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The linear stability of Couette flow composed of two layers of immiscible fluids, one lying on
top of the other, is considered for the special case when the two fluids have similar mechanical
properties. The interfacial eigenvalue is found in closed form by considering the two-fluid
problem as a perturbation of the one-fluid problem. The importance of the role played by the
viscosity difference, when one of the fluids is in a thin layer, is illustrated.

I. INTRODUCTION

There is a large number of examples of flows of two
immiscible fluids in industry in which viscosity stratification
has been observed to play an important role in determining
the position of the interface.'™ In some of these practical
examples, the densities of the fluids are different so that we
need to examine the effects of both viscosity and density
stratification. Theoretically, steady parallel shear flows of-
ten have many possible solutions. On the other hand, the
arrangement with a thin layer of the less viscous fluid, say
next to a wall, tends to be observed in experiments. We need
to examine why such an arrangement is preferred. In earlier
analyses of the linear stability of the interface in two-layer
shearing flows, Yih'® examined long waves for the case of
viscosity stratification. His results show that the arrange-
ment where the less viscous fluid lies in a relatively thin layer
is stable to long waves. This result was, however, not empha-
sized at the time. Later, Hooper'! examined the linear stabil-
ity of a Couette flow with the upper fluid occupying a semi-
infinite half-plane and the lower fluid occupying a finite
strip. This analysis was also for long waves and showed sta-
bility if the lower fluid is the less viscous and instability oth-
erwise, and this phenomenon was termed the “thin-layer”
effect. Attention was not yet focused on the effect of density
stratification. In addition, since an instability need not nec-
essarily involve long waves, it became essential that all wave-
lengths be examined if we are to show that the thin-layer
arrangement can be observed. Hence, numerical investiga-
tions of the linear stability of a number of two-layer shearing
flows'*'* were undertaken for all wavelengths. Results
showed that the thin-layer arrangement can be stable not
only to long waves but to order 1 waves as well. Since short
waves at the interface are stabilized by surface tension,'? it
became plausible that there may be situations where the
thin-layer arrangement is linearly stable at all wavelengths.
We found one such situation numerically.'?> The Reynolds
number for that situation is low and we believe that the linear
stability of the thin-layer arrangement is a low Reynolds
number phenomenon. On top of this, numerical work on the
effect of density stratification'>!? revealed that there are in-
stances where the linear stability of a thin-layer arrangement
is robust to an adverse density stratification. Hence, this
raised the possibility that we may observe viscosity stratifi-
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cation counteracting what we expect density stratification to
do. This result was met with a variety of reactions: at one
extreme, that it is obvious, and at the other extreme, that it is
unbelievable. It is actually not obvious because a heuristic
reasoning for interfacial instability or stability could not be
arrived at a priori. A posteriori, we may argue that when the
density difference is small, gravity is a relatively small force,
and although it tends to destabilize an arrangement with the
heavier fluid on top, this destabilizing effect can be offset by
choosing the viscosities so that stresses at the interface
counter the effect of gravity. However, such a statement still
does not give us a precise criterion for instability. Clearly,
the study of such arrangements requires further analysis and
further numerical work. In particular, why does the viscos-
ity stratification play such a crucial role in the linear stability
of thin layers?

In this article, we answer this for one type of shearing
flow by obtaining the interfacial eigenvalue in closed form
and investigating the thin-layer asymptotics of that eigenval-
ue. Along the way, we must compute some coefficients that
involve integrals of products of Airy functions with expo-
nential functions in our expansion. This does not detract
from the fact that the work is basically an analytical and not
a numerical investigation. We show that in the thin-layer
limit, the effect of viscosity stratification appears at leading
order. The main assumptions and steps of this article are
sketched in more detail below.

We assume that the two fluids have mechanical proper-
ties that differ only by a small amount, say of O(¢), and the
surface tension is also of O(€). We choose this situation in
order to take advantage of the fact that the eigenvector and
eigenvalue of the basic unperturbed problem (the linear sta-
bility analysis for the case of identical fluids) and its adjoint
are available in closed form. We note that for two-fluid flows
in general, those quantities are not known in closed form but
must be computed numerically. The case of “similar liquids”
is an exception (for other examples, see Refs. 16 and 17).
The calculation of the interfacial eigenvalue for the case of
similar liquids for two-layer Couette flow involves a straight-
forward regular perturbation expansion of a boundary-value
problem (operator plus boundary conditions). Hence, one
can either assume an ansatz for the eigenvalue and eigenvec-
tor in a series in € and use the Fredholm alternative theorem
to obtain a solvability condition or, alternatively, to expand
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the resolvent of the differential operator as done in Refs. 16
and 17 and also in this article. Both methods are essentially
equivalent and lead to the same amount of algebra.

After calculating the interfacial eigenvalue for the case
of similar liquids, we take a “thin-layer limit” of it. This is
different from the usual long-wave approximation. In a long-
wave approximation, the disturbance wavelength needs to
be long with respect to the plate separation. In our thin-layer
approximation, the thickness of the thin layer must be small
compared with other length scales. We have checked that in
the long-wave limit, our interfacial eigenvalue is identical to
Yih’s'® when his two fluids have similar properties. It is
shown that the leading term in the growth rate (the real part
of the eigenvalue) is proportional to the viscosity difference:
it is negative (stabilizing) when the fluid in the thin layer is
the less viscous, and positive otherwise. Terms containing
the density difference and surface tension are found to be an
order of magnitude less. This highlights the importance of
the viscosity difference in the linear stability of thin layers
{(to disturbance wavelengths that are not too short).

