in the field of image analysis.

2. Application of mathematical morphology to CT image postprocessing.

Mathematical morphology provides useful tools to analyze regions in digital images

based on their shapes. Morphological image processing transforms an image based

on geometric characteristics of regions in an image, and can be used to eliminate

irrelevant features from an image. In our application, the shape of a region conveys

very crucial information. Mathematical morphology provides very effective methods for

extracting such information, and then transform regions based on this. In other words,

Chapter 1. Introduction 19Chapter 1. Introduction 19Chapter 1. Introduction 19

mathematical morphology provides both probing capability to analyze the shape of

a region, and operators to process a region in an image. These powerful features of

mathematical morphology persuaded us to develop a postprocessing operation library

that is tailored specifically for postprocessing operations that can be used in both run

mode and learn mode by the system.

3. Developed a procedure to measure overall image segmentation performance.

There is no universally accepted performance metric that measures how good a pro-

posed image segmentation method performs. We have developed and implemented a

procedure that provides “ground truth” from a human expert for evaluating our sys-

tem’s results. In this procedure, a human expert uses an existing graphical image

editing program to create reference segmented images. The image editing program lets

the user (a human expert) manually segment defect regions in a typical CT slice, for

example. Manually segmented regions constitute ground truth for measuring the seg-

mentation performance of the system. In biomedical research, ground truth is widely

available to evaluate implemented image segmentation algorithms. Due to the absence

of available “ground truth” database for hardwood logs scans, we have developed this

procedure to generate such a database.

1.7 Possible application areas of this study

Although the motivation has been to implement a postprocessing system for detecting and

identifying internal wood defects, this system can be used for other segmentation appli-

cations. Since the system provides interactive editing capability of segmented regions in

a typical CT slice, this study should be useful for medical applications, for example. In

biomedical applications, the performance and accuracy of a segmentation algorithm is crit-

ical. Another area that can benefit from this work is remote sensing. In remote sensing

Chapter 1. Introduction 20Chapter 1. Introduction 20Chapter 1. Introduction 20

applications, images are often segmented into different regions (crops, forest, etc.) by some

automated segmentation method. The result can often benefit from refinement through a

system such as the one described here.

Although the acquisition method of MRI (Magnetic Resonance Image) image is different

from that of CT, both imaging methods show similar information which is cross section of an

object. The implemented image segmentation algorithm would be suitable for segmentation

problems of MRI.

1.8 Outline of the thesis

This thesis organized as follows. Chapter 2 describes previous work on learning by demonstra-

tion. Chapter 3 presents an overview of morphological image processing, and then relevant

machine learning theory. Chapter 4 introduces the IntelliPost (intelligent postprocessing)

system, which is based on learning by demonstration. Chapter 5 presents results that have

been obtained using the system. Chapter ?? summarizes and concludes the study.

Chapter 2

Historical Review of Learning by

Demonstration

2.1 Introduction

Many forms of machine learning can be viewed as teacher-student interaction in which a

teacher provides training examples and a computer or “student”generalizes from the training

examples. The teacher then tests the student’s capability by providing test examples and

observing the responses. During the learning stage, there is often no immediate response

from the student on how the knowledge is perceived. Therefore, this strategy may waste

valuable resources, including time and effort.

Learning by demonstration takes the interaction model one step further: the student asks

the teacher to solve one example case and the teacher then solves the presented example.

By observing the way of solution for the presented example, the student generalizes from

the way the example is solved. In this way, the student can direct the teacher’s attention

21

Chapter 2. Historical Review of Learning by Demonstration 22Chapter 2. Historical Review of Learning by Demonstration 22Chapter 2. Historical Review of Learning by Demonstration 22

to areas that are unclear. Therefore, the student can take the initiative, rather than being

passive in the learning stage.

This chapter begins by discussing the terminology used in a related field knows as pro-

gramming by demonstration. Then we will briefly introduce relevant experimental program-

ming by demonstration systems that have been developed. Cypher and Lieberman [46, 108]

give a broad overview of the origin and history of programming (and learning) by demonstra-

tion. Those experimental systems can be grouped in three different categories: text editing

systems, programming aid systems, and finally graphical editing systems.

2.2 Definitions and their usage

In this section we will present a range of terms that are widely used in the demonstrational

learning or programming literature. In those studies researchers do not agree on a unique

definition of the concept of demonstrational learning or programming. Among the range

of terms, the most used are learning by demonstration, programming by demonstration,

programming by example, demonstrational interfaces, and adaptive (or intelligent) interfaces.

Before we begin to present the definition of these terms, there is a need to understand

the difference between “learning” and “programming”. In the glossary of Watch What I do,

one of the first books dedicated to demonstrational learning and programming [46], Myers

and Maulsby describe “learning” in the following way:

Simon defined learning as changes in a system that result in improved perfor-

mance over time on tasks similar to those done previously. A dictionary definition

is that it is acquiring knowledge or skill through study, experience or teaching.

Whether a computer system “learns” or merely “induces generalizations” is of-

Chapter 2. Historical Review of Learning by Demonstration 23Chapter 2. Historical Review of Learning by Demonstration 23Chapter 2. Historical Review of Learning by Demonstration 23

ten a subject of debate, because typical generalization procedures and concept

representations are simplistic and brittle. Simon’s definition seems to suggest

continuous, cumulative improvement as the acid test, and the dictionary hints at

the breadth and depth of background knowledge applied and the ability to learn

from various kinds of input.

According to their definition, “learning” is a progression toward a better performance in the

system response. The “learning” system should have inference and generalization capabili-

ties that give system ability to give reasonable answers to unseen input. The definition of

“program” is in the same glossary is as follows:

A program is usually defined as “a sequence of instructions that are executed

by a computer,” so any system that executes the user’s actions can be considered

programmable. However, for the purposes of this book, it is useful to charac-

terize how programmable the systems are. Therefore, Myers defines the term

programmable to be systems that include the ability to handle variables, condi-

tionals and iteration. Note that it is not sufficient for the interface to be used

for entering or defining programs, since this would include all text editors. The

interface itself must be programmable. This distinction is not particularly easy

to make, and there can be arguments about whether a particular system should

be called programmable or not.

According to this definition, we can understand that programming is the process of specify-

ing a sequence of operations. If we compare the process of “learning” and “programming”,

“learning” involves a much deeper understanding of a user’s operations than “programming”

in a way that it requires inferencing and generalization ability to capture a user’s intention.

Chapter 2. Historical Review of Learning by Demonstration 24Chapter 2. Historical Review of Learning by Demonstration 24Chapter 2. Historical Review of Learning by Demonstration 24

On the other hand, the outcome of programming is a sequence of commands that deals with

manipulating variables, conditionals, and iteration.

Programming by demonstration provides a means for a user to “program” a computer by

demonstrating to it examples of what a user wants to accomplish. The outcome is a program

that is generated by the computer. During the demonstration stage, the user must perform

operations in the correct order and at correct times, so the system must infer the boundaries

and preconditions of each operation. According to Myers and Maulsby [46], programming by

demonstration, a synonym of programming by example (PBE), is defined as follows:

Programming by examples – when programs are created through the use of

examples. The examples serve as placeholders for abstractions. Myers would

like to restrict this term to only systems with inferencing and that allow the end

user to create real programs, but this would eliminate Pygmalion and SmallStar,

which are often classified as PBE (including by their authors), so others prefer

the more general definition.

In this definition, the role of abstraction is not clear. It also implies that the result of program-

ming by demonstration (or programming by example) should be a program. Macro recorders

represent a primitive kind of programming by demonstration system since they learn pro-

grams from demonstrations. Myers [130] proposes a more restrictive definition: he charac-

terizes systems that manipulate variables, iteration, and conditionals as “programmable”and

claims that a system must be programmable and use inferencing to be named as programming

by example systems. Based on this definition, macro recorders are not programmable and

apply no inferencing, therefore they are not programming by example systems. Myers [130]

categorizes macro recorder and other systems that use demonstrations are demonstrational

interfaces defined as follows:

Chapter 2. Historical Review of Learning by Demonstration 25Chapter 2. Historical Review of Learning by Demonstration 25Chapter 2. Historical Review of Learning by Demonstration 25

Demonstrational interfaces allow the user to perform actions on concrete ex-

ample objects (often, by direct manipulation), while constructing an abstract

program. As defined by Myers, this includes Programming by Example and Pro-

gramming with Examples, as well as interfaces that do not support programming

[46].

Intelligent and adaptive systems are those that use techniques from artificial intelligence, in-

cluding adaptive interfaces, human-computer dialog modelling, natural language processing,

and explanation based systems [185]. The main purpose of intelligent user interface research

is to learn about a user’s preference and behaviour and adapt them accordingly [44, 185].

Learning by demonstration, or learning by observation, can be viewed as programming

by demonstration, except that the outcome of the process is not necessarily a program. In-

stead, the system generalizes user actions and operations and generates implicit or explicit

rules corresponding to operations. Based on the above definitions, learning by demonstra-

tion systems can be viewed as demonstrational interfaces in which systems may learn from

demonstrations but create no programs.

IntelliPost is designed in a way so that it provides a user interface to a human expert

so that it can learn how postprocessing operations should be applied. It lets the user apply

postprocessing operations for a presented image during its learn mode, and then it generalizes

the actions that are taken in learn mode. In the run mode, it uses generalized implicit

postprocessing rules to postprocess a given image. It neither creates a program nor provides

the generalized rules to the user. But it is implemented in a way that demonstrational actions

are required to teach the system. From that perspective, it is a demonstrational interface

that also learns.

Chapter 2. Historical Review of Learning by Demonstration 26Chapter 2. Historical Review of Learning by Demonstration 26Chapter 2. Historical Review of Learning by Demonstration 26

2.3 Previous Experimental Systems

2.3.1 Pygmalion

Smith developed the very first system of programming by example, called Pygmalion [168,

169]. Smith created the system as an alternative to non-interactive, abstract programming

languages. A screenshot of the system is shown in Figure 2.1. The system was designed to

help a regular user write computer programs.

Figure 2.1: Screenshot of Pygmalion. Implementation of factorial procedure (reprinted
from [169]).

Users can use the system to construct programs by drawing pictorial, analogical rep-

resentations called icons. Icons provide both a medium and a programming language for

experimenting with ideas. The system uses a “storyboard” technique to represent each func-

tion’s computation. The first frame of the storyboard represents arguments of the function

being defined, and the last frame of the storyboard returns the function’s results. In between,

Chapter 2. Historical Review of Learning by Demonstration 27Chapter 2. Historical Review of Learning by Demonstration 27Chapter 2. Historical Review of Learning by Demonstration 27

the user demonstrates steps of the function by creating icons on the screen, and pulling old

values from previous frame to a new icon. The programming is completed once all sketches

are completed. The primary goal of the system was to reduce the distance between the user’s

mental models and an abstract data model in a computer. The system has proved that it

is possible to implement a system that lets an average person write computer programs

through the programming by demonstration paradigm. It was developed as an experimental

system that provides an alternative approach to classical programing methods. It provides

no inferencing and generalization capabilities.

2.3.2 U Editor

Nix developed a text editor based on “editing by example” to automate repetitive textual

transformations [133]. The user provides examples of text sequences to be found, and exam-

ples of how they should be transformed, and generates procedures to find similar text and

make similar changes. Instead of observing sequences of edit commands, it looks at input-

output pairs. This approach provide two advantages: (1) the user is not required to repeat

the same ordering of commands, (2) since the approach does not depend on a particular com-

mand set, it provides extensibility and portability to the editing system. The disadvantage

is that focusing on input and output pairs ignores a potentially rich source of information in

the execution traces. Analyzing these input-output pairs, the system builds gap programs in

the form of G⇒ R where G is a gap pattern, and R is a gap replacement. For example, the

form of a gap program is (−1−)q − 2−−− 3− ⇒ −1−−− 2−−3− (q indicates space),

where gaps are represented by −n− (n is a argument number for a gap program). This gap

program finds and transforms all telephone numbers from (540) 231-7272 to 540-231-7272.

Chapter 2. Historical Review of Learning by Demonstration 28Chapter 2. Historical Review of Learning by Demonstration 28Chapter 2. Historical Review of Learning by Demonstration 28

2.3.3 Tinker

The Pygmalion system inspired Lieberman to create a system known as Tinker [107]. He

took the “example” idea as a method of effective teaching for both the student and the

teacher. It should be easier to construct a program by presenting an example to a computer

instead of giving abstract program text. Tinker was developed as a programming aid for Lisp

developers. It is best suited for developing a graphical application since it shows the end effect

of the graphics commands interactively. The system workspace is divided into five windows

(shown in Figure 2.2): (1) a window for selection of an operation, (2) a window for defining

variables, (3) a window showing the Lisp program that is being developed, (4) a window

showing graphical representation of the Lisp program, and (5) a window for the user input.

When you define a function in the system, the argument of the function is selected from a

object list which has appropriate data description. The system learns by mimicking the role

of a student. But the student does not have a capacity of a human student to automatically

decide what features of one example may be relevant for the future examples. It is the

user’s responsibility to indicate which features of the examples are important, and which can

be ignored in general. After providing data along with indications of importance, Tinker

builds a functional piece of code by applying functions, and building up larger expressions

out of these pieces. The pieces are selected and programs are constructed using display

menus of commands and program fragments. Tinker keeps track of how the pieces are being

fit together, and builds a conventional Lisp function incrementally. The system does not

provide any inferencing mechanism; it asks the user to resolve any ambiguities.

Chapter 2. Historical Review of Learning by Demonstration 29Chapter 2. Historical Review of Learning by Demonstration 29Chapter 2. Historical Review of Learning by Demonstration 29

Figure 2.2: Tinker screenshot (reprinted from [107])

2.3.4 Peridot

Peridot was developed as a tool for the implementation of user interfaces [131]. Peridot is an

acronym that stands for Programming by Example for Real-time Interface Design Obviating

Typing and has been implemented in Interlisp-D. The system lets the user construct a user

interface by virtual interaction of devices. Such devices contain typical user interface compo-

nents such as menus, scroll bars, and other widgets. The system lets the user draw pictures

of what the interface should look like and then the user uses the mouse and other input

devices to demonstrate how those user interface components should interact and operate.

Peridot infers object-to-object relations and lists its inference rules in another window to get

the user’s confirmation. As result of the confirmation, Peridot produces a Lisp code that

implements a user interface that is constructed by the user. It is a rule-based system that

contains 60 object-object relationship rules classified by the types of objects that they act

upon. This classification mechanism helps speed up the search and provides an extra set of

implications for which rule to fire. The rules are ordered so that the most restrictive rules

are tested first. Inferences are used in three ways: adding graphical constraints, detecting

iterations, and determining how mouse should affect the graphics. Inferencing is made based

Chapter 2. Historical Review of Learning by Demonstration 30Chapter 2. Historical Review of Learning by Demonstration 30Chapter 2. Historical Review of Learning by Demonstration 30

on the resulting graphical objects, not on a trace of actions. Peridot applies rule-based in-

ferencing in four ways: inferring the graphics constraints that relate one object to another,

inferring when control structures are constructed properly, inferring how control structures

are constructed, and inferring the role of the mouse in the user interface.

2.3.5 Metamouse and Turvy

Maulsby’s Metamouse [122, 120, 121] was developed for minimally trained regular users who

are not programmers to create programs by giving demonstration in a direct manipulation

interface. Programs that are generated by Metamouse can be used in other graphical ap-

plications (i.e., Apple MacDraw). The program is created by teaching an instructible agent

how to modify the document. The agent is represented by a turtle named Basil. At the

beginning of Metamouse session, the user is informed of the agent’s limitations and biases

for generalization (see Figure 2.3), and then the user starts giving instructions to draw and

modify graphical line and boxes (see Figure 2.3). Meanwhile if Basil recognizes any iteration

being performed, it offers help to complete the iteration. This method not only immedi-

ately relieves some of the user’s burden, but also it guarantees that each iteration of a loop

is demonstrated consistently, making it possible to generalize iterations consistently. The

agent asks the user for confirmations for predicted operations and explanation of unclear

actions when the user performs them. The user incrementally gets the picture of the agent’s

limitations and its biases on generalization.

The complete system manipulates lines and boxes. It provides a teaching mode to the

user. In that mode, a small turtle image jumps to the cursor location between user com-

mands. The user instructs the system to pay attention to touch relations between objects or

a specific object in its focus. As objects are modified, the set of touch relationships are high-

Chapter 2. Historical Review of Learning by Demonstration 31Chapter 2. Historical Review of Learning by Demonstration 31Chapter 2. Historical Review of Learning by Demonstration 31

Figure 2.3: Metamouse user manual and teaching the system sort boxes by height
(reprinted from [121])

lighted to show whether they are considered important or insignificant. Metamouse infers a

procedural construction that contains variables, iteration, and conditionals from execution

traces.

The Metamouse system employs mechanisms for both similarity and explanation based

learning [191]. During the learning phase, important characteristics of touch relations are

recorded. Positive examples are user demonstrations and negative examples are predictions

that the user rejects. The control of the operations is represented by production rules. The

left hand side of the rule represents a sequence of actions and right hand side of the rule

show the next action that will be performed. Negative examples make the system form a

new production rule and positive examples reinforce generalized rules by adding a new case

that may cover specialization. The rules are used to check each object in a action to see if it

has occurred before. If it has occurred, the earlier record will be used, and then the system

analyzes whether touch relations are significant. It compares predicted actions to previous

Chapter 2. Historical Review of Learning by Demonstration 32Chapter 2. Historical Review of Learning by Demonstration 32Chapter 2. Historical Review of Learning by Demonstration 32

action to check any repetition, and then it performs actions. The Metamouse has not only

proved that an instructible agent can be used in such systems successfully, but also has

showed that the implementation of such a system could become prohibitively complicated

(11,000 lines C++ code).

Maulsby continued his research on problems that Metamouse presented, and has imple-

mented a series of systems. One of them was Turvy [193]. Turvy creates an environment to

play Wizard of Oz in which a human plays the role of an agent and the computer plays a hu-

man. It has a incremental learning mechanism that learns from examples. The user provides

an initial example and turvy predicts a subsequent of actions. If the user correct actions

that are taken, turvy updates its inference rules based on feedback. The user can emphasize

specific points that need special attention, Turvy biases its generalization mechanism to take

these specific points into accounts.

2.3.6 TELS

TELS is an another text editing system that uses a demonstrational interface method. Witten

and Mo viewed the problem of textual transformation from a different perspective when

they developed TELS [192]. TELS builds the procedures through interaction traces rather

than input-output pairs [192]. Witten and Mo claim that synthesizing procedures from

traces provides rich information for capturing the exceptions from less regularly structured

text. The system provides simple textual transformations that contain a limited number of

operations: insert, delete, locate, and select. The higher level commands can be built upon

these provided commands. TELS builds procedures from a demonstration session and then

uses them in subsequent cases for similar textual transformations. The user gives feedback

to the system by indicating steps that should or should not have been performed in the

Chapter 2. Historical Review of Learning by Demonstration 33Chapter 2. Historical Review of Learning by Demonstration 33Chapter 2. Historical Review of Learning by Demonstration 33

new example. TELS records operations and their relevant data in every operation’s trace,

and then the recorded traces are generalized when collapsing multiple traces to the same

program step to represent the aim of the operation. If the user provides very few examples

to the system, TELS can make overgeneralization and overspecialization mistakes which can

be corrected by providing TELS more examples.

2.3.7 Triggers

Triggers [144] developed to demonstrate pixel-data access that treats the screen image as

the source for generating descriptions for generalization. Potter claims that using a pixel-

based data access method provides rich information that would be otherwise hidden inside an

application program and unavailable to the other programming by demonstration systems.

The system applies exact pattern matching on screen pixels to infer information that is

otherwise unavailable to an external system. The system builds a “trigger” that contains

a set of conditions and a set of actions pair as shown in Figure 2.4. Both conditions and

actions are recorded in a way that is similar to macro recording. When Triggers is run, the

system tests conditions that are part of a trigger. If the condition fails, the action step is

not fired. The order of testing condition/action pairs is tested sequentially, and iteratively.

For example, triggers are defined for such tasks as surrounding a text label with a rounded

rectangle in a graphical illustration program, shortening lines so that the end point intersects

an arbitrary shape, and making the text a bold typeface.

The user creates a trigger by showing steps through a sequence of actions in an applica-

tion, adding special tags that instruct Triggers when the trigger is performed. Once triggers

are created, the user can invoke them, iteratively and exhaustively, to execute their oper-

ations. The system records three important features: markers, rectangles, and flags. The

Chapter 2. Historical Review of Learning by Demonstration 34Chapter 2. Historical Review of Learning by Demonstration 34Chapter 2. Historical Review of Learning by Demonstration 34

Figure 2.4: Trigger’s workspace (reprinted from [145])

markers are used to store the location of a point on the computer screen. A rectangle rep-

resents a rectangular area of the computer screen. A flag is used to indicate that a certain

action has been already taken to avoid infinitely firing a trigger. The generalization strategy

used by Triggers is to record the locations of exact patterns on the application screen. For

example, suppose a user creates a macro that modifies a search engine’s number of result

widgets to 100 instead of 25 as seen in Figure 2.5. The developed macro records the mouse

coordinates of the widget and corresponding action which changes the value from 25 to 100.

Pixel pattern matching on the screen can provide information to generalize this macro.

Pixel-level data access methods provide a benefit of adapting Trigger to already existing

applications just by using their screen images. The system communicates with an external

application through interprocess communication protocol. Although the system affects data

Chapter 2. Historical Review of Learning by Demonstration 35Chapter 2. Historical Review of Learning by Demonstration 35Chapter 2. Historical Review of Learning by Demonstration 35

Figure 2.5: Modifying web page (reprinted from [145])

such as text, and graphical objects in an application, it only deals with low-level pixel patterns

and screen coordinates. That is the utilization of low-level data to extract high-level meaning.

The advantage of this strategy is that low-level data and operations of an applications can

map many high-level operations. The disadvantage is that high-level internal information

processing and communication are difficult.

2.3.8 Chimera

Kurlander’s Chimera [99] is a graphical editing system that provides five tools for automating

repetitive tasks in graphical editing applications: graphical search and replace (similar to

Unix grep utility), constraint-based search and replace (as shown in Figure 2.6), constraint

from multiple snapshots, graphical histories, and graphical macros by example.

Graphical search and replace functionality closely resembles common text editor’s search

and replace functionality. The user copies a graphical object for searching, and draws another

graphical object for replacing ones that are found in an graphical illustration. The user

can also indicate which properties are significant for search and replace operations. This

tool does not perform any inferencing. The user edits a picture, data descriptions, and

Chapter 2. Historical Review of Learning by Demonstration 36Chapter 2. Historical Review of Learning by Demonstration 36Chapter 2. Historical Review of Learning by Demonstration 36

constraints in both search and replace panes, and then the user can specify which geometric

features are relevant and their tolerance for search and replace constraints. The search

and replace constraints contain geometrical information such as distance, slope, and angle.

Constraints from multiple snapshots let the user show constraints by drawing various valid

position of objects. At each valid position, the user takes a snapshot, and Chimera defines

constraint sets that describe all positions that are valid. Editable graphical histories are

similar to Pygmalion’s storyboard approach. This provides an optimized series of panes for

emphasizing the changes made between panes. Graphical macro by example improves the

functionality of editable graphical history by allowing a sequence of command to be selected

and encapsulated into a reusable macro. Macro parameter can be provided when macro is

executed. Constraints are constructed by analyzing which geometric features of the objects

remain the same, if the user moves the parts of the scene later, the corresponding constraints

are invoked automatically. Generalization is made by dropping constraints that are not valid

for all examples.

2.3.9 Mondrian

Lieberman’s Mondrian is an object oriented graphical editing system that learns graphi-

cal drawing procedures from demonstration[106]. Mondrian development was inspired by

Chimera’s editable graphical histories tool. The user can demonstrate a sequence of graph-

ical operations to show how a new procedure should be performed on a concrete example.

An agent in the system records steps of a procedure in a symbolic form. The system also

keeps track of relationships between graphical objects and interrelations between the inter-

face operations. The agent generalizes a Lisp procedure that can be used later in “similar”

examples. Mondrian provides storyboards of icons that show changing states of display dur-

ing editing. Each iconic image represents a single command. Command icons in a Mondrian

Chapter 2. Historical Review of Learning by Demonstration 37Chapter 2. Historical Review of Learning by Demonstration 37Chapter 2. Historical Review of Learning by Demonstration 37

Figure 2.6: Chimera’s match tools (reprinted from [99]).

window appear before and after the effect of command as graphical representation to show

the effect of executing a command. The basic workspace of the system is shown in Figure 2.7

which shows a drawing of an arch. Even though it is inspired by Chimera, some significant

differences exist between Chimera and Metamouse. The order in which generalization advice

is given and the representation of the result of a generalization are different. Metamouse

gives generalizations advice at the start of the demonstration whereas chimera gives gener-

alizations after the demonstration. Another difference is that Mondrian generates Lisp code

as a result of generalization, whereas Chimera does not provide human readable procedural

representation of generalization.

Chapter 2. Historical Review of Learning by Demonstration 38Chapter 2. Historical Review of Learning by Demonstration 38Chapter 2. Historical Review of Learning by Demonstration 38

Figure 2.7: Workspace of Mondrian (reprinted from [106]).

2.3.10 SmartEdit

SmartEdit is teachable text editor that was developed by Lau based on the programming

by demonstration approach [100]. The system SMARTEdit (Simple Macro Recognition

Tool) uses version space algebra [101]. The system treats demonstration phase actions as a

partial execution trace of the program that solves the problem at hand. Then it makes a

generalization from the execution of traces to the original program. In version space algebra,

the system is given a sequence of changes in the application state being observed by system

as user performs some tasks on an example, and then the system generalizes given example

to a program that is capable of performing the new task by learning the set of functions that

transform the initial state to the final state of the given task. The learning mechanism of the

Chapter 2. Historical Review of Learning by Demonstration 39Chapter 2. Historical Review of Learning by Demonstration 39Chapter 2. Historical Review of Learning by Demonstration 39

system provides a set of compact representational hypothesis space that is consistent with

the observed task. There are two interaction modes available: Recording the user’s solution

for the next example or running the learned program on an example.

A typical session in SmartEdit is shown in Figure 2.8. In this example, user shows the

system how to remove HTML comment lines from the text files. Those comments start

with <!– and end with –!>. In learning mode, SmartEdit learns a program that contains a

sequence of relatively high level text actions among them: move cursor to a new position,

insert a string, delete a string, and manipulate a clipboard.

Figure 2.8: SmartEdit screen. User is deleting all HTML comments that begin with <!–
and end with –!> (reprinted from [108]).

The user can ask the system to step through a learned macro one action at a time by

pressing the“Step through macro”button (see Figure 2.9). The system will guess what likely

action to take in this situation along with probability. If the action is not what the user

intended, the user can choose “Try another guess”which selects SmartEdit’s next most likely

action based on its previous observations.

After the user confirms the system’s next choice by pressing the “Step through macro”

button, the system deletes the extent of the HTML comment (Figure 2.9).

