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Summary

This paper describes an underwater glider motion control system intended to enhance locomotive
efficiency by reducing the energy expended by vehicle guidance and control. In previous work,
the authors derived an approximate analytical expression for steady turning motion by applying
regular perturbation theory to a sophisticated vehicle dynamic model. Using these steady turn
solutions, including the special case of wings level glides, one may construct feasible paths for
the gliders to follow. Because the turning motion results are only approximate, however, and to
compensate for model and environmental uncertainty, one must incorporate feedback to ensure
precise path following. This report describes the development and numerical implementation of
a feedforward/feedback motion control system for a multi-body underwater glider model. Since
the motion control system relies largely on steady motions, it is intrinsically efficient. Moreover,
the nature of the steady turn approximations suggests a method for nearly energy-optimal path
planning.
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1 Introduction

An underwater glider is a winged autonomous underwater vehicle which modulates its buoyancy to
rise or sink. It uses servo-actuators to shift the center of mass relative to the center of buoyancy to
control pitch and roll attitude. By appropriately cycling these actuators, an underwater glider can
control its directional motion and propel itself with great efficiency. Applications include long-term,
basin-scale oceanographic sampling and littoral surveillance. The first generation of underwater
gliders includes Slocum [26], Seaglider [4], and Spray [25]. (Figure 1 shows a solid model of the
Slocum gilder.) These “legacy gliders” have proven their worth as efficient, long-distance, long-
endurance ocean sampling platforms. They can be deployed for months and travel thousands of
kilometers. For example, researchers with the Rutgers University Coastal Ocean Observation Lab
(RU-COOL) flew battery powered Slocum Gliders over 62000 km, in partnership with Teledyne
Webb Research, in different endurance flights [14]. The RU27 Scarlet Knight completed a 7410
km mission across the Atlantic on December 4, 2009, completing the unfinished voyage of RU17
which set a record breaking distance of 5700 km during a five-month flight [22]. A University of
Washington Seaglider remained at sea for six months as it made round trips hundreds of miles
in length under the Arctic ice [12]. The exceptional endurance of underwater gliders is due to

Figure 1: The underwater glider Slocum solid model in Rhinoceros 3.0 [7]
Mass 50 (kg); Length 1.5 (m); Wing Span 1 (m); Diameter 0.2 (m).

their reliance on gravity (weight and buoyancy) for propulsion and attitude control. Early efforts in
control of buoyancy driven vehicles focused on designing efficient steady motions and controlling the
vehicles about these nominal motions [6], but later efforts focused on improving the energy efficiency
and controller accuracy of the motion control system [1] and [13]. Results of studies demonstrated
the potential for improvements in the current controller design even within the current control
structure ([1] and [13]). Classical proportional-integral-derivative (PID) controllers are commonly
used for attitude control. These controllers are tuned based on experience and field-tests by the
designers and operators of the gliders. (See [1], [2], and [13], for example.) A systematic approach to
design a controller using standard linear optimal control design method (linear quadratic regulator
(LQR)) was presented in [8] and [17]. Different actuator configurations (pure torque, buoyancy, and
elevator control) were considered in [2] and a Lyapunov-based stability result was used to develop
control laws for stabilizing desired steady glides.

Leonard and Graver in [8] and [17] mentioned the potential value of “complementing the feedback
law with a feedforward term which drives the movable mass and the variable mass in a predeter-
mined way from initial to final condition” in control of underwater gliders. We consider a feedfor-
ward/feedback structure for the motion control system as explained in [20]. The feedforward term
drives the servo-actuators to predetermined equilibrium positions and the buoyancy bladder to a
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predetermined equilibrium obtained from the analytical solution presented in [19], corresponding
to some desired steady flight condition. The feedback term compensates for the errors due to the
approximation and environmental uncertainty. Steady motions can then be concatenated to achieve
compatible guidance objectives, such as waypoint following.

Our aim is to develop implementable, energy-efficient motion control strategies that further improve
the inherent efficiency of underwater gliders. Section 2 describes a general dynamic model for an
underwater glider. Section 3 reviews the conditions for wings-level gliding flight given in [9] and
the approximate conditions for steady turning flight developed in [19]. The motion control system
design is presented in Section 4 and the stability of the closed loop system is analyzed in Section 8.
Simulation results for the Slocum model given in [2] are presented in Section 9. Conclusions of the
work and a description of ongoing research are provided in Section 10. More detail can be found in
[21].

2 Vehicle Dynamic Model with Actuator Dynamics

The glider is modeled as a rigid body (mass mrb) with two moving mass actuators (mpx and mpy)
and a variable ballast actuator (mb). The total vehicle mass is

mv = mrb +mpx +mpy +mb,

where mb can be modulated by control.

rp

rrb

i1

i2

i3

y

rp
xmpx

mb

mpy

Figure 2: Illustration of point mass actuators.

The vehicle displaces a volume of fluid of mass m. If m̃ := mv−m is greater than zero, the vehicle is
heavy in water and tends to sink while if m̃ is negative, the vehicle is buoyant in water and tends to
rise. Figure 2 shows the simplified model for the underwater glider actuation system. The variable
mass is represented by a mass particle mb located at the origin of a body-fixed reference frame.

