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(ABSTRACT) 

A one-dimensional cylindrical cure model was developed to describe the curing 

process of an axisymmetric filament wound composite structure. For a specified cure 

cycle, the cure model can be used to calculate the temperature distribution, the de­

gree of cure of the resin, and the resin viscosity inside the composite case. Solutions 

to the cylindrical cure model were obtained numerically using the finite element 

technique. 

The cylindrical cure model was verified by measuring the temperature distribution in 

a small 5.75 inch graphite - epoxy test bottle. The data were compared with the re­

su Its calcu lated with the computer code for conditions employed in the tests. Good 

agreement was fou nd between the data and the resu Its of the computer code. The 

error between the experimental data and the resu Its of the computer code was less 

than 10 0/0. 

A cure cycle optimization problem is formulated for the curing process using a cal­

culus of variations approach. The optimum cure cycle shou Id tailor the temperature 

in the composite such that a uniform 'temperature and degree of cure distribution is 

achieved in the composite while minimizing the reaction exotherms and thermal lag. 



Cure simulations of an one inch thick graphite - epoxy composite case predict a 

minimization of the reaction exotherms and the thermal lag. The the final process 

time needed to achieve uniform degree of cure and uniform temperature distribution 

in the composite is also predicted. The resultant cure cycle appears to approach the 

boundary temperatures specified as limits on the cure cycle temperature. 
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CHAPTER 1 

INTRODUCTION 

The need for structural materials with greater strength - to - weight ratios has led to 

the development of fiber-reinforced composites. One technique that is commonly 

used to fabricate advanced composites is filament winding. 

Filament winding technology is a manufacturing methodology wherein composite 

structures having shapes of bodies of revolution can be fabricated. This technique 

has been successfully used in the production of high strength, light weight tactical 

motor cases and pressure vessels. Some of the most recent achievements in fila­

ment winding technology include the reusable composite solid rocket motor case for 

the NASA Space Shuttle and the graphite / epoxy launch tubes for the MX missiles. 
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The advent of high specific strength prep regs with low coefficients of thermal expan­

sion, [1,2], have lead to weight savings without compromising on structural perform­

ance. This was found highly attractive by the aerospace industry which placed 

stringent demands on precision, repeatability, and quality control of the finished 

product [3]. 

The principles underlying the fabrication of thin walled filament wound composite 

structures have been fairly well understood. However, recent attempts at producing 

large thick walled filament wound structures has seen little success. The primary 

reason for this failure lies in the most crucial yet least understood area of the manu­

facturing process, namely the relationship between winding process variables, the 

curing process, and the final mechanical performance of the structure. 

1.1 Curing Process Modeling of Epoxy Matrix Composites 

In order to comprehend the classical phenomena that forms the key to the manufac­

turfng process it is of utmost importance to have a mathematical model that can ef­

fectively portray the thermal, physical, and chemical processes occurring during the 

cure. Pioneering work in this field was carried out by Springer [4,5] who proposed a 

fairly accurate characterization of the ma:erial behavior during the curing process of 

epoxy matrix composites. Significant contributions by Loos and Springer [6,7,8] have 

lead to the now often used Laos - Springer model. An integral part of the Loos -
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Springer model is the kinetic and rheological studies carried out for the specific resin 

used in the composite. Lee et al.[9] and the more recent study by Dusi et al.[10] have 

contributed significantly towards the understanding of the resin behavior during cur­

ing. Earlier an attempt at understanding the transport processes of composites in the 

subcured state was carried out by Blankenship [11]. 

Needless to say, as the emphasis of composite research is shifted towards process­

ing in order to improve composite properties and reliability, a clear understanding 

of the transport phenomena occurring during cure is essential. 

The mechanical properties of a composite (Le., interlaminar strength, compressive 

strength, fatigue performance, and shear modulus) depend to a great extent on the 

type of resin and fiber used for the composite, as well as, on the processing cycle. 