il. GOVERNING EQUATIONS

Two fluids of viscosity u;, kinematic viscosity v,, and
density p; (i == 1,2) lie between two rigid parallel boundaries
of infinite extent in the (x*z*) plane. Subscripts 1 or 2 on
the physical properties of the fluids denote fluid 1 or 2, re-
spectively. Fluid 1 occupies 0<z*</ ¥ and fluid 2 occupies
I¥<z<!*. Asterisks denote dimensional variables. The up-
per boundary at z* = /* moves with velocity (U *,0). The
lower boundary is fixed. The fluids are incompressible and
satisfy the Navier-Stokes equations. At the interface, the
velocity and shear stress must be continuous, the jump in the
normal stress is balanced by surface tension and curvature,

and the kinematic free surface condition must hold. We in-
troduce the following dimensionless variables (without as-

terisks):

(x,2) = (x*2z%)/1*%, u=u*/U*, t=1*U*/I*

p=p*/p,U*, (1
where u* is the velocity and p* is the pressure. There are
six dimensionless parameters: m =pu,/ U, r=p/psy
/, =1%¥/1*; a Froude number F given by F? = U**/gl *,
where g denotes the gravitational acceleration constant; a
surface tension parameter S = S */(u, U *), where S * is the
surface tension coefficient; and a Reynolds number
R=U**/v¥ We denote [, =1 — /. A steady shearing
flow solution to the two-layer problem is given by a velocity
[U,(2),0], a pressure P, and a flat interface at z = /,, where

U(z) =2z/(l, + ml,) for 0<z</,,

(2)
=m(z— 1)/, +mbh)+1 for I,<z<1,
f;_f’: _...[_f; for O<z<l, ,
z (3
= — 1/rF? for l,<z<1.

We add small disturbances, u = (u,v) to the velocity and A
to the interface position, that are taken to be proportional to
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exp(iax + ot). The resulting equations governing linear sta-
bility are in fluid /,

L a2 P U ) Uiau=ou,  (4)
R, p; Ox

i

L g2 P it (1) = o, (5)
R, pi Oz
Veu=20, ; (6)

where R, = U*/ */v,. The Froude number does not enter
into these equations since the pressure gradient in the basic
flow field cancels the effect of gravity.

The interface conditions, linearized at z = /,, yield

kinematic free surface condition: v — hicU,(I|) = ho, (7)

continuity of velocity: [v] =0, (8)

[u] +A[U,. (ID] =0, €

continuity of shear stress: ,u(-él— - ﬁ_v) =0, (10)
dz  Ox

balance of normal stress:

2
{[_p+££§‘£ :h(_ “5+_1_(_1.-1)). (1
r

u; R oz R F?
The boundary conditions are

v=0 atz=01 {(12)

Here, [o] denotes the jump of © across the interface, or
o, — 9,. For the one-fluid problem (r=1, m=1, §=0)
with no interface at z = /,, Romanov'® has proved that the
real parts of all eigenvalues o are negative at any Reynolds
number and wavenumber «. The addition of an interface at
z = I, to the linear stability problem gives rise to an eigenval-
ue that was referred to as the “interfacial mode” by Yih.'°
This follows from the observation that if the two fluids have
identical viscosity and density, and if there is no surface ten-
sion, then

u=20,

u=90, v=0, h=expliax+ ot), (13)

o= — jal,

satisfy Egs. (4)-(12).

In the following analysis, we let the two fluids have me-
chanical properties that differ only slightly. Wekeep R and o
fixed but arbitrary. We introduce a small parameter € and
regard 1 — m, 1 — r, and § as small quantities proportional
to €; that is, we set

l—m=ime, 1—r=re S=23e
Hence, at € = 0, there is an algebraically onefold and geome-
trically simple eigenvalue o = - i@/, arising from the pres-

ence of the interface. We can make an ansatz for the eigen-
value and for the velocity as power series in €. The purpose of
the following analysis is to find the coefficient of € in the
expansion for o.

. PERTURBATION OF NEUTRAL EIGENVALUE

The method of perturbing a simple eigenvalue!® in-
volves evaluating the eigenfunction belonging to the eigen-
value o = — i/, for the unperturbed problem and its ad-
joint. The method will be explained in detail below in the
present context to avoid confusion,
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The relevant results from Ref. 19 are quoted below in
the context of the perturbation of a finite-dimensional ma-
trix equation. Some modifications will then be made to apply
the method to our differential operator. Suppose o, is an
algebraically simple eigenvalue of a matrix L,. Let 4 be an
eigenfunction of L, with eigenvalue o, and let C be an eigen-
function of L ¥ (the adjoint of L,) with eigenvalue &, (the
overbar here denotes the complex conjugate). Let L, be per-
turbed into L (€) = L, + €L, + L,(€) with L, = O(€*) and
el + L, depending smoothly on €. Then the perturbed
eigenvalue o is analytic in € and is given by setting the follow-
ing expression ¥ {€,0), which represents to O(¢e) the projec-
tion of L(e) — o, first onto the eigenspace of the unper-
turbed problem and then onto the adjoint eigenspace, to
Zero:

W(e,o) ={C,(Lo+ €L, —0)A) 4+ O0(€) . (14)

Care must be taken when this result is applied to unbounded
operators in infinite-dimensional spaces, for example, differ-
ential operators. Such an operator has a ‘“‘domain” that is
specified not only by smoothness requirements on the func-
tion but also by the boundary conditions. If the domain of
the operator that is being perturbed depends on €, we cannot
apply (14); the domains of L(e) and L, may be different,
and their combination would not make sense. We can, how-
ever, circumvent this problem by not looking at the differen-
tial operator itself, but at its resolvent [L(e) —A1]7",
where A is not an eigenvalue of L(€). The domain of this
does not depend on € and we will need to redefine ¥ accord-
ingly, i.e., replace L, + €L, in (14) by the expansion for the
resolvent. As will be seen from the following, the resolvent
itself does not ever need to be computed.

