
Optimal and Approximate Algorithms for the
Multiple-Lots-per-Carrier Scheduling and Integrated

Automated Material Handling and Lot Scheduling
Problems in 300mm Wafer Fabs

Lixin Wang

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Industrial and Systems Engineering

Dr. Subhash C. Sarin, Chair
Dr. Kimberly P. Ellis
Dr. Barbara Fraticelli
Dr. Robert Hendricks

August 20, 2008

Blacksburg, Virginia

Keywords: Multiple Lots per Carrier Scheduling, Integrated AMHS and Lot Scheduling,

Makespan, Total Completion Time, AMHS, 300mm Wafer Fabs

Copyright 2008, Lixin Wang

Optimal and Approximate Algorithms for the Multiple-Lots-per-

Carrier Scheduling and Integrated Automated Material Handling

and Lot Scheduling Problems in 300mm Wafer Fabs

Lixin Wang

(Abstract)

The latest generation of semiconductor wafer fabs produce Integrated Circuits (ICs) on

silicon wafers of 300mm diameter. In this dissertation, we address the following two

types of (new) scheduling problems that are encountered in this generation of wafer fabs:

multiple-lots-per-carrier scheduling problem (MLCSP) and integrated automated material

handling and lot scheduling problem (IMHLSP). We consider several variations of the

MLCSP depending upon the number of machines used, the prevailing processing

technology of the machines, and the type of objective functions involved. For the

IMHLSP, we study two instances, one with infinite number of vehicles and the other with

finite number of vehicles.

We begin by introducing a single-machine, multiple-lots-per-carrier with single-wafer-

processing-technology scheduling problem for the objective of minimizing the total

completion time (MLCSP1). The wafer carrier is a front-opening unified pod (FOUP)

that can hold a limited number of wafers. The problem is easy to solve when all the lots

are of the same size. For the case of different lot sizes, we first relax the carrier (FOUP)

capacity and propose a dynamic programming-based algorithm, called RelaxFOUP-DP,

which enables a quick determination of its optimal solution that serves as a lower bound

for the problem with limited FOUP capacity. Then, a branch-and-bound algorithm,

designated as MLCSP1-B&B, is developed that relies on the lower bound determined by

the RelaxFOUP-DP algorithm. Numerical tests indicate that MLCSP1-B&B finds

optimal solutions much faster than the direct solution of the MLCSP1 model by the

 iii

AMPL CPLEX 10.1 Solver. In fact, for the medium and low density problems, the

MLCSP1-B&B algorithm finds optimal solutions at the starting node (node zero) itself.

Next, we consider a single-machine, multiple-lots-per-carrier with single-carrier-

processing-technology scheduling problem for the objective of minimizing total

completion time (MLCSP2). As for the case of MLCSP1, the optimal solution for the

case in which all the lots are of the same size can be obtained easily. For the case of

different lot sizes, we determine a lower bound and an upper bound for the problem and

prove the worst-case ratios for them.

Subsequently we analyze a two-machine flow shop, multiple-lots-per-carrier with single-

wafer-processing-technology scheduling problem for the objective of minimizing the

makespan (MLCSP3). We first consider a relaxed version of this problem, and transform

the original problem to a two-machine flow shop lot streaming problem. Then, we

propose algorithms to find the optimal capacitated sublot sizes for the case of lots with (1)

the same ratio of processing times, and, (2) different ratios of processing times on the

machines. Since the optimal solutions obtained from the lot streaming problem may not

be feasible to the MLCSP3, we develop heuristic methods based on the heuristic

procedures for the bin packing problem. We develop four heuristic procedures for lots

with the same ratio of processing times, and another four procedures for lots with

different ratios of processing times on the machines. Results of our numerical

experimentation are presented that show that our heuristic procedures generate almost

optimal solutions in a matter of a few seconds.

Next, we address the integrated automated material handling and lot scheduling problem

(IMHLSP) in the presence of infinite number of vehicles. We, first, propose a new strong

hybrid model, which has the advantages of both segregate and direct models. In the

segregate model, a job is always transferred to the stocker after its completion at a station,

while in the direct model, it is transferred to the next machine in case that machine can

accommodate the jobs; otherwise, the job will stay at current station. The decisions

involved in the strong hybrid model are the sequence in which to process the lots and a

 iv

selection between the segregate and direct models for each lot, whichever optimizes

system performance. We show that, under certain conditions about the processing times

of the lots, the problem can be approximated by the cases of either infinite buffer or zero-

buffer at the machines. Hence, we consider all three cases of the IMHLSP in this chapter,

namely, infinite buffer, zero-buffer, and limited buffer sizes. For the strong hybrid model

with limited buffer size, we propose a branch-and-bound algorithm, which uses a

modified Johnson’s algorithm to determine a lower bound. Two upper bounds for this

algorithm are also determined. Results of our numerical investigation indicate that our

algorithm finds optimal solutions faster than the direct solution of the IMHLSP model by

the AMPL CPLEX 10.1 Solver. Experimental results also indicate that for the same

problem size, the times required to solve the IMHLSP model with interbay movements

are larger than those for intrabay movements.

Finally, we investigate the IMHLSP in the presence of limited number of vehicles. Due to

the complex nature of the underlying problem, we analyze small-size versions of this

problem and develop algorithms for their solution. For some of these problems, we can

find optimal solutions in polynomial time. Also, based on our analysis on small-size

systems, we have shown why some real-time dispatching (RTD) rules used in real fabs

are expected to perform well while not the others. In addition, we also propose some new

and promising RTD rules based on our study.

 v

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Subhash C. Sarin, for his invaluable guidance, support, motivation and expertise

throughout the entire progress of my dissertation research. I have learnt so much from

working with him and taking classes from him. His patience has endured my obstinate

anxiety during the countless hours in research meetings. I specially appreciate his great

help and encouragement during the last several months while I was in transition from a

student to a full time engineer. I want to offer my heart-felt thanks to my committee

member, Dr. Kimberly Ellis, who has helped me in many ways, including and beyond my

dissertation. It has been pleasant experience to be a teaching assistant for her. I owe much

to my committee member, Dr. Barbara Fraticelli, for her kindness and encouragement

during our discussions. She is such a considerate person. I also want to give thanks to my

committee member, Dr. Robert Hendricks for his brain-storming style discussions with

me about semiconductor industry. His opinions and observations from his years of

experience in semiconductor industry have been very valuable.

I am extremely grateful to my friends in Blacksburg for making my life here so

wonderful. I enjoyed being a roommate with Chengbin Zhu and Wenwei Zhong. Thanks

to my good friends: Ming Chen, Weiping Chen, Ming Cheng, Ying Fu, Cheng Guo,

Seonki Kim, Feng Li, Lingrui Liao, Yunkai Lu, Shunying Qiu, Xiangshan Tong, Yong

Yang, Yuqiang Wang, Liming Yao, Xiaomei Zhu, Yueqin Zhao, …, thank you all for the

good times we shared.

Finally, I am indebted to my family members for their unconditional love and constant

support. I thank my wife (Lingling Zhuang) for resigning her job with Intel (Shanghai)

and accompanying me to Blacksburg for years. She may not be conversant with my

research area but she understands me and has always been there for me no matter what. I

thank my lovely baby boy, Kenneth Yichen Wang. He brings happiness and joys to my

life everyday. I thank my parents-in-law (Guizhang Zhuang and Cuihua Wang) for taking

 vi

care of my newborn baby. Without them, it would have been impossible for me to finish

my study in time. I appreciate my parents (Mingren Wang and Shibao Zhu) and

grandfather (Zhangxiu Wang) for their understanding and tolerance in accepting my

absence from home for all these years. I appreciate my sisters (Xuewei Wang and

Xueping Wang) for taking care of my parents and grandfather when I have not been

around. I would like to dedicate this dissertation to my family members, as an

infinitesimal return for their love and support.

 vii

Table of Contents

Chapter 1: Introduction ... 1

1.1 Background and motivation ... 1

1.2 Scope of dissertation .. 7

1.3 Research methodology.. 9

1.4 Research objectives... 10

1.5 Organization of dissertation ... 11

Chapter 2: Minimizing Total Completion Time for Single Machine MLCSP with

Single-Wafer-Processing-Technology (MLCSP1).. 12

2.1 Introduction... 12

2.2 Literature review... 16

2.2.1 Multiple-Order-per-Job (MOJ) problem.. 17

2.2.2 Batching and scheduling problem.. 18

2.2.3 Bin packing (BP) problem ... 20

As described in Section 2.1, the bin packing problem is a part of the MLCSP

problem for carrier formation. The presence of the bin packing problem within

the context of the MLCSP makes it a more difficult problem to address; and it

is thus more amenable for the use of a heuristic for its solution. 21

2.3 Model formulation and development of some structural properties....................... 21

2.4 A problem with infinite FOUP capacity ... 27

2.4.1 Some structural properties ... 27

2.4.2 Optimal solution for the lots of the same size.. 36

2.4.3 An algorithm for the case of lots of different sizes.. 40

2.5 A problem with finite FOUP capacity .. 44

2.5.1 Optimal solution for the MLCSP1 with lots of the same size 44

2.5.2 A branch-and-bound algorithm for the MLCSP1 with lots of different sizes . 45

2.6 Numerical experimentation... 51

2.7 Determination of optimal number of carriers L considering transportation cost.... 56

2.8 Conclusions... 57

 viii

Chapter 3: Minimizing Total Completion Time for Single Machine MLCSP with

Single-Carrier-Processing-Technology (MLCSP2) ... 59

3.1 Introduction... 59

3.2 A mathematical model for the MLCSP2 .. 59

3.3 Structural properties.. 62

3.4 Determination and analysis of a lower bound and an upper bound........................ 66

3.4.1 Determination of a lower bound .. 66

3.4.2 Determination of an upper bound .. 68

3.5 Conclusions... 69

Chapter 4: Minimizing Makespan for a 2-machine Flow Shop 70

MLCSP with Single-Wafer-Processing (MLCSP3) ... 70

4.1 Introduction... 70

4.2 Methodology for the solution of MLCSP3 ... 70

4.2.1 An equivalent lot streaming problem... 74

4.2.2 Solution methodology for MLCSP3-2... 76

4.3 Lots with identical processing times (jij ρρ = , cci =)... 78

4.3.1 Uncapacitated sublot sizes ... 78

4.3.2 Capacitated sublot sizes ... 80

4.4 Lots with different processing times... 82

4.4.1 Same ratio of processing time per wafer on machine 2 to that on machine 1

)(cci = ... 84

4.4.2 Different ratios of processing times of products on machine 2 to those on

machine 1 ()ji cc ≠ ... 96

4.5 Adjustment heuristics ... 109

4.5.1 Lots with the same ratio of processing times (cci =)................................... 109

4.5.2 Lots with different ratios of processing times ()ji cc ≠ 110

4.6 Numerical experimentation... 112

4.7 Conclusions... 115

Chapter 5: Minimization of Makespan for an Integrated AMHS and Lot Scheduling

Problem (IMHLSP) with Infinite Vehicle Capacity .. 117

 ix

5.1 Introduction... 117

5.1.1 Important control issues of an AMHS ... 119

5.1.2 Lot scheduling.. 120

5.1.3 Integration of lot delivery and scheduling ... 121

5.1.4 Problem statement.. 123

5.2 Literature review... 124

5.2.1 The IMHLSP in 200 mm fabs .. 124

5.2.2 The IMHLSP in 300 mm fabs .. 125

5.2.3 The IMHLSP in other domains .. 129

5.2.4 Conclusions.. 133

5.3 Problem classification and mathematical models ... 134

5.3.1 AMHS Operating Model.. 134

5.3.2 Mathematical models ... 137

5.4 Solution methodologies .. 141

5.4.1 Infinite buffers ... 143

5.4.2 Zero buffer ... 145

5.4.3 Limited buffer of size b.. 155

5.5 Numerical experimentation .. 163

5.6 Extension to multiple-machine intrabay and the entire interbay/intrabay AMHS 166

5.7 Conclusions .. 167

Chapter 6: Minimization of Makespan for Integrated Automated Material Handling

and Lot Scheduling Problem (IMHLSP) with Finite Vehicle Capacity................... 169

6.1. Introduction.. 169

6.2. Mathematical Models for the IMHLSP with finite vehicles................................ 170

6.3 RTD (Real Time Dispatching) rules .. 174

6.3 One-machine IMHLSP problem .. 176

6.3.1 One-vehicle zero-buffer problem ... 176

6.3.2 One-vehicle one-buffer problem .. 177

6.3.3 One-vehicle two-buffer problem .. 179

6.3.4 Two-vehicle zero-buffer problem .. 181

6.3.5 Two-vehicle one-buffer problem.. 184

 x

6.5 Two-machine integration problem.. 185

6.5.1 Zero-buffer problem... 186

6.5.2 One-buffer problem ... 195

6.6 General AMHS system ... 197

6.6.1 Direct model... 197

6.6.2 Segregate model... 197

6.7 Conclusions .. 200

Chapter 7: Conclusions and Future Research ... 202

7.1 Conclusions... 202

7.2 Future research.. 205

References.. 207

 xi

List of Figures

Figure 1.1: The stages of semiconductor manufacturing.. 2

Figure 1.2: A simplified 16-step production process with re-entrant flow in wafer

fabrication ... 3

Figure 1.3: Market forecast by wafer size .. 4

Figure 1.4: Increasing cost of wafer fabs.. 4

Figure 1.5: The decision making hierarchy in wafer fabs .. 5

Figure 1.6: The decision making hierarchy in wafer fabs .. 9

Figure 1.7: The decision making hierarchy in wafer fabs .. 10

Figure 2.1: The usable area of a 300mm wafer is over twice that of a 200mm wafer...... 12

Figure 2.2: A front-opening unified pod (FOUP)... 13

Figure 2.3: Multiple-lots-per-carrier... 14

Figure 2.4: Illustration of the MLCSP .. 15

Figure 2.5: Schedule S’ with insertion of carrier l in front of carrier k............................. 24

Figure 2.6: The relationship between the number of carriers and total completion time . 26

Figure 2.7: A switch of lot a and lot b between carriers m and n 28

Figure 2.8: Schedule S’ with lot b removed from carrier n and included in carrier m 30

Figure 2.9: Schedule S’ with a lot a removed from carrier m and included in carrier n... 32

Figure 2.10: Schedule S’ with lot b removed from carrier n and included in carrier m ... 34

Figure 2.11: Schedule S’ with a lot a removed from carrier m and included in carrier n. 36

Figure 2.12: The distribution of the number of lots in each carrier.................................. 37

Figure 2.13: Illustration of the impact due to a change in carrier size.............................. 38

Figure 2.14: The forward DP recursion .. 41

Figure 2.15: Methods I and II for adding a lot to a carrier ... 46

Figure 2.16: Percentage of times MLCSP1-B&B solves the problem at node 0 as with

increasing number of carriers (L).. 54

Figure 2.17: Relationship between total completion time-related, transportation, and total

costs with number of carriers L... 56

Figure 3.1: Transformation of the original problem to the GAP 61

 xii

Figure 3.2: An example of the optimal solution for the relaxed problem (L′=4) 67

Figure 3.3: An example for the adjustment of the optimal solution for the relaxed

problem (4=′L)... 67

Figure 4.1: Schedule S with an empty carrier ... 73

Figure 4.2: Schedule S ′when none of the carriers is empty .. 74

Figure 4.3: Flow chart of the heuristic procedure for the MLCSP3 77

Figure 4.4: Sublot sizes for c=1.25 and L=8... 79

Figure 4.5: Compact block structure of optimal sublot sizes.. 79

Figure 4.6: An illustration of the optimal capacitated sublot sizes with c=1.25 and L=8 81

Figure 4.7: The geometric distribution of the processing times 87

Figure 4.8: Exchange of parts from sublots a and b with processing time of γ 90

Figure 4.9: Construction of another solution S’.. 94

Figure 4.10: Exchange of products between sublots a and b.. 98

Figure 4.11: A compact schedule if the first sublot is small... 100

Figure 4.12: A compact schedule if the first sublot size is large 100

Figure 4.13: The change in the compact block structure when 1sl increases................. 103

Figure 4.14: The schedule when 12,1 jj CC >− ... 104

Figure 4.15: The schedule when 12,1 jj CC <− ... 105

Figure 5.1: A front opening unified pod (FOUP) ... 117

Figure 5.2: A snapshot of AMHS in a 300mm fab ... 118

Figure 5.3: A simplified AMHS layout .. 118

Figure 5.4: The FCS and MCS control framework .. 121

Figure 5.5: A three-layer neural-network model .. 128

Figure 5.6: The operational network for a complex product .. 132

Figure 5.7: The operational network for a complex product including the transportation

operation ... 132

Figure 5.8: A segregate model .. 134

Figure 5.9: A direct model .. 135

Figure 5.10: A model for the entire AMHS.. 137

Figure 5.11: An intrabay AMHS with infinite buffers ... 143

 xiii

Figure 5.12: The optimal makespan for direct model with infinite buffers.................... 144

Figure 5.13: An intrabay AMHS for zero buffers... 145

Figure 5.14: A illustration of segregate model for zero buffer at machine 2.................. 146

Figure 5.15: An illustration of the intrabay direct AMHS model with zero buffer 148

Figure 5.16: Transformation of the direct model to a no-wait 2-machine flow shop..... 149

Figure 5.17: An illustration of the weak hybrid model... 152

Figure 5.18: An illustration of the critical path for the unscheduled set......................... 159

Figure 5.19: An illustration of node generation for the proposed Strong-B&B algorithm

... 160

Figure 5.20: The case in which node ID-JD is fathomed ... 161

Figure 5.21: An illustration of the multiple-machine intrabay AMHS........................... 166

Figure 6.1: One-machine, one-vehicle zero-buffer problem .. 177

Figure 6.2: One-machine, one-vehicle one-buffer problem.. 178

Figure 6.3: One-machine, one-vehicle two-buffer problem ... 180

Figure 6.4: One-machine, two-vehicle zero-buffer problem .. 182

Figure 6.5: One-machine, two-vehicle one-buffer problem ... 184

Figure 6.6: Illustration of the LS policy.. 186

Figure 6.7: Two-machine, one-vehicle zero-buffer problem.. 187

Figure 6.8: A simple interbay AMHS system... 198

 xiv

List of Tables

Table 1.1: Descriptions of the four sub-problems of the MLCSP 8

Table 2.1: An example to illustrate RelaxFOUP-DP algorithm 41

Table 2.2: Data used in numerical experimentation for problem MLCSP1 52

Table 2.3: The average cpu times required to find optimal solutions by MLCSP1-B&B

and the AMPL CPLEX 10.1 solver .. 53

Table 2.4: Percentage of times MLCSP1-B&B solves the problem at node 0 55

Table 3.1: Data for a counter example (1=ρ)... 63

Table 3.2: An optimal solution to the bin packing problem ... 63

Table 3.3: An optimal solution to the original problem.. 64

Table 4.1: Data for Example 4-1... 97

Table 4.2: Schedule for Example 4-1 obtained by applying the above procedure 97

Table 4.3: Data used in numerical experimentation for problem MLCSP3 112

Table 4.4: The experimental results for the solution of MLCSP3 when the lots have the

same ratio of processing times†... 113

Table 4.5: The experimental results for the solution of MLCSP3 when the lots have

different ratios of processing times† ... 113

Table 4.6: The experimental results for the solution of MLCSP3 when the lots have the

same ratio of processing times†... 115

Table 4.7: The experimental results for the solution of MLCSP3 when the lots have

different ratios of processing times† ... 115

Table 5.1: Data for Example 1.. 151

Table 5.2: Data for Example 2.. 151

Table 5.3: Data used in numerical experimentation .. 163

Table 5.4: The average cpu times required to find optimal solutions by Strong-B&B and

the AMPL CPLEX 10.1 solver for strong hybrid model with intrabay movements 164

Table 5.5: The average cpu times required to find optimal solutions by Strong-B&B and

the AMPL CPLEX 10.1 solver for strong hybrid model with interbay movements 165

Table 6.1: The most common RTD rules used in 300mm fabs 174

 xv

Table 6.2: The travel time ijt matrix ... 198

Table 6.3: Our recommended RTD rules and the RTD rules used in 300mm fabs........ 200

 1

Chapter 1: Introduction

1.1 Background and motivation

Semiconductor manufacturing is the process of creating integrated circuits (ICs), or chips,

that are used in a variety of electrical and electronic devices. The process starts from a

pure semiconductor material (the most commonly used material is silicon) and ends with

packaged chips ready for shipment to customers. It consists of four main stages: wafer

fabrication, wafer test, packaging and final test (see Figure 1.1). The manufacturing of

wafers in which a cylindrical ingot (high purity crystalline silicon) is sliced with an inner

diameter diamond coated blade and polished to form wafers, is usually done by a

specialized company and is considered outside of these four stages. Wafer fabrication

generally refers to the process of building integrated circuits on silicon wafers and is

performed in highly specialized facilities referred to as fabs. Wafer testing takes place in

between various processing steps and verifies if the wafers are good for acceptance or are

damaged from previous processing steps, and need repair or are to be disposed of. Next, a

wafer is broken into individual die and each undergoes requisite processes and becomes a

device which is able to perform the functions for which it is designed. This is the

packaging stage. Finally, the devices are subjected to a variety of electrical tests to

determine if they function properly. At the packaging and final test stages, the processing

units are individual die (chips), and not a wafer. Thus, wafer fabrication and wafer test

are usually referred to as front-end processing while packaging and final test are called

back-end processing (Plummer et al. 2000).

 2

Wafer
Fabrication

Wafer
Test

Final
Test

Packaging

Front End

Back End

Figure 1.1: The stages of semiconductor manufacturing

Of the four stages, wafer fabrication requires the longest time (usually 6 to 8 weeks), uses

the most resources, and is the most value-added stage. More importantly, wafer

fabrication has been called one of the most complex processes in the manufacturing

domain. A single product may contain as many as 1600 steps and a fab can produce as

many as 200 products. Machines differ widely from each other. Some are capable of only

serial processing, such as photolithography and etching, while others permit batch

processing, such as furnaces and ovens used in diffusion, oxidation and ion implantation.

Processing times can vary from 1 hour to 24 hours depending on the process involved,

and sequence-dependent setups are not unusual. Wafers are built in layers with each layer

undergoing sophisticated processing at multiple processors, like steppers. As these

machines are rather expensive (up to 30 million dollars), there are only a very limited

number of them in a fab. Therefore, wafer lots have to revisit these machines for the

processing of different layers. This gives rise to the characteristic re-entrant flow, with

wafers at different stages of processing having to compete for time on the same machine

(see Figure 1.2). Specific requirements for the lots, such as lot dedication to ensure that

all (or at least critical) layers of a lot are processed at the same stepper only add to the

complexity of the situation.

 3

Figure 1.2: A simplified 16-step production process with re-entrant flow in wafer fabrication

The capital expense for a wafer fab (most of which is for equipment) can be as high as 3

billion dollars. Furthermore, the equipment is, typically, replaced with newer generations

in 5~10 years. Thus, in order to gain profits from this huge investment, wafer fabs must

utilize the equipment as much as possible. On the other hand, the semiconductor industry

is also facing strong competition. Most of the players have identical abilities to undertake

research and development of new products (except for Intel, which has unmatched

advantage over its competitors (Wilson 2007)). Thus, to survive in the market, fabs must

be able to reduce manufacturing costs. The following three methods have been

implemented to reduce manufacturing costs in fabs.

(i) Achievement of economic of scale

When wafer size (the diameter of a wafer) increases, the number of dies or chips that are

built on the wafer increases dramatically. Thus, the number of chips produced increases

without using more wafers. Consequently, the cost per chip decreases. Semiconductor

manufacturers have been consistently experiencing this trend (see Figure 1.3)

(SEMATECH 2005). On the other hand, increment of wafer size also leads to increment

in investment on the equipment in the fab (see Figure 1.4) (SEMATECH 2005). This

further increases the pressure of reducing manufacturing cost. Thus, this method itself is

not enough to drive cost down.

Poly-etch Reox

Lot1-Dep

Photolithography

Implant
Etch

Metal-Dep

Lot2-Dep

 4

0

2

4

6

8

10

12

14

16

2002 2004 2006 2008 2010 2012 2014 2016 2018

Si
lic

on
 m

ar
ke

t (
bi

lli
on

s
do

lla
rs

)

150mm

200mm

300mm

450mm

TOTAL

0

2000

4000

6000

8000

10000

12000

1980 1985 1990 1995 2000 2005 2010 2015 2020

fa
b

co
st

 ($
M

illi
on

)

0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

Li
nd

w
id

th
(0

.0
01

m
m

)

fab cost linewidth

Figure 1.3: Market forecast by wafer size

Figure 1.4: Increasing cost of wafer fabs (SEMATECH 2005)

(ii) Applications of management science and operations research techniques

The application of industrial engineering/operation research techniques in wafer

fabrication started four decades ago, almost from the day the first fab in the world was

 5

Strategic Planning

Tactical Planning

Operational Planning

Shop Floor Scheduling
and Control

built. For the implementation of these techniques, a decision-making hierarchy is used,

which comprises of four levels: strategic planning, tactical planning, operational planning

and shop floor scheduling and control (see Figure 1.5). The strategic planning level

pertains to long term decision making (generally for 3-10 years). The types of decisions

that are considered at this level include selection of the location of a facility,

determination of the required capacity, selection of products and technology to use. The

tactical planning level addresses decisions over a shorter time horizon (generally from 6

months to 3 years). It includes determination of workforce levels, process routings and

production rates. The operational planning level covers decisions that are made for a

planning horizon of 1 week - 6 months. These include allocation of jobs to machines and

determination of lot sizes in which to process the jobs, overtime usage, and amount of

subcontracting/outsourcing. The lowest level, belonging to the shop floor operations,

mostly involves decisions pertaining to the scheduling and control of work over a period

that spans from real-time to one week. These also include determination of processing lot

sizes, lot release strategies, processing sequence as well as the dispatching of lots to the

machines (determination of starting times).

Figure 1.5: The decision making hierarchy in wafer fabs

 6

 (iii) Implementation of the Toyota Production System (TPS)

For more than 30 years, Toyota Motor Corporation has followed a production system that

has enabled it to increase quality, double capacity, produce a wider variety of models in a

given factory, and change the mix on a dime. In 2007, Toyota surpassed General Motors

Corporation in becoming the largest automobile manufacturer in the world. But more

importantly, Toyota’s approach to mass production has produced bountiful profits. It

became the first in the automobile history to gain profit over 10 billion dollars in one year.

The Toyota Production System (TPS) is so successful that it has been widely applied in

other industries, such as restaurant, aircraft manufacturing, banking and finance, among

others.

After working hard on methods (i) and (ii) described above, and having not succeeded as

expected, recently, scholars and executives found a glimmer of hope from the TPS.

Christensen et al. (2008) have reported their innovative work to emulate the TPS, and

have applied its principles to a logic fab belonging to an integrated device manufacturer

(IDM). The four principle rules of the TPS, in summary, are (1) highly specify activities,

(2) clearly define the transfer of material and information, (3) keep the pathway for every

product and service simple and direct, and (4) detect and solve problems where and when

they happen, using the scientific method (Spear and Bowen 1999). After 7 months, it is

reported that the company was able to reduce the manufacturing cost per wafer by 12

percent and the cycle time by 67 percent, without investing in new equipment or

changing product design.

It should be noted that there have not been many examples reported in the literature about

successful implementation of the TPS in fabs, especially memory fabs. Logic and

foundry fabs are high mix/high volume fabs, while a memory fab involves fewer products.

The system which works well in a logic fab may not be promising in a memory fab,

which is a low mix/high volume fab. However, we believe that the TPS will eventually

bring new economics to semiconductor manufacturing while, at the current stage, it has

just been a start.

 7

1.2 Scope of dissertation

In this dissertation, we focus on the scheduling problems arising from the 300mm wafer

fabs. Thus, it is a combination of methods (i) and (ii) (at the shop floor scheduling and

control level of the decision making hierarchy) to reduce the manufacturing costs

mentioned above. Two types of scheduling problems are addressed. The first of these is

the multiple-lots-per-carrier scheduling problem (MLCSP). Since a 300mm wafer is

much larger than a 200mm wafer, the size of a lot (a group of wafers processed in the fab

as a non-split entity) may be less than the capacity of a carrier K (K=25 wafers).

Therefore to reduce the number of carriers needed, which would save the cost of carriers,

and more importantly, reduce the number of movements undertaken by the Automated

Material Handling Systems (AMHS), one idea is to include more than one lot in a carrier,

thus leading to the MLCSP. It involves decisions pertaining to which lots to include in

the carrier as well as the sequence in which to process the carriers on the machines.

Depending on the processing technology employed, number of machines involved, and

the objective function used, the MLCSP can be further classified into four sub-problems:

single-machine MLCSP with single-wafer-processing-technology and the objective of

minimizing total completion time (MLCSP1), single-machine MLCSP with single-

carrier-processing-technology and the objective of minimizing total completion time

(MLCSP2), two-machine flow shop MLCSP with single-wafer-processing-technology

and the objective of minimizing makespan (MLCSP3), and two-machine flow shop

MLCSP with single-carrier-processing-technology and the objective of minimizing the

makespan (MLCSP4). MLCSP4 is equivalent to the bin packing problem, thus it is not

considered in this study. These four sub-problems are summarized in table 1.1.

 8

Table 1.1 Descriptions of the four sub-problems of the MLCSP

Category Number of
machines

Machine processing
technology

Performance
measure

Presented in
this study?

MLCSP1 1 Single wafer processing Total completion
time

Yes

MLCSP2 1 Single carrier processing Total completion
time

Yes

MLCSP3 2 Single wafer processing Makespan Yes

MLCSP4 2 Single carrier processing Makespan No

The second problem that we address is the integrated AMHS scheduling and lot

scheduling problem (IMHLSP). A 300mm fab is also a fully automated fab where the

AMHS is responsible for every movement of a lot from a machine to another machine or

to a temporary storage (see Figure 1.6). Manual carrying of a carrier is minimized. The

AMHS scheduling and lot scheduling is closely inter-related. Lot scheduling provides

delivery requests and impacts operational control of the AMHS. The AMHS scheduling,

especially vehicle scheduling, provides the release time for processing lots on

downstream machines. Therefore, a schedule determined by integrating AMHS delivery

issues and lot scheduling will perform better than that determined by considering these

two aspects independently from the view point of overall fab performance metrics, such

as cycle time, and throughput rate, among others. The IMHLSP can be further classified

into two sub-problems: IMHLSP with infinite vehicle capacity and IMHLSP with finite

vehicle capacity. If enough vehicles are operated in a 300mm fab, it can be viewed to

operate under infinite vehicle capacity. Otherwise, we have the case of finite vehicle

capacity. For both of these sub-problems, the decisions pertain to determining the

sequence in which to process the lots on the machines and the movements of vehicles

from one machine to another.

 9

Figure 1.6 A simplified AMHS layout

1.3 Research methodology

This study mainly focuses on the scheduling level of the hierarchical structure described

in Section 1.1. Therefore, we make the following two assumptions: (1) The fab planning

has been in place. That is, the numbers of tools, tool layout, number of products and the

desired fab throughput have all been determined. (2) The AMHS is at stable stage. This

means that the AMHS is running well and does not need significant changes. The AMHS

layout is not to be revised. The number of vehicles and vehicle routing are also known.

The scheduling problem in a 300mm fab is an extremely large-size problem. It involves

hundreds of machines, thousands of processing steps, and work-in-process (WIP) of the

order of tens of thousand of wafers. It is not realistic to study such a large-size problem as

a whole. Thus, in this study, we start with a small-size problem. This small-size problem

Intrabay
Interbay
Vehicle
Stocker
Etch
TF
TF (INSP)

LITHO

DIFF
IMP

INSP

 10

has one to two machines, and one to two vehicles. The advantage of focusing on the

small-size problem is that it would enable identification of inherent properties that could

potentially be exploited for the solution of large-size problems as well via the

development of optimum seeking methods or real-time dispatching (RTD) rules. The

graphical depiction of a wafer fab is shown in Figure 1.7. The fab, presented on the left,

is approximated in our study by a system consisting of one or two machines. The solution

methodology is depicted by blocks on the right side with their eventual implementation in

the entire fab.

Figure 1.7 Schematic of the research methodologies in this study

1.4 Research objectives

The primary objective of our work is to provide insights and effective solution

methodologies for the two types of new scheduling problems encountered in 300mm fabs,

namely, MLCSP and IMHLSP. These two problems are faced in real-life environments

and have drawn the attention of engineers and management teams. However, very few

results have been reported on these problems. Through this dissertation research, we

provide optimal or near-optimal solutions for these problems, which, at the same time,

are easy to implement in real-life fabs. On the other hand, through this pioneering work,

we hope to promote the interest of others as well to work further on these and related

problems.

Optimization Engine

Heuristic algorithms

Real time dispatching
(RTD) rules

 11

The specific objectives of our research work are as follows:

 To study the impact of including multiple lots in a carrier on the performance

measure of total completion time and makespan, where the lots are processed either

on a single machine or a two-machine flow shop, and the machines use either a

single-wafer-processing technology or single-carrier-processing technology, and to

develop efficient solution methodologies to determine an optimal formation of the

carriers and the sequence in which to process them.

 To obtain insights into the integration of AMHS scheduling and lot scheduling for

the cases with infinite and finite number of vehicles in the 300mm fabs, and to

develop effective methodologies for solving small-size problems as well as to

develop fast solution procedure for implementation in real-life fabs.

1.5 Organization of dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we discuss the

MLCSP1. After formulating the integer programming model, we present some structural

properties as well as an efficient branch-and-bound algorithm to solve this problem.

Chapter 3 addresses the MLCSP2. We determine a lower bound and upper bound for this

problem. The worst case analyses are also presented for both of these bounds. In Chapter

4, we address the MLCSP3, which is first transformed to a two-machine flow shop lot

streaming problem. After the lot streaming problem is solved optimally, heuristic

procedures are used to transform the solutions obtained to a feasible solution to the

original problem. We analyze the IMHLSP with infinite vehicle capacity in Chapter 5,

and propose a new AMHS operation model, namely, the Strong Hybrid model. A branch-

and-bound algorithm is presented to implement the Strong Hybrid model in a two-

machine environment. In Chapter 6, we determine a closed-form expression for small-

size IMHLSP for finite vehicle capacity, and recommend several real-time dispatching

rules for real-size problems that rely on our analysis of the problem. Finally, we conclude

this study in Chapter 7.

 12

Chapter 2: Minimizing Total Completion Time for Single Machine

MLCSP with Single-Wafer-Processing-Technology (MLCSP1)

2.1 Introduction

The latest generation of semiconductor wafer fabs produce Integrated Circuits (ICs) on

silicon wafers of 300 mm diameter. The area of a 300 mm wafer is 2.25 times larger than

that of an older generation 200mm wafer. Furthermore, 300mm wafers have over twice

the usable area of 200mm wafers (please see Figure 2.1), thereby delivering up to 2.6

times the number of chips produced on a 200mm wafer (United Microelectronics

Corporation 2008). This, in turn, requires use of fewer wafers to produce a certain

number of chips.

Figure 2.1: The usable area of a 300mm wafer is over twice that of a 200mm wafer

Generally, there are two types of wafer fabs, namely, high volume/low mix, and high

volume/high mix. Most of the memory-chip manufacturers belong to the first category,

and include manufacturers like Qimonda, Micron, Samsung, among others. A high

volume/low mix fab produces several products with 40k to 50k WSPM (Wafer Shipment

A 200mm wafer A 300mm wafer

 13

per Month). According to the ITRS (International Technology Roadmap for

Semiconductors) (2006), a high mix fab can be characterized as follows: presence of

more than 50 products with many in small lots of 1 – 10 wafers; and production of an

average of less than 50 wafers between reticle changes for each lithography equipment.

Examples of high volume/high mix fabs include ASIC (Application Specific Integration

Circuit) fabs like Analog Devices, and foundries like TSMC (Taiwan Semiconductor

Manufacturing Corporation).

The semiconductor industry has established an international standard to transfer wafers

between tools in a 300 mm wafer fab. Wafers are carried by a FOUP (Front-Opening

Unified Pod, Figure 2.2). This standard carrier has the capacity of 25 wafers. As noted

earlier, in a high volume/high mix fab, there are many lots of small size with less than 25

wafers in them. If a FOUP holds only one such lot, it has great ramifications on the

transactions and storage loading capabilities of the interbay and intrabay AMHS

(Automated Material Handling System) (more information about the AMHS used in a

300mm fab can be found in Chapter 5). Besides, it reduces output of a workstation (as a

result of more frequent loading/unloading operations performed).

Figure 2.2: A front-opening unified pod (FOUP)

One of the ways to address this issue and improve the output of a workstation of a high

volume/high mix fab is to use multiple-lots-per-carrier (ITRS 2006 and 300 mm

Integrated Vision for Semiconductor Factories 1999), as shown in Figure 2.3. This

strategy aims to minimize the problems described above by loading similar lots, with

potentially different processing conditions but with the same process flow, into one

carrier. There are two ways of mixing lots under this strategy. One way is to combine lots

with the same process flow, but with partially different processing conditions such as

 14

metallization layers or wiring patterns. The second way is to combine more than one lot

in a carrier, all of which have the same process flow, but some having additional process

steps as optional processes. For the first alternative, a process equipment must have the

capability to set different processing conditions (different recipes) for each lot or for a

subset of the wafers in a carrier. For the second alternative, the process equipment used in

the optional process step must have the capability to selectively process one or more

wafers in a particular carrier, and leave the other wafers in the carrier unprocessed.

Figure 2.3: Multiple-lots-per-carrier

For the high volume/low mix fabs, there is no advantage of mixing production lots in a

carrier. However, it is not uncommon to group engineering lots (i.e., new technology lots,

or test lots) in a carrier in such a fab (Fu 2007). This is mainly due to small sizes of

engineering lots (much less than 25 wafers, usually 1-3 wafers) as well as shorter

completion time requirements.

We consider two types of dependencies between lot processing time and carrier

processing time, namely, single-wafer-processing and single-carrier-processing. Single

wafer processing occurs on various tools, such as a photolithography stepper, in which a

single wafer is processed at-a-time. Thus, the processing time for a carrier depends on the

total number of wafers of the lots in the carrier. Under single carrier processing, the

carrier’s processing time is independent of the number of wafers it holds. An example of

single carrier processing is the operation of a wet sink, wherein the entire carrier (FOUP)

of wafers is processed simultaneously when the carrier is submerged in a liquid solution.