Johnson and Owston [12] studied the effect of cure cycle on mechanical properties 

using Weibull analysis. They concluded that the mechanical properties of a composite 

system depend on the cure cycle, and in order to obtain an optimum value of a par­

ticular mechanical property, there is an optimum curing time for any curing temper­

ature. The effect of the matrix resin on composite on composite processing studied 

by Hayes (13]. Aylward et al.[14] analyzed the effects of undercure and thermal de­

gradation in pultruded laminate processing. Young and Lloyd [15] and Munjal [1.2] 

studied the characterization of filament wound composites, with specific emphasis 

on the use of fiber - reinforced composites in the rocket motor industry. Munjal et 

al.[3] identified from empirical studies, the effects of composite geometry on proc­

essing. It was concluded from available data, that property degradation due to ge­

ometry changes and scaling was very apparent and affected the structural 

performance of large composite structures. It was recognized by Young and Lloyd 
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[15] that the quality of high performance pressure vessels, and other aerospace 

composite components are highly process dependent. 

Almost all studies revealed the fact that the effect of processing on fiber dominated 

properties like tensile strength and elastic modulus, was very small. On the other 

hand, the effect of improper processing on resin dominated properties like transverse 

tensile strength, compressive strength, and shear strength, resulted in higher degra· 

dation. 

1.2 Curing Process Control & Optimization 

Process methodology for filament wound composite structures is still in its infancy. 

Present day methods are highly empirical. Processing cycles are often chosen by an 

educated guess or by trial and error experimentation using small subscale parts. Ex­

perience has shown that large filament wou nd composite structures processed by 

using cure cycles developed for subseale parts are often cured nonu niformly with a 

high void content resulting in degradation of mechanical properties. 

Of particular interest is the search for an optimal processing cycle capable of 

producing a composite that has the desired properties satisfying the stringent de­

mands placed on the dimensional stability, strength, and final structural performance. 

This has been an aspect of composite processing that has been largely neglected. 
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The phenomena of heat transfer in a solid is described by the well known Fourier 

heat conduction equation. The heat transfer process, described by a parabolic type 

of partial differential equation, is governed by regulating the temperature at one or 

more spatial boundaries. Systems described by partial differential equations, with two 

or more variables are called distributed parameter systems (DPS). 

Scant attention has been paid to optimization problems in distributed parameter sys­

tems where the state of the system is a function of two or more variables. The state 

of the system, namely the temperature, is space and time dependent. Little has been 

done to extend the pioneering work of Butkovskii [17] and Sakawa [18] on optimal 

control in distributed parameter systems. Denn et al.[19] used the calculus of vari­

ations approach to generate Green's functions to address the Sakawa boundary 

control problem. Denn [20] also applied a Green's function approach to optimize the 

mass diffusion process of a nonlinear distributed system consisting of a packed, tu­

bular reactor with radial diffusion and a single reversible reaction. Chen and Seinfield 

[21] and Seinfield [22] addressed the estimation and identification of parameters in 

systems governed by parabolic partial differential equations using a dynamic pro­

gramming approach. Tzafeslas and Nightingale [23] developed a direct, distributed 

stochastic control theory based on a version of Pontryagin's minimum principle, and 

derived the Hamilton - Jacobi equation. Recently, Nakamichi and Washizu [24] applied 

the finite element method to solve a typical optimal control problem by applying a 

stationary variational principle. Ray and Gupta [25] extended the ideas of Denn [19,26] 

applied to optimal control in packed tubular reactors by considering process end 

point constraints and stopping conditions. 
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Surprisingly, only a few papers treated the nonlinear optimal boundary control prob­

lem in distributed parameter systems, and no papers were found in the literature 

addressing the optimal boundary control and estimation problem in distributed pa­

rameter systems having state constraints. variable properties, and constraints on the 

control. 

1.3 Objectives 

The current challenge is to make advanced composites having desired prespecified 

properties and improve our understanding of fabrication of filament wound composite 

structures. The motivation for tl1is study arises from two significant and challenging 

aspects of composite processing. First, an increased emphasis on understanding the 

curing process of filament wound composites. Second, to try and seek a logical 

method of analysis and design of an optimal processing cycle. 

The objectives of this study can be summarized as : 

1. To seek a better understanding of the phenomena of curing in filament wound 

composite structures. 

2. To develop a mathematical model to simulate the thermal, physical, and chemical 

behavior of filament wound composites during cure. 
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3. To develop a design strategy to achieve prespecified properties in the composite 

on completion of the curing process. 

4. To minimize and control reaction exotherms in thick-section composites during 

cure. 