The vehicle’s attitude is given by a proper rotation matrix RIB which maps free vectors from the
body-fixed reference frame to a reference frame fixed in inertial space. The body frame is defined by
an orthonormal triad {b1, b2, b3}, where b1 is aligned with the body’s longitudinal axis. The origin
of a body-fixed reference frame is located at the center of volume of the vehicle as illustrated in
Figure 2. The inertial frame is represented by an orthonormal triad {i1, i2, i3}, where i3 is aligned
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with the local direction of gravity. To define the rotation matrix explicitly, let vectors ei define the
standard basis for R3 for i ∈ {1, 2, 3}:

e1 =





1
0
0



 , e2 =





0
1
0



 , and e3 =





0
0
1





Also, let the character ·̂ denote the 3×3 skew-symmetric matrix satisfying âb = a×b for 3-vectors
a and b. The rotation matrix RIB is typically parameterized using the roll angle φ, pitch angle θ,
and yaw angle ψ:

RIB(φ, θ, ψ) = eê3ψeê2θeê1φ where eQ =

∞
∑

n=0

1

n!
Qn for Q ∈ R

n×n.

Let v = [u, v, w]T represent the translational velocity and let ω = [p, q, r]T represent the rotational
velocity of the underwater glider with respect to inertial space, where v and ω are both expressed
in the body frame. Letting y represent the position of the body frame origin with respect to the
inertial frame, the vehicle kinematic equations are

ẏ = RIBv (1)

ṘIB = RIBω̂. (2)

In terms of these Euler angles, the kinematic equations (1) and (2) become, respectively,





ẋ
ẏ
ż



 =





cos θ cosψ sin φ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ









u
v
w









φ̇

θ̇

ψ̇



 =





1 sinφ tan θ cosφ tan θ
0 cos φ − sinφ
0 sinφ sec θ cosφ sec θ









p
q
r



 .

As indicated in Figure 2, the mass particle mpx is constrained to move along the longitudinal axis
while the mass particle mpy is constrained to move along the lateral axis:

rpx = rpxe1 and rpy = rpye2

Following [27], define the mass, inertia, and inertial coupling matrices for the combined rigid
body/moving mass/variable ballast system as

Irb/p/b = Irb −mpx r̂px r̂px −mpy r̂py r̂py

Mrb/p/b = mvI

Crb/p/b = mrbr̂rb +mpx r̂px +mpy r̂py

where I represents the 3 × 3 identity matrix. The rigid body inertia matrix Irb represents the
distribution of mass mrb and is assumed to take the form

Irb =





Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz
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where the off-diagonal terms in Irb arise, for example, from an offset center of mass rrb = [xrb, 0, zrb]
T .

It is notationally convenient to compile the various inertia matrices into the generalized inertia ma-
trix Mrb/p/b.

Mrb/p/b =









Irb/p/b Crb/p/b mpx r̂pxe1 mpy r̂pye2

CT
rb/p/b Mrb/p/b mpxe1 mpye2

−mpxe
T
1 r̂px mpxe

T
1 mpx 0

−mpye
T
2 r̂py mpye

T
2 0 mpy









The generalized added inertia matrix is composed of the added mass matrix Mf , the added inertia
matrix If , and the added inertial coupling matrix Cf :

Mf =





If Cf O3×2

CT
f Mf O3×2

O2×3 O2×3 O2×2





The generalized added inertia matrix accounts for the energy necessary to accelerate the fluid around
the vehicle as it rotates and translates. In notation similar to that defined by SNAME [5]1,

(

If Cf

CT
f Mf

)

= −





















Lṗ Lq̇ Lṙ Lu̇ Lv̇ Lẇ

Mṗ Mq̇ Mṙ Mu̇ Mv̇ Mẇ

Nṗ Nq̇ Nṙ Nu̇ Nv̇ Nẇ

Xṗ Xq̇ Xṙ Xu̇ Xv̇ Xẇ

Yṗ Yq̇ Yṙ Yu̇ Yv̇ Yẇ

Zṗ Zq̇ Zṙ Zu̇ Zv̇ Zẇ





















The generalized inertia for the vehicle/fluid system is

M = Mrb/p/b +Mf =









I C mpx r̂pxe1 mpy r̂pye2

CT M mpxe1 mpye2

−mpxe
T
1 r̂px mpxe

T
1 mpx 0

−mpye
T
2 r̂py mpye

T
2 0 mpy









(3)

where the inertia I, mass M , and coupling C matrices are defined as follows:

I = Irb/p/b + If

M = Mrb/p/b +Mf

C = Crb/p/b +Cf

Let psys represent the total linear momentum of the vehicle/fluid system and hsys represent the
total angular momentum both expressed in the body frame. Let ppx and ppy represent the to-
tal translational momentum of the moving mass particles expressed in the body frame. Defin-
ing the generalized velocity η = ( ωT vT ṙpx ṙpy )T and the generalized momentum ν =

( hTsys pTsys ppx ppy )T , we have
ν = Mη (4)

1In SNAME notation, roll moment is denoted by K rather than L
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The dynamic equations in mixed momentum/velocity notation are

ḣsys = hsys × ω + psys × v + (mrbgrrb +mpxgrpx +mpygrpy)× (RT
IBi3) + Tvisc

ṗsys = psys × ω + m̃g(RT
IBi3) + Fvisc (5)

ṗpx = e1 ·
(

ppx × ω +mpxg(R
T
IBi3)

)

+ ũpx

ṗpy = e2 ·
(

ppy × ω +mpyg(R
T
IBi3)

)

+ ũpy
ṁb = ub

where the terms Tvisc and Fvisc represent external moments and forces which do not derive from
scalar potential functions. These moments and forces include control moments, such as the yaw
moment due to a rudder (if present), and viscous forces, such as lift and drag.

The forces ũpx and ũpy can be chosen to cancel to remaining terms in the equations for ṗpx and ṗpy ,
so that

ṗpx = upx
ṗpy = upy .