 15

Figure 2.4: Illustration of the MLCSP

To tackle the multiple-lots-per-carrier scheduling problem (designated MLCSP) that is

described above for the high volume/high mix fabs or for the special instances of the high

volume/low mix fabs, we define it precisely as follows: given a number of partial lots,

group them into a given or unrestricted number of carriers, and find a sequence in which

to process the carriers on a machine in order to minimize a performance measure such as

makespan or total completion time of the lots. The MLCSP is different from traditional

scheduling problem in that it requires two types of decisions, namely, carrier formation

and carrier sequencing. The formation of carriers from lots, and their sequence for

processing by a machine (or a workstation) is depicted in Figure 2.4.

lots carriers schedule
Carrier formation Carrier scheduling

Lot 1

Lot 2

Lot 3

Lot 5

Lot 4

Lot 6

Carrier 1

Carrier 2

Carrier 3

Carrier 4

Carrier 3

Carrier 4

Carrier 1

Carrier 2

 16

In this chapter, we address the single-machine MLCSP with single-wafer-processing, and

designate it as MLCSP1. The performance measure that is considered is the total

completion time of the lots. The single machine MLCSP with single-carrier-processing

and for the objective of minimizing the total completion time, designated as MLCSP2,

will be presented in Chapter 3, while the two-machine MLCSP with single-wafer-

processing for the objective of minimizing the makespan, designated as MLCSP3, will be

discussed in Chapter 4.

The rest of this chapter is organized as follows. In Section 2.2, we present the research

work from the literature that is related to the MLCSP. We, then, formulate an integer

programming model for this problem in Section 2.3. By relaxing the capacity of the

FOUP, we first derive some useful properties. These properties are used to determine

optimal solution for the case of same-size lots. For the case of different lot sizes, we

propose a dynamic programming-based algorithm to obtain an optimal solution. This

work is presented in Section 2.4. In the presence of limited FOUP capacity (i.e., the

original problem), when all the lots are of the same size, the optimal solution for the case

when the FOUP capacity is relaxed, is also optimal for this case. When the lots of

different sizes are considered, the problem becomes difficult to solve, and we develop a

branch-and-bound algorithm for its solution. It relies on a lower bound found by using

the DP-algorithm presented in Section 2.4. This work is presented in Section 2.5. Results

of our computational experimentation on the use of the proposed branch-and-bound

method for the solution of our problem are presented in Section 2.6. In Section 2.7, we

explore determination of optimal total cost if the number of carriers is not given. Finally,

we conclude this chapter in Section 2.8.

2.2 Literature review

The semiconductor industry has transited from a 200 mm fab to a 300 mm fab. As a

result, there are many new scheduling problems related to the 300 mm fabs that are still

open. To the best of our knowledge, there has not been any study conducted on the

MLCSP problem. However, a similar problem, called multiple-orders-per-job (MOJ)

 17

problem, has been addressed in the context of a 300 mm fab by several researchers. Also,

the traditional batching and scheduling problem, which has been addressed extensively in

the literature, is related to the MLCSP. In addition, the carrier formation part of the

MLCSP problem is similar to the bin packing problem. We, briefly, review work on these

problems next.

2.2.1 Multiple-Order-per-Job (MOJ) problem

The Multiple-Order-per-Job (MOJ) problem has been addressed by Qu (2004). He

developed a nonlinear integer programming model for the general MOJ problem, which

was then reformulated as a linear integer programming (IP) model for the objective of

minimizing the total weighted tardiness in a single-machine environment. A number of

heuristic approaches, including genetic algorithm (GA) and tabu search (TS), were

employed due to computational intractability of the IP model. He has presented

experimental results, which demonstrate that their heuristic approaches can find good

quality solutions in a reasonable amount of computational time. Similar results can be

found in Qu and Mason (2004a, 2004b and 2005), and Kutanoglu et al. (2004).

In a follow-up work, Erramilli and Mason (2006) investigated the MOJ problem in a

single batch-processing machine environment. The objective of their study was to

minimize the total weighted tardiness of orders. They developed a mixed integer

programming model for the problem. A new simulated annealing-based heuristic is used,

which is demonstrated to solve the problem within 4% of optimality in a few minutes.

Laub et al. (2007) have extended the MOJ problem to a two-machine flow shop. A

heuristic procedure was proposed to minimize the makespan. First, the heuristic

procedure relaxes the constraint that the entire order can only be assigned to one job. The

relaxed problem becomes a two-machine lot streaming problem, which can be solved

easily. The optimal solution to the lot streaming problem is a lower bound for the original

problem. Using the heuristic procedure, the orders are re-assigned to the jobs so that one

 18

entire order is assigned to only one job. It has been shown that this heuristic procedure

obtains solutions within 2% of the lower bound.

It should be noted that even in a foundry fab, it cannot be guaranteed that all or a large

percent of customer orders will be less than 25 wafers. When a customer order is larger

than 25 wafers, we can not simply separate it into two parts: the splinters (leftover items

after an order is divided by 25) and the entire carriers (consisting of 25 wafers), and then,

schedule them separately, with the splinters possibly grouped with other splinters. Thus,

the MOJ problem actually addresses a scenario which may have limited realistic

applications.

The MOJ problem also assumes that all the orders require the same processing times.

However, for the MLCSP, lots in the same carrier may require different processing

conditions (and as a result different processing times) as described in section 2.1 and

studied in Chapter 4. Thus, even though the MLCSP is different from the MOJ problem,

yet the MOJ problem can provide useful insights for our study of the MLCSP.

2.2.2 Batching and scheduling problem

Another type of problem which is related to the MLCSP is batching and scheduling

problem. The motivation for batching the jobs is to gain efficiency because it may be

cheaper or faster to process the jobs in a batch than to process them individually. In a

family scheduling model, jobs are partitioned into families according to their similarity so

that no setup is required for a job if it belongs to the family of the previously processed

jobs (see Potts and Kovalyov (2000), and Webster and Baker (1995)). In this model, a

batch is a maximal set of jobs that are scheduled contiguously on a machine and share a

setup.

There are two variants of the family scheduling model depending on when the jobs

become available (either for dispatching to a customer or for processing on the next

machine). Under batch availability, a job becomes available only when the complete

 19

batch to which it belongs has been processed. An alternative assumption is job

availability (i.e., item availability), in which a job becomes available immediately after

its processing is completed.

Another batching situation is when a batching machine is capable of processing several

jobs simultaneously. This is called batch processing model. Our MLCSP is similar to

batch processing model. However, it differs in the following three ways:

(1) the capacity of a batching machine is the maximum number of jobs that can be

processed at any one time while the capacity of a carrier is the maximum number of

wafers (not lots) the carrier can hold

(2) in a batching machine, each job occupies the same capacity while in MLCSP, each lot

will have different lot sizes

(3) in a batching machine, the processing time of the batch is fixed and is independent of

the number of jobs in the batch. This is called a fixed batch processor. For any regular

performance measure, it is desirable to use batches of the maximum possible size for

as long as possible. Such a schedule is called a full-batch schedule. A more

complicated version is that in which the processing time of a batch is the longest

among the processing times of the jobs in the batch. For MLCSP, the carrier

processing time is either a fixed amount (single-carrier-processing) or is the sum of

the processing times of the wafers in the carrier (single-wafer-processing).

In the literature, one special type of batch processing model, in which jobs have non-

identical sizes and no setup required in the context of a single machine environment, has

been studied. When makespan is considered, Damodaran et al. (2006) have proposed a

genetic algorithm for this problem, and have applied it to a set of randomly generated

instances. The results obtained using their algorithm were compared with those obtained

using a simulated annealing approach of Melouk et al. (2004) and a commercial solver.

The results indicate that the proposed algorithm is able to arrive at near-optimal

makespan values with shorter run times than those for the other approaches.

 20

For this same type of batch processing model, when the total completion time or mean

flow times are considered, Uzsoy (1994) has presented a branch-and-bound procedure.

However, the computational burden of this algorithm rapidly becomes excessive.

Azizoglu and Webster (2000 and 2001) have proposed a branch-and-bound algorithm to

minimize the total weighted completion time. This algorithm has been shown to generate

optimal solutions to problems of up to 25 jobs in reasonable cpu times. Using results

from the bin-packing problems, Uzsoy (1994) and Ghazvini and Dupont (1998) have

suggested a number of heuristics for these problems. Computational experiments show

that they are capable of rapidly obtaining near-optimal solutions. When incompatible job

families are considered, Dobson and Nambimadom (2001) have presented an integer

programming formulation, and have used it to generate a lower bound using a partial LP

relaxation. Several heuristics have also been compared and analyzed in detail.

Besides the MOJ problem, batching and scheduling problem is another type of problem

that is relevant to the MLCSP. Though they are different in several ways, the

methodologies commonly used to analyze the batching and scheduling problem, such as

branch-and-bound algorithm and dynamic programming (DP), can be adopted to our

research.

2.2.3 Bin packing (BP) problem

The bin packing (BP) problem can be stated as follows: given a positive integer number

of bins of capacity W and a list of n items of integer sizes },...,,{ 21 nlllL = (Wli ≤≤0),

assign the items to the bins so that the capacity of the bins is not exceeded and the

number of bins used is minimized.

The bin-packing problem belongs to the class of NP-hard problems (Garey and Johnson

1979), and it is not likely that a polynomial time algorithm can be found to solve this

problem optimally. Coffman et al (1996) have provided an excellent survey of the

methods used for this problem. Three commonly used methods are as follows:

 21

(1) Exact method: Martello and Toth (1990) have proposed a branch-and-bound

procedure Martello and Toth Procedure (MTP) which has become a basic reference

for use in most comparative studies. Scholl et al. (1997) proposed another exact

method BISON (bin packing solution procedure) which makes use of several bounds,

reduction procedures, heuristics, and a branch-and-bound procedure using a new

branching scheme. Later, Schwerin and Wascher (1999) showed that the MTP

provides significantly better results by using the bound derived from the cutting stock

problem. Valerio de Carvalho (1999) presented an exact algorithm based on column

generation and branch-and-bound. Vanderbeck (1999) proposed yet another column

generation-based exact algorithm for the cutting stock problem and has shown its

effectiveness for some classes of bin packing problem instances.

(2) Heuristics: Simchi-Levi (1994) has shown that the first-fit decreasing (FFD) and the

best-fit decreasing (BFD) heuristics have an absolute performance ratio of 1.5, and

that this value is the best possible for the bin-packing problem.

(3) Metaheuristics: Hubscher and Glover (1994) have proposed a tabu search with

influential diversification algorithm for bin packing problem, while, Falkenauer (1996)

has described a hybrid grouping genetic algorithm (HGGA) for this problem.

As described in Section 2.1, the bin packing problem is a part of the MLCSP problem for

carrier formation. The presence of the bin packing problem within the context of the

MLCSP makes it a more difficult problem to address; and it is thus more amenable for

the use of a heuristic for its solution.

2.3 Model formulation and development of some structural properties

We make the following assumptions. Processing time per wafer is identical for different

lots, which means that all the lots belong to the same product type. Setup time is

negligible in comparison to the processing time. The objective function is to minimize the

 22

total completion time for lots, i.e., the average cycle time, which is a critical performance

measure for any manufacturing system, and especially for a semiconductor manufacturer.

Parameters:

N: total number of lots

L: total number of carriers available to be formed, obviously NL <

is : size for lot i (i.e., number of wafers), i =1, …, N

iw : weight for lot i, i =1, …, N

K: FOUP carrier capacity (usually, K= 25 wafers)

ρ : processing time per wafer at the machine

iC : completion time for lot i, i =1, …, N

kF : completion time for carrier k, k=1, ..., L

kn : number of lots in carrier k, k =1, …, L

kJ : set of lots forming carrier k, k=1, …, L

H : a big positive number

O : set of all lots available to be scheduled

P : set of already scheduled lots, OP ⊆

PN : number of lots belonging to P

PL : number of carriers formed by P

1θ : cost per time unit of completion time

2θ : cost per carrier for transportation

Decision Variables:

⎩
⎨
⎧

=
,0
,1

ikX

if lot i is assigned to carrier k, i=1,…, N, k=1, …, L
otherwise.

 23

⎩
⎨
⎧

=
,0
,1

kY

We can formulate a mathematical model for MLCSP1 as follows.

Model MLCSP1

Minimize ∑
=

N

i
iC

1

Subject to

∑
=

=
L

k
ikX

1
1, i∀ =1, …, N (2.1)

∑
=

≤
N

i
iik KsX

1

)*(, k∀ =1, …, L (2.2)

∑∑
==

=
N

i
iil

k

l
k sXF

11
)*(ρ , k=1, 2, …, L (2.3)

)1(ikki XHFC −−≥ , i∀ =1, …, N, k=1, …, L (2.4)

 (We can let H equal to the maximum possible mackespan value, i.e., ρ∑
=

=
N

i
isH

1

)

ikX binary, iC , kF 0≥ , i∀ =1, …, N, k=1, …, L (2.5)

Constraint set (2.1) assigns each lot to one carrier only, and constraint set (2.2) makes

sure that FOUP capacity K is not violated. For single-wafer-processing-technology, the

processing time of a carrier is determined by the sum of the processing times of the lots

contained in it, and all the lots contained in it have the same completion time. These are

enforced by Constraint sets (2.3) and (2.4), respectively. Note that each carrier is

identical to each other. Thus in the model, we can use arbitrary sequence of carriers, 1,

if carrier k is not empty,
otherwise.

 24

l

k

a

k-1

2, …, L. The decision variable ikX automatically enforces the best carrier formation and

sequencing.

Model MLCSP1 is an integer programming model involving a large number H. As such,

it is not computationally efficient to solve this model directly. Next, we develop some

structural properties that afford an effective and efficient methodology for the solution of

the MLCSP1.

Proposition 2.1: In the optimal solution for MLCSP1, each carrier contains at least one

lot.

Figure 2.5: Schedule S’ with insertion of carrier l in front of carrier k

Proof: This can be proved by contradiction. Suppose in the optimal schedule S, there is

one empty carrier l. Thus, there is at least one carrier containing more than one lot since

NL ≤ . Without loss of generality, we construct another schedule S ′ by inserting the

empty carrier l in front of carrier k, which has more than one lot (see Figure 2.5). Remove

one lot, a, from carrier k and put it in carrier l. Since this change does not affect the

completion times of the lots in other carriers except for those in l and k, we will only need

to consider the change in the sum of the completion times for the lots in carriers l and k.

Let 1−kF represent completion time of carrier k-1. The sum of the completion times of the

lots in S,

 25

∑
∈

−+=
kJi

kik Fsnklsum)(*),(1 1ρ .

While for S ′ , the sum of the completion times of the lots,

)(*)1()(),(2
\

11 ∑
∈

−− ++−++=
aJi

ikakka
k

sFsnFsklsum ρρρ .

Note that 0),(2),(1
\

>=− ∑
∈ aJi

i
k

sklsumklsum ρ , which contradicts the fact that S is

optimal. ◘

Corollary 2.1: A lower bound (LB) on the total completion time can be obtained by

using N carriers, i.e., with each carrier containing exactly one lot.

It is known that the shortest processing time first (SPT) rule minimizes the total

completion time for single machine. We can, thus, arrange the lots by non-decreasing

order of their sizes, and re-index them by j=1, 2, …, N. The lower bound can, thus, be

calculated as

ρ∑
=

+−=
N

j
jsjNLB

1

*)1(.

From Proposition 2.1, we can pictorially represent the relationship between the number of

carriers used and the resulting total completion time (see Figure 2.6). However, note that

the transportation task for the AMHS increases with an increment in the number of

carriers. Therefore, usually, the number of carriers to be configured, L, is given,

and NL < . Such a L can be determined by using historical Manufacturing Execution

System (MES) data in the fab.

 26

Figure 2.6: The relationship between the number of carriers and total completion time

Proposition 2.2: The MLCSP1 problem is NP-hard.

Proof: We can reformulate the mathematical model as

Minimize))*(*(
1 1 11
∑∑ ∑∑
= = ==

N

i

L

k

N

i
iil

k

l
ik sXX ρ

Subject to

∑
=

=
L

k
ikX

1

1 i∀ =1, 2, …, N (2.6)

∑
=

≤
N

i
iik KsX

1

)*(k∀ =1, 2, …, L (2.7)

Note that it is a quadratic generalized assignment problem (GAP), and a quadratic

assignment problem is known to be a NP-hard problem (Fisher et al. 1986). ◘

∑ iC

L
NZero

 27

Proposition 2.3: In an optimal solution, the carriers appear in non-decreasing order of the

ratios of the total time required to process the wafers contained in a carrier and the

number of lots in the corresponding carrier, i.e.,
j

Ji
i

n

s
j

∑
∈

ρ
.

Proof: By definition, ∑ ∑
=

=
L

j
jji FnC

1

)*(. For each carrier j, we have completion time

of jF , processing time of ρ∑
∈ jJi

is and “weight” of jn . The result follows by the fact that

the shortest weighted processing time (SWPT) sequence minimizes the total weighted

completion time for a single machine (see Pinedo 2005). ◘

In accordance with Proposition 2.3, once each carrier has been configured, the optimal

sequence of these carriers can be determined easily.

Note that, in accordance with Proposition 2.1, the lots are spread over all L carriers in an

optimal solution. Therefore, in an optimal solution obtained by relaxing FOUP capacity,

FOUP capacity (i.e., 25 wafers) will not likely be violated severely. Thus, if the optimal

solution obtained for the FOUP capacity-relaxed problem is not optimal, it provides a

good lower bound for the original (i.e., FOUP capacitated) MLCSP problem.

2.4 A problem with infinite FOUP capacity

2.4.1 Some structural properties

Proposition 2.4: In an optimal solution, jJjiJi
ss

nm ∈∈
≤ minmax , where carrier m immediately

preceds carrier n.

 28

Carrier m Carrier n

lot b

lot a

Proof: Suppose in an optimal schedule S, carrier m immediately precedes carrier n, and

there exist two lots a and b, mJa∈ , nJb∈ , such that ba ss > . Since the carriers have

unlimited capacities, we can exchange lots a and b (see Figure 2.7). Call this schedule S ′ .

We want to show S ′ to be better than S, which would contradict the fact that S is optimal.

Since a switch of these two lots does not affect the completion times of other carriers, we

only need to consider the sum of completion times for lots in carriers m and n. Let lF be

the completion time of carrier l, which immediately precedes carrier m in the optimal

solution.

Before the switch,

).()(

)()(),(1

∑ ∑∑

∑ ∑∑

∈ ∈
∉
∈

∈ ∈∈

+++++=

++++=

m nm

m nm

Ji Jj
jiln

ai
Ji

ailm

Ji Jj
jil

Ji
nilm

ssFnssFn

ssFnsFnnmsum

ρρρρ

ρρρ

After the switch,

).()(

)()(),(2

∑ ∑∑

∑ ∑∑

∈ ∈
∉
∈

∉
∈

∉
∈

∉
∈

+++++=

+++++++=

m nm

m nm

Ji Jj
jiln

ai
Ji

bilm

a

ai
Ji

bj
Jj

jbil

ai
Ji

nbilm

ssFnssFn

ssssFnssFnnmsum

ρρρρ

ρρρρρρ

We have, 0(),(2),(1) >−=− bam ssnnmsumnmsum ρ . Thus, S ′ is strictly better than S. ◘

Figure 2.7: A switch of lot a and lot b between carriers m and n

 29

Corollary 2.2: In an optimal solution, starting from the first carrier, the lots appear in the

carriers in the non-decreasing order of their sizes.

Proposition 2.5: In an optimal solution, 1+≤
∑
∈

m
b

Jj
j

n
s

s
n for a lot nJb∈ , where carrier m

immediately precedes carrier n.

Proof: Assume the contrary; that is, in an optimal schedule, S, with two consecutive

carriers m and n, m preceding n, 1+>
∑
∈

m
b

Jj
j

n
s

s
n for a lot nJb∈ . Since FOUP has

unlimited capacity, construct another schedule S ′ by removing lot b from carrier n and

including it in carrier m (see Figure 2.8). Again, lF is defined as before, and we consider

the net change in completion times of carriers m and n only as those of the others are

unaffected.

Before the change, we have

).()(

)()(),(1

b
Ji

bj
Jj

jiln
Ji

ilm

Ji Jj
jil

Ji
nilm

sssFnsFn

ssFnsFnnmsum

m nm

m nm

ρρρρ

ρρρ

+++++=

++++=

∑ ∑∑

∑ ∑∑

∈
≠
∈∈

∈ ∈∈

After the change, we have

).(

)()()(

)()1())(1(),(2

∑ ∑

∑ ∑∑∑

∑ ∑∑

∈ ∈

∈ ∈∈∈

∈
∉
∈∈

++−

++++++++=

+++−++++=

m n

m nmm

m nm

Ji Jj
jil

Ji Jj
jilnb

Ji
ilbm

Ji
ilm

Ji
bj
Jj

jbil
Ji

nbilm

ssF

ssFnssFsnsFn

sssFnssFnnmsum

ρρ

ρρρρρρ

ρρρρρ

 30

Carrier m Carrier n

lot b

Moreover,

,0)1(

)()(),(2),(1

>++−=

+++−+−−=−

∑

∑∑∑

∈

∈∈∈

n

nmm

Jj
jbm

Jj
j

Ji
ilb

Ji
ilbm

ssn

ssFssFsnnmsumnmsum

ρρ

ρρρρρ

implying a contradiction. ◘

Figure2.8: Schedule S’ with lot b removed from carrier n and included in carrier m

Corollary 2.3 For two consecutive carriers m and n, in an optimal solution, where carrier

m precedes n, , the following relationship holds: 1+≤ mn nn .

Proof: It follows from Proposition 2.5, and the fact that

n

n

Jj
j

Jj
j

n s

s
n

∈

∈
∑

≤
min

. ◘

Note that the only situation under which

n

n

Jj
j

Jj
j

n s

s
n

∈

∈
∑

=
min

 would hold is when all the lots in

carrier n are of the same size.

 31

Proposition 2.6

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

+−

+−−
−−

=
∑
−

=

)1(
2

)1)(()(
1

1
min mL

mLmLnN
n

m

i
i

m , for m=1,…, L-1.

Proof: Based on the fact that nm nn ≥+1 , with carrier m immediately preceding carrier n,

the minimum mn value is achieved when 11 +=+ kk nn , k=m, m+1, …N-1. Thus, the total

number of lots after carrier m, including carrier m is

2
)1)(()1())((minmin

+−−
++−=−+= ∑∑

==

mLmLmLnminn m

L

mi
m

L

mi
i .

Since NmLmLmLnn m

m

i
i =

+−−
++−+∑

−

= 2
)1)(()1(min

1

1

, we have

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

+−

+−−
−−

=
∑
−

=

)1(
2

)1)(()(
1

1
min mL

mLmLnN
n

m

i
i

m as minmn can only be integer. ◘

Proposition 2.7: In an optimal solution, 1−≥
∑
∈

m
a

Jj
j

n
s

s
n for a lot mJa∈ and for two

consecutive carriers m and n, with m preceding n.

Proof: Assume the contrary; that is, in an optimal solution S, two consecutive carriers m

and n, with m preceding n, 1−<
∑
∈

m
a

Jj
j

n
s

s
n for a lot mJa∈ . Since the FOUP capacity is

relaxed, construct another schedule S ′ , by removing lot a from carrier m and including it

in carrier n (see Figure 2.9). Before the change, we have

 32

Carrier m Carrier n

lot a

).()(

)()(),(1

∑ ∑∑

∑ ∑∑

∈ ∈
≠
∈

∈ ∈∈

+++++=

++++=

m nm

m nm

Ji Jj
jiln

ai
Ji

ailm

Ji Jj
jil

Ji
nilm

ssFnssFn

ssFnsFnnmsum

ρρρρ

ρρρ

After the change, we have

).()()()(

)()1())(1(),(2

∑ ∑∑ ∑∑∑

∑ ∑∑

∈ ∈∈ ∈
≠
∈

≠
∈

≠
∈ ∈

≠
∈

+++++++−+=

++++++−=

m nm nmm

m nm

Ji Jj
jil

Ji Jj
jiln

ai
Ji

il

ai
Ji

ilm

ai
Ji Jj

ajil

ai
Ji

nilm

ssFssFnsFsFn

sssFnsFnnmsum

ρρρρρρ

ρρρρ

Consequently,

,0)1(

)()(),(2),(1

>−−=

+++−++=−

∑

∑∑∑

∈

∈
≠
∈

≠
∈

n

nmm

Jj
jam

Jj
ja

ai
Ji

il

ai
Ji

ilam

ssn

sssFsFsnnmsumnmsum

ρρ

ρρυρρρ

implying contradiction. ◘

Figure 2.9: Schedule S’ with a lot a removed from carrier m and included in carrier n

 33

Corollary 2.4: If all the lots are of the same size, then 1−≥ mn nn .

Proof: For a lot mJi∈ , 1−≥=
∑
∈

mn
i

Jj
j

nn
s

s
n by Proposition 2.7. ◘

Proposition 2.8: In an optimal solution, 1
1

1

1

1

++≤

+

∑
∑∑∑

−

+=

∈

−

+=∈ n

mk
km

b

Ji
i

n

mkJj
j

nn
s

ss
kn

 for a

lot nJb∈ , where the carriers are sequenced in the order m, m+1, m+2, …, n-2, n-1, n.

Proof: Assume the contrary; that is, in an optimal solution S,

1
1

1

1

1

++>

+

∑
∑∑∑

−

+=

∈

−

+=∈ n

mk
km

b

Ji
i

n

mkJj
j

nn
s

ss
kn

 for a lot nJb∈ . Construct another schedule S ′ by

removing a lot b from carrier n and including it in carrier m (see Figure 2.10). Before the

change, we have

).(

)()()~(1

1

1

1

1

1

∑ ∑∑∑

∑ ∑∑∑∑

∈ ∈∈

−

+=

∈ ∈+=∈

−

+=

++++

++++=

m nk

m lm

Ji Jj
ji

Ji
i

n

mk
ln

Ji Ji
i

k

mlJi
i

n

mk
lkilm

sssFn

ssFnsFnnmsum

ρρρ

ρρρ

After the change, we have

).)(1(

)())(1()~(2

1

1

1

1

1

∑ ∑∑∑

∑∑∑∑∑

∈
∉
∈∈

−

+=

∈+=∈

−

+=∈

++++−+

+++++++=

m nk

lkmm

Ji
bj
Jj

jb
Ji

i

n

mk
iln

Ji
i

k

ml
b

Ji
i

n

mk
lk

Ji
bilm

ssssFn

sssFnssFnnmsum

ρρρρ

ρρρρρρ

Consequently,

 34

Carrier m Carrier n

lot b

Carrier m+1 Carrier n-1

,0)1(

)()()~(2)~(1

1

1

1

1

1

1

1

1

>++++−=

++

++−++−−=−

∑∑∑∑

∑∑∑

∑∑∑

∈∈

−

+=

−

+=

∈∈

−

+=

∈

−

+=∈

nk

nk

mm

Jj
j

Ji
i

n

mk
b

n

mk
km

Jj

j

Ji
i

n

mk

Ji
il

n

mk
bkb

Ji
ilbm

sssnn

s
s

sFsnssFsnnmsumnmsum

ρρρ

ρρ

ρρρρρ

implying a contradiction. ◘

Figure2.10: Schedule S’ with lot b removed from carrier n and included in carrier m

Corollary 2.5: If all the lots are of the same size, then 1+≤ mn nn , where carrier m

precedes carrier n.

Proof: It is based on the fact that 1
1

1

1

1

1

1

++≤+=

+

∑∑
∑∑∑

−

+=

−

+=

∈

−

+=∈ n

mk
km

n

mk
kn

b

Ji
i

n

mkJj
j

nnnn
s

ss
kn

 for a

lot nJb∈ . ◘

Note that this result is different from Corollary 2.3 since m and n need not be adjacent.

 35

Proposition 2.9: In an optimal solution, 1
1

1

1

1

−+≥

+

∑
∑∑∑

−

+=

∈

−

+=∈ n

mk
km

a

Ji
i

n

mkJj
j

nn
s

ss
kn

 for a

lot mJa∈ where the carriers are sequenced in the order m, m+1, m+2, …, n-2, n-1, n.

Proof: Assume the contrary; that is, in an optimal solution,

1
1

1

1

1

−+<

+

∑
∑∑∑

−

+=

∈

−

+=∈ n

mk
km

a

Ji
i

n

mkJj
j

nn
s

ss
kn

 for a lot mJa∈ . Construct another schedule S ′ , by

removing lot a from carrier m and including it in carrier n (see Figure 2.11). Before the

change, we have

).(

)()()~(1

1

1

1

1

1

∑ ∑∑∑

∑ ∑∑∑∑

∈ ∈∈

−

+=

∈ ∈+=∈

−

+=

++++

++++=

m nk

m lm

Ji Jj
ji

Ji
i

n

mk
l

Ji Ji
i

k

mlJi
i

n

mk
lkilm

sssF

ssFnsFnnmsum

ρρρ

ρρρ

After the change, we have

.))(1(

)())(1()~(2

1

1

1

1

1

ρρρρρ

ρρρρρ

∑ ∑∑∑

∑∑∑∑∑

∈
∉
∈∈

−

+=

∈+=∈

−

+=∈

++++++

+−++−+−=

m nk

lmm

Ji
aj
Jj

ja
Ji

i

n

mk
iln

Ji
i

k

ml
a

Ji
i

n

mk
lk

Ji
ailm

ssssFn

sssFnssFnnmsum

Consequently,

 36

Carrier m Carrier n

lot a

Carrier m+1 Carrier n-1

,0)()1(

)(

)()~(2)~(1

1

1

1

1

1

1

1

1

>+−+−=

++++

−++−+=−

∑∑∑∑

∑ ∑∑∑

∑∑

∈

−

+=∈

−

+=

∈
∉
∈∈

−

+=

−

+=∈

ρρ

ρρρρ

ρρρρ

kn

m nk

m

Ji
i

n

mkJj
ja

n

mk
km

Ji
aj
Jj

ja
Ji

i

n

mk
il

n

mk
akama

Ji
il

sssnn

ssssF

snsnssFnmsumnmsum

implying a contradiction. ◘

Figure 2.11: Schedule S’ with a lot a removed from carrier m and included in carrier n

Corollary 2.6: If all the lots are of the same size, 1−≥ mn nn , with carrier m preceding

carrier n.

Proof: Note that for a lot mJa∈ , we have

.1
1

1

1

1

1

1

−+≥+=

+

∑∑
∑∑∑

−

+=

−

+=

∈

−

+=∈ n

mk
km

n

mk
kn

a

Ji
i

n

mkJj
j

nnnn
s

ss
kn

2.4.2 Optimal solution for the lots of the same size

Proposition 2.10: If all the lots are of the same size, then, in an optimal solution, there

are only at most two possible values of 1n . Furthermore, if 1n is fixed, then there are only

at most two common possible values of in , for all i=2, …, L.

 37

Proof: From Corollaries 2.5 and 2.6, we have 11 +≤≤− mnm nnn , ∀m=1, 2, …..L-1, n

=2, 3, ….L, with m preceding n. For first carrier, we have

NnLn =−−+)1)(1(max1max1 , and

NnLn =+−+)1)(1(min1min1 .

This results in
L
LNn

L
LN 11

1
−+

≤≤
+− . Since 22211

<
−

=
+−

−
−+

L
L

L
LN

L
LN , and

1n is integer, there can be at most two values that 1n can take, i.e, 11
min1 −⎥⎥

⎤
⎢⎢
⎡ +

=
L

Nn and

11
max1 +⎥⎥

⎤
⎢⎢
⎡ −

=
L

Nn .

Based on Corollary 2.5 and 2.6, if max11 nn = , in can only take at most two possible

values 1nni = or 11 −= nni ; if min11 nn = , in can only take at most two possible

values 1nni = or 11 += nni . ◘

The distribution of the number of lots for each carrier is shown in Figure 2.12.

Figure 2.12: The distribution of the number of lots in each carrier

max1n

n2 n3

min1n

nL

 38

Corollary 2.7: If all the lots are of the same size and
L
N is integer, then, in the optimal

solution,
L
Nnm = , m =1, 2, …, L.

Proof: Suppose the contrary, that is, there is one carrier i,
L
Nni ≠ . Without loss of

generality, let
L
Nni < . Since N is constant, there must be at least one carrier j,

L
Nn j > .

Since
L
N is integer, 2≥− ij nn . Thus, the condition from Corollaries 2.5 and 2.6,

11 +≤≤− mnm nnn , ∀m=1, 2, …, L-1, n =2, 3, …, L, with m preceding n, is violated,

implying a contradiction. ◘

Proposition 2.11: If all the lots are of the same size, then, in , i∀ =1,…, L, can take any

of the two possible values without impacting the total completion time provided

Nn
L

i
i =∑

=1
.

Proof: As all the lots must be allocated, if we reduce the number of lots in carrier i from

in to 1−in , then there must be a carrier j for which the number of lots is increased from

jn to 1+jn (see Figure 2.13).

Figure 2.13: Illustration of the impact due to a change in carrier size

Clearly, this change only affects the completion times of the carriers between i and j. The

total completion time between carriers i to j, before the change,

n1

n2 n3

n1-1

nk nL ni nj

 39

∑∑ ∑
=

−

−

+= =
−−>− +++++=

j

il
jli

j

ik

k

il
kliiiiji nsnFnsnFnsnFC)()()(1

1

1
11 ρρρ .

After the change, the total completion time,

).1)()1((

])1([)1]()1([

1

1

1
11

'

++−++

−++−−+=

∑

∑ ∑

=
−

−

+= =
−−>−

j

il
jli

j

ik

k

il
kliiiiji

nssnF

nsnFnsnFC

ρρ

ρρ

Consequently,

.0)21()(2' =−++=++−=− >−>− ρρρρρ snnnsnsnsnsCC ijijiijiji

Thus, the total completion time is not affected if the number of lots, in in a carrier i, is

reduced by one, and jn in another carrier j is increased by one. This is true for any two

carriers i and j. ◘

Proposition 2.12: If all the lots are of the same size, any solution that

satisfies 11 +≤≤− mnm nnn , ∀m=1, 2, …, L-1, n =2, 3, …, L, with m preceding n, is the

optimal solution.

Proof: Based on Corollaries 2.5 and 2.6, we have 11 +≤≤− mnm nnn , ∀m=1, 2, …, L-1,

n =2, 3, …, L, with m preceding n. From Proposition 2.11, it follows that any schedule

that satisfies this condition has the same total completion time. Thus, this condition will

lead to optimal solutions. ◘

One of the optimal solutions if all of the lots are of the same size, is ⎥⎥
⎤

⎢⎢
⎡=

L
Nnk for carrier

k =1, …, ⎥⎦
⎥

⎢⎣
⎢−

L
NLN , and ⎥⎦

⎥
⎢⎣
⎢=

L
Nnk for carrier k= 1+⎥⎦

⎥
⎢⎣
⎢−

L
NLN , …, L, and the total

completion time,

 40

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡= ∑∑∑

+⎥⎦
⎥

⎢⎣
⎢−=

⎥⎦
⎥

⎢⎣
⎢−

==

L

L
NLNk

L
NLN

k

N

i
i kLs

L
NkLs

L
NC

111
)1())1(ρρ .

2.4.3 An algorithm for the case of lots of different sizes

In accordance with Proposition 2.4, lots appear in the non-decreasing order of their sizes

in an optimal solution. Based on this property, we can propose a dynamic programming

algorithm to find an optimal schedule. We designate this algorithm as RelaxFOUP-DP.

RelaxFOUP-DP Algorithm

The lots are arranged in the non-decreasing order of their sizes. Each stage of this

multiple stage decision process is a lot k, k=1,…, N. The output state at a stage is the

number of carriers configured so far, designated as b, b=1, …, L. The decision at stage k

is to determine a lot l so that when lots 1+l to k are contained in the last carrier (carrier b),

the total completion time of the lots from 1 to k is minimized. We use forward recursion.

Therefore, if b is the output state at stage k, and the decision is to group lots from l+1 to k

in carrier b, then the number of carriers as the output of stage l is b-1.

Let kk sss +++= ...21α , Nk ≤≤1 , and note that Nααα <<< ...21 . For kl <≤0 , let

blkF),(indicate the total completion time of a solution in which the first l lots are

contained in b-1 carriers and lots l+1,…, K are included in the last carrier b (see Figure

2.14). Also, let b
kG indicate the smallest total completion time when the first k lots are

included in b carriers. We seek the determination of L
NG .

 41

Figure 2.14: The forward DP recursion

We have,
b

kl

b
k lkFG),(min

<
= , Nk ≤≤1 , Lb ≤≤1

)(),(1 lkGlkF k
b
l

b −+= − α .

And, the recursion equation is

)}({min 1 lkGG k
b
lkl

b
k −+= −

<
α , Nk ≤≤1 , 1>b

Example:

Table 2.1: An example to illustrate RelaxFOUP-DP algorithm

Lot index 1 2 3 4 5 6 7 8

Lot Size 3 3 4 5 6 7 7 8

Processing time 1=ρ

No. of carriers 4=L

3)3(11
1 ==G

9}63{)}33)(12({ 1
1

2
2 =+=+−+= GG

12)}33(2{1
2 =+=G

=1
3G {3(3+3+4)}=30

s1 s2 sl s1+1 sk

Previous carriers Last carrier

 42

16}412,143min{)}4)(23(),43)(13(min{ 1
2

1
1

2
3 =++=−++−+= GGG

13}49{)}4)(23({ 2
2

3
3 =+=−+= GG

60)}5433(4{1
4 =+++=G

30}530,1812,363min{
)}5)(34(),54)(24(),543)(14(min{ 1

3
1
2

1
1

2
4

=+++=
−++−+++−+= GGGG

21}516,189min{)}5)(34(),54)(24(min{ 2
3

2
2

3
4 =++=−++−+= GGG

18}513{)}5)(34({ 3
3

4
4 =+=−+= GG

126)}65433(5{1
5 =++++=G

52
}660,2230,4512,723min{

)}6)(45(),65)(35(),654)(25(),6543)(15(min{ 1
4

1
3

1
2

1
1

2
5

=
++++=

−++−+++−++++−+= GGGGG

36
}630,2216,459min{

)}6)(45(),65)(35(),654)(25(min{ 2
4

2
3

2
2

3
5

=
+++=

−++−+++−+= GGGG

27}621,2213min{)}6)(45(),65)(35(min{ 3
4

3
3

4
5 =++=−++−+= GGG

168)}765433(6{1
6 =+++++=G

84
}7126,2660,5430,8812,1253min{

)}7)(56(),76)(46(

),765)(36(),7654)(26(),76543)(16(min{
1
5

1
4

1
3

1
2

1
1

2
6

=
+++++=

−++−+

++−++++−+++++−+=

GG

GGGG

56
}752,2630,5416,889min{

)}7)(56(

),76)(46(),765)(36(),7654)(26(min{
2
5

2
4

2
3

2
2

3
6

=
++++=

−+

+−+++−++++−+=

G

GGGG

43
}736,2621,5413min{

)}7)(56(),76)(46(),765)(36(min{ 3
5

3
4

3
3

4
6

=
+++=

−++−+++−+= GGGG

245)}7765433(7{1
7 =++++++=G

 43

120
}7168,28126,6060,10030,14512,1923min{

)}7)(67(),77)(57(),776)(47(),7765)(37(

),77654)(27(),776543)(17(min{
1
6

1
5

1
4

1
3

1
2

1
1

2
7

=
++++++=

−++−+++−++++−

+++++−++++++−+=

GGG

GGGG

80
}784,2852,6030,10016,1459min{

)}7)(67(),77)(57(

),776)(47(),7765)(37(),77654)(27(min{
2
6

2
5

2
4

2
3

2
2

3
7

=
+++++=

−++−+

++−++++−+++++−+=

GG

GGGG

63
}756,2836,6021,10013min{

)}7)(67(),77)(57(),776)(47(),7765)(37(min{ 3
6

3
5

3
4

3
3

4
7

=
++++=

−++−+++−++++−+= GGGGG

312)}87765433(8{1
8 =+++++++=G

172
}8245,30168,66126,11260,16530,22212,2803min{

)}8)(78(),87)(68(

),877)(58(),8776)(48(),87765)(38(

),877654)(28(),8776543)(18(min{

1
7

1
6

1
5

1
4

1
3

1
2

1
1

2
8

=
+++++++=

−++−+

++−++++−+++++−+

+++++−+++++++−+=

GG

GGG

GGG

114
}8120,3084,6652,11230,16516,2229min{

)}8)(78(),87)(68(),877)(58(),8776)(48(

),87765)(38(),877654)(28(min{
2
7

2
6

2
5

2
4

2
3

2
2

3
8

=
++++++=

−++−+++−++++−+

++++−++++++−+=

GGGG

GGG

86
}880,3056,6636,11221,16513min{

)}8)(78(),87)(68(

),877)(58(),8776)(48(),87765)(38(min{
3
7

3
6

3
5

3
4

3
3

4
8

=
+++++=

−++−+

++−++++−+++++−+=

GG

GGGG

The optimal solution is (3 3)(4 5)(6 7) (7 8) with total completion time = 86.