Chapter 2. Historical Review of Learning by Demonstration 40Chapter 2. Historical Review of Learning by Demonstration 40Chapter 2. Historical Review of Learning by Demonstration 40

Figure 2.9: SmartEdit performs editing (reprinted from [108]).

2.4 Summary

This chapter has briefly surveyed previously developed experimental systems that are based

on demonstrational learning and/or programming. Many programming by demonstration

systems have been developed. Although these systems have never had success in commer-

cialization, most have been implemented to explore new learning techniques or interface

concepts.

The overview of all surveyed systems is listed in Table 2.1. Systems are categorized as

to whether they are text based or graphical based system, perform any inductive learning,

and create an human readable program.

Programming by demonstration is a powerful concept for building learning based systems,

but it is still the user’s responsibility to demonstrate solving a task at hand in a consistent

manner. The sequence of demonstration steps is very important for such systems to define

clear boundaries for each step of the demonstration. Well defined decision boundaries for an

observed task yield better generalization and inferencing capabilities.

The IntelliPost system that is presented in this dissertation is similar to graphical editing

systems. But it is significantly different in the way that it analyzes images from the image

segmentation point of view and infers what postprocessing operation should be applied for a

specific region in an image. It provides a user interface to capture postprocessing rules from

Chapter 2. Historical Review of Learning by Demonstration 41Chapter 2. Historical Review of Learning by Demonstration 41Chapter 2. Historical Review of Learning by Demonstration 41

Table 2.1: The summary of surveyed systems.

System Name Text Based Graphical Create Program
Performs
Inductive
Learning

Pygmalion
√ √

U Editor
√ √ √

Tinker
√ √

Peridot
√ √ √

Metamouse
√ √ √

Turvy
√ √ √

TELS
√ √

Triggers
√

Chimera
√ √

Mondrian
√ √ √

SmartEdit
√ √

the user’s demonstration. The system applies generalized postprocessing rules for a new

image segmentation problem. If the end result is not satisfactory, the user gives feedback to

the system to update its postprocessing rules.

IntelliPost is a demonstrational interface to capture postprocessing rules. But it does not

provide any human readable program or rules. It uses these implicit rules for the run mode

of the system. Of the systems described above, IntelliPost is most similar Lau’s SmartEdit

system. Both systems provide both learn mode and run mode operations in the user interface.

Chapter 3

Background

3.1 Introduction

This dissertation claims that the segmentation performance of an ANN based system can

be improved by applying learning based postprocessing. IntelliPost is built upon two main

components: decision tree based learning for its inferencing component and morphological

image processing for its postprocessing operations library component. As we can see from

the system’s architecture in Figure 3.1, the postprocessing operation library is used for both

the learn mode and the run mode. In the learn mode, the user uses refinement operations

from the operation library to perform postprocessing on an image. In the run mode the

system uses the library for performing similar postprocessing operations automatically.

During the learn mode, the system stores information that associates postprocessing

operations with regions properties, both geometric and statistical. To prepare for run mode,

the system’s inference engine reads the stored information and generates postprocessing

rules that can be applied automatically. Due to the interactive nature of the postprocessing

42

Chapter 3. Background 43Chapter 3. Background 43Chapter 3. Background 43

system, the system’s inference engine should provide its results quickly. Since decision tree

induction algorithms have attributes of accuracy, simplicity, generality, and training speed,

we have utilized decision tree learning as a major component of its inference engine.

User Interface

 Feature

extraction

Domain

knowledge
database

Postprocessing
operation

library

 Inference
 Engine

Postprocessing operations

Figure 3.1: Postprocessing system overview

This chapter is structured as follows. The first section presents a brief introduction

to the theory of morphological image processing, particularly its basic operators: erosion,

dilation, and operators derived from erosion and dilation. The second section briefly presents

the theory of decision tree learning methods, and briefly explains different implementations,

strengths and weaknesses.

Chapter 3. Background 44Chapter 3. Background 44Chapter 3. Background 44

3.2 Morphological Image Analysis

3.2.1 Overview

Mathematical morphology, or simply morphology, is a theory for the analysis of spatial

structures[165]. The theory is called morphology just because its goals are to analyze the

shape and the form of objects. Mathematical morphology provides powerful image analysis

tools[171]. In the area of image processing, it analyzes the shape of a region. A region can

be represented as a connected set in a image. The operators in mathematical morphology

are defined as set operations and have proved to be powerful for processing sets of binary

and gray level images[166]. Mathematical morphology is concerned with image filtering,

and with geometric feature extraction by structuring elements. It is a powerful tool for

solving problems ranging over the entire image processing area, including pattern recognition,

medical imaging, microscopy, inspection, and robot vision [119, 165, 51, 68, 82, 142, 166, 118,

87, 171]. It originated in a seminal work of Minkowski and Hadwidger on geometric measure

theory and integral geometry [126, 127, 73] and was introduced to modern world by the work

of Matheron and Serra in the Ecole des Mines in Fontainebleau, France [119, 165]. Their

work provide not only the formulation of modern concepts of mathematical morphology, but

also resulted in the Texture Analyzer System, a parallel image processing system based on

mathematical morphology [96].

The early use of mathematical morphology was to analyze binary images in the 2D plane,

but Stenberg and Serra [165, 175] extended the mathematical morphology theory to gray level

images. We should note that we will restrict our discussion of set theory and the theory of

mathematical morphology for binary images and binary regions that are defined in discrete

space (Z2).

Chapter 3. Background 45Chapter 3. Background 45Chapter 3. Background 45

3.2.2 Image Regions as Set, and Logical Operators

In morphological image processing, the definition of a region is a set (or collection of con-

nected pixels) with either continuous or discrete coordinates. This can be illustrated as in

Figure 3.2 which contains two regions or sets, A and B.

A

B

Figure 3.2: A binary image that contains two regions as sets A and B.

Region B in Figure 3.2 is defined as the set {(0,0),(1,0),(-1,0),(0,1),(0,-1)}. The comple-

ment of A (or the background of A) is defined as:

Ac = {a | a /∈ A} (3.1)

If a region A is represented by black pixels in a binary image, then Ac is represented by

white pixels. Several common logical operations on image sets are defined in Equation 3.2,

and are illustrated in Figure 3.3.

Chapter 3. Background 46Chapter 3. Background 46Chapter 3. Background 46

NOT C = A

OR C = A + B

AND C = A ·B (3.2)

XOR C = A XOR B

SUB C = A\B = A−B = A ·B

Both the translation of A by vector x, denoted (A)x, and reflection of A through the

origin, denoted Â are defined in Equation 3.3, and are illustrated in Figure 3.4. Every

pixel of region A is translated by vector x. The reflection of a region A about its origin is

performed by taking the negation of all pixel coordinates that belong to region A.

(A)x = {c | c = a + x, for a ∈ A} (3.3)

Â = {x | x = −a, for a ∈ A}

In the next section, we will introduce fundamental morphological operators that are the

combination of intersection, union, complementation, and translation operators.

3.2.3 Structuring Elements

In morphological image analysis every operator uses a special small set to transform the

image under analysis. This small set is called the structuring element ; it can be of any size

and form. The shape of a structuring element is generally chosen based on a priori knowledge

Chapter 3. Background 47Chapter 3. Background 47Chapter 3. Background 47

A B

A A + B A ·B

A XOR B A\B = A ·B

Figure 3.3: Basic binary (Boolean) operations on two images.

Chapter 3. Background 48Chapter 3. Background 48Chapter 3. Background 48

B

(a) (b)

(c) (d)

Figure 3.4: Illustration of translation and reflection. (a) Region A. (b) Set A translated
by vector x. (c) Set B. (d) The reflection of B.

about the image to be processed. However, the most commonly used structuring elements

are a rectangle with specified dimension, a disk with specified diameter, or a diamond with

specified size, as shown in Figure 3.5. Another parameter of a structuring element is the

location of its origin. It is usually the central pixel of a symmetric structuring element,

but it can be chosen to be any pixel. If the location of the origin is not at the center, the

resulting morphological operations are called directional morphology. Directional expansion

or shrinkage can be obtained by using directional structuring elements. Using the origin as

a handle, translation can place the structuring element anywhere on the image. Structuring

elements can be used either for processing or analyzing an image. In the case of processing,

for example, a structuring element can be used to enlarge or reduce the size of a region.

When analyzing an image, structuring elements can be used to measure the size of a hole in

Chapter 3. Background 49Chapter 3. Background 49Chapter 3. Background 49

a region, by checking whether a disk structuring element fits inside the hole, while a larger

disk does not.

(a) (b) (c)

Figure 3.5: Common structuring elements: (a) rectangle, (b) disk, and (c) diamond.

3.2.4 Basic Morphological Operations

Dilation

Let A and B be sets in Z2, and let ∅ denote the empty set. Then the dilation of A by

structuring element B, denoted A⊕B, is defined as:

A⊕B = {x | (B̂)x ∩ A 6= ∅} (3.4)

That is to say, the dilation of set A by structuring element B can be obtained by taking the

reflection of structuring element B about its origin, and then translating the reflected B by x.

The dilation of set A by B is the set of all displacements x such that the intersection of ˆ(B)x

and A is nonempty. In other words, dilation by this definition works much like convolution:

slide a structuring element to each position in the image and and ask if structuring element

“hits” the element of the set A, and take union of all results when the answer is affirmative.

The definition of dilation is not unique. Minkowski [126, 127] has defined dilation in

Chapter 3. Background 50Chapter 3. Background 50Chapter 3. Background 50

B

A

B

A

(a) (b)

Figure 3.6: The dilation of set A by structuring element B: (a) before dilation, (b) after
dilation.

another way which is known as Minkowsky addition:

A⊕B =
⋃
x∈B

(A)x (3.5)

In other words, the process is to put a copy of B at each pixel in A. As we can see from

Figure 3.6, dilation by diamond structuring elements correspond to expansion or swelling of

regions in an image.

Erosion

Let A and B be sets in Z2; the erosion of A by B, denoted by A	B, is defined as:

A	B = {x | (B)x ⊆ A} (3.6)

That is the erosion of A by B is the set of all points x such that B, translated by x, is

contained in A. In other words, the process of erosion translates the structuring element

by translation vector x on set A, and tests if the structuring element fits into the set A.

Therefore dilation translates a copy of B at each nonempty member points of set A so that

it fits entirely inside of set A. The set of all points x satisfying this condition constitutes

Chapter 3. Background 51Chapter 3. Background 51Chapter 3. Background 51

B

A

B

A

(a) (b)

Figure 3.7: The erosion of set A by structuring element B: (a) before erosion, (b) after
erosion.

A	B.

Minkowsky’s erosion definition [126, 127], which is known as Minkowsky subtraction, is

defined as follows:

A	B =
⋂
x∈B

(A)x (3.7)

In Minkowsky subtraction, set A is translated by every member point of structuring element

B, and the result is obtained by intersecting these translated sets. The process of erosion

makes regions in an image “shrinks” or “erodes” as illustrated in Figure 3.7.

Basic Properties of Erosion and Dilation

Commutative–

A⊕B = B ⊕ A (3.8)

For dilation, the role of structuring element and image can be reversed.

Non-Commutative–

A	B 6= B 	 A (3.9)

Chapter 3. Background 52Chapter 3. Background 52Chapter 3. Background 52

Associative–

A⊕ (B ⊕ C) = (A⊕B)⊕ C (3.10)

The dilation operation has the associative property, which allows the decomposition of a

structuring element into a sequence of simple structuring elements. The decomposition of

complex structuring element leads to considerable savings in computational complexity.

Translation Invariance–

(A)x ⊕B = (A⊕B)x (3.11)

A	 (B)x = (A)x 	B = (A	B)x (3.12)

Duality–

(A⊕B)c = Ac 	 B̂ (3.13)

(A	B)c = Ac ⊕ B̂ (3.14)

If A is a region and Ac is the background, Equations 3.13 and 3.14 state that dilation of a

region is the same as the erosion of its complement. Similarly, the erosion of a region in an

image is the same as the dilation of its complement.

Both erosion and dilation have very important increasing properties to extend binary

morphology to gray level images.

Increasing in A–

For any structuring element B and two images A1 and A2 such that A1 ⊂ A2:

A1 ⊕B ⊂ A2 ⊕B (3.15)

A1 	B ⊂ A2 	B (3.16)

Chapter 3. Background 53Chapter 3. Background 53Chapter 3. Background 53

Decreasing in B–

Let B1 and B2 be structuring elements such that B1 ⊂ B2 :

A	B1 ⊃ A	B2 (3.17)

Decomposition theorems–

Vincent [184] provides decomposition theorems that make the implementation of basic mor-

phological operators possible in efficient way.

Dilation− A⊕ (B ∪ C) = (A⊕B) ∪ (A⊕ C) = (B ∪ C)⊕ A

Erosion− A	 (B ∪ C) = (A	B) ∩ (A	 C) (3.18)

Erosion− (A	B)	 C = A	 (B ⊕ C)

Multiple Dilations− nB = (B ⊕B ⊕B ⊕B ⊕ · · · ⊕B)︸ ︷︷ ︸
n times

These theorems are useful in fast implementations of morphological operations since they

let a morphological operation with a large structuring element be defined as a sequence of

operations with a smaller structuring element.

Opening and Closing

This section introduces two other important operations: opening and closing. Both of these

retain important characteristics of an image when filtering [166, 171]. As we have seen from

the last section, erosion shrinks an image and dilation swells or expands it. The process of

erosion not only removes all pixels in an image that can not contain structuring element, but

also it makes all other regions smaller. Opening somewhat reverses the effect of erosion by

Chapter 3. Background 54Chapter 3. Background 54Chapter 3. Background 54

dilating the resulting image of erosion.

The opening of set A by structuring element set B, denoted A ◦B, is defined as:

A ◦B = (A	B)⊕B (3.19)

The opening of A by B is therefore erosion of A by B, followed by a dilation of the result

by the same structuring element B. If the structuring element fits in A, then the whole

structuring element is kept wherever the answer of the test is affirmative. The opening of a

binary image by a square structuring element is shown in Figure 3.8. Opening with a disk

structuring element eliminates small blobs from an image, breaks narrow isthmuses, breaks

narrow bridges between regions, and smooths out contours of regions.

B

A

(a) (b)

Figure 3.8: Opening of binary image A by structuring element B: (a) before, (b) after
(reprinted from [171]).

On the other hand, the closing operation smooths contours, merges narrow breaks and

long thin gulfs, eliminates small holes, and fill gaps on contours. The closing of set A with

structuring element set B, denoted A •B, is defined as:

A •B = (A⊕B)	B (3.20)

The closing of set A by set B is simply the dilation of A by B, followed by the erosion of

Chapter 3. Background 55Chapter 3. Background 55Chapter 3. Background 55

the result by the same structuring element B. In contrast to opening’s test of foreground

regions that contain the structuring element, the closing operation performs the same test

for the background and fills the background region that test affirmative. The effect of a

closing operation is illustrated in Figure 3.9. As we can see from Figure 3.9, all background

pixels that cannot contain the structuring element are filled by the closing operation.

B

A

(a) (b)

Figure 3.9: Closing of a binary image A by structuring element B: (a) before applying
closing operation, (b) after closing. The dashed line shows filled background
pixels (reprinted from [171])

Properties of Opening and Closing

Duality–

(A •B)c = Ac ◦B (3.21)

(A ◦B)c = Ac •B

Opening tests whether the structuring element fits from inside a region. Opening removes

region pixels that cannot contain the structuring element. On the other hand, closing behaves

in the opposite way since it fills background pixels that can not contain the structuring

element. Therefore, opening a region is the same as closing the complement of the same,

and then taking the complement of the result.

Chapter 3. Background 56Chapter 3. Background 56Chapter 3. Background 56

Translation Invariance–

(A)x ◦B = (A ◦B)x (3.22)

(A)x •B = (A •B)x (3.23)

For the opening of sets A1, and A2 such that A1 is the subset of A2 (A1 ⊆ A2) with structuring

element B:

Antiextensivity–

A ◦B ⊆ A (3.24)

Extensivity–

A ⊆ A •B (3.25)

Increasing monotonicity–

A1 ◦B ⊆ A2 ◦B (3.26)

A1 •B ⊆ A2 •B (3.27)

Idempotence–

(A ◦B) ◦B = A ◦B (3.28)

(A •B) •B = (A •B) (3.29)

The idempotence property deserves some discussion. Morphological opening and closing

can be seen as ideal bandpass filters [83]. In conventional linear filtering, once an image is

filtered by an ideal bandpass filter, consecutive bandpass filtering does not change the result.

Chapter 3. Background 57Chapter 3. Background 57Chapter 3. Background 57

In other words, once the result is obtained by a single opening or closing operation, the

further iteration of those operations will not effect the end result.

Hit-or-miss

So far, all morphological operations that have been defined use a single structuring element.

The hit-or-miss operation uses a special structuring element that contains two disjoint sets

that share the same origin. The hit-or-miss operation is one of the basic tools for shape de-

tection. During application of a hit-or-miss operation, its structuring element is translated

to every possible position on an image. If the first structuring element fits within the fore-

ground, and simultaneously the second structuring element should misses the foreground,

then the test is affirmative. The hit-or-miss operation of A by a composite structuring

element B = {BFG, BBG}, denoted A⊗B, is defined as:

A⊗B = (A	BFG) ∩ (Ac 	BBG) (3.30)

where BFG is foreground structuring element, and BBG is background structuring element.

This is illustrated in Figure 3.10. In this example, the hit-or-miss operation is used for

end-point detection with several composite structuring elements to detect such points.

(a) (b) (c)

Figure 3.10: End-point detection by a hit-or-miss operation: (a) input image, (b) shows
four structuring elements for end-point detection (hatched boxes show BBG),
(c) the union of four operations (adapted from [171]).

Chapter 3. Background 58Chapter 3. Background 58Chapter 3. Background 58

3.2.5 Gray Level Morphological Processing

Morphological operations that were introduced in the previous section can be extended to

gray-level images by using the min or max operations. The extension of gray-level mor-

phology uses threshold decomposition in which every gray level is treated as a special binary

image for that threshold.

Gray-level morphology has not been used in this thesis. The reader is referred to [165,

173, 174, 175, 83, 86, 166, 171] for more details.

3.3 Decision Trees and Rule Based Classification

3.3.1 The Problem of Classification and Classifiers

A classifier is a system that assigns one of several known class labels to an observed input.

For many machine learning algorithms, the goal is to develop rules to be used by a classifier.

The problem of classification has been extensively studied. A survey of this field can be

found in [190].

Classifiers have been used in different disciplines, such as determining the species of

iris plants based on biologist’s observations [58] and predicting whether legal contracts are

acceptable or not based on their terms [16].

To create a classifier, machine learning algorithms analyze a training data set to deter-

mine rules for how classes are assigned, and construct a classifier that can perform similar

classifications automatically. The classifier is then tested with a new example whose class is

unknown to the system.

For the case of supervised learning, machine learning algorithms are trained on a set of

Chapter 3. Background 59Chapter 3. Background 59Chapter 3. Background 59

instances, usually called training samples, each of which is provided with a known class label.

After training, the system should be capable of assigning labels to given input samples whose

class is unknown. Classifiers can be implemented in many forms but in this thesis, we have

used decision trees as classifiers.

3.3.2 Induction of Decision Trees

A decision tree is a graph-theoretic tree in which each interior node represents a decision

point, conceptually incorporating an IF-THEN-ELSE statement, and each leaf node rep-

resents a final class label that should be assigned. A decision tree can be used to encode

knowledge for classifying objects, which are often presented in the form of vectors from a

feature space. Each node of the tree defines some test for an attribute of an instance, and

the branches descending from that node represents the possible values for this attribute.

The problem of determining a class label for a given observation requires inductive infer-

encing. This is a machine learning process that uses observation to ‘guess’ class label. This

is also true for the induction of decision trees.

To illustrate how a decision tree can be trained, a hypothetical data set is provided

in Table 3.1. Each row represents one specific day, Table 3.1 has 14 days (or instances)

to describe if the condition of weather for playing golf. The binary-valued “Play” column

shows if the condition is good for playing golf which represents class labels (‘yes’ or ‘no’

classes). The remaining columns represent features with particular instances shown. For

this example. they describe weather condition on a specific day: the humidity, the outlook,

the temperature, and if it is windy or not. Figure 3.11 represents a decision tree that has

been created using the data in Table 3.1. The classification of a new sample begins at the

topmost point in the tree and evaluate the feature of outlook of the given sample. This point,

Chapter 3. Background 60Chapter 3. Background 60Chapter 3. Background 60

Table 3.1: Golf anyone? A simple machine learning problem. The data is used for the
construction of a decision tree (adapted from [149]).

Day # Outlook Temperature Humidity Windy? Play
1 Sunny 85 85 False No
2 Sunny 80 90 True No
3 Overcast 83 78 False Yes
4 Rain 70 96 False Yes
5 Rain 68 80 False Yes
6 Rain 65 70 True No
7 Overcast 64 65 True Yes
8 Sunny 72 95 False No
9 Sunny 69 70 False Yes
10 Rain 75 80 False Yes
11 Sunny 75 70 True Yes
12 Overcast 72 90 True Yes
13 Overcast 81 75 False Yes
14 Rain 71 80 True No

and all those in which an attribute is evaluated based on the given data, is called a node

(circles in Figure 3.11), with the first decision node called the root of the tree. The value of

the attribute determines the path that the classifier takes through the tree. Leaf nodes of

the tree represent classes (squares in Figure 3.11). For example, if the outlook is sunny, the

process of evaluation takes us down to the other node which is humidity, the humidity value

from the given sample is tested in the node, and if the humidity is less than or equal to 75%,

the decision for playing golf is “yes”, if the humidity is greater than 75% then the decision

is “no” for playing golf. The question is how to build a decision tree from a set of training

data.

3.3.3 Proper Applications of Decision Trees

Even though many algorithms for creating decision trees have been implemented with some-

what different properties and specifications, decision trees are best suited for applications

Chapter 3. Background 61Chapter 3. Background 61Chapter 3. Background 61

Outlook

Humidity Windy

YES

YES

NO

����������

��	
�	

�������

YES NO

�����

Figure 3.11: Decision tree for the golf problem.

with the following characteristics:

• Attribute-value description: instances or objects are expressed by a fixed collection

of properties or attributes. This means that each attribute should be discretized or

sampled.

• The output of the decision tree should be predetermined : The classes which are to be

assigned must be known in advance.

Those conditions do not pose any restrictions for most practical applications. Decision trees

have been used in such applications as classification of patients by their diseases, customer

support by their questions, and the evaluation of mortgage applications by customer’s infor-

mation.

3.3.4 A Classical Algorithm for Building Decision Trees: ID3

Several decision tree learning algorithms have been proposed. The most famous ones among

these are ID3, and its new version C4.5 [149, 150], and CART (Classification And Regression

Chapter 3. Background 62Chapter 3. Background 62Chapter 3. Background 62

Trees) [26]. The common algorithms that have been implemented in those cases employ ex-

haustive greedy search from the top down through the spaces of possible decision trees. Since

ID3 is the one of the classical decision tree learning algorithm that has been implemented,

we will present the concept of decision trees based on the ID3 algorithm.

Quinlan’s ID3 [149] builds decision trees in a top-down fashion, and finds which attribute

should be selected for the root node by analyzing each instance attribute using a statistical

test for how well it classifies instances in the training set. A child node of the root node is

then created for each possible value of the selected attribute, and training samples are sorted

to the proper child node. The entire process iterates using the training examples associated

with each child node to find out which attribute is the best for the child node to test. This

process continues until it perfectly classifies all training samples or until all attributes have

been used. The simplified version of the ID3 algorithm that is adapted to learn a Boolean

valued function is listed in Table 3.2.

As we can see from Table 3.2, the central issue in the algorithm is to choose the “best”

attribute for the root node and its child nodes. Intuitively, one can desire to select the

attribute that is the most useful for classifying samples. ID3 algorithm uses a statistical

property which is called information gain. It is used to evaluate how well the attribute

under test separates the training samples based on their target classification.

Splitting Criteria

To define information gain accurately, we need to define a measure that is widely used in

information theory called entropy. Let S be a set of positive and negative samples of some

target concept in a 2-class problem. The entropy of set S relative to this simple binary

Chapter 3. Background 63Chapter 3. Background 63Chapter 3. Background 63

Table 3.2: ID3 Decision Tree induction algorithm (reprinted from [128]). The best attribute
is the one with highest information gain, as defined in Equation 3.31.

ID3(Examples,Target attribute, Attributes)
Examples are the training examples.
Target attribute is the attribute whose value is to be predicted by the tree
Attributes is a list of other attributes that may be tested by the learned decision tree
Returns a decision tree that correctly classifies the given Examples.

• Create a Root node for the tree

• If all Examples are positive, Return the single-node tree Root, with label = +

• if all Examples are negatives, Return the single-node tree Root, with label = -

• if Attributes is empty, Return the single-node tree Root, with label = most common
value of Target attributes in Examples

• Otherwise Begin

– A←the attributes from Attributes that best classifies Examples

– The decision attributes for Root←A

– For each possible value, vi, of A,

– Add a new tree branch below Root, corresponding to the test A = vi

– Let Examplesvi
be the subset of Examples that have value of vi for A

– if Examplesvi
is empty

∗ Then below this new branch add a leaf node with label = most common value
of Target attribute in Examples

∗ Else below this new branch add the subtree
ID3(Examplesvi

, Target attribute, (Attributes - {A}))

• End

• Return Root

Chapter 3. Background 64Chapter 3. Background 64Chapter 3. Background 64

classification is defined as:

Entropy(S) = −pp log2 pp − pn log2 pn (3.31)

where pp is the proportion of positive samples in S and pn is the proportion of negative

samples in S. In all calculations, 0 log2 0 is defined as 0. Figure 3.12 shows the entropy

function in binary classification problem as the ratio of pp varies between 0 and 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positive samples ratio

en
tr

op
y(

S
)

Figure 3.12: The entropy function in binary classification.