Let X denote the set of functions (u,v,4). We introduce
an inner product by

27/ !
(X,.X3) =f f U, +vw,dzdx
(4] z=0
2w/ 1
+J f U, +vw,dzdx
(4] z=1;

2w/
+J R by dx (15)
(o]

to generate a Hilbert space. In this Hilbert space, we consid-
er the subspace determined by the “Hodge projection™ (see
space H in Theorem 1.4, Ref. 20), that is, by the conditions
that the velocity field be divergence-free, that the vertical
velocity vanish at the walls, and be continuous across the
interface. By L(€)X we denote the left-hand sides of Eqgs.
(4), (5), and (7). We regard L(€) as an operator in the
subspace so that the conditions on v in (8) and (12) and the
normal stress balance in (11) are an integral part of the
definition of L (¢). The domain of definition of L (¢) is deter-
mined by the rest of the boundary conditions in (9), (10},
and (12), which we write in the form B(e)X = 0. The range
of the operator L{€) must satisfy the following conditions in
order for the pressure p occurring on the left sides of (4) and
(5) to be determined as a function of X: The “velocity part”
of L (€)X must be divergence-free, the vertical velocity must
vanish on the walls and be continuous across the interface,
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and the jump in p across the interface must be given by the
normal stress balance. Thus, the problem we wish to solve is
as follows: for small ¢, find o satisfying

L(e)X=0X, B(e)X=0, (16)
L(€)=L0+6L1+0(€2)’ B(6)2B0+GBI+O(€2)‘

Explicitly,
iAu—-i’——v——iozuz
R dx
LX = __1_ Av— _‘3£ — jawz in fluids 1 and 2,
R oz
v — hial,
and
— vml, — iauzml, — —‘2&
ox
LX= _ iawiiil,z _i in fluid 1,
dz
— hiaml 1,
and
1 ,_ ap _ - _ 0
.1—2_ (m —F)Au —i-i— vljm + iaul (z — 1)m + rﬁ

| S dp | . —  -dp

— (m—-—rAv ——+iavl,(z— 1) + 7=

R 0z ! + 0z

— hial,l,m
in fluid 2,

where p denotes the O(¢) perturbation to the pressure; i.e.,
ate =0,

2 dv

—p+=Z| =o, (17
H p+Ro'?z )

and for €0,

.. 2m dv, ( , S 7)
-y — ],
[=P-% % R

u, —u, at z=1,
du, Jdu,

== _=2atz=
BoX P K

u at z=20,1
and
mh at z=1,
_{du av
BIXZ _m(a_zl_*_Ex_L) atz=ll

0at z=0,1

With the above definitions, we are now ready to look at
the resolvent of L(¢€) and then to redefine ¥ given in (14).
Since € is small, the eigenvalues of L(¢) are close to those of
L, so that the A in the resolvent should be chosen away from
its eigenvalues, such as — jal,. We choose 4 = 0. Hence,
instead of looking at (16) directly, we study the equivalent
problem

L&) "' X=0""'"X=:6X
and perturbaround 6 = — 1/(ial,). Wenote that the defin-
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ition of L(€) ! already incorporates the boundary condi-
tions. The expression (14) is applied to this problem; thus

V(e,d) = (C,[L(e) ™' —8]4) + O(€), (18)

where the C and 4 are as before, is set equal to zero. We will
require an expansion of the resolvent in powers of € in order
to carry out the calculation of ¥. We note that the inverse of
L, is defined. Parts of the calculation are organized into ap-
pendices of this paper.

We first have to find the boundary value problem ad-
joint to (16). This is done in Appendix A. Then we deter-
mine the eigenvector at € = O for both (16) and the adjoint
problem. These are denoted by 4 and C, respectively, and
satisfy

Lod = — iaU,(I,)4, B,A=0,
L*C=ial,(1,)C, B*C=0,

where U, (I,) = [, for € = 0. These eigenfunctions are deter-
mined in Appendix B. In order to apply formula (18), we
must determine the expressions

(C,.L(e)~'4) (20)

to first order in €. To facilitate this calculation, we introduce
x% and x! defined by

Le) '4A =x%+ ex! + O(€%). 20

Equating the coefficients of equal powers of €, we find the
equations governing x” and x'

(19)

Lx®=A4, Bx°=0,
and
Lx°4+Lx'=0, Bx"+4 Byx'=0. (23)

From (19), we find x° = — A4 /ial,. We will not need the
solutions x' to the perturbation problem (23) but only the
inner product {C,x'). This is seen from (20) and (21):

V(e,d) = (Cx°) +e({Cx') —6(C,A) + O(€). (24)
We calculate (C,x') from (23) and an integration by parts:
- <C,le0> = <C’L()xl>

(22)

= (L ¥*C,x") + boundary integrals, (25)

where the boundary integrals are evaluated using the second
part of (23), and (L *C,x') = (ial,C,x') = — ial,{C,x").
(The boundary integrals would vanish if Byx' were zero.)
Details of these calculations are in Appendix C.

IV. DISCUSSION OF RESULTS
Using Egs. (C1)-(C7) of Appendix C, we have
o~ — ial, — ieal l,m
+ —‘ja,—e—T—{ 1 im(ealla3 +e “"34)
e T, —d,) 2

+[a1/3R1/3 (a2§‘i)
2 R F?

i’—,ﬁa4/3 o -
+—RT/3—](dsVa+d4V4)] + 0(e), (26)
where the coeflicients 5'3, 5’4, and ¢, are complex conjugates
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of those defined by (B22)-(B24) of Appendix B, and ¥, and
V, are complex conjugates of ¥, (s, ) and V,(s, ), defined by
(B14) and (B15).

We first show that ¢, — d,, occurring in the denomina-
tor of (26), is not zero. From (B22) and (B23),

CG—dy=Vy= V)V =V)+ Vi =V, = Vs)

= W(J- Bi(t)exp(ia®*R ~'"3t)dt
xf Ai(t)exp( — ia®>R ~3t)dt
—f Bi(2)exp( — ia?*R ~'3t)dt

xf Ai(t)exp(ia®>R —”3t)dt>.