We can improve computational effectiveness of the above DP algorithm by making use

of Propositions 2.3, 2.5, 2.6 and 2.7.

 44

2.5 A problem with finite FOUP capacity

2.5.1 Optimal solution for the MLCSP1 with lots of the same size

Proposition 2.13: When all the lots are of the same size, the MLCSP1 problem is solved

in polynomial time.

Proof: By Proposition 2.12, if all the lots are of the same size, any solution that

satisfies 11 +≤≤− mnm nnn , ∀m=1, 2, …, L-1, n =2, 3, …, L, with m preceding n, is the

optimal solution. We want to show that such a solution is feasible when the FOUP has a

finite capacity.

Suppose the contrary, that is, there exists such a solution that satisfies 11 +≤≤− mnm nnn ,

∀m=1, 2, …, L-1, n=2, 3, …, L, with m preceding n, in which there exists a carrier k,

with Ksnk > . There are two possible cases:

(1) kn is the minimum among all in , that is, ki nn ≥ , ∀ i=1, …, L and ki ≠ . We

have KLsnLn k

L

i
i **

1

>≥∑
=

. This means that the sum of the wafers in all the lots is

larger than the available FOUP capacity. The MLCSP1 problem becomes infeasible,

implying a contradiction.

(2) kn is the maximum value. From Proposition 2.10, the minimum carrier size

sKsnsn k −>−=)1(min (since Ksnk >). Thus, ⎥⎥
⎤

⎢⎢
⎡=

s
Knk and ⎥⎦

⎥
⎢⎣
⎢=−

s
Knk 1 . We

have ⎥⎦
⎥

⎢⎣
⎢>∑

= s
KLn

L

i
i *

1

. Since lots are not allowed to split over different carriers, the

MLCSP1 problem is infeasible, implying a contradiction. ◘

 45

2.5.2 A branch-and-bound algorithm for the MLCSP1 with lots of different sizes

In case the RelaxFOUP-DP algorithm generates a feasible solution to the original

problem, then it solves the problem directly. We can identify some situations for which

the RelaxFOUP-DP algorithm is likely to generate an optimal solution without violating

the FOUP capacity.

(1) The number of available carriers is close to the number of lots (i.e, L is close to N).

Since an optimal solution will use L carriers, when L is closer to N, the number of lots

in a carrier will be close to one. In such a case, it is unlikely that the carrier capacity

will be violated in the solution generated by the RelaxFOUP-DP algorithm.

(2) The values of is , for all i, are close to one another, and small compared to the value

of K.

Since
mmm Ji

im
Ji

i
Jj

jm snssn
∈

−
∈∈

− +≤≤− ∑
−

min)1(max)1(11
1

by Propositions 2.5 and 2.7, the

variation in the value of ∑
∈ mJi

is is restricted to be is2 . Thus, the RelaxFOUP-DP

algorithm will generate solutions in which the number of wafers in each carrier would

be close to each other, and hence, would not violate K.

Note that the RelaxFOUP-DP algorithm can generate infeasible solutions in which the

carrier size may violate the FOUP capacity constraint. But, it gives a good lower bound.

In this section, we propose a branch-and-bound algorithm to find an optimal solution for

the MLCSP1 problem for different lot sizes. We designate the algorithm as MLCSP1-

B&B.

 46

Enumeration scheme

We can possibly use two methods, called Method I and Method II, to add a new lot to the

already scheduled lots. In Method I, a new lot is put into a new carrier and attached to the

end of the partial schedule. In Method II, a new lot is inserted into the last carrier (see

Figure 2.15).

Figure2.15: Methods I and II for adding a lot to a carrier

Upper bounds

In view of Corollary 2.2, we can formulate the following greedy heuristic to generate a

feasible solution for MLCSP1.

RelaxFOUP-Greedy Heuristic

Step 1: Arrange the lots in the non-decreasing order of their sizes.

Step 2: Starting from the first carrier, fill each carrier with lots in the order determined in

Step 1 such that the FOUP capacity is not violated.

(1) (2)
(N)

(N-1)

(1)(2) (12)

(1)(2)(3) (1)(23)

I II

 47

Lower bounds

A lower bound for the unscheduled lots can be obtained by the following three ways.

}\{1 POLB : Total completion time generated by PNNL −=' carriers.

}\{2 POLB : Total completion time generated by unscheduled set of lots }\{ PO

configured in leftover carriers, PLL − by applying the RelaxFOUP-DP algorithm.

}\{3 POLB : For the unscheduled set of lots }\{ PO , we find the biggest common factor

γ among lot sizes is , }\{ POi∈ . We, then, split all the lots into smaller lots with lot size

of γ and the weight of
is
γ . This problem, thus, becomes a MLCSP with lots of the same

size and the objective of minimizing the total weighted completion time. The optimal

solution determined is a lower bound for the original problem.

Continuing with the development of the MLCSP1-B&B algorithm, note that the result of

Proposition 2.1 holds for the MLCSP1 under the objective of minimizing the total

weighted completion time as well. This follows by the fact that the result of Proposition

2.1 is developed for a special case with 1=iw , i∀ =1, …, N. Hence, each carrier for this

problem will consist of at least one lot.

It is well-known that the shortest weighted processing time first (SWPT) rule minimizes

the total weighted completion time for the single machine problem. Thus, we have the

following result.

 48

Proposition 2.14: In the optimal solution, the carriers appear in the non-decreasing order

of their total lot size to total weight ratios, i.e.,

∑

∑

∈

∈

m

m

Ji
i

Ji
i

w

s
, m=1, …, L.

Proposition 2.15: When FOUP capacity is relaxed, in an optimal solution, for a lot i

from carrier m and a lot j from carrier n, with carrier m immediately preceding carrier n,

j

j

Jj
i

i

Ji w
s

w
s

nm ∈∈
≤ minmax , if weights are agreeable, i.e., ji ss ≤ implies ji ww ≥ .

Proof: We can prove this result by contradiction using pair-wise interchange. Suppose

there exists an optimal solution in which a lot a from carrier m and a lot b from carrier n

are such that ba ss ≥ and ba ww ≤ , The total weighted completion time of this solution is

as follows:

))(())((),(1 ∑∑∑∑∑
∈∈∈∈∈

++=
nmnmm Jj

j
Ji

i
Jj

j
Ji

i
Ji

i sswswnmsum ρρρ .

If we interchange lot a and b, we have

.)

)(())((),(2

ρ

ρ

ab
Jj

j

ba
Ji

iab
Jj

jba
Ji

iba
Ji

i

sss

ssswwwssswwwnmsum

n

mnmm

+−

++−+−++−+−=

∑

∑∑∑∑

∈

∈∈∈∈

Consequently,

∑∑
∈∈

>−+−+−=−
mn Ji

ibaba
Jj

jab wssssswwnmsumnmsum 0))(())((),(2),(1 ρρρρρρ .

This implies that the given solution is not optimal, a contradiction. ◘

Corollary 2.9: If all the lots are of the same size, then in the optimal solution, the lots

appear in the non-increasing order of their weights.

 49

Based on Corollary 2.9, we can propose a DP-based algorithm, RelaxFOUP-DP-

Weighted algorithm, which is very similar to the RelaxFOUP-DP algorithm. The result

of Proposition 2.14 helps in reducing computational efforts. The solution determined by

RelaxFOUP-DP-Weighted algorithm is }\{3 POLB .

Then, the lower bound for Method I can be computed as follows:

∑∑
∈∈

−++=
Pi

iP
Pi

i CNNPOLBPOLBPOLBCPLB *)(})\{3},\{2},\{1max(}{ .

We do not derive lower bound for Method II addition directly. But, once a Method II

addition is executed, the Method I lower bound analysis is used for its child nodes to

determine a lower bound.

Fathoming strategies

We have the following strategies for Method I and Method II

Fathoming strategies for Method I addition:

A node is fathomed if

(1)
m

Jj
j

m

Ji
i

n

s

n

s
mm

∑∑
∈

−

∈ ≤−

1

1 does not hold for neighborhood carriers m-1 and m, for m=2, .., L.

(2) ba ss ≤ does not hold when a lot a from carrier m-1 and a lot b from carrier m can be

exchanged without violating FOUP capacity for neighborhood carriers m-1 and m, for

m=2, …, L.

(3)
1

max)1(1
−∈

−
∈

−≥∑
mm Ji

im
Jj

j sns does not hold when a lot b from carrier m can be included in

carrier m-1 without violating FOUP capacity for neighborhood carriers m-1 and m,

for m=2, …, L.

 50

(4)
mm Jj

jm
Jj

j sns
∈

−
∈

+≤∑ min)1(1 does not hold when a lot a from carrier m-1 can be included

in carrier m without violating FOUP capacity for neighborhood carriers m-1 and m,

for m=2, …, L.

(5) P
POi

i

LL
K

s
−>

∑
∈ \ .

(6) pP LLNN −<− .

(7) pP LLNN −=− , in which case we find the optimal solution for that node.

(8) the solution generated by the RelaxFOUP-DP algorithm is feasible to the original

problem, because it is an optimal solution for that node.

(9) the solution generated by RelaxFOUP-DP-Weighted is feasible to the original

problem, in which case it is an optimal solution for that node.

(10) tSolutionCurrentBesPLB ≥}{

Fathoming strategies for Method II addition:

A node is fathomed if

(11) it violates FOUP capacity K.

(12) the index of the last lot is not the largest among the scheduled set P.

With fathom strategy (12), we can eliminate duplication by indexing the lots in the non-

decreasing order of lot sizes as sequencing of lots in a carrier is irrelevant

 51

The MLCSP1-B&B algorithm can now be presented as follows.

MLCSP1-B&B Algorithm

Step 1: Arrange the lots in the non-decreasing order of sizes.

Step 2: At node 0 (root node), create a list of active nodes, L, node}root :0{=L .

Step 3: Determine lower bound }{PLB and upper bound }{PUB at node 0. If the solution

to the lower bound is feasible to the original problem, go to step 8; otherwise let

}{* PUBz = and }{PLBz = . If zz =* , go to step 8.

Step 4: Partition root node into its children nodes, and update list L.

Step 5: Check the node list L. If ∅=L , go to step 8; otherwise, extract the first node k

from L and make it a current node (depth-first node selection strategy is used).

Step 6: At node j, apply fathoming strategies (1) to (10) if it is a Method I addition, and

apply fathoming strategies (11) –(12) if it is a Method II addition. If the current

node is fathomed, go to step 7; otherwise, determine }{PLB and }{PUB ; update

z and z if necessary; if zz = , go to step 8; otherwise, go to step 7.

Step 7: If at node k, scheduled set of lots P does not contain N lots, partition node k into

its children nodes, designate this set of nodes by kψ (note that we have Method I

and Method II for the generation of nodes), and add kψ to L, go to step 5;

otherwise if node k contains N lots, node k cannot be portioned further, and go to

step 5

Step 8: We have found an optimal solution with objective value *z . Stop.

2.6 Numerical experimentation

In this section, we test the performance of MLCSP1-B&B with the direct solution of the

problem by using the AMPL CPLEX Solver (version 10.1). The performance measure is

cpu time required to find the optimal solution. The summary of the test data is contained

in Table 2.2. We test five cases with 10, 15, 20, 23, 25 lots. For each case, three L values

 52

are used, namely, small, medium and large, which result in schedules with high, medium

and low densities (density is the ratio of number of lots over number of carriers). Thus,

there are a total of 1535 =× data sets. For each data set, we generate 20 problem

instances with randomly generated lot sizes.

Table 2.2: Data used in numerical experimentation for problem MLCSP1

Number of lots (N) 10, 15, 20, 23, 25
High
density
case

⎥⎥
⎤

⎢⎢
⎡ × %100

/ sK
N

Medium
density
case

}%140
/

,1%100
/

max{ ⎥⎥
⎤

⎢⎢
⎡ ×+⎥⎥

⎤
⎢⎢
⎡ ×

sK
N

sK
N

Number of
carriers
available (L)

Low
density
case

}%180
/

,2%100
/

max{ ⎥⎥
⎤

⎢⎢
⎡ ×+⎥⎥

⎤
⎢⎢
⎡ ×

sK
N

sK
N

Lot size (si) Uniform distribution [1,10] †
Average lot size (s) 5.5
Processing time per wafer
(carrier) ρ

This value does not affect the solution, and is assumed
to be 1 time unit.

Carrier capacity (K) 25 wafers
H

Sum of the processing times of all lots, ∑
=

N

i
is

1

(† see ITRS 2006 Factory Integration)

We coded MLCSP1-B&B by using Excel VBA (version 2003). All numerical tests were

performed on a Dell computer with Pentium 4 processor (2.8GHz) in the Electronics

Manufacturing Research (EMR) Lab at Virginia Tech.

The average cpu times required to find the optimal solutions for our algorithm and the

AMPL CPLEX 10.1 Solver are presented in Table 2.3. It can be seen that for each data

set, MLCSP1-B&B algorithm obtains optimal solution much faster than the CPLEX

Solver. In fact, the CPLEX Solver cannot solve the problem involving 15 lots and 6

carriers, and all problems involving 20 or more lots, within the allowable cpu time of

14,400 seconds. This is due to two reasons. The first reason is the use of a large positive

number H in the integer programming (IP) model, MLCSP1, which impacts the tightness

 53

of the model. The second reason is that, when the number of carriers (L) increases, the

number of binary variables ikX increases as well, which leads to longer cpu time needed

for the solver to find an optimal solution. On the contrary, an increment of L affords

algorithm RelaxFOUP-DP in generating solutions without violating the FOUP capacity

constraint. In other words, the lower bound generated by RelaxFOUP-DP tends to be an

optimal solution. Thus, MLCSP1-B&B algorithm has the tendency of solving the

problem at node 0 itself, thereby, resulting in a sharp decrement in average cpu time with

increase in the value of L. This phenomenon can be observed for all instances of number

of lots used (see Table 2.3).

Table2.3: The average cpu times required to find optimal solutions by MLCSP1-B&B and
the AMPL CPLEX 10.1 solver

Average cpu time (seconds) Data set Number of

Lots (N)
Number of
Carriers (L) MLCSP1-

B&B
CPLEX 10.1
Solver

1 10 3 0.18 0.32
2 10 4 0.06 1.61
3 10 5 0.06 8.87
4 15 4 7.57 29.50
5 15 5 1.60 650.54
6 15 6 0.06 >14400
7 20 5 418.63 >14400
8 20 7 19.23 >14400
9 20 8 0.06 >14400
10 23 6 2429.5 >14400
11 23 8 0.16 >14400
12 23 10 0.11 >14400
13 25 6 4767.78 >14400
14 25 8 0.13 >14400
15 25 10 0.10 >14400

In order to further investigate the impact of the number of carriers (i.e., different densities

for the same number of lots), additional tests, were run, with different combinations of

number of lots (N) and number of carriers (L). Percentage of times in which our

algorithm solves the problem at node 0 for the 20 problem instances tested is summarized

in Table 2.4. The number of lots (N) considered are 10, 30, 50, 70, 90 and 100. For each

value of N, different numbers of carriers (L) were used resulting in different densities.

 54

Note that when the number carriers is low (i.e., the density is high), our algorithm is

unlikely to generate optimal solution at node 0, which implies that algorithm

RelaxFOUP-DP leads to a solution, which violates the FOUP capacity. For this case,

lower bounds generated by other algorithms such as RelaxFOUP-DP-Weighted are

more efficient and MLCSP1-B&B can solve problems with number of lots up to 25.

However, with slight decrement of density (i.e., increment of number of carriers), the

percentage of times an optimal solution is obtained at node 0 increases sharply (see

Figure 2.16). Note that in Figure 2.16, the percentage is the ratio of number of carriers

over the base value of the number of carriers ⎥⎥
⎤

⎢⎢
⎡ × %100

/ sK
N .

Figure 2.16: Percentage of times MLCSP1-B&B solves the problem at node 0 as with
increasing number of carriers (L)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100% 110% 120% 130% 140% 180%
Ratios of number of carriers (L) over the base value

Percentage
of times
problems
solved at
node 0

10 30 50 70 90 100

 55

Table 2.4: Percentage of times MLCSP1-B&B solves the problem at node 0

Number
of Lots
(N)

Ratios of number
of carriers over
the base value†

Number of
Carriers (L)

Percentage of times an
optimal solution is
obtained at node 0††

10 100% 3 70%
10 110% 3 70%
10 120% 3 70%
10 130% 4 100%
10 140% 4 100%
10 180% 5 100%
30 100% 8 0%
30 110% 8 0%
30 120% 9 30%
30 130% 10 50%
30 140% 11 100%
30 180% 13 100%
50 100% 13 0%
50 110% 14 0%
50 120% 15 0%
50 130% 16 70%
50 140% 17 80%
50 180% 22 100%
70 100% 17 0%
70 110% 19 0%
70 120% 21 15%
70 130% 22 30%
70 140% 24 80%
70 180% 31 100%
90 100% 22 0%
90 110% 24 0%
90 120% 26 0%
90 130% 29 70%
90 140% 31 100%
90 180% 39 100%
100 100% 25 0%
100 110% 27 0%
100 120% 29 0%
100 130% 32 50%
100 140% 34 100%
100 180% 44 100%

(† The base value is ⎥⎥
⎤

⎢⎢
⎡

sK
N
/

. ††The ratio of the number of instances over the 20 instances in which the instances were solved at

node 0.)

 56

2.7 Determination of optimal number of carriers L considering transportation cost

Figure 2.17: Relationship between total completion time-related, transportation, and total

costs with number of carriers L

If we consider the transportation cost per carrier, and we are also able to determine the

cost related to total completion time, a relationship between total cost and number of

carriers, L, can be determined as shown in Figure 2.17.

We can determine the optimal value of L by using the following model for a given L, and

then, by enumerating over L.

Minimize ∑∑
==

+
N

k
k

N

i
i YC

1
2

1
1 *θθ

Subject to

∑
=

=
N

k
ikX

1

1 i∀ =1, …, L (2.8)

L N L*

Total transportation
cost

Total cost

Total
completion
time-related
cost

 57

∑
=

≤
N

i
kiik KYSX

1

)(k∀ =1, 2, …, L (2.9)

)1(ikki XHFC −−≥ i∀ =1, …, N, and k=1, …, L (2.10)

∑∑
==

=
N

i
iil

k

l
k sXF

11

)*(ρ , k=1, 2, …, L (2.11)

ikX , kY binary; iC , kF 0≥ , ∀ i=1, …, N, and k=1, …, L (2.12)

We can determine a lower bound of the minimal total cost by applying the RelaxFOUP-

DP algorithm. Also, a reasonable range for L is from

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

=
∑
=

K

s
L

N

i
i

1
min to NL =max .

2.8 Conclusions

In this chapter, we have addressed a single machine, multiple-lot-per-carrier with single-

wafer processing technology scheduling problem for the objective of minimizing the total

completion time (MLCSP1). We have first formulated this problem as an integer

programming model. Due to the complexity involved in solving this model directly, we

analyze variations of this problem in order to determine some inherent structural

properties. To that end, we, first, study the problem with relaxed FOUP capacity. For this

problem, when all the lots are of the same size, the optimal solution can be obtained

easily. However, for the case of different lot sizes, we propose a dynamic programming-

based algorithm, RelaxFOUP-DP. For the problem with limited FOUP capacity, when

all the lots are of the same size, we show that the optimal solution is the same as that for

the relaxed problem. When the lots are of different sizes, a branch-and-bound algorithm,

MLCSP1-B&B, is developed that relies on the RelaxFOUP-DP algorithm.

Numerical tests indicate that MLCSP1-B&B finds optimal solutions much faster than the

direct solution of the MLCSP1 model using the AMPL CPLEX 10.1 Solver. The CPLEX

Solver cannot solve problems with 15 lots or more within the allowable cpu time of

 58

14,400 seconds. In particular, our computational results show that, with an increment in

the number of carriers, L, the cpu time required by the CPLEX Solver increases sharply

while that required by MLCSP1-B&B for these instances falls dramatically. In fact, for

the medium and low density problems, the RelaxFOUP-DP algorithm finds the optimal

solution at node 0 itself whereas the AMPL CPLEX Solver is unable to solve these

problem instances within the allowable cpu time.

 59

Chapter 3: Minimizing Total Completion Time for Single Machine

MLCSP with Single-Carrier-Processing-Technology (MLCSP2)

3.1 Introduction

In this chapter, we address the single-machine MLCSP for single-carrier-processing,

designated MLCSP2. In contrast to the MLCSP for single-wafer-processing discussed in

Chapter 2, the processing time of a carrier is not dependent on the number of wafers in

that carrier, but it is a fixed value. For a detailed description of the MLCSP2, please see

Chapter 2.

This chapter is organized as follows. The mathematical formulation for the MLCSP2 is

presented in Section 3.2. We derive some useful properties of this problem and show in

Section 3.3 that the problem can be solved in polynomial time when all the lots are of the

same size. In Section 3.4, we determine a lower bound and upper bound for this problem,

and the worst case analysis of the bounds is also presented in this section. We, finally,

conclude the chapter in Section 3.5.

3.2 A mathematical model for the MLCSP2

Parameters

N: total number of lots

L: total number of available carriers, obviously NL <

is : size of lot i (number of wafers), i =1, 2, …, N

iw : weight for lot i

K: FOUP capacity (usually, K= 25)

ρ : processing time per carrier

iC : completion time of lot i, i =1, 2, …, N

 60

∑ iC : total completion time

jn : number of lots in carrier j

jJ : set of lots forming carrier j

O : set of all lots available to be scheduled

P : set of the already scheduled lots, OP ⊆

PN : number of lots belonging to set P

PL : number of carriers formed by the set of lots in P

Decision Variables

⎩
⎨
⎧

=
,0
,1

ikX

⎩
⎨
⎧

=
,0
,1

kY

An integer linear programming model for this problem has been presented by Qu (2004).

However, it uses a large positive number, M, in the model, which makes the model

computationally inefficient. We present another method that does not rely on the use of a

large positive number. This is afforded by formulating the MLCSP2 as a special case of a

generalized assignment problem (GAP). Each carrier is assumed to be a sink, and each lot

is considered as a resource (see Figure 3.1). The cost of assigning one lot to a carrier k is

ρk .

Model MLCSP2

Minimize ∑
=

N

i
iC

1

Subject to

if lot i is assigned to carrier k,
otherwise.

if carrier k is not empty
otherwise.

 61

Lots

Carrier N

Carrier 2

Carrier 1

ρ1*2NX

ρ2*2iX

ρNX iN *

Lot 1

Lot 2

Lot N

ρ1*1NX

ρ1*1iX

ρ1*NNX

Carriers

∑
=

=
N

k
ikX

1

1 i∀ =1, …, N (3.1)

∑
=

≤
N

i
iik KsX

1

)*(k∀ =1, …, N (3.2)

)*(
1

ρkXC
N

k
iki ∑

=

= i∀ =1, …, N (3.3)

ikX binary, i∀ =1, …, N, and k∀ =1, ..., N (3.4)

Constraint set (3.1) permits assignment of a lot to only one carrier, and FOUP capacity is

enforced by constraint set (3.2). For MLCSP2, processing time of a lot (and the

completion time) is the same as that of the carrier the lot is contained in. This is

represented by constraint set (3.3). Note that each carrier is identical to each other. Thus

in the model, we can use arbitrary sequence of carriers, 1, 2, …, L. The decision variable

ikX automatically enforces the best carrier formation and sequencing.

Figure 3.1: Transformation of the original problem to the GAP

 62

The largest value of L is N. The above model will determine the optimal number of

carriers that is required to minimize the total completion time.

3.3 Structural properties

Proposition 3.1: Problem MLCSP2 is NP-hard.

Proof: We can rewrite model MLCSP2 as follows:

Minimize ∑∑
= =

N

i

N

k
ik kX

1 1

)*(ρ

Subject to

∑
=

=
N

k
ikX

1

1 i∀ =1, …, N (3.5)

∑
=

≤
N

i
iik KsX

1

)*(k∀ =1, …, N (3.6)

ikX binary, i∀ =1, …N, k∀ =1, ..., N (3.7)

Note that this is a generalized assignment problem (GAP) which is a well-known NP-

hard problem (Fisher et al. 1986). ◘

Qu (2004) in his paper claims that an optimal solution to the MLCSP2 will utilize the

minimum number of carriers (FOUPs). However, this claim is not true. We show this by

the following counter example. First, note that the problem that minimizes the number of

FOUPs used is the well-known bin-packing problem for which we have the following

formulation.

 63

Bin packing problem

Minimize ∑
=

N

k
kY

1

Subject to

∑
=

=
N

k
ikX

1

1, i∀ =1, …, N (3.8)

∑
=

≤
N

i
kiik KYsX

1

)(, k∀ =1, …, N (3.9)

ikX binary, i∀ =1, …N, k∀ =1, ..., N (3.10)

Clearly, the bin packing problem is different from our problem as the objective functions

are different. Consider the data shown in Table 3.1 (K=25).

Table3.1: Data for a counter example (1=ρ)
Lot 1 2 3 4 5 6 7 8 9 10 11 12

Lot size 8 19 13 5 15 10 15 22 3 17 5 12

The optimal solution to the bin packing problem is shown in Table 3.2. It uses 6 carriers.

The total completion time = 2(1+2+3+4+5+6)=42.

Table3.2: An optimal solution to the bin packing problem
Bin 1 2 3 4 5 6

Lots 5,11 3,12 1,10 6,7 2,4 8,9

The optimal solution to our problem is given in Table 3.3. Although it uses more carriers,

yet the total completion time =4(1)+2(2)+2(3)+1(4+5+6+7)=36, which is less than that

for the solution that minimizes the number of carriers used.

 64

Table3.3: An optimal solution to the original problem
Bin 1 2 3 4 5 6 7

Lots 4,9,11,12 3,6 1,7 5 10 8 2

Proposition 3.2: In an optimal solution to the MLCSP2, the carriers are arranged in the

non-increasing order of the number of lots contained in them.

Proof : Let n be number of carriers formed, and in be number of lots in carrier i, for i =1,

2, …, n. The total completion time, n

N

i
i nnnnC *...*2*1 21

1

ρρρ +++==∑
=

, which is

minimized if 1n , 2n , …, nn are in non-increasing order. ◘

Corollary 3.1: If the objective is to minimizes the total weighted completion time, then

the optimal sequence is obtained by arranging the carriers in the non-increasing order

of∑
∈ iJi

iw .

Based on Proposition 3.2, we can derive the following greedy heuristic to solve the

MLCSP2.

 Greedy Heuristics (GH):

Step 1: Arrange the lots in the non-decreasing order of lot sizes.

Step 2: Fill the carriers with the lots selected in the order determined in Step 1

 65

Note that this procedure need not give an optimal solution because in an optimal solution,

the smallest lot may not be scheduled in the first carrier, and the largest lot may not be

scheduled in the last carrier.

Proposition 3.3: In an optimal solution, the smallest lot in a carrier should be larger than

any empty space in the preceding carriers, i.e.,

∑
∈

<−
lJi

iikiil sXsXK *)*(, Nkkli ,....4,3,2,, =<∀ , and 1=ikX .

Proof: If such a situation does not exist then, clearly, the total completion time is

improved by moving the appropriate lot to an earlier carrier with enough remaining space

to accommodate it as this move does not affect other carriers. ◘

Corollary 3.2 In an optimal schedule, the largest of the empty spaces in the first n

carriers, Ln ≤ , should be smaller than the smallest lot size in the remaining carriers, i.e.,

j
nlL

JjJi
iiknk

ssXK
l

k >>
∈

∈≤
<− ∑ min)*((max , n∀ =1, …L.

Corollary 3.3: (A polynomially solvable case). If all the lots are of the same size s, then

there exists an optimal solution in which the carriers are filled as much as possible.

Proof: This result directly follows from Proposition 3.3. ◘

If we let maximum number of lots, which can be included in one carrier to be A, number

of carriers with maximum number of lots to be D, and the leftover lots which can not be

included in the first D carriers to be B, then we have ⎥⎦
⎥

⎢⎣
⎢=

s
KA , ⎥⎦

⎥
⎢⎣
⎢−=

A
NNB , ⎥⎦

⎥
⎢⎣
⎢=

A
ND .

Thus ∑∑
==

++=
D

n

N

i
i DBnAC

11

)1(** ρρ .

 66

3.4 Determination and analysis of a lower bound and an upper bound

3.4.1 Determination of a lower bound

A lower bound for the unscheduled set of lots }\{ PO can be obtained from a relaxed

problem, which is formulated as follows.

For the unscheduled set }\{ PO , let γ be the largest common factor among all the lots.

We split each lot into sublots of sizeγ , with each sublot having the weight of
is
γ .

The algorithm to obtain an optimal solution for this relaxed problem is as follows.

Algorithm OpRelax:

Step 1: Arrange the lots in the non-decreasing sequence of lot sizes.

Step 2: Split each lot into
γ

is
sublots, each of size γ

Step 3: Fill the FOUPs with the sublots defined in Step 2 and selected in the order

determined in Step 1 as much as possible.

The optimality of the solution obtained for this relaxed problem follows by Corollary 3.1.

Let the total completion time obtained by the OpRelax algorithm be denoted by

}\{ POLB . For partial schedule P under Method I addition (see Chapter 2, Section 2.5),

the lower bound can be computed as

∑
∈

−++=
Pi

PPi LNNPOLBCPLB)(*)(}\{}{ ρ .

Proposition 3.4: ∑
∈

≥
POi

iCPOLB
\

min*5.0}\{

 67

Carrier 1 Carrier 5 Carrier 3 Carrier 7

Carrier 2 Carrier 6 Carrier 4 Carrier 8

Carrier 1 Carrier 3 Carrier 2 Carrier 4

Proof: Note that in the optimal solution obtained using the OpRelax algorithm for the

relaxed problem, in the first carrier and last carrier, there can be at most one lot each of

which is not totally contained in them, while in the other carriers, there can be at most

two lots that are not totally contained in them (see Figure 3.2). One way to heuristically

adjust the schedule to ensure that all the lots are totally contained in the carriers is as

follows.

Figure3.2: An example of the optimal solution for the relaxed problem (L′=4)

Figure 3.3: An example for the adjustment of the optimal solution for the relaxed problem
(4=′L)

 68

Suppose L′ carriers are used for the lot set }\{ PO and we can insert one dummy carrier

between any two neighborhood carriers as shown in Figure 3.3. Thus, there are 2L’

carriers formed totally. For carrier 12 −k , k=1, …, L’, we move out the partial lot in the

carrier and include it in its neighboring carrier 22 −k or k2 depending on whether the

other part of the partial lot is in the carrier that is before or after it.

Let a
kw 12 −Δ be the total weights of the sublots in carrier 2k-1, which are put in carrier 2k-2,

b
kw 12 −Δ be the total weights of sublots in carrier 2k-1 which are put in carrier 2k, for

k=1, …, L’. Let the total completion time after adjustment be ∑
∈ }\{

'
POi

iC , we have

}\{*2

]2[

)])1(22[)()12('

12

12

'

1

12

'

1
121212

'

1}\{

POLB

wk

wkwkwwwkC

k

k

Ji
i

L

k

a
k

L

k

b
k

b
k

a
k

L

k Ji
i

POi
i

=

≤

Δ−+Δ+Δ−Δ−−=

∑∑

∑∑ ∑∑

−

−

∈=

−
=

−−−
= ∈∈

ρ

ρρρ

Since ∑∑
∈∈

≥
}\{}\{

min'
POi

i
POi

i CC , this implies that ∑
∈

≥
}\{

min}\{*2
POi

iCPOLB . ◘

3.4.2 Determination of an upper bound

Let ∑
∈ }\{

''
POi

iC indicate the total completion time obtained by the GH heuristic described in

Section 3.3. This is an upper bound for the MLCSP2, indicated by }\{ POUB , that is,

∑
∈

=
}\{

''}\{
POi

iCPOUB .

Proposition 3.5 The GH heuristic has the worst case ratio of 2, i.e. 2
min

''

}\{

}\{ ≤
∑

∑

∈

∈

POi
i

POi
i

C

C
 .

 69

Proof: From Proposition 3.4, we know ∑∑
∈∈

≤≤
}\{}\{

min2}\{*2'
POi

i
POi

i CPOLBC . Therefore,

2
min

'

}\{

}\{ ≤
∑

∑

∈

∈

POi
i

POi
i

C

C
. Thus, we only need to prove ∑∑

∈∈

≤
}\{}\{

'''
POi

i
POi

i CC .

Note that the solution obtained from the GH heuristic and the adjusted solution as shown

in Figure 3.3 have the same sequence (the non-decreasing order of sizes) of lots. But, the

GH heuristic tends to fill the carriers as much as possible. Thus, by Proposition 3.2, we

have ∑∑
∈∈

≤
}\{}\{

'''
POi

i
POi

i CC . ◘

Similarly, we can derive an upper bound for partial schedule P to be

∑
∈

−++=
Pi

PPi LNNPOUBCPUB)(*)(}|{}{ ρ .

3.5 Conclusions

In this chapter, we have addressed a single-machine, multiple-lots-per-carrier and single-

carrier-processing technology scheduling problem for the objective of minimizing the

total completion time (MLCSP2). We have first formulated this problem as a generalized

assignment problem (GAP) instead of an integer programming model using a big number

M as shown in the literature. We then analyze the problem and determine some inherent

structural properties. Based on the results, the optimal solution for the case of equal-size

lots can be obtained easily. For the case of different lot sizes, we determine a lower

bound and an upper bound for the problem. It is shown that the worst case of the lower

bound is 0.5 of the optimal solution and that of the upper bound is 2 times of the optimal

solution.

 70

Chapter 4: Minimizing Makespan for a 2-machine Flow Shop

MLCSP with Single-Wafer-Processing (MLCSP3)

4.1 Introduction

In the single-carrier-processing problem, the processing time for a carrier is independent

of the wafers contained in a carrier. An optimal schedule for the single-machine MLCSP

would, therefore, tend to pack the lots into as few carriers as possible if the objective is to

minimize the makespan. This problem is, thus, equivalent to the bin packing problem.

This is also true for flow shops involving two or more machines (Laub et al. 2007). The

bin packing problem is a well-known NP-hard problem. For an overview of work

reported on the bin packing problem, see Coffman et al. (1996).

The single-wafer-processing problem is different from the single-carrier-processing

problem as wafers are processed one-at-a-time. However, Laub et al. (2007) have proved

NP-hardness of this problem for the single machine case under the criterion of

minimizing the makespan. In this chapter, we address the 2-machine flow shop MLCSP

for single-wafer-processing, and designate it by MLCSP3. As described in Chapter 2, we

consider the following two scenarios: lots requiring identical processing times on each

machine, and lots requiring different processing times on each machine. We develop

methodologies to solve problems for both of these scenarios.

4.2 Methodology for the solution of MLCSP3

Parameters:

N: number of lots

L: number of available carriers, NL ≤

M: number of machines

is : size for lot i (number of wafers), i =1, 2, …, N

K: FOUP (carrier) capacity (usually, K= 25)

 71

ijρ : processing time per wafer of lot i on machine j

ic : ratio of the processing time per wafer for lot i on machine 2 to that of machine 1,

1

2

i

i
ic

ρ
ρ

=

Variables:

ln : number of lots in carrier l

lJ : set of lots forming carrier l

kjC : completion time of the carrier scheduled for processing at position k on machine j, k

=1, 2, …, L, j=1,2,…, M

maxC : makespan

⎩
⎨
⎧

=
,0
,1

ikX

We can formulate a mixed integer programming model for the MLCSP3 as follows.

Model MLCSP3-1

Minimize maxC

Subject to

kjCC ≥max , k=1,2, …, L, j=1,2, …, M (4.1)

1
1

=∑
=

L

k
ikX , i =1, 2, …, N (4.2)

∑
=

≤
N

i
iik KsX

1

)(, k=1, 2, …, L (4.3)

if lot i is assigned for processing by carrier k,
otherwise.

 72

∑
=

≥
N

i
iii sXC

1
1111)(ρ (4.4)

∑
=

++ +≥
N

i
kjiikkjkj sXCC

1
11)(ρ , k=1,2, …, L, j=1, 2, …, M-1 (4.5)

∑
=

++ +≥
N

i
kjiikkjjk sXCC

1
1,1)(ρ , k=1,2,.., L-1, j=1, 2, …, M (4.6)

}1,0{=ikX ; 0≥kjC , k=1, 2, …, L, j=1, 2, …, M (4.7)

Note that the above formulation is developed for general number of machines, M.