Up to this point, we have focused on an entropy that is special case where the target

classification is binary. In general, the target attribute can have c different values. Then the

entropy with respect to c-wise classification is defined as follows:

Entropy(S) =
N∑

i=1

−pi log2 pi (3.32)

where pi is the proportion of class i sample in S, and N is the number of classes. From

the golf problem, if we want to calculate the entropy of the training set, then the number

Chapter 3. Background 65Chapter 3. Background 65Chapter 3. Background 65

of positive and negative samples for playing golf are needed in which they are 9 and 5,

respectively. Then the entropy of S relative to the playing decision is

Entropy([9+, 5−]) = − 9

14
log2

9

14
− 5

14
log2

5

14
= 0.940 (3.33)

Once the entropy is chosen as a measure of the impurity in a collection of training samples,

we can define another measure, which is called information gain, that tells us how well an

attribute separates the training samples. The information gain, Gain(S,A) of an attribute

A, relative to collection of samples S, is defined as:

Gain(S, A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv) (3.34)

where V alues(A) is the set of all possible values for attribute A, and Sv is the subset of S for

which attribute A has value v (i.e Sv = {s ∈ S | A(s) = v}). Again from the golf problem,

the information gain for the Outlook attribute which can have the values sunny, overcast,

and rain. Among the 14 samples, 2 samples are positive and 3 samples are negative decisions

Chapter 3. Background 66Chapter 3. Background 66Chapter 3. Background 66

for the attribute Outlook=sunny. Similarly the other values for Outlook can be found as:

V alues(Outlook) = sunny, overcast, rain

S = [9+, 5−]

Ssunny ← [2+, 3−]

Sovercast ← [4+, 0−]

Srain ← [3+, 2−]

Gain(S, Outlook) = Entropy(S)−
∑

v∈{sunny,overcast,rain}

|Sv|
|S|

Entropy(Sv)

= 0.94− (
5

14
)Entropy(Ssunny)

−(
4

14
)Entropy(Sovercast)−

5

14
Entropy(Srain)

= 0.94− 0.347− 0.347

= 0.246

3.3.5 Problems with Decision Trees

Practical applications of decision trees have some problems. Among the most important are

the following: how big the tree should be, handling of continuous attributes, choosing an

attribute for a decision node, and computational performance [128].

In general, the algorithm that we presented in the previous section causes the tree to

grow until all training samples are perfectly classified. While this is sometimes a reasonable

strategy, it can lead to a problem when the training samples are contaminated with noise

or when a small set is provided as a training set that poorly represents true target function.

The process of perfectly classifying a set of training samples sometimes leads to overfitting.

When this happens, the learning algorithm simply memorizes all training samples. This may

Chapter 3. Background 67Chapter 3. Background 67Chapter 3. Background 67

represent the true function which it tries to approximate. The classification performance of

an overtrained algorithm often yields poor performance to unseen test samples.

Overfitting is a major issue in both decision tree learning and other learning algorithms.

In the decision tree literature, two methods are available to avoid the overfitting problem:

(1) a method to control a tree growing process before classifying all training samples, and

(2) a method to let the tree grow to classify all the training samples, and then prune it

in the leaf-to-root direction. The second method has been found to be more successful in

practical applications. The first one presents the difficulty of estimating the right tree size

and deciding when to stop the learning procedure.

No matter which method is used, a primary issue is the choice of criterion to determine

the correct final size tree. The most common approaches are: (1) divide all set of samples

into training and validation subsets, generate the tree with training set, and then use the

validation subset for evaluation of the generated tree; (2) use a statistical measure to evaluate

whether expanding (or pruning) of a particular node improves classification accuracy; (3) use

an explicit measure of complexity of the tree, halting growth of the tree when this measure

is minimized. This method is called minimum description length. In practical application,

the first method is commonly used.

The other issues of decision tree induction are the handling of continuous-valued at-

tributes, and tolerance of missing attributes in an instance. In case of handling continuous-

valued attributes, the implementation of ID3 strictly requires discretized attributes to build

a tree. But its new version C4.5 handles continuous-valued attributes with an algorithm that

will be described in the next section. Several methods have been proposed to alleviate this

restriction [181, 56, 57, 129].

Chapter 3. Background 68Chapter 3. Background 68Chapter 3. Background 68

3.3.6 Other Decision Tree Implementations

The previous section has briefly introduced the ID3 algorithm. Since it was one of the first

implementations of a decision tree learning method, it has exhibited problems in practical

applications. Among them: (1) it does not control the size of the tree, and therefore it can

easily overfit training samples, (2) it can not handle continuous variables which is very big

problem for practical implementation, and (3) it is not tolerant to a missing attributes of a

sample in the training set.

In order to overcome those problems, Quinlan proposed C4.5 [150] which is an extension

of ID3. The decision tree grows using a depth-first strategy. Splitting decisions are similar to

ID3. Handling of discrete attributes are done the same as in ID3, but in the case of continuous

variables, it examines the values of a specific continuous variable in the training set, then it

sorts them increasing order for that attribute. Then it identifies the adjacent pairs of samples

that differ in their target classifications. Later it generates a set of candidate threshold values

by finding middle values of those pairs. Finally, it tests all candidate threshold values against

information gain measures and then selects the one that gives the highest information gain.

In our golf example, for humidity, if T is the training set, we determine the information for

each partition and find best partition at 75. Then the range for this attributes becomes

{<=75, >75}. One should note that there is a big computational demand involved in this

method.

Another famous algorithm is CART (Classification And Regression Trees) that has been

proposed by Breinman [26]. Its algorithm is quite similar to these other decision tree induc-

tion algorithms except for its splitting method, controlling the size of tree, and having every

node with two branches as oppose to multiple branches in ID3. It is commercially available

for data mining applications and for research. It uses a splitting method in each decision

Chapter 3. Background 69Chapter 3. Background 69Chapter 3. Background 69

node that is called the Gini index, or “twoing” rule [26].

In recent years, many researchers in the machine learning field have focused on building

decision tree based on nonlinear programming. The main focus is to use linear optimization

methods to split a given training set instead of using traditional splitting methods. In such

methods, a separating plane is used to split training samples in the best possible way. We

have used one of these implementations in our system, called OC-SEP (oblique category

class separation), tree as proposed by Street [176]. We will present its algorithm in Chapter

4.

3.4 Summary

In this chapter, we have briefly introduced two main areas of study that are used in our

system: mathematical morphology, and decision tree induction. In the second section, the

theory of decision tree induction has been discussed based on ID3. Although we have focused

on ID3, other decision tree algorithms use similar methodologies to construct a tree. The

main differences are in: (1) the splitting measure, (2) the choice of top-down vs. bottom-up

construction, (3) the pruning method.

Chapter 4

IntelliPost: Intelligent Postprocessing

4.1 System Overview

The IntelliPost system has been developed to improve overall segmentation performance of

the complete system that has been described in Chapter 1. The postprocessing system has

been designed in such a way that it takes human user experience and/or preference into

account for postprocessing, and then stores this information for future use. Initially, the

system requires manual postprocessing by a human user. This step is necessary to obtain

and store domain knowledge in a knowledge base. The system uses the knowledge base to

postprocess other images in a similar way but without a user intervention.

4.2 Modes of Operations

Many supervised machine-learning systems, including the one described here, operate in two

different modes: a “learn mode” and a “run mode”. During the learn mode, our system

70

Chapter 4. IntelliPost: Intelligent Postprocessing 71Chapter 4. IntelliPost: Intelligent Postprocessing 71Chapter 4. IntelliPost: Intelligent Postprocessing 71

provides a graphical user interface that allows a human user to edit segmented images. The

user selects image operators from a menu, designates portions of the image to be processed,

and observes the results. This interaction can continue until the user is satisfied with the

resulting segmentation for any number of training images.

In the “run mode”, a user can load another presegmented image to IntelliPost, and let the

system perform postprocessing tasks on it. When the system is in the run mode, IntelliPost

uses both a knowledge base and a decision tree based inference engine to postprocess the

image automatically. The postprocessing operations that are chosen by IntelliPost should be

similar to those performed by the user in the learn mode. In other words, the system should

mimic the user actions in the run mode.

We have developed a strategy in which computed region properties, along with other

image-related properties, comprise the feature space for decision tree induction. As a simple

example, consider region size and radial distance from the center of a log slice as two features

that can be computed for a given region in an image. It is possible to map any particular

region onto a point in this feature space, and to assign a label indicating a desired action,

such as region removal.

4.3 Learn Mode

4.3.1 Overview

In this mode, the user performs manual postprocessing for a given image. The decision

about what type of postprocessing operation is suitable for a selected region is made by the

user. The user selects from binary morphological tools that were used to implement the

postprocessing operation library.

Chapter 4. IntelliPost: Intelligent Postprocessing 72Chapter 4. IntelliPost: Intelligent Postprocessing 72Chapter 4. IntelliPost: Intelligent Postprocessing 72

The menu of image-editing operators includes such region tasks as remove, smooth, en-

large, and some others. A user selects those operations interactively to refine a given seg-

mented image. The system observes those actions, and it retains information concerning the

regions that were modified. The collected information is stored in a domain knowledge base.

The architecture of learn mode is shown in Figure 4.1. This mode of the system has

two main components: the postprocessing operations library that provides region operations

to the user to perform refinement on a given image, and a feature extraction module that

extracts the relevant information from a region under operation by the user.

User Interface

 Feature

extraction

Domain

knowledge
database

Postprocessing
operation

library

 Inference
 engine

Postprocessing operations

Figure 4.1: System operation during learn mode. A human operator edits a segmented
image, as the system observes and extracts information to be used later.

4.3.2 Feature Space and Feature Extraction

Instance based learning is one of the commonly used supervised learning methods. In a

feature space, each concept or class occupies a subspace, and learning can be viewed as a

process of subdividing the feature space. In our application, we assume that the postprocess-

Chapter 4. IntelliPost: Intelligent Postprocessing 73Chapter 4. IntelliPost: Intelligent Postprocessing 73Chapter 4. IntelliPost: Intelligent Postprocessing 73

ing problem concerns the use of a decision tree that will be applied to a continuing sequence

of cases, in which each new case must be assigned to a predefined postprocessing operation

on the basis of observed features.

The input to the decision tree algorithm consists of descriptions of regions from a CT

image, each associated with a specific user-selected postprocessing operation. Part of an

example feature space is shown in Table 4.1, which includes codes for postprocessing opera-

tions and seven feature types. In the feature space, seven geometric feature observations are

calculated for each region. Attributes in the feature space were chosen empirically. Intelli-

Post’s feature space can easily be expanded to include other geometric features. To avoid

high computational cost, we selected geometric features that are reasonably fast to compute.

Since the feature collection is done on-the-fly while the user edits the image, the systems

collects the region’s attributes and performs necessary refinements.

Table 4.1: An excerpt from the knowledge base that has been used in IntellPost. User-
selected operations are indicated in the first column. Initial region types, as
assigned by the initial segmentation system, are in the second column. Geomet-
ric features are shown in the remaining columns.

Operation Code Region Type Area Radial Distance Solidity Major Axis Length Minor Axis Length Perimeter

1 1 5 1.027539 1 3.306559 2.129163 14

1 1 14 0.899658 1 5.989203 3.106969 22

1 1 14 0.989989 0.875 7.924809 2.730550 26

2 2 2763 0.602828 0.739957 85.160852 49.409556 387

3 1 22893 0.071006 0.838050 197.766831 169.057192 1223

3 3 38 0.132054 0.826087 22.227154 2.610398 66

4 1 331 0.903929 0.887399 47.154345 9.535321 143

1 2 13 0.472623 1 5.779028 3.098526 22

1 3 19 0.094572 0.76000 13.545129 2.424376 42

Chapter 4. IntelliPost: Intelligent Postprocessing 74Chapter 4. IntelliPost: Intelligent Postprocessing 74Chapter 4. IntelliPost: Intelligent Postprocessing 74

The Description of Features

Operation Code

This is the desired class label from the learning system’s point of view. The operation code

is used to designate what type of operation is to be performed for regions that correspond

to the given feature vector. IntelliPost uses this operation code as the class label for its

supervised learning algorithm. Each predefined number in this column represents one spe-

cific postprocessing operation. When user selects a specific operation in the user interface,

the system automatically associates its corresponding code with the new feature vector in

the knowledge base. Example operation codes are listed in Table 4.2. The postprocessing

operations will be explained later in the chapter.

Table 4.2: Example of codes for postprocessing operations.

Operation Code Postprocessing Operation

1 Remove
2 Smooth
3 NOOP
4 Enlarge
5 Merge

Region Type

The region type represents the label that was assigned by the initial segmentation system (in

our case, an ANN). IntelliPost represents these as different image “layers”. When the user

refines a presegmented image, region type is stored for each region that is modified. As in the

case of operation code, the region type information is encoded as predefined number. The

codes are listed in Table 4.3 for general image segmentation. The list can be extended and

modified to accommodate other image segmentation applications. For example, one layer

Chapter 4. IntelliPost: Intelligent Postprocessing 75Chapter 4. IntelliPost: Intelligent Postprocessing 75Chapter 4. IntelliPost: Intelligent Postprocessing 75

could represent clear wood in wood segmentation but bones in biomedical application.

Table 4.3: Example of codes for region types.

Region Code Region Type

1 Layer 1
2 Layer 2
3 Layer 3
4 Layer 4
5 Layer 5

Geometric Properties

A binary region can be characterized using a variety of properties that have been developed

in the literature [98, 82, 30, 69]. These properties are useful for region classification and

provide important resources for comparing and classifying regions in a binary image. A

typical binary region is shown in Figure 4.2. The gray shaded area shows the convex hull of

the region.

Major AxisM
in

o
r

A
xi

s

AREA

Perimeter

Convex Area

Figure 4.2: Various properties of a binary region: major and minor axes, perimeter, area,
convex hull of the region.

Chapter 4. IntelliPost: Intelligent Postprocessing 76Chapter 4. IntelliPost: Intelligent Postprocessing 76Chapter 4. IntelliPost: Intelligent Postprocessing 76

Area and Perimeter

The area and perimeter properties are two of the most commonly used for classification

problems in a binary image [98, 30]. The area of the region corresponds the total number of

foreground pixels in a region.

The perimeter of a binary region is the count of the number of boundary pixels traversed

along the region’s boundary starting from an arbitrary initial boundary pixel and returning

to the initial pixel. The described algorithm works well in 4 connected edges, but a problem

emerges when a 8 connected neighborhood is used. The problem occurred mainly when the

distance between two adjacent pixels are not positioned diagonally is not constant, but
√

2.

To solve this problem, 8-neighborhood chain code is used to represent boundaries of a region,

then the perimeter can be estimated as follows [30]:

Perimeter = Ne + No

√
2 (4.1)

where Ne and No denote the number of even and odd codes in the chain-coded boundary

representation.

Radial Distance

The radial distance property is the Euclidean distance between a region’s center of mass and

the center of the union of all regions in an image. The easiest way to estimate a region’s

centroid is the average values of its shape’s pixel coordinates. Another method of calculating

the centroid is the calculation of moment to obtain the centroid of a binary region. The (i, j)

Chapter 4. IntelliPost: Intelligent Postprocessing 77Chapter 4. IntelliPost: Intelligent Postprocessing 77Chapter 4. IntelliPost: Intelligent Postprocessing 77

moment of a region R is defined as:

µij =
∑

x

∑
y

xiyjR(x, y) (4.2)

where x and y are the coordinates of the region’s pixels. The centroid of a region can be

calculated as follows:

x̄ =
µ10

µ00

(4.3)

ȳ =
µ01

µ00

where (x̄,ȳ) represent the coordinates of the centroid.

The radial distance can be obtained by calculating the Euclidean distance, denoted de

between the centroid of the union of regions and of a region as follows:

de(r, u) =
√

(x̄r − x̄l)2 + (ȳr − ȳl)2 (4.4)

where r and u represent a region and the union of regions, respectively.

IntelliPost uses the normalized radial distance which is defined as de(r,u)
Ru

, where Ru is

the radius of union of regions. Since µ00 is the area of a region, Ru can be obtained by

Ru =
√

µoo

4π
. The union of regions is assumed to be a rounded shape .

Solidity

The solidity property is defined as the ratio of area measure to the convex hull of the same

region. This is illustrated for a star shaped region in Figure 4.3. Soile [170] showed that

mathematical morphology can be used to find convex hull of a region. The proposed algo-

Chapter 4. IntelliPost: Intelligent Postprocessing 78Chapter 4. IntelliPost: Intelligent Postprocessing 78Chapter 4. IntelliPost: Intelligent Postprocessing 78

rithm offers a trade-off between accuracy of the convex hull and computational efficiency.

To avoid computational cost, less accurate convex hull finding can be selected.

Figure 4.3: The convex hull region of a star. Gray shaded areas show convex hull of the
region.

Major and Minor Axis Lengths

Major and minor axis lengths are important features that can be estimated using eigenvalues.

To obtain the major and minor axes of a region, a region is represented by a set of points:

{(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)} (4.5)

and assume that those points are represented by a random vector S = [x, y] and let C be

the covariance matrix of such vector and is defined as follows:

C =

 µ̄20 µ̄11

µ̄11 µ̄02

 (4.6)

Chapter 4. IntelliPost: Intelligent Postprocessing 79Chapter 4. IntelliPost: Intelligent Postprocessing 79Chapter 4. IntelliPost: Intelligent Postprocessing 79

where

µ̄11 =
∑

x

∑
y

(x− x̄)(y − ȳ)

µ̄20 =
∑

x

∑
y

(x− x̄)2 (4.7)

µ̄02 =
∑

x

∑
y

(y − ȳ)2

where x̄,and ȳ denotes the centroid of x and y coordinates of a region respectively. This is

illustrated in Figure 4.4. The eigenvectors of the covariance matrix show the direction of the

major and minor axis of a region. The length of those axes can be obtained by taking the

square root of eigenvalues of the covariance matrix.

e1

e2

√λ1
√λ2

Figure 4.4: The major and minor axes of a ellipsoid. The vectors e1, and e2 represent
eigenvectors of the covariance matrix.

4.3.3 Postprocessing Operation Library

The postprocessing operation library is another important component of the IntelliPost sys-

tem. This module is used for both learn mode and run mode. In the learn mode, the user

uses the library to refine regions in a presegmented CT image. In the run mode, the inference

engine uses the library to perform similar postprocessing operations for a new image. The

Chapter 4. IntelliPost: Intelligent Postprocessing 80Chapter 4. IntelliPost: Intelligent Postprocessing 80Chapter 4. IntelliPost: Intelligent Postprocessing 80

postprocessing operation library contains several region operations that have been imple-

mented using mathematical morphology. In the next section, we will explain operations that

have been developed for the postprocessing operation library. Those are remove, smooth,

enlarge, merge, and NOOP. The set of operations were found to be a reasonable, effective

set for region refinement.

Remove

The remove operation eliminates regions from an image. If the user selects a region R1 as

illustrated in Figure 4.5, and the system “removes” by merging its pixels into an adjacent

region. Using a region adjacency graph, the algorithm determines the length of each border

between R1 and surrounding regions. For example, the length of the border between R1 and

R2 is the count of pixels that are shared between these two regions, denoted as N(R1, R2).

The region that gives maximum border length fills the removed region area. In our example,

R2 fills the area of R1.

R1

N
(R

1,R
4)

N
(R

1,R
2)

N
(R1,R2)R3

R4

R2

Figure 4.5: The remove operation re-assign a region’s pixels to an adjacent region. Here,
R1 is combined with R2, because their shared border is the longest.

Chapter 4. IntelliPost: Intelligent Postprocessing 81Chapter 4. IntelliPost: Intelligent Postprocessing 81Chapter 4. IntelliPost: Intelligent Postprocessing 81

Smooth

The smooth operation was developed to reduce the curvature of a region’s boundary, fill

small openings, and connect small gaps. The implementation of the smooth operation uses

the morphological closing operation with a disc shaped structuring element. Mathematically,

let Ri denote a region that is selected by the user. Then the smooth operation is defined as:

R
′

i = f(Ri, B) = (Ri ⊕B)	B (4.8)

where R
′
i is the smoothed region and B is the disc shaped structuring element. An example

shown in Figure 4.6.

(a) (b)

Figure 4.6: The smooth operation. (a) Input image. (b) The result smoothing which shows
rounded edges, and the removal of small openings.

Enlarge

The enlarge operation is used to swell or expand a region. This operation uses morphological

gradients to find the boundary contour of the region. The morphological gradient, known as

Chapter 4. IntelliPost: Intelligent Postprocessing 82Chapter 4. IntelliPost: Intelligent Postprocessing 82Chapter 4. IntelliPost: Intelligent Postprocessing 82

a “boundary peeler”, is defined as follows:

Ψgrad(R) = (R⊕B)\(R	B) (4.9)

where R is the region and B is structuring element. By using erosion and dilation operations

and then taking the set difference of the result, it is possible to detect internal and external

boundaries of a region. The enlarge operation uses the external morphological gradient

operator to obtain the external boundary of a region. This is a variant of Equation 4.9,

defined as follows:

Ψ+
grad(R) = (R⊕B)\R (4.10)

This operation first dilates a region by the structuring element B, and then determines the

set difference of this result with the region itself. Once the external boundary pixel set is

obtained, the union of the region and the external boundary pixel set gives the expanded

version of the region. The effect of the operation is shown in Figure 4.7.

Renlarged = R ∪Ψ+
grad(R) (4.11)

Figure 4.7: The enlargement of a region along its boundary. The dashed lines indicate the
enlarged region.

Chapter 4. IntelliPost: Intelligent Postprocessing 83Chapter 4. IntelliPost: Intelligent Postprocessing 83Chapter 4. IntelliPost: Intelligent Postprocessing 83

Merge

The merge operation has been implemented to connect selected nearby regions within the

same layer. The operation uses directional morphology to connect such regions. The user

specifies two regions by mouse, then the system obtains two sets of boundary pixels of the

selected regions. Later, it determines two points that give the minimum Euclidean distance

between these two contour sets. After these two points have been found, the pair determines

a vector that gives the orientation for a line structuring element for directional morphology.

The operation finally applies dilation with the constructed structuring element to the smaller

region of selected sets iteratively until two regions merge together.

Let R1 and R2 denote regions to be merged as illustrated in Figure 4.8. The boundaries

of the regions constitute two contour sets:

CR1 = (R1 ⊕B)\R1 (4.12)

CR2 = (R2 ⊕B)\R2

where CR1 and CR2 denote contour sets of regions R1 and R2. Then two sets are used to find

a vector V (p, q):

V (p, q) = (p ∈ CR1 , q ∈ CR2 | min ‖p− q‖) (4.13)

where p and q represent pixels in the contour sets in CR1 and CR2 , and ‖·‖ denotes the

Euclidean norm. After finding the vector that gives minimum distance between two contour

sets, a directional line structuring element is constructed by using the normalized vector

V (p, q). The iterative directional dilation is applied to R1 until it merges with R2

R
(i+1)
1 = {Ri

1 ∪ (Ri
1 ⊕D BV) | Ri

1 ∩R2 = ∅, i = 1, 2, . . . n} (4.14)

Chapter 4. IntelliPost: Intelligent Postprocessing 84Chapter 4. IntelliPost: Intelligent Postprocessing 84Chapter 4. IntelliPost: Intelligent Postprocessing 84

where ⊕D denote directional dilations which is normal dilation with directional structuring

element. Once we obtain the dilated region Rn
1 , we can simply take the union of Rn

1 and R2

as:

Rmerge = Rn
1 ∪R2 (4.15)

R1

R2

R1

R2

(a) (b)

R1

R2

P1

P1

P2

P2

�

R1

R2

(c) (d)

Figure 4.8: Merging two regions. (a) Two regions are selected. (b) Boundary sets are
obtained. (c) Two points that give the shortest distance are found, and the
directional line structuring is constructed with orientation information. (d)
Iterative dilation of R1 until it merges with R2.

Chapter 4. IntelliPost: Intelligent Postprocessing 85Chapter 4. IntelliPost: Intelligent Postprocessing 85Chapter 4. IntelliPost: Intelligent Postprocessing 85

NOOP

NOOP (“no operation”) is necessary for the run mode of the system. The user selects NOOP

to indicate which regions are satisfactory and should not be modified. The system does not

perform any postprocessing operation for such regions, but it collects geometric features for

the knowledge base. In the run mode, the inference engine uses this information to determine

satisfactory condition for region refinement. Such regions are processed until they reach a

desired condition which need no more refinement.

4.4 Run Mode

4.4.1 Overview

When a user activates the run mode, IntelliPost automatically generates a set of rules based

on its stored knowledge. The system will automatically apply its rules to update an image

that is loaded by the user. Based on the geometric properties of those regions, the system

selects operations and applies them. Ideally, the system will generate a postprocessed output

image that is the same as the original human operator would produce.

With a feature-based training set, it is possible to use information-theoretic methods

to construct a decision tree that can select an action for any point in the feature space.

As mentioned in Chapter 3, many decision tree induction algorithms have been proposed.

Among the most common ones are ID3, C4.5, and CART [26, 149, 150], and recent ones

are based on linear and nonlinear optimization are MSM-T and OC-SEP [15, 13, 176]. The

former group creates a classification tree by repeatedly subdividing the feature space using

linear univariate thresholds, and the latter group creates linear separating planes to divide

Chapter 4. IntelliPost: Intelligent Postprocessing 86Chapter 4. IntelliPost: Intelligent Postprocessing 86Chapter 4. IntelliPost: Intelligent Postprocessing 86

training samples. The result is a set of separating hyperplanes that may not be parallel to

the feature-space axes, with resulting subsets forming a partition of the feature space. In

classical decision tree induction algorithms, entropy measures are often used to select which

feature variable is to be considered at each node of the decision tree. But in case of linear

programming based decision tree induction, separating hyperplanes are used to separate the

training examples at each node of the decision tree.

The run mode architecture is shown in Figure 4.9. As illustrated, the inference engine

replaces the role of the user. The system extracts geometric features from regions in an

image, and then provides feature vectors to an inference engine. Based on postprocessing

rules which are constructed using domain knowledge, it decides what region operations should

be applied to each region.

�����������	�

������

�����	���

�����
���������
��������

�������	�����

��������
������

�������	�

�����

���
����
 !�
�"#
$

��
!�%
�"�#
�

Figure 4.9: System operation during run mode. The user provides segmented image, and
the system automatically modifies the image in a manner similar to the user’s
earlier editing steps.

Chapter 4. IntelliPost: Intelligent Postprocessing 87Chapter 4. IntelliPost: Intelligent Postprocessing 87Chapter 4. IntelliPost: Intelligent Postprocessing 87

4.4.2 OC-SEP Decision Tree Induction as Inference Engine

The inductive classification algorithm tries to minimize some error metric to construct a clas-

sifier that separates unseen test samples with minimum error. Bennett [15] has implemented

a decision tree induction algorithm with linear programming. An excellent review of using

mathematical programming in learning can be found [25].

As described in the previous chapter, classical decision tree induction algorithms construct

a tree based on information gain and entropy measures. The decision trees can be constructed

using one or more separating surfaces or hyperplanes in the feature space of a given training

examples. Each decision node represents a separating hyperplane. The algorithm divides

training examples recursively into the subset of data that is formed in the previous step. This

iteration continues until all samples (or nearly all) of the points in a region belong to the

same class. Despite the common use of C4.5 and CART, they are limited to separate feature

space by axis-parallel separating hyperplanes. This limitation leads to a larger decision tree

since it requires several more planes to separate training samples completely. As a result of

that, the generalization performance of these trees suffer from because they tend to generate

larger decision trees.