The new inputs upx and upy may then be chosen to servo-actuate the point mass positions for
attitude control, subject to limits on point mass position and velocity. (Physically, these actuators
might each consist of a large mass mpx or mpy mounted on a power screw that is driven by a
servomotor.) The mass flow rate ub is chosen to servo-actuate the vehicle’s net weight, again
subject to control magnitude and rate limits. These magnitude and rate limits are significant for
underwater gliders and must be considered in control design and analysis.

The viscous forces and moments are expressed in terms of the hydrodynamic angles

α = arctan
(w

u

)

and β = arcsin
( v

V

)

where V = ‖v‖. The viscous force and moment are most easily expressed in the “current” reference
frame. This frame is related to the body frame through the proper rotation

RBC(α, β) = e−ê2αeê3β =





cosα cos β − cosα sin β − sinα
sin β cos β 0

sinα cos β − sinα sin β cosα



 .

For example, one may write

v = RBC(α, β)(V e1) =





V cosα cos β
V sin β

V sinα cos β



 .

Following standard modeling conventions, we write

Fvisc = −RBC(α, β)





D(α)
Sββ + Sδrδr

Lαα



 and Tvisc = Dωω +





Lββ
Mαα

Nββ +Nδrδr





where D, S, and L represent drag, side force, and lift, respectively, L, M , and N represent roll,
pitch, and yaw moment and subscripts denote sensitivities to the indicated variable. The moment
Dωω represents hydrodynamic damping due to vehicle rotation.
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Equations (1), (2), and (5) completely describe the motion of an underwater glider in inertial space.
In studying steady motions, we typically neglect the translational kinematics (1). Moreover, the
structure of the dynamic equations (5) is such that we only need to retain a portion of the rotational
kinematics (2). Given the “tilt” vector ζ = R

T
IBi3 (i.e., the body frame unit vector pointing in the

direction of gravity), and referring to equation (2), it is easy to see that ζ̇ = ζ × ω. The reduced
set of dynamic equations, with buoyancy control and moving mass actuator dynamics explicitly
represented, are:

ḣsys = hsys × ω + psys × v + (mrbgrrb +mpxgrpx +mpygrpy)× ζ + Tvisc

ṗsys = psys × ω + m̃gζ + Fvisc

ζ̇ = ζ × ω (6)

ṗpx = upx
ṗpy = upy
ṁb = ub

As mentioned previously, equations (6) are written in mixed velocity/momentum notation. To
design a control system, we convert these into a consistent set of state variables by computing

η̇ =
[

M
−1ν̇ −M

−1
Ṁ M

−1ν
]

ν=Mη
(7)

where Ṁ is the time derivative of the generalized inertia:

Ṁ =









İ Ċ mpx
˙̂rpxe1 mpy

˙̂rpye2

ĊT
O3×3 0e1 0e2

−mpxe
T
1
˙̂rpx 0eT1 0 0

−mpye
T
2
˙̂rpy 0eT2 0 0









with

İ = −mpx(r̂px
˙̂rpx +

˙̂rpx r̂px)−mpy(r̂py
˙̂rpy +

˙̂rpy r̂py)

Ċ = mpx
˙̂rpx +mpy

˙̂rpy .

3 Steady Flight

In wings-level, gliding flight the vehicle has no angular velocity (ω = 0), no lateral velocity compo-
nent (v = 0, so that β = 0), and no roll angle (φ = 0). Also, rpy = 0 and δr = 0 (if the vehicle has
a rudder). Following the analysis presented in [9], one may compute the required CG location (rrb)
and the required net mass m̃0 for balanced gliding flight at a specified speed and glide path angle.
Let γ denote the glide path angle; in wings-level flight, γ = θ − α. For steady wings-level flight at
a specified speed V0 and glide path angle γ0 = θ0 − α0,

rrb =
1

mrbg



Mv0 × v0 +





0
Mαα0

0







× ζ0 + %ζ0 (8)

m̃0 =
1

g
(cos (γ0)Lαα0 − sin (γ0)D(α0, 0)) . (9)
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In the equation for rrb, v0 = V0 [cosα0, 0, sinα0]
T , ζ0 = [− sin θ0, 0, cos θ0]

T , and % is a free
parameter related to the vehicle’s “bottom-heaviness” in the given flight condition [9]. (Note that,
in determining a nominal wings-level glide condition, we assume that rpx = 0. That is, the nominal
gravitational moment is due entirely to rrb.) Analysis of turning (helical) flight using a sophisticated
underwater glider model is challenging. In [19], the problem was formulated as a regular perturba-
tion problem in the turn rate, as represented by a small, non-dimensional turn rate parameter ε. In
seeking a first order solution for turning flight, it was assumed that the pitch angle remains at its
nominal value for wings-level flight (θ0). Polynomial expansions for rpy , m̃, φ, V , α, and β in terms
of ε were substituted into the nonlinear algebraic equations for steady turning flight. Solving the
coefficient equation for ε1 gives approximate equilibrium values for rpy , m̃, φ, V , α, and β, to first
order in ε. It was found in [19] that these first order approximate values take the form:

V1 = 0

α1 = 0

m̃1 = 0

β1 = β1(α0, θ0, m̃0; δr1) (10)

φ1 = φ1(α0, θ0, m̃0; β1, δr1)

rpy1 = rpy1(α0, θ0, m̃0; δr1)

Explicit expressions for β1, φ1, and rpy1 are given in [19]. The approximate solution indicated
in (10) shows that V , α, and m̃ remain constant to first order in ε. This suggests that the primary
contributors to steady turning motion are lateral mass deflections (rpy) and rudder deflections (δr)
and that these deflections have no first order effect on speed or angle of attack. In practice, it is
considerably more costly to change the vehicle’s net mass m̃ than to shift its CG, so it is fortunate
that turning motions at the same (approximate) speed and glide path angle can be obtained by
only varying rpy and/or δr. These observations suggest a natural approach to motion control for
underwater gliders: Fix the buoyancy and center of gravity for a desired, wings level flight condition
and then use the lateral moving mass actuator to control turn rate and longitudinal moving mass
actuator to control flight path angle.