Constraint set (4.2) ensures that a lot is assigned to only one carrier. Constraint set (4.3)

captures the capacity of a carrier. Constraint sets (4.4), (4.5), and (4.6) capture

relationships among the completion times of the lots on the machines. Constraint set (4.4)

ensures that the lot in the first position is not completed until all of its items have been

processed. Constraint set (4.5) asserts that a lot at position k cannot start processing on

machine j+1 until it has finished processing on machine j. Similarly, a lot at position k+1

cannot start processing on machine j until the lot at position k has finished processing on

the same machine. The binary and non-negativity constraints are represented by

constraint set (4.7). Constraint set (4.1) in conjunction with the objective function

captures the makespan minimization objective.

Proposition 4.1: There exists an optimal solution in which all L carriers are used.

Proof: Suppose there does not exist any optimal schedule in which all L carriers are used.

Then, there must exist an optimal schedule, S, in which not all L carriers are used. In

other words, there must be at least one carrier in S that contains more than one lot and at

least one carrier which is empty since NL ≤ . Designate a carrier containing more than

one lot by l, and an empty lot by k (see Figure 4.1). We can construct another schedule

S ′by removing one lot θ from carrier l and putting it into the empty carrier k, and then,

inserting carrier k between carriers 1−l and l (see Figure 4.2). For schedule S, we have

∑
∈

− +=
lJi

iill sCC 11,11 ρ , ∑
∈

− +=
lJi

iilll sCCC 212,12 },max{ ρ .

 73

And, for schedule S ′ , we have

11,11 '' θθ ρsCC lk += − , 212,12 }','max{' θθ ρsCCC klk += − , ∑
≠
∈

+=

θ

ρ
i

Ji
iikl

l

sCC 111 '' , and

}.',','max{

}','max{'

212211,1222,1

2122

∑∑∑

∑

≠
∈

≠
∈

−

≠
∈

−

≠
∈

++++++=

+=

θθ

θθθθ

θ

θθ

θ

ρρρρρρ

ρ

i
Ji

iil

i
Ji

iil

i
Ji

iil

i
Ji

iilkl

lll

l

sCsssCssC

sCCC

Note that 11 'll CC = . Moreover, 22 'll CC ≥ . If)()('
112,1

'
2,1 llll CCCC =≥= −− , then '

22 ll CC = ;

otherwise, lot θ starts processing on machine 2 sooner than '
1lC , and it results in

'
22 ll CC > . Besides, carriers l+1, l+2 …, L remain unaffected in S ′ except that they may

finish processing the lots earlier than those in S. Therefore, the makespan of schedule S ′

can not be worse than that of an optimal schedule S. This contradicts the assumption that

there is no optimal schedule in which all L carriers are used. ◘

In view of the above result, we can, now, assume that all L carriers are used for

processing the wafers.

Figure 4.1: Schedule S with an empty carrier

M1

M2

l-1 l

l-1 l l+1

θ

θ

1,1−lC 1,lC 1,1+lC

2,1−lC

1,1−lC

2,1+lC 2,lC

l+1

 74

Figure 4.2: Schedule S ′when none of the carriers is empty

4.2.1 An equivalent lot streaming problem

In Model MLCSP3-1 above, constraint sets (4.1), (4.4), (4.5), and (4.6) capture

processing of the carriers in the flow shop. Constraint sets (4.2) and (4.3), which make

this problem difficult to solve, are the bin packing type of constraints. If we relax these

constraints, each lot can be broken into continuous-size sublots and assigned to multiple

carriers with infinite capacities. With this relaxation, the original problem becomes an

equivalent lot streaming problem in which we have one single “lot”, being the

aggregation of all the lots available for scheduling, and L “sublots”, which are number of

available carriers.

As described in Chapter 2, different lots may belong to a product, and thus, require the

same processing time. Therefore, we aggregate lots into products. Then, different

products are aggregated into one lot. We can, then, formulate this lot streaming problem

as a linear programming model. To that end, we introduce additional notation.

Parameters:

I: number of products,

M1

M2

l-1 l+1 l

l-1 l

k

k l+1

θ

θ

'
1,1−lC '

1,kC '
1,lC '

1,1+lC

'
2,1−lC '

2,1+lC '
2,kC '

2,lC

 75

iU , total number of wafers belonging to product i, i=1, 2, …, I

U : total number of wafers available to schedule, ∑
=

=
I

i
iUU

1

ijρ : processing time per wafer of product i on machine j (note that, this variable is

identical to that defined in Model MLCSP3-1)

Variables:

 ilsl : number of wafers for product type i in sublot l, i=1, 2, …, I, l=1, 2, …, L

lsl : number of wafers in sublot l, ∑
=

=
I

i
ill slsl

1

, l=1, 2, …, L

lSL : set of wafers forming sublot l

ljC : completion time of sublot l on machine j

ljT : processing time of sublot l on machine j, ∑
=

=
I

i
ijillj slT

1

ρ , l=1, 2, …, L, j=1, 2, .., M

Model MLCSP3-2

Minimize maxC

Subject to

LMCC ≥max (4.8)

i

L

l
il Usl =∑

=1

, i=1, 2, .., I (4.9)

∑
=

++ +≥
I

i
ijiljljl slCC

1
1,1, ρ , l=1, 2, …, L, j=1, 2, .., M-1 (4.10)

∑
=

++ +≥
I

i
ijiljljl slCC

1
1,,1 ρ , l=1, 2, …, L-1, j=1, 2, …, M (4.11)

∑
=

≥
I

i
iislC

1
111,1 ρ (4.12)

 76

0≥ilsl , i=1, 2, …, I, l=1, 2, …, L; 0≥ljC , l=1, 2, .., L, j=1, 2, .., M (4.13)

Constraint set (4.9) ensures that the wafers belonging to each product are, in fact,

assigned to sublots. Constraint set (4.10) enforces that completion time of sublot l on

machine j+1 is greater than or equal to its completion time on machine j plus its

processing time on machine j+1. Similarly, constraint set (4.11) captures the fact that the

completion time of sublot l+1 on machine j is greater than or equal to the completion time

of sublot l on machine j plus its processing time on the same machine. Constraint set

(4.12) makes sure that the completion time of the first sublot on first machine is the sum

of the processing time of the wafers it contains. The non-negativity constraints are

represented by constraint set (4.13). Constraint set (4.8) in conjunction with the objective

function captures the makespan minimization objective.

4.2.2 Solution methodology for MLCSP3-2

Methodologies for various flow shop lot streaming problems are presented in Sarin and

Jaiprakah (2007). Closed-form expressions for optimal sizes of a given number of sublots

for a two-machine flow shop lot streaming problem are provided by Potts and Baker

(1989). However, for MLCSP3-2 when m=2, the resulting optimal sublot sizes may be

greater than the carrier capacity. Therefore, additional steps are required to determine

optimal configuration of sublots for the capacitated case. However, a capacitated optimal

solution to the lot streaming problem still violates the requirement that a lot cannot be

split into different carriers. But, it does provide a good lower bound. We use a heuristic

procedure to adjust the capacitated optimal solution, and find a good solution for the

original 2-machine flow shop MLCSP (MLCSP3).

 77

Figure 4.3: Flow chart of the heuristic procedure for the MLCSP3

The steps of our overall heuristic procedure for the solution of the MLCSP3 are as

follows (please also see Figure 4.3).

Step 1: Transform the original MLCSP3 to an equivalent lot streaming problem.

Step 2: Determine the uncapacitated optimal solution for the lot streaming problem.

2-machine MLCSP

Transform it to an equivalent lot
streaming problem

Determine the uncapacitated optimal solution

Capacity
violations ?

Yes

No

A lot is split into
different carriers?

Yes

No

Stop

Find the
capacitated

optimal solution

Use a heuristic
procedure to

adjust the
solution

 78

Step 3: Check whether any sublot violates carrier capacity constraint. If not, we get an

optimal solution; go to step 4. Otherwise, find the capacitated optimal solution.

Step 4: Check whether any lot is split into different carriers. If not, we get an optimal

solution; go to step 5. Otherwise, use a heuristic procedure to adjust the solution

and assign wafers belonging to a lot to one sublot (carrier).

Step 5: Stop.

The rest of this chapter is organized as follows. The approaches to find the uncapacitated

and capacitated optimal solutions are presented in Section 4.3 for lots requiring identical

processing times on the machine. Section 4.4 addresses the case of the lots requiring

different processing times on the machine. In Section 4.5, we present heuristics for

adjusting a capacitated optimal solution in order to assign wafers belonging to a lot to one

sublot. Results of our computational experimentation are presented in Section 4.6. We,

finally, conclude the chapter in Section 4.7

4.3 Lots with identical processing times (jij ρρ = , cci =)

4.3.1 Uncapacitated sublot sizes

Proposition 4.2 (Potts and Baker 1989). For the 2-machine one-lot lot streaming problem,

optimal sublot sizes are geometric in nature, as follows:

1
)1(1

−
−

=
−

L

l

l c
ccUsl , l=1, 2, …, L.

The optimal makespan is

1
11

1max −
−

=
+

L

L

c
cUC ρ .

 79

sublot
sizes

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8
sublot number

The geometric sublot sizes for 1>c are shown in Figure 4.4. Note that they increase in

size with sublot number. On the other hand, the sublot sizes will be decreasing with

sublot number when 1<c . The schedule with geometric sublot sizes forms a compact

block structure, which means that there is no ide time between the processing of the

sublots on the first and second machines (see Figure 4.5).

Figure 4.4: Sublot sizes for c=1.25 and L=8

Figure 4.5: Compact block structure of optimal sublot sizes

M1

M2

sublot 1 sublot 2 sublot 3 sublot 4 sublot 5

 80

4.3.2 Capacitated sublot sizes

Proposition 4.3 (Laub et al. 2007). For the 2-machine one-lot lot streaming problem with

1>c , the capacitated optimal sublot sizes are given by,

⎪⎩

⎪
⎨
⎧

≤<−
−≤≤

−
−

−= −

−

,for
,1for

 K,

,
1

)1()(
1

LlbL
bLl

c
ccbKUsl bL

l

l

where b is the number of sublots of size K, and it is determined as follows:

,

1
)1(if ,}

1
)1()(|{max

,
1

)1(if ,0
11

1

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
−
−

⎥
⎥

⎤
⎢
⎢

⎡
>

−
−

−

≤
−
−

= −

−

−−

−

K
c

ccUK
c

ccxKUx

K
c

ccU
b

L

L

xL

xL

L

L

and ⎡ ⎤x indicates the smallest integer larger than x.

The resulting makespan is given by,

2

1

1max 1
1)(ρρ bK

c
cbKUC bL

bL

+
−
−

−= −

+−

.

For a proof of the above result, please see Laub et al. (2007). An illustration of the type

of optimal capacitated optimal sublot sizes can be found in Figure 4.6. Note that sublots 7

and 8 have been adjusted to meet the carrier capacity of 25 wafers.

 81

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8

sublot number

su
bl

ot
 s

iz
es

Figure 4.6: An illustration of the optimal capacitated sublot sizes with c=1.25 and L=8

From the classical scheduling theory, the reverse result holds when 1<c , that is, the

solution is read in the reverse order starting from machine 2 to machine 1. Thus, we have

the capacitated optimal sublot sizes given by,

⎪⎩

⎪
⎨
⎧

≤<
≤≤

−
−

−
=

−

−

,
,1

 ,
1

)1()(

 ,
 1

Llbfor
blfor

c
ccbKU

K
sl

bL

l
l

where b is the number of sublots of size K, and it is determined as follows:

,

1
1 ,}

1
1)(|{max

,
1

1 ,0

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
−
−

⎥⎥
⎤

⎢⎢
⎡ >

−
−

−

≤
−
−

=

− K
c
cUifK

c
cxKUx

K
c
cUif

b
LxL

L

The resulting makespan is given by,

1

1

1max 1
1)(ρρ bK

c
cbKUC bL

bL

+
−
−

−= −

+−

.

 82

From now on, in this chapter, we mainly discuss on the case of 1>c . The solution of the

case of 1<c is simply the reverse of that for the case of 1>c .

4.4 Lots with different processing times

As described in Chapter 2, different lots may belong to different product types and have

different processing times. When they are placed in a carrier, the time required to process

that carrier is the sum of the processing times for different product types. We have the

following property for this case.

Proposition 4.4: There exits an optimal solution in which sublot sizes are consistent.

Proof: Our proof of this proposition follows the line of arguments used by Potts and

Baker (1989) to show a similar result. Let ilkx indicate the number of wafers of product

type i belonging to sublot l on machine m, lksl be the size of sublot l on machine k,

∑
=

=
I

i
ilklk xsl

1

, lkX be the cumulative size of the first l sublots on machine k,

∑∑
= =

=
l

j

I

i
ijklk xX

1 1

. By flow shop machine capacity constraints, we have

∑
=

− +≥
I

i
ilkilkllk xpCC

1
,1 , for i=1, 2, …, I, k=1, 2, …, M; l=1, 2, …, L (i)

By flow shop production constraints, we have

∑
=

− +≥
I

i
ilkillklhlk xpCC

1
1),,(, for i=1, 2, …, I, k=1, 2, …, M; l=1, 2, …, L (ii)

where),(klh is the last sublot on machine k-1 containing wafers included in sublot l on

machine k.

We want to show that there exists an optimal schedule in which 21 ilil xx = and

ilMMil xx =−1, for i=1, 2, …, I, l=1, 2, …, L. Consider any optimal schedule defined by

 83

sublots lksl that give completion time lkC . We first show that an alternative optimal

schedule is given by sublots '
lksl , producing completion times lkC ' , where '

ilkilk xx = for

i=1, 2, .., I, l=1, 2, …, L, k=1, 2, …, M-1, and 1,' −= MililM xx , for i=1, 2, …, I, l=1, 2, .., L.

From (i) and (ii), we may assume that

∑∑
= =

− +=
L

ul

I

i
ilkikkuLk xpCC

' 1

''
1,'

' (iii)

for some 'u , where 0'
'

'
1,' >=− kiukiu xx . We now construct a lower bound on the maximum

completion time of the original schedule. For this original schedule, let u denote the first

sublot on machine M, which contains wafers from sublot 'u on machine 1−M , i.e.,

sublot u is chosen so that

uMMuMu XXX <≤ −−− 1,1',1 . (iv)

Thus, for k=M and l=u in (ii), we have '),(uMuh ≥ . In addition, the middle term satisfies
'

,1'
'

1,1'1,1' MuMuMu XXX −−−−− == . (v)

Applying (i) and (ii), we obtain

∑∑∑∑
= == =

−− +≥+≥
L

ul

I

i
ilMiM

L

ul

I

i
MuilMiMMMuhLM xpCxpCC

11
1,'1),,(. (vi)

Since sublots on the first M-1 machines are the same in both the original and alternative

schedules, we have 1,'
'

1,' −− = MuMu CC . Therefore, we deduce from (iii) and (vi) that

).(

)]1()1[(

'

,1
'

,1'

'
,1',1

1 1

'

MuMuiM

MuMuiM

L

ul

I

i

L

ul

I

i
ilMilMiMLMLM

XXp

XXp

xxpCC

−−

−−

= = = =

−≥

−−−=

⎟
⎠

⎞
⎜
⎝

⎛
−≥− ∑∑ ∑∑

From (iv) and (v), we know that the term in parentheses must be nonnegative; hence it

follows that '
LMLM CC ≥ . This shows that our alternative schedule with consistent sublots

 84

on the last pair of machines is optimal. Thus, for two machine flow shop problem, sublot

sizes are consistent. ◘

Proposition 4.5: The no idling restriction does not impact the optimal makespan value.

Proof: This result follows by the fact that the first machine always processes sublots

without intermittent idling. By the reversibility property of flow shop, the same is true for

the second machine as well. ◘

4.4.1 Same ratio of processing time per wafer on machine 2 to that on machine 1

)(cci =

4.4.1.1 Uncapacitated optimal sublot sizes

Proposition 4.6: In the optimal solution, all the sublots are critical.

Proof: We show this result by contradiction. Suppose there exist optimal sublot sizes, 1sl ,

2sl ,… Lsl , in which sublot j is non-critical. We designate this set of sublot sizes by S,

and its makespan by).(* SM Then, by the definition of a critical sublot, we have

Δ=+− ∑∑∑∑
= == =

L

jk

I

i
iik

j

k

I

i
iik slslSM

1
2

1 1
1

*)(ρρ , for some 0>Δ .

Construct another set of sublot sizes '1sl , '2sl ,… 'Lsl , designated by S ′ , as follows:

)*)1((
1

' θθ i

I

i
ijj Uslsl +−= ∑

=

, 10 ≤≤ θ

∑
=

−=
I

i
ikk slsl

1

')1(θ , for all jk ≠ ,

 85

We can find at least one critical sublot, and indicate it by 'γ . Let)'(* SM designate the

makespan for S ′ , then,

∑∑∑∑
= == =

+=
L

k

I

i
iik

k

I

i
iik slslSM

' 1
2

'

1 1
1

* '')'(
γ

γ

ρρ ,

If j≠'γ ,

∑∑∑∑∑
== == =

+−+−=
I

i
ii

L

k

I

i
iik

k

I

i
iik UslslSM

1
2

' 1
2

'

1 1
1

*)1()1()'(θρθρθρ
γ

γ

, if j<'γ ,

∑∑∑∑∑
== == =

+−+−=
I

i
ii

L

k

I

i
iik

k

I

i
iik UslslSM

1
1

' 1
2

'

1 1
1

*)1()1()'(θρθρθρ
γ

γ

, if j>'γ .

In other words,

∑∑∑∑∑∑
=== == =

++−≤
I

i
ii

I

i
ii

L

k

I

i
iik

k

I

i
iik UUslslSM

1
2

1
1

' 1
2

'

1 1
1

* },max{])[1()'(ρρθρρθ
γ

γ

.

Since ∑∑∑∑
= == =

+≥
L

k

I

i
iik

k

I

i
iik slslSM

' 1
2

'

1 1
1

*)(
γ

γ

ρρ and ∑∑
==

>
I

i
ii

I

i
ii UUSM

1
2

1
1

* },max{)(ρρ , we

have,

)()(*)(*)1()'(**** SMSMSMSM =+−< θθ ,

which contradicts the fact that)(* SM is optimal.

If j='γ , then

 86

),()(*)()1(

)(*)(*)()1()()1(

)())()(1(

)()1()1()'(

**

1
21

*

1
21

*

2
1

1
' 1

2

'

1 1
1

*

SMSMSM

SMSMUSM

USM

UUslslSM

I

i
iii

I

i
iii

ii

I

i
ii

L

k

I

i
iik

k

I

i
iik

<+−<

−+++Δ−−−=

++Δ−−=

++−+−=

∑

∑

∑∑∑∑∑

=

=

== == =

θθ

θθρρθθθ

ρρθθ

θρθρθρθρ
γ

γ

for 1
)()(

0

1

*
21

≤
−Δ++

Δ
<<

∑
=

I

i
iii SMU ρρ

θ , which contradicts the fact that)(* SM is

optimal. Thus, our supposition is wrong, and sublot j must be critical. ◘

Corollary 4.1: The processing times of the sublots follow the compact block structure.

Proof: Since all the sublots are critical, we must have ∑∑
==

+ =
I

i
iil

I

i
ili ssl

1
2

1
11, ρρ , for

l=1,2, …L-1. ◘

Next, we identify some properties to help determine an optimal solution.

Proposition 4.7: The processing time for the first sublot on machine 1 and the last sublot

on machine 2, i.e., 11T and 2LT , are unique.

Proof: Since the optimal solution follows a compact block structure, we have

2
1 1

121
11

max L

I

i

I

i
iiiiLi

I

i
il

L

l

TUslslC ∑ ∑∑∑
= ===

+=+= ρρρ , or

∑∑∑∑
====

+=+=
I

i
iii

I

i
il

L

l

I

i
ii TUslslC

1
1122

111
11max ρρρ .

The optimal maxC value is unique, and ∑
=

I

i
iiU

1
1ρ and ∑

=

I

i
iiU

1
2ρ are constants. Thus 11T

and 2LT are also unique. ◘

 87

Proposition 4.8: The processing times of the sublots on machines 1 and 2, besides those

of 11T and 2LT , are geometric in nature (see Figure 4.7).

Figure 4.7: The geometric distribution of the processing times

Proof: Suppose we have an optimal solution with sublot sizes },...,{ 21 Lslslsl . We have

∑
=

=
I

i
iislT

1
1111 ρ , and ∑∑∑

===

====
I

i
ii

I

i
ii

I

i
ii cTslccslslT

1
1111

1
11

1
2112)(ρρρ . By compact block

structure, 111221 cTTT == . Similarly, 11
2

31 TcT = , …, 11
1

1 TcT L
L

−= . Thus, the processing

times of the sublots except for 11T and 2LT are geometric in nature. ◘

Since, ∑
=

− =++++
I

i
ii

L UcccT
1

1
121

11)..1(ρ , we have, for l=1, 2, …, L,

1
)1()(

1

1
11 −

−
=

−

=
∑ L

lI

i
iil c

ccUT ρ ,

 and the optimal makespan,

1
1)()

1
1)((

1
1)(

1

1
1

1
1

1
1

1
2max −

−
=

−
−

+=
−
−

+=
+

====
∑∑∑∑ L

LI

i
iiL

I

i
iiL

I

i
ii

I

i
ii c

cU
c
ccU

c
cUUC ρρρρ .

It should be noted that the optimal solution exhibits a geometric pattern for sublot

processing times, but not necessarily for sublot sizes. Actually, the sublot sizes can be

consistently increasing, consistently decreasing, or a combination of the two. The only

M1

M2

sublot 1

11T

11cT

11cT

11
2Tc

11
2Tc

11
3Tc

sublot 2 sublot 3 sublot 4 sublot 5

 88

case for which the optimal sublot sizes would also follow a geometric distribution is

when we find the optimal solution by individually applying the geometric-size patterns

for each product type, i.e., we solve I two-machine lot streaming problems

independently. In this way,
1

)1(1

−
−

=
−

L

i

iil c
ccUsl , for i=1, 2, …, I, and l=1, 2, …, L.

One procedure (Sam-Uncap) to construct an optimal solution is as follows.

Algorithm Sam-Uncap:

Step 1: Determine values of 11T , 21T , … 1LT by applying Proposition 4.8

Step 2: Arrange the products in non-decreasing order of 1iρ values.

Step 3: Starting from l=1, pick sufficient amount of products from the sequence

determined in step 2 to ensure that sum of the processing times for that amount is

equal to the calculated value 1lT .

Step 4: Let l = l+1. if 1−≤ Ll , repeat step 3; otherwise, go to step 5.

Step 5: Stop. The leftover amount will automatically be equivalent to 1LT .

Note that in the above procedure, if the products are arranged in arbitrary order, it will

also lead to an optimal solution.

4.4.1.2 Capacitated optimal sublot sizes

In this section, we determine optimal sublot sizes in the presence of the capacity

constraint of K for each sublot. With this capacity constraint, the properties for optimal

solution will be different from that for the uncapacitated case. But some basic properties

are still the same. For instance, there exists one optimal solution in which sublot sizes are

consistent. The reverse property also holds.

 89

Proposition 4.9: In an uncapacitated solution, if for two consecutive sublots a and b with

a preceding b, Kslsl
I

i
iaa >= ∑

=1
, Kslsl

I

i
ibb ≤= ∑

=1
, ∑

=

=
I

i
aiia Tsl

1
11ρ , ∑

=

=
I

i
biib Tsl

1
11ρ ,

11 ab TT > , and 1aρ and 1bρ are average processing times on machine 1 for sublots a and b

respectively, with

∑∑
==

=≤= I

i
ib

b
baI

i
ia

a

sl

T

sl

T

1

1
11

1

1 ρρ . (Eq. 3-1)

then, we can transform this solution to an equivalent solution consisting of sublots 'a and

'b such that Ksl
I

i
ia =∑

=1
' , ∑

=

=
I

i
aiia Tsl

1
11'ρ , and ∑

=

=
I

i
biib Tsl

1
11'ρ . (Note that there is no

restriction on the size of bsl after the transformation).

Proof: First, we sequence the products in each sublot in non-decreasing value of 1iρ .

Then, we exchange a part of each sublot which has the processing time of γ on machine

1, 10 aT≤≤ γ (see Figure 4.8). Correspondingly, on machine 2, the exchanged parts have

processing time equivalent to γc . For sublot a, γ starts from the smallest 1iρ and it is

the reverse for sublot b. By performing this exchange, the makespan remains unaffected,

but sublot size asl decreases.

Also, since each sublot is exchanged with proportions of equivalent processing times,

after the exchange, the processing time for each sublot is not affected. We first show that

after the exchange, the sublot size)('' γaa slsl = is a continuous monotonic decreasing

function of γ .

 90

Sublot a Sublot b

1aT 1bT

γ γ

Machine 1

Figure 4.8: Exchange of parts from sublots a and b with processing time of γ

(1) Let γ−asl and γ−bsl indicate the number of products forming the part corresponding to

γ in sublots a and b respectively, and 1,γρ −a and 1,γρ −b indicate their average

processing times on machine 1. By (Eq. 3-1) and the fact that the products in each

sublot are arranged in non-decreasing order of 1iρ , we have

1,111, γγ ρρρρ −− ≤≤≤ bbaa .

 Thus, γ
γγ

γ ρ
γ

ρ
γ

−
−−

− =>= b
ba

a slsl
1,1,

. So, abaaa slslslslsl <+−= −− γγ' . Therefore,

)(' γasl is a monotonic decreasing function of γ .

(2) Suppose, we increase γ by 1ε , 01 →ε . Recall that 1ε is contributed by products

from sublots a and b. We indicate them by μ and θ respectively. Now, the sublot

size
11

11

11,11,

')()("
θμ

θμ

θγμγ ρρ
ρρ

ε
ρ
ε

ρ
γ

ρ
ε

ρ
γ −

+=+++−=
−−

a
ba

aa slslsl . In other words,

11

11'"
θμ

θμ

ρρ
ρρ

ε
−

≤− aa slsl . Let 0'

11

11

>
−

=

θμ

θμ

ρρ
ρρ

εε , 0'→ε , and we have ''" ε≤− aa slsl .

This implies)(')("lim γγ
γεγ

aa slsl =
→+

. Thus,)(' γasl is a continuous function of γ .

 91

From above, as γ increases from 0 to 1aT , asl decreases to 'asl . Since 11 ba TT ≤ , if

1aT=γ , then Kslsl ba ≤≤' . Hence, we can determine an appropriate value of γ for

which Ksla =' .

Similarly, bsl ' is also a continuous, monotonic increasing function of γ . ◘

Proposition 4.10 There exists at least one uncapacitated optimal solution which is also a

capacitated optimal solution if and only if KlLsl
L

kl
l)1(+−≤∑

=

 and ∑∑∑
== =

=
L

kl
l

L

kl

I

i
iil Tsl 1

1
1ρ ,

1 ,...,1, −=∀ LLk with products appearing in the solution in non-decreasing order of 1iρ

values.

Proof: First, consider the forward part of the proposition, that is, if there exists a

capacitated optimal solution, then KlLsl
L

kl
l)1(+−≤∑

=

 for ∑∑∑
== =

=
L

kl
l

L

kl

I

i
iil Tsl 1

1
1ρ ,

1,...1, −=∀ LLk , with products appearing in the solution in non-decreasing order of 1iρ

values.

We prove this by contradiction. Suppose in an capacitated optimal solution, there exists a

*lk = such that KlLsl
L

ll
l)1(

*

+−>∑
=

 for ∑∑∑
== =

=
L

ll
l

L

ll

I

i
iil Tsl

**
1

1
1ρ . Since the products appear

in the non-decreasing order of 1iρ , there does not exist another solution

KlLsl
L

ll
l)1(

*

' +−=∑
=

 for ∑∑∑
== =

=
L

kl
l

L

kl

I

i
iil Tsl 1

1
1

' ρ . This means that there does not exist an

optimal solution which does not violate the capacity constraint. Therefore, our

assumption is incorrect.

To prove the second part, we we start from Lk = . If KsL ≤ for 1
1

1 L

I

i
iiL Tsl =∑

=

ρ , then

we find a sublot L, which does not violate capacity constraint. For 1−= Lk , if

 92

KlLsl
L

Ll
l)1(

1

+−≤∑
−=

for ∑∑ ∑
=−= =

=
L

kl
l

L

Ll

I

i
iil Tsl 1

1 1
1ρ , there are two possible scenarios. If

KsL ≤−1 , then we have a sublot L-1 feasible to the constraint; otherwise, based on

Proposition 4.9, we can always find a solution with Ksl L =−1' . Since Kslsl LL 2'' 1 ≤+ − ,

KslL ≤' , both sublots L-1 and L will be feasible. Continuing this argument for other

sublots, when we reach at k=1, we find feasible sublots 1, 2, …, L. In this way, we can

find an uncapacitated optimal solution which is also feasible to capacity constraint. ◘

Based on Proposition 4.10, we can develop a procedure for checking whether there exists

an uncapacitated optimal solution, which is also feasible for the capacitated case. We

indicate this algorithm of checking feasibility as CF, and it is presented next.

Algorithm CF:

Step 1: Apply Sam-Uncap algorithm to solve the uncapacitated problem

Step 2: Let k=L.

Step 3: Apply Proposition 4.10, if KlLsl
L

kl
l)1(+−≤∑

=

 and ∑∑∑
== =

=
L

kl
l

L

kl

I

i
iil Tsl 1

1
1ρ is

violated, go to step 6; otherwise, go to step 4

Step 4: Let k=k-1. If k>0, repeat step 3; otherwise, go to step 5.

Step 5: Stop. This solution is a capacitated optimal solution.

Step6: Stop. This solution is not a capacitated optimal solution.

Proposition 4.11 If in the solution obtained using Algorithm CF, sublot L is infeasible

(i.e., KslL >), there exists a capacitated optimal solution, in which, KslL = , and

}1 machineon timeprocessinglargest with the ofout wafers{ UKSLL ⊂ .

 Proof: Suppose there does not exist a capacitated optimal solution in which the Lth

sublot consists of K wafers having the largest 1iρ values. There are the following two

possible cases for sublot L:

 93

(1) KslL < .

We can move some products from the remaining L-1 sublots and make KslL = . Since

the remaining L-1 sublots follow a compact block structure for an optimal solution, this

does not result in idling of machine 2 but reduces 11T and the makespan, which is

∑
=

+=
I

i
iiUTC

1
111max ρ . Thus, our assumption is incorrect.

(2) Sublot L does not have the longest 1iρ values.

We can substitute sublot L with K products with the largest 1iρ values. As above, this

will not result in the idling of machine 2 but will reduce 11T . Thus, our assumption is

incorrect. ◘

Proposition 4.12 If (i) the product types are arranged in the non-decreasing order of 1iρ ,

and (ii) KlLsl
L

kl
l)1(+−≤∑

=

 for ∑∑∑
== =

=
L

kl
l

L

kl

I

i
iil Tsl 1

1
1ρ , k=L, L-1, ……, 1* +l , while for

*lk = , KlLsl
L

ll
l)1(

*

+−>∑
=

 for ∑∑∑
== =

=
L

ll
l

L

ll

I

i
iil Tsl

**
1

1
1ρ , then there exists a capacitated

optimal solution in which Ksll = and,

}1 machineon timeprocessinglargest with the wafers)1{(}{ *

*

KlLSL
L

ll
l +−⊂

=
Υ .

Proof: By definition of *l , we have Ksll ≤ for 1
1

1 l

I

i
iil Tsl =∑

=

ρ , Llll ,...2,1 ** ++=∀ ,

and Ksll >* for
1

1
1 ** l

I

i
iil

Tsl =∑
=

ρ . Suppose there does not exist a capacitated optimal

solution S in which Ksll = and

}1 machineon timeprocessinglargest with the wafers)1{(}{ *

*

KlLSL
L

ll
l +−⊂

=
Υ .

There are two possible cases:

 94

(i) *ll ≥∃ such that Ksl l <'

Construct another solution S ′ by keeping the last KlL)1(* +− products for sublots *l to

L. Note that, in the process, ∑
+=

−+−
L

ll
lslKlL

1

*

*

)1(products from sublot *l will be kept in

sublot *l for solution S ′ and the leftover products])1[(
1

*

*
* ∑

+=

−+−−=
L

ll
ll slKlLslψ from

sublot *l will be added to previous 1* −l sublots (see Figure 4.9). As

KslKlL
L

ll
l ≥−+− ∑

+= 1

*

*

)1(, by applying the results in Proposition 4.9, we can find a

solution of Ksl
l
=*' and Ksl

l
≥

+1*' . We can repeat the process of applying Proposition

4.9 until Ksl L =−1' and Ksl L =' . In the process, there will be no idling created on

machine 2. Moreover,
1

1)(*
*

11
−

−
−=

−
=
∑ lL

L

ll
l

c
cslUT is reduced in new schedule S ′ , and so

is the makespan, ∑
=

+=
I

i
iiUTC

1
211max ρ . This implies that our assumption is incorrect.

Figure 4.9: Construction of another solution S’

M1

M2

Ksl
l
>* Ksl

l
≤

+1*

∑
+=

−+−
L

ll
lslKlL

1

*

*

)1(

ψ

2,1*'
−l

C

Ksl
l

≤
+2*

1,1*'
−lC

 95

(ii) }1 machineon timeprocessinglargest with the ofout wafers)1{(}{ * UKlLSLl +−⊄ .

Substitute those sublots with KlL)1(* +− products with the largest 1iρ values. As above,

this will not result in idling on machine 2 but will reduce 11T . Thus, our assumption is

incorrect. ◘

Combining the results of the propositions above, we can develop an algorithm,

designated Algorithm Sam-Cap to find the capacitated optimal solution. This is

presented next.

Algorithm Sam-Cap

Step 1: Solve the uncapacitated problem using Algorithm Sam-Uncap and find the

value 1lT , for l=1, 2, .., L.

Step 2: Apply Algorithm CF to check whether there exists an optimal solution, which is

capacity feasible. If yes, go to step 7; otherwise go to step 3.

Step 3: Let Llend =

Step 4: Starting from endlk = , check whether Kllsl end

l

kl
l

end

)1(+−≤∑
=

 for

∑∑∑
== =

=
endend l

kl
l

l

kl

I

i
iil Tsl 1

1
1ρ , until we find the first γ=k such that

Kllsl end

l

l
l

end

)1(+−>∑
=γ

 for ∑∑∑
== =

=
endend l

l
l

l

l

I

i
iil Tsl

γγ

ρ 1
1

1 .

Step 5: Pick Klend *)1(+− γ number of products from the end of the sequence, and

apply Proposition 4.9 to construct a solution with Ksll = , for endll ,...1, += γγ .

Step 6: If 1=γ , go to step 7, otherwise, let 1−= γendl go to step 4.

Step 7: Stop. We have identified a capacitated optimal solution.

 96

4.4.2 Different ratios of processing times of products on machine 2 to those on

machine 1 ()ji cc ≠

Note that we assume ic to be such that either 1>ic or 1<ic , i∀ =1, 2, …, I. We do not

consider the mix case in which 1>ic for some i and 1<ic for others. This is a

reasonable assumption due to the physics of wafer fabrication. For example, processing

time at a stepper is consistently longer than that at an etching tool for a product. However,

as it can be seen later in this section, some results that we present can actually be applied

to the case of mixed 1>ic and 1<ic values as well.

4.4.2.1 Uncapacitated optimal sublot sizes

Proposition 4.13: The compact-block-structure property is a necessary but not a

sufficient condition for optimality of sublot sizes.

Proof: The proof of the necessity of compact block structure for optimal sublot sizes

follows by Proposition 4.6 and Corollary 4.1.

We show by a counter example that the compact-block-structure property is not sufficient

for optimality of sublot sizes. We use the following procedure to construct such an

example.

Step 1: Apply Proposition 4.2 to product type i individually, i=1, 2, …, I. This gives

sublot sizes ilsl , i=1, …, I .

Step 2: Combine the sublots of different product types in each sublot index l, i.e.,

∑
=

=
I

i
ill slsl

1

, for l=1, 2, …, L.

The resulting solution follows the compact block structure, however, it need not be

optimal.

 97

Example 4-1:

The data for this example is presented in Table 4.1.

Table 4.1: Data for Example 4-1
Lot index 1 2 3 4 5 6 7 8

Lot size (is) 1 2 8 7 9 5 1 10

1iρ 2.1 2.5 3.1 3.5 1.4 2.7 3.8 2.4 Processing

time (ijρ)
2iρ 4.6 3.9 6.4 5.8 2.9 3.1 6.8 5.3

Table4.2: Schedule for Example 4-1 obtained by applying the above procedure
Completion times)(ljC Sublot 1 Sublot 2 Sublot 3 Sublot 4 Sublot 5

Machine 1 5.83 15.23 31.18 59.54 111.9

Machine 2 15.23 3.18 59.54 111.9 211.438

The schedule obtained by applying the above procedure is shown in Table 4.2. Note that,

the completion times of the sublots follow the compact block structure, and the makespan

is 211.438. however, the optimal makespan is 208.349.

Proposition 4.14: There exists an optimal solution in which the product types appear in

the non-increasing order of ic values.

Proof: Suppose there exists an optimal solution S, with neighboring sublots i and i+1

containing product type a in sublot i and product type b in sublot i+1, such that ba cc < .

Let 1aT , 1bT , and 2aT , 2bT represent the processing times of product types a and b on

machines 1 and 2, respectively (see Figure 4.10).

 98

Figure 4.10: Exchange of products between sublots a and b

We have the following two cases:

(1) 11 ab TT ≥

Let η+= 11 ab TT . We can exchange product a with a part of product b that is equivalent

to the processing time of 1aT .

After this exchange, 1,1+iC remains unchanged, but

2,12,112,122,2,)(****' iabaibaaaibaaii CccTCcTcTCcTTCC >−+=+−=+−= .

Thus, there is no idle time created between sublot i and sublot i+1 as a result of this

exchange, while 2,1+iC remains the same. Thus, after the exchange, the solution remains

optimal. Therefore, by putting a product with a higher ic value earlier in the sequence

does not worsen the solution.

Ta1 Tb1

Ta2 Tb2

sublot i

Ci+1,2 Ci-1,2

Ci+1,1 Ci-1,1

sublot i+1

Ci,1

Ci,2

 99

(2) 11 ab TT ≤

Let η+= 11 ba TT . We can exchange product b with a part of product a that is equivalent

to the processing time of 1bT .

After the exchange, 1,1+iC remains unchanged, but

.)(*
)**()*()**('

2,2,

112,122,2,

iabi

abbaaiabbaii

CccC
ccTcTCccTTCC

>−+=

++−=++−=

η
ηη

Thus, there is no idle time created between sublot i and sublot i+1 as a result of the

exchange, while 2,1+iC remains the same. Thus, after the exchange, the solution remains

optimal.