Several researchers have addressed this shortcoming. The OC1 family of classifiers have

been proposed to offer a number of separating objectives [129] but these are still based on

purity based separating criterion. Another method has been proposed by Fayyad and Irani

[55]. Their work indicates that purity based separation are not sensitive to class separation

because they measure it only indirectly, often causing the decision tree algorithm to generate

more nodes and as a result bad generalization performance. Instead of using purity and

information gain measures, they have proposed a class of measures based on the orthogonality

of the class vectors in the child nodes. The class vector of a set S of training samples is

Chapter 4. IntelliPost: Intelligent Postprocessing 88Chapter 4. IntelliPost: Intelligent Postprocessing 88Chapter 4. IntelliPost: Intelligent Postprocessing 88

defined as [c1, c2, . . . , ck], where ci is the number of examples of class i in S. Once the training

samples are divided into region, their class vector should be as orthogonal as possible relative

to the other class vectors. Based on this observation, they have defined several measures

called C-SEP (Class SEParation) and proved their effectiveness. But their method still

separates training samples by axis-parallel separating planes.

Constructing optimal separating planes has been long studied by researchers [113, 114,

65, 116, 11, 12], and their natural extension to decision tree induction was introduced by

Bennett [15]. The introduced decision tree algorithm can handle two-class problems, and

most recent one has been proposed by Street [176] that provides an ability to handle multi-

class problems.

OC-SEP Decision Tree Induction Algorithm

OC-SEP is based on robust linear mathematical programming [13, 14, 115]. Two-class prob-

lems were addressed in those studies. Suppose we are given a training samples that contains

two disjoint sets A1 and A2 that we would like to separate. The main goal is to find a

separating plane which is defined by its normal vector w and the distance from the origin,

denoted as θ. A separating plane is defined as:

xT w = θ (4.16)

This lies within the feature space of the given examples such that all points of A1 lie on one

side of the plane (A1w > eθ) and the points that belong to A2 lie on the other side (A2w < eθ)

where e is a vector of ones of the same dimension as feature space and x is a feature vector.

The solution of this problem exist only when these two sets are linearly separable, which in

general not the case. Therefore, the distance between the plane and misclassified points is

Chapter 4. IntelliPost: Intelligent Postprocessing 89Chapter 4. IntelliPost: Intelligent Postprocessing 89Chapter 4. IntelliPost: Intelligent Postprocessing 89

minimized. This is obtained with the following normalized minimization problem:

min
w,θ

(
1

n1

‖(−A1w + e(θ + 1))+‖1 +
1

n2

‖(A2w − e(θ − 1))+‖)1 (4.17)

where ‖·‖1 denotes the 1-norm and (z)+ denotes ((z)+)i = max{zi, 0}, i = 1, . . . ,m for

z ∈ Rm. n1 and n2 denote the number of samples in each set. This formulation can be

shown to be equivalent to the following linear problem:

min
w,θ,y,z

(
ey

n1

+
ez

n2

)

subject to A1w − eθ + y ≥ e (4.18)

−A2w + eθ + z ≥ e

y, z ≥ 0

This approach provides several advantages. Some of them are as follows: (1) a solution is

found in the linearly separable case; (2) if two sets share the same centroid, the null solution

is found which is w = 0, θ = 0; and (3) using 1-norm error gives robustness to the effects

of outliers. One should note that this approach is very similar to popular support vector

machines [183].

In case of constructing a decision tree, this problem is recursively solved on the subset of

the initial training set as done in [15]. But this induction tree algorithm provides a decision

tree that is capable of discriminating two-class problems.

In order to handle multi-class problems, OC-SEP provides an algorithm that applies an

orthogonality measure instead of using a misclassification minimization method. The basis

of orthogonality based separation is the class vector which represents the counts of elements

of each class in the given subset of examples. OC-SEP tries to make the corresponding class

Chapter 4. IntelliPost: Intelligent Postprocessing 90Chapter 4. IntelliPost: Intelligent Postprocessing 90Chapter 4. IntelliPost: Intelligent Postprocessing 90

vectors induced by a separating hyperplanes at each node as close as possible to orthogonal.

In order to utilize continuous optimization methods, distance based approximation is used

to estimate a class vector. The value eT ((A1w − eθ)+) is proportional to the total distance

to the plane of all points in A1 that are on the right side (A1w > eθ) of the plane; the same

way, eT ((−A1w + eθ)+) gives a distance measure for the left side of plane. Therefore, this

distance measure can be used in robust linear programming problem in place of class vector.

To make definition of the problem simpler, lets v1 represent the distance measure for class 1,

which has k components v1,i = eT ((Aiw − eθ)+). Using similar notation for the other class

vector, the robust linear program becomes:

min
w,θ

vT
1 v2

subject to eT ((Aiw − eθ)+) = v1,i, i = 1, . . . , k (4.19)

eT ((−Aiw − eθ)+) = v2,i, i = 1, . . . , k

This mathematical programming approach will find a solution when a separating plane di-

vides training samples entirely. At the same time, the minimum can be found by a plane

that lies entirely on one side of all points, for example v1,i > 0, v2,i = 0. Therefore the op-

timization problem needs to be modified to alleviate this problem. The modification occurs

in the objective function. The new objective tries to minimize the products of elements of

both vectors as follows:

min
w,θ

vT
1 v2 +

k∏
i=1

v1,i +
k∏

i=1

v2,i

subject to eT (Aiw − eθ)+ = v1,i, i = 1, . . . , k (4.20)

eT (−Aiw + eθ)+ = v2,i, i = 1, . . . , k

Chapter 4. IntelliPost: Intelligent Postprocessing 91Chapter 4. IntelliPost: Intelligent Postprocessing 91Chapter 4. IntelliPost: Intelligent Postprocessing 91

If one class has many points, its class vector becomes larger which drives the solution as

defined in Equation 4.20 to favor to that class during optimization. In order to eliminate

this behaviour, the class vectors should be normalized as v1,i + v2,i = 1. The final modifi-

cation happens in the plus function which not differentiable at zero. To use conventional

optimization software, the plus function is replaced with:

p(x) = x +
1

α
log(1 + exp(−αx)) (4.21)

where α is some predefined constant (IntelliPost uses α= 100,000).

The final version of the mathematical program becomes:

min
w,θ

vT
1 v2 +

k∏
i=1

v1,i +
k∏

i=1

v2,i

p(eT (Aiw − eθ)) = u1,i, i = 1, . . . , k

p(eT (−A1w + eθ)) = u2,i, i = 1, . . . , k (4.22)

u1,i

u1,i + u2,i

= v1,i, i = 1, . . . , k

u2,i

u1,i + u2,i

= v2,i, i = 1, . . . , k

This optimization problem can be solved using a sequential quadratic programming

method [19] as implemented in the MATLAB optimization toolbox [40].

Building a Decision Tree with OC-SEP algorithm

In the IntelliPost implementation, we have used 7 attributes that construct the feature

space. In order to illustrate how OC-SEP algorithm learns from training samples, we have

used a hypothetical set of training samples which contains 2 dimensional features to make

Chapter 4. IntelliPost: Intelligent Postprocessing 92Chapter 4. IntelliPost: Intelligent Postprocessing 92Chapter 4. IntelliPost: Intelligent Postprocessing 92

visualization easier. In this example, OC-SEP constructs a decision tree that generalizes

remove, smooth and NOOP operations based on area and radial distance attributes which

were described in the previous section. The feature space is shown in Figure 4.10. The task

is to build a decision tree to separate these training samples with the OC-SEP algorithm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

radial distance

a
re

a

Feature Space

remove
smooth
noop

Figure 4.10: Training samples for OC-SEP decision tree algorithm.

After the training samples are given to OC-SEP algorithm, it constructs a data structure

with contains decision tree with information concerning separating planes. The first step

of the algorithm uses all training samples to solve the optimization problem that has been

defined in Equation 4.22. The solution of the problem give the separating plane parameters

w = [0.6487 0.0165], and θ = 1.0302. These separating planes give a line equation in R2

space which is shown as P1 in Figure 4.11a. At this point training samples are divided into

two groups: (1) all smooth samples on the right of P1, and (2) all remove and NOOP samples

on the left. The constructed decision tree up to this point is shown in Figure 4.11b.

Because the left side contains both remove samples and NOOP samples, the algorithm

Chapter 4. IntelliPost: Intelligent Postprocessing 93Chapter 4. IntelliPost: Intelligent Postprocessing 93Chapter 4. IntelliPost: Intelligent Postprocessing 93

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

radial distance

a
re

a
Feature Space

P1

remove
smooth
noop

Smooth
Remove

Noop

P1

(a) (b)

Figure 4.11: The first step of the algorithm. (a) Samples are divided into two partitions,
(b) The corresponding decision tree at this step, leaf of the tree represents
training samples.

iterates again. The new optimization problem with subdivided training samples is solved

based on Equation 4.22. The solution of this iteration yields P2 which give separating plane

parameters w = [1.91139 − 0.0229], and θ = 0.9646. This solution is illustrated in Figure

4.12a, and the corresponding decision tree is shown in Figure 4.12b. The algorithm stops

subdividing feature space at this point since all training samples are separated completely.

The final decision tree is shown in Figure 4.12b.

For evaluating a new test vector x with the constructed decision tree, the vector x is

presented to the first node of the decision tree, which compares it with P1. If the test

satisfies xT w > θ, the evaluation path takes right branch of the tree. Otherwise, the left

branch will be taken. If the left branch is taken, the test vector will be evaluated with respect

to P2. Depending on the test result, the class label will be assigned accordingly. As we can

Chapter 4. IntelliPost: Intelligent Postprocessing 94Chapter 4. IntelliPost: Intelligent Postprocessing 94Chapter 4. IntelliPost: Intelligent Postprocessing 94

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

radial distance

ar
ea

Feature Space

P2

remove
smooth
noop

Smooth

Remove

P1

P2

Noop

(a) (b)

Figure 4.12: The final step of the algorithm. (a) All training samples are separated com-
pletely. (b) The final decision tree contains two decision nodes, denoted by
P1 and P2, and every leaf represents a separate class.

see, the classification rule for each class can be defined as:

if xT wP1 > θP1 then the class is smooth

else

if xT wP2 > θP2 then the class is NOOP

else

the class is remove

As we see from the rule, it is not as intuitive as classical decision tree induction. The

OC-SEP algorithm provides smaller trees with oblique separating planes, which means better

generalization performance.

Chapter 4. IntelliPost: Intelligent Postprocessing 95Chapter 4. IntelliPost: Intelligent Postprocessing 95Chapter 4. IntelliPost: Intelligent Postprocessing 95

4.4.3 Region Feature Extraction

After the construction of the decision tree with OC-SEP algorithm is complete, IntelliPost

constructs a special data structure that contains all regions’ relevant information, which will

be used in the region refinement process. Before the system builds the data structure, layer

separation takes place to transform the initial segmented image to a series of binary images.

In other words, layer separation is nothing but binary thresholding process that separates

each defect layer into binary images. Each binary layer contains regions that are regions

type. Then IntelliPost applies connected component analysis to identify separate connected

sets (regions) in each binary image. All regions in the image are then labeled with a unique

number. All regions’ geometric feature values and a region adjacency graph are determined

and stored in a data structure which is to be used by the inference engine. The structure

is then sorted by a region’s size from small to large. Region sorting is important because

smaller regions tend to be more sensitive to morphological operations such as smooth. If the

smooth operation is applied to bigger regions, the result may eliminate smaller regions are

inside of the larger region. The process of layer separation and geometric feature extraction

are illustrated in Figure 4.13.

Each entity in the structure contains a region’s identification number, a region’s geometric

features that are calculated in a similar way as in the learn mode, and “processed” flag that

indicates if the region has been processed. Separately, another matrix is used to store region

adjacency information. An example region adjacency graph is shown in Figure 4.14. This

information can also be represented as a sparse matrix that contains zeros and ones. Its rows

represent region’s identification numbers, and its columns contain one where the adjacent

regions are present.

Chapter 4. IntelliPost: Intelligent Postprocessing 96Chapter 4. IntelliPost: Intelligent Postprocessing 96Chapter 4. IntelliPost: Intelligent Postprocessing 96

L
A

Y
E

R
 S

E
P

A
R

A
T

IO
N

 P
R

O
C

E
S

S

R
E

G
IO

N
 L

A
B

E
L
IN

G
 A

N
D

F
E

A
T

U
R

E
 E

X
T

R
A

C
T

IO
N

LAYERS REGIONS FEATURES

Figure 4.13: Region analysis algorithm. The initial segmented image is separated into
binary images (layers). Connected component analysis is used to distinguish
separate regions for each layer. Geometric features are determined to populate
a data structure for region refinement analysis.

4.4.4 Region Refinement

The final step of the run mode is to analyze all regions in the structure that were obtained

in the previous step. Using the knowledge base that was stored during the learn mode,

a decision tree is constructed by using the OC-SEP decision tree induction algorithm. As

described in the previous section, the OC-SEP decision tree induction algorithm partitions

feature space with oblique separating planes. Using oblique separating plane results in a

smaller tree, which implies better generalization performance.

After a decision tree has been constructed, IntelliPost analyzes every region in the struc-

ture that was constructed in the previous step. In this step, the IntelliPost inference engine

Chapter 4. IntelliPost: Intelligent Postprocessing 97Chapter 4. IntelliPost: Intelligent Postprocessing 97Chapter 4. IntelliPost: Intelligent Postprocessing 97

R1

R3

R4

R5

R2

�

� �

��

Neighboring regions

R
e

fe
re

n
ce

 r
e

g
io

n
s

1 2 3 4 5

1

2

3

4

5

1

1

11

1

1

1

1

1

10

0

0 0

11 10 0

0

1 1 10 0

(a) (b) (c)

Figure 4.14: (a) A typical segmented image (b) The region adjacency graph with numbers
in graph nodes indicating region identification numbers. (c) The region ad-
jacency matrix, in which each nonzero entry rij in the matrix indicates that
region ri is adjacent to rj.

applies the generated decision tree to select an operation. Because regions in the structure

are sorted from small to large in size, the order of analyzing region starts with the smallest

region to the largest region. The inference engine analyze region features along with the

region adjacency information to determine what refinement process should be performed.

Finally IntelliPost performs the requested operation on the region under analysis.

Let Ri and Vi denote a region and its feature vector respectively. The refinement process

can be represented as follows:

f = IE(F , Ri, Vi) (4.23)

R
′

i = f(Ri)

where F is the function space that contains all possible postprocessing functions and IE is

the inferencing process. The output of the inferencing process is a refinement operation f for

region Ri. Once the region refinement function f is chosen, the selected refinement function

is used to update region Ri to get R
′
i. The basic steps of region processing are shown in

Chapter 4. IntelliPost: Intelligent Postprocessing 98Chapter 4. IntelliPost: Intelligent Postprocessing 98Chapter 4. IntelliPost: Intelligent Postprocessing 98

Figure 4.15.

�����������	

�����
���������

����	��	��������	

��	�������������

����	��	���
����
��

�
��
��
������

	������	
�	��

���	��

�����

�	������������

����	��	�
����

����
������	

����	����

�	����	�����
�

	������	
�
��	����

������	

��	�����������������	�

�	���
����
���
��
�

�
������	������	

�	��

���

��

��

����������	

����������

��	�������

��

����������	
�

��	�������

�����

��	�

Figure 4.15: Overall region processing algorithm for the run mode of IntelliPost.

As we can see in Figure 4.15, the algorithm starts with the first region in the region

structure. In the second step, it checks whether this region was previously processed or not.

This test is important for the case of merge operation. If the refinement procedure is asked to

merge the current region, it needs another region for merging. Then it searches for the best

candidate region nearby to be merged. Then the refinement resumes from where it was before

searching another region for merging. There will be at least one region in the structure that

Chapter 4. IntelliPost: Intelligent Postprocessing 99Chapter 4. IntelliPost: Intelligent Postprocessing 99Chapter 4. IntelliPost: Intelligent Postprocessing 99

has been already processed (the one that is merged) which needs no refinement anymore.

This region should be labeled as processed to avoid any confusion. When the refinement

procedure finds regions that are labeled as processed, it skips to the next region in the region

data structure.

The inference engine determines what kind of refinement operation should be applied to

each presented region. IntelliPost then executes operation on that region. The process of

refinement is recursive procedure that refines a region iteratively until the inference engine

give NOOP for the region. This iterative mechanism allows the construction of a sequence

of refinement operations on a region. Every time each a region is processed, both region

adjacency graph and the data structure get updated accordingly. The refinement procedure

continues until every region gets analyzed and processed by the inference engine.

After performing region refinement on the individual layers, IntelliPost needs to combine

all the processed layers into a final composite result. However, some regions will have grown

to overlap other regions. To resolve these conflicts, we have formulated precedence rules

covering all region types. The precedence rules determine which defect label is applied when

a pixel is assigned two different labels by separate postprocessing operations.

In the case of wood application, we have chosen precedence rules that are shown in Table

4.4. Whenever clear wood overlaps with other defect types, clear wood surrenders its pixel

label at that specific point. In other words, defect layers have precedence over the clear

wood layer. The first column and the last row of Table 4.4 indicate overlapping pixel layers.

IntelliPost uses manually specified precedence table to resolve overlapping layer. This table

can be modified and edited by the user based on the type of application and postprocessing

requirement.

Chapter 4. IntelliPost: Intelligent Postprocessing 100Chapter 4. IntelliPost: Intelligent Postprocessing 100Chapter 4. IntelliPost: Intelligent Postprocessing 100

Table 4.4: Precedence rules for overlapping layers. The first column and last row of the
table represent overlapping layer, the rest shows the winner when conflict hap-
pens.

Knot Knot

Split Split Split

Decay Decay Knot Split

Bark Bark Bark Bark Bark

Clear Wood Knot Split Decay

4.5 Summary

This chapter has presented the architecture of the IntelliPost system. Both learn mode and

run mode are similar in how the system components are used, except that the information

flow changes direction. The learn mode architecture was designed to obtain a region’s relevant

information and a region refinement function associated with it. In the run mode, the

system extracts the relevant information for each region, and searches for the best refinement

function. Inferencing can be seen as search for optimal sequence of refinement operations.

Because IntelliPost provides for interaction with a user, training speed is very important

for interactivity. That was the main reason for selecting a decision tree based inferencing

architecture.

Chapter 5

Results and Discussion

5.1 Overview

The previous chapter has presented the architecture of IntelliPost for both learn mode and

run mode. The knowledge and information that are captured in the learn mode are used in

run mode to perform similar postprocessing operations. This chapter presents the results of

several tests of IntelliPost using a variety of CT/MRI images.

Because IntelliPost is the last component of an overall CT image segmentation system,

its performance should be evaluated on the basis of segmentation alone. Although the

segmentation problem has been studied for many years, there is no universally accepted

method and/or framework to evaluate a segmentation algorithm’s performance. Whereas

much work as been devoted to the development of segmentation algorithms, considerably

less effort has been put into performance evaluation. Many studies have been proposed to

fill the void [90, 200, 7, 151, 89]. But it is still a research issue.

This chapter starts by describing the methodology that has been used for evaluating the

101

Chapter 5. Results and Discussion 102Chapter 5. Results and Discussion 102Chapter 5. Results and Discussion 102

performance of IntelliPost. The third section presents information about CT/MRI datasets

that have been used to evaluate the overall system. Two different datasets have been used:

hardwood log datasets, and medical brain scan MRI/CT datasets. The forth section in-

troduces segmentation performance metrics that were used to find quantitative results for

segmentation. Section 5 and 6 provide quantitative results both for hardwood log datasets

and for medical CT/MRI datasets. Section 7 concludes the chapter with a brief summary.

5.2 Methodology for Experiments

If we wish to create a postprocessing system for presegmented CT images in a manner similar

to that of a human expert, then we should ask a human expert how he or she would analyze

a given CT image. This process leads us to create manually segmented images for a given

image.

Since we deal with the problem of image segmentation, we need to have a reference image

(i.e., ground truth) with which to compare the end result of a segmentation algorithm. For

medical image applications, we obtained ground truth information for a publicly available

MRI dataset. The corresponding ground truth for a medical CT dataset was not available

therefore ground truth images are generated manually. The application of CT imaging for

forest products industry is relatively new. Because of that, no publicly available log CT scan

datasets with ground truth segmentation were available.

5.2.1 Experimental Evaluation

An overview of the experimental setup is illustrated in Figure 5.1. The input image is

processed by an initial segmentation algorithm. The output is a presegmented slice that

Chapter 5. Results and Discussion 103Chapter 5. Results and Discussion 103Chapter 5. Results and Discussion 103

needs refinement. Segmentation measures that will be introduced in the next section will be

obtained“before”and“after”postprocessing. We will use a reference image for comparison of

a presegmented image and the corresponding result image. The segmentation performance

measure will be obtained by using these two image pairs. One can see that the reference

image play a very crucial role on this experiment. Two USDA Forest Service researchers from

the Brooks Forest Products Center of Virginia Tech delineated the boundaries of defects on

given CT images for the generation of ground truth datasets.

The ground truth images for the medical datasets were not available for the CT brain

scan dataset. We had to follow the same procedure as in the case of log datasets, and

performed segmentation manually. In both datasets, the outlined CT images have been used

as reference images for comparing with the final segmentation of the system as illustrated in

Figure 5.1. For the MRI dataset, the provided ground truth was used for the evaluation.

����������
	
����������

�����

���
����
�����

�����
����
�

�����������������������������
	����
��������
�������������

��������� !�
���"#$�"%�&!$�
'!"�'$!(�"" ��

��������� !�
���"#$�"�&��$
'!"�'$!(�"" ��

Figure 5.1: Comparing segmentation improvement between presegmented image and the
result image. A reference image is generated by a human expert for obtaining
segmentation performance measures.

5.2.2 Generation of Ground Truth

In order to obtain a ground truth reference for hardwood log CT image datasets, we have used

an off-the-shelf graphical program that lets the user draw an outline of defects on a displayed

Chapter 5. Results and Discussion 104Chapter 5. Results and Discussion 104Chapter 5. Results and Discussion 104

CT image. This is saved as a ground truth reference image. We have used Macromedia’s

Fireworks application for this purpose. This application was specifically designed to create

vector graphics for internet applications. It provides easy-to-use contour outlining tools.

A typical screenshot of this application is shown in Figure 5.2. Macromedia’s Fireworks

provides layer functionality to work with different defect layers. The user can enable and

disable those layers or control transparency.

Figure 5.2: Macromedia’s Fireworks screenshot for outlining defect’s boundaries.

Chapter 5. Results and Discussion 105Chapter 5. Results and Discussion 105Chapter 5. Results and Discussion 105

5.3 CT/MRI Image Datasets

We have tested IntelliPost with two different dataset groups: several hardwood log CT image

datasets, and medical CT and MRI head scan datasets. The hardwood log CT image datasets

were our primary focus in this study. The medical datasets were used to evaluate IntelliPost

in biomedical imaging. For the medical dataset, we have used the BrainWeb project dataset

which is generated by a MRI simulator. Due to difficulties in obtaining medical datasets for

research use, we have chosen the simulation approach.

5.3.1 Hardwood Log Data Sets

Hardwood log CT image datasets were obtained from several sources as listed in Table 5.1.

The datasets RK01 and RK12 were obtained from GE Medical when the project was started.

The datasets known as 2048, 2049, 2051, and 5357 were obtained from a CT scanner at the

Virginia-Maryland Regional College of Veterinary Medicine. The remaining datasets were

provided by Forintek Canada Inc.

In Table 5.1, ‘Study Number’ indicates a unique code that helps to identify each log sec-

tion. ‘Number of Slices’ indicates how many images are in that log dataset. ‘Slice Thickness’

shows spatial distance between voxel centers in two consecutive slices for the cases of RK01

and RK12 datasets, and spatial thickness of CT images (i.e, the voxel size in z direction)

for the remaining datasets. Finally ‘CT Image Size’ shows the number of rows and columns

of each CT slice. In each study, we have partitioned the dataset into two groups: a training

dataset, and a testing dataset.

Chapter 5. Results and Discussion 106Chapter 5. Results and Discussion 106Chapter 5. Results and Discussion 106

Table 5.1: Summary of hardwood log datasets.

Study

Number

Data Source Species Number

of Slices

Slice

Thickness

CT Image

Size

Pixel Size

rk01 GE Medical Red Oak 45 1 mm 256×256 1 mm × 1 mm

rk12 GE Medical Red Oak 10 2.5 mm 256×256 2.5 mm × 2.5 mm

2048 Veterinary Medicine Red Oak 18 10 mm 512×512 0.93 mm × 0.93 mm

2049 Veterinary Medicine Red Oak 23 10 mm 512×512 0.93 mm × 0.93 mm

2051 Veterinary Medicine Red Oak 17 10 mm 512×512 0.93 mm × 0.93 mm

5357 Veterinary Medicine Red Oak 36 10 mm 512×512 0.93 mm × 0.93 mm

567b Forintek Sugar Maple 103 10 mm 512×512 0.65 mm × 0.65 mm

578a Forintek Sugar Maple 97 10 mm 512×512 0.65 mm × 0.65 mm

bille3-1 Forintek Sugar Maple 89 10 mm 512×512 0.93 mm × 0.93 mm

bille3-2 Forintek Sugar Maple 100 10 mm 512×512 0.93 mm × 0.93 mm

bille4-1 Forintek Sugar Maple 55 10 mm 512×512 0.96 mm × 0.96 mm

bille5-1 Forintek Sugar Maple 105 10 mm 512×512 0.93 mm × 0.93 mm

bille6-1 Forintek Sugar Maple 100 10 mm 512×512 0.93 mm × 0.93 mm

bille6-2 Forintek Sugar Maple 97 10 mm 512×512 0.93 mm × 0.93 mm

bille7-2 Forintek Sugar Maple 100 10 mm 512×512 0.72 mm × 0.72 mm

5.3.2 Medical Brain CT/MRI Scan Data Sets

We have used two medical image datasets to test IntelliPost’s performance in other appli-

cation domain. The CT dataset was obtained from the Washington University School of

Medicine in St. Louis, Missouri which was available for research and instructional purposes.

An MRI dataset was obtained from BrainWeb project web site1, along with its ground truth.

The two datasets are summarized in Table 5.2. To test the system, we have split the datasets

equally: training and testing set. In each case, we have used the training set to train both

the ANN and IntelliPost. After training step was complete, images from test sets were

segmented by the ANN. Then segmented images were postprocessed by IntelliPost. Post-

processed images were compared against ground truth images to obtain quantitative results

for segmentation improvement.

1BrainWeb Project Web Site: http://www.bic.mni.mcgill.ca/brainweb/

Chapter 5. Results and Discussion 107Chapter 5. Results and Discussion 107Chapter 5. Results and Discussion 107

Table 5.2: Summary of medical CT and MRI datasets.

Study Num-

ber

Data Source Number

of Slices

Slice

Thickness

CT/MRI

Image Size

Voxel Size

algotech-23

(CT)

Univ. of Washington

School of Medicine

163 1.30 mm 340×340 0.61 mm × 0.61 mm

BrainWeb

MRI Dataset

McGill University 181 1 mm 181×217 1 mm × 1 mm

5.4 Segmentation Performance Metrics

5.4.1 Overview

Evaluation of segmentation performance is difficult because this tends to vary based on

the application domain [80]. Performance measures have been described in a few studies

[198, 103, 90, 7, 151, 89], but this is still an open research issue and there is no widely

accepted framework for evaluation of segmentation algorithms.