We change variables from ¢ to 6:
t=s5,{1+i(R/a)[-L+4(6+ D]},
so that

¢, —d,= —1a®PR*7A,

where

1 1
A :j Bi(t(0))e**”? def Ai(t(8))e ~*°"* dB
—1 -1

1 1
- J Bi(z(e))e~“9/2daj Ai(1(8))e*°"2 do. (27)
—1 -1

We define a* = a/2, t = €™z, and use the identity?'
Bl(t) — zeiﬂ/6Ai(teZﬂ'i/3) __ eirr/Z Al(t)

to obtain
1
A = 2¢8 ( Ai(e’™72(6))e™" d6
—~1
1
Xf Ai(e™z(8))e ~*"° db
—1
1
— Ai(e®™z(0))e ~*"° dO
-1
1
Xj Ai(e™z(8))e*™? d&)
—1
1
= 2i(f Ai(e*™%z(8))e*™? db
~1
1
xf Ai( — iz(8))e =% do
—1
1
— f Ai(eSm‘/Gz(g))e—a‘G de
—1
1
x f Ai(— 1'z(6’))e“"’d6) (28)
—1

by using formula 10.4.7 in Ref. 21. The above is equal to
— 2i multiplied by Romanov’s A (see Eq. 1.15 in Ref. 18),
where his e[ (x — id)/e] is our €%z, Romanov’s a, x, ¢,
—id, and € correspond to our a*, 6, 2I,—1, 1 -2l
— 4ia*/R, and 2?3(a*R) '3, respectively. Romanov
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showed (see Lemma 4 in Ref. 18) that As£0 if ¢ is real.
Therefore, ¢, — d,50.

We now discuss the thin-layer effect. We examine the
asymptotic behavior of o given by (26) in the limit of /, - 0.
We show below that in (26), the coefficient of 7/ (¢, ~ d,)
is O(1%) and the coefficient of 7/ (¢, — d,) is O(I3).

In the following, we evaluate various terms at /; = 0. In
Eq. (B9),

So=8, = — a4/3R —2/3’
and in (B17) and (B18),

Vils) =Va(sp ) =Vils)=V;i(s.) =0, (30)
where ' denotes d /ds, so that

dy=d,=0 (31)

in Egs. (B23) and (B24). Hence, we find that the O(e)
terms in o vanish when /;, = 0. Next,

1/3R 1/3
s

s, =58, + ia (29)

N _ (32)
an,  ai ’
av; _ av; — jag\3R V3 (33)
al, al, ’

so that
dd, dd,
—=—2=0 34
aJl, dl, Sag

so that the O(¢€) terms vanish also at O(/,).
We find that at /, = 0,

9 27 27
9 7 = dieali + —=— __1_71(3 A
al;3 (c—d,) 2 aly ar3
QPR3 (2§ 7 ima?’?
+ ——2—— R _'Fz_ FEE
— 9%, — 9%
X{Va=72+V. 4)} + 0(€%). 35
( T EIRAETE %)
Since
1 1
and
a2V: an’
—E-l—=ia4/3R U3 _ 22 , (37)
al? aly
at/, = 0, we find that
2 2
i}l{? = —2ia*PR VY, f?l‘fat =2ia*PRV3V,.  (38)
1 1
Hence in Eq. (35),
a4 dd
Vi—2+V,—3*=0
oz Tt g
and
2 2
aali3 +(z91(i4 =2ia*’R'P[V3(1, = 0) — V(1 = 0)].
1 1

(39)

Therefore, the coefficient of 771/(¢, — d,) in o is O(I3).
Let (/) =d,V; +d,V,. Then

1631 Phys. Fluids, Vol. 30, No. 6, June 1987

3
2L 0 =iat R (v, e — v, 25

ol o, *al,
d3d ad
+V—2+ Va0 40
s R (40)
where
a3d, a3v. v,
L, =0)=V}, 2 _y — 6a®3R 23y
8[? ( 1 4 (?l? 4 (9]? 104 4
3 a3V;
+6ia7/3R 1/3V4_ V‘; % I;I + V4 1
al} al3
— 6ia*3R /3 av, (41
ar -’
%, a3V, a3
L=0)=V;—L—V, + 6a5PR 23!
al3 an ar 3
+ 6ia*/*R '/ s _ 6ia? PR VY,
ai, 3
v, 3.
+ 7V -V z., (42)
> an o
3*v, — _ PR3 = _ 3, ) (43)
ol al’
Hence, Eq. (40) becomes
a3f _ _— 5/3 2/3 ’ ’
‘31_3(11——0)—44 RV ~ViVi). (44)

1
We note that when /;, =0,

Ca—dy=ViVs—V,Vi+#0. (45)

Therefore, the coefficient of 7/(¢, — 4—14) isO(I3). Asl, -0,
(26) becomes

o~ — ial, — ieal,l,m + e[ﬁa“”R s Va= V)

2(c, —dy)
a’R (&S F
<[t +oud] = 5E (- )
xU?+mﬁu]+0ML (46)
where
Vi~ V,=ira*R

1
xj (Ai(s, )Bi(t(6)) — Bi(s, )Ai(t(6)))
—1

a(6—1) 46,
2

X sinh
1H0) = —a*? R~ —jg"*RV36~1)/2,

_ 2/3p 2/3 1
—ML—U Bi(£(6))e**"2 d6
~1

cs—d, = 2

1
XJ. Aift(8))e™ a0/2 49
-1

1

—f Ai(t(0))e*" db
-1
1

P Bi(t(0))e ~*¢/? de) .

-1
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We have checked that for long waves (a —0), the coeffi-
cient of 7 in o at O(I? ) and the coefficient of Fin cat 0(/ 1)
agree with the limit € -0, /, -0 of the long-wave analysis of
Yih'’ (see Appendix D).

Equation (46) presents the main result of our thin-layer
analysis. It shows that the dominant term in the real part of o
is O(/?) and is proportional to the viscosity difference. We
need to find out the sign of this dominant term in order to
make conclusions about stability. This is done below.