4 Motion Control System

Having characterized steady, wings level flight and steady turning motions (at least approximately),
as described in Section 3, one can formulate a motion control strategy which relies on these solutions.
The aim is to track inputs of constant desired speed (Vd), glide path angle (γd), and turn rate
(ψ̇d). Given feasible values for desired speed, glide path angle, and turn rate, one may compute
feedforward actuator commands to adjust the net weight and center of gravity in order to achieve
the given flight condition. Because these values are only approximate, though, and because of
modeling and environmental uncertainty, the commanded values must be augmented using feedback
compensation. The design and analysis of such a feedforward/feedback motion control system
requires a model that incorporates buoyancy and moving mass actuator dynamics as presented in
Section 2.

An illustration of such a feedforward/feedback control system is shown in Figure 3. The vector
field f (x,u) represents the system dynamics with state vector x and inputs u, and the vector
field f̃ (x,u) notionally represents their first order approximation in turn rate. The pair (x̃eq, ũeq)
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represents the first order solution for a given desired steady motion. The vector µ contains pa-
rameter values which, if held constant, correspond to some stable steady motion. Such a feedfor-
ward/feedback motion control system was briefly presented in [20]; a more thorough discussion of
the design and analysis was presented [18].

Figure 3: A steady motion-based feedforward/feedback control system.

The first step in the motion control scheme is to obtain the parameter values µ̃d (net mass and
moving mass positions) that correspond to the desired steady motion x̃eq (characterized by Vd, γd,
and ψ̇d), to first order in turn rate. This inverse problem is expressed notionally in the feedforward
block in Figure 3 by the equation

0 = f̃ (x̃eq, ũeq),

which was solved analytically for the corresponding parameter values µ̃d in [19].

The feedback block compensates for the error due to the approximation and environmental uncer-
tainty, adding a correction denoted µcorr.

The feedback-compensated “parameter commands” µd are then realized within the vehicle dynamics

ẋ = f (x;u(x;µd))

through an appropriately designed servo-control system. Here, u is a feedback control law that
attempts to maintain commanded parameter values µd in spite of the vehicle dynamics.

The control system depicted in Figure 3 suggests that one may vary the steady motion, according
to some desired guidance objective. However, one must verify that the closed loop system is stable.
Fixing parameter values, one may examine open-loop stability by linearizing about the approximate
equilibrium conditions and computing the eigenvalues of the state matrix. Because eigenvalues
depend continuously on the state matrix parameters, stability of the true equilibrium may be
inferred from stability of the approximate equilibrium provided (i) the equilibrium is hyperbolic
and (ii) ε is small relative to the magnitude of the real part of each eigenvalue. (See Section 1.7
of [10] or Chapter 9 of [11] for more details.) Given that the system does possess a stable, steady
motion parameterized by a set of commanded parameter values, one must still verify that the system
remains stable while varying these parameter values. For example, if one changes the reference
commands in Figure 3 too rapidly, one might drive the nonlinear system unstable.

As explained earlier, underwater gliders steer by moving one or more internal masses. The vehicle
dynamics are quite slow, relative to the actuator dynamics. Commanding a rapid change in turn
rate, for example, will result in a quick change in center of mass location, but the resulting effect
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on the vehicle’s motion will be much slower. Alternatively, one may issue reference commands that
vary “quasisteadily” and treat the closed-loop system as “slowly varying” in the turn rate ψ̇d(t).
We may then analyze stability of the closed loop system in the context of slowly varying systems
theory [15].

Suppose the output of a nonlinear system

ẋ = f(x, upy) ; upy = κ(x, ψ̇d)

is required to track a reference input ψ̇d(t), where the feedback controller κ is designed such that the
closed-loop system has a locally exponentially stable equilibrium at xeq when ψ̇d(t) is constant. The
turn rate ψ̇d(t) is called “slowly varying” if it is continuously differentiable and, for some sufficiently
small ε > 0, one has ‖ψ̈d(t)‖ ≤ ε for all t ≥ 0.

We will analyze the underwater glider’s motion control system using slowly varying systems theory
to prove stability of the closed-loop system and, simultaneously, to determine how fast one may
vary the commanded turn rate and maintain stability.

Following Khalil [15] (Chapter 9), to analyze this system, consider ψ̇d as a “frozen” parameter and
assume that for each fixed value the frozen system has an isolated equilibrium point defined by
xeq = h(ψ̇d) where ‖ ∂h

∂ψ̇d
‖ ≤ L. To analyze stability of the frozen equilibrium point, we shift it to

the origin via the change of the variables x́ = x− h(ψ̇d) to obtain equation

˙́x = g(x́)

Based on Theorem 9.3 of Khalil [15], if there is a positive definite and decrescent Lyapunov function
V (x́) which satisfies certain properties, the trajectory x́(t) will be uniformly ultimately bounded.
Moreover, if ψ̈d(t) → 0 as t→ ∞, then the tracking error tends to zero. Details of the analysis are
provided in Section 8.