Several evaluation and comparison methods have been proposed in different research

areas: edge detection schemes [54], global thresholding methods [102], optical flow estima-

tion and segmentation [9], stereo matching [21], and shape from shading [199]. Generally,

attempts are divided into two major categories: analytical and empirical methods [200].

Analytical methods look at an algorithm’s principles and properties. Empirical methods

indirectly evaluate segmentation algorithms by measuring the quality of segmentation re-

sults. Zhang [200] divides empirical methods into “goodness” methods and “discrepancy”

methods. Goodness methods look for some desirable properties of segmented images, such

as intra-region uniformity [188], inter-region contrast [103], and region shape [156]. On the

other hands, discrepancy methods measure differences to a predefined reference segmenta-

tion (ground truth). Quantitative discrepancy measures could be further subdivided into

two groups: image based discrepancy metrics, and region based discrepancy metrics.

Chapter 5. Results and Discussion 108Chapter 5. Results and Discussion 108Chapter 5. Results and Discussion 108

5.4.2 Confusion Matrix Analysis

The most common empirical discrepancy analysis method is probably confusion matrix anal-

ysis [198]. This method presents quantitative discrepancy results between empirical classifi-

cation results and the ideal case.

The size of a confusion matrix is determined by the number of classes in a classification

problem. A confusion matrix C of dimension N ×N can be constructed as:

C =

c11 · · · c1N

... cij
...

cN1 · · · cNN

 (5.1)

where rows of the matrix represent classes for ideal case, and columns of the matrix represent

the predicted class. Each entry cij represents the number of class i samples that were classified

as class j by the classification algorithm. The diagonal of the matrix represents the number

of correct classifications, and off-diagonal elements represent the number of samples that are

incorrectly classified. For an ideal classifier, the matrix is diagonal.

Three error measures can be defined for each class k, which can all be used to describe class

detection accuracy of a segmentation algorithm. The false negative rate is the proportion of

class k samples that are incorrectly classified. This is known as Type I error in the statistical

literature. The false negative rate is defined as:

Mk
I =

(
∑N

i=1 Cki)− Ckk∑N
i=1 Cki

(5.2)

where the numerator represents the number of samples of class k that are incorrectly classi-

fied, and the denominator represents the total number of samples of class k.

Chapter 5. Results and Discussion 109Chapter 5. Results and Discussion 109Chapter 5. Results and Discussion 109

In a similar way, the false positive rate, which is known as a Type II error, is defined as:

Mk
II =

(
∑N

i=1 Cki)− Ckk

(
∑N

i=1

∑N
j=1 Cij)−

∑N
i=1 Cik

(5.3)

where the numerator represents the number of samples of other classes that are incorrectly

classified as class k. The denominator is the total number of samples of other classes.

The true positive rate is the number of samples of class k that are correctly classified as

class k. The true positive rate is defined as:

Mk
III =

Ckk∑N
i=1 Cki

(5.4)

where Ckk represents the number of samples that are correctly classified and the denominator

represents the number of samples of class k.

Single summary statistics that can be derived from a multiclass confusion matrix analysis

is defined as:

P =
Tr(C)∑

ij Cij

(5.5)

where Tr(.) denotes trace of a confusion matrix sum of diagonal elements. In Equation 5.2,

Equation 5.3, Equation 5.4, and Equation 5.5, each class is weighted equally.

5.4.3 ROC Analysis

Receiver Operating Characteristics (ROC) analysis is a classical method in signal detection

theory [70, 182, 177]. The use of ROC has been extended to statistics, to comparison of med-

ical diagnostic techniques in medicine [77, 91, 31], and to machine learning as an alternative

method for comparing learning systems [147]. It is gradually gaining popularity in the com-

Chapter 5. Results and Discussion 110Chapter 5. Results and Discussion 110Chapter 5. Results and Discussion 110

puter vision and image analysis community for comparative evaluation of algorithms such

as color models [5], edge detectors [1, 24], and appearance identification [52]. Receiver oper-

ating characteristics plots denotes a coordinate system used for visualizing the performance

of a classifier, where the true positive rate (TPR) (sensitivity) is plotted on the vertical

axis and the false positive rate (FPR) (1-specificity) on the horizontal axis. This allows for

a 2-dimensional comparison of classifiers. ROC graphs separate classification performance

from class distribution or error cost and they provide a valuable visualization technique for

evaluating the behaviour of a classifier. Using ROC analysis, the operating point of a classi-

fier can be selected to obtain a good trade-off of classification performance. In general, every

classifier has some parameters to be adjusted, and by varying these parameters, classification

performance is changed in which the operating condition is represented as a point in a ROC

curve. By changing these parameters, a curve is produced, which illustrates the classification

error trade offs or a trade-off between true positive rate and false positive rate.

Even though ROC analysis is intended for two-class classification problems, it can be

easily extended to the multiclass case by separately taking each class as positive and the rest

as the negative class.

5.4.4 Area Similarity Measure

Let AS be a set of points on segmented image region, and AG be a set of points on a ground

truth region. A common method currently used in magnetic resonance image segmentation

is comparing the area between two region RS and RG [7],

Sarea(RS, RG) =
2n(AS ∩ AG)

n(AS) + n(AG)
(5.6)

Chapter 5. Results and Discussion 111Chapter 5. Results and Discussion 111Chapter 5. Results and Discussion 111

where n(A) represents the number of pixels in A. Based on observation in [7], Sarea > 0.7

indicates good segmentation performance.

Another area based similarity measure that is commonly used in the literature is known

as area overlapping index. The overlapping index is defined as:

overlap =
n(GT ∩ AS)

n(GT ∪ AS)
(5.7)

where GT , and AS denote the size of region in a ground truth, automatic segmentation,

respectively. n(.) denotes the number of pixels. Overlapping index varies in the range of

between 0 and 1. The lesser the less similar regions are. Ideally, if two regions are identical,

overlapping index becomes one.

5.4.5 Shape Similarity Measure

The area similarity measure provides a quantitative results about how similar two regions in

terms of their sizes (or areas) and their spatial locations are. But it may be less informative

with respect to details on the shapes of the two contours. Two different pairs of regions may

result in the same area similarity values. An example of this is illustrated in Figure 5.3.

Recent work [143] has introduced another shape similarity measure, which is a modification

of the chamfer matching method. This is based on earlier work by [36] and modified slightly.

Let CS be a set of points on the contour of a region from a segmented image, and CG be the

set of points on the contour from a ground truth region. The goal is to obtain a similarity

measure Sshape ∈ [0, 1] that quantitatively measures the similarity between two contours.

Obtaining the similarity measure requires several steps. First, the signed Euclidean distance

Chapter 5. Results and Discussion 112Chapter 5. Results and Discussion 112Chapter 5. Results and Discussion 112

(a) (b)

(c) (d)

Figure 5.3: Two different regions that give the same area similarity measure with respect
to ground truth. (a) Ground truth region. (b) Rectangular region that yields
Sarea = 2

3
. (c) Ground truth. (d) a different region that gives the same area

similarity measure.

transform is applied to both contours. The signed distance transform is defined as:

D(q) =

 −minp∈C ‖p− q‖ if p is inside C

minp∈C ‖p− q‖ if p is outside C
(5.8)

where q is a pixel coordinate in the image domain, and p ∈ C represents a pixel on the contour

C, and ‖·‖ is the Euclidean norm. By applying signed distance map to both contours, DS

and DG distance maps are obtained respectively. Second, phase map calculation is performed

as follows:

Φ(x, y) = tan−1 ∇yD(x, y)

∇xD(x, y)
(5.9)

where ∇xD(x, y) and ∇yD(x, y) represents the x and y components of the gradient of the

signed distance map D(x, y), respectively. After phase transform is performed, we compute

Chapter 5. Results and Discussion 113Chapter 5. Results and Discussion 113Chapter 5. Results and Discussion 113

normalized phase similarity between two contours as follows:

Sphase =
|ΦS − ΦG − π|

π
(5.10)

where ΦS and ΦG are phase maps of contours CS and CG respectively. The value of Sphase

lies in the range [0,1], where the value 1 indicates that both contours have the same phase

and a value of 0 indicates the maximum phase difference of π. Finally the shape similarity

measure is obtained by taking weighted sum of the phase similarity measure along CS against

CG as:

Sshape(CG, CS) =
1

n(CS)

∑
(x,y)∈CS

ΓG(x, y) · Sphase(x, y) (5.11)

where n(CS) indicates the number of pixels on the contour CS, and ΓG(x, y) denotes weighting

function that is derived from DG as:

ΓG(x, y) = exp{−D2
G(x, y)

σ2
} (5.12)

where σ2 is a positive constant.

5.5 Results for Hardwood Log Datasets

5.5.1 Confusion Matrix Analysis Results

This section describes the segmentation performance of IntelliPost on the CT log datasets.

Each dataset has been divided into two equal-sized partitions: a training partition and a test

partition. Each dataset’ training partition was used to train the ANN module and IntelliPost

independently of other training set. To train the ANN, the back-propagation algorithm was

Chapter 5. Results and Discussion 114Chapter 5. Results and Discussion 114Chapter 5. Results and Discussion 114

applied using the entire training set. The ANN was slightly overtrained in each case to see

the effect of postprocessing better.

Since the entire system was implemented in MATLAB, the training of the ANN system

was performed in MATLAB environment as well. We used neural network toolbox to imple-

ment the ANN module. For all datasets, the size of sample window was kept the same which

was 5 × 5. In back-propagation algorithm, the learning rate was set to 0.2 and momentum

constant was set to 0.8 for all datasets. Those parameter did not change throughout the

experiment. The goal for training was set to “mean square error” function and the value of

mean square error was set to 0.02.

The trained ANN module was used to segment images from the other set in training par-

tition. Segmented images was stored to train IntelliPost. A USDA Forest Service researcher

from the Brooks Forest Product Center at Virginia Tech used IntelliPost to postprocess

segmented images which were segmented by the ANN module. During the training of Intel-

liPost, he mostly used ‘remove’, ‘smooth‘, ‘enlarge’, ’noop’ operation to carry out refinement

on segmented images. The ‘merge’ operation was rarely used due to limited case faced train-

ing dataset. He found out that ‘remove‘ and ’smooth‘ operations the most commonly used

operation than others. After training IntelliPost was complete, images from test partition

were postprocessed by IntelliPost, and the resultant images were saved as postprocessed im-

ages. In each case, two images (“before” and “after” postprocessing) were compared against

the corresponding ground truth image at the pixel level.

Out of this analysis, two confusion matrices have been obtained each image slice in the

corresponding dataset. We have chosen one representative image slice per dataset to illustrate

the performance of the system. The confusion matrices for the GE Medical and Veterinary

Medicine datasets are listed in Table 5.3 through Table 5.14. As we see from those results,

the overall segmentation accuracy for each defect class has been improved by IntelliPost in

Chapter 5. Results and Discussion 115Chapter 5. Results and Discussion 115Chapter 5. Results and Discussion 115

general. Background class in confusion matrices were eliminated since background separation

was performed in the preprocessing module. IntelliPost does not have any control over

background thresholding process therefore including background class in confusion matrix

does not give any relevant information regarding to segmentation improvement with respect

to background.

In a few cases, the ANN does not detect a region where one exists. The corresponding

ground truth image contains that region. This is known as undersegmentation, as we see in

the 2048 dataset (see Figure 5.9). The knot defects in the 10 o’clock and 2 o’clock directions

have not been detected by the ANN algorithm, whereas they appear in the corresponding

ground truth image. IntelliPost cannot do anything in this situation because the image under

analysis does not contain such regions. Such cases limit the ability of IntelliPost to improve

segmentation performance.

The false positive and true positive rates were obtained using Equation 5.3 and Equation

5.4. The results are listed in Table 5.15 through Table 5.17. Intuitively we would like to

see that true positive rates increase as well as false positive rates decrease. For cases of ∅

detected pixels and ∅ ground truth pixels, the true positive rate of 1 has been assumed. If

a postprocessed image contained just one pixel of a defect class that does not exist in the

ground truth image, then the true positive rate would be zero. As we can see from those

results, the overall segmentation performance has been improved since the true positive rates

increase, and false positive rates decrease in general.

Visual results for RK01, RK12, 2048, 2049, 2051, and 5357 are presented in Figure 5.7

through Figure 5.12. The result for RK12, which is shown in Figure 5.8, deserves additional

discussion. This image has a large decay region that contains a large split defect. Because of

the nature of split defects, individual pixels are often low enough in density to be classified

as voids during the early background thresholding step. In a typical CT image, splits may

Chapter 5. Results and Discussion 116Chapter 5. Results and Discussion 116Chapter 5. Results and Discussion 116

therefore appear as actual split defects, or as background pixels that are ignored during

classification and postprocessing steps. In the figure, pixels classified as split defects are

visible as a narrow, linear region with values near the low end of the clear wood density

values. The physical split happens to be narrower that the size of a pixel, so the CT values

represent an average density for the void and the surrounding wood.

The ANN segmentation module bas been trained to detect low-density, “subresolution”

splits. However, large voids are eliminated by background thresholding and cannot be de-

tected by the ANN segmentation module. A more complete analysis of split defects can be

performed [159], but is outside the scope of this dissertation.

The reference image associated with this specific slice of RK12 was outlined in the light of

the aforementioned limitation. Because the ANN module does not process the larger voids,

these were also ignored by IntelliPost. The corresponding background pixels were ignored in

the confusion matrix analysis.

In a similar way, the confusion matrices for the Forintek datasets are listed in Table

5.19 through Table 5.23. The number of defect types is more than the previous case. The

improvement is not as dramatic as for the previous case, and sometimes the segmentation

performance decreases (for example, the bille3-1 dataset). Their corresponding true positive

and false positive rates are listed in Table 5.25 through Table 5.27. Visual results showed (see

Figure 5.13 through Figure 5.15) that IntelliPost provided less improvement for the Forintek

datasets.

Overall correct segmentation rates are listed in Table 5.29 and Table 5.30 for hardwood

log datasets. The results indicates that IntelliPost improves overall segmentation accuracy.

The average segmentation improvement was 1.92% for RK01, RK12, 2048, 2049, 2051, and

5357 datasets. For the case of Forintek dataset, the average improvement was 9.45% for the

Chapter 5. Results and Discussion 117Chapter 5. Results and Discussion 117Chapter 5. Results and Discussion 117

selected slices in the dataset. Postprocessed region size can have a large effect on the single

segmentation accuracy metric (Equation 5.5). This can occur, for example, if a big region

is initially segmented incorrectly, but is then corrected by IntelliPost. An example of this

is shown in the case of 567b of the Forintek dataset, where IntelliPost changes a heartwood

region to sapwood by merging those pixels into a larger sapwood region. Such postprocessing

operations improves segmentation accuracy dramatically.

Confusion matrix analysis did not consider a separate “background” class, since seg-

mentation of background is controlled by Otsu thresholding in the preprocessing module.

IntelliPost had no ability to change the thresholding parameter. Confusion matrices were

obtained through the comparison of foreground pixels of segmented images versus foreground

pixels of the corresponding ground truth images.

Table 5.3: Confusion matrices for slice 3 from dataset RK01. Classification accuracy values
are shown before and after postprocessing as compared with ground truth. There
are five classes: clear wood (CW), knot (KN), split (SP), decay (DC), and bark
(BR).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

RK01 3

CW KN SP DC BR

CW 21556 642 117 119 857

KN 111 1336 0 0 19

SP 17 0 41 0 0

DC 0 0 0 0 0

BR 1329 1 11 100 2300

CW KN SP DC BR

CW 21621 707 16 52 897

KN 86 1365 0 0 15

SP 17 0 41 0 0

DC 0 0 0 0 0

BR 1295 0 0 0 2442

Chapter 5. Results and Discussion 118Chapter 5. Results and Discussion 118Chapter 5. Results and Discussion 118

Table 5.4: Improvement in confusion matrix after postprocessing for slice 3 from dataset
RK01. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

RK01 3

CW KN SP DC BR

CW 65 65 -101 -67 40

KN -25 29 0 0 -4

SP 0 0 0 0 0

DC 0 0 0 0 0

BR -34 -1 -11 -95 142

Table 5.5: Confusion matrices for slice 5 from dataset RK12. Classification accuracy values
are shown before and after postprocessing as compared with ground truth. There
are five classes: clear wood (CW), knot (KN), split (SP), decay (DC), and bark
(BR).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

RK12 5

CW KN SP DC BR

CW 17381 367 30 366 644

KN 266 54 35 21 0

SP 0 0 0 0 0

DC 718 0 240 7180 9

BR 365 9 58 91 2762

CW KN SP DC BR

CW 17448 346 0 319 675

KN 362 0 0 14 0

SP 0 0 0 0 0

DC 817 0 73 7257 0

BR 282 0 0 18 2985

Table 5.6: Improvement in confusion matrix after postprocessing for slice 5 from dataset
RK12. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

RK12 5

CW KN SP DC BR

CW 67 -21 -30 -47 31

KN 96 -54 -35 -7 0

SP 0 0 0 0 0

DC 99 0 -167 77 -9

BR -83 -9 -58 -73 223

Chapter 5. Results and Discussion 119Chapter 5. Results and Discussion 119Chapter 5. Results and Discussion 119

Table 5.7: Confusion matrices for slice 15 from dataset 2048. Classification accuracy values
are shown before and after postprocessing as compared with ground truth. There
are five classes: clear wood (CW), knot (KN), split (SP), decay (DC), and bark
(BR).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

2048 15

CW KN SP DC BR

CW 85928 2951 0 20 81

KN 2481 5714 0 0 65

SP 0 0 0 3 0

DC 0 0 0 0 0

BR 4411 0 0 917 11624

CW KN SP DC BR

CW 85881 3067 0 0 32

KN 2546 5714 0 0 0

SP 0 0 0 0 0

DC 0 0 0 0 0

BR 4127 0 0 0 12718

Table 5.8: Improvement in confusion after postprocessing for slice 15 from dataset 2048.
The difference between postprocessed and initial segmentation as compared with
ground truth. In most cases, diagonal elements increase and off-diagonal ele-
ments decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

2048 15

CW KN SP DC BR

CW -47 116 0 -20 -49

KN 65 0 0 0 -65

SP 0 0 0 -3 0

DC 0 0 0 0 0

BR -284 0 0 -917 1094

Table 5.9: Confusion matrices for slice 5 from dataset 2049. Classification accuracy values
are shown before and after postprocessing as compared with ground truth. There
are five classes: clear wood (CW), knot (KN), split (SP), decay (DC), and bark
(BR).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

2049 5

CW KN SP DC BR

CW 63050 3897 0 24 400

KN 439 2345 0 0 25

SP 0 0 0 0 0

DC 0 0 0 0 0

BR 2455 1 0 562 8384

CW KN SP DC BR

CW 63292 3794 0 0 285

KN 437 2372 0 0 0

SP 0 0 0 0 0

DC 0 0 0 0 0

BR 2093 0 0 0 9309

Chapter 5. Results and Discussion 120Chapter 5. Results and Discussion 120Chapter 5. Results and Discussion 120

Table 5.10: Improvement in confusion matrix after postprocessing for slice 5 from dataset
2049. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

2049 5

CW KN SP DC BR

CW 242 -103 0 -24 -115

KN -2 27 0 0 -25

SP 0 0 0 0 0

DC 0 0 0 0 0

BR -362 -1 0 -562 925

Table 5.11: Confusion matrices for slice 1 from dataset 2051. Classification accuracy values
are shown before and after postprocessing as compared with ground truth.
There are five classes: clear wood (CW), knot (KN), split (SP), decay (DC),
and bark (BR).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

2051 1

CW KN SP DC BR

CW 53092 548 0 31 691

KN 783 2111 0 0 79

SP 0 0 0 0 0

DC 0 0 0 0 0

BR 1985 0 0 581 6936

CW KN SP DC BR

CW 54221 80 0 0 61

KN 867 2106 0 0 0

SP 0 0 0 0 0

DC 0 0 0 0 0

BR 1600 0 0 0 7902

Table 5.12: Improvement in confusion matrix after postprocessing for slice 1 from dataset
2051. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

2051 1

CW KN SP DC BR

CW 1129 -468 0 -31 -630

KN 84 -5 0 0 -79

SP 0 0 0 0 0

DC 0 0 0 0 0

BR -385 0 0 -581 966

Chapter 5. Results and Discussion 121Chapter 5. Results and Discussion 121Chapter 5. Results and Discussion 121

Table 5.13: Confusion matrices for slice 3 from dataset 5357. Classification accuracy values
are shown before and after postprocessing as compared with ground truth.
There are five classes: clear wood (CW), knot (KN), split (SP), decay (DC),
and bark (BR).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

5357 3

CW KN SP DC BR

CW 36591 451 125 0 1232

KN 296 3424 1 0 270

SP 27 0 52 0 0

DC 0 0 0 0 0

BR 954 4 0 0 7900

CW KN SP DC BR

CW 37445 424 12 0 518

KN 322 3430 0 0 239

SP 27 0 52 0 0

DC 0 0 0 0 0

BR 198 1 0 0 8659

Table 5.14: Improvement in confusion matrix after postprocessing for slice 3 from dataset
5357. The difference between postprocessed and initial segmentation as com-
pared with ground truth. In most cases, diagonal elements increase and off-
diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

5357 3

CW KN SP DC BR

CW 854 -27 -113 0 -714

KN 26 6 -1 0 -31

SP 0 0 0 0 0

DC 0 0 0 0 0

BR -756 -3 0 0 759

Chapter 5. Results and Discussion 122Chapter 5. Results and Discussion 122Chapter 5. Results and Discussion 122

Table 5.15: True positive rates for selected images in datasets RK01, RK12, 2048, 2049,
2051, and 5357. The true positive rates generally increase for each class after
postprocessing. There are five classes: clear wood (CW), knot (KN), split (SP),
decay (DC), and bark (BR).

Dataset Slice

Number

Before Postprocessing After Postprocessing

True Positive Rate True Positive Rate

CW KN SP DC BR CW KN SP DC BR

RK01 3 0.9255 0.9113 0.7069 1.0000 0.6148 0.9282 0.9311 0.7069 1.0000 0.6526
RK12 5 0.9251 0.1436 1.0000 0.8813 0.8408 0.9287 0.0000 1.0000 0.8908 0.9087
2048 15 0.9657 0.6918 0.0000 1.0000 0.6857 0.9652 0.6918 1.0000 1.0000 0.7550
2049 5 0.9359 0.8348 1.0000 1.0000 0.7353 0.9395 0.8444 1.0000 1.0000 0.8164
2051 1 0.9766 0.7101 1.0000 1.0000 0.7300 0.9974 0.7084 1.0000 1.0000 0.8316
5357 3 0.9529 0.8579 0.6582 1.0000 0.8918 0.9752 0.8594 0.6582 1.0000 0.9775

Table 5.16: Improvement in true positive rates (TPR) for selected images in datasets RK01,
RK12, 2048, 2049, 2051, and 5357. Positive numbers indicate improvement by
IntelliPost.

Dataset Slice

Number

Improvement in TPR

CW KN SP DC BR

RK01 3 0.0027 0.0198 0.0000 0.0000 0.0378
RK12 5 0.0036 -0.1436 0.0000 -0.0733 0.0679
2048 15 -0.0005 0.0000 1.0000 0.0000 0.0693
2049 5 0.0036 0.0096 0.0000 0.0000 0.0811
2051 1 0.0208 -0.0017 0.0000 0.0000 0.1016
5357 3 0.0223 0.0015 0.0000 0.0000 0.0857

Chapter 5. Results and Discussion 123Chapter 5. Results and Discussion 123Chapter 5. Results and Discussion 123

Table 5.17: False positive rates for selected images in datasets RK01, RK12, 2048, 2049,
2051, and 5357. The false positive rates decrease after postprocessing, as de-
sired. There are five classes: clear wood (CW), knot (KN), split (SP), decay
(DC), and bark (BR).

Dataset Slice

Number

Before Postprocessing After Postprocessing

False Positive Rate False Positive Rate

CW KN SP DC BR CW KN SP DC BR

RK01 3 0.3295 0.0048 0.0006 0.0000 0.0581 0.3175 0.0037 0.0006 0.0000 0.0524
RK12 5 0.1192 0.0107 0.0000 0.0431 0.0191 0.1135 0.0124 0.0000 0.0396 0.0110
2048 15 0.1210 0.0240 0.0000 0.0000 0.0548 0.1234 0.0241 0.0000 0.0000 0.0424
2049 5 0.3041 0.0059 0.0000 0.0000 0.0430 0.2870 0.0055 0.0000 0.0000 0.0298
2051 1 0.1018 0.0135 0.0000 0.0000 0.0448 0.0113 0.0136 0.0000 0.0000 0.0279
5357 3 0.1399 0.0120 0.0005 0.0000 0.0226 0.0738 0.0119 0.0005 0.0000 0.0047

Table 5.18: Increase in false positive rates (FPR) for selected images in datasets RK01,
RK12, 2048, 2049, 2051, and 5357. Negative numbers are desired, and indicate
improvement by IntelliPost.

Dataset Slice

Number

Improvement in FPR

CW KN SP DC BR

RK01 3 -0.0120 -0.0011 0.0000 0.0000 -0.0057
RK12 5 -0.0057 0.0017 0.0000 -0.0035 -0.0081
2048 15 0.0024 0.0001 0.0000 0.0000 -0.0124
2049 5 -0.0171 -0.0004 0.0000 0.0000 -0.0132
2051 1 -0.0905 0.0001 0.0000 0.0000 -0.0169
5357 3 -0.0661 -0.0001 0.0000 0.0000 -0.0179

Chapter 5. Results and Discussion 124Chapter 5. Results and Discussion 124Chapter 5. Results and Discussion 124

Table 5.19: Confusion matrices for slice 7370557 from Forintek dataset bille3-1. Classifi-
cation accuracy values are shown before and after postprocessing as compared
with ground truth. There are eight classes: knot (KN), live bark (LB), decay
(DC), split (SP), sapwood (SW), hardwood (HW), dead knot (DK), and dead
bark (DB).