This exchange process can be repeated until the desired condition is achieved without

worsening the solution. ◘

But, how to divide these product types ordered by non-increasing ic values into L parts

remains a key question.

First, note that, since the products are arranged in the non-increasing sequence of

ic values, once the first sublot 1sl is chosen, there exists a unique schedule if the compact

block structure is enforced, except for the last sublot. We can illustrate this as follows.

.

If we choose a small 1sl and apply the compact block structure, the resulting schedule is

shown in Figure 4.11.

 100

Figure 4.11: A compact schedule if the first sublot is small

On the other hand, if we choose a larger 1sl , and apply the compact block structure, the

resulting schedule may be as shown in Figure 4.12.

Figure 4.12: A compact schedule if the first sublot size is large

Therefore, depending on the value of 1sl chosen, sublot L may not follow the compact

block structure. However, if 1sl is chosen correctly, then the last sublot will also follow

the compact block structure. We show this next.

But, first, we show that 2,1−LC is a continuous monotone increasing function of 1sl .

M1

M2

2,1−LC

M1

M2

2,1−LC

 101

Proposition 4.15:)(12,12,1 slCC LL −− = is a continuous monotone increasing function of 1sl

if the compact block structure is enforced for intervening sublots.

Proof: (1) Since 1>ic , the sublots are increasing in size starting from sublot 1, and as

the size of first sublot 1sl increases, 1−Lsl will increase correspondingly,

∑
−

=
− +=

1

1
1122,1

L

l
lL TTC also increases. Thus,)(12,12,1 slCC LL −− = is a monotone, increasing

function of 1sl .

(2) Suppose we increase 1sl by 1ε , 01 →ε as shown in Figure 4.13. This 1ε is

contributed by certain product type, indicated by 1μ . Thus, 12T increases by

2112 1
* μρε=ΔT . Therefore, we have,

,' 111111 1μ
ρε+= TT

211212 1
' μρε+= TT .

,

)()('''

211112

2111211121112

11

11

μμ

μμ

ρερε

ρρε

++=

+++=+=

C

TTTTC

1221111221 2
'' μρε++== TTCC , where

1

211
2

2

11
)(

μ

μμ

ρ
ρρε

ε
+

= .

Similarly, we have,

,

''

221122

2222121122

21

2

μμ

μ

ρερε

ρε

++=

+++=

C

TTTC

133121112231 3
'' μρε+++== TTTCC , where

1

2211
3

3

21

μ

μμ

ρ
ρερε

ε
+

= .

and

.

''

231132

233222121132

31

3

μμ

μ

ρερε

ρε

++=

++++=

C

TTTTC

 102

144131211141 4
' μρε++++= TTTTC , where

1

2311
4

4

31

μ

μμ

ρ
ρερε

ε
+

= .

Next, we want to use induction to show
1

2111 11

l

ll
l

μ

μμ

ρ
ρερε

ε −−+
= , for l=1, 2, …, L-1.

Suppose when l=k,
1

2111 11

k

kk
k

μ

μμ

ρ
ρερε

ε −−+
= . We have,

22,322212112, ...''
kkkk TTTTTC μρε++++++= , and

111,13121111,1 1
...'

++++ +++++=
kkkk TTTTC μρε , where

1

211
1

1

1

+

+
=+

k

kk
k

μ

μμ

ρ
ρερε

ε .

Hence, we have
1

2211
1

1

21

−

−−
−

+
=

L

LL
L

μ

μμ

ρ
ρερε

ε .

Based on the above result, we can also write a closed-form representation containing only

1ε for lε , l=2, 3, …, L-1, as follows,

),.......1(1232432322
1

11
1

1

1 cccccccccc LLLLLLLLL
L

−−−−−−−−− +++++=
−μ

μ

ρ
ρε

ε

).........

('

121

3212111112,121212,12,1 111

ccc

cccccccCCC

LL

LLLLLLLLLL L

−−

−−−−−−−−−−

++

++++=++=
− μμμ ρερερε

Let }...,,max{ ,21max Lcccc = , we have))
1
1

(('
max

max
max112,12,1 1 −

−
+≤− −− c

c
cCC

L

LL μρε .

Let 0
)

1
1

(

'

max

max
max1

1
1

1

>

−
−

+
=

c
c

c
L

μρ

ε
ε . As 0'1 →ε , we have '' 12,12,1 ε≤− −− LL CC . This implies

that)()'(lim 12,1
'

12,1
11

slCslC L
slsl

L −
→
− = . Thus,)(12,1 slCL− is a continuous function of 1sl . ◘

 103

Figure 4.13: The change in the compact block structure when 1sl increases

Proposition 4.16: If the product types are arranged in the non-increasing order

of ic values, all the sublots are critical in an optimal solution.

Proof: Due to the non-increasing order of ic values, we cannot simply employ the method

that was used in Proposition 4.6 to prove this proposition. For instance, if

θθ iijij Uslsl +−=)1(' and 0=ijsl , the solution, 'ijsl will not follow the desired non-

increasing sequence of ic values.

Starting from the first sublot, let sublot j be the first sublot which is not critical. We have

the following two cases:

(1) 12,1 jj CC >−

M1

M2

sublot 1

1ε
2ε 3ε

sublot 2

11T

12T

'
11T

'
12T

21T 31T

'
21T '

31T

sublot 3

21T '
22T

 104

Figure 4.14: The schedule when 12,1 jj CC >−

For this case, the completion time for the first j sublots is ∑
=

+=
j

i
ij TTC

1
2112 (see Figure

4.14). In Proposition 4.15, we have shown)(12,1 slC j− to be a continuous, monotone

increasing function of 1sl if compact block structure is followed for the intervening

sublots, which is the case here. We can reduce 1sl and construct a compact block

structure for sublots 1, 2, …, j. As a result, we have new completion time of sublot j on

machine 2 22 ' jj CC < .

(2) 12,1 jj CC <−

For this case, the completion time for the first j sublots on machine 2, ∑
=

+=
j

i
ijj TTC

1
122

(see Figure 4.15). As before, by increasing 1sl , we can construct a compact block

structure for sublots 1, 2, …, j. We have new completion time of sublot j on machine 2,

∑
=

+=
j

i
ijj TTC

1
122 '' . Note that, as a result of this adjustment, the size of the last sublot, jsl ,

decreases for a given lot size since the sizes of the other sublots increase. Consequently,

we have jj slsl <' and 22 ' jj CC < .

M1

M2

sublot j

1jC

2,1−jC 2jC

 105

Figure 4.15: The schedule when 12,1 jj CC <−

If Lj = , we stop, and have proved the result. Otherwise, we compare 1,1+jC and 2' jC .

There are three possible cases: (1) '21,1 jj CC >+ . In this case, we can, once again,

construct the compact block structure for the first j+1 sublots as described above, and

obtain 2,12,1 ' ++ < jj CC . (2) '21,1 jj CC =+ . There will be idling on machine 2 between the

completion of sublot j, '
2jC and the beginning of sublot j+1 because 2

'
2 jj CC < and 2jC is

the starting time of sublot j+1 on machine 2. We can left-shift sublot j+1 on machine 2 by

'22 jj CC − and obtain 2,12,1 ' ++ < jj CC . This way, we have the compact block structure for

the first j+1 sublots. (3) '2,1,1 jj CC <+ . Once again, as described above, we can construct

the compact block structure for the first j+1 sublots, and obtain 2,12,1 ' ++ < jj CC . We can

repeat this process until j=L, and finally, obtain max22max '' CCCC LL =<= . The resulting

solution follows the compact block structure. ◘

Note that the processing times of sublots is increasing since 1>ic . As for the sublot sizes,

it really depends on the value of ic as well as 1iρ and 2iρ , i=1, 2, …, I. Let lc , 1lρ and

2lρ indicate the average ratio, and average processing times on machine 1 and machine 2,

M1

M2

sublot j

1jC

2jC 2,1−jC

 106

respectively, for sublot l. They can be calculated as follows:
1

2

1
1

1
2

l

l
I

i
iil

I

i
iil

l

sl

sl
c

ρ
ρ

ρ

ρ
==

∑

∑

=

= ,

l

I

i
iil

l sl

sl∑
== 1

1

1

ρ
ρ , and

l

I

i
iil

l sl

sl∑
== 1

2

2

ρ
ρ . For compact block structure, we have

11,12 ++= llll slsl ρρ . Therefore, if
1

1,1

l

l
lc

ρ
ρ +> , the sublot sizes will be increasing, i.e.,

ll slsl >+1 , l=1, …, L, and vice versa. Consequently, it is possible to have fluctuating

sublot sizes.

An upper bound on the processing time of the first sublot, LBT −11 , can be found by using

the average of the processing times of all sublots on machine 1,
L

U
T

I

i
ii

UB

∑
=

− = 1
1

11

ρ
, since

111 TTl ≥ , l=2, 3, .., L.

Remark 4.1: An ω -optimal solution can be found by the interval bi-section search

algorithm, where 0>ω and ω is a small value.

The one dimensional interval bi-section search algorithm (Dif-Uncap) can be described

as follows.

Algorithm Dif-Uncap:

Step 1: Arrange the products in the non-increasing order of ic values.

Step 2: Let ω=−LBT11 and calculate
L

U
T

I

i
ii

UB

∑
=

− = 1
1

11

ρ
.

 107

Step 3: Pick the first 1sl products such that
2

1111
11

LBUB TT
T −− +

= . These products form

sublot 1.

Step 4: Determine the compact block solution of the first L-1 sublots. The left-over

products form sublot L.

Step 5: Compare 2,1−LC and 1LC . If ω>−− 12,1 LL CC , there are two cases: (i) 12,1 LL CC >− ,

new upper bound 11
'

11 TT UB =− , and go to step 3; (ii) If 12,1 LL CC <− , new lower

bound 11
'

11 TT LB =− , and go to step 3. Otherwise, go to step 6.

Step 6: Optimal solution is obtained. Stop.

4.4.2.2 Optimal sublot sizes for the capacitated case

We mainly consider a special case for this problem in which the processing times on the

first machine are the same for different product types, i.e., 11 ρρ =i .

Proposition 4.18 If 11 ρρ =i , then there exists an optimal solution in which the products

appear in the non-increasing order of ic .

Proof: We use the method employed for the proof of Proposition 4.14. Since 11 ρρ =i ,

any exchange of products between neighborhood sublots will not change the sublot sizes.

Therefore, Proposition 4.14 remains valid for the capacitated case as well. ◘

Proposition 4.19: If 11 ρρ =i , and 1>ic , then there exists an optimal capacitated

solution in which the ending sublots are of size K and the remaining sublots follow the

compact block structure. Furthermore, all products follow the non-increasing order of ic

values.

 108

Proof: Since 1>ic , we have 211211 TTT =< . Thus, the processing times of the sublots

keep increasing and so do sublot sizes since 11 ρρ =i . The ending sublots must be those

violating capacity constraint.

Suppose this is not the optimal solution. Then, there are two possible cases.

(i) The remaining sublots do not follow the compact block structure

But, this will not be an optimal solution by Proposition 4.16.

(ii) There exists an *l , sublot ending the tobelonging *l , such that Ksl <* .

The makespan for this case is ∑
=

+=
N

i
iiUTC

1
211max ρ We can transfer some items from the

remaining sublots and make Ksl ='
* . Then, makespan, ∑

=

+=
N

i
iiUTC

1
211max '' ρ . Since for

both cases, the remaining sulots are in compact block structure, 1111 ' TT < , which leads to

a contradiction. ◘

The algorithm to find capacitated optimal solution (Dif-Cap) can be described as follows.

Algorithm Dif-Cap:

Step 1: Arrange the products in the non-increasing order of ic values.

Step 2: Let Llend = .

Step 3: Apply Dif-Uncap algorithm

Step 4: Check capacity constraint. If there is no violation, then we have found an optimal

solution, go to step 7. Otherwise, go to step 5.

Step 5: Find the largest sublot *l such that Ksll >* , i.e., }{maxarg
 ,

* Ksll llll end

>=
≤

. Let

Ksll = for l= *l , 1* +l , …, endl .

 109

Step 6: Update endl with 1* −= llend . If 0>endl , go to step 3. Otherwise, go to step 7.

Step 7: Sop. We have an optimal solution.

4.5 Adjustment heuristics

Recall from Section 4.2.2 that the capacitated optimal schedules obtained from

Algorithms Sam-Cap and Dif-Cap may not be feasible to MLCSP3 as wafers belonging

to a lot may be split among different sublots (carriers). But, they can be considered as

“target” solutions. Heuristic procedures are used to fine-tune the target solutions, and

make them feasible to MLCSP3 while keeping minimum deviation from the target.

4.5.1 Lots with the same ratio of processing times (cci =)

As described in section 4.4.1, in the capacitated optimal solution, the processing time for

each sublot is unique but sublots have high variety of products and sizes. So, the target

should be the processing time for each sublot 1lT rather than the sublot sizes lsl as in

Laub et al. (2007). Since ic is the same, once processing time at machine 1 is used as

target, the processing time at machine 2 will be automatically “targeted”.

We use the following four heuristic procedures.

(i) First Fit for 1lT with Increasing 1lT (Sam-FFI).

Step 1: Arrange lots in the decreasing order of processing times on machine 1, 1iis ρ , for

i=1, 2, …, N.

Step 2: Arrange 1lT in the increasing order, for l=1, 2, …, L.

Step 3: Let '
1lT indicate the sum of the processing times of the lots on machine 1 assigned

to carrier l, and '
ls indicate the sum of the sizes of the lots assigned to carrier l, for

l=1, …, L.

 110

Step 4: Start with i=1.

Step 5: Assign lot i to the first available carrier l such that 1
'
11 * iill sTT ρ+≥ and

Kss il ≤+' , go to step 7. If such a carrier l cannot be found, go to step 6.

Step 6: Assign lot i to carrier *l with }{ max '
11

*
lll

TTl −= .

Step 7: if i=L, go to step 8; otherwise, let i=i+1, and go to step 5.

Step 8: Stop.

(ii) First Fit for 1lT with Decreasing 1lT (Sam-FFD).

The same as (i) except that 1lT is arranged in decreasing order.

(iii) Best Fit for 1lT with Increasing 1lT (Sam-BFI).

The same as (i) except that the best fit policy is used, which is to assign a lot to the fullest

possible carrier, i.e., lot i is assigned to carrier *l with }{ max 1
'
1

*
iill

sTl ρ+= such that

1
'
11 * iill sTT ρ+≥ and Kss il ≤+' .

(iv) Best Fit for 1lT with Decreasing 1lT (Sam-BFD).

The same as (iii) except that 1lT is arranged in decreasing order.

4.5.2 Lots with different ratios of processing times ()ji cc ≠

In this case, consideration of processing time on machine 1 or that on machine 2 as a

target is not enough. Due to different ratios, when one is targeted, the other one will not

be automatically targeted. Thus, the target should be processing times for each sublot on

both machine 1, 1lT , and machine 2, 2lT .

 111

We use the following four heuristic procedures.

(i) First Fit for 1lT with Decreasing 1iis ρ while considering 2lT (Dif-FF1).

Step 1: Arrange lots in the decreasing order of processing times on machine 1, 1iis ρ , for

i=1, 2, …, N.

Step 2: Keep the original sequence of 1lT , for l=1, 2, …, L.

Step 3: Let '
1lT , '

2lT indicate the sum of the processing times of the lots assigned to carrier

l on machines 1 and 2, respectively, and '
ls indicate the sum of the sizes of the lots

assigned to carrier l, for l=1, …, L.

Step 4: Start with i=1.

Step 5: Assign lot i to the first available carrier l such that 1
'
11 * iill sTT ρ+≥ ,

2
'
22 * iill sTT ρ+≥ and Kss il ≤+' , go to step 7. If such a carrier l cannot be

found, go to step 6.

Step 6: Assign lot i to carrier *l with)}(){(max 2
'
221

'
11

*
iilliilll

sTTsTTl ρρ −−+−−= .

Step 7: if i=L, go to step 8; otherwise, let i=i+1, go to step 5.

Step 8: Stop.

(ii) First Fit for 2lT with Decreasing 2iis ρ while considering 1lT (Dif-FF2).

The same as (i) except that 1lT is exchanged with 2lT .

(iii) Best Fit for 1lT with Decreasing 1iis ρ while considering 2lT (Dif-BF1).

The same as (i) except that best fit policy is used.

(iv) Best Fit for 2lT with Decreasing 2iis ρ while considering 1lT (Dif-BF2).

 112

The same as (ii) except that best fit policy is used.

4.6 Numerical experimentation

In this section, we test the performance of the heuristic procedures (Sam-FFI, Sam-FFD,

Sam-BFI, Sam-BFD, Dif-FF1, Dif-FF2, Dif-BF1, Dif-BF2) with the direct solution of

the problem using the AMPL CPLEX Solver (version 10.1). The performance measure is

the gap between the heuristic solutions and optimal solutions. The summary of the test

data is contained in Table 4.3. We test 3 cases with 15, 20, and 25 lots. For each case,

three L values are used, namely, small, medium and large, which result in schedules with

high, medium and low densities. Thus, there are a total of 933 =× data sets. For each

data set, we generate 20 problem instances with randomly generated lot sizes.

Table4.3: Data used in numerical experimentation for problem MLCSP3

Number of lots (N) 15, 20, 25
High
density ⎥⎥

⎤
⎢⎢
⎡ × %100

/ sK
N

Medium
density }%140

/
,1%100

/
max{ ⎥⎥

⎤
⎢⎢
⎡ ×+⎥⎥

⎤
⎢⎢
⎡ ×

sK
N

sK
N

Number of
carriers
available (L)

Low
density }%180

/
,2%100

/
max{ ⎥⎥

⎤
⎢⎢
⎡ ×+⎥⎥

⎤
⎢⎢
⎡ ×

sK
N

sK
N

Lot size (si) Uniform distribution [1,10] †1
Average lot size (s) 5.5
Processing time per wafer

ijρ (minutes)
Uniform distribution [0.6,1.5] †2

Ratio of processing times
(ic)

Uniform distribution [1,5] †3

Carrier capacity (K) 25 wafers
(†1 see ITRS 2006 Factory Integration, †2 , †3 from real fab data)

We coded the heuristic procedures using Excel VBA (version 2003). All numerical tests

were done on a Dell computer with Pentium 4 processor (2.8GHz).

 113

Table 4.4: The experimental results for the solution of MLCSP3 when the lots have the same
ratio of processing times†

Data
set

Number
of Lots
(N)

Number
of
Carriers
(L)

LB Sam-FFI Sam-FFD Sam-BFI Sam-BFD

1 15 4 99.20% 101.20% 100.72% 100.72% 101.20%
2 15 5 99.11% 100.89% 101.23% 100.89% 101.20%
3 15 6 99.67% 100.33% 100.92% 101.87% 100.33%
4 20 5 98.73% 101.27% 100.16% 101.27% 100.16%
5 20 7 99.39% 100.61% 100.16% 100.61% 100.16%
6 20 8 99.55% 100.45% 101.23% 100.83% 100.72%
7 25 6 99.81% 100.19% 100.10% 100.19% 100.10%
8 25 8 99.63% 100.37% 100.16% 100.37% 100.16%
9 25 10 99.91% 100.09% 100.94% 101.03% 101.21%

(The base value is *
maxC)

Table 4.5: The experimental results for the solution of MLCSP3 when the lots have different

ratios of processing times†

Data set Number
of Lots
(N)

Number
of
Carriers
(L)

LB Dif-FFI Dif-FFD Dif-BFI Dif-BFD

1 15 4 97.58% 102.83% 100.96% 102.93% 100.66%
2 15 5 98.15% 102.17% 102.15% 101.17% 102.15%
3 15 6 99.10% 101.94% 100.56% 101.89% 100.56%
4 20 5 98.58% 102.33% 100.66% 102.69% 101.56%
5 20 7 97.15% 101.17% 102.15% 101.17% 102.15%
6 20 8 99.40% 102.90% 100.97% 101.93% 100.97%
7 25 6 99.66% 101.08% 101.36% 101.09% 101.08%
8 25 8 99.58% 101.33% 101.40% 102.45% 103.20%
9 25 10 99.59% 102.93% 100.92% 102.98% 101.41%

(The base value is *
maxC)

The experimental results of heuristic procedures are presented in Tables 4.4 and 4.5 for

the solution of MLCSP3 when the lots have the same ratio of processing times and

different ratios of processing times, respectively. The lower bounds (LB) are the solutions

obtained from algorithms Sam-Cap and Dif-Cap. Note that the gap between LB and

optimal solution *
maxC is less than 2% for MLCSP3 when the lots have the same ratio of

processing times and less than 3% for MLCSP3 when the lots have different ratios of

 114

processing times. Thus, the targets we use in our heuristic procedures are very good. It

can be seen that all the eight heuristic procedures perform very well and the solutions

obtained are consistently within 3% of the optimum for MLCSP3 when the lots have

same ratio of processing times and 4% for MLCSP3 when the lots have different ratios of

processing times. This is because our heuristics are based on First Fit and Best Fit

algorithms for the bin packing problem. Those algorithms have been shown to generate

solutions close to optimality (Coffman et al. (1996)). In particular, the first four

procedures (Sam-FFI, Sam-FFD, Sam-BFI and Sam-BFD) generate solutions closer to

optimum than the remaining four (Dif-FF1, Dif-FF2, Dif-BF1 and Dif-BF2) procedures.

This follows because the latter target the processing times on both machine 1 and

machine 2. In addition, note that, the performance of our heuristic procedures is robust in

terms of problem size (number of lots N), carrier densities, and processing times. This

follows by the fact that the algorithms for the bin packing problem are not affected by

these factors.

For the number of lots greater than 25, the CPLEX Solver requires more than 3600

seconds to solve the problem. Instead, our heuristic procedures are able to generate

solutions in seconds. Since the optimal solution *
maxC is not available for larger-size

problems, another performance measure that we use is the gap between the LBs and the

solutions generated by our heuristic procedures. Additional tests were run for larger

problems, and the results are presented in Tables 4.6 and 4.7. It can be seen that the gaps

between the LBs and solutions generated by our heuristic procedures are less than 4%

and 6% for MLCSP3 when the lots have the same ratio of processing times and different

ratios of processing times, respectively, which indicate that the solutions generated by the

heuristic procedures are within 2% and 4%, respectively, for the cases with the same and

different ratios of processing times if a gap of 2% still holds between the LBs and optimal

solutions.

 115

Table 4.6: The experimental results for the solution of MLCSP3 when the lots have the same
ratio of processing times†

Data
set

Number
of Lots
(N)

Number of
Carriers
(L)

Sam-FFI Sam-FFD Sam-BFI Sam-BFD

1 25 6 101.39% 101.15% 101.59% 101.15%
2 25 8 101.46% 101.37% 101.35% 101.26%
3 25 10 101.04% 102.25% 102.93% 102.62%
4 30 8 102.28% 101.42% 101.27% 102.09%
5 30 11 102.59% 103.56% 101.69% 103.20%
6 30 13 101.33% 102.63% 102.83% 101.53%
7 50 14 103.62% 101.46% 102.57% 101.65%
8 50 17 101.64% 101.39% 101.81% 102.36%
9 50 22 101.55% 102.49% 102.49% 103.37%

(The base value is LB)

Table 4.7: The experimental results for the solution of MLCSP3 when the lots have different

ratios of processing times†

Data set Number of
Lots (N)

Number of
Carriers (L)

Dif -FFI Dif-FFD Dif -BFI Dif-BFD

1 25 6 103.80% 102.11% 103.80% 102.11%
2 25 8 104.14% 105.15% 104.14% 105.15%
3 25 10 103.52% 101.58% 102.55% 103.58%
4 30 8 101.42% 101.71% 101.44% 101.42%
5 30 11 101.76% 101.83% 102.88% 103.24%
6 30 13 103.35% 101.33% 103.40% 102.83%
7 50 14 102.42% 102.22% 102.62% 101.91%
8 50 17 101.94% 102.54% 103.38% 105.28%
9 50 22 102.89% 104.38% 102.47% 104.51%

(The base value is LB)

4.7 Conclusions

In this chapter, we have addressed a two-machine flow shop, multiple-lots-per-carrier,

single-wafer-processing-technology scheduling problem for the objective of minimizing

the makespan (MLCSP3). We have first formulated this problem as an integer

programming model. Due to the difficulty of solving this model directly, we consider a

relaxation of the problem by permitting unlimited carrier capacity and allowing splitting

of the lots in different carriers, and transform the original problem to a two-machine flow

shop lot streaming problem. For the lot streaming problem with lots having the same ratio

 116

of processing times, we propose an algorithm (designated Sam-Cap algorithm) to find

the optimal capacitated sublot sizes. For lots with different ratios of processing times, the

lot streaming problem is more complex. We, first, develop a bi-section algorithm (called

Dif-Uncap) to find the optimal uncapacitated solutions for the general case. Then, for the

case of lots with the same processing times on machine 1, we propose an algorithm

(called Dif-Cap) to find the optimal capacitated sublot sizes.

Since the optimal solutions obtained from the lot streaming problem may not be feasible

to the MLCSP3, we develop heuristic procedures based on the heuristic algorithms for

the bin packing problem, including four heuristic procedures Sam-FFI, Sam-FFD, Sam-

BFI, and Sam-BFD for lots with the same ratio of processing times, and another four

algorithms Dif-FF1, Dif-FF2, Dif-BF1, and Dif-BF2 for lots with different ratios of

processing times.

Our numerical tests indicate that the proposed heuristic procedures generate solutions that

are close to optimum. The gap is less than 3% for Sam-FFI, Sam-FFD, Sam-BFI, and

Sam-BFD, and less than 4% for Dif-FF1, Dif-FF2, Dif-BF1, and Dif-BF2. In addition,

the heuristic procedures find solutions in few seconds while the CPLEX Solver cannot

solve the problems with number of lots larger than 25 within the allowable time of 3600

seconds. For large-size problems, the performance measure that we use is the gap

between the LB and the solution values generated by our heuristic procedures. The results

indicate that this gap is within 5% when the lots have the same ratio of processing times

and within 6% when the lots have different ratios of processing times.

 117

Chapter 5: Minimization of Makespan for an Integrated AMHS

and Lot Scheduling Problem (IMHLSP) with Infinite Vehicle

Capacity

5.1 Introduction

The semiconductor manufacturing is being transformed from the processing of 200mm to

300 mm wafers. The dual promises of more chips per wafer and economies of scale have

attracted the leading semiconductor manufacturers toward the development of the 300

mm fabs. In a 300 mm fab, wafers with diameters of 300 mm (12 inches) are carried in a

25-wafer box, called a front opening unified pod (FOUP) (see Figure 5.1). With a weight

of 18 lbs, the FOUP is too heavy to be carried around the factory and handled manually

on a repeated basis. Additionally, it will not be efficient to use manual carts in a high

volume manufacturing environment. Thus, the implementation of an automated material

handling system (AMHS) has never been so important in such an environment.

Figure5.1: A front opening unified pod (FOUP)

A typical AMHS consists of three components: tracks built under the ceiling, overhead

vehicles (OHV), and stockers (see Figure 5.2). In general, there are two types of AMHSs

that are used in a wafer fab. The first is the interbay system, which transports boxes of

wafers between process bays. The other is the intrabay system, which transports boxes of

wafers within a process bay. Unlike a 200 mm fab where, usually, only an interbay

system is widely used, a 300 mm fab utilizes both interbay and intrabay systems. Figure

5.3 shows one simplified AMHS layout, which contains a single loop of the interbay

 118

system, eight intrabay systems, and 16 stockers. The tools shown in Figure 5.3 are

categorized into 6 areas: diffusion, etching, implant, lithography, thin-film and inspection.

Figure5.2: A snapshot of AMHS in a 300mm fab

Figure 5.3: A simplified AMHS layout

Intrabay
Interbay

Vehicle
Stocker
Etch
TF
TF (INSP)

LITHO

DIFF
IMP

INSP

Track

OHV

Stocker

 119

5.1.1 Important control issues of an AMHS

Vehicles allocation and routing

In a 300 mm fab, overhead vehicles can be assigned to different parking places, or

process bays during different shifts or periods. Also, due to the complexity of the AMHS

layout, vehicles may follow different paths while delivering a lot from an origin to a

destination.

Vehicles scheduling

One key requirement of an AMHS is to deliver the right lot at the right time to the right

place.

Delivery time estimation

Delivery time is an important parameter for developing vehicle dispatching heuristics of

the AMHS. Delivery time includes load/unload time, traveling time with empty load,

loaded-traveling time, and waiting time due to traffic congestion. Besides, different

routes will require different travel times.

Node balancing

Nodes are defined as the load/unload places in the AMHS network. One of the observed

problems with the AMHS is that vehicles tend to cluster around one busy node at certain

production times. This is a direct result of lot batching and frequent move-requests at one

specific node. Hence, it is necessary to balance the flow of traffic at the busy nodes in the

AMHS.

 120

Deadlock prevention

Most tools in a 300 mm fab have very limited buffer size, usually 2 or 3 FOUPs.

Deadlock happens when one lot finishes processing at the tool and requests to be

transported, but the buffer space at the next tool is full.

Response to interruption

Both an AMHS and a 300 mm fab are complex systems. A breakdown of the AMHS, tool

failure, scheduled maintenance, and traffic congestion are encountered inevitably in the

daily operation of these systems. Fast response strategies to these interruptions or

unplanned events are critical in order to maintain their continuous operation.

5.1.2 Lot scheduling

Since the development of VLSI technology about four decades ago, semiconductor

manufacturing has evolved into one of the most complex manufacturing systems.

Typically, one such system requires over 400 processing steps on 100 or more different

tools, with processing routes consisting of re-entrant flows (revisiting the same sequence

of machines for each masking layer). Furthermore, the 300 mm fabs are as large as three

football fields.

Extensive studies have been reported that address the traditional scheduling problems

involved in the 200 mm fabs. These pertain to the study of qualification lots, integrated

metrology, send-ahead wafers, lot sizes, priority lots, reticle scheduling, among others.

These issues will continue to exist in a 300 mm fab as well. In addition, new scheduling

related issues are expected to arise because of the new features of the 300mm fab.

 121

Factory Control System (FCS)

Automatic equipment control Material control system (MCS)

Vehicle
Overhead Track

Message Bus

Station
controller

Lot ID
Reader
System

Tools

Vehicle
controller

Track
sensors

Stocker
controller

Stockers

5.1.3 Integration of lot delivery and scheduling

In the control framework of a 300 mm fab, the AMHS control is connected with

production scheduler/dispatcher via a message bus (see Figure 5.4). The factory control

system (FCS) contains information about process route of each lot, WIP information, and

process recipe required at each operation. The material control system (MCS) is the

“traffic controller” of the AMHS. Its function is performed by three subsystems: vehicle

controller, track sensor and stocker controller. The vehicle controller tracks the status and

positions of the vehicles, and assigns a vehicle to perform a specific move. The stocker

controller manages the stocker robot, and keeps track of storage locations of the lots. The

vehicle traffic is monitored by track sensors.

Figure 5.4: The FCS and MCS control framework

The FCS determines scheduling and dispatching of the lots and the reticles. It informs the

MCS where to move a lot after the completion of a process step, and which lot to deliver

to a tool that has just become available. Once the MCS receives the information from

FCS, it determines whether the lot specified by the FCS is in a stocker or in transit. If the

 122

next tool is available, it will assign one vehicle to transport the lot to the tool. Otherwise,

it will direct the lot to a stocker.

While a significant amount of research effort has been devoted to the operational control

of an AMHS and production scheduling individually, the two problems are, however,

tightly inter-connected. Clearly, production scheduling provides delivery requests and, in

turn, impacts operational control of the AMHS, especially its vehicle scheduling, and

provides the release time for lot operations on downstream machines. It is possible to

conceive of a situation where a “good” production schedule, determined independently,

provides a very “poor” input for vehicle scheduling, and vice versa, making the overall

schedule unacceptable. An overall schedule determined by taking into consideration the

lot delivery issues and scheduling of production will perform better with regard to overall

fab performance metrics, e.g., throughput rate, and cycle time, among others.

International SEMATECH has specified the following requirements to that end for the

new dispatcher/scheduler to effectively address the integration problems in a 300 mm fab

(International SEMATCH (2000)).

Coordinated delivery for batch processing

This pertains to scheduling coordinated delivery of all the materials included in a batch

process operation. The scheduler/dispatcher needs to coordinate the delivery of the

materials so that the required materials arrive at the destination equipment within a

specified time window for the batch operation.

Determining next destination

This involves determination of the next equipment for a lot after having finished its

current processing. The scheduler/dispatcher must be able to determine the next

destination for the material to allow for the scheduling of the delivery resources required

to transport it to that destination.

 123

Delivery to optimal location

The scheduler/dispatcher may need to schedule the movement of material in order to

optimize future delivery times to the next equipment. This situation might be caused by

selection of an alternative storage location due to limited storage capacity in the first

choice of a stocker. Such an interim delivery would position the material such that the

transport time is minimized when the delivery of that material to a production equipment

is scheduled.

5.1.4 Problem statement

The integrated AMHS and lot scheduling problem (IMHLSP), or in short, the integrated

problem, can be formally stated as follows. Given the fab manufacturing environment,

including AMHS layout, numbers and types of vehicles, numbers and types of machine

tools, layout of machine tools, among others, determine the optimal schedule (including

production schedule and vehicle schedule) in order to achieve the best performance

metrics such as throughput rate, cycle time and bottleneck utilization in a 300 mm fab,.

In most cases, an AMHS has limited (finite) vehicle capacity, implying availability of a

limited number of vehicles. However, in special cases, e.g., at the ramp-up state, a fab

may have low-volume production, and thus, vehicles will not be a constraint. According

to M. Kidambi (2006), in such a scenario, the AMHS will not encounter the vehicle

delivery problem. We can call this case as the AMHS with infinite vehicle capacity. We

study the case of an AMHS with infinite vehicle capacity in this chapter. The case of

finite vehicle capacity will be studied in Chapter 6.

The rest of this chapter is organized as follows. In Section 5.2, we present a literature

review of the integrated problem. A classification of the integrated problem and relevant

mathematical models will be presented in Section 5.3. Section 5.4 contains an analysis

and present methodologies for solving this problem. Results of our numerical

 124

experimentation are included in Section 5.5. We extend our analysis to fab-wide AMHS

in Section 5.6, and, finally conclude our study in Section 5.7.

5.2 Literature review

In the literature, studies pertaining to the IMHLSP can be found within and outside the

domain of semiconductor manufacturing. Very few studies have been reported in this

regard for the 200 mm and 300 mm fabs. As regards the other domains, some studies on

this problem can be found in flexible manufacturing systems (FMS), automated flow

shops, job shops and assembly lines.

5.2.1 The IMHLSP in 200 mm fabs

The semiconductor manufacturers introduced automation of 200mm tools to increase

product yield, and interbay AMHS was used to improve tool utilization, in the 1990s.

Interbay AMHSs are deployed in almost every 200 mm fab throughout the world, which

provides an effective means of logistically controlling wafer flow. Cardarelli et al. (1995,

1996) have evaluated the performance measurements of an interbay AMHS by simulation,

which includes the effects of design choices, production planning and scheduling, system

management, and operator behaviors. Their results have highlighted the importance of

storage capacity distribution in the wafer fab. Both papers have also shown the

importance of production planning and scheduling, and operator behaviors. Thus, the

integration of interbay AMHS system and production scheduling is necessary. But, these

papers did not mention how to achieve this integration.

Heinrich and Pyke (1995) have simulated the first large-scale application of conveyor-

based AMHS system in 200 mm fabs. Their results have shown that elimination of

transport batching reduces factory cycle time, and further reduction in cycle time is

possible with dynamic routing of WIP in the AMHS system. Again, this paper

emphasized the necessity of integration but did not indicate how to solve the integrated

problem.

 125

5.2.2 The IMHLSP in 300 mm fabs

The necessities of integration

The 300mm wafer processing was in vogue by the end of 1990s. The semiconductor

manufacturers recognized that fab-wide AMHS (including interbay and intrabay system)

is the enabling technology needed to optimize overall fab productivity. This was

motivated by economics of equipment utilization and handling of large-size wafers.

Based on their observation of the PRI Automation 300mm test line, the first 300mm fab

AMHS in the world built by PRI Automation Inc., Chrisos and Patt (1998) suggested that

scheduling of WIP production must address the fab-wide wafer transport capability that

links one process tool to another whether those tools are across an isle from each other or

are at opposite ends of the fab. They also pointed out three types of integration risks: the

increased amount of AMHS delivery throughput; the expansive software control needed

for WIP planning and scheduling; and the need for service and support.

Besides, NSF/SRC/SEMATECH partnership (National Science Foundation,

Semiconductor Research Corporation (SERC) Factory Science Program, and

International SEMATECH) have listed several possible research topics in their

specification proposal (SERC 2004). The list included: performance improvements for

simulation models for full factory with and without AMHS (interbay, intraby and direct

transport system) for both wafer and reticle delivery in fabs, and improving AMHS

system throughput for interbay and intrabay. Similarly, International Technology

Roadmap for Semiconductor (ITRS, Factory Integration Section) has consistently listed

such topics in their documents in the past years [9].

Integration models and solution methodologies

(1) Industry experience

 126

For semiconductor manufacturers, integration of lot delivery and scheduling, firstly,

means the control architecture and software implementation. Reveliotis (1999) proposed

the control architecture for integration of lot delivery and scheduling. The requirements

for automation software in 300 mm fabs for IBM and Intel are as follows (Carrlker 2004):

1. basic interbay/intrabay transport, load and unload

2. batching, consolidation, queueing, command center

3. factory scheduling integration with in-bay and Flexible Manufacturing Systems

(FMS) software

Based on practical experience, Carrlker (2004) introduced some insights for integration:

proactively staging vehicles at pickup points to avoid waiting for empty vehicles,

optimizing transport requests to minimize the time required to swap lots at a load port,

and allowing priority lots to reschedule vehicles previously allocated to other lots. One

new challenge arising from scheduling in 300 mm fab is multiple-lots in one carrier. Due

to requirement of high carrier utilization or tight customer due date, carrier exchanges are

required. Wang et al. (2002) have demonstrated ways for executing automatic carrier

exchange, and for determining dynamic routes for splitting/merging of wafers.

(2) Mathematical models

Apart from the publications by the semiconductor manufacturers, which, usually, provide

“good” practical insights, some researchers tried to build analytical models in order to

derive optimal solutions. Liao et al. (2004) adopted Petri nets to model the dynamics

among transport jobs and over-head transport (OHT) vehicles in an intrabay AMHS

system. The great advantage of Petri net modeling is its ability to capture the congestion

phenomenon among the OHT vehicles. The problem was, then, formulated as an integer

programming problem for the objective of minimizing average cycle time of jobs. A

small case study consisting of 4 vehicles and 6 jobs was presented. The results showed

that the optimal solutions achieved 25.6% improvement over the commonly used Nearest

Job First (NJF) rule.