5 Feedforward/Feedback Controller Design

The feedforward block takes the commanded steady motion parameters (speed, glide path angle,
and turn rate) and generates the corresponding values for buoyancy and center of mass location,
as predicted by perturbation analysis. Because the turning motion results are only approximate,
however, and to compensate for model and environmental uncertainty, we incorporate feedback. The
objective here is to design single-input, single-output PID control loops to modify the feedforward
commands based on measured errors in the values of speed V , glide path angle γ = θ − α, and
heading rate ψ̇ = (q sinφ + r cosφ)/ cos θ. Speed and glide path angle are inherently coupled for
underwater gliders, just as they are for airplanes. For a fixed glide path angle, speed can be directly
modulated by changing the net mass m̃. Changing m̃ requires pressure-volume work, however, which
is relatively expensive, especially at depth. In practice, it is best to modulate m̃ as infrequently as
possible. Here, we focus on controlling the glide path angle γ by varying the longitudinal moving
mass position rpx .

A sophisticated dynamic model presented in Section 2 has been used to design the feedback compen-
sator. The model incorporates the buoyancy and moving mass actuator dynamics and servo-control
laws. It is convenient to replace the velocity v, as expressed in the body reference frame, with
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speed, angle of attack, and sideslip angle (V, α, β). To do so, note that

v = e−ê2αeê3β(V e1)

v̇ = e−ê2αeê3β





1 0 0
0 0 V
0 V cos β 0









V̇
α̇

β̇



 .

The change of variables is well-defined for β ∈ (−π
2
, π
2
).

The equations of motion (7) can be written in the form

F(Ẋ,X,U) = 0

where the system state and control vectors are

X =
[

φ, θ, V, α, β, p, q, r, rpx, vpx , rpy , vpy
]T

(11)

U =
[

upx , upy, ub
]T
. (12)

Here, vpx and vpy represent the translational velocity of the moving masses relative to the inertial
frame expressed in the body frame.

To design a servo-controller for the moving mass actuators and the variable ballast actuator, we
linearize the dynamic equations about a wings-level equilibrium (X0,U0) and compute the transfer
function for each input-output channel of interest. Let U denote one of the available input signals
U ∈

{

upx, upy, ub
}

and define a corresponding output Y (X). With these definitions, we obtain the
perturbation equations

4Ẋ = A4X+B4U (13)

4Y = C4X (14)

where

A = −

[

(

∂F

∂Ẋ

)

−1(
∂F

∂X

)

]

eq

B = −

[

(

∂F

∂Ẋ

)

−1(
∂F

∂U

)

]

eq

C =

[

∂Y

∂X

]

eq

The matrix ∂F
∂Ẋ

is non-singular within the vehicle’s normal performance envelope.

In designing moving mass servoactuator control laws, the objective is to choose an input up ∈
{upx , upy} such that the position of the moving mass rp ∈ {rpx , rpy} asymptotically tracks a desired
trajectory rpd ∈ {rpxd , rpyd}. With U = up and Y = rp in equations (13) and (14), the input U
appears in the second derivative of the output Y . That is, the scalar CB = 0 but CAB is nonzero.
Let e = rpd − rp represent the error between the desired position of a moving mass and its current
position and assume that rpd is twice differentiable. (The reference command can be filtered, if
necessary, to ensure that it is suitably smooth.) In order to drive e to zero, one may choose

up =
1

CAB
(r̈pd −CA24X+ [ω2

n 2ζωn]e)
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where e = [e, ė]T and where ωn ∈ {ωnx , ωny} and ζ ∈ {ζx, ζy} are appropriately chosen control
parameters.

To design a PID compensator to correct the feedforward commands, let G(s) represent the transfer
function for a particular control channel and let Gc(s) represent the PID controller:

Gc(s) = Kp(1 +
1

Tis
+ Tds)

The proportional gain Kp, the integrator time Ti and the derivative time Td are control parameters
to be tuned by the control designer. In the time domain, the control signal is

rcorrp = Kpe+Ki

∫ t

t0

e(τ)dτ +Kdė

where Ki = Kp/Ti and Kd = KpTd. The error signal e(t) measures the difference between the actual
and commanded value of the output.

The approximate equilibrium value of r̃pd ∈ {r̃pxd , r̃pyd}, as predicted by analytical solutions, is
augmented with feedback compensation to compensate for approximation error:

rpd = r̃pd + rcorrp .

To smooth the commanded parameter value so that the reference command to the internal servo-
actuators is twice differentiable, we define a linear reference model:

F (s) : rpd → rcomm
pd

where F (s) =
1

(s/ωr)2 + 2ζr(s/ωr) + 1

Equivalently, in time domain, define the following reference model dynamics for each servo-actuator:

ż =

(

0 1
−ω2

r −2ζrωr

)

z+

(

0
ω2
r

)

rpd

rcomm
pd

=
(

1 0
)

z

where rpd(t) ∈ {rpxd (t), rpyd (t)} is the (possibly discontinuous) reference command to be filtered.

In physical implementations, the servo-actuation system is self-contained and there is no need to
include it in the motion control system. Referring to the control system schematic in Figure 3,
this reference command filter is internal to the system dynamics block appearing at the right. We
include this element explicitly here in order to account for the full complexity of the multi-body
mechanical system and to allow analysis of issues such as actuator magnitude and rate saturation.
The natural frequency and damping ratio parameters in the reference model above may be chosen
to accommodate actuator performance limitations through analysis and simulation.