Dataset Slice Number Before Postprocessing

Confusion Matrix

bille3-1 7370557

KN LB DC SP SW HW DK DB

KN 1936 1317 0 0 144 5 0 0

LB 13 7323 0 0 848 0 0 566

DC 0 0 1261 28 0 79 0 0

SP 0 0 0 0 0 0 0 0

SW 106 874 1189 136 89660 1185 0 173

HW 11 0 401 135 43 10575 0 0

DK 0 0 0 0 0 0 0 0

DB 0 76 0 0 370 0 0 5284

After Postprocessing

Confusion Matrix

KN LB DC SP SW HW DK DB

KN 1518 0 0 0 1876 9 0 0

LB 0 7502 0 0 326 0 0 922

DC 0 0 1308 0 0 60 0 0

SP 0 0 0 0 0 0 0 0

SW 61 241 0 0 91305 1563 0 164

HW 0 0 311 0 72 10782 0 0

DK 0 0 0 0 0 0 0 0

DB 0 147 0 0 12 0 0 5570

Chapter 5. Results and Discussion 125Chapter 5. Results and Discussion 125Chapter 5. Results and Discussion 125

Table 5.20: Improvement in confusion matrix after postprocessing for slice 7370557 from
Forintek dataset bille3-1. The difference between postprocessed and initial
segmentation as compared with ground truth. In most cases, diagonal elements
increase and off-diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

bille3-1 7370557

KN LB DC SP SW HW DK DB

KN -418 -1317 0 0 1732 4 0 0

LB -13 179 0 0 -522 0 0 356

DC 0 0 47 -28 0 -19 0 0

SP 0 0 0 0 0 0 0 0

SW -45 -633 -1189 -136 1645 378 0 -9

HW -11 0 -90 -135 29 207 0 0

DK 0 0 0 0 0 0 0 0

DB 0 71 0 0 -358 0 0 286

Chapter 5. Results and Discussion 126Chapter 5. Results and Discussion 126Chapter 5. Results and Discussion 126

Table 5.21: Confusion matrices for slice 4127003 from Forintek dataset 567b. Classification
accuracy values are shown before and after postprocessing as compared with
ground truth. There are eight classes: knot (KN), live bark (LB), decay (DC),
split (SP), sapwood (SW), hardwood (HW), dead knot (DK), and dead bark
(DB). Every pixel in the ground truth image belongs to sapwood (SW) class
as we see one row in confusion matrix.

Dataset Slice Number Before Postprocessing

Confusion Matrix

567b 4127003

KN LB DC SP SW HW DK DB

KN 0 0 0 0 0 0 0 0

LB 0 0 0 0 0 0 0 0

DC 0 0 0 0 0 0 0 0

SP 0 0 0 0 0 0 0 0

SW 708 4935 2792 3374 126995 13193 0 2786

HW 0 0 0 0 0 0 0 0

DK 0 0 0 0 0 0 0 0

DB 0 0 0 0 0 0 0 0

After Postprocessing

Confusion Matrix

567b 4127003

KN LB DC SP SW HW DK DB

KN 0 0 0 0 0 0 0 0

LB 0 0 0 0 0 0 0 0

DC 0 0 0 0 0 0 0 0

SP 0 0 0 0 0 0 0 0

SW 0 237 0 0 151735 0 0 2805

HW 0 0 0 0 0 0 0 0

DK 0 0 0 0 0 0 0 0

DB 0 0 0 0 0 0 0 0

Chapter 5. Results and Discussion 127Chapter 5. Results and Discussion 127Chapter 5. Results and Discussion 127

Table 5.22: Improvement in confusion matrix after postprocessing for slice 4127003 from
Forintek dataset 567b. The difference between postprocessed and initial seg-
mentation as compared with ground truth. In most cases, diagonal elements
increase and off-diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

567b 4127003

KN LB DC SP SW HW DK DB

KN 0 0 0 0 0 0 0 0

LB 0 0 0 0 0 0 0 0

DC 0 0 0 0 0 0 0 0

SP 0 0 0 0 0 0 0 0

SW -708 -4698 -2792 -3374 24740 -13193 0 19

HW 0 0 0 0 0 0 0 0

DK 0 0 0 0 0 0 0 0

DB 0 0 0 0 0 0 0 0

Chapter 5. Results and Discussion 128Chapter 5. Results and Discussion 128Chapter 5. Results and Discussion 128

Table 5.23: Confusion matrices for slice 4133900 from Forintek dataset 578a. Classification
accuracy values are shown before and after postprocessing as compared with
ground truth. There are eight classes: knot (KN), live bark (LB), decay (DC),
split (SP), sapwood (SW), hardwood (HW), dead knot (DK), and dead bark
(DB).

Dataset Slice Number Before Postprocessing

Confusion Matrix

578a 4133900

KN LB DC SP SW HW DK DB

KN 0 0 0 0 0 0 0 0

LB 0 0 0 0 0 0 0 0

DC 0 0 3536 429 9 250 0 0

SP 0 0 0 0 0 0 0 0

SW 150 95 4096 529 129862 1135 0 3827

HW 190 0 326 368 78 6515 0 0

DK 0 0 0 0 0 0 0 0

DB 0 0 0 0 0 0 0 0

After Postprocessing

Confusion Matrix

578a 4133900

KN LB DC SP SW HW DK DB

KN 0 0 0 0 0 0 0 0

LB 0 0 0 0 0 0 0 0

DC 0 0 3981 2 0 241 0 0

SP 0 0 0 0 0 0 0 0

SW 0 0 35 0 139206 1277 0 46

HW 0 0 514 0 115 6848 0 0

DK 0 0 0 0 0 0 0 0

DB 0 0 0 0 0 0 0 0

Chapter 5. Results and Discussion 129Chapter 5. Results and Discussion 129Chapter 5. Results and Discussion 129

Table 5.24: Improvement in confusion matrix after postprocessing for slice 4133900 from
Forintek dataset 578a. The difference between postprocessed and initial seg-
mentation as compared with ground truth. In most cases, diagonal elements
increase and off-diagonal elements decrease as desired.

Dataset Slice Number Improvement in Confusion Matrix

578a 4133900

KN LB DC SP SW HW DK DB

KN 0 0 0 0 0 0 0 0

LB 0 0 0 0 0 0 0 0

DC 0 0 445 -427 -9 -9 0 0

SP 0 0 0 0 0 0 0 0

SW -150 -95 -4061 -529 9344 142 0 -3781

HW -190 0 188 -368 37 333 0 0

DK 0 0 0 0 0 0 0 0

DB 0 0 0 0 0 0 0 0

Table 5.25: True positive rates for Forintek datasets. Overall true positive rates increase
except knot (KN) class for bille3-1. There are eight classes: knot (KN), live
bark (LB), decay (DC), split (SP), sapwood (SW), hardwood (HW), dead knot
(DK), and dead bark (DB).

Dataset Slice Number Before Postprocessing

True Positive Rate

KN LB DC SP SW HW DK DB

BILLE3-1 7370557 0.5691 0.8369 0.9218 1.0000 0.9607 0.9472 1.0000 0.9222
567b 4127003 1.0000 1.0000 1.0000 1.0000 0.8205 1.0000 1.0000 1.0000
578a 4133900 1.0000 1.0000 0.8371 1.0000 0.9296 0.8713 1.0000 1.0000

After Postprocessing

True Positive Rate

KN LB DC SP SW HW DK DB

BILLE3-1 7370557 0.4461 0.8574 0.9561 1.0000 0.9783 0.9657 1.0000 0.9722
567b 4127003 1.0000 1.0000 1.0000 1.0000 0.9803 1.0000 1.0000 1.0000
578a 4133900 1.0000 1.0000 0.9425 1.0000 0.9903 0.9159 1.0000 1.0000

Chapter 5. Results and Discussion 130Chapter 5. Results and Discussion 130Chapter 5. Results and Discussion 130

Table 5.26: Improvement in true positive rates for Forintek datasets. Increase in true pos-
itive rates is desired therefore positive numbers show improvement in segmen-
tation but negative numbers indicate decrease in true positive detection rates.

Dataset Slice Number Improvement in True Positive Rate

KN LB DC SP SW HW DK DB

BILLE3-1 7370557 -0.1230 0.0205 0.0343 0.0000 0.0176 0.0185 0.0000 0.0500
567b 4127003 0.0000 0.0000 0.0000 0.0000 0.1598 0.0000 0.0000 0.0000
578a 4133900 0.0000 0.0000 0.1054 0.0000 0.0607 0.0446 0.0000 0.0000

Table 5.27: False positive rates for Forintek dataset. NAN represents“not a number”. Since
denominator of false positive rates represents the total number of other classes,
which is zero, we can not find a numeric value for that specific case.

Dataset Slice Number Before Postprocessing

False Positive Rate

KN LB DC SP SW HW DK DB

BILLE3-1 7370557 0.0122 0.0124 0.0009 0.0000 0.1204 0.0052 0.0000 0.0038
567b 4127003 0.0000 0.0000 0.0000 0.0000 NAN 0.0000 0.0000 0.0000
578a 4133900 0.0000 0.0000 0.0047 0.0000 0.8403 0.0067 0.0000 0.0000

After Postprocessing

False Positive Rate

KN LB DC SP SW HW DK DB

BILLE3-1 7370557 0.0157 0.0109 0.0005 0.0000 0.0667 0.0034 0.0000 0.0013
567b 4127003 0.0000 0.0009 0.0000 0.0000 NAN 0.0000 0.0000 0.0138
578a 4133900 0.0000 0.0000 0.0016 0.0000 0.1161 0.0043 0.0000 0.0000

Table 5.28: Improvement in false positive rates for Forintek datasets. Decrease in false
positive rates is desired therefore we would like to see negative numbers as
improvement but positive numbers show decrease in segmentation performance.
NAN represents “not a number”. Since denominator of false positive rates
represents the total number of other classes, which is zero, we can not find a
numeric value for that specific case.

Dataset Slice Number Improvement in False Positive Rate

KN LB DC SP SW HW DK DB

BILLE3-1 7370557 0.0035 -0.0015 -0.0004 0.0000 -0.0537 -0.0018 0.0000 -0.0025
567b 4127003 0.0000 0.0000 0.0000 0.0000 NAN 0.0000 0.0000 0.0000
578a 4133900 0.0000 0.0000 -0.0031 0.0000 -0.7242 -0.0024 0.0000 0.0000

Chapter 5. Results and Discussion 131Chapter 5. Results and Discussion 131Chapter 5. Results and Discussion 131

Table 5.29: Overall correct segmentation rates for selected images in datasets RK01, RK12,
2048, 2049, 2051, and 5357.

Dataset Slice

Number

Before Postpro-

cessing

After Postpro-

cessing

Improvement in

segmentation

Overall Correct

Segmentation

Rates

Overall Correct

Segmentation

Rates

Percent

RK01 3 0.8836 0.8918 0.93 %
RK12 5 0.8948 0.9050 1.14 %
2048 15 0.9043 0.9143 1.10 %
2049 5 0.9044 0.9190 1.61 %
2051 1 0.9297 0.9610 3.37 %
5357 3 0.9345 0.9660 3.37 %

Table 5.30: Overall correct segmentation rates for selected images in datasets Forintek.

Dataset Slice

Number

Before Postpro-

cessing

After Postpro-

cessing

Improvement in

segmentation

Overall Correct

Segmentation

Rates

Overall Correct

Segmentation

Rates

Percent

BILLE3-1 7370557 0.9378 0.9534 1.66 %
567b 4127003 0.8205 0.9803 19.47 %
578a 4133900 0.9189 0.9854 7.24 %

5.5.2 ROC Analysis

Because IntelliPost is a learning system that learns postprocessing rules from a user, we would

like to evaluate IntelliPost’s learning capability through ROC analysis. In this experiment,

we used the RK01 dataset because we have obtained 13 slices as ground truth for this dataset.

We have used slices that were not used for training IntelliPost.

The experiment contains seven steps. For each step, the number of postprocessing opera-

tions was incrementally increased to test how quickly the system learns desired postprocessing

Chapter 5. Results and Discussion 132Chapter 5. Results and Discussion 132Chapter 5. Results and Discussion 132

rules from observation of human segmentation activities. Table 5.31 shows which slices have

been used in this step and number of operations that were performed to postprocess the

corresponding slice set. For each step, the training set is a superset of the previous step.

After each training step completed, IntelliPost was tested with slices which have the corre-

sponding ground truth slices for comparison. All confusion matrices for each step and their

corresponding true positive and false positive rates were obtained (see Table 5.32). ROC

curves for each defect class are illustrated in Figure 5.4 through Figure 5.6.

The results show that IntelliPost gradually learns. The ROC graph of clear wood (see

Figure 5.4) shows that clear wood type is not sensitive to postprocessing steps. The other

defect types show the similar results as clear wood but the split class is the most sensitive to

the number of postprocessing operation steps since the number of pixels are few compares

to other classes. The true positive and false positive rates put emphasis on the number of

pixels therefore split type is the most sensitive among the other classes. The problem with

the ROC analysis is that it takes the total error made by a classifier, from each class weighted

equally. When the classes are not balanced, as in case of split versus other, the dominant

class is easier to detect, and performance reported by ROC analysis can be exaggerated by

unbalanced class distribution.

Table 5.31: Summary of training steps for ROC analysis. Slice number indicates which
slices were used in the corresponding training step. The last column shows the
number of postprocessing operations that were performed in that step. It is
monotonically increasing.
Training Step Slice number used The number of postprocessing operations

1 5,16,27,37 48 Operations

2 8,17,28,38 54 Operations

3 9,19,30,39 60 Operations

4 11,21,32,40 67 Operations

5 12,22,33,41 74 Operations

6 13,23,35,42 79 Operations

7 14,25,36,43 85 Operations

Chapter 5. Results and Discussion 133Chapter 5. Results and Discussion 133Chapter 5. Results and Discussion 133

Table 5.32: True positive rates (TPR) and false positive rates (FPR) are listed for each
defect type.

Step Number CW KN SP DC BR

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

1 0.9098 0.0499 0.6531 0.0148 0.4752 0.0006 0.9231 0.0003 0.7140 0.0113

2 0.9149 0.0472 0.6358 0.0155 0.5025 0.0005 0.9231 0.0003 0.7057 0.0117

3 0.9123 0.0485 0.6564 0.0147 0.6564 0.0006 0.9231 0.0003 0.7197 0.0112

4 0.9201 0.0443 0.6498 0.0151 0.4452 0.0006 0.9231 0.0003 0.6706 0.0126

5 0.9190 0.0448 0.6438 0.0152 0.5077 0.0005 0.9231 0.0003 0.6763 0.0125

6 0.9121 0.0487 0.6528 0.0148 0.5077 0.0005 0.9231 0.0003 0.6922 0.0119

7 0.9207 0.0439 0.6470 0.0150 0.5106 0.0005 0.9231 0.0003 0.6666 0.0128

Chapter 5. Results and Discussion 134Chapter 5. Results and Discussion 134Chapter 5. Results and Discussion 134

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Plot for clear wood

False Positive rate

T
ru

e
P

os
iti

ve
 r

at
e

Interpolated ROC curve

TPR=FPR

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Plot for knot

False Positive rate

T
ru

e
P

os
iti

ve
 r

at
e

Interpolated ROC curve
TPR=FPR

(b)

Figure 5.4: ROC points for each defect type. (a) ROC points for clear wood. (b) ROC
points for knot. Each point represents one training step and the corresponding
classification performance.

Chapter 5. Results and Discussion 135Chapter 5. Results and Discussion 135Chapter 5. Results and Discussion 135

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Plot for split

False Positive rate

T
ru

e
P

os
iti

ve
 r

at
e

Interpolated ROC curve

TPR=FPR

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Plot for decay

False Positive rate

T
ru

e
P

os
iti

ve
 r

at
e

TPR=FPR

Interpolated ROC curve

(b)

Figure 5.5: ROC points for each defect type. (a) ROC points for split. (b) ROC points for
decay. Each point represents one training step and the corresponding classifi-
cation performance.

Chapter 5. Results and Discussion 136Chapter 5. Results and Discussion 136Chapter 5. Results and Discussion 136

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Plot for bark

False Positive rate

T
ru

e
P

os
iti

ve
 r

at
e

Interpolated ROC curve

TPR=FPR

Figure 5.6: ROC points for bark. Each point represents one training step and the corre-
sponding classification performance.

5.5.3 Region Based Analysis Results

So far, we have seen that IntelliPost achieves an improvement in overall segmentation in

pixel-wise comparison with ground truth. In order to see how regions in the final images

are similar to the corresponding regions in ground truth images, a region based similarity

analysis is needed. Region based similarity results were obtained by using area similarity

and shape similarity measures.

To obtain similarity measures of two corresponding regions, two regions needs to be

chosen: one from postprocessed image and one from the associated ground truth image. Such

regions are picked manually by using mouse and then area similarity measure [7, 208], shape

similarity measure [143], and overlapping index [94], using the same notation as Equation

Chapter 5. Results and Discussion 137Chapter 5. Results and Discussion 137Chapter 5. Results and Discussion 137

5.6, that is defined in Equation 5.7 were obtained. The results are shown in Table 5.33.

Table 5.33: Region based similarity measures are listed as the area similarity measure
(ASM), the shape similarity measure (SSM), and overlap index. Region based
similarity values are shown before and after postprocessing as compared with
ground truth. Each similarity measures range from 0 to 1. The value of 0
indicates the most dissimilar and 1.0 indicates the most similar (ideal case).
The same slices were analyzed at region level as in the case of confusion matrix
analysis.

Before Postprocessing After Postprocessing

Dataset Region Num-

ber

Type ASM SSM Overlap ASM SSM Overlap

RK01 1 KN 0.82 0.86 0.70 0.81 0.81 0.69

2 CW 0.93 0.62 0.87 0.94 0.73 0.89

3 SP 0.48 0.94 0.32 0.49 0.96 0.32

4 BR 0.63 0.93 0.46 0.65 0.94 0.48

RK12 1 BR 0.58 0.67 0.40 0.77 0.73 0.63

2 DC 0.91 0.62 0.83 0.93 0.75 0.87

3 CW 0.94 0.82 0.89 0.95 0.92 0.91

2048 1 KN 0.70 0.32 0.54 0.68 0.32 0.52

2 CW 0.94 0.67 0.90 0.94 0.70 0.90

3 BR 0.72 0.72 0.56 0.76 0.72 0.61

2049 1 KN 0.51 0.35 0.34 0.48 0.31 0.32

2 KN 0.71 0.85 0.55 0.71 0.83 0.56

3 BR 0.76 0.80 0.62 0.68 0.54 0.51

4 CW 0.94 0.57 0.90 0.95 0.73 0.90

2051 1 KN 0.87 0.84 0.78 0.87 0.84 0.78

2 CW 0.96 0.70 0.93 0.97 0.92 0.95

3 BR 0.72 0.77 0.56 0.65 0.55 0.49

578A 1 SW 0.95 0.45 0.91 0.98 0.83 0.97

2 HW 0.89 0.85 0.81 0.91 0.90 0.83

3 DC 0.17 0.63 0.09 0.71 0.45 0.55

BILLE3-1 1 DC 0.84 0.80 0.72 0.87 0.91 0.77

2 HW 0.80 0.60 0.67 0.80 0.61 0.67

3 KN 0.70 0.75 0.54 0.64 0.82 0.47

4 SW 0.96 0.73 0.93 0.96 0.85 0.93

5 LB 0.89 0.98 0.80 0.90 0.99 0.82

6 DB 0.78 0.93 0.64 0.78 0.94 0.65

Chapter 5. Results and Discussion 138Chapter 5. Results and Discussion 138Chapter 5. Results and Discussion 138

5.6 Result for CT/MRI Medical Datasets

In this section, we present the results obtained with IntelliPost for the medical CT/MRI scan

datasets, as described in section 5.3. Both CT and MRI dataset were divided into two parts:

training set and test set. The ANN segmentation module was trained by using images from

training set. Then segmented images were generated by the ANN. The segmented images

were used to train IntelliPost. After the training, the subset of test set was used to evaluate

IntelliPost for the medical dataset. Again, ground truth was obtained by manual segmenta-

tion as described earlier in the chapter for CT dataset. Ground truth images for MRI dataset

was available from BrainWeb project site therefore we obtained the corresponding ground

truth for MRI dataset. One representative slice was selected from each dataset to illustrate

improvement in segmentation (see Figure 5.16 and Figure 5.17). Their confusion matrices

are shown in Table 5.34 through Table 5.37. Confusion matrices show improvement on fi-

nal segmentation since diagonal elements increase and off-diagonal element decrease in most

cases. True positive rates and false positive rates for each class type are shown in Table 5.38

through Table 5.41. Overall improvement in correct segmentation rate are listed in Table

5.42. As we see from overall segmentation accuracy results, the average improvements for

algotech-23 and BrainWeb datasets (for the corresponding images) were 4.22% and 0.33%,

respectively.

Chapter 5. Results and Discussion 139Chapter 5. Results and Discussion 139Chapter 5. Results and Discussion 139

Table 5.34: Confusion matrices for slice CT.29017.1 from dataset algotech-23. Classifica-
tion accuracy values are shown before and after postprocessing as compared
with ground truth. There are three classes: skin (SN), skull (SK), and brain
(BRN).

Dataset Slice Number Before Postprocessing After Postprocessing

Confusion Matrix Confusion Matrix

algotech-23 CT.29017.1

BRN SK SN

BRN 29582 714 80

SK 447 6719 34

SN 1666 692 5158

SN SK BRN

SN 29662 714 0

SK 256 6719 225

BRN 0 692 6824

Table 5.35: Improvement in confusion matrix after postprocessing for slice CT.29017.1 from
dataset algotech-23. The difference between postprocessed and initial segmen-
tation as compared with ground truth.

Dataset Slice Number Improvement in Confusion Matrix

algotech-23 CT.29017.1

SN SK BRN

SN 80 0 -80

SK -191 0 191

BRN -1666 0 1666

Chapter 5. Results and Discussion 140Chapter 5. Results and Discussion 140Chapter 5. Results and Discussion 140

Table 5.36: Confusion matrices for slice 96 from brainweb dataset. Classification accuracy
values are shown before and after postprocessing as compared with ground
truth. There are nine classes: cerebral spinal fluid (CSF), gray matter (GM),
white matter (WM), fat (FT), muscle/skin (MSK), skin (SN), skull (SK), glial
matter (GLM), and connective (CN).

Dataset Slice Number Before Postprocessing

Confusion Matrix

BrainWeb 96

CSF GM WM FT MSK SN SK GLM CN

CSF 2596 151 0 0 0 0 94 0 0

GM 380 5864 412 0 62 0 0 0 3

WM 0 447 8676 0 0 0 0 0 0

FT 0 0 73 228 0 0 0 0 78

MSK 162 262 6 0 1453 121 0 0 42

SN 521 25 0 0 25 1722 558 0 4

SK 96 0 0 0 0 64 1978 0 0

GLM 87 87 39 0 0 0 0 0 0

CN 0 139 94 26 334 0 0 0 510

After Postprocessing

Confusion Matrix

CSF GM WM FT MSK SN SK GLM CN

CSF 2596 151 0 0 0 0 94 0 0

GM 403 5906 412 0 0 0 0 0 0

WM 0 447 8676 0 0 0 0 0 0

FT 0 0 0 234 67 0 0 0 78

MSK 21 10 0 6 1500 107 200 0 202

SN 90 0 0 2 54 1539 1165 0 5

SK 36 0 0 0 0 0 2102 0 0

GLM 87 87 39 0 0 0 0 0 0

CN 0 15 18 49 458 2 12 0 549

Chapter 5. Results and Discussion 141Chapter 5. Results and Discussion 141Chapter 5. Results and Discussion 141

Table 5.37: Improvement in confusion matrix after postprocessing for slice 96 from brain-
web dataset. The difference between postprocessed and initial segmentation as
compared with ground truth.

Dataset Slice Number Improvement in Confusion Matrix

BrainWeb 96

CSF GM WM FT MSK SN SK GLM CN

CSF 0 0 0 0 0 0 0 0 0

GM 23 42 0 0 -62 0 0 0 -3

WM 0 0 0 0 0 0 0 0 0

FT 0 0 -73 6 67 0 0 0 0

MSK -141 -252 -6 6 47 -14 200 0 160

SN -431 -25 0 2 29 -183 607 0 1

SK 60 0 0 0 0 -64 124 0 0

GLM 0 0 0 0 0 0 0 0 0

CN 0 -124 -76 23 124 2 12 0 39

Table 5.38: True positive rates for medical datasets. There are nine classes: Cerebral Spinal
Fluid (CSF), gray matter (GM), white matter (WM) or brain (BRN), fat (FT),
muscle/skin (MSK), skin (SN), skull (SK), glial matter (GLM), and connective
(CN).

Dataset Slice

Number

Before Postprocessing

True Positive Rate

CSF GM WM

(BRN)

FT MSK SN SK GLM CN

algotech-23 CT.29017.1 - - 0.6863 - - 0.9739 0.9332 - -

BrainWeb 96 0.9138 0.8725 0.9510 0.6016 0.7102 0.6032 0.9252 0.0000 0.4624

After Postprocessing

True Positive Rate

CSF GM WM

(BRN)

FT MSK SN SK GLM CSF

algotech-23 CT.29017.1 - - 0.9079 - - 0.9765 0.9332 - -

BrainWeb 96 0.9138 0.8787 0.9510 0.6174 0.7331 0.5391 0.9832 0.0000 0.4977

Chapter 5. Results and Discussion 142Chapter 5. Results and Discussion 142Chapter 5. Results and Discussion 142

Table 5.39: Improvement in true positive rates for medical datasets. Positive numbers are
desired.

Dataset Slice

Number

Improvement in True Positive Rate

CSF GM WM

(BRN)

FT MSK SN SK GLM CN

algotech-23 CT.29017.1 - - 0.2216 - - 0.0026 0.0000 - -

BrainWeb 96 0.0000 0.0062 0.0000 0.0158 0.0229 -0.0641 0.0580 0.0000 0.0353

Table 5.40: False positive rates for medical datasets. There are nine classes: cerebral spinal
fluid (CSF), gray matter (GM), white matter (WM) or brain (BRN), fat (FT),
muscle/skin (MSK), skin (SN), skull (SK), glial matter (GLM), and connective
(CN).

Dataset Slice

Number

Before Postprocessing

False Positive Rate

CSF GM WM

(BRN)

FT MSK SN SK GLM CN

algotech-23 CT.29017.1 - - 0.0628 - - 0.0540 0.0127 - -

BrainWeb 96 0.0100 0.0414 0.0244 0.0056 0.0234 0.0461 0.0063 0.0078 0.0225

After Postprocessing

False Positive Rate

CSF GM WM

(BRN)

FT MSK SN SK GLM CN

algotech-23 CT.29017.1 - - 0.0184 - - 0.0485 0.0127 - -

BrainWeb 96 0.0100 0.0394 0.0244 0.0054 0.0215 0.0536 0.0014 0.0078 0.0211

Table 5.41: Improvement in false positive rates for medical datasets. Negative numbers are
desired.

Dataset Slice

Number

Improvement in False Positive Rate

CSF GM WM

(BRN)

FT MSK SN SK GLM CN

algotech-23 CT.29017.1 - - 0.2216 - - 0.0026 0.0000 - -

BrainWeb 96 0.0000 -0.0002 0.0000 -0.0002 -0.0019 0.0075 -0.0049 0.0000 -0.0014

Chapter 5. Results and Discussion 143Chapter 5. Results and Discussion 143Chapter 5. Results and Discussion 143

Table 5.42: Overall correct segmentation rates for selected images in medical datasets.