The Airy functions of complex arguments were comput-

ed using the method of Schulten, Anderson, and Gordon.”
Our computer program was checked against the thin-layer
limit of Yih’s long-wave formula [see Eq. (D2) of Appendix
D] and also against the exact formulation of o for the two-
layer Couette flow without the thin-layer, small-¢, or long-
wave approximations, for which a code is available.'> For
example, at ¢ = 0.1, m =099, /, =0.05, R =1.0, S=7
=0, (46) yields o as ( — 0.4168E — 8, — 0.5043F —2),
(D2) yields ( — 0.4167E — 8, — 0.5042E — 2), and using
25 Chebyshev polynomials in each fluid yields
( —0.4357E — 8, 0.5043F — 2).

Figure 1 displays the coefficient of €7/} in re(o) of
(46) versus a for S=7=0 for a variety of Reynolds
numbers. This shows that when the less viscous fluid is in the
thin layer (77 > 0), the flow is linearly stable to wavelengths
that are not too short; otherwise (i < 0) the flow is unstable.

In the following two paragraphs, we present some fea-
tures of Eq. (46), which, at first glance, may appear incon-
sistent, but are not. In Appendix E, it is shown that the
growth rate asymptotes to a constant as @ — « . However, in
the problem without the thin-layer approximation and with-
out the restriction that the fluids be similar, it is known
thatlz.lS

Rm(1l — m)(1 — m?/r)

~ —iaU(I)) +
? 1) 2L, + mly) (1 +m)?

asS _ mR(1 —1/r)

— as a— oo, (47
20+m)  2(1+m)aF? @, (47)

so that the growth rate in the viscosity term is O(1/a?) and
proportional to €>. This difference is explained by noting that
the large « limit of the thin-layer approximation is an inter-
mediate limit in the sense that 1 €a </, '. Thus the two
limits, @ — « and /, -0, need not be interchangeable. We
remark that in the two-layer Bénard problem, '® the eigenval-
ue tends to zero in either limit but at different rates. In a
previous article on thin-layer effects,'? the author showed
from numerical studies that although there is a critical
Reynolds number beyond which short-wave asymptotics for
the unbounded problem of Ref. 15 approximates the bound-
ed problem, there is another unstable regime that is missed
out by the short-wave asymptotics. The limit analyzed in
Appendix E is linearly stable and therefore not related to this
band of instability. This band has recently been analyzed by
Hooper> who considered the problem of Ref. 11 for all
wavelengths. She identified three distinct forms of instability
depending on the magnitude of two dimensionless param-
eters, Band (aR)'/?, where Bis a wavenumber measured on
a viscous length scale, o is a wavenumber measured on the
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FIG. 1. The coefficient of e/ ? in the growth rate re(o) in the “thin-layer”
limit given by Eq. (46) versus a. Surface tension and density difference are
zero. Reynolds numbers are 1, 10, and 100. The growth rates asymptote to
constants for short waves.

scale of the depth of the lower fluid, and R is the Reynolds
number of the lower fluid. At small 3 and large (aR)'/>, she
found a new type of instability that arose at the viscous
boundary layer at the wall and this is an explanation for the
band of instability that was numerically found in Ref. 12.

The analysis of Eq. (46) has shed further light on why
we can obtain the thin-layer effect that was described in the
Introduction. It is of interest to compare our analysis with an
example of the effect that was found numerically in Ref. 12.
The parameters used in the computations were R, = 10,
m =0.01,»=0.95,5=0.1,and F? = 0.1. We note that the
analysis here does not apply directly to these parameters
because the viscosity ratio m is close to 0, whereas in our
analysis, such ratios are to be close to 1. From comparing the
graphs for /, = 0.05and/, = 0.1 in Fig. 1, Ref. 12, we notice
that the growth rate re(o) is proportional to /, as /;, -0 in-
stead of the /3 behavior found in our analysis above. This is
reconciled by examining Yih’s'® long-wave analysis of o.
His formula for re(o) for a—0 contains terms such as
m + (/,/1,). The order of magnitude of this is O(1) in the
limit /; -0, but when m is O(/,), the magnitude becomes
O(l,). When m is assumed to be O(/,), it is found that
o= 0(l,) as I, -0 in Yihk’s long-wave analysis.

Hooper'! recently analyzed the thin-layer effect for two-
layer Couette flow when the top fluid is unbounded. We
discuss here how her work is related to ours. At first glance,
the limit /, — 0 might appear identical to putting the upper
wall at infinity, but this is not true. Our problem approaches
Hooper’s not simply when /, -0 but when both /, -0 and
1*— . Hooper uses long-wave asymptotics where her
wavenumber, denoted by ay,, is our a/, and @y is small. She
shows that the growth rate for the semibounded problem is
O(a*’?). This appears to be in contrast with what Yih!® and
the present article find, viz. the growth rate for long waves is
O(c?). However, there is no disagreement because long-
wave results are sensitive to boundary conditions and
Hooper’s problem has no upper boundary whereas there is
onein Yih's problem and ours. It is natural, then, that in our
problem, the growth rates for long waves retrieve Yih’s
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O(a?). Wenote that in Hooper’s long-wave asymptotics, the
dimensional wavelength is long compared with the width of
fluid 1, but short compared with the width of the channel:
ie, l<a<l " yields O(a*?) growth rates. In the long-
wave asymptotics of the present article, the dimensional
wavelength is long compared with the width of the channel.
How might we retrieve Hooper’s results? We note that her
Reynolds number, denoted by Ry, is U,/ ¥/v,, where U, is
equivalent to our basic flow speed at the undisturbed inter-
face, and corresponds to our U*U,(/,). Here, Eq. (2) yields
U,(1,) =1/, + ml,), U*is the upper plate speed, and / ¥
is the dimensional depth of the lower fluid. Our Reynolds
number R is U */ */v,, where / * is the plate separation. The
Reynolds numbers are related by R, = RI3/(, + ml,).
Thus, if our top plate is kept at a finite distance with speed
U * and the fluid volume ratio /,//, is made to approach oo,
then Hooper’s Reynolds number Ry; approaches 0. Her re-
sults concerning O(a*?) growth rates require that R, be
finite and ay <1, and do not allow Ry to be zero. We re-
trieve Ry = O(1) if our Reynolds number R is made to ap-
proach infinity at order R = O(I [ ?) as I,/I,» «. This, in
effect, moves the upper plate to infinity. This limit also ac-
commodates U* becoming large. Therefore, retrieval of
O(a*”®) growth rates [ay <1,Ry =O0(1)] from our
bounded Couette flow problem involves three limits: /, -0,
R — w0, and our a should satisfy 1 €a </ [ '. These limits are
not necessarily interchangeable. Since the growth rates for
Hooper’s and Yih’s problems are different, even in the limit
1; -0, this suggests that the presence of the upper wall is felt
even when one layer becomes thin. For short waves, the sta-
bility picture is different from that of long waves. In the
short-wave limit, the analysis is localized at the interface and
the waves are not aware of the walls. However, as noted just
after Eq. (47), the short-wave limit is not interchangeable
with the limit of one layer becoming thin. |
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APPENDIX A: THE ADJOINT PROBLEM FOR €=0
We denote the domains occupied by the two fluids by