For a fixed glide path angle, speed can be directly modulated by changing the net mass m̃. That is,
given values θ0 and γ0, one may solve relation (9) for the corresponding values of m̃d. We design an
input ub such that the net mass m̃ asymptotically tracks a desired value m̃d. The simplest approach
is to choose

ub = kb (m̃d − m̃)

where the constant kb is chosen to accommodate the rate limit on ub.
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6 Flight Path Control

We control the glide path angle γ by modulating the longitudinal moving mass position rpx. Let
eγ(t) = γd − γ(t), where γd is the desired value of the glide path angle. The longitudinal moving
mass reference signal is

rcorrpx
= Kpγeγ +Kiγ

∫ t

t0

eγ(τ)dτ +Kdγ ėγ.

The first step is to tune the flight path controller for the linearized system dynamics. Having
done so, the next step is to re-tune the controller as necessary for the nonlinear dynamics through
simulation. Adding the result to the longitudinal moving mass position from the feedforward block
gives the required position of the longitudinal moving mass to maintain a constant flight path angle:

rpxd = r̃pxd + rcorrpx

As explained in Section 3, we assume that the nominal gravitational moment is due entirely to rrb
and that r̃pxd = 0. Hence, for γd = γ0, we have only the feedback term rpxd = rcorrpx

.

The longitudinal moving mass actuator is subject to magnitude and rate limits due to the limited
range of travel of the moving mass and the operational limits of the servomotor, respectively. To
ensure a smooth reference trajectory, and to help accommodate the rate limit, one may filter the
reference command as follows.

rcomm
pxd

=
(

1 0
)

zx where żx =

(

0 1
−ω2

rx
−2ζrxωrx

)

zx +

(

0
ω2
rx

)

rpxd (t)

The input upx guarantees that the position of the longitudinal moving mass rpx asymptotically
tracks the (twice differentiable) trajectory rcomm

pxd
generated by filtering the (possibly discontinuous)

desired value rpxd :

upx =
(r̈comm

pxd
−CxA

2X + [ω2
nx

2ζxωnx ]ex)

CxABx

where ex = (ex, ėx)
T and ex = rcomm

pxd
− rpx

7 Turn Rate Control

The control channel from lateral mass position rcorrpy
to turn rate ψ̇ is non-minimum phase, with

a single zero in the right half plane. This non-minimum phase zero limits closed-loop bandwidth.
In any case, closing the loop from turn rate to lateral mass location is effective, provided the
performance limitations are respected in control parameter selection. Let eψ̇(t) = ψ̇d(t) − ψ̇(t),

where ψ̇d(t) is the desired turn rate. The lateral moving mass control signal is

rcorrpy
= Kp

ψ̇
eψ̇ +Ki

ψ̇

∫ t

t0

eψ̇(τ)dτ +Kd
ψ̇
ėψ̇.

The turn rate PID controller was first tuned for the linearized system dynamics, and then re-
tuned for the nonlinear dynamics through simulation. Adding the result to the lateral moving
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mass position from the feedforward block gives the required position of the lateral moving mass to
maintain the desired turn rate.

rpyd = r̃pyd + rcorrpy

Again, the command is filtered to ensure a dynamically feasible reference:

rcomm
pyd

=
(

1 0
)

zy where ży =

(

0 1
−ω2

ry
−2ζryωry

)

zy +

(

0
ω2
ry

)

rpyd (t)

The input upy guarantees that the position of the lateral moving mass rpy asymptotically tracks the
(twice differentiable) trajectory rcomm

pyd
generated by filtering (possibly discontinuous) desired value

rpyd .

upy =
(r̈comm

pyd
−CyA

2X + [ω2
ny

2ζyωny ]ey)

CyABy

where ey = (ey, ėy)
T and ey = rcomm

pyd
− rpy

8 Stability Analysis of Closed Loop System

To analyze this system, consider ψ̇d as a frozen parameter. For each fixed value the frozen system
has an isolated equilibrium point. Consider the linearized equations about this equilibrium point:

Ẋ = AX+Byupy
rpy = CyX

where X is the state vector given in (11). Defining the lateral mass error ey = rcomm
pyd

− rpy and the

heading rate error eψ̇ = ψ̇d − ψ̇, the input upy is

upy =
(r̈comm

pyd
−CyA

2X+
(

ω2
ny

2ζyωny

)

ey)

CyABy

where ey = (ey, ėy)
T

rcomm
pyd

=
(

1 0
)

zy where ży =

(

0 1
−ω2

ry
−2ζryωry

)

zy +

(

0
ω2
ry

)

rpyd

rpyd = r̃pyd + rcorrpy
with rcorrpy

= Kp
ψ̇
eψ̇ +Ki

ψ̇
zψ̇ +Kd

ψ̇
ėψ̇ where żψ̇ = eψ̇

Putting all the parts together, we have

Ẋ = AX+Byupy

ży =

(

0 1
−ω2

ry
−2ζryωry

)

zy +

(

0
ω2
ry

)

(r̃pyd +Kp
ψ̇
eψ̇ +Ki

ψ̇
zψ̇ +Kd

ψ̇
ėψ̇)

żψ̇ = ψ̇d − ψ̇
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where

upy =
1

CyABy

[

(

0 1
)

ży −CyA
2
X+

(

ω2
ny

2ζyωny

)

( (

1 0
)

zy − rpy
(

1 0
)

ży − vpy

)]

=
1

CyABy

[

−
(

ω2
ry

2ζryωry

)

zy + ω2
ry
[r̃pyd +

(

Kp
ψ̇

Kd
ψ̇

)

(

eψ̇
ėψ̇

)

+Ki
ψ̇
zψ̇]

]

+
1

CyABy

[

(

ω2
ny

2ζyωny

)

zy −
(

ω2
ny

2ζyωny

)

(

rpy
vpy

)

−CyA
2
X

]

=
1

CyABy

[

ω2
ry
r̃pyd + ω2

ry

(

Kp
ψ̇

Kd
ψ̇

)

(

eψ̇
ėψ̇

)

−
(

ω2
ny

2ζyωny

)

(

rpy
vpy

)]

+
1

CyABy

[

(

−1 1
)

(

ω2
ry

2ζryωry

ω2
ny

2ζyωny

)

zy + ω2
ry
Ki

ψ̇
zψ̇ −CyA

2
X

]

Define Cψ̇ so that Cψ̇X =
(

eψ̇ ėψ̇
)T

and Cpy so that CpyX =
(

rpy vpy
)T

.