Dataset Slice

Number

Before Postpro-

cessing

After Postpro-

cessing

Improvement in

segmentation

Overall Correct

Segmentation

Rates

Overall Correct

Segmentation

Rates

Percent

algotech-23 CT.29017.1 0.9194 0.9582 4.22 %
BrainWeb 96 0.8398 0.8426 0.33 %

5.7 Summary

In this chapter, we have investigated and evaluated the segmentation performance of Intelli-

Post. The results showed that overall segmentation performance was improved by IntelliPost,

at both the image level and the region level in general. Because IntelliPost is both a learning

system and a region refinement/analysis system, we have tested the system’s learning capa-

bility through the ROC analysis. The results of ROC curves show that IntelliPost gradually

captures postprocessing rules from a user, and applies obtained rules for the similar cases.

The system performs better when the output of an ANN segmentation algorithm is

oversegmented. As the some of the results showed, there is no way to recover undersegmented

regions by using the present architecture of overall segmentation system. In other words,

IntelliPost assumes all defects regions are detected by an ANN algorithm and there is no

need to go back to the original CT/MRI data to analyze such regions. The analysis of

undersegmented regions requires some other segmentation methods to improve accuracy of

segmentation.

As we see from the results, IntelliPost improves segmentation accuracy in general but

not dramatic. The current architecture of the overall system does not let IntelliPost go back

the original data and/or modify segmentation algorithm of the ANN module. The ANN

Chapter 5. Results and Discussion 144Chapter 5. Results and Discussion 144Chapter 5. Results and Discussion 144

segmentation module does not provide any mechanism to manipulate the result of the ANN.

Therefore IntelliPost can do nothing but relying on the ANN result. IntelliPost has to accept

whatever the ANN gives for refinement. The overall system’s ability is dramatically reduced

by the open loop architecture of the overall system.

Another drawback of ANN approach, the ANN module needs to be trained every time

when a new dataset is provided. Training process requires collection of samples by expert and

retraining the ANN network from scratch. Once the ANN segmentation module is trained,

the ANN segmentation module provides no functionality to adjust its segmentation response

therefore it behaves as a fixed segmentation module.

We expected that IntelliPost would give more dramatic improvement in segmentation

accuracy but the current architecture of the ANN module that was described above and

its limited postprocessing operation library caused moderate but not dramatic segmentation

improvements.

IntelliPost could be improved dramatically by expanding the operation library, and im-

proving the ability of inference engine. The decision tree approach for inference engine has

pitfall to get over training. Fuzzy logic based inference engine could be used as replacement

for inferencing. By using fuzzy logic approach, the inferencing process for refinement oper-

ation could be as close as possible to a human user’s decision making process. The current

inferencing mechanism is close to classification approach that heavily depends on the feature

space.

Results from medical CT dataset were provided to show the applicability and usability

of the overall system to medical applications. Medical result shows promising results. Such

segmentation concept could be used in medical application. IntelliPost and segmentation

module still requires improvement on segmentation accuracy.

Chapter 5. Results and Discussion 145Chapter 5. Results and Discussion 145Chapter 5. Results and Discussion 145

(a) (b)

(c) (d)

Figure 5.7: Visual comparison of RK01 dataset slice number 3. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Tan color is clear wood, brown is bark, green is decay,
and red is knot defect type.

Chapter 5. Results and Discussion 146Chapter 5. Results and Discussion 146Chapter 5. Results and Discussion 146

(a) (b)

(c) (d)

Figure 5.8: Visual comparison of RK12 dataset slice number 5. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Tan color is clear wood, brown is bark, green is decay,
and red is knot defect type.

Chapter 5. Results and Discussion 147Chapter 5. Results and Discussion 147Chapter 5. Results and Discussion 147

(a) (b)

(c) (d)

Figure 5.9: Visual comparison of 2048 dataset slice number 15. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood, brown
is bark, green is decay, and red is knot defect type.

Chapter 5. Results and Discussion 148Chapter 5. Results and Discussion 148Chapter 5. Results and Discussion 148

(a) (b)

(c) (d)

Figure 5.10: Visual comparison of 2049 dataset slice number 5. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type.

Chapter 5. Results and Discussion 149Chapter 5. Results and Discussion 149Chapter 5. Results and Discussion 149

(a) (b)

(c) (d)

Figure 5.11: Visual comparison of 2051 dataset slice number 1. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type.

Chapter 5. Results and Discussion 150Chapter 5. Results and Discussion 150Chapter 5. Results and Discussion 150

(a) (b)

(c) (d)

Figure 5.12: Visual comparison of 5357 dataset slice number 3. (a) Original slice. (b)
Manual segmentation (ground truth). (c) The result of ANN segmentation.
(d) IntelliPost result. Pixels from the stands supporting the log were included
in the corresponding class in confusion matrices. Tan color is clear wood,
brown is bark, green is decay, and red is knot defect type.

Chapter 5. Results and Discussion 151Chapter 5. Results and Discussion 151Chapter 5. Results and Discussion 151

(a) (b)

(c) (d)

Figure 5.13: Visual comparison of bille3-1 dataset slice number 7370557. (a) Original slice.
(b) Manual segmentation (ground truth). (c) The result of ANN segmenta-
tion. (d) IntelliPost result. Light tan color represents sapwood, beige color
represents heartwood, yellow represents split defects, green represents decay,
red represents knot, and dark tan color represents live bark.

Chapter 5. Results and Discussion 152Chapter 5. Results and Discussion 152Chapter 5. Results and Discussion 152

(a) (b)

(c) (d)

Figure 5.14: Visual comparison of 567b dataset slice number 4127003. (a) Original slice.
(b) Manual segmentation (ground truth). (c) The result of ANN segmenta-
tion. (d) IntelliPost result. Light tan color represents sapwood, beige color
represents heartwood, yellow represents split defects, green represents decay,
red represents knot, and dark tan color represents live bark.

Chapter 5. Results and Discussion 153Chapter 5. Results and Discussion 153Chapter 5. Results and Discussion 153

(a) (b)

(c) (d)

Figure 5.15: Visual comparison of 578a dataset slice number 4133900. (a) Original slice.
(b) Manual segmentation (ground truth). (c) The result of ANN segmenta-
tion. (d) IntelliPost result. Light tan color represents sapwood, beige color
represents heartwood, yellow represents split defects, green represents decay,
red represents knot, and dark tan color represents live bark.

Chapter 5. Results and Discussion 154Chapter 5. Results and Discussion 154Chapter 5. Results and Discussion 154

(a) (b)

(c) (d)

Figure 5.16: Visual comparison for medical CT dataset. (a) Original CT slice. (b) Ground
truth.The corresponding ground truth. (c) Initial segmentation from the
ANN. (d) The final result after postprocessing. Pixels from the stands sup-
porting the head were included in the corresponding class in confusion ma-
trices. Brown represents skin, red represents skull, and tan color represents
brain.

Chapter 5. Results and Discussion 155Chapter 5. Results and Discussion 155Chapter 5. Results and Discussion 155

(a) (b)

(c) (d)

Figure 5.17: Visual comparison for medical MRI dataset. (a) Original MRI slice. (b) The
corresponding ground truth. (c) Initial segmentation from the ANN. (d) The
final result after postprocessing.

Chapter 6

Summary and Conclusion

6.1 Summary

Intellipost was built using two different areas of research: machine learning and image seg-

mentation. One aspect of this study was to explore the possibility of using demonstrational

learning methods in the area of image analysis. In any machine learning system, capturing

and formulating a human’s expertise have been, and will continue to be, a challenging issue.

The demonstrational learning methods provide some promising approaches to capture such

expertise from a human user and use it in an automated system.

This thesis has explored the potential of using learning by demonstration for a prob-

lem related to image segmentation. We have developed a learning system that captures

expertise from a human user. The captured knowledge is used to refine regions in CT/MRI

segmentation problems.

The other aspect of this study was to improve image segmentation of CT/MRI images

through region analysis and refinement. A CT/MRI image segmentation, the partitioning of

156

Chapter 6. Summary and Conclusion 157Chapter 6. Summary and Conclusion 157Chapter 6. Summary and Conclusion 157

an CT/MRI image slice into semantically meaningful regions, is an important prerequisite

for many applications. The processing of CT images of hardwood logs is one example among

those applications. This is a difficult task because the natural shape of wood defects varies

dramatically from one log to another.

IntelliPost extracts domain specific information through a demonstrational learning method

that provides an environment for a human expert to demonstrate his/her expertise on pre-

sented cases. Through the learning by demonstration concept, the difficulty of obtaining

domain knowledge through formal interaction between a domain expert and an expert sys-

tem designer is reduced. Using the demonstrational learning method also eliminates any

possible communication error between the expert system designer and the domain expert.

When the user demonstrates his/her actions on a presented example, the system captures

relevant information about the given problem.

The system uses decision tree induction as a major component of its inferencing engine.

It provides two modes of operation: learn mode and run mode. During the learn mode,

the user refines a segmented image using operations in the postprocessing operation library.

Simultaneously, the system extracts high level information from regions that are being post-

processed by the user, and stores the extracted information into the domain knowledge base

for later use. In the run mode, the system constructs postprocessing rules by using an OC-

SEP decision tree induction algorithm. Once the decision tree is constructed, the system

constructs a scene description structure that contains every region’s geometric features in

a given image along with their high level information. Region adjacency graph is also con-

structed for the presented image. Finally all regions are analyzed and processed based on

their geometric features.

During run mode, IntelliPost picks regions in the order of smaller to larger. Their corre-

sponding geometric features were obtained from previously built the scene description struc-

Chapter 6. Summary and Conclusion 158Chapter 6. Summary and Conclusion 158Chapter 6. Summary and Conclusion 158

ture. The feature vector was constructed using obtained information for that region. The

feature vector was given to the constructed decision tree to get proper refinement operation

for the region. The refinement decision is executed by IntelliPost by using postprocess-

ing operation library. This process continues until all regions in a image are analyzed and

processed by IntelliPost. Results showed that improvements in segmentation accuracy for

hardwood log datasets were 1.92% for the read oak (combined GE Medical and VetMed)

datasets and 9.45% for the Forintek datasets. For the case of medical datasets, improvement

for algotech-23 and BrainWeb datasets were 4.22% and 0.33%, respectively.

6.2 Conclusion

This thesis has introduced a new approach for refining segmented images. We have developed

an experimental system that observes the actions of a human operator who interactively edits

a set of test images. The system then applies automated inferencing techniques to develop

its own refinement rules based on those actions. After this learning process, the system is

capable of automatically applying similar refinement steps to other images.

The system does not simply memorize a sequence of operations by the user, as is often

used for robotic teach pendants. Instead, the system develops more general rules based on

labeled region properties, such as size, elongation, defect type, and position in the image.

Although this approach has been developed particularly for use with CT image slices of

hardwood logs, it is sufficiently general that it can be used for other applications, such as

medical image analysis or aerial image segmentation.

Chapter 6. Summary and Conclusion 159Chapter 6. Summary and Conclusion 159Chapter 6. Summary and Conclusion 159

6.3 Future Directions

This study explored the possibility of using learning by demonstration method for the image

segmentation problem. During the course of the research, we have learned that it was

very difficult to implement such a system due to the modelling the human behaviour and

inconsistency in human actions. Modeling the action by formal way requires extensive effort

by the system to understand meaning of a action.

There are several ways to improve the overall segmentation performance. For example,

the one way is to replace the ANN by more adaptive segmentation algorithm. By replacing

the segmentation module with more adaptive one could alleviate training requirement for

segmentation module. Such replacement also helps improving the usability of the overall

system and gives a mechanism to interact with the postprocessing module. Interaction

between postprocessing module and segmentation module is essential way to improve overall

image segmentation accuracy. For example, postprocessing module can analyze such region

based on their high level relevant information and then send request to image segmentation

module to resegment region that is not uniform enough. Two ways information passing could

boost the system ability to give better segmentation results. Unfortunately, the current

architecture does not let going back to segmentation module to resegment images.

Another way to improve the system is to expand IntelliPost’s operation library. IntelliPost

provide very limited operations for postprocessing. The expansion of the library will vastly

increase capability and usability of IntelliPost.

Bibliography

[1] Abdou, I. E., “Quantitative methods of edge detection,” Tech. Rep. 830, University

of California Image Processing Institute, Los Angeles, CA, July 1978.

[2] Abutaleb, A. S., “Automatic thresholding of gray level pictures using two-

dimensional entropy,” Computer Vision, Graphics, and Image Processing, vol. 47,

pp. 22–32, 1989.

[3] Adams, R. and Bischof, L., “Seeded region growing,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 16, pp. 641–647, June 1994.

[4] Ahuja, N. and Rosenfeld, A., “A note on the use of second order gray level statistics

for threshold selection,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 8,

pp. 895–898, 1978.

[5] Alexander, D. and Buxton, B., “Modelling of single mode distributions of colour

data using directional statistics,” in Proceeding of Computer Vision and Pattern Recog-

nition, pp. 319–324, 1997.

[6] Askar, M. and Derin, H., “A recursive algorithm for the bayes solution of the

smooting problem,” IEEE Transactions on Automatic Control, vol. AC-26, pp. 558–

561, 1981.

[7] Atkins, M. S. and Mackiewich, B. T., “Fully automatic segmentation of the brain

in MRI,” IEEE Transactions in Medical Imaging, vol. 17, pp. 98–107, February 1998.

[8] Babaguchi, N., Yamada, K., Kise, K., and Tezuka, Y., “Connectionist model

binarization,” Proceeding of 10th International Conference on Pattern Recognition,

vol. 90, pp. 51–56, 1990.

160

Bibliography 161Bibliography 161Bibliography 161

[9] Barron, J. L., Fleet, D. J., and Beauchemin, S. S., “Performance of optical-flow

techniques,” International Journal of Computer Vision, vol. 12, pp. 43–77, 1994.

[10] Basu, S., “Image segmentation by semantic method,” Pattern Recognition, vol. 20,

no. 5, pp. 497–511, 1987.

[11] Bennett, K. P. and Bredensteiner, E. J., “Geometry in learning,” in Mathe-

matical Association of America (Gorini, C., ed.), (Washington, DC), pp. 132–145,

1996.

[12] Bennett, K. P. and Bredensteiner, E. J., “A parametric optimization method

for machine learning,” INFORMS Journal on Computing, vol. 3, no. 9, pp. 311–318,

1997.

[13] Bennett, K. P. and Mangasarian, O. L., “Multicategory separation via linear

programming,” Tech. Rep. 1127, Computer Science Department, University of Wis-

consin, Madison, WI, 1992.

[14] Bennett, K. P. and Mangasarian, O. L., “Robust linear programming discrim-

ination of two linearly inseperable sets,” Optimization Methods and Software, vol. 1,

pp. 23–34, 1992.

[15] Bennett, K., “Decision tree construction via linear programming,” in Proceedings

of the 4th Midwest Artificial Intelligence and Cognitive Science Society Conference

(Evans, M., ed.), (Utica, IL), pp. 97–101, 1992.

[16] Bergadano, F., Matwin, S., Michalski, R. S., and Zhang, J., “Measuring

quality of concept descriptions,” in Proceedings of the European Working Session on

Learning, pp. 1–14, 1988.

[17] Beulieu, J. and Goldberg, M., “Hierarchy in picture segmentation: A stepwise

optimization approach,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 11, pp. 150–163, February 1989.

[18] Bhandarkar, S., Faust, T., and Tang, M., “A system for detection of internal

log defects by computer analysis of axial CT images,” IEEE International Workshop

Applied Computer Vision, pp. 258–263, December 1996.

Bibliography 162Bibliography 162Bibliography 162

[19] Biggs, M. C., “Constrained minimization using recursive quadratic programming,”

in Toward Global Optimization (Dixon, L. C. and Szergo, G. P., eds.), (North-

Holland), pp. 341–349, 1975.

[20] Blanz, W., Cox, C., and Gish, S., “Connectionist architectures in low level image

segmentation,” in Handbook of Pattern Recognition and Computer Vision, p. Chapter

V:5, 1997.

[21] Bolles, R. C., Baker, H. H., and Hannah, J. M., “The JISCT stereo evaluation,”

in Proceedings of Image Understanding Workshop, (Washington, D.C), pp. 263–274,

1994.

[22] Bonnin, P., Blanc Talon, J., Hayot, J., and Zavidovique, B., “A new edge

point/region cooperative segmentation deduced from a 3d scene reconstruction appli-

cation,” SPIE Applications of Digital Image Processing XII, vol. 1153, pp. 579–591,

1989.

[23] Boukharouba, S., Rebordao, J. M., and Wendel, P. L., “An amplitude sedi-

mentation method based on the distribution function of an image,” Computer Vision

Graphics, and Image Processing, vol. 29, pp. 47–59, 1985.

[24] Bowyer, K., Kranenburg, C., and Dougherty, S., “Edge detector evaluation

using empirical ROC curves,” in Proceeding of Computer Vision and Pattern Recogni-

tion, pp. 1354–1359, 1999.

[25] Bradley, P. S., Fayyad, U. M., and Mangasarian, O. L., “Mathematical pro-

gramming for data mining: Formulation and challenges,” INFORMS Journal on Com-

puting, vol. 3, no. 11, pp. 217–238, 2004.

[26] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, P. J., Classification

and Regression Trees. Belmont, CA: Wadsworth, 1984.

[27] Burgess, A., “Potential application of imaging techniques to wood products,” in

Proceedings of 1st International Conference on Scanning Technology in Sawmilling

(Szymani, R., ed.), vol. 7, (San Francisco, CA), pp. 1–13, October 10-12, 1985.

[28] Campbell, N. W., Thomas, B. T., and Troscianko, T., “Automatic segmenta-

tion and classification of outdoor images using neural networks,” International Journal

of Neural Systems, vol. 8, no. 1, pp. 137–144, 1997.

Bibliography 163Bibliography 163Bibliography 163

[29] Canny, J., “A computational approach to edge detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 8, pp. 679–698, November 1986.

[30] Castelman, K. R., Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall,

1996.

[31] Centor, R. M., “Signal detectability: The use of ROC curves and their analysis,”

Medical Decision Making, pp. 102–106, 1991.

[32] Chanda, B., Chaudhuri, B. B., and Majumder, D., “On image enhancement

and threshold selection using the gray level co-occurence matrix,” Pattern Recognition

Letters, pp. 243–251, 1985.

[33] Chang, S. J. and Guddanti, S., “Application of high speed image processing in

hardwood sawing research,” in Proceedings of 5th International Conference on Scan-

ning Technology and Process Control for the Wood Products Industry, (Atlanta, GA),

October 25-27, 1993.

[34] Chang, S. J. and Olson, J. R., “Nuclear magnetic resonance imaging of hard-

wood logs,” in Proceedings of 2nd International Conference on Scanning Technology in

Sawmilling (Szymani, R., ed.), vol. 7, (San Francisco, CA), October 1-2, 1987.

[35] Chang, Y. and Li, X., “Adaptive image region-growing,” IEEE Transactions on

Image Processing, vol. 3, pp. 868–872, November 1994.

[36] Cheng, J. C. and Moura, M. F., “Capture and representation of human walking

in live video sequences,” IEEE Transactions on Multimedia, vol. 1, pp. 144–156, June

1999.

[37] Cheriet, M., Said, J. N., and Suen, C. Y., “A recursive thresholding technique for

image segmentation,” IEEE Transaction on Image Processing, vol. 7, no. 6, pp. 918–

920, 1998.

[38] Chow, C. K. and Kaneko, T., “Automatic boundary detection of the left-ventricle

from cineangiograms,” Computed Biomedical Research, vol. 5, pp. 388–410, 1972.

[39] Chu, C. and Aggarwal, J., “The integration of image segmentation maps using

region and edge information,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 15, pp. 1241–1252, December 1993.

Bibliography 164Bibliography 164Bibliography 164

[40] Coleman, T., Branch, M. A., and Grace, A., Optimization Toolbox for Use with

MATLAB. Natick, MA: The Mathworks, Inc., 1999.

[41] Comer, M. and Delp, E., “Segmentation of textured images using a multiresolu-

tion gaussian autoregressive model,” IEEE Transacations on Image Processing, vol. 8,

pp. 408–420, March 1999.

[42] Comer, M. and Delp, E., “The em/mpm algorithm for segmentation of textured

images: Analysis and further experimental results,” IEEE Transacations on Image

Processing, vol. 9, pp. 1731–1744, October 2000.

[43] Cortes, C. and Hertz, J. A., “A network system for image segmentation,”Proceed-

ings of International Conference on Neural Network, vol. 1, pp. 121–125, 1989.

[44] Crow, D. N. and Smith, B. M., “DB habits: Comparing minimal knowledge and

knowledge-based approaches to pattern recognition in the domain of user-computer

interaction,” in Pattern Recognition and Neural Networks in Human-computer Inter-

action (Beale, R. and Finlay, J., eds.), (Chichester, UK), pp. 39–63, 1992.

[45] Cufi, X., Munoz, X., Freixenet, J., and Marti, J., “A concurrent region growing

algorithm guided by circumscribed contours,” in International Conference on Pattern

Recognition, vol. 1, (Barcelona, Spain), pp. 432–435, 2000.

[46] Cypher, A., ed., Watch What I Do: Programming by Demonstration. Cambridge,

MA: MIT Press, 1993.

[47] Davis, L., “A survey of edge detection techniques,” Computer Vision, Graphics, and

Image Processing, vol. 4, pp. 248–270, September 1975.

[48] Deravi, F. and Pal, S. K., “Gray level thresholding using second-order statistics,”

Pattern Recognition Letters, pp. 417–422, 1983.

[49] Derin, H., Elliott, H., Cristi, R., and Geman, D., “Bayes smoothing algorithms

for segmentation of binary images modeled by markov random fields,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 707–720, November

1984.

[50] Dondes, P. A. and Rosenfeld, A., “Pixel classification on gray level and local

”busyness”,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4,

pp. 79–84, 1982.

Bibliography 165Bibliography 165Bibliography 165

[51] Dougherty, E. R. and Astola, J., Introduction to Non-linear Image Processing.

Bellingham, WA: SPIE, 1994.

[52] Edwards, G. J., Taylor, C. J., and Cootes, T. F., “Improving identification per-

formance by integrating evidence from sequences,” in Proceeding of Computer Vision

and Pattern Recognition, pp. 1486–1491, 1999.

[53] Falah, R., Bolon, P., and Cocquerez, J., “A region-region and region-edge co-

operative approach of image segmentation,” International Conference on Image Pro-

cessing, vol. 3, pp. 470–474, October 1994.

[54] Farm, J. R. and Deutsch, E. W., “On the quantitative evaluation of edge detec-

tion schemes and their comparison with human performance,” IEEE Transaction on

Computer, vol. 24, pp. 616–628, June 1975.

[55] Fayyad, U. M. and Irani, K., “The attribute selection problem in decision tree

generation,” in Proceedings of the 11th National Conference on Artificial Intelligence,

(San Jose, CA), pp. 322–327, MIT Press, 1992.

[56] Fayyad, U. M. and Irani, K. B., “On the handling of continous-valued attributes

in decision tree generation,” Machine Learning, vol. 8, pp. 87–102, 1992.

[57] Fayyad, U. M. and Irani, K. B., “Multi-interval discretization of continous-valued

attributes for classification learning,” in Proceedings of the 13th International Joint

Conference on Artificial Intelligence (Bajcsy, R., ed.), (Amherst, MA), pp. 1022–

1027, Morgan Kaufmann Publishing Inc., 1993.

[58] Fisher, R. A., “The use of multiple measurements in taxomonic problems,” Annual

Eugenics, vol. II, no. 7, pp. 179–188, 1936.

[59] Freixenet, J., Munoz, X., Raba, D., Marti, J., and Cufi, X., “Yet another

survey on image segmentation: Region and boundary information integration,” in Eu-

ropean Conference on Computer Vision (Heyden, E., ed.), pp. 408–422, 2002.

[60] Fu, K. S. and Mui, J. K., “A survey on image segmentation,” Pattern Recognition,

vol. 13, no. 1, pp. 3–16, 1981.

[61] Funt, B. V. and Bryant, E., “Detection of internal log defects by automatic in-

terpretation of computer tomography images,” Forest Products Journal, vol. 37, no. 1,

pp. 56–62, 1987.

Bibliography 166Bibliography 166Bibliography 166

[62] Gambotto, J., “A new approach to combining region growing and edge detection,”

Pattern Recognition Letters, vol. 14, pp. 869–875, 1993.

[63] Geman, S. and Geman, D., “Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 6, pp. 721–741, November 1984.

[64] Ghosh, A., Pal, N. R., and Pal, S. K., “Image segmentation using neural networks,”

Biological Cybernetics, vol. 66, no. 2, pp. 151–158, 1991.

[65] Glover, F., “Improved linear programming models for discriminant analysis,” Deci-

sion Sciences, vol. 21, pp. 771–785, 1990.

[66] Gokmen, M. and Li, C., “Edge detection and surface reconstruction using refined reg-

ularization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15,

pp. 492–499, May 1993.

[67] Gonzales, R. C. and Wintz, P., Digital Image Processing. Massachusetts: Addison-

Wesley, 1987.

[68] Gonzalez, R. C. and Woods, R. E., Digital Image Processing. New York: Addison-

Wesley, 1992.

[69] Gonzalez, R. C. and Woods, R. E., Digital Image Processing. Upper Saddle River,

NJ: Addison-Wesley, 2nd ed., 2002.

[70] Green, D. M. and Swets, J. A., Signal Detection Theory and Psychophysics. John

Wiley and Sons, 1966.

[71] Haddon, J. and Boyce, J., “Image segmentation by unifying region and bound-

ary information,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 12, pp. 929–948, October 1990.

[72] Haddon, J. and Boyce, J., “Image segmentation by unifying region and bound-

ary information,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 12, pp. 929–948, October 1990.

[73] Hadwiger, H., Vorlesungen Über Inhalt, Oberflœche und Isoperimetrie. Berlin:

Springer-Verlag, 1957.

Bibliography 167Bibliography 167Bibliography 167

[74] Hagman, P. O. G. and Grundberg, S. A., “Classification of Scots pine (pinus

sylvestris) knots in density images from CT scanned logs,”Hols als Roh- und Werkstoff,

vol. 53, pp. 75–81, 1995.

[75] Hall, E. L., Computer Image Processing and Recognition. New York: Academic

Press, 1979.

[76] Han, W. and Birkeland, R., “Ultrasonic scanning for internal log defects,” in Pro-

ceedings of the 4th International Conference on Scanning Technology in the Wood

Industry, (San Francisco, CA), Miller-Freeman Publishing Company, 1991.

[77] Hanley, J. A. and McNeil, B. J., “The meaning and use of the area under a

reciever operating characteristics (ROC) curve,” Radiology, vol. 143, pp. 29,36, April

1982.

[78] Hansen, F. and Elliott, H., “Image segmentation using simple markov field mod-

els,” Computer Vision, Graphics, and Image Processing, vol. 20, pp. 101–132, 1982.

[79] Hansen, M. and Higgins, W., “Relaxation methods for supervised image segmen-

tation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,

pp. 949–962, September 1997.

[80] Haralick, R. M., “Performance characterization in computer vision,” Computer Vi-

sion, Graphics, and Image Processing, vol. 60, pp. 245–249, September 1994.

[81] Haralick, R. M. and Shapiro, L. G., “Survey: Image segmentation techniques,”

Computer Vision, Graphics, and Image Processing, vol. 29, pp. 100–132, January 1985.