5. To develop a processing cycle that will enable us to achieve an optimally cured 

filament wound composite in the minimum process time. 
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CHAPTER 2 

CURING PROCESS - PROBLEM IDENTIFICATION 

To clearly understand the curing process. it is of primary interest to formulate the 

problem in terms that are amenable to the construction of mathematical models of 

individual sub phenomenon that occur at different stages of the process. 

2.1 Winding Process 

Consider a mandrel - insulator assembly mounted on a shaft of a computer con­

trolled, multiaxis, general purpose lathe type filament winder (Figure 1) rotating at a 

predetermined angular velocity "m", The composite case is formed by winding con-
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tinuous bands of resin impregnated fibers over the surface of an elastomeric insulator 

[27,28]. The feed head (Figure 1) moves back and forth along a path parallel to the 

axis of the mandrel, with a controlled speed "V". The winding pattern depends on the 

predetermined controlled motion of the carriage drive, mandrel angular velocity, and 

mandrel geometry. 

Initially the resin is uncured. However, upon exposure to ambient temperature during 

the winding process, the fiber bands preimpregnated with resin begin to cure. On 

completion of the winding process two material phases, the solid fibers and the soft 

partially cured resin, coexist in the composite case. 

2.2 Preparation For Cure 

After winding the case, the entire mandrel - insulator - case assembly is prepared for 

curing by wrapping a porous release cloth and a porous breather cloth (the outer 

layer shown in Figure 2) around the outer surface of tile case. 

The entire assembly is then encased in a vacuum bag. When the vacuum system is 

activated, the bag is drawn tightly arou nd the entire assembly allowing for the com­

paction of the outer layers of the case. 
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Vertical CarrIage Motion 

Manct'el Drive 

Figure 1. LATHE TYPE FILAMENT WINDER: 

Crossfeed Housing 

Rotating 
Payout Eye 

A computer controlled, multi axis lathe type filament winder. The horizontal and vertical 
carriage drives can be numerically controlled allowing for various winding patterns and 
shapes of the FWC structure. 
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GEOMETRY 

Figure 2. FILAMENT WOUND COMPOSITE· Geometry: 

Schematic of the FWC assembly. The individual layers and the radial distances with 
respect to the axis of symmetry are indicated. 
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2.3 Curing Process 

The entire bagged assembly comprising of the mandrel - insulator - case - outer layer 

is placed in a forced air oven or an autoclave and cured for a specific length of time. 

The cure temperature T oo(t), may vary with time in an arbitrary manner. The most 

significant event during the curing process [7] is the heat initiated exothermic chem­

ical reaction occurring in the composite matrix resin caused by the interaction of the 

heated oven fluid with the assembly at one or more spatial boundaries (Figure 3). The 

matrix chemical reactions playa critical ,role in determining the thermal and material 

properties of the composite case at any instant of the processing cycle. 

Thus, the objective is to develop a comprehensive model which can be used to select 

the cure temperature which results in a composite case that is cured uniformly and 

completely in the shortest possible time. 

2.4 Processing Cycle Identification 

The elevated temperature to which the assembly is subjected to is referred to as the 

cure or processing cycle [8]. The magnitude and duration of the temperatures applied 

during the curing process significantly affect the performance of the finished product. 

Therefore, the cure cycle must be logically designed and not arbitrarily chosen for 

each particu lar application. 

Some of the major constraints which an optimum cure cycle should satisfy are: 
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y 

MANDREL 

INSULATOR 

COMPOSITE CAS:: 

OUTER LAYER 

~----+-~--~~-+----------~------__ ~~+-~--~~~--. X 
""or 

T.< t) = CURE CYCLE TEMPERATURE 

Figure 3. FILAMENT WOUND COMPOSITE· End View: 

The FWC assembly (hollow mandrel) cured in an oven with heat transfer coefficient hi 
(on the inner surface) and ho on the outer surface. The convective boundary conditions 
are indicated where T m(r,t) i~ the temperature of the inner surface of the mandrel and 
To(r,t) is the temperature of the outer surface of the outer layer and T oo(t). is the oven 
te'Tlperature. llmr and llor are the outward drawn normals at the inner boundry surface 
of the mandrel and the outer surface of the outer layer. 
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1. The temperature inside the composite case should not exceed a preset maximum 

value at any time during the cure. 