 127

(3) Heuristics

Due to the intractability of large problems, most researchers resort to the use of heuristics

or dispatching rules for the solution. Tyan et al. (2004) have presented an integrated tool

and vehicle dispatching (ITV) strategy. Interactions of various vehicle dispatching rules

and tool dispatching rules were evaluated using simulation models. Due to a large

number of combinations of rules, a 2k factorial experimental design was applied. Based

on the simulation results, with the help of a multiple response optimization technique,

ITV dispatching strategies were identified. Except for the vehicle and tool dispatching

rules, Lin et al. (2006) considered the push/pull control logic in order to improve the

system performance and proposed a hybrid push/pull (PP) dispatching rule. The

simulation results showed that WIP and cycle time are reduced as a consequence of

implementing a PP dispatching rule. Similar results can also be found in Wakabayashi et

al. (2004).

Instead of using simple and fast dispatching rules, some papers have introduced more

advanced and complex dispatching rules. Li et al. (2005) described an intelligent

integrated delivery (IDD) rule by assigning a priority value to each lot. The priority value

ki is given by

∑
=

••=
m

j

j
ij

m
iiii kkkkfk

1

21),...,,(ς ,

where j
ik denotes the lot delivery priority for lot i from source j; jς denotes the

weighting factor for j
ik ; and),...,,(21 m

iii kkkf denotes the correlation function among

influencing factors j
ik , j=1, 2, …, m. The actual delivery time was shown to improve by

18% after deploying IID in one of Intel’s 300 mm factories.

Some research has employed artificial intelligence (AI) techniques to improve the

performance of dispatching rules. Min and Yih (2003) have developed a real-time

scheduler for selection of dispatching rules for both machines and AMHS in order to

obtain desired performance measures at the end of a short production interval. A

 128

simulation experiment was conducted to collect data, and then, a competitive neural

network was applied to gather scheduling knowledge for future use. The results of their

study indicated that this dispatching methodology was effective in considering the

complexity of the semiconductor wafer fabrication. Kuo and Huang (2005) proposed a

fuzzy-logic-based multimission-oriented OHT dispatcher. The dispatcher is adjusted to

accommodate the high-risk lots so that most of the production strategies could be

satisfied. Simulation results showed the proposed dispatcher to perform better than other

published dispatching rules.

(4) Delivery time estimator/predictor

As is evident from the section above, lot delivery time is an important input parameter for

the development of good dispatching rules for the integrated problem. Therefore, some

studies have been conducted to predict/estimate the lot delivery time. Liao and Wang

(2004) adopted a neural network approach to estimate the delivery times for both priority

and regular lots. Numerical experiments have indicated that this neural network approach

is sound and effective for the prediction of average delivery times (see Figure 5.5).

Besides, Mackulak and Savory (2001) have demonstrated how to use regression model to

approximate the lot delivery time. The main parameters in the regression model include

vehicle speed and number of tools in the bay.

Figure 5.5: A three-layer neural-network model

 129

5.2.3 The IMHLSP in other domains

Some fabs employ Automated Guided Vehicles (AGVs) instead of OHT vehicles for

their interbay AMHS system. AGVs have been widely applied in other manufacturing

systems over the last several decades. Therefore, this integrated problem can also be

found in other manufacturing systems where AGVs are used. These manufacturing

systems are flexible manufacturing systems (FMS), automated flow shops, job shops, and

assembly lines, among others. For a detailed review of the design and control issues of

AGVs, please refer to Ganesharajah et al (1998) and Tuan and Koster (2006).

The integration problem in FMS

Sabuncuoglu and Hommertzheim (1992) have proposed an on-line dispatching algorithm,

which uses relevant information concerning the load of the system and the status of the

jobs. It consisted of two parts: a logic associated with the scheduling of jobs on the AGVs

and a logic associated with the scheduling of jobs on the machine. The first part consisted

of four hierarchical levels:

• push logic (checking the critical stations),

• buffer logic (checking the parts in the central buffer area),

• pull logic (checking the idle stations),

• push-pull logic (identification of the most appropriate workstation and part to be

serviced).

The second part mainly computed the priority index for each candidate job waiting in the

workstation queue as follows:

operationnext on the time waitingexpected*weighttimeoperation *weightindexpriority 21 +=

Performance of the proposed algorithm was compared with several machine and AGV

scheduling rules by using mean flow time and mean tardiness criteria. Simulation results

 130

indicated that the proposed algorithm produced significant improvements over existing

scheduling rules for a variety of experimental conditions.

A similar idea can be found in Fataneh (1997). He presented a vehicle dispatching rule,

called vehicle assignment by load utility evidence (VALUE), to select the next

assignment for an available vehicle. The criticality index for output queue at workstation

k, xk , is calculated as follows:

kkk QSx /= ,

where, Qk = buffer capacity of output queue at workstation k, and Sk = current length of

output queue at workstation k.

And, the value added for each unit-load at output queue of work station k, vij , is:

ijijij npv /= ,

where, pij = total number of operations completed for the jth unit-load waiting in output

buffer of workstation k, and nij = total number of operations required for the jth unit-load

waiting in the output buffer of workstation k.

The VALUE rule selected the unit-load with smallest nij value from the output queue of

the workstation which has the biggest xk value. Simulation experiments showed that the

VALUE rule outperformed some of the best dispatching rules reported in the literature in

terms of throughput and flow time.

Instead of applying on-line scheduling heuristics to solve this integration problem, some

researchers have tried to find the optimal schedule. Bilge and Ulusoy (1995) formulated

the integrated problem as a mixed integer problem (MIP). The formulated model can be

decomposed into two subproblems: a machine scheduling problem and a generic vehicle

scheduling problem (VSP). These two subproblems interact with each other. Since both

 131

subproblems are NP-hard, an iterative solution procedure was proposed. At each iteration,

a new machine schedule was generated by a heuristic procedure. The operation

completion times obtained from this schedule are used to construct time windows for the

trips, and a feasible solution is searched for the second subproblem, which is handled as a

sliding time-window problem. Numerical experiments were conducted on 90 example

problems and the iterative solution procedure achieved 7% improvement in makespan on

the average.

For the large-size problems, a genetic algorithm (GA) was proposed by the same authors

in Ulusoy et al (1997). In the GA algorithm, chromosomes represented both operation

sequencing and AGV assignment dimensions of the search space. A third dimension,

time, was implicitly given by the ordering of operations of the chromosomes. A special

uniform crossover operator was developed which produced one offspring from two

parent chromosomes. One hundred and eighty test problems were solved. An easily

computable lower bound was introduced and compared with the results of GA. In 60% of

the problems, the proposed GA reached the lower bound, thereby indicating obtainment

of optimal solutions.

A similar MIP model was proposed by Liu and MacCarthy (1997) with special

constraints about the central storage and storage buffer for each machine. Due to

computational complexity, two heuristic procedures were developed based on the

analysis of the MIP model. One of these procedures is a “loading then sequencing”

procedure and the other is a global heuristic procedure. Computational results showed

that the global heuristic procedure performed better than the widely used “loading then

sequencing” procedure in FMS.

The IMHLSP in automated assembly lines

Anwar and. Nagi (1998) have considered the simultaneous scheduling of AGVs and

manufacturing equipment in the production of a complex assembled product. It is named

the “transportation integrated scheduling problem (TISP)”. The objective is to minimize

 132

the makespan. A heuristic procedure, called transportation integrated problem scheduling

algorithm (TIPSA) is proposed for this problem. The proposed heuristic regarded the

transportation process as an “operation” and included it in the operation network of the

assembly line (see Figures 5.6 and 5.7). In Figure 5.6, each node represents an operation

for the assembly line. New nodes, designated with name starting with “T”, in Figure 5.7,

are the transportation tasks needed between relevant operations. The transportation

schedule was, thus, obtained by exploiting the critical path of the operation network.

Experimentation on a large number of examples showed that the schedules obtained by

TIPSA result in considerable improvement in makespan over other scheduling methods

reported in the literature.

Figure 5.6: The operational network for a complex product

Figure 5.7: The operational network for a complex product including the transportation
operation

Similar studies on the integrated problems arising in automated flow shop and job shops

can be found in Han and Mcginnis (1989), Kise et al. (1991), Hall et al (2001), Kim et al

(1999), and Smith et al (1999).

 133

5.2.4 Conclusions

In this section, we have summarized solution methodologies for the IMHLSPs

encountered in the 200mm and 300mm fabs and other domains. The differences among

the IMHLSPs encountered in these domains are also indicated.

Most 200 mm fabs implement an interbay AMHS system, but intrabay AMHS system is

rarely employed in the 200 mm fab. Operators act as integrating units between an

interbay AMHS system and production scheduling. Hence, there is usually no fully

automated system in 200 mm fabs, and the integration problem in 200 mm fab is not

critical. Very few papers have addressed this issue.

Some work has been reported on the integrated problem in 300 mm fabs. But, most of the

studies use dispatching rules, or dispatching rules with AI techniques embedded in order

to improve their performance. There is only one reported study, which formulated a

mathematical programming model for a variation of the integrated problem that applied

Petri net modeling technology, and solved it optimally. The lack of reported work in this

regard is because of the difficulty in solving large-size problems or real industry-size

problems as the integrated problem is NP-hard.

There have been more extensive studies reported on the integrated problems in other

domains where AGVs are widely used. This is because those industries have a longer

history than that of the semiconductor industry. Some research papers have proposed

mathematical models for FMS, automated flow shop and assembly lines. These models

provide useful information for building mathematical model for the integrated problem in

300 mm fabs. When dealing with large-size problems, the heuristic algorithms are used,

such as GA, and priority index assignment.

However, it should be noted that the manufacturing environments in the domains outside

of semiconductor manufacturing are different from 300 mm fabs. The 300 mm fab

employs more vehicles and much more complex AMHS routes than those involved in

 134

other domains. There are also a greater number of jobs and machine tools involved in the

300 mm fabs. Therefore, the problem of integrating AMHS and lot scheduling in 300mm

fabs is a challenging one, but at the same time, it can be quite rewarding.

5.3 Problem classification and mathematical models

5.3.1 AMHS Operating Model

Different models have been used for operating an AMHS, depending upon the operating

logic used. We present these next.

Segregate Model

 Tools AGVs lots buffer

Figure 5.8: A segregate model

Under this logic of operating an AMHS, once a job is finished, it is always transported

back to the central stocker first even if there is an available buffer space at its next

destination tool. It will, then, be moved to its next destination tool (see Figure 5.8). Thus,

to move a lot from a tool to the next tool requires two trips. The segregate model is easy

1

2

Stocker

Trip 1

Trip 2

 135

to control and it does not need complicated material control system (MCS). But, it

increases the demand for lot movements. It has been widely used at the ramp-up stage for

a 300mm fab.

Direct model

Under this operating logic, once a job is finished, it is directly transported to its next

destination tool if there is an empty buffer space available at the destination tool (see

Figure 5.9). Otherwise, it stays at the current tool, thereby, blocking it. This model

reduces the transportation tasks of the AMHS. But, tool blocking will likely happen, and

it will reduce tool utilization.

 Tools AGVs lots buffer

Figure 5.9: A direct model

Weak hybrid model

This operating logic is a hybrid of the above two. Once a job finishes processing on

machine 1, it is immediately moved to machine 2 provided there is an empty buffer

1

2

Stocker

Trip 1

 136

available on machine 2. Otherwise, it is transported immediately to the stocker. This is

like a “push”. This system tends to maximize the equipment utilization, which is critical

to the memory chip manufacturers.

Strong hybrid model

This operating logic is a further refinement of the weak hybrid model. Once a job finishes

processing on machine 1, to schedule its next operation, we choose the best between the

segregate and direct models. It has advantages of both of these models. But, it is a

difficult model to implement, and thus, it is not popular in practice. However, we will

further explore this model in our study.

Note that, the above figures only indicate the intrabay scenarios. Actually, we can extend

these to the entire AMHS including interbay and intrabay (see Figure 5.10). The only

difference will be the transportation length and time.

 137

 Tools Buffers AGVs Lots

Figure 5.10: A model for the entire AMHS

5.3.2 Mathematical models

Parameters:

N : number of jobs,

I III II

VIV VI

 138

J : number of machines (equivalent to operations)

ijp : processing time for operation j of job i

jlt : loading travel time from stocker to machine j (we call movement of a job from the

stocker to a machine as “loading travel”)

jut : unloading travel time from machine j to stocker (we call movement of a job from a

machine to the stocker as “unloading travel”)

1, +jjtt : travel time from machine j to machine j+1

bj : buffer size on machine j

H : a big positive number

TT : travel time of one intrabay loop (the sum of times from the stocker to machine 1,

from machine 1 to machine 2, and from machine 2 to the stocker)

Decision variables:

Z : makespan

Tkj: completion time of operation j of the job scheduled in position k

Skj: starting time on machine j for the job scheduled in position k

⎩
⎨
⎧

=
,0
,1

ikX

⎩
⎨
⎧

=
,0
 ,1

kjSeg

Segregate model

Minimize Z

Subject to

JNJ utTZ +≥ (5.1)

If job i is scheduled in position k
Otherwise

If the segregate model is implemented for the lot scheduled in position k on machine j

Otherwise (which implies use of the direct model)

 139

1
1

=∑
=

N

i
ikX , k=1, 2, .., N (5.2)

1
1

=∑
=

N

k
ikX , i=1, 2, …, N (5.3)

∑
=

+=
N

i
ijikkjkj pXST

1

, k=1, 2, …, N, j=1, 2, …, J (5.4)

jjjkkj ttTTTS ,11, −− ++≥ , k=2,…, N, j=2,…, J (5.5)

jkkj TS ,1−≥ , k=2,…, N, j=1,2, …, J (5.6)

jkj ltS ≥ , k=1, 2, …, N, j=1, 2, …, J (5.7)

ikX binary, i=1, 2, …, N, k=1, 2, …, N ; kjS , kjT 0≥ , k=1, …, N, j=1, …, J (5.8)

The makespan is the completion time of the last job N plus the unloading travel time of

Jut . This is captured by constraint set (5.1). Constraint sets (5.2) and (5.3) ensure that

only one job is assigned to one position in the sequence, and also, one position contains

only one job. Constraint (5.4) states that completion time of a job is equal to the start time

plus its processing time. Starting from the second operation, since the segregate model is

used, the start time of a job scheduled at position k at operation j (1>j) is no earlier than

the time it finishes its previous operation (j-1) and the time required to transport it to

operation j, with transportation time of jjttTT ,1−+ . This is represented by constraint set

(5.5). Constraint set (5.6) asserts that the job scheduled at position k can only start after

the job scheduled at position k-1 on that machine has been completed. And, constraint set

(5.7) enforces that the start time for a job must be no earlier than the time it is transported

to the machine.

Direct model

Minimize Z

Subject to

 140

JNJ utTZ +≥ (5.9)

1=∑
i

ikX , k=1, 2, …, N (5.10)

1=∑
k

ikX , i=1, 2, …, N (5.11)

∑+=
i

ijikkjkj pXST , k=1, 2, …., N, j=1, 2, …, J (5.12)

jjjkkj ttTS ,11, −− +≥ , k=1, 2,…, N, j=2, … , J (5.13)

jkkj TS ,1−≥ , k=2,…, N, j=1, 2, …, J (5.14)

1,1,11 ++−− −≥
+ jjjbkkj ttSS

j
, k = 1+jb +2, …, N, j=1,2, …, J-1 (5.15)

jkj ltS ≥ , k=1, 2, …, N, j=1, 2, …, J (5.16)

ikX binary, i=1, 2, …, N, k=1, 2, …, N , kjS , kjT 0≥ , k=1, …, N, j=1, …, J (5.17)

Constraint sets (5.9), (5.10), (5.11), (5.12), (5.14) and (5.16) are identical to constraint

sets (5.1), (5.2), (5.3), (5.4), (5.6) and (5.7), respectively. Since the direct model is used,

the transportation time from operation j-1 to j is jjtt ,1− . This is captured in constraint

(5.14). Constraint set (5.15) is the constraint for limited buffer size 1+jb on machine j+1.

This means that the job scheduled at position k will not start processing on machine j

unless the job at position (k-b-1) has already started processing on machine j+1.

Strong Hybrid model

Minimize Z

Subject to

JNJ utTZ +≥ (5.18)

1=∑
i

ikX , k=1, 2, …, N (5.19)

 141

1=∑
k

ikX , i=1, 2, …, N (5.20)

∑+=
i

ijikkjkj pXST , k=1, 2, …, N, j=1, 2, …, J (5.21)

jjkjjkkj ttSegTTTS ,11, * −− ++≥ , k=1, 2,…, N, j=2, …, J (5.22)

jkkj TS ,1−≥ , k=2, …, N, j=1, 2,…, J (5.23)

1,1,11,11,1 *)1(*
1 ++−+−−+− −−≥+

+ jjjkjbkjkkj ttSegSSegHS
j

, k =b+2,…, N, j=1, 2,…, J-1

 (5.24)

jkj ltS ≥ , k=1, 2, …, N, j=1, 2, …, J (5.25)

ikX binary, i=1, 2, …, N, k=1, 2, …, N, kjSeg binary, i=1, 2, …, N, k=1, 2, …, N; kjS ,

kjT 0≥ , k=1, …, N, j=1, …, J (5.26)

The above constraint sets are basically a combination of segregate and direct models.

Decision variable kjSeg is used to determine whether the segregate model is used for

position k at machine j or not (in which case the direct model is chosen). If segregate

model is selected, constraint set (5.22) will enforce the transportation delay of

jjttTT ,1−+ and the constraint about limited buffer size (5.24) will be relaxed. On the

contrary, if the direct model is chosen, constraint (5.24) will be enforced and constraint

set (5.22) will impose a transportation delay of 1, +jjtt . Constraint sets (5.18), (5.19),

(5.20), (5.21), (5.23) and (5.25) are identical to constraint sets (5.1), (5.2), (5.3), (5.4),

(5.6) and (5.7), respectively. H must be larger than the maximum starting time for job on

machine J-1. This can be easily obtained by generating a feasible solution, and then,

using its makespan as this value.

5.4 Solution methodologies

In the section, we will analyze each of the above models as well as compare their

performances. There are two factors, which make this problem hard to solve. One is the

limited buffer size, and the other is a choice between segregate and direct models. There

 142

have not been many studies reported in the literature on scheduling problems in the

presence of limited buffer sizes between the machines. Furthermore, most of the studies

that are conducted propose the use of simple heuristics (see Leisten (1990), Hall and

Sriskandarajah (1996)).

We will start by considering the cases with infinite or zero buffer size due to the

following reasons.

(1) For a two-machine case, for certain values of TT , 2,1tt 1kp , and 2kp , machine 2 can

be approximated to have infinite buffer.

Proposition 5.1: Given 1kp , 2kp , if }min{}max{ 12 kk pp < , for k=1, 2, …, N, then, this is

equivalent to saying that machine 2 has infinite buffer.

Proof: Given a sequence π , we can find the job completion time on machine 1 and 2 as

follows.

First job finishes processing on machine 1 at 111 plt + .

The nth job finishes processing on machine 1 at ∑
=

+
n

k
kplt

1
11 .

First job finishes on machine 2 at 122,1111)(pttplt +++ .

Second job finishes on machine 2 at

.},max{
)}(),max{(

2212212,1111

22122,11112,121111

pppttplt
ppttpltttpplt

++++=

+++++++

Note that the second job does not wait on machine 2 since 1221 pp ≥ . This is true for

other jobs as well. ◘

Remark 5.1: We can extend the result of Proposition 5.1 to J machines provided

}{max}{min 1, +≥ jkkkjk
pp for j=1, 2, …, J-1.

 143

(2) Similarly, if }max{}min{ 12 kk pp > , the jobs are going to wait on machine 2. This is

equivalent to saying that machine 2 has zero buffer.

(3) There is a current trend in 300mm wafer fabs for building “zero footprint buffers”

close to equipments (Kidambi 2006). The buffers are built under the ceiling or close to

the overhead track. This leads to having approximately infinite buffers for some

important equipment, if not all.

(4) The zero buffer capacity solution often acts as a good starting point for determining a

solution for the case of limited buffer size.

5.4.1 Infinite buffers

Figure 5.11: An intrabay AMHS with infinite buffers

Proposition 5.2 For the direct model, Johnson’s permutation schedule is optimal.

Proof: The situation on hand is shown in Figure 5.11. For the case where there are

enough vehicles, i.e., once a job finishes processing, it is immediately moved by a vehicle,

the scenario reduces to that of a flow shop with arbitrary time-lags, jt , between the

operations of job j on successive machines. For the 2-machine flow shop problem with

time lags, Mitten (1959) has proved that an optimal schedule can be obtained in

 144

polynomial time by Johnson’s algorithm (1954) with jjj tpp += 11' and jjj tpp += 22' .

In our case, since 2,1tt is the same for all jobs, actually Johnson’s algorithm can be

directly applied without using jj pp 21 ',' . ◘

Let 1C indicate the makespan obtained from Johnson’s permutation schedule. With

arbitrary time lags 2,1tt , the makespan is 2,111 ' ttCC += . For the intrabay AMHS, we need

to consider the loading time from the stocker to machine 1 and the unloading time from

machine 2 to stocker (see Figure 5.12). So the makespan is 212,11max utltttCC +++= .

For the segregate model, the optimal makespan obtained using Johnson’s algorithm,

212,11max utltttTTCC ++++= .

Figure 5.12: The optimal makespan for direct model with infinite buffers

Corollary 5.1 The optimal makespan value for the direct model is smaller than that for

the segregate model by an amount of TT .

This is the reason that the 300mm fabs desire to build more “zero footprint” buffers and

apply the direct model. The optimal makespan for this case can be a lower bound of

M1

M2

Job1 lt1

Cmax 2ut
2ut 2ut 2ut

JobN Job3 Job2

Job1 Job2 Job3 JobN

2,1tt

 145

makespan for the case of zero buffer or limited buffer. Note that, hybrid models (both

weak and strong) do not exist for this case due to infinite buffer spaces.

5.4.2 Zero buffer

5.4.2.1 Segregate model

Illustrations of segregate model for the zero-buffer case are given in Figures 5.13 and

5.14.

The stocker is assumed to have unlimited buffer capacity. Also, each finished job waits in

the stocker before it is transferred to machine 2, when it becomes available, under

segregate model. Therefore, the fact that we have zero buffer at machine 2 is irrelevant

for this system.

Figure 5.13: An intrabay AMHS for zero buffers

 146

Figure 5.14: A illustration of segregate model for zero buffer at machine 2

Alternatively, we can show this by using the closed-form expression of the makespan

value for this case. Let Cij indicate completion time of operation j of job i, operation j,

We have

11111 pltC += .

2111121 ppltC ++= .

∑
=

+=
N

i
iN pltC

1
111 .

12211112 pltutCC +++= .

{ }
}.,max{

,max

22212122122111

2221211222

pltutCppltutC
pltutCCC

+++++++=
+++=

{ }
}.,,max{

,max

322131322221213222122111

3221312232

pltutCppltutCpppltutC
pltutCCC

++++++++++++=
+++=

By simple induction, we have

{ }

}.,......,..
,...,...max{

,max

2211242322131

23222212123222122111

22112,12

NNN

NN

NNNN

PltutCPppltutC
PppltutCPpppltutC

pltutCCC

+++++++++
+++++++++++++=

+++= −

1ip 2ip 2,1ttTT +
∞ 0∞

∞

∞0

0

0

2,1ttTT +

2,1ttTT +

 147

After substituting for 1iC , i=1, 2, ..., N, from above, we have

}}max{{ 2
1

12112 ∑∑
==

++++=
N

Ki
i

K

i
iN ppltutltC , K=1, 2, …, N.

This is equivalent to finding the critical path (longest path) for the classical 2-machine

flow shop problem. Using Johnson’s algorithm, the optimal makespan is determined as

212,11max utltttTTCC ++++= .

Note that at the beginning, machine 2 is idle, it is more efficient to move the first job

directly to machine 2 instead of routing it to stocker first. Thus, from now on, we apply

direct model for the first job in segregate model for zero-buffer case.

Proposition 5.3 With the first job using the direct model, the optimal makespan value is

obtained by applying Johnson’s algorithm to the remaining N-1 jobs.

Proof: A closed-form expression for makespan is as follows:

{ }

}.,......,..
,...,...max{

,max

2211242322131

23222212123222122,111

22112,12

NNN

NN

NNNN

PltutCPppltutC
PppltutCPpppttC

pltutCCC

+++++++++

++++++++++++=

+++= −

The above expression can be re-arranged as follows:

}}.... ,......,..
,...max{

),...max{(

221131212

423221312123222212111

23222122,1112

NNN

N

NN

PltutpppP
ppltutppPppltutpC

PpppttCC

++++++++
++++++++++++

++++++=

The second part represents determination of the critical path for the remaining N-1 jobs

for a 2-machine flow shop.

Thus, an algorithm for the segregate model (Improve-Seg-1) is as follows.

 148

Improve-Seg1 Algorithm:

Step 1: Arrange the N jobs in an arbitrary sequence. Select the first job of the sequence;

set k=1.

Step 2: Schedule job k as the first job using the direct model, and for the remaining N-1

jobs, apply the segregate model. Determine optimal sequence using Johnson’s

algorithm.

Step 3: Let k = k+1. If Nk > , go to step 4; otherwise, go to Step 2

Step 4: Compare the N schedules and find the optimal schedule with minimum makespan.

5.4.2.2 Direct model

An illustration of this model is given in Figure 5.15.

Figure 5.15: An illustration of the intrabay direct AMHS model with zero buffer

Proposition 5.4: This problem is solvable in polynomial time by the algorithm proposed

by Gilmore-Gomory (1964).

Proof: Due to zero buffer at machine 2, a job, once having completed processing on

machine 1, is transported to machine 2 for its operation on that machine with no wait.

Since 2,1tt is a fixed value for every job i, this situation is equivalent to a 2-machine, no-

1ip 2ip
2,1tt ∞ no-wait

2,1tt

2,1tt

no-
wait

no-
wait

no-
wait

no-
wait

no-
wait

 149

2,1tt

2,1tt

wait flow shop with all jobs on machine 1 right-shifted by 2,1tt (see Figure 5.16). For a 2-

machine no-wait flow shop, the algorithm by Gilmore-Gomory (1964) generates an

optimal solution in polynomial time. ◘

Alternatively, we can write closed-form expression for the makespan. There may be

blocking time on machine 1 for each job. We denote it by 1iΔ for job i, 2≥i . This is the

time that job i is delayed for processing on machine 1 because job i-1 is still waiting on

machine 1 due to the unavailability of machine 2.

Figure 5.16: Transformation of the direct model to a no-wait 2-machine flow shop

.11111 pltC +=

.212111121 ppltC +Δ++=

.
2

11
1

11 ∑∑
==

Δ++=
N

i
ii

N

i
N pltC

.122,111112 pttpltC +++=

 150

.
},max{

222,121

222,1211222

pttC
pttCCC

++=

++=

)}.(,0max{
)}()(,0max{

)}(,0max{

2112

2,121112,11211

2,121111221

pp
ttpCttpC

ttpCC

−=

++−++=

++−=Δ

.
},max{

322,131

222,1312232

pttC
pttCCC

++=

++=

)}.(,0max{
)}()(,0max{

)}(,0max{

3122

2,131212,12221

2,131212231

pp
ttpCttpC

ttpCC

−=

++−++=

++−=Δ

By simple induction, we have

)}.(,0max{
)}()(,0max{

)}(,0max{

12,1

2,111,12,12,11,1

2,111,12,11

NN

NNNN

NNNN

pp
ttpCttpC

ttpCC

−=

++−++=

++−=Δ

−

−−−

−−

.)}(,0max{

1

2
1

11
2

2,12,11

22,111,1

22,112

N

N

i
ii

N

i
i

NNN

NNN

ppppttlt

pttpNC
pttCC

++−++=

+++Δ+=

++=

∑∑
==

−

−

Note that 2NC is exactly the expression for a no-wait 2-machine flowshop.

Corollary 5.2: With zero buffer, the direct model is not necessarily better than the

segregate model for a given sequence π .

Proof: Direct model tends to generate idle time on machine 1 to compensate for the

longer transportation time of going back to the stocker. On the other hand, the segregate

model never generates idle time on machine 1, while it incurs the cost of longer

transportation back to the stocker. Thus, the dominance of one method over the other

depends on the values of 1ip , 2ip , 2,1tt and TT . ◘

 151

Consider the following examples.

Example 1:

Data for this example is given in Table 5.1. 3=TT and 12,1 =tt . For the sequence {1, 2,

3}, makespan for the segregate model is 19 while that for the direct model is 17.

Table 5.1: Data for Example 1
Operations Job 1 Job 2 Job 3

1 3 3 3

2 5 2 5

3=TT

12,1 =tt

Example 2:

Table 5.2: Data for Example 2
Operations Job 1 Job 2 Job 3

1 3 3 5

2 7 2 3

2=TT

12,1 =tt

Data for this example is shown in Table 5.2. For the sequence {1, 2, 3}, makespan for the

segregate model is 18 while that for the direct model is 21.

5.4.2.3 Weak hybrid model

In this system, machine 1 is never idle. We have,

.11111 pltC +=

.2111121 ppltC ++=

 152

.
1

111 ∑
=

+=
N

i
iN pltC

.12211112 pltutCC +++=

For C22, we have 2 cases:

Case 1: 122,121 CttC ≥+

We use direct model, .222,12122 pttCC ++=

Case 2: 122,121 CttC <+

We use segregate model, .),max{ 2221211222 pltutCCC +++= .

For a given sequence π , the closed-form makespan expression for the weak hybrid

model is as follows:

}}.{max),max{(2
1

1211,...,122,112 ∑∑∑
=+=

+=
=

++++++=
N

hi
i

h

Ki
iKNKh

N

Ki
iKN ppltutCpttCC

where K is the job which uses direct model and the remaining (N-K) jobs use segregate

model.

Figure 5.17: An illustration of the weak hybrid model

Case 1: If job N is scheduled via direct model, then

.22,112 NNN pttCC ++=

1 2 3 4 …… K-1 K K+1 …… N-1 N

All are segregate
model

segregate direct

 153

Case 2: Otherwise, let K be the index number for which the jobs from K+1 to N, are

scheduled using segregate model (as a result, the previous K-1 jobs do not affect

makespan, see Figure 5.17). Then,

.22,112 KKK pttCC ++=

}.,max{
},max{

2,1211,12,122,11

2,1211,122,1

+++

+++

+++++++=

+++=

KKKKKK

KKKK

pltutpCppttC
pltutCCC

By simple induction,

}}.{max),max{(2
1

1211,...122,112 ∑∑∑
=+=

+=
=

++++++=
N

hi
i

h

Ki
iKNKh

N

Ki
iKN ppltutCpttCC

Remark 5.2: For a given sequence π , the weak hybrid model is no worse than the

segregate model.

This essentially follows from the very nature of the weak hybrid model. It will use direct

model to save transportation time when there is an empty buffer space available on

machine 2.

Remark 5.3: The weak hybrid model is not necessary better than direct model for a given

sequence π .

This is due to the “push” feature of the weak hybrid model.

5.4.2.4 Strong hybrid model

Under the strong hybrid model, for each job to be scheduled, we have the choice of

choosing either segregate model (S) or direct model (D). Thus, in addition to the job

sequencing as in traditional flow shop, we also have to determine an AMHS operating

model sequence (S-D sequence). Thus, an example of this combined sequence for 8 jobs

is as follows: 3(S)-4(D)-1(D)-7(D)-6(D)-8(S)-5(D)-2(S).

 154

Proposition 5.5: Let σ indicate a scheduled set of jobs, and job i be the next job

scheduled. (1) If 22,111 σσ CttpC i ≥++ , then D dominates S; (2) If

22,111 σσ CttTTpC i ≤+++ , then S dominates D; (3) Otherwise, one does not dominate

the other.

Proof: Let S
iC 1 , S

iC 2 denote the finished processing times for job i on machines 1 and 2,

respectively, when job i is associated with S, and D
iC 1 , D

iC 2 be the finished processing

times when assigned with D. We have

Case (1): if 22,111 σσ CttpC i ≥++

111 i
S
i pCC += σ ,

22,1112 ii
S
i pttTTpCC ++++= σ .

121 i
D
i pCC += σ ,

22,1112 ii
D
i pttpCC +++= σ .

Note that D
i

S
i CC 11 = and D

i
S
i CC 22 > , which implies that D dominates S.

Case (2): if 22,111 σσ CttTTpC i ≤+++

111 i
S
i pCC += σ ,

222 i
S
i pCC += σ .

2,121 ttCC D
i −= σ ,

222 i
D
i pCC += σ .

Note that D
i

S
i CC 11 < and D

i
S
i CC 22 = , which implies that S dominates D.

Case (3): if 22,111 σσ CttpC i <++ and 22,111 σσ CttTTpC i >+++

111 i
S
i pCC += σ ,

22,1112 ii
S
i pttTTpCC ++++= σ .

 155

2,121 ttCC D
i −= σ ,

222 i
D
i pCC += σ .

Note that D
i

S
i CC 11 < but D

i
S
i CC 22 > , thus one does not dominate the other. ◘

.

The weak hybrid model is simple, efficient, and has been widely applied in wafer fabs.

However, strong hybrid model is better in performance than the weak hybrid model. Thus,

we have included this model in our study. The proof of NP-hardness of the strong hybrid

model with zero buffer remains an open question.

5.4.3 Limited buffer of size b

5.4.3.1 Segregate model

Similar to the case of zero-buffer, machine 2 is idle at the beginning, thus it is reasonable

to use direct model for the first (b+1) jobs.

Proposition 5.6 When the first (b+1) jobs are processed using the direct model and the

remaining (N-b-1) jobs are processed using the segregate model, the optimal solution is

obtained by appending the schedule of the first (b+1) jobs and the remaining (N-b-1) jobs,

both using Johnson’s algorithm.

Proof: Similar to the proof for Proposition 5.3, we can derive the closed-form expression

for the makespan as follows

{ }

}.,......,.. ,
...,........,...max{

,max

221122,32,2211,22

2,22,12,11,123222122,111

22112,12

NNNbbbN

bbbN

NNNN

PltutCPppltutCP
ppttCPpppttC

pltutCCC

++++++++++

++++++++++=

+++=

+++

+++

−

By re-arranging,

 156

)]}..........,
,..max([],...

),......,...max{[max(

22111,2

22,3211,31,21,122,2

2,12,11,12,13222122,1112

NNb

NbbbbNb

bbbN

Pltutpp
PpltutppCPp

pttCPpppttCC

+++++

++++++++++

++++++++=

+

+++++

+++

The first part of the above expression gives the critical path for the first (b+1) jobs for a

2-machine flow shop. And, the second part represents determination of the critical path

for the remaining (N-b-1) jobs for a 2-machine flow shop. The item 1,1+bC in the second

part appends the second part to the first part. ◘

Thus, we have the following Improve-Seg-b algorithm for this case, which is similar to

the Improve-Seg-1 algorithm.

Algorithm Improve-Seg-b:

Step 1: Randomly select (b+1) jobs to be scheduled.

Step 2: Use direct model with transportation time delay of 2,1tt and infinite buffer. Then,

for the remaining (N-b-1) jobs, apply the segregate model with transportation time delay

of 2,1ttTT + . Append both schedules together.

Step 3: Enumerate all possible 1+b
NC combinations of the first (b+1) jobs, and repeat step 2.

Step 4: Compare all schedules, and find the optimal schedule with minimum makespan.

5.4.3.2 Direct model

Proposition 5.7: The IMHLSP for the case of limited buffer size for the direct model is

NP-hard.

Proof: Let 01 =lt , 02 =ut , and 02,1 =tt . The resulting problem becomes a classical 2-

machine flow shop problem with limited buffer size, which is a well-known NP-hard

problem (Papadimitrious and Kanellakis, 1980). ◘

 157

Papadimitrious and Kanellakis (1980) have proposed an efficient heuristic for this

problem. The worst case performance of this heuristic is
1
12

+
+

b
b (of the optimal

makespan).

5.4.3.3 Strong hybrid model

Proposition 5.8: The IMHLSP for the case of limited buffer size for the strong hybrid

model is NP-hard.

Proof: Constructing a special case where ∑
=

≥
N

i
iPTT

1
2 , segregate model will be

dominated by direct model, which is NP-hard by the result of Proposition 5.7. ◘

Remark 5.4: The reversibility property, which is common for many flow shop

scheduling problems, is not valid for the strong hybrid model.

Proof: Consider a flow shop with 2 machines, depicted as machines 1 and 2, and 2 jobs,

namely, jobs m and n. Let the schedule be },{ nm on machine1 followed by that on

machine 2, and ijC be the completion time for the ith job on the jth machine in the

schedule.

.111 mpC =

.1121 nm ppC +=

.22,1112 mm pttpC ++=

For the completion time on machine 2 for job 2, we have 3 cases:

Case 1: 21 mn pp ≥

We have, 1222,112,1212,111 CpttpttCttpp mmnm =++≥+=++ .

Thus, 22,11122,12122 nnmn pttpppttCC +++=++= .

 158

Case 2: 21 mn pp < , and 21 mn pTTp ≥+

We have, 1222,112,1212,111 CpttpttCttpp mmnm =++<+=++ , and

1222,112,1212,111 CpttpTTttCTTttpp mmnm =++≥++=+++ .

Thus, 22,11122,12122 nnmn pttTTpppttTTCC ++++=+++= .

Case 3: 21 mn pTTp <+

We have, 1222,112,1212,111 CpttpTTttCTTttpp mmnm =++<++=+++ .

Thus, 22,12121222 nmmn pttpppCC +++=+= .

Now, consider the reverse schedule {n, m} on machine 2 followed by that on machine 1.

.211 npC =

.2221 mn ppC +=

.12,1212 nn pttpC ++=

For the completion time on machine 2 for job 2, we have 3 cases:

Case 1: 12 nm pp ≥

We have, 1211,221,2211,222 CpttpttCttpp nnmn =++≥+=++ .

Thus, 11,22211,22122 mmnm pttpppttCC +++=++= .

Case 2: 12 nm pp < , and 12 nm pTTp ≥+

We have, 1211,221,2211,222 CpttpTTttCTTttpp nnmn =++≥++=+++ and

122,121 CttC <+ .

Thus, 11,22211,22122 mmnm pttTTpppttTTCC ++++=+++=

Case 3: 12 nm pTTp ≤+

 159

We have, 1211,221,2211,222 CpttpTTttCTTttpp nnmn =++≤++=+++ .

Thus, 11,21211222 mnnm pttpppCC +++=+= .

Note that the expressions for C22 are not identical. ◘

We propose a branch-and-bound algorithm (designated as Strong-B&B) for this problem.