[82] Haralick, R. M. and Shapiro, L. G., Computer and Robot Vision. New York:

Addison-Wesley, 1992.

[83] Haralick, R. M., Sternberg, S. R., and Zhuang, X., “Image analysis using

mathematical morphology,” IEEE Transaction on Pattern Analysis Machine Intelli-

gence, vol. 9, no. 4, pp. 532–550, 1987.

[84] Haralick, R., “Digital step edges from zero-crossings of second directional deriva-

tives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 58–

68, January 1984.

Bibliography 168Bibliography 168Bibliography 168

[85] Haralick, R. and Kelly, G., “Pattern recognition with measurement space and

spatial clustering for multiple images,” Proceedings of IEEE, vol. 57, pp. 654–665,

April 1969.

[86] Heijmans, H., “Theoretical aspects of gray-level morphology,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 568–582, 1991.

[87] Heijmans, H. J. A. M. and Roerdink, J. B. T. M., eds., Mathematical Morphol-

ogy and its Applications to Image and Signal Processing. Boston: Kluwer Academic

Publishers, 1998.

[88] Hojjatoleslami, S. and Kittler, J., “Region growing: A new approach,” IEEE

Transacations on Image Processing, vol. 7, pp. 1079–1084, July 1998.

[89] Hoveer, A., Baptiste, G., Jiang, X., Flynn, P. J., Bunke, H., Goldgof,

D. B., Bowyer, K., Eggert, D. W., Fitzgibbon, A., and Fisher, R. B., “An

experimental comparison of range image segmentation algorithms,” IEEE Transaction

on Pattern Analysis and Machine Intelligence, pp. 673–689, July 1998.

[90] Huang, Q. and Dom, B., “Quantitative methods of evaluating image segmentation,”

IEEE International Conference on Image Processing, pp. 53–56, December 1995.

[91] Hunink, M. G. M., Deslegte, R. G. M., and Hoogesteger, M. F., “ROC

analysis of the clinical, CT and MRI diagnosis of orbital space occupying lesions,”

ORBIT-The International Journal on Orbital Disorders, Oculoplastic and Lacrimal

Surgery, vol. 8, September 1989.

[92] Jacobus, C. and Chien, R., “Two new edge detectors,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 3, pp. 581–592, September 1981.

[93] Jain, A., “Advances in mathematical models for image processing,” Proceedings of

IEEE, vol. 69, pp. 502–528, May 1981.

[94] Kelemen, A., Szekely, G., and Gerig, G., “Elastic model-based segmentation of

3D neuroradiology data sets,” IEEE Transaction on Medical Imaging, vol. 18, pp. 828–

839, October 1999.

[95] Kittler, J., Eggleton, J., Illingworth, J., and Paler, K., “An averaging edge

detector,” Pattern Recognition Letters, vol. 6, no. 1, pp. 27–32, 1987.

Bibliography 169Bibliography 169Bibliography 169

[96] Klein, J. and Serra, J., “The texture analyzer,” Journal of Microscopy, vol. 95,

1972.

[97] Kohler, R., “A segmentation system based on thresholding,” Computer Vision

Graphics, and Image Processing, vol. 15, pp. 319–338, 1981.

[98] Kulpa, Z., “Area and perimeter measurement of blobs in discrete binary pictures,”

Computer Vision, Graphics and Image Processing, vol. 6, pp. 434–454, 1977.

[99] Kurlander, D., Graphical Editing by Example. PhD thesis, Department of Computer

Science, Columbia University, New York, NY, 1993.

[100] Lau, T., Programming by Demontration: a Machine Learning Approach. PhD thesis,

Department of Computer Science, University of Washington, Seattle, WA, 2001.

[101] Lau, T., Domingos, P., and Weld, D. S., “Version space algebra and its application

to programming by demonstration,” in Proceedings of the Seventeenth International

Conference on Machine Learning, pp. 527–534, June 2000.

[102] Lee, S. U., Chung, S. Y., and Park, R. H., “A comparative performance study of

several global thresholding techniques for segmentation,” Computer Vision, Graphics,

and Image Processing, vol. 52, pp. 171–190, 1990.

[103] Levine, M. and Nazif, A. M., “Dynamic measurement of computer generated im-

age segmentations,” IEEE Transaction on Pattern Analysis and Machine Intelligence,

vol. 7, pp. 155–164, March 1985.

[104] Li, L., Gong, J., and Chen, W., “Gray-level thresholding based on fisher linear

projection of two-dimensional histogram,” Pattern Recognition, vol. 30, no. 5, pp. 743–

749, 1997.

[105] Li, P., Abbott, A., and Schmoldt, D. L., “Automated analysis of CT images for

the inspection of hardwood logs,” in Proceedings of International Conference on Neural

Networks, (Washington, DC), June 1996.

[106] Lieberman, H., “Mondrian: A teachable graphical editor,” in Watch What I Do:

Programming by Demonstration (Cypher, A., ed.), pp. 341–358, Cambridge, MA:

MIT Press, 1993.

Bibliography 170Bibliography 170Bibliography 170

[107] Lieberman, H., “Tinker: A programming by demonstration system for beginning

programmers,” in Watch What I Do: Programming by Demonstration (Cypher, A.,

ed.), pp. 49–64, Cambridge, MA: MIT Press, 1993.

[108] Lieberman, H., Your Wish is My Command: Programming By Example. San Fran-

cisco, CA: Morgan Kaufmann Publishers Inc., 2001.

[109] Lloyd, D. E., “Automatic target classification using moment invariants of image

shapes,” Tech. Rep. RAE IDN AW126, Farnborough, UK., 1985.

[110] Lu, S. and Xu, H., “Textured image segmentation using autoregressive model and

artificial neural-network,”Pattern Recognition, vol. 28, pp. 1807–1817, December 1995.

[111] Lunscher, W. and Beddoes, M., “Optimal edge detector design i: Parameter se-

lection and noise effects,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 8, pp. 164–177, March 1986.

[112] Lunscher, W. and Beddoes, M., “Optimal edge detector design ii: Coefficient quan-

tization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8,

pp. 178–187, March 1986.

[113] Mangasarian, O. L., “Linear and nonlinear separation of patterns by linear pro-

gramming,” Operations Research, vol. 13, pp. 444–452, 1965.

[114] Mangasarian, O. L., “Multi-surface method of pattern separation,” IEEE Transac-

tions on Information Theory, vol. IT-14, pp. 801–807, 1968.

[115] Mangasarian, O. L., “Mathematical programming in neural networks,”ORSA Jour-

nal on Computing, vol. 5, pp. 349–360, 1993.

[116] Mangasarian, O. L., “Misclassification minimization,” Journal of Global Optimiza-

tion, vol. 5, pp. 309–323, 1994.

[117] Mantas, J., “Methodologies in pattern recognition and image analysis: a brief survey,”

Pattern Recognition, vol. 20, pp. 1–6, 1987.

[118] Maragos, P., Schafer, R. W., and Butt, M. A., eds., Mathematical Morphology

and its Applications to Image and Signal Processing. Boston, MA: Kluwer Academic

Publishers, 1996.

Bibliography 171Bibliography 171Bibliography 171

[119] Matheron, G., Random Sets and Integral Geometry. New York: John Wiley, 1975.

[120] Maulsby, D., “Inducing procedures interactively: Adventures with metamouse,”Mas-

ter’s thesis, Department of Computer Science, University of Calgary, Calgary, Decem-

ber 1988.

[121] Maulsby, D. and Witten, I. H., “Metamouse: An instructible agent for pro-

gramming by demonstration,” in Watch What I Do: Programming by Demonstration

(Cypher, A., ed.), pp. 155–181, Cambridge, MA: MIT Press, 1993.

[122] Maulsby, D. L., Witten, I. H., and Kittlitz, K. A., “Metamouse: specifying

graphical procedures by example,” in Proceedings of the 16th Annual Conference on

Computer Graphics and Interactive Techniques, pp. 127–136, ACM Press, 1989.

[123] McClelland, J. and Rumelhart, D., Parallel Distributed Processing. Cam-

bridge,MA: MIT Press, 1986.

[124] McMillin, C. W., “Applications of automatic image analysis to wood science,”Wood

Science, vol. 14, no. 3, pp. 97–105, 1982.

[125] Mehnert, A. and Jackway, P., “An improved seeded region growing algorithm,”

Pattern Recognition Letters, vol. 18, pp. 1065–1071, October 1997.

[126] Minkowski, H., “Volumen und oberflache,”Mathematische Annalen, vol. 57, pp. 447–

495, 1903.

[127] Minkowski, H., Gesammelte Abhandlungen. Leipzig-Berlin: Teubner Verlag, 1911.

[128] Mitchell, T. M., Machine Learning. Boston, MA: McGraw-Hill, 1997.

[129] Murthy, S. K., Kasif, S., and Salzberg, S., “A system for induction of oblique

decision trees,” Journal of Artificial Intelligence Research, vol. 2, pp. 1–33, 1994.

[130] Myers, B. A., “Demonstrational interfaces: A step beyond direct manipulation,”

Computer, vol. 25, pp. 61–73, August, 1992.

[131] Myers, B. A., “Peridot: Creating user interfaces by demonstration,” in Watch What

I Do: Programming by Demonstration (Cypher, A., ed.), pp. 125–153, Cambridge,

MA: MIT Press, 1993.

Bibliography 172Bibliography 172Bibliography 172

[132] Nakagawa, Y. and Rosenfeld, A., “A note on the use of local min and max opera-

tion in digital picture processing,” IEEE Transaction of System, Man, and Cybernetics,

vol. SMC-8, pp. 632–635, 1978.

[133] Nix, R. P., Editing by Example. PhD thesis, Department of Computer Science, Yale

University, New Haven, CT, 1983.

[134] Occeña, L. G., “Computer integrated manufacturing issues related to the hardwood

log sawmill,” Journal of Forest Engineering, vol. 3, no. 1, pp. 39–45, 1991.

[135] Otsu, N., “A threshold selection method from gray level histograms,” IEEE Transac-

tions on Systems Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[136] Pal, N. R. and Pal, S. K., “A review on image segmentation techniques,” Pattern

Recognition, vol. 26, pp. 1277–1294, September 1993.

[137] Pal, N. and Pal, S. K., “Entropic thresholding,” Signal Processing, vol. 16, pp. 97–

108, 1989.

[138] Papamarkos, N., Strouthopoulos, C., and Andreadis, I., “Multithresholding

of color and gray-level images through a neural network technique,” Image and Vision

Computing, vol. 18, pp. 213–222, February 2000.

[139] Pavlidis, T. and Liow, Y., “Integrating region growing and edge detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 225–233,

March 1990.

[140] Peli, T. and Malah, D., “A study of edge detection algorithms,” Computer Vision,

Graphics, and Image Processing, vol. 20, no. 1, pp. 1–21, 1982.

[141] Perez, A. and Gonzalez, R. C., “An iterative thresholding algorithm for image

segmentation,” IEEE Pattern Analysis and Machine Intelligence, vol. 9, pp. 742–751,

1987.

[142] Pitas, I. and Venetsanopoulos, A. N., Nonlinear Digital Filters: Principles and

Applications. Boston,MA: Kluwer Academic Publishers, 1990.

[143] Pluempitiwiriyawej, C., Moura, J. M. F., Wu, Y. L., and Ho, C., “Cardiac MR

image segmentation: Quality assessment of STACS,” IEEE International Symposium

on Bioimaging, April 2004.

Bibliography 173Bibliography 173Bibliography 173

[144] Potter, R., “TRIGGERS: Guiding automation with pixels to achieve data access,” in

Watch What I Do – Programming by Demonstration (Cypher, A., ed.), pp. 361–380,

Cambridge, MA: MIT Press, 1993.

[145] Potter, R. and Shneiderman, B., “Pixel data access for end-user programming

and graphical macros,” Tech. Rep. CS-TR-4019, Department of Computer Science,

University of Maryland, College Park, MD, 1999.

[146] Prager, J., “Extracting and labeling boundary segments in natural scenes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 2, pp. 16–26, January

1980.

[147] Provost, F., Fawcett, T., and Kohavi, R., “The case against accuracy estimation

for comparing induction algorithms,” in Proceedings 15th International Conference on

Machine Learning, (San Francisco, CA), pp. 445–453, Morgan Kaufmann Publishers

Inc., 1998.

[148] Pun, T., “A new method ofr gray level picture thresholding using the entropy of the

histogram,” Signal Processing, pp. 210–239, 1980.

[149] Quinlan, J. R., “Induction of decision trees,”Machine Learning, vol. 1, no. 1, pp. 81–

106, 1986.

[150] Quinlan, J. R., C4.5: Programs for Machine Learning. San Francisco, CA: Morgan

Kaufman, 1993.

[151] Rees, G., Greenway, P., and Morray, D., “Metrics for image segmentation,” in

Proceedings of SPIE, Visual Information Processing VII (Park, S. K. and Juday,

R. D., eds.), vol. 3387, (Orlando, FL), pp. 199–210, April 1998.

[152] Richards, D. B., Adkins, W. K., Hallock, H., and Bulgrin, E. H., “Simulation

of hardwood log sawing,” Tech. Rep. FPL-355, USDA Forest Products Research Lab,

Madison, WI, 1979.

[153] Rosenfeld, A., “Survey, image analysis and computer vision,” Computer Vision

Graphics, and Image Processing, vol. 46, pp. 196–250, 1989.

[154] Rosenfeld, A., Hummel, R., and Zucker, S., “Scene labeling by relaxation op-

erations,” IEEE International Conference on Systems, Man, and Cybernetics, vol. 6,

pp. 420–433, June 1976.

Bibliography 174Bibliography 174Bibliography 174

[155] Rosenfeld, A. and Kak, A. C., Digital Picture Processing. New York: Academic

Press, 1982.

[156] Sahoo, P. K., Soltani, S., Wong, A. K. C., and Chen, Y. C., “A survey of

thresholding techniques,” Computer Vision Graphics, and Image Processing, vol. 41,

pp. 233–260, February 1988.

[157] Sarigul, E., Abbott, A. L., and Schmoldt, D. L., “Nondestructive rule based

defect detection and identification system in CT images of hardwood logs,” in Re-

view of Progress in Quantitative Nondestructive Evaluation (Thompson, D. O. and

Chimenti, D. E., eds.), vol. 20, pp. 1936–1943, 2000.

[158] Sarigul, E., Abbott, A. L., and Schmoldt, D. L., “Rule driven defect detection

in CT images of hardwood logs,” in 4th International Conference on Image Processing

and Scanning of Wood, (Mountain Lake, VA), pp. 37–51, 2000.

[159] Sarigul, E., Abbott, A. L., and Schmoldt, D. L., “Rule-driven defect detection

in CT images of hardwood logs,” Computers and Electronics in Agriculture (COM-

PAG), 2001.

[160] Sarigul, E., Abbott, A. L., and Schmoldt, D. L., “Interactive machine learning

for postprocessing CT images of hardwood logs,” in 5th International Conference on

Image Processing and Scanning of Wood, (Wien, Austuria), March 2003.

[161] Sarigul, E., Abbott, A. L., and Schmoldt, D. L., “Progress in analysis of com-

puted tomography (CT) of hardwood logs for defect detection,” in 10th International

Conference on Scanning technology and Process Optimization for the Wood Industry

(Szymani, R., ed.), (Seattle, WA), November 2003.

[162] Sato, M., Lakare, S., Wan, M., and Kaufman, A., “A gradient magnitude based

region growing algorithm for accurate segmentation,” in International Conference on

Image Processing, vol. 3, pp. 448–451, 2000.

[163] Schmoldt, D. L., He, J., and Abbott, A. L., “Automated labeling of log features

in CT imagery of multiple hardwood species,” Wood and Fiber Science, vol. 32, no. 3,

pp. 287–300, 2000.

Bibliography 175Bibliography 175Bibliography 175

[164] Schmoldt, D. L., Li, P., and Abbott, A. L., “Machine vision using artificial neu-

ral networks and 3D pixel neighborhoods,” Computers and Electronics in Agriculture

(COMPAG), vol. 16, no. 3, pp. 255–271, 1997.

[165] Serra, J., Image Analysis and Mathematical Morphology. London: Academic Press,

1982.

[166] Serra, J. and Soille, P., eds., Mathematical Morphology and its Applications to

Image Processing. Boston, MA: Kluwer Academic Publishers, 1994.

[167] Singh, S. and Al-Mansoori, R., “Identification of regions of interest in digital

mammograms,” Journal of Intelligent Systems, vol. 10, no. 2, pp. 183–217, 2000.

[168] Smith, D. C., Pygmalion: A Computer Program to Model and Stimulate Creative

Thought. Birkhauser, Basel, 1977.

[169] Smith, D. C., “Pygmalion: An executable electronic blackboard,” in Watch What I

Do: Programming by Demonstration (Cypher, A., ed.), pp. 19–47, Cambridge, MA:

MIT Press, 1993.

[170] Soile, P., “Grey scale convex hulls: Definition, implementation, and application,”

in Proceedings of International Symposium on Mathematical Morphology, pp. 83–90,

1998.

[171] Soille, P., Morphological Image Analysis: Principles and Applications. Berlin:

Springer, 2003.

[172] Som, S., Wells, P., and Davis, J., “Automated feature extraction of wood from to-

mographic images,” 2nd International Conference on Automation, Robotics and Com-

puter Vision, September 15-18, 1992.

[173] Sternberg, S. R., “Biomedical image processing,” Computer, vol. 16, January 1983.

[174] Sternberg, S. R., “Overview of image algebra and related issues,” in Integrated

Technology for Parallel Image Processing (Levialdi, S., ed.), (London), Academic

Press, 1985.

[175] Sternberg, S. R., “Grayscale morphology,” Computer Graphics and Image Process-

ing, vol. 35, pp. 333–335, 1986.

Bibliography 176Bibliography 176Bibliography 176

[176] Street, W. N., “Oblique multicategory decision trees using nonlinear programming,”

INFORMS Journal on Computing, vol. 4, no. 5, 2004.

[177] Swets, J. A. and Pickett, R. M., Evaluation of diagnostic Systems: Methods from

Signal Detection Theory. New York: Academic Press, 1988.

[178] Taxt, T., Flynn, P. J., and Jain, A. K., “Segmentation of document images,” IEEE

Transactions on Pattern Analysis Machine Intelligence, vol. 11, no. 12, pp. 1322–1329,

1989.

[179] Taylor, F. W., Wagner, J. F. G., McMillin, C. W., Morgan, I. L., and

Hopkins, F. F., “Locating knots by industrial tomography - a feasibility study,”

Forest Products Journal, vol. 34, no. 5, pp. 42–46, 1984.

[180] Tsolakides, J. A., “A simulation model for log yield study,”Forest Products Journal,

vol. 19, no. 7, pp. 21–26, 1969.

[181] Utgoff, P. and Brodley, C. E., “Linear machine decision trees,”Tech. Rep. 91-10,

University of Massachusetts, Amherst, MA, 1991.

[182] van Trees, H. L., Detection, Estimation and Modulation Theory, Part I. John Wiley

and Sons, 1968.

[183] Vapnik, V., The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[184] Vincent, L., “Morphological transformations of binary images with arbitrary struc-

turing elements,” Signal Processing, vol. 22, no. 1, pp. 3–23, 1991.

[185] Wærn, A., “What is an intelligent interface?,” Tech. Rep. 03-1997, Swedish Institute

of Computer Science, Kista, Sweden, 1997.

[186] Wagner, F. G., Harless, T. E. G., Stelle, P. H., Taylor, F. W., Yadama,

V., and McMillin, C. W., “Management of wood products: Technology for the 90’s,”

Proceedings of Process Control, pp. 77–88, 1990.

[187] Wang, S. and Haralick, R. M., “Automatic multithreshold selection,” Computer

Vision Graphics, and Image Processing, vol. 25, pp. 46–67, 1984.

[188] Weszka, J. S. and A.Rosenfeld, “Threshold evaluation techniques,” IEEE Trans-

action on System Man, and Cybernetics, vol. 8, pp. 622–629, 1978.

Bibliography 177Bibliography 177Bibliography 177

[189] Weszka, J., “Survey of threshold selection techniques,” Computer Vision, Graphics

and Image Processing, pp. 259–265, 1978.

[190] Witten, I. H. and Frank, E., Data Mining. San Francisco: Morgan Kaufmann

Publisher Inc., 2000.

[191] Witten, I. H. and MacDonald, B., “Using concept learning for knowledge acqui-

sition,” International Journal of Man-Machine Studies, vol. 29, pp. 171–196, August

1988.

[192] Witten, I. H. and Mo, D. H., “Tels: Learning text editing task from examples,” in

Watch What I Do: Programming by Demonstration (Cypher, A., ed.), pp. 183–203,

Cambridge, MA: MIT Press, 1993.

[193] Witten, I. H. and Mo, D. H., “The turvy experience: simulating an instructible

user interface,” in Watch What I Do: Programming by Demonstration (A.Cypher,

ed.), pp. 239–269, Cambridge, MA: MIT Press, 1993.

[194] Wong, A. K. C. and Sahoo, P. K., “A grey level threshold selection method based

on maximum entropy principle,” IEEE Transaction on Systems, Man, and Cybernetics,

pp. 866–871, 1989.

[195] Wu, A. Y., Hong, T., and Rosenfeld, A., “Threshold selection using quadtrees,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4, pp. 90–94,

1982.

[196] Xiaohan, Y., Yla-Jaaski, J., and Baozong, Y., “A new algorithm for texture

segmentation based on edge detection,” Pattern Recognition, vol. 24, no. 11, pp. 1105–

1112, 1991.

[197] Yanowitz, S. D. and Bruckstein, A. M., “A new method for image segmentation,”

Computer Vision Graphics and Image Processing, vol. 46, pp. 82–95, 1989.

[198] Yasnoff, W. A., Mui, W. A., and Bacus, J. W., “Error measures in scene seg-

mentation,” Pattern Recognition, vol. 9, no. 4, pp. 217–217, 1977.

[199] Zhang, R., Tsai, P., Cryer, J., and Shah, M., “Analysis of shape from shading

techniques,” Computer Vision and Pattern Recognition, pp. 377–384, 1994.

Bibliography 178Bibliography 178Bibliography 178

[200] Zhang, Y. J., “A survey on evaluation methods for image segmentation,” Pattern

Recognition, vol. 29, pp. 1335–1346, December 1996.

[201] Zhou, Y., Venkateswar, V., and Chellappa, R., “Edge detection and linear

feature extraction using a 2-d random field model,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 11, pp. 84–95, January 1989.

[202] Zhu, D., A Feasibility Study on Using CT Image Analysis for Hardwood Log Inspec-

tion. PhD thesis, Department of Electrical Engineering and Computer Science, Virginia

Polytechnic Institute and State University, Blacksburg, VA, 1993.

[203] Zhu, D., Conners, R. W., and Araman, P., “3-D signal processing in a computer

vision system,” IEEE International Conference on Systems Engineering, pp. 457–460,

August 1-3, 1991.

[204] Zhu, D., Conners, R. W., and Beex, A. A., “Stochastic field-based object recog-

nition in computer vision,” Proceedings of SPIE - The International Society of Optical

Engineering, vol. 1569, pp. 174–181, July 21-26, 1991.

[205] Zhu, D., Conners, R. W., Lamb, F. M., Schmoldt, D., and Araman, P.,

“A computer vision system for locating and identifying internal log defects using CT

imagery,” in Proceedings of 4th International Conference on Scanning Technology in

Sawmilling (Szymani, R., ed.), (San Francisco, CA), October 28-31, 1991.

[206] Zhu, D., Conners, R. W., Schmoldt, D., and Araman, P., “CT image sequence

analysis for object recognition - rule-based 3D computer vision system,” IEEE Inter-

national Conference on Systems, Man, and Cybernetics, pp. 173 – 178, October 13-16,

1991.

[207] Zhu, D. P., Conners, R. W., and Schmoldt, D. L., “Nondestructive evaluation

of hardwood logs using automated interpretation of CT images,” in Review of Progress

in Quantitative Nondestructive Evaluation (Thompson, D. O. and Chimenti, D.,

eds.), vol. 12, (New York), pp. 2257–2264, Plenum Press, 1993.

[208] Zijdenbos, A., Dawant, B., and Margolin, R., “Morphometric analysis of white

matter leisons in MR images: Method and validation,” IEEE Transcation on Medical

Imaging, vol. 13, pp. 716–724, December 1994.

Vita

Erol Sarigul was born in Erzincan, Turkey in 1969. After his high school education at

Erzincan, he went to Dokuz Eylul University, in Izmir (Turkey) for a Bachelor of Engineering

degree in Electronics and Communication Engineering. After graduating with distinction of

3rd in class rank in 1992, he worked in industry as technical computer consultant for providing

technical support for contracted companies. Due to a desire to have good graduate studies in

US, he came to Virginia Tech to obtain a Master of Science degree in Electrical Engineering.

He graduated with an M.S. in December 1998. Due to the interest on Image and Signal

Processing strongly suggested him to pursue his Ph.D.

179

	Introduction
	Problem definition and motivation
	Background
	Brief survey of image segmentation
	Our approach
	Needs
	Contributions of this study
	Possible application areas of this study
	Outline of the thesis

	Historical Review of Learning by Demonstration
	Introduction
	Definitions and their usage
	Previous Experimental Systems
	Pygmalion
	U Editor
	Tinker
	Peridot
	Metamouse and Turvy
	TELS
	Triggers
	Chimera
	Mondrian
	SmartEdit

	Summary

	Background
	Introduction
	Morphological Image Analysis
	Overview
	Image Regions as Set, and Logical Operators
	Structuring Elements
	Basic Morphological Operations
	Gray Level Morphological Processing

	Decision Trees and Rule Based Classification
	The Problem of Classification and Classifiers
	Induction of Decision Trees
	Proper Applications of Decision Trees
	A Classical Algorithm for Building Decision Trees: ID3
	Problems with Decision Trees
	Other Decision Tree Implementations

	Summary

	IntelliPost: Intelligent Postprocessing
	System Overview
	Modes of Operations
	Learn Mode
	Overview
	Feature Space and Feature Extraction
	Postprocessing Operation Library

	Run Mode
	Overview
	OC-SEP Decision Tree Induction as Inference Engine
	Region Feature Extraction
	Region Refinement

	Summary

	Results and Discussion
	Overview
	Methodology for Experiments
	Experimental Evaluation
	Generation of Ground Truth

	CT/MRI Image Datasets
	Hardwood Log Data Sets
	Medical Brain CT/MRI Scan Data Sets

	Segmentation Performance Metrics
	Overview
	Confusion Matrix Analysis
	ROC Analysis
	Area Similarity Measure
	Shape Similarity Measure

	Results for Hardwood Log Datasets
	Confusion Matrix Analysis Results
	ROC Analysis
	Region Based Analysis Results

	Result for CT/MRI Medical Datasets
	Summary

	Summary and Conclusion
	Summary
	Conclusion
	Future Directions

	Bibliography