Q, = {0<x2n/a, 0<z<!,}
and
Q, = {0<x<2n/a, I,<z<1}.

We denote the interface by /, and the lower and upper boun-
daries by T, and I',, respectively. Let X, = (u,0,4) and
X, = (u*,v*,h *). Asterisks denote the adjoint. We have

(XoLoX,) = f u* 1 Au — T* 9 _ iU (2)
Q, 1 ax
— u*iaquz + v* 1 Av —7* 5‘_p — iab*vz
1 Jz
—e 1 —. Op
+ u*— Au —u* = —g%U | (z)
Lz R, Ix '
— *iauz + 7% - A — 7* P _ itz
2 0z

+fl_1*(v-—hiaU1(ll)). (A1)
I

We integrate by parts and obtain, using the divergence con-
dition div u = div u* =0,

(X, LX) = L‘ u(% Au* — -(Z_;—* - ii*iaUl(z)) + U(%{_ AT* — ig;— —u* — iaU,(z)E*)
+ N u(% Aﬁ*—%—ﬁ*iaUl(z))%—v(;l{— Av* — 352* »—z't*—~iaU,(z)i)'*>

a* Jdu

From this, we read off the adjoint differential operator to be
given by

YIQ'A“* ——aépxi+ U,(2) %}
LoXs = %AU* *igzi— Ui (2)u*+ U, (2) %;
v G (A3)
1633 Phys. Fluids, Vol. 30, No. 6, June 1987

u du*
R 0z

(A2)

v*dv v d*  _ -
+——————*p +up*|l.
R 0z P pj[l

"Moreover, since X , satisfies the boundary conditions (12)
on I'; and I',, the integrals over these boundaries vanish if

u*=7*=0 on z=0,l1. (A4)
Into the interface term in (A2), we add
v* ( du 8v) v ( du* 317*)
—|——+=]——= +—1,
R ( ox Oz R\ Jx oz
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which is zero. We integrate the x derivative by parts and use
periodicity. This yields

- - u* (Jdu ov
R *o — R *hiaU, (1 ﬁ—(-—- —_)
L v 1(‘H[[R oz | ox

u [ du* 517*) ..(2 dv )
—— 4+ — ®f 7
R(th ) T \R a7

(A5)

From this we find the adjoint interface conditions:
[u¥] =0, [v*]=0,

du*  Jv*
B :0,
[[ Jz + ax

x_ 2o
R 09z

APPENDIX B: EIGENFUNCTION OF THE
UNPERTURBED PROBLEM

If e = 0, (13) is a solution of Eqs. (4)~(9) and we have
the eigenfunction
0
A=¢e""}0
1
The eigenvector C of the adjoint satisfies
L¥C=ijal,C, B¥C=0.
We denote C by (u,0,4) and drop the asterisks used in Ap-
pendix A. This leads to the equations

(A6)

Fh*=0.

(B1)

% Au — g—i + uiaU,(z) = ial,u,

1 dp . ,

— Av — = —u+ialU,(z)v = ial,v, (B2)
R dz

Gu v _ o

ox Oz

We set v = pge'™*, etc., and obtain, by combining the equa-

tions,
i (3% z>2 az dv
ST PO L R
aR (0722 ¢ 9z* dz
This equation factorizes in a manner that is analogous to the
factorization of the Orr—Sommerfeld equations governing
stability of the one-fluid plane Couette flow (see Sec. 31.1, p.
212, Ref. 24):
A(—l— Av— (I, —2) —ai) =0.
R Ix

(B3)

The general solution of this equation is constructed
from the two solutions of the equation

1 o

—Av— (I, — Z) — =0 B4

R Ui Ew (B4)
and the two particular solutions of the equations

R%AU_ (l] _Z)_aa_%z _R1/3a——2/3eiaxeiaz. (BS)

Equation (B4) is v,,, — (@® + iaRl, — iaRz)v, = 0 which
transforms into Airy’s equation ¥, — sV =0 via
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&’ +iaRl, —iaRz

vo(2) =V(s), s= — PR3 (B6)

The solutions of Airy’s equation are Ai(s) and Bi(s). Equa-
tions (BS5) become

V., —sV =exp[ + (—iad®/R +al))]

Xexp( Fia’*R ~'%), (B7)
for which the particular solutions are
Vis) = — Ai(S)Ff Bi(r) W(t)dt
+Bi(s)77'f Ai(t) W(t)dt, (B8)

where W(¢) is one of
W, (t) = exp( — ia®/R + al,)exp( — ia®’*R ~1),
W,(t) = exp(ia®/R — al,)exp(ia**R ~'/3).