2. Towards the end of the process, the composite should have attained uniform and 

complete cure. 

3. The curing process is achieved in the shortest possible time. 

2.5 Cylindrical Cure Model - Analysis 

Consider the mandrel - insulator - composite case - outer layer assembly (denoted 

as FWC assembly) pictured in Figure 2, having a fiber - reinforced thermosetting 

matrix composite case of thickness, tease' inner radius. r3, and outer radius, r4• The 

FWC assembly can be treated as infinitely long concentric cylinders such that the 

heat flow through the walls is in the radial direction only. TllUS, the filament winding 

process problem is modeled as being dominated by changes in the spatial direction 

Ifr" only. 

In formulating the cure model the following simplifications can be considered: 

1. The effects of layer compaction and resin displacement due to fiber tension, 

vacuum bagging, and external pressure are neglected. 
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2. The winding pattern, while important in determining the strength and stiffness of 

the case, has no direct effect on the model except in calculation of the winding 

time. 

3. It is assumed that the thickness of the vacuum bag is small as compared to the 

thickness of the breather cloth. Hence the temperature drop across the bag can 

be neglected. 

2.6 Cylindrical Cure Model - Submodel Identification 

The comprehensive cure model for filament wound composites is comprised of three 

specific submodels, which effectively portray the following phenomena: 

1. The HEAT TRANSFER MODEL which models the heat transfer process. 

2. Curing of the resin inside the composite, due to the effects of the thermal process 

and exothermic chemical reactions is simulated by the CURE - KINETICS MODEL. 

3. Resin viscosity is characterized by the VISCOSITY MODEL. 

In the analysis, the FWC assembly is treated as infinitely long concentric cylinders. 

Furthermore, this simplification leads to a model having temperature, degree of cure, 

and viscosity variations in a single domain in space (i.e., the radial direction). 

In the following sections governing equations and the associated boundary and initial 

conditions for the three submodels will be established. 
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2.7 Submodel - I : HEAT TRANSFER MODEL 

The entire spatial domain r E [r1.rS] (Figure 3) is divided into subdomains for each in-

dividual section of the assembly. Since the outer surface of the outer layer and the 

inner surface of the mandrel (for a hollow mandrel) interact with the fluid (Figure 3) 

the boundary flux needs to be specified. At the interfacial points of the individual 

subdomains, the conservation of energy dictates the equality of temperature and heat 

flux [29,30]. The initial conditions for the process have to be specified for each of the 

models at time, t = O. The explicit set of equations and boundary conditions are 

outlined below. 

Governing Equations 

The classical governing equations for the transient heat transfer analysis in the 

coaxial cylinder assembly (Figure 2) for all times, t ~ 0 are: 

= 

K, iJ aTI 
- -" (r-,,-) 

r (}r or 

V r E [r4, rs] (2.1c) 
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where subscripts m, i, and 0 identify the mandrel, insulator and the outer layer, re-

spectively. p is the density, C is the specific heat, and K is the thermal conductivity. 

T is the temperature, r is the radial coordinate and t is time. 

The one-dimensional unsteady heat conduction equation for the composite case 

(Figure 3) which includes a term representing the rate of heat generation due to 

exothermic chemical reactions is written as [7,8,31] 

1 a aTc . 
-r -",-( Kc r-;l-) + Pc H 

or ur 

where Pc and Cc are the density and specific heat of the composite, respectively, and 

Kc is the thermal conductivity of the composite perpendicular to the direction of heat 

flow (normal to the radial direction). H is the rate of heat generated by chemical re-

actions and is obtained from the kinetics model. 

2.8 Submodel - II : CURE KINETICS MODEL 

The kinetics of the chemical reactions occurring inside the composite case are resin 

dependent [11,14]. 

If the assumption is made that the rate of heat generation during ~he cure is propor-

tional to the rate of the cure reaction, then the degree of cure of the resin a(t) may 

be defined as 
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(2.2) 

where H(t) is the amou nt of the heat evolved from the beginning of the reaction to 

some intermediate time, t, and HR, is the total or ultimate heat of reaction during the 

cure. a(t) is zero initially and for a completely cured resin approaches unity. By dif-

ferentiating the expression for the degree of cure Eq.(2.2) with respect to time and 

rearranging we get an expression for the rate of heat generation. 