Let ',σσ be the scheduled and unscheduled sets of jobs. First, we show that the optimal

makespan can be obtained by appending the optimal schedule of the unscheduled set 'σ

to the scheduled set σ . This result will also be used to derive lower and upper bounds.

In a 2-machine problem, if, for the unscheduled set 'σ , machine 2 has infinite buffer,

then the optimal schedule is obtained by appending optimal schedule for the unscheduled

set 'σ to scheduled setσ .

Consider Figure 5.18, which shows scheduled set σ and unscheduled set 'σ . The

makespan expression is as follows.

Figure 5.18: An illustration of the critical path for the unscheduled set

)]}....
,.....,... ,

...[max(),...max{(

22,12,22,,1

1,122,11,11,31,,21,121

1,31,,21,1122,22,122

NN

NNNNN

NN

pppp
ppppppppp

pppCpppCC

++++

+++++++++

++++++++=

−++

+−−+++

+++++

σσ

σσσσ

σσσσσσσ

The second part is the determination of the critical path for the unscheduled set 'σ . The

item 1σC stands for appending the unscheduled set 'σ to scheduled set σ .

M1

M2

1σC

2σC

σN σ 1+σ 2+σ 3+σ

 160

Corollary 5.3: By applying Johnson’s algorithm with transportation delay of 2,1tt for

jobs 'σ , and attaching it to the schedule ofσ , we obtain a lower bound of the makespan.

Proof: This follows by the fact that the optimal schedule for jobs 'σ , when machines

have limited buffer, cannot be better than that for the case when they have infinite buffer,

and, then apply the Proposition 5.2.

Corollary 5.4: Let b denote the current empty buffer space at machine 2. Apply

Algorithm Improve-Seg-b with transportation delay of 2,1ttTT + for 'σ if 0>b . Attach

the schedule to scheduled set σ . The makespan obtained is an upper bound (denoted by

UB1).

Corollary 5.5: Apply the algorithm due to Papadimitrious and Kanellakis (1980) to the

unscheduled set 'σ . And then, attach the schedule obtained to the scheduled set σ . The

makespan obtained is an upper bound (denoted by UB2).

Enumeration scheme

As shown in Figure 5.19, there are two possibilities at each node: S and D. This increases

the number of nodes by an exponential factor (N2) over those encountered in the

classical flow shop problem.

Figure 5.19: An illustration of node generation for the proposed Strong-B&B algorithm

2S 2D

6S 6D 1S 1D

6D 3S 3D 6S

1D 1S 6S
6D

 161

IDIS

JDJD JS JS

Fathoming strategies

Dominance Property 1: For the scheduled set σ , but different sequences γ and θ , if
θ
σ

γ
σ 11 CC ≤ and θ

σ
γ
σ 22 CC ≤ , then sequence γ dominates sequence θ .

Dominance Property 2: The application of Proposition 5.5 at each new node constitutes

another dominance property.

Dominance Property 3: If at node k, the number of empty buffers is b on machine 2,

then for jobs k, …, k+(b-l), the sequence obtained by Johnson’s algorithm with

transportation delay of 2,1tt is a dominance sequence.

Dominance Property 4 If both nodes IS and ID are not fathomed, and for their

immediate child nodes IS-JD dominates IS-JS and ID-JD dominates ID-JS, then node

ID-JD will be dominated by node IS-JD (see Figure 5.20).

Figure 5.20: The case in which node ID-JD is fathomed

Proof: Let D and S represent direct model and segregate model respectively, q be either

direct or segregate model, the scheduled set ahead of node IS and ID be σ , 1,Sq
ijC and

2,Dq
ijC represent the completion times for job i on machine j with models S and model q

used for operations on machines j-1 and j, and with models D and model q used for

operations on machines j-1 and j, respectively. By Proposition 5.5, if both IS and ID are

 162

not fathomed, then 22,111 σσ CttpC i <++ and 22,111 σσ CttTTpC i >+++ . We have the

following 3 cases:

Case (1): 21 ij pTTp +≥

Since at node IS, direct model dominates segregate model, we have

.11111
1,

1 jiji
SD
J ppCpCC ++=+= σ

.22,111122,11
1,

2 jjijj
SD
J pttppCpttCC ++++=++= σ

Since at node ID, direct model dominates segregate model, we have

12,1211
1,

1 jji
DD
J pttCpCC +−=+= σ .

21222,11
1,

2 jjj
DD
J

DD
J ppCpttCC ++=++= σ .

Thus, we know

.2,
112,12111

1,
1

DD
Jjji

SD
J CpttCppCC =+−<++= σσ

.2,
221222,1111

1,
2

DD
Jjjjji

SD
J CppCpttppCC =++<++++= σσ

Therefore, IS-JD node dominates ID-JD node.

Case (2): 21 ij pp > and TTpp ij +< 21

Case (3): 21 ij pp ≤

We can try comparisons similar to those for cases (2) and (3) leading to no dominating

node. ◘

Dominance property 5: If for a subset φ , we obtain an optimal schedule φS by applying

direct model to φ and no job in φ waits on machine 1 after completing its processing,

then the partial sequences which contain φS are not fathomed.

 163

Proof: This follows by the fact that if direct model does not cause delay on machine 1,

then it is optimal.

Dominance property 6: : If for a subset φ , we obtain an optimal schedule φS by

applying the segregate model for φ and machine 2 does not wait due to unavailability of

jobs, then the partial sequences, which contain φS , are not fathomed.

5.5 Numerical experimentation

In this section, we test the performance of Strong-B&B with the direct solution of the

problem using the AMPL CPLEX Solver (version 10.1). The performance measure is cpu

time required to find an optimal solution. The summary of the test data is contained in

Table 5.3. We test eight problem sets with different number of lots, i.e., 10, 20, 30, 40, 50,

60, 70, and 80 lots. For each problem, the transportation times can be two possible values.

The larger one is for interbay movements and the smaller one is for intrabay movements.

Thus, there are a total of 1628 =× data sets. For each data set, we generate 10 problem

instances with randomly generated data.

Table 5.3: Data used in numerical experimentation†

Number of lots (N) 10, 20, 30, 40, 50, 60, 70, 80
Lot processing time 1iρ , 2iρ (mins/lot) Uniform distribution [5,10]

Buffer size (b) 2

Interbay movements 10 Transportation
time TT Intrabay movements 4

Interbay movements 5 Transportation
time 12tt Intrabay movements 1
H Sum of the processing times on machine 1

and 2 of all lots, ∑
=

+
N

i
ii

1
21)(ρρ

 († courtesy of a memory fab)

 164

We coded Strong-B&B using Excel VBA (version 2003). All numerical tests were done

on a Dell computer with Pentium 4 processor (2.8GHz).

Table 5.4: The average cpu times required to find optimal solutions by Strong-B&B and the
AMPL CPLEX 10.1 solver for strong hybrid model with intrabay movements

Average cpu time (seconds) Data set Number of

Lots (N) Strong-B&B CPLEX 10.1
Solver

1 10 0.68 0.32
2 20 1.33 0.61
3 30 1.57 1.21
4 40 7.61 8.3
5 50 40.89 65.4
6 60 247.32 536.67
7 70 1418.63 3109.98
8 80 2923.57 >3600

The average cpu times required to find the optimal solutions for our algorithm and the

AMPL CPLEX 10.1 Solver for the strong hybrid model with intrabay movements are

presented in Table 5.4. It can be seen that for small-size problems, both Strong-B&B

algorithm and CPLEX Solver can solve the problem optimally in a short time. When

problem size increases, our algorithm is able to find the optimal solution faster than the

CPLEX Solver. In fact, the CPLEX Solver cannot solve a problem involving the number

of lots of more than 70 within the allowable cpu time of 3600 seconds. This is due to two

reasons. The first one is the use of a large positive number H in the integer programming

(IP) model for strong hybrid model, which impacts the tightness of the model. The

second is that, when the number of lots increases, the number of binary variables ikX and

kjSeg increases as well, which requires longer cpu time needed for the solver to find an

optimal solution.

On the other hand, Strong-B&B algorithm uses modified Johnson’s algorithm to

determine a lower bound. It has been shown that for a two machine flow shop, the

makespan derived by Johnson’s algorithm is close to the optimal solution even for the

case with limited buffer size. In addition, one of the upper bound is also determined

 165

based on Johnson’s algorithm but with transportation time of 12ttTT + . Thus the

maximum gap between the lower bound and the upper bound is TT , which is a small

value compared to the processing times. Experimental results indicate that Strong-B&B

can solve the problem with number of lots up to 80 within the allowable cpu time of 3600

seconds.

Table 5.5: The average cpu times required to find optimal solutions by Strong-B&B and the
AMPL CPLEX 10.1 solver for strong hybrid model with interbay movements

Average cpu time (seconds) Data set Number of

Lots (N) Strong-B&B CPLEX 10.1
Solver

1 10 0.73 0.39
2 20 5.17 3.72
3 30 22.5 19.4
4 40 387.61 448.92
5 50 1238.58 1834.7
6 60 2138.65 3308.74
7 70 3419.26 >3600
8 80 >3600 >3600

For interbay movements, i.e., a lot moved from a machine in a bay to its destination

machine located in another bay across the central isle, the transportation time TT is

much larger than that for the movement inside the same bay. Usually the transportation

time TT can be as large as 10 minutes or more. Similarly, the value 12tt is longer since

the machines are now located in different bays. The average cpu times required to find

the optimal solutions for our algorithm and the AMPL CPLEX 10.1 Solver for the strong

hybrid model with interbay movements are presented in Table 5.5. It can be seen that for

the same problem size, to solve the strong hybrid model with interbay movement, the cpu

times required by both Strong-B&B algorithm and CPLEX Solver are larger than those

for intrabay movement. This is because when the values of TT and 12tt become larger, the

related constraints become looser. In addition, the maximum gap between the lower

bound and the upper bound also increases. In general, Strong-B&B solves the lager-size

problems faster than the CPLEX Solver. The former can solve the problem with 70 lots

 166

1, +iitt 2,1 ++ iitt

within the allowable cpu time of 3600 seconds while the latter is only able to solve

problems up to 60 lots within the time limit.

5.6 Extension to multiple-machine intrabay and the entire interbay/intrabay AMHS

When extended to multiple-machine (more than 2 machines) intrabay system, the total

transportation delay for segregate model and direct models will be ∑
−

=
++−

1

1
1,)1(

m

i
iittTTm

and ∑
−

=
+

1

1
1,

m

i
iitt , respectively (see Figure 5.21). The advantages of direct model over

segregate model will become more substantial.

Figure 5.21: An illustration of the multiple-machine intrabay AMHS

Since we assume unlimited number of vehicles, the interbay transportation ends up

adding time for transportation across bays. Thus, the entire interbay/intrabay AMHS can

be assumed to be equivalent to a multiple-machine intrabay system with longer

 167

transportation delays. Note that, this is not the case for limited number of vehicles, which

will be studied in the next chapter.

5.7 Conclusions

In this chapter, we have addressed the IMHLSP in the presence of infinite vehicle

capacity. We, first, classified the AMHS operation models into four different types: the

segregate model, the direct model, the weak hybrid model, and the strong hybrid model.

We have proposed, for the first time, the strong hybrid model as a combination of the

segregate and direct models is expected to lead to a global optimal schedule. The

decisions involved in the strong hybrid model are the sequence in which to process the

lots as well as the selection between segregate/direct model for each lot. We, then,

formulate these models as integer programming models.

One difficult factor involved in this problem is the limited buffer size on the machines.

Only limited studies have been presented in the literature on scheduling problems

involving limited buffer size. We are able to show that under certain conditions about the

processing times, the problem can be approximated by the case of either infinite buffer

size or zero-buffer size. Hence, we consider all three cases of the IMHLSP in this chapter:

infinite buffer, zero-buffer, and limited buffer size.

For the case with infinite buffer size, modified Johnson’s algorithm is optimal for both

the segregate model and the direct model. The hybrid models (both weak and strong) do

not exist for this case. Since, for the segregate model, a lot having finished processing on

a machine goes through the center buffer, which has unlimited storage size, the cases

with zero-buffer and limited-buffer size are identical to that for infinite buffer. For the

direct model, when the buffer size is zero, the problem can be solved by using Gilmore-

Gomory’s algorithm. However, when the buffer size is limited, the heuristic procedure

due to Papadimitrious and Kanellakis (1987) is an efficient one to use.

 168

For the strong hybrid model with limited buffer size (which is also applicable for the case

with zero-buffer), we propose a branch-and-bound algorithm, designated Strong-B&B,

which uses modified Johnson’s algorithm to determine a lower bound. Two upper bounds

are also determined, one using the procedure due to Papadimitrious and Kanellakis (1987)

and the other using a modified Johnson’s algorithm. Several dominance properties are

also developed to fathom nodes that speed up the convergence of our algorithm.

Numerical tests indicate that Strong-B&B finds optimal solutions faster than the direct

solution of the IMHLSP model using the AMPL CPLEX 10.1 Solver. The CPLEX Solver

cannot solve the IMHLSP for problems containing number of lots greater than 70 within

the allowable cpu time of 3600 seconds with intraby movements, and also, problems

containing number of lots greater than 60 when interbay movements are considered.

Experimental results also indicate that for the same problem size, the cpu times required

to solve the IMHLSP model with interbay movements are larger than those with intrabay

movements.

 169

Chapter 6: Minimization of Makespan for Integrated Automated

Material Handling and Lot Scheduling Problem (IMHLSP) with

Finite Vehicle Capacity

6.1. Introduction

In this chapter, we study the integrated automated material handling and lot scheduling

problem (IMHLSP) for 300mm fabs in the presence of vehicles with finite capacities.

This problem is typically encountered in high volume 300mm fabs, especially those

memory fabs where equipment utilization needs to be maximized. In the presence of

limited number of vehicles, whenever a lot is finished, there may not be a vehicle

immediately available to transport that lot. Ideally, one would want to put as many

vehicles as possible in the fab. However, this will cause difficulties in space planning as

well as layout and AMHS control. Thus, realistically, there are only a limited number of

vehicles in a fab. When a lot is ready to move, it is possible that all vehicles are busy.

Moreover, due to traffic problems, the vehicle assigned to transport a lot may not be able

to arrive at the assigned location in time. Also, it is possible that the transportation

demand for the AMHS may be underestimated at the design phase.

Unlike the IMHLSP with infinite vehicle capacity, this problem involves two types of

decisions: permutation scheduling of jobs on the machines and sequencing of vehicle

movements. However, models for handling the movements of jobs over the machines are

still the same, namely segregate, direct, and hybrid (either weak hybrid or strong hybrid)

models. The hybrid model becomes too complicated in the presence of vehicles with

finite capacity. We, thus, consider only segregate and direct models.

The rest of this chapter is organized as follows. In Section 6.2, we formulate the IMHLSP

as an integer programming model. The most commonly used heuristic procedures in

300mm fabs, also called RTD (real time dispatching) rules, are summarized in Section

 170

6.3. In view of the complexity of the problem on hand, we study its one and two-machine

instances in Sections 6.4 and 6.5, respectively. The interbay system is, then, considered in

Section 6.6. Finally, we conclude our study in Section 6.7.

6.2. Mathematical Models for the IMHLSP with finite vehicles

We define makespan as the time at which the last lot is transported back to central

stocker after having finished all operations. We capture this by defining a dummy

operation as the last operation for each lot, which is to be performed at the central stocker.

Its processing time is zero but it requires lot movement from the last machine to the

stocker.

Parameters:

i : lot index, i=1, 2, …, N

j : operation index for each lot, j = 1, 2, …, J (note that operation J is a dummy

operation)

l : intrabay vehicle index, l =1, 2, …, L

ijp : processing time of job i to perform operation j

H : a large positive number,

21 jjtt : travel time between operations 1j and 2j , 1j =0, 1, 2, …, J-1, 2j =0, 1, 2, …., J

k : position in a schedule of lots, k=1,2, …, N

Decision Variables:

Z : makespan,

kjS : start time of operation j for the lot scheduled in position k,

kjT : completion time of operation j for the lot scheduled in position k,

kjLT : trip completion time for loading operation j of the lot scheduled in position k from

its previous operation j-1

 171

Direct model

Minimize Z

Subject to

IJTZ ≥ (6.1)

 1
1

=∑
=

N

i
ikX for k=1, 2, .., N (6.2)

1
1

=∑
=

N

k
ikX for i=1, 2, …, N (6.3)

∑
=

+=
N

i
ijikkjkj pXST

1

 for k=1, 2, …, N, j=1, 2, …, J (6.4)

jkkj TS ,1−≥ , for j=1, 2, …, J, k=2, …, N (6.5)

1
1 1

=+∑∑
= =

N

p

J

q
pqkjkj WFW , for p=1, 2, …N, q=1, 2, …, J, if kp ≠ , or for jq < , if kp =

(6.6)

⎪⎩

⎪
⎨
⎧

=
 othereise , 0

position in scheduledlot theofoperation loaded havingafter
 position in scheduledlot theof operation loadingfor assigned is vehiclea if , 1

kj
p q

Wkjpq

⎪⎩

⎪
⎨
⎧

=
 othereise ,0

assignmentfirst its
 as position in scheduledlot theof operaiton load tostarts vehiclea if , 1 kj

FWkj

⎪⎩

⎪
⎨
⎧

=
 othereise ,0

assignmentlast its as position in scheduled
 lot theof operaiton loadingafter stocker back to returns vehiclea if ,1

k
j

LWkj

 otherwise ,0

position in scheduled is lot if ,1

⎩
⎨
⎧

=
ki

X ik

 172

1
1 1

=+∑∑
= =

N

p

J

q
kjpqkj WLW , for p=1, 2, …N, q=1, 2, …, J, if kp ≠ , or for jq > , if kp =

 (6.7)

LFW
N

k

J

j
kj ≤∑∑

= =1 1

 (6.8)

0
1 11 1

=−∑∑∑∑
= == =

N

k

J

j
kj

N

k

J

j
kj LWFW (6.9)

∑∑
= =

−−− ++≥−
N

p

J

q
jqpqpqkjjkjjjkj ttLTWttFWttLT

1 1
1,1,0,1)(, for p=1, 2, …N, q=1, 2, …, J,

if kp ≠ , or for jq < , if kp = (6.10)

kjkj LTS ≥ , for k=1, 2, …, N, j=1, 2, …, J (6.11)

1,,1 −− ≥− jkjjkj TttLT for k=1, 2, …, N, j=1, 2, …, J (6.12)

1,1,11 ++−− −≥
+ jjjbkkj ttSLT

j
, for 11 +> +jbk , j=1, 2, …, J-2 (6.13)

ikX binary, for k=1, 2, …, N, j=1, 2, …, N, 0,, ≥kjkjkj TLTS , for k=1, 2, …, N, j=1, 2, .., J

(6.14)

Constraint sets (6.2) to (6.5) constitute the machine scheduling aspects of the problem.

Constraint sets (6.2) and (6.3) are assignment constraints, and ensure that a lot is assigned

to only one position of a schedule, and a position can accommodate only one lot.

Constraint set (6.4) captures the fact that the completion time of an operation j scheduled

in position k is equal to its start plus processing times. Similarly, constraint set (6.5)

asserts that an operation j for the lot scheduled in position k cannot begin its processing

unless operation j of the lot scheduled in position k-1 has been completed.

On the other hand, constraint sets (6.6) to (6.10) represent a generic vehicle scheduling

problem (VSP). Constraint set (6.6) ensures that an operation j of a lot scheduled in

position k is transported by a vehicle, which either starts with transporting that lot to

operation j as its first assignment, or just finishes transporting a lot scheduled in position

p to its operation q. Similarly, constraint set (6.7) implies that for a vehicle, after having

finished transporting an operation j of a lot scheduled in position k, either returns back to

 173

the stocker (thus, this transportation is its last assignment), or it continues to transport a

lot scheduled in position p for its operation q. Consequently, each operation of each job is

transported by a vehicle only once. Constraint set (6.8) limits the number of vehicles to

enter the system (a maximum value of L), and constraint set (6.9) enforces that the

number of vehicles in the system do not change. Constraint set (6.10) states that the

transportation start time by a vehicle for loading operation j of the lot scheduled in

position k must be no earlier than the time that vehicle finishes its previous loading

operation and moves to operation j-1 with an empty load in it.

The machine and vehicle scheduling aspects of the problem interact through constraint

sets (6.11) to (6.13). Constraint (6.11) asserts that each operation can not start earlier than

the completion time of its loading trip. Constraint set (6.12) ensures the start time of the

loading trip for operation j of a lot scheduled in position k to be no earlier than

completion time of operation j-1 of that lot. Limited buffer constraint is captured by

constraint set (6.13). And finally, constraint set (6.1) determines the makespan.

Note that constraint set (6.10) is non-linear. We can transform it into linear constraints as

follows.

10,1 −− ≥− jkjjjkj ttFWttLT (6.15)

)()(1,1 pqkjqjpqjjkj WHHtLTttLT ≥++−− −− (6.16)

Segregate model

The difference of this model from the direct model is that every time an operation is

finished, the lot will be transported back to the stocker first before it is dispatched to its

next destination tool. We can model this situation by adding one additional “operation”

after each processing step. The “tool” for this “operation” is the central stocker. This

“operation” consumes zero processing time, and the “tool” has unlimited buffer space.

With these modifications, the integer programming model presented for the direct model

above can be adapted for this case.

 174

6.3 RTD (Real Time Dispatching) rules

The optimal makespan value can be found by solving a mathematical programming

model for the situation in consideration. However, the presence of integer variables and a

large positive number H, makes the model, even for a small size problem difficult to

solve. On the other hand, RTD rules have been derived from daily fab experiences, are

easy to use, and are, generally, quite effective. We give a brief overview of these rules

next.

Table 6.1: The most common RTD rules used in 300mm fabs
Groups Rules

MID • FIFO (first in first out)

• SRPT (shortest remaining processing time first)

• CR (critical ratio)

• EDD (earliest due date)

VID • FEFS - first encountered first served

• Lot with longest waiting time

• Shortest travel distance to the lot

• Longest travel distance to the lot

• Sweep – the vehicle performs all possible deliveries in the current

looping cycle

• MaxWIP – first serving the job whose destination queue has the largest

total number of jobs currently waiting

• MinWIP – first serving the job whose destination queue has the least

total number of jobs currently waiting

LID • NV- nearest empty vehicle

• Farthest vehicle

• Longest idle vehicle

• Least utilized vehicle

 175

RTD rules, which are fast and easy to implement, have been widely used in executing

daily fab operations (for a complete review, see Sarin et al. 2008). They can be classified

into three categories: machine initiated dispatching (MID), vehicle initiated dispatching

(VID) rules, and lot initiated dispatching (LID) rules. A MID rule is used to decide which

lot to move from a stocker or a machine when there is an empty buffer available on a tool.

A VID rule deals with the situation in which a vehicle has the choice of selecting among

multiple FOUPs that are waiting for pickup at different locations. A LID rule deals with

the problem of matching a task to a vehicle when multiple empty vehicles are idle and

waiting for a task assignment. The most common RTD rules from literature are

summarized in Table 6.1.

Usually, in the presence of heavy material flow rate, a VID rule becomes more significant

because whenever a vehicle completes its transportation mission, it has to seek the next

mission immediately. For a fab scheduling system, which does not include the AMHS,

the RTD essentially implies MID. In the literature, there are extensive studies on MID,

very few studies on VID, and no study focusing on LID. Furthermore, there has not been

any study devoted to developing RTD rules based on the IMHLSP.

In this chapter, instead of solving the integer model or use RTD rules directly, we study a

small-size intrabay system consisting of one or two machines and one or two vehicles,

and present polynomial-time algorithms for their solution. Then, based on our results, we

derive some RTD rules, which are expected to be promising for realistic-size systems.

The methodology that we use is as follows.

Step 1: Use an arbitrary lot sequence π .

Step 2: Check if an optimal vehicle movement sequence can be determined for a given lot

sequence π . If not, consider all possible vehicle movement sequences.

Step 3: Derive the closed-form expression for the makespan for each vehicle movement

sequence.

Step 4: Solve the closed-form expression, and determine the optimal lot sequence *π .

 176

Step 5: If there is only one vehicle movement sequence, then go to step 6. Otherwise,

compare the makespan values for different vehicle movement sequences and find

the optimal vehicle movement sequence and the corresponding lot sequence, *π .

Step 6: Stop.

6.3 One-machine IMHLSP problem

Let lt indicate the travel time required to move one lot from the stocker to the machine,

ut indicate the travel time required to move one lot from the machine to the stocker, T be

the time needed for a vehicle to finish one loop of traveling, where ltutT += , ip be the

processing time for the lot scheduled in position i, iT be the completion time of the

operation scheduled in position i, and iC be the time the lot scheduled in position i is

transported back to central stocker.

We make the following assumptions: (1) The loaded travel speed of a vehicle is the same

as its empty travel speed, i.e., the travel time is only related to the travel distance. (2) No-

wait (NW) policy is employed, which means that a vehicle is not allowed to stop while in

travel except at the central stocker, which acts as a parking space for vehicles.

Since we are considering only one machine, there is no difference between the direct and

segregate models.

6.3.1 One-vehicle zero-buffer problem

Given the lot sequence, π , we can find the optimal vehicle movement sequence,

indicated by sequence 1-1. A vehicle loads the first lot on the machine, and goes back to

the stocker. A vehicle leaves the stocker to pick up the first job for the machine, carry it

and unload it at the stocker. This cycle repeats until all the lots are finished.

For the first lot, we have

 177

),max(11 pltutltT ++= .

utpltutltC +++=),max(11 .

Figure 6.1: One-machine, one-vehicle zero-buffer problem

By repeating this N times for N lots, we have the makespan value for sequence 1-1,

indicated by 1Z , as follows

),max()(*
1

1 i

N

i
N pltututltNCZ +++== ∑

=

.

Therefore, any lot sequence π is optimal.

6.3.2 One-vehicle one-buffer problem

There are two possible vehicle movement sequences for this system. In one vehicle

movement sequence, we do not fill the buffer, and it is the same as sequence 1-1. The

second vehicle movement sequence, indicated by sequence 1-2, is to fill the buffer. For

the given lot sequence, π , the vehicle loads the first lot at the machine and goes back to

the stocker. Then, the vehicle transfers the second lot from the stocker to the buffer of the

machine. Upon completion, the vehicle transfers the first lot from the machine to the

 178

stocker. Then, vehicle leaves the stocker and loads the third lot to the buffer at the

machine. The vehicle, then, transfers the second lot to the stocker. This cycle repeats until

all the lots are completed.

Figure 6.2: One-machine, one-vehicle one-buffer problem

We have,

11 pltT += .

utpltutltC +++=),max(11 .

212),max(ppltutltT +++= .

utpltutpltutltC +++++=),max(),max(212 .

3213),max(),max(ppltutpltutltT +++++= .

utpltutpltutpltutltC +++++++=),max(),max(),max(3213 .

By induction, we have

),max()(
1
∑
=

+++=
N

i
iN pltututltC .

 179

Thus, the makespan for sequence 1-2,),max()(
1

2 ∑
=

+++=
N

i
ipltututltZ . This can also

be written as utltutpltZ
KiKi

i ++++= ∑∑
∉∈

)(2 , where)}(:{ ltutpiK i +≥= .

Note that 0)(*)1(21 >+−=− ltutNZZ . Therefore, the vehicle movement sequence 1-2

is optimal, and in sequence 1-2, lot sequence, π , can be arbitrary.

Proposition 6.1: The schedule, which fills one buffer is better than the one that does not

fill the buffer.

This result is quite intuitive. With a buffer space, the machine can start to process another

lot immediately after having moved a previous lot, thereby enhancing throughput rate.

Consequently, we can propose two VID rules based on this result.

• EBF (empty buffer first). A vehicle delivers a lot whose destination tool has an

empty buffer space.

• SQF (shortest queue first). A vehicle delivers a lot whose destination tool has

shortest queue at the buffer space.

6.3.3 One-vehicle two-buffer problem

There are three possible vehicle movement sequences for this system. Besides sequences

1-1 and 1-2, sequence 1-3 fills two buffers. It can be described as follows. For sequence

1-3, vehicle transfers the first lot to the machine and goes back to the stocker. It, then,

transfers the second lot to the buffer of the machine, and goes back to the stocker and

transfers the third lot to the buffer of the machine. Upon completion of the first lot, the

vehicle transfers the first lot to the stocker. Then, the vehicle transfers the fourth lot from

the stocker to the buffer of the machine. The vehicle transfers the second finished lot to

the stocker. This cycle repeats until all the lots are finished.

 180

Figure 6.3: One-machine, one-vehicle two-buffer problem

We have,

.)),(2max(11 utpltutltC +++=

.),max()),(2max(212 utpltutpltutltC +++++=

.),max(),max()),(2max(3213 utpltutpltutpltutltC +++++++=

.),max(),max(),max()),(2max(43214 utpltutpltutpltutpltutltC +++++++++=

By induction, we have makespan for sequence 1-3 indicated by 3Z , as follows

utpltutpltutltZ i

N

i
+++++= ∑

=

)),max(()),(2max(
2

13 .

Note that only the first lot affects the makespan. The optimal lot sequence, *π , can be

found by enumerating the first lot in)(NO time.

If we compare vehicle sequence 1-2 and 1-3,

0),max()),(2max(1123 ≥+−+=− pltutpltutZZ .

 181

Therefore, sequence 1-2 is optimal for this system.

Proposition 6.2: The filling of two buffers is not better than that of filling one buffer

only.

This follows by the fact that only one vehicle is available to transport the finished jobs.

The vehicle may become the bottleneck. If a lot is finished but vehicle has not arrived to

unload it, the machine cannot start to process another lot in the buffer. Therefore, the

extra buffer capacity cannot be utilized.

Thus, we can propose one LID rule.

• NV (nearest vehicle first). When a lot finishes processing at a machine, the

nearest vehicle is assigned to move it out of the machine.

In fact, NV has turned out to be the most common LID rule implemented in 300mm fabs

in literature (see Sarin et al. 2008)

6.3.4 Two-vehicle zero-buffer problem

In this system, given lot sequence π , the optimal vehicle movement sequence is for the

first vehicle to transfer the first lot to the machine, and for the other vehicle to transfer the

first lot to the stocker. This process repeats until all the lots are completed.

We have,

 182

Figure 6.4: One-machine, two-vehicle zero-buffer problem

11 pltT += .

utTC += 11 .

212),max(ppltutltT +++= .

utppltpTltTpltutTltCC +++++++=++=),,max(),max(2121212

3213),max(),max(ppltutpltutltT +++++= .

).),max(),max(,2,3,3max(
),max(

3212121

323

TppTpTTpppTpTT
utTltCC

+++++++=
++=

43214),max(),max(),max(ppltutpltutpltutltT +++++++= .

).),max(),max(),max(
,2),max(),max(,3,4,4max(

4321

32121214

TppTpTpT
TppTpTTpppTpTC

++++
+++++++=

543215),max(),max(),max(),max(ppltutpltutpltutpltutltT +++++++++= .

utltCTC ++= },max{ 455 .

By induction, we have

.),max(
1

1
∑
−

=

++=
N

i
NiN ppTltT

.},max{ 1 utltCTC NNN ++= −

 183

Thus, we can write the expression for the makespan, 4Z , as follows.

.}))(),max({max

,)1(,*,*max(

1
11,...,3,2

21214

∑
=

+−=
−++

−++++==
K

i
KiNK

N

TKNppT

TNpppTNpTNCZ

Since ∑
−

=
− ++=+≥++=

1

1
1),max(},max{

N

i
NiNNNN ppTTutTutltCTC , we have a lower

bound for 4Z among all possible lot sequencesπ , as follows

}),max(max{ arg
i

4 ∑
≠

++=
ji

ijZ pTpTLB .

Also, since),max(
1

1
1 ∑

−

=
− ++≤

N

i
iN pltutTC , we have

}.,max{}2),max(,),max(max{

}),max(,max{

1

1

1

1

1

1

1
4

i

N

i

N

i
i

N

i
Ni

N

i
iNN

pTTTpTutppTlt

TutpTltutTCZ

∑∑∑

∑

=

−

=

−

=

−

=

+=++++=

++++≤=

Thus, we find an upper bound ∑
=

+=
N

i
iZ pTTUB

1

},max{
4

. Note that

)},0max{min{ arg
,...,1

44 i
Ni

zZ pTLBUB −=−
=

.

Proposition 6.3: It is always better to use all vehicles, including additional vehicles.

Proof: This follows by the fact that 24
ZUBZ = , as the first vehicle transfers a new lot and

performs the functions of a “mobile” buffer. ◘

 184

Note that having additional vehicles enhances “mobile” buffer capacity, and hence, the

system performance. But, in reality, it is impossible to put too many vehicles in the

system as they may block the traffic and cause congestion and delays.

Based on the above, we can propose the following LID rule.

• LUVF (least utilized vehicle first). Select the least utilized vehicle for the lot

movement.

6.3.5 Two-vehicle one-buffer problem

Figure 6.5: One-machine, two-vehicle one-buffer problem

Given a lot sequence, π , the optimal vehicle sequence is for the first vehicle to transfer

lot 1 from the stocker to the machine, and for the other vehicle to transfer lot 2 from the

stocker to the machine, and then, to transfer lot 1 from the machine to the stocker.

Subsequently, the first vehicle transfers lot 3 from the stocker to the machine, and then,

transfers lot 2 from the machine to the stocker. This cycle is repeated.

We have,

 185

11 pltT += .

utTC += 11 .

212 ppltT ++= .

utppTltC +++=),max(212 .

323213),max(putTpppTltT +−=+++= .

utputTltTCltTC ++−+=+=),max(),max(321313 . 434 putTT +−= .

utputTltTC ++−+=),max(4324 . 545 putTT +−= .

utputCltCC ++−+=),max(5435 .

By induction, we have the makespan for this system, indicated by 5Z ,

utputTltTCZ NNNN ++−+== −−),max{ 125 .

For this problem, it is not possible to write a closed-form expression for the makespan.

However, note that 45 ZZ ≤ , which indicates the same result as that in sub-section 6.3.3.

6.5 Two-machine integration problem

For the case with more than one machine, we can use two possible dispatching policies

for the vehicle:

(1) ES (earliest start) policy. The vehicle is dispatched at the earliest available time if

one movement is required.

(2) LS (latest start) policy. The vehicle is dispatched at the latest possible time to

perform more than one movement. One example of this policy is the load-unload

(L-U) movement, that is, transfer one lot to machine 1, and then, transfer another

finished lot from machine 2 to the stocker during the same loop (see Figure 6.6).

Next, we analyze the case of two machines and one vehicle.

 186

 Tools AGVs lots buffer

Figure 6.6: Illustration of the LS policy

Let 1lt and 2lt indicate the travel times from the stocker to machine 1 and machine 2,

respectively, 1ut and 2ut be travel times from machine 1 and machine 2 to the stocker,

respectively, tt represent the travel time from machine 1 to machine 2, 1iT and 2iT be the

operation completion times on machines 1 and 2, respectively, for the lot scheduled in

position i, and 1iC and 2iC be the times at which lot i is transported back to stocker after

having finished operation at machines 1 and 2, respectively.

6.5.1 Zero-buffer problem

6.5.1.1 Segregate model

Given the lot sequence,π , the optimal vehicle movement sequence is not obvious, since,

now, we have more than one vehicle. We need to consider different sequences and

compare them.

11

2

2

Stocker Load trip
Unload trip

Deadhead
trip

 187

Sequence 6-1: Finish all operations at machine 1 first, and then all operations at machine

2. That is, transfer a lot from the stocker to machine 1, and then transfer it back to the

stocker after its completion. This is repeated until all the lots are processed at machine 1.

Then, we do the same for processing the lots at machine 2.

The makespan indicted by 1,6Z is as follows.

)),max(()),max((2
1

22221
1

11111,6 utpltutltutpltutltZ
N

i
i

N

i
i +++++++= ∑∑

==

.

Figure 6.7: Two-machine, one-vehicle zero-buffer problem

Sequence ES-1: In this case, the vehicle loads job 11 (i.e. transfers lot 1 from the stocker

to machine 1), goes back to the stocker, waits and unloads job 11. Then, it loads job 12,

goes back to the stocker, and loads job 21, and then, goes back to the stocker. It waits and

unloads job 12, and then, goes back to the stocker, waits and unloads job 21. This process

repeats until all jobs are done.

Note that 2211 ltutltutT +=+= . We have

.11111 pltT +=

11111111),max(utpltutltC +++= .

 188

.1221112 pltTT ++=

2122211221112),max(utpltltutltutltCC +++++++= .

2111121 pltTCT +++= .

).2,4,2max(
)),2max(),(max(

),max(

122111

112122112211121111

12111221

pTTpTC
utltutpltutltutltTCutpltTC

utTltCC

+++=
+++++++++++++=

++=

By induction, we have

)2,4,2max(2,1
2

1111 −
=

+++= ∑ i

N

i
iN pTTpTCC .

.),max(222212 utpltltTCC NNN ++++=

Thus, the makespan for sequence ES-1, indicated by 1,6 −ESZ , is as flows.

},max{},,2max{},max{4 2
2

2,111121,6 N

N

i
iiNES pTppTpTTCZ ∑

=
−− +++== .

Proposition 6.5 Sequence 6-1 is worse than sequence ES-1.

Proof:

 .},,2max{},max{},max{4

},max{},max{},,,max{2

},max{},max{]},max{},[max{2

)),max(()),max((

2
1,62,11211

2
2112,112,11

211
2

2,11

1
2

1
11,6

∑

∑

∑

∑∑

=
−−

=
−−

=
−

==

=+++>

+++++++=

++++=

+++++++=

N

i
ESiiN

N

i
Niiii

N

N

i
ii

N

i
i

N

i
i

ZppTpTpTT

pTpTppTpTpTTNT

pTpTpTpTNT

utPltutltutPltutltZ

We can propose a VID rule based on this result as follows.

• LB (line balancing). A vehicle delivers the lot in order to balance the line.

 189

The closed-from expression for 1,6 −ESZ is given above for a lot sequence, π . Next, we

want to find the optimal lot sequence *π .

Proposition 6.6: For ES-1 policy, the optimal lot sequence *π can be found in

polynomial time.

Proof: First, we want to show that the two-machine zero-buffer IMHLSP with ES-1

policy is equivalent to a Traveling Salesman Problem (TSP) with 1+N cities.

Let the distance from city i to j be equal to

}.,max{ 10 ii pTd =

}.,max{ 20 jj pTd =

},max{ ijij BAd = , for 0≠i and 0≠j , where },2max{ 1jj pTA = and 2ii pB = .

We can rewrite the closed-from expression for 1,6 −ESZ as

},max{},max{},max{4 2
2

1111,6 N

N

j
jjES pTBApTTZ ∑

=
−− +++= .