We have used the result?! that the Wronskian of Ai(z) and
Bi(z) is /7. We denote s, to be the value of satz = 0, 5, tobe
the value of sat z = 1, and s; to be the value of satz = /;:

5, = — a*PR 23
4/3 - 1/3
S():'q"—_—-%hR—llzsL _ial/SllRl/B, (B9)
2 _ iaRl ,
$1= iaz'/lfR 2/23 =5+ ’a”312R 13
The general solution is
V(s) =c, Ai(s) + ¢c; Bi(s) + ¢,V (s) + ¢, V,(5) (B10)
in fluid 1, and
V(s) =d, Ai(s) + d, Bi(s) +d,V;(s) +d,V,(s) (Bll)
in fluid 2, where
Vi(s) = -—Ai(s)7rJ Bi(t) W, (¢t)dr
+ Bi(S)Trf Ai(r) W ()dt, (B12)
Va2(s) = ——Ai(s)vJ Bi(¢) W,(¢t)dr
+Bi(s)1rf Ai()W,(t)ds, (B13)
Vi(s) = -Ai(s)n-f Bi(¢) W, (t)dt
+ Bi(s)ﬁf Ai(r) W, (t)dt, (B14)
Vi(s) = —Ai(S)?Tf Bi(2) W,(t)dr
+ Bi(S)TrJ Ai(t)W,(t)dr. (B15)

At the solid boundaries, ¥ and ¥V /Js are 0:
d, Bi(s)) = —d, Ai(s,),
¢, Bi(sy) = — ¢, Ai(sy),
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¢ Ai'(Sg) + ¢, Bi'(sg) + ¢5V 1 (so) + ¢,V (sp) =0,
d, Ai'(s,) +d, Bi'(s)) +d,V5(s;) +d,V;(s) =0.

Since V'{ (55), V5 (s0), V5 (s,), and V' (s,) are zero,

¢, =0, d,=0, d,=0. (B16)

The coefficients c;, ¢,, d;, and d, must be determined such

that the jump conditions across the interface given by Egs.

(A6) at z =, are satisfied. These are equivalent to the con-

tinuity of v,

3 Vi(sL) +caVol(sy) —dyVi(s,) —dV,(s, ) =0; (B17)

the continuity of v,,

&V ilsL) +eVi(sy) —dsVi(s) —dyVi(s,) =0;
(B18)

¢, =0,

and the continuity of v,,,
SV IGsL) +eVi(se) —dsVi(sy) —dVi(s,) =0,
(B19)
and
h=(—1/a’R)[v,,] (B20)
Using Egs. (B7), Egs. (B17) and (B19) imply that
Wi(sL) + eaWolsy) —dsWi(sy) —d,W,(s,) =0,

(B21)
where
Wi(s) =exp(aly)), W,(s.)=exp{—al)).
From (B18) and (B21), we have ats = s, ,
c4[V2V{ —ViVi+ViVs—=WV,V;
S AL ALY
=d [V V| =V Vi +V,V,— V.V
(AL 2 AN
We choose
ca=V,(Vi =V =V (V,—V3)
+e WV, — ViV, (B22)
d,=V,(V{=V3)—Vi(V,— V)
Fe W (VY — VLV, (B23)
dy=e ViV, = V) + ViV — V)]
+ W,V — V. (B24)

We will not need to calculate c;.

APPENDIX C: EVALUATION OF INNER PRODUCTS
We calculate the terms in ¥ defined in (24).

1. The calculation of (C,Lx°)

We denote C = (u*,v*,h*) and x° = (u,v,h). Below,
the interval of integration I extends over one wavelength in
x,atz =1,
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(CLx%) = f

o,

— T*Vp +f —u*Vp + J h *mle
I

Q,

= | pva*+ f pVa* + J h*mle
Q, 1

Q,
—wa+ | o | o
r, r,
after an integration by parts. We have V-u* = 0. Atz =1,,
—[Pl=h(— a*G/R) +F7/F?),and dv,/3z = Ofor hand v,
belonging to x° = — A4 /ial,. Here, the 4 belonging to A4 is

e, hence, — [pl= — (¢“/ial,)( — a’S/R +7/F?).
Therefore,

(CLx%) = f h *mle™ — 5*[p]
I

T oy dax g €% s 7
= [t (-4 )
~T,

From (B20),
h* = (i /a)[V]
= (ie™/a) [esV " (sL) + V5 (sp)
—d;V(sy) —dVy(s,)]

and using (B7), e.g., V{(s) =sV, + W, (s) and hence
Vi(s) =V (s) +sVi(s)+ Wi(s),

h* = (ieg/a)[c;(Vy+s, Vi + W)
taVats Vi + W) —ds(Vi+s,. Vi +W1)
—d(Vy+s Vi+W3)].
We use conditions (B17) and (B18) to find
h* = (ie™/a)[W{(s.)(cs—ds) + Wi(s ) (e —dy)] -
We use (B21) to express ¢; — d; in terms of ¢, — d;:

;- iax W’ (S )
he =2 (— 1L Wz(sL)+W§(sL))(c4——d4)
a Wi(s)
2 jax — al
- exz(ll/?; 1/3a 2 (c, —dy). (C2)
From (B11) and (B16),v*atz =/, is
V(s ) =dV5(s.) +d,V,(s). (C3)

2. The calculation of (C,Lox')

Wedenote x! = (u,v,h). The boundary conditions from
(23) yield

5= lax

[u] =

ial,

[[a—uﬂ=0 at z=1,,
oz

u=0 at z=0,1.

at z=/,,

The normal stress condition (17) for x' is
2 dv
_ ~2Z =0,
l]: P R oz
(CLx') =(L3¥Cx') + T,
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where I, can be read off from the calculation of the adjoint
in Appendix A:

du  _, Ov Ju* 55*)
- * * OV _ 9
o= fh v+ﬂjR( é‘z+v Jz “ oz vé’z

—v*p+vp]]

m - 2 iex
= (UF + av*)e' ™.
J- a’Rl|

From (B6) and (Bll), vy, (/;) = —a*?R?*?V (s,),
where

Vss (SL) = dBV:’:(SL) + d4VZ(sL)
=d3[SL Vi(s,) + WI(SL)]
+dy[s5.Va(sp) + Wyls)].