For a given “frozen” value of the commanded turn rate ψ̇d, we denote the equilibrium point for the
complete system h(ψ̇d) = (XT

eq, z
T
yeq
, zψ̇eq

)T . One may verify that

‖
∂h

∂ψ̇d

‖ ≤ L (15)

for some positive constant L > 0. This important condition guarantees that the equilibrium state
“varies nicely” with the slowly varying turn rate command ψ̇d. To analyze stability, we change
variables so that the equilibrium is at the origin in the new variables:

x́ = (X́T , źTy , źψ̇)
T = (XT , zTy , zψ̇)

T − h(ψ̇d)

The complete linearized equations are

˙́
X =

[

A+By

1

CyABy

[

ω2
ry

(

Kp
ψ̇

Kd
ψ̇

)

Cψ̇ −
(

ω2
ny

2ζyωny

)

Cpy −CyA
2
]

]

X́

+By

1

CyABy

[

(

−1 1
)

(

ω2
ry

2ζryωry

ω2
ny

2ζyωny

)]

źy +By

1

CyABy

ω2
ry
Ki

ψ̇
źψ̇

˙́zy =

(

0
ω2
ry

)

(

Kp
ψ̇

Kd
ψ̇

)

Cψ̇X́+

(

0 1
−ω2

ry
−2ζryωry

)

źy +

(

0
ω2
ry

)

Ki
ψ̇
źψ̇ (16)

˙́zψ̇ =
(

−1 0
)

Cψ̇X́

More compactly, we write

˙́x = Áx́

where the elements of Á are continuously differentiable functions of ψ̇d ∈ Γ = [0, a), where a is the
maximum turn rate for the underwater glider. Suppose that Á is Hurwitz uniformly in ψ̇d. That is,
suppose the controller has been designed such that every eigenvalue λ in the spectrum of Á satisfies

Re(λ) ≤ −σ < 0 ∀ ψ̇d ∈ Γ
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for some positive constant σ. Then, from Lemma 9.9 in [15] the Lyapunov equation

PÁ+ ÁTP = −I.

has a unique positive definite solution P for every ψ̇d ∈ Γ. P(ψ̇d) is continuously differentiable and
satisfies

c1x́
T x́ ≤ x́T P(ψ̇d) x́ ≤ c2x́

T x́

‖
∂

∂ψ̇d

P(ψ̇d)‖ ≤ ϑ

for all (x́, ψ̇d) ∈ Rn×Γ, where c1, c2, and ϑ are positive constants independent of ψ̇d. Consequently,
there exists some r > 0 such that the Lyapunov function V (x́, ψ̇d) = x́T P x́ satisfies the following
inequalities

c1‖x́‖
2 ≤ V (x́, ψ̇d) ≤ c2‖x́‖

2

‖
∂V

∂x́
‖g(x́, ψ̇d) ≤ −c3‖x́‖

2

‖
∂V

∂x́
‖ ≤ c4‖x́‖

‖
∂V

∂ψ̇d

‖ ≤ c5‖x́‖
2

for all x́ ∈ D = {x́ ∈ Rn|‖x́‖ < r} and ψ̇d ∈ Γ. We may choose the positive constants c1 = λmin(P),
c2 = λmax(P), c3 = 1, c4 = 2λmax(P), and c5 = 0 (Lemma 9.9 in [15]). Trajectories x́(t) are
uniformly ultimately bounded with an ultimate bound proportional to ε, the bound on the turn
acceleration. An upper bound on the value of ε can be computed from the following requirement:

‖ ψ̈d(t) ‖≤ ε <
c1c3
c2

×
r

rc5 + c4L
(17)

By Theorem 9.3 in [15], the norm of the tracking error remains smaller than kε for some finite
k > 0. Moreover, if ψ̈d(t) → 0 as t→ ∞, the tracking error tends to zero.

Solving the Lyapunov equation and calculating the eigenvalues of P one obtains the ci, i = 1, 2, . . . , 5
and an upper bound for ε, the limit for commanded turn accelerations. Applying the proposed
motion control system to the Slocum model given in [2], and performing the analysis outlined
above, one obtains the constants:

c1 = λmin(P) = −378.75, c2 = λmax(P) = 979.82, c3 = 1, c4 = 2λmax(P), and c5 = 0.

which gives

|ψ̈d(t)| ≤ ε < 2× 10−4 r

L

This is a conservative upper bound for acceleration in turn rate reference commands. A relaxed
bound could be obtained by applying similar analysis in the time varying setting. (See Theorems
7.4 and 7.8 in [23], for example.)
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Figure 4: Lateral moving mass location (open- and closed-loop).

9 Simulation Results

A sophisticated glider model based on the Slocum model given in [2] was linearized about the
following equilibrium flight condition, which corresponds to wings-level, descending flight:

V0 = 0.77 m/s, α0 = 4.3◦, θ0 = −8.4◦, γ0 = −12.7◦, and m̃0 = 0.63 kg.