This TSP can be solved in)(2NO time by the algorithm proposed by Gilmore and

Gomory (Gilmore and Gomory 1964). ◘

Sequence ES-2: This sequence differs from sequence ES-1 by the sequence of the

following two movements: transferring of a lot at machine 1 to stocker and transferring of

the next lot from the stocker to machine 1. The vehicle loads job 11, goes to the stocker,

waits and unloads job 11. Then, it loads job 21, goes back to the stocker, and loads job 12,

and goes back to the stocker. It waits and unloads job 21, and then, goes back stocker. It

waits and unloads job 12. This process is repeated until all the jobs are processed.

 190

We have

11111 pltT += .

111111),max(utpltutltC +++= .

2111121 pltCT ++= .

11112111121)2,max(utltTCpltCC +++++= .

1221112 pltTCT +++= .

).4,2,2max{
),max(

1121111211

22211221112

TCpTCpTC
utltCpltTCC

+++++=
+++++=

3111231 pltCT ++= .

11123111231)2,max(utltTCpltCC +++++= .

2221222 pltTCT +++= .

).4,2,2max{
),max(

1231122212

22311221222

TCpTCpTC
utltCpltTCC

+++++=
+++++=

By induction, we have

)4,2,2max(12,1
2

112,1 TpTpTCC ii

N

i
N +++= −

=
− ∑ .

222222,12),max(utpltutltCC NNN ++++= − .

Note that 1,62,6 −− = ESES ZZ .

Sequence LS: This sequence differs from sequences ES-1 and ES-2 in the way that a

vehicle does two transfers during travel in one loop. The vehicle loads job 11, goes back

to the stocker, waits and unloads job 11. Then, it loads job 12, goes back to the stocker. It

waits and loads job 21, and in the same cycle, unloads job 12, and then, goes back to the

stocker. It waits and unloads job 21. This process is repeated until all the jobs are

completed.

 191

We have,

11111 pltT += .

111111),max(utpltutltC +++= .

1221112 pltCT ++= .

).,2max(
)),,0max(2max(),max(

1211

12121121222211112

pTTC
pTTpTCutpltltTCC

++=
+−++=+++Δ++=

211211121 pltTCT ++Δ++= where).,0max(1221 Tp −=Δ

).,2,2,2max(
)),0max(,),2max(max(

),max(

2112211211

1211121111211

12111221

pTppTpTTTC
utpltTptCltpTTC

utTltCC

++++++=
+++−+++++=

++=

By induction, we have

)2,,2,3max(2,112,1
2

1111 −−
=

+++++= ∑ iii

N

i
iN pTppTpTTCC .

222212),max(utpltltTCC NNN ++++= .

The makespan indicated by LSZ ,6 is expressed as follows.

},max{},,,2max{},max{3 2
2

2,112,1111,6 N

N

i
iiiiLS

pTpppTpTTpTTZ ∑
=

−− ++++++= .

Note that

.},max{},max{3

},max{}],max{},[max{},max{3

1
2

1
1

2
22,1111,6

∑∑

∑

==

=
−

++=

++++=

N

i
i

N

i
i

N

i
IiiLS

pTpTT

pTpTpTpTTZ

Thus, any lot sequence, π , is optimal for sequence LS.

 192

Corollary 6.1: The two-machine zero-buffer IMHLSP for the segregate model can be

solved in polynomial time.

Proof: The optimal solutions for the ES-1 and ES-2 policies can be determined in

polynomial time by Proposition 6.6. And, for LS policy, the optimal lot sequence is

arbitrary. Therefore, we can compare the optimal makespan values for the ES and LS

policies and find the optimal solution in polynomial time. ◘

Corollary 6.2: For the same sequence, π , the LS policy is not necessarily better than the

ES policy.

Based on the results above, we can propose two VID rules:

• Sweep. A vehicle tries to perform as many deliveries as possible in the same loop.

• Touch. A vehicle tries to perform as few deliveries as possible in the same loop.

6.5.1.2 Direct model

Next, we consider the direct model.

Sequence ES: The vehicle loads job 11, and goes back to the stocker. It waits, and then

unloads 11, and in the same circle loads 12, goes back to the stocker. It waits, loads 21,

goes back to the stocker, and waits. It unloads 12, and goes back to the stocker. It waits,

unloads 21 and in the same circle loads 22, and goes back to the stocker. It waits and

loads job 31, and goes back to the stocker and unloads 22. This process is repeated until

all the lots are completed.

We have,

11111 pltT += .

2,11111111),max(ttpltutltC +++= .

 193

121112 pCT += .

212111112),2max(utpCTCC +++= .

21121121 pltutCT +++= .

).,,3max(
),,2max(

),max(

211211

2,12112112,11212112,11211

2,12111221

pTpTTC
ttpltutCttltutpCttltutTC

ttTltCC

+++=

++++++++++++=

++=

222122 pCT += .

222212122),2max(utpCTCC +++= .

31122131 pltutCT +++= .

).,,3max(
),,2max(

),max(

312221

2,13112212,11222212,11221

2,13112231

pTpTTC
ttpltutCttltutpCttltutTC

ttTltCC

+++=

++++++++++++=

++=

By induction, we have

),,3max(2,1
2

1111 −
=

+++= ∑ i

N

i
iN pTpTTCC .

2212),max(utpTCC NNN ++= .

The makespan indicated by ESZ ,7 is expressed as follows:

∑
=

− ++++==
N

i
NiiNES

utpTppTpTTCZ
2

222,11112,7 },max{},,2max{},max{2 .

Compared with },max{},,2max{},max{4 2
2

2,11111,6 N

N

i
iiES pTppTpTTZ ∑

=
−− +++= , we

can see that ESZ ,7 has improved makespan in the amount of 22 utT − . And, the optimal

lot sequence, *π , is the same as that for sequence ES-1.

 194

Sequence LS: This sequence differs from sequence ES because of two movements in the

same circle. The vehicle loads job 11, goes back to the stocker and waits, and then,

unloads 11, and in the same circle loads 12. It goes back to the stocker and waits, and

loads 21, and in the same circle unloads 12. It goes back to the stocker, waits, and

unloads 21, and in the same circle loads 22. It goes back to the stocker, waits and loads

31, and in the same circle unloads 22. This process is repeated until all the jobs are

completed.

We have,

11111 pltT += .

2,111111),max(ttpltutltC +++= .

121112 pCT += .

.),max(
)(,0max(

21211

21211222121112

utpTC
utTpTCutltutCC

++=
+−++=++Δ++=

2112121121 pltutCT ++Δ++= , where)))((,0max(2,1121221 ttltutp ++−=Δ .

).,,,2max(
),max(,,2max(

),,max(
),max(

2112211211

21121211

2,1211212112,11212112,11211

2,12111221

pppTpTTC
ppTpTTC

ttpltutCttltutpCttltutTC
ttTltCC

++++=
+++=

+++Δ++++++++++=

++=

By induction, we have

),,,2max(12,12,1
2

1111 iii

N

i
iN pppTpTTCC ++++= −−

=
∑ .

2212),max(utpTCC NNN ++= .

The makespan is

.},max{},max{

},max{},,,2max{},max{

2
1

2
1

1

2
222,112,1111,7

utpTpTT

utpTpppTpTTpTTZ

N

i
i

N

i
i

N

i
NiiiiLS

+++=

+++++++=

∑∑

∑

==

=
−−

 195

Note that, any lot sequence, π , is optimal.

Compared with ∑∑
==

++=
N

i
i

N

i
iLS pTpTTZ

1
2

1
1,6 },max{},max{3 , note that sequence LS has

improved makespan value of 22 utT − .

Corollary 6.3: The two-machine, zero-buffer IMHLSP for the direct model can be solved

in polynomial time.

Corollary 6.4: For the two-machine zero-buffer IMHLSP, the direct model is better than

the segregate model.

Proof: This follows by comparing the values of 1,6 −ESZ , ESZ ,7 , LSZ ,6 , and LSZ ,7 . ◘

This explains why SEMATCH has been consistently encouraging 300mm fabs to

implement tool to tool delivery.

6.5.2 One-buffer problem

Since the segregate model is not expected to dominate the direct model, we will mainly

focus on the direct model.

Proposition 6.7: The IMHLSP with two-machine and one-buffer is NP-hard.

Proof: One special case of this problem is when all types of travel times (1lt , 2lt , 2,1tt ,

1ut , 2ut) are zeroes. This special case is the two-machine flow shop scheduling problem

with limited buffers, which is strongly NP-hard (Papadimitriou and Kanellakis 1980). ◘

 196

In the presence of buffers in front of the machines, there are too many possible movement

sequences for the vehicle to transport lots between the machines and the stocker. Thus,

the method that we used before, i.e., deriving a closed-form expression of the optimal

makespan for a given lot sequence, π , cannot be applied here. We just list a promising

sequence that is based on the LS policy. It can serve as a heuristic, and the makespan

value obtained from it can be considered as an upper bound

LS sequence: The vehicle loads job 11, and goes back to the stocker. It waits and loads

job 21, unloads job 11 and loads job 12 in the same circle and goes back to the stocker. It

waits and loads job 31, unloads job 21, loads job 22, and unloads job 12 in the same

circle, and then goes back to the stocker. This is repeated until all the jobs are completed.

We have,

11111 pltT += .

2,111111),max(ttpTltC ++= .

2111121),max(ppTltT ++= .

222121121 utltutCC ++Δ++= where))(,0max(),(,0max(max(122121 TpTp −−=Δ .

212211121),,max(utppTTT ++= .

121112 pCT += .

222121112 utltutCC ++Δ++= .

312,12131 pttCT +−= .

2,113122131 ttltutCC ++Δ++= where))(,0max(),(,0max(max(223131 TpTp −−=Δ .

222312131),,max(utppTCC ++= .

222122 pCT += .

2222122 utltutCC ++Δ++= .

4123141 pttCT +−= .

By induction, we have

 197

22,11
2

111),,max(utppTCC ii

N

i
N ++= −

=
∑ .

2212),max(utpTCC NNN ++= .

The makespan for sequence LS, indicated by LSZ ,8 , is as follows.

∑
=

− ++++=
N

i
NiiLS utpTppTpTTZ

2
222,1111,8 },max{},,max{},max{ .

If we let },max{ 1jj pTA = , we can transform the problem of determining the optimal lot

sequence, *π , for sequence LS to a special type of the TSP, which can be solved by the

method of Gilmore and Gomory (1965) in polynomial time to obtain optimal *π .

By comparing ESZ ,7 , LSZ ,7 and LSZ ,8 , note that filling of one buffer is better than filling of

no buffer.

6.6 General AMHS system

This pertains to the entire fab involving multiple bays and vehicles.

6.6.1 Direct model

The implementation of this model for general AMHS is identical to that for an intrabay

system except for the transportation of a lot from a machine of a bay to a machine of

another bay. As a result, the lot is transported between stockers in addition to its

movement within bays, and it results in longer transportation times.

6.6.2 Segregate model

In the interbay system, vehicles loop through the stockers and move lots from one stocker

to another stocker. A simple interbay AMHS is shown in Figure 6.8. There are four

 198

stockers which are located at the head of four bays: Etch, Litho, CMP, and Wets. The

travel times between any two stockers are also indicated.

Figure 6.8: A simple interbay AMHS system

The travel time ijt matrix is listed in Table 6.2.

Table 6.2: The travel time ijt matrix

 S-Etch S-Litho S-CMP S-Wets

S-Etch NA 1 4 3

S-Litho 5 NA 3 2

S-CMP 2 3 NA 5

S-Wets 3 4 1 NA

Remark 6.1: The interbay movement part of the IMHLSP problem is a single-stage

scheduling problem with parallel machines (corresponding to vehicles) and sequence-

dependent setup times (corresponding to the deadhead travel times). It is also equivalent

to the asymmetric traveling salesman problem (ATSP) with multiple salesmen.

Each vehicle is equivalent to a machine. Each lot movement can be considered as a job

and the deadhead trip time is setup time. For example (refering to Figure 6.8), a vehicle

S-Etch

S-Wets S-CMP

S-Litho

1=ijt

2=ijt

2=ijt

1=ijt

 199

moves one lot from S-Etch to S-CMP (job 1), and then, moves one lot from S-Litho to S-

CMP (job 2). In the equivalent single-stage scheduling problem, Job 1 processing time is

4 and job 2 processing time is 3. The setup time between job 1 and job 2 is 1.5. However,

if the sequence of jobs is reversed, the setup time becomes 1.

The presence of multiple vehicles makes it a multiple asymmetric traveling salesman

problem.

The multiple ATSP is a very difficult problem to solve. However, there are some

heuristic procedures, which have proved to be effective for the solution of this problem.

The followings are some VID rules that we have developed based on these ideas.

• Shortest Total Travel Time (STTT). Each vehicle starts from its current

location, selects the next lot with the smallest sum of loaded travel time and

deadhead trip time. If the same lot is selected by two vehicles, the tie is broken

based on the sum of loaded travel times and empty travel times.

• Shortest Total Travel Time with Look-ahead (STTT with Look-ahead). A

vehicle starts from its current location, finds the next 2 consecutive lots which

have smallest sum of loaded travel times and empty travel times to finish these

two lot movements. Both lots are selected by this vehicle. If the same lot is

selected by two vehicles, the tie is broken by the sum of loaded travel times and

empty travel times.

Currently, in 300mm fabs, one of the most widely used VID rule is the shortest distance

to a lot. In interbay movement, note that STTT rule is a good heuristic, which selects the

lot with the smallest sum of deadhead trip time and loaded travel time. The shortest

distance to lot rule, which selects a lot with shortest deadhead trip time, may not perform

well.

 200

A summary of our recommended RTD rules and the RTD rules used in 300mm fabs is

given in Table 6.3.

Table 6.3: Our recommended RTD rules and the RTD rules used in 300mm fabs
RTD rules Our recommended

rules

Existing rules in 300mm

fabs

FEFS (first encountered first served) √

Lot with longest waiting time √

Shortest distance to a lot √

Longest distance to a lot √

MaxWIP √

MinWIP √ √

EBF √

Sweep √ √

Touch √

LB √

NV- nearest empty vehicle √ √

Farthest vehicle √

Longest idle vehicle √

Least utilized vehicle √ √

STTT √

STTT with look-ahead √

6.7 Conclusions

In this chapter, we have addressed the IMHLSP in the presence of limited number of

vehicles. We, first, formulate a linear integer model for this problem. Due to the

complexity of the underlying problem, we do not solve the model directly. Instead, we

analyze small-size versions of this problem and develop algorithms for their solutions.

These pertains to systems with one to two machines and one to two vehicles. For some of

 201

these problems, we can find optimal solutions in polynomial time. The two-machine one-

buffer problem has been shown to be NP-hard. However, the optimal solution for the

two-machine zero-buffer system can be used as a good heuristic for this problem.

On the other hand, in real-life fabs, RTD (real time dispatching) rules have been widely

implemented. RTD rules can be classified into three categories: MID (machine initialized

dispatching), VID (vehicle initialized dispatching) and LID (lot initialized dispatching)

rules. Based on our analysis on small-size systems, we have shown that some RTD rules

used in real fabs are expected to perform well while not the others. In addition, we also

propose some new promising RTD rules based on our study.

Furthermore, we also show that the direct model is expected to dominate the segregate

model. This result reinforces the recommendations made by SEMATECH and other

organizations.

 202

Chapter 7: Conclusions and Future Research

7.1 Conclusions

In this dissertation, we have addressed two types of new scheduling problems

encountered in the latest semiconductor manufacturing 300mm fabs: multiple-lots-per-

carrier scheduling problem (MLCSP) and integrated automated material handling and lot

scheduling problem (IMHLSP). We have further classified the MLCSP into four different

categories depending on the number of machines used, the processing technology of the

machines, and the type of objective functions used. For IMHLSP, we study two cases,

one with infinite number of vehicles and the other with finite number of vehicles.

In Chapter 2, we have addressed a single-machine, multiple-lot-per-carrier with single-

wafer-processing-technology scheduling problem for the objective of minimizing the

total completion time (MLCSP1). We have first formulated this problem as an integer

programming model. Due to the difficulty of solving this model directly by using an

optimization software, we analyze variations of this problem in order to determine some

inherent structural properties. To that end, we, first, study the problem by relaxing the

carrier (FOUP) capacity. For this problem, when all the lots are of the same size, the

optimal solution is easy to obtain. However, for the case of different lot sizes, we propose

a dynamic programming-based algorithm, RelaxFOUP-DP. For the problem with

limited FOUP capacity, when all the lots are of the same size, we show that the optimal

solution is the same as that for its relaxed version. When the lots are of different sizes, a

branch-and-bound algorithm, MLCSP1-B&B, is developed that relies on the

RelaxFOUP-DP algorithm. Numerical tests indicate that MLCSP1-B&B finds optimal

solutions much faster than the direct solution of the MLCSP1 model by the AMPL

CPLEX 10.1 Solver. The CPLEX Solver cannot solve the problems involving 15 and

higher number of lots within the allowable cpu time of 14,400 seconds. In particular, our

computational results show that, with an increment in the number of carriers, L, the cpu

time required by the CPLEX Solver increases sharply while that required by MLCSP1-

B&B for these instances falls dramatically. In fact, for the medium and low density

 203

problems, the RelaxFOUP-DP algorithm finds the optimal solutions at the starting node

(node zero) itself, whereas the AMPL CPLEX Solver is unable to solve these problem

instances within the allowable cpu time of 14,400 seconds.

Next, in Chapter 3, we consider a single-machine, multiple-lots-per-carrier with single-

carrier-processing-technology scheduling problem for the objective of minimizing total

completion time (MLCSP2). We have, first, formulated this problem as a generalized

assignment problem (GAP) instead of an integer programming model using a big number

M as shown in the literature. We, then, analyze the problem and determine some inherent

properties. Based on our results, the optimal solution for the case in which all the lots are

of the same size can be obtained easily. For the case of different lot sizes, we determine a

lower bound and an upper bound for the problem. It is shown that the worst-case of the

lower bound is 0.5 of the optimal solution and that of the upper bound is 2 times the

optimal solution.

In Chapter 4, another MLCSP, a two-machine flow shop, multiple-lots-per-carrier with

single-wafer-processing-technology scheduling problem for the objective of minimizing

the makespan (designated as MLCSP3) is addressed. We, first, consider a relaxation of

this problem, and transform the original problem to a two-machine flow shop lot

streaming problem. For the lot streaming problem for lots with the same ratio of

processing times on the machines, we propose the Sam-Cap algorithm to find the

optimal capacitated sublot sizes. When lots involve different ratios of processing times,

the Dif-Cap algorithm is developed to find optimal capacitated sublot sizes. Since the

optimal solutions obtained for the lot streaming problem may not be feasible to the

MLCSP3, we develop four heuristic methods based on the heuristic procedures for the

bin packing problem, namely, Sam-FFI, Sam-FFD, Sam-BFI, and Sam-BFD for lots

with the same ratio of processing times, and another four procedures, namely, Dif-FF1,

Dif-FF2, Dif-BF1, and Dif-BF2 for lots with different ratios of processing times.

Numerical tests indicate that our heuristic procedures are able to generate solutions closer

to optimum. The gap is less than 4% for Sam-FFI, Sam-FFD, Sam-BFI, and Sam-BFD

and less than 5% for Dif-FF1, Dif-FF2, Dif-BF1, and Dif-BF2. In addition, the heuristic

 204

procedures find solutions in few seconds while the CPLEX Solver cannot solve the

problems consisting of lots greater than 25 within 3600 seconds of cpu time. For

problems of larger sizes, the performance measure that we use is the gap between the LB

and the solutions generated by our heuristic procedures. The results indicate this gap to

be within 5% for lots with the same ratio of processing times and within 6% for lots with

different ratios of processing times.

In Chapter 5, we have addressed the IMHLSP in the presence of infinite number of

vehicles. We have, first, classified the AMHS operation model into four different types:

the segregate model, the direct model, the weak hybrid model, and the strong hybrid

model. The strong hybrid model is new and being a combination of the segregate and

direct models, is expected to lead to a global optimal schedule. The decisions involved in

the strong hybrid model are the sequence of the lots as well as a selection between the use

of segregate or direct models for each lot, whichever optimizes system performance. One

difficult factor involved in this problem is the limited buffer size on the machines. There

are only limited research results available in the literature on scheduling problem with a

limited buffer size. We show that, under certain conditions about the processing times,

the problem can be approximated by the case of either infinite buffer size or zero-buffer

size. Hence, we consider all three cases of the IMHLSP in this chapter: infinite buffer,

zero-buffer, and limited buffer size. For the case of infinite buffer size, modified

Johnson’s algorithm is optimal for both the segregate model and the direct model. The

hybrid models (both weak and strong) do not exist for this case. Since, for the segregate

model, a lot, after having finished processing on a machine, goes through the center

buffer, which has unlimited storage size, the cases with zero-buffer and limited buffer

size are identical to that for infinite buffer. For the direct model, when the buffer size is

zero, the algorithm by Gilmore-Gomory (1958) solves the problem easily. However,

when the buffer size is limited, a heuristic procedure by Papadimitrious and Kanellakis

(1987) algorithm is an effective one for this problem.

For the strong hybrid model with limited buffer size (which is also applicable to the case

of zero-buffer), we propose a branch-and-bound algorithm, Strong-B&B, which uses

 205

modified Johnson’s algorithm to determine a lower bound. Two upper bounds for

Strong-B&B are also determined, one using the procedure of Papadimitrious and

Kanellakis (1987) and the other using the modified Johnson’s algorithm. Numerical tests

indicate that Strong-B&B finds optimal solutions faster than the direct solution of the

IMHLSP model by the AMPL CPLEX 10.1 Solver. The CPLEX Solver cannot solve

problems containing number of lots of 70 and higher within the allowable cpu time of

3600 seconds for the IMHLSP model with intraby movements, and problems containing

number of lots of 60 and higher when interbay movements are considered. Experimental

results also indicate that for the same problem size, the cpu times required to solve the

IMHLSP model with interbay movements are larger than those with intrabay movements.

In Chapter 6, we have addressed the IMHLSP in the presence of limited number of

vehicles. We, first, formulate a linear integer model for this problem. This method is

difficult to solve to optimality by using an optimization solver. Therefore, we analyze

small-size versions of this problem and develop algorithms for their solutions. These

pertains to systems with one to two machines and one to two vehicles. For some of these

problems, we can find optimal solutions in polynomial time. The two-machine one-buffer

problem has been shown to be NP-hard. However, the optimal solution for the two-

machine zero-buffer system can be used as a good heuristic for this problem. On the other

hand, in real fabs, RTD (real time dispatching) rules have been widely implemented.

RTD rules can be classified into three categories: MID (machine initialized dispatching),

VID (vehicle initialized dispatching) and LID (lot initialized dispatching) rules. Based on

our analysis on small-size systems, we have shown that some RTD rules used in real fabs

are expected to perform well while not the others. In addition, we also propose some new

and promising RTD rules based on our study.

7.2 Future research

In reality, different lots may have different priorities. Thus, one future research direction

is to study the MLCSP1 with objective of minimizing total weighted completion time.

Note that we have covered a part of this topic in Chapter 2 when we determine the third

 206

lower bound by using a relaxed problem. However, for the relaxed problem, all the lots

have the same size, which means that it is a special case of the problem. Similarly, the

objective of minimizing the total weighted completion time can also be applied to

problems MLCSP2, MLCSP3 and MLCSP4.

The optimal solution of the direct model chooses either segregate model or direct model

when a lot finishes processing on a machine. This is similar to the scheduling problem

with alternative routes, which is a NP-hard problem (Baker 1972). It is conjectured that

the direct model with zero-buffer is also a NP-hard problem. The proof remains open in

our study.

It appears that the most difficult factor involved in the IMHLSP, both for the cases of

infinite and finite number of vehicles, is the limited buffer size. In this study, our

methodologies include a branch-and-bound algorithm and derivation of closed-form

expressions for small-size problems. They are efficient for small-size problems (mostly

two-machine flow shops). When problem size becomes larger (containing multiple

machines or multiple vehicles), the strategy needs to be changed. Hence, for future

research, we recommend investigation of different mathematical programming

techniques for the IMHLSP.

For the MLCSP, in this study, we consider a small-size version of this problem

(involving one to two machines). In real-life, a fab has hundreds of machines. The

algorithms proposed in this research can be applied to large-size problems with some

necessary modifications. Case studies involving the applications of proposed

methodologies in industry will further enhance the value of this research.

 207

References

1. M. F. Anwar and R. Nagi. 1998. Integrated scheduling of material handling and

manufacturing activities for just-in-time production of complex assemblies.

International Journal of Production Research, vol.36, no.3, pp.653-681.

2. M. Azizoglu and S. Webster. 2001. Scheduling a batch processing machine with

incompatible job families. Computers & Industrial Engineering, vol.39, pp.325-335.

3. M. Azizoglu and S. Webster. 2000. Scheduling a batch processing machine with non-

identical job sizes. International Journal of Production Research, vol.38, no.10,

pp.2173-2184.

4. K. R. Baker. 1974. Introduction to Sequencing and Scheduling. John Wiley & Sons.

5. U. Bilge and G. Ulusoy. 1995. A time window approach to simultaneous scheduling

of machines and material handling system in an FMS. Operations Research, vol.43,

no.6, pp.1058-1070.

6. G. Cardarelli and P. M. Pelagagge, 1995. Simulation tool for design and management

optimization of automated interbay material handling and storage systems for large

wafer fab. IEEE Transactions on Semiconductor Manufacturing, vol.8, no.1, pp.44-

49.

7. G. Cardarelli, P. M. Pelagagge and A. Granito, 1996. Performance analysis of

automated interbay material handling and storage systems for large wafer fab.

Robotics & Computer-Integrated Manufacturing, vol.12, no.3, pp.227-234.

8. W. Carrlker. 2004. Intel 300 mm fab layout and material handling automation

integration learning. 2004 IEEE/SEMI Advanced Semiconductor Manufacturing

Conference, pp.257-261.

9. V. D. Carvalho. 1999. Exact solution of bin-packing problems using column

generation and branch-and-bound. Annals of Operations Research, vol.86, pp.629–

659.

10. J. Chrisos and J. N. Patt. 1998. Integraiton risks in 300 mm wfer fab automation.

Solid State Technology, vol.41, no.7, pp.193-196.

11. C. M. Christensen, S. King, M. Verlinden, and W. Yang. 2008. The New Economics

of Semiconductor Manufacturing. IEEE Spectrum, pp.25-29.

 208

12. E. G. Coffman, M. R. Garey, and D. S. Johnson. 1996. Approximation Algorithms for

Bin Packing: A survey. Approximation algorithms for NP-hard problems, pp.46-93.

PWS Publishing Co., Boston, MA, USA.

13. P. Damodaran, P. K. Manjeshwar, and K. Srihari. 2006. Minimizing makespan on a

batch-processing machine with non-identical jobs sizes using genetic algorithms.

International Journal of Production Economics, vol.103, pp.882-891.

14. G. Dobson and R. S. Nambimadom. 2001. The batch loading and scheduling problem.

Operations Research, vol.49, no.1, pp.52-65.

15. V. Erramilli and S. J. Mason. 2006. Multiple Orders per Job Compatible Batch

Scheduling. IEEE Transactions on Electronics Packaging Manufacturing, vol.29,

no.4, pp.285 – 296.

16. International SEMATCH. 2007. Factory Integration, International Technology

Roadmap for Semiconductors: 2006 Update. SEMATECH Inc.

17. E. Falkenauer. 1996. A hybrid grouping Genetic Algorithm for bin packing. Journal

of Heuristics, vol.2, pp.5–30.

18. T. D. Fataneh. 1997. A value-added approach for automated guided vehicle task

assignment. Journal of Manufacturing Systems, vol.16, no.1, pp.24-34.

19. M. L. Fisher, R. Jaikumar and L. N. V. Wassenhove. 1986. A multiplier adjustment

method for the generalized assignment problem. Management Science, vol.9, no.32,

pp.1095-2104.

20. E. Fu. Private communications 2007. Micron Technology Inc.

21. T. Ganesharajah, N. G. Hall and C. Sriskandarajah. 1998. Design and operational

issues in AGV-served manufacturing systems. Annals of Operations Research, vol.

76, pp.109-154.

22. M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, San Francisco.

23. F. J. Ghazvini and L. Dupont. 1998. Minimizing mean flow times criteria on a single

batch processing machine with non-identical job sizes. International Journal of

Production Economics, vol.55, pp.273-280.

 209

24. P. C. Gilmore and R. E. Gomory. 1964. Sequencing a one state-variable machine: a

solvable case of the traveling salesman problem. Operations Research, vol.12, pp.

655-679.

25. N. G. Hall and C. Sriskandarajah. 1996. A survey of machines scheduling problems

with blocking and no-wait in process. Operations Research, vol.44, no.3, pp.510-525.

26. N. G. Hall, C. Sriskandarajah and T. Ganesharajah. 2001. Operational decisions in

AGV-served flowshop loops: scheduling. Annals of Operations Research, vol.107,

pp.161-188.

27. M. H. Han and L. F. Mcginnis. 1989. Control of material handling transporter in

automated manufacturing. IIE Transactions, vol.21, no.2, pp.184-190.

28. R. Hubscher and F. Glover. 1994. Applying Tabu Search with influential

diversification to multiprocessor scheduling. Computers and Operations Research,

vol.21, pp.877–884.

29. H. Heinrich and A. Pyke.1995. The impact of conveyor transports on factory

performance at Infineon’s (Siemens) 200 mm fab. Semiconductor Fabtech Journal.

30. International SEMATECH. 2000. Scheduler/Dispatcher User Requirements.

International SEMATECH Inc.

31. International SEMATECH. 2003 and 2004. International technology roadmap for

semiconductors: Factory Integration. International SEMATECH Inc.

32. S. M. Johnson. 1954. Optimal two- and three-stage production schedules with setup

times included. Naval Research Logistics Quarterly, vol.1, no.1, pp.61-68.

33. M. Kidambi. Private communications. 2006. Qimonda Inc.

34. C. W. Kim, J. M. A. Tanchoco and P. H. Koo. 1999. AGV dispatching based on

workload balancing. International Journal of Production Research, vol.37, no.17,

pp.4053-4066.

35. H. Kise, T. Shioyama and T. Ibaraki. 1991. Automated two-machine flowshop

scheduling: a solvable case. IIE Transactions, vol.23, no.1, pp.10-16.

36. C. H. Kuo and C. S. Huang. 2005. Dispatching of overhead hoist vehicles in a fab

inrabay using a multimission-oriented controller. International Journal of Advanced

Manufacturing Technology.

 210

37. E. Kutanoglu, F. Tanrisever, and S. J. Mason. 2004. Forming and Scheduling Jobs

from Multiple Orders with Different Attributes: a Computational Study of Special

Cases. Proceedings of the 2004 IIE Annual Conference and Exhibition.

38. J. D. Laub, J. W. Fowler, and A. B. Keha. 2007. Minimizing makespan with multiple-

orders-per-job in a two-machine flowshop. European Journal of Operational

Research, vol.182, pp.63-79.

39. R. Leisten. 1990. Flowshop sequencing problems with limited buffer storage.

International Journal of Production Research, vol.28, no.11, pp.2085-2100.

40. B. Li, J. Wu, W. Carriker and R. Giddings. 2005. Factory throughput improvement

through intelligent integrated delivery in semiconductor fabrication facilities. IEEE

Transactions on Semiconductor Manufacturing, vol.18, no.1, pp.222-231.

41. D. Y. Liao and C. N. Wang. 2004. Neural-network based delivery time estimates for

prioritized 300mm automatic material handling operations. IEEE Transactions on

Semiconductor Manufacturing, vol.17, no.3, pp.324-332.

42. D. Y. Liao, M. Jeng and M. Zhou. 2004. Petri net modeling and Lagrangian

relaxation approach to vehicle scheduling in 300mm semiconductor manufacturing.

Proceedings of the 2004 IEEE Conference on Robotics and Automation, New Orleans,

LA, pp.5301- 5306.

43. D. Y. Liao and H. S. Fu. 2004. Speedy delivery: dynamic OHT allocation and

dispatching in large-scale, 300 mm AMHS management. IEEE Robotics &

Automation Magazine.

44. J. T. Lin, F. K. Wang and Y. M. Chang. 2006. A hybrid push/pull dispatching rule for

a photobay in a 300mm wafer fab. Robotics and Computer-Integrated Manufacturing,

vol.22, pp.47-55.

45. J. Liu and B. L. MacCarthy. 1997. A global MILP model for FMS modeling.

European Journal of Operational Research, vol.100, pp.441-453

46. G. T. Mackulak and P. Savory. 2001. A simulation-based experiment for comparing

AMHS performance in a semiconductor fabrication facility. IEEE Transactions on

Semiconductor Manufacturing, vol.14, no.3, pp.273-280.

 211

47. S. Melouk, P. Damodara, P. Y. Chang. 2004. Minimizing makespan for single

machine batch processing with non-identical job sizes using simulated annealing.

International Journal of Production Economics, vol.87, pp.141-147.

48. H. S. Min and Y. Yih. 2003. Selection of dispatching rules on multiple dispatching

decision points in real-time scheduling of a semiconductor wafer fabrication system.

International Journal of Production Research, vol.41, no.16, pp.3921-3941.

49. L. G. Mitten. 1959. Sequencing n jobs on two machines with arbitrary time lags.

Management Science, vol.5, no.3, pp.293-298.

50. C. Papadimitriou and P. Kanellakis. 1980. Flow shop scheduling with limited

temporary storage. Journal of Associate Computing Machinery, vol.27, pp.533-549.

51. M. Pinedo. 2005. Scheduling: Theory, Algorithms and Systems. Prentice Hall, Upper

Saddle River.

52. J. D. Plummer, M. D. Deal and P. B. Griffin. 2000. Silicon VLSI Technology:

Fundamentals, Practice, and Modeling. Prentice Hall, Upper Saddle River.

53. C. N. Potts and M. Y. Kovalyov. 2000. Scheduling with batching: a review. European

Journal of Operational Research, vol.120, pp.228-249.

54. P. Qu. 2004. The Single Machine Multiple Orders per Job Scheduling Problem. Ph.D

thesis, Department of Industrial Engineering, University of Arkansas.

55. P. Qu and S. J. Mason. 2004. Using Tabu Search on the Single Machine Multi-Orders

per Job Scheduling Problem. Proceedings of the 2004 IIE Annual Conference and

Exhibition.

56. P. Qu, S. J. Mason, E. Kutanoglu, and J. W. Fowler. 2004. A Polynomial Time

Heuristic for Scheduling Multiple-Order Jobs on a Single Machine. Proceedings of

the 2004 IIE Annual Conference and Exhibition.

57. P. Qu and S. J. Mason. 2005. Metaheuristic Scheduling of 300mm Lots Containing

Multiple Orders. IEEE Transactions on Semiconductor Manufacturing, vol.18, no.4,

pp.633-643.

58. S. Reveliotis. 1999. Real-time control of flexibly automated production systems.

AutoSimulations Symposium ’99 – Driving the golden spike.

 212

59. I. Sabuncuoglu and D. L. Hommertzheim. 1992. Dynamic dispatching algorithm for

scheduling machines and automated guided vehicles in a flexible manufacturing

system. International Journal of Production Research, vol.30, no.5, pp.1059-1079.

60. S. C. Sarin and P. Jaiprakah. 2007. Flow Shop Lot Streaming. Springer.

61. S. C. Sarin, A. Varadarajan and L. Wang. 2008. A review on dispatching rules for

operational control in wafer fabrication. International Journal of Production

Planning and Control: A Special Issue on “Novel Approaches in Semiconductor

Manufacturing”, to appear.

62. R. Scholl, R. Klein, and C. Jurgens. 1997. BISON: A fast hybrid procedure for

exactly solving the one-dimensional bin packing problem.” Computers and

Operations Research, vol.24, pp.627–645.

63. P. Schwerin and G.W. Ascher. 1999. A new lower bound for the bin-packing problem

and its integration into MTP.” Pesquisa Operacional, vol.19, pp.111–129.

64. D. Scott. 2000. How do material and information flows impact fab performance. The

Ninth International Symposium on Semiconductor Manufacturing, pp 233-236.

65. J. S. Smith, B. A. Peters and A. Srinivasan. 1999. Job shop scheduling considering

material handling. International Journal of Production Research, vol.37, no.7,

pp.1541-1560.

66. D. Simchi-Levi. 1994. New worst-case results for the bin-packing problem. Naval

Research Logistics, vol.41, pp.579-585.

67. S. Spear and K. Bowen. 1999. Decoding the DNA of the Toyota Production System.

Harvard Business Review, pp.96-106.

68. 300 mm integrated vision for semiconductor factories. 1999. International 300 mm

Initiative and Japan 300 mm Semiconductor Technology Conference. Version 3.0.

69. L. Tuan and M. D. Koster. 2006. A review of design and control of automated guided

vehicle systems. European Journal of Operational Research, vol.171, pp.1-23.

70. J. C. Tyan, T. C. Du, J. C. Chen and I. H. Chang. 2004. Multiple response

optimization in a fully automated fab: an integrated tool and vehicle dispatching

strategy. Computers & Industrial Engineering, vol.46, pp.121-139.

 213

71. G. Ulusoy and S. S. Funda and U. Bilge. 1997. A genetic algorithm approach to the

simultaneous scheduling of machines and automated guided vehicles. Computers

Operations Research, vol.24, no.4, pp.335-351.

72. United Microelectronics Manufacturing (UMC). World Class Manufacturing. United

Microelectronics Manufacturing Website, 2008

73. R. Uzsoy. 1994. Scheduling a single batch processing machine with non-identical job

sizes. International Journal of Production Research, vol.32, no.7, pp.1615-1635.

74. F. Vanderbeck. 1999. Computational study of a column generation algorithm for bin

packing and cutting stock problems. Mathematical Programming, vol.86, pp.565–594.

75. T. Wakabayashi, S. Watanabe, Y. Kobayashi, T. Okabe and A. Koike. 2004. High-

speed AMHS and its operation method for 300mm QTAT fab. IEEE Transactions on

Semiconductor Manufacturing, vol.17, no.3, pp.317-323.

76. Y. C. Wang, C. S. Wu and L. Jann. 2002. Sorter automatic operations in a 300mm fab.

2002 Semiconductor Manufacturing Technology Workshop, pp.119-122.

77. S. Webster and K. R. Baker. 1995. Scheduling groups of jobs on a single machine.

Operation Research, vol.43, no.4, pp.692-703.

78. R. Wilson. 2007. Intel grabs market share back from AMD. Electronic Weekly

Magazine Online.

79. S. Martello and P. Toth. 1990. Knapsack Problems: Algorithms and Computer

Implementations. Wiley.