(C4)

Therefore,
vE, + a’v¥ = d3(2a2V3 — a?3R 2/3W1)
+d,2a%V, ~ a*PRPW,).
Equation (25) becomes
—ial (Cx'y= —T,—T,.

(CS5)
(C6)

3. The calculation of (C,A4)
We have

(CA) zfﬁ*em,

7

(€T

APPENDIX D: LONG-WAVE ANALYSIS OF THIN-LAYER
LiMIT

Yih'? has found that
o~ —iafcy + U(l))] +a?’13RJ as a-0, (D1)

where U, (/,) = I, + mel |l,, and ¢} and J are defined in Egs.
(34) and (42), respectively, of Ref. 10. When evaluated in

the limit /, -0, (D1) becomes i

12
o~ —ia( - 2#%6-}-11 +ﬁ61,12)
2
—1%m 13
6{;"’ + ;F )+0(e I%0%). (D2)

‘We now show that our formula (46) reduces to (D2) for
small . We evaluate the expression ¢, — d, defined just
above Eq. (27). At [ =0, t= —qa*?R"¥3
—ia'*R'3(8 — 1)/2 in (27). For small &, we use Taylor
expansions for the integrands, e.g.,

+ ea*R (

3 4
Ai(t) ~Ai(0) + ¢ Ai"(0) + %Ai(O) +—;—2—Ai’(0)

4t 10t 28[
+0(a‘°/3), (D3)
and we find
3Ip2 22
c4—d4~a1§) zaéR (D4)
Similarly,
Ve—V;
~a'’R 1/3(% atBR V3 _ ia”;g 43 + O(am/3)> ,
(D5)

so that the O(al?) term in (46) is Zzeallm, as in (D2).
Expressions (46) and (D2) agree to order .

APPENDIX E: SHORT-WAVE ANALYSIS OF THIN-
LAYER LIMIT

We show that the growth rate of the eigenvalue given by
(46) asymptotes to a constant in the short wavelength limit,
in agreement with the computed graphs of Fig. 1. In the
absence of surface tension and density difference, the growth
rateis el }a*/*R */>/2 multiplied by the complex conjugate
of (Vy— V3)/(c, —d,), where

V=V _ 4 £ (Ai(s, )Bi(2) — Bi(s, YAi(r))sinh (8 — 1)/2 d6
(cq —dy) a'PR'Z g Bi(1)e®2dO §1 | Ai(r)e= 02 dO — [, Ai(t)e*?” dé§' | Bi()e 246’ (ED)
= _a4/3R —2/3_l'al/3R 1/3(9___1)/2’ s, = _a4/3R ~2/3.

We use asymptotic expansions for large arguments of the
Airy function®!:

Ai( —z) ~7~ V227 V4 sin(¢ + 7/4)
~& ey cos(E + m/4) + O D],
Bi( —z) ~7~2z7*{cos(& + 7/4)

+ & Tleysin(S + 7/4) + O D],

=32 |arg(2)| <27/3,

lz| large, ¢, =3
We evaluate the numerator first. For large o,
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Ai(s. )Bi(#) — Bi(s, ) Ai(r)

~TT 12—1/42—1/4 Sln(gl gz

+ei(§5 = ¢ 7 Deos(y — &) + O _2)]: (E2)
21=a4/3R —21’3’ 2z, _a4/3R -2/3+ia1/3R113(9_“ 1}/2’
£ =3d*/R, (=127
Therefore,
1
f [Ai(s,)Bi(1) — Bi(s, )Ai(r) ]sinh Z¢=1) g
1
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1 (& — §2) — (51— &)
1. _ e — €
~r1z; 1/4(f z; V4 ( ; )
-1 2i

a(f0—1
2

Xsinh L bt =€

X(ei(é'l“gz) +e—i(§|‘—§z)>8inha(0_ 1) de) '
2 2 (E3)

Since
=&~ —ia(0—1)/2+ R(6 - 1)/16 + O(1/a),

the resulting integrals are asymptotically expanded using
1
J e~ *f(0)do
0
0 o (0) (0)
_ SO L " Joo +

a a? a’
The dominant integral in (E3) is

1
[ m el it — g~ 0= Dao

0(-1—4), a—w. (E4)
(s4

— O(eZaa ~4/3).

Since £ ;' — £ Vis O(1/a?), the second term in (E2) will
be neglected. The leading term in (E3) is therefore

(ES)

g1/ ol
1 _ e — ) —alf—
: f 2y Vg —ithi—¢0 —a6~112 4o
47i J_

In the denominator of (E1) for large a, we have the
expression

1
f z; /42972 cos(é‘2 + —Z—)d@
1

1
XJ- z; Ve 02 sin(§2 + —Z—)d&

i

1
— j z; Ve =972 cos(g‘2 + %)d@
—1

1
Xf z, V42072 sin(é‘2 + %)d&
—1

Replacing &, + 7/4 above by 7/4 4+ 2a*/3R — (£, — &,),
and using trigonometric identities, the leading term in (E6)
is

1
1 — i(§) — &) +a(f—1)/2
— z; l/4e 1] 2 de

20 —1
! — [
— i — - — 12
XJ‘ z, 1/4e 6y — &) —a( ) de‘
—1

Using (ES) and (E7), (E1) asymptotes to

(E6)

(E7)
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—2i

2/3p 1/6 1 /4 {§1— &) +a(80—1)/2 ’ (E8)
a*"RV°f_zy Ve T deo
where
1
J‘ 21 Vg~ +al9- 122 4y
—1
1
~f 2, V48— D +iR(O~ D16 g9
0
Substituting @ — 1 = — fand using (E4), the above asymp-

totes to
21_ 1/4/a _+_ l-al/BR 1/321— 5/4/8a2

+ (iRz;[ V*/8 — 5a**R*327%%/64) /a®.
Therefore, (E8) becomes

— 2ia/a'PR3(1 + iR /4a?).

Hence, the coefficient of eml/? in (46) asymptotes to
— R /4 + ia®.
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