The moving mass values are mpx = mpy = 9 kg. The servo-actuator parameter values are

ωnx = 20 rad/s, ζx = 0.001, ωrx = 0.8 rad/s, and ζrx= 1

ωny = 20 rad/s, ζy = 0.01, ωry = 0.8 rad/s, and ζry= 1

The PID control parameter values are

Kpγ = −0.2 m, Tiγ = 2.3 s, and Tdγ = 2 s

Kp
ψ̇
= 0.2 m/(rad/s), Ti

ψ̇
= 0.65 s, and Td

ψ̇
= 0.39 s

Figures 4 through 8 compare the results of simulations using feedforward and feedforward/feedback
control. Figure 4 shows the lateral mass location in response to a command sequence that is
intended to effect a right turn, a straight segment, and a left turn (viewed from above) from an
initial point to a desired final point. In the open-loop case (feedforward only), the moving mass
is simply commanded to move to the (approximate) equilibrium value corresponding to a desired
heading rate ψ̇d. In the closed-loop case (feedforward/feedback), however, the heading rate is
directly commanded, with the lateral moving mass actuator responding as necessary. The resulting
path is depicted in Figure 5.
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Figure 5: Slocum path in response to command sequence.

Figures 6 and 7 show desired, open-loop, and closed-loop value of the vehicle’s glide path angle
and turn rate. As expected, the deviation between the open-loop values and the desired values is
significant. In Figure 7, the small spikes at the end of each segment correspond to reaction forces
due to the movement of the lateral mass within the vehicle. We note that the turn rate magnitudes
are of the same order as turn rates seen in glider operations. The Slocum glider, for example, can
achieve a 20-30 m turn radius at speeds on the order of 0.5 m/s. A shallow-water variant of Slocum,
which includes a movable rudder, can perform turns with a 7 m radius [3]. Figure 8 shows the
location of the longitudinal moving mass, which regulates the glide path angle.

Remark 9.1 The path in Figure 5 is reminiscent of a Dubins path, although the vehicle and actu-
ator dynamics are included here. Time-optimal paths for a Dubins car with acceleration limits are
discussed in [16] and [24], where it is recognized that extremal paths comprise sequences of straight,
clothoidal, and circular segments.

It must be stressed that the final guidance loop has not been closed, at this point. That is, we
have not presented a control law to make the vehicle track a commanded path, such as a suboptimal
Dubins path. Rather, we have presented the underlying motion control system over which a guidance
loop might be imposed.

Figures 9 through 11 compare results of the simulation for the common feedback motion control
system and the feedforward/feedback motion control system presented in this work. Figure 9 shows
that the steady-motion based feedforward/feedback system reaches the desired turn rate much
faster. Hence, the vehicle reaches the desired final point in shorter time (Figure 11). Figure 10
illustrates the effectiveness of both control loops in maintaining a constant flight path angle.

Comparing results of the simulations, for the three cases of feedforward, feedback, and feedfor-
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Figure 6: Glide path angle response to command sequence.

ward/feedback controller, shows that there is large error in turn rate when using just feedforward
controller (Figure 7) which corresponds to large error in the resultant path (Figure 5). Figure 11
shows that the feedback controller is slow but precise; it takes longer time and larger distance to
achieve desired turn rate (Figure 11). The combination, the proposed feedforward/feedback con-
troller, illustrates fast, precise tracking of the commanded turn rate. Since the control system relies
largely on steady motions, it is intrinsically efficient.

10 Conclusions

Building on prior results in glider steady motion analysis, a feedforward/feedback motion control
system was presented to control speed, glide path angle, and turn rate. The control system uses
feedforward commands obtained from an approximate solution for steady turning motion and in-
cludes feedback to compensate for approximation error and other uncertainties. The control system
design includes model reference controllers for the servo-actuators, to allow actuator rate and magni-
tude saturation effects to be more easily analyzed and accommodated. Stability of the closed-loop
system was analyzed using slowly varying systems theory in which the turn rate command was
treated as a slowly varying parameter. A bound on turn acceleration was obtained as a product of
the analysis. The controller’s effectiveness was demonstrated in a simulation of a multi-body model
of the underwater glider Slocum.

The proposed control system provides a mechanism for path following. The next step is to implement
a guidance strategy, together with a path planning strategy, and one which continues to exploit
the natural efficiency of this class of vehicle. The structure of the approximate solution for steady
turning motion is such that, to first order in turn rate, the glider’s horizontal component of motion
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Figure 7: Turn rate response to command sequence.

matches that of the “Dubins car,” a kinematic car with bounded turn rates. The Dubins car is a
classic example in the study of time-optimal control for mobile robots. For an underwater glider,
one can relate time optimality to energy optimality. Specifically, for an underwater glider travelling
at a constant speed and maximum flight efficiency (i.e., maximum lift-to-drag ratio), minimum
time paths are minimum energy paths. Hence, energy-efficient paths can be obtained by generating
sequences of steady wings-level and turning motions. These efficient paths can, in turn, be followed
using the motion control system described here.

In closing, we note that the feedforward component of the proposed control system, as presented,
relies on the analytical solution for the steady turning motions of an underwater glider. This anal-
ysis is based on a sophisticated model of the underwater glider dynamics. In the absence of such
a model, and the corresponding solution for steady motions, one may instead use a look-up table
which maps vehicle configurations to stable, steady motions. Although such a table would have to
be developed through an exhaustive series of experimental sea trials, the approach may, in some
cases, be more expedient than developing a complete dynamic model.
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Figure 8: Variation in longitudinal moving mass position from nominal.
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Figure 9: Lateral moving mass position and turn rate.
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Figure 10: Longitudinal moving mass position and flight path angle.
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Figure 11: Slocum path in response to feedback and feedforward/feedback compensator.
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