(2.3) 

where da(t)/dt, is defined as the reaction rate or cure rate. The functional represen-

tation of the dependence of the cure rate on the temperature and degree of cure of 

the resin may be written as 

(2.4) 

The exact functional form of the cure rate, along with the value of the heat of reaction, 

depends on the matrix resin used in the composite case and must be determined 

experimentally. The most frequently used technique, that has the advantage of si-

multaneously measuring both the heat of reaction and the cure rate, is the differential 

scanning calorimetry (DSC) [7,8,9,10]. Empirical expressions for the cure rate along 

with values of the heat of reaction are give in Appendix A for several commonly used 

epoxy resin systems. 
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If the diffusion of the chemical species is neglected, the degree of cure at each point 

inside the case can be determined by integrating the expression for the cure rate with 

respect to time in the following manner. 

a(t) l df1(t) dt 
o dt 

(2.5) 

The cure kinetics model provides the relationships necessary to calcl,Jlate the rate at 

which heat is generated by the chemical reactions in the composite, H(t), the cure 

rate, da/dt, and the degree of cure of the matrix resin in the composite case. 

2.9 Submodel - III : VISCOSITY MODEL 

In order to calculate the fiber motion and resin displacement in the composite case 

during cure. the resin viscosity must be known as a function of position and time. The 

shear viscosity of a thermosetting resin is a complex function of temperature, degree 

of cure (or time), and shear rate. However. a reasonably good approach to this com-

plex problem is to assu me that the resin viscosity is independent of shear rate and 

to measure the resin viscosity at very low shear rates. A mathematical expression 

which has been used to describe the changes in the viscosity of thermosetting resins 

[8] during cure can be written as : 

e( RUT + K" a) !l(T, a) = 1100 (2.6) 

where !loo. is the isothermal viscosity constant for the resin system, U is the activation 

energy for viscous flow, KIl is the constant which accounts for the effects of the 
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chemical reaction on the viscosity, R is the universal gas constant, and a, is deter-

mined from the cure kinetics model. The constants in Eq.(2.6) can be determined from 

isothermal viscosity data as demonstrated in reference 9. The constants in the 

viscosity model for a commonly used epoxy resin system are reported in Appendix 

C. 

2.10 Spatial Boundary Conditions 

The spatial boundary conditions are the dirchlet type or mixed type of boundary 

conditions specifying the flux at the boundaries of the subdomains. The boundary 

conditions are valid for all times, t ;:::: O. The equality of heat flux at the interfaces and 

the flux boundary conditions at the inner and outer surfaces of the FWC assembly 

interacting with the oven fluid (see Figure 3) are written as 

aTm 
KmTr llmr + hi (T m Too) 0 at r = r1 

aTm 
+ 

aT j 
0 at KmTrllmr Kj -,,-llir = r = r2 or 

aT j 

+ 
aTe 

0 at (2.7) Kj -",,-llir Kc -", -llcr = r = r3 
or ur 

aTe 
+ 

aTo 
0 at Kc J;-llcr Ko J;-llor = r = r4 

aTe 
+ ho(To Too) 0 at Ko -", -llor - = r = rs 

or 
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and, the temperature continuity boundary conditions at the interfacial points of the 

subdomains (Figure 3) can be expressed as 

T m(r2.t) = Tj(r2,t) 

Ti(r 3,t) = Tc(r 3,t) 

Tc(r 4,t) = TO(r4,t) 

at r = r2 

at r = r3 

at r = r4 

(2.8) 

where Tlij is the outward drawn normal of the subdomain i at location j, hi is the inner 

surface convective heat transfer coefficient, ho is the outer surface convective heat 

transfer coefficient, and T oo(t) is the ambient temperature of the fluid in the oven or 

autoclave. 

2.11 Initial Conditions 

The initial conditions require that initial temperature distributions inside the mandrel, 

insulator, composite case, and outer layer be specified at the beginning of the curing 

process. In addition, the cure kinetics model requires that the initial degree of cure 

distribution in the composite case upon completion of the winding process, (Le., 

t :5:: 0) be specified. The initial conditions are written as follows: 

Trn(r,O) = T~(r) \I- r E [r1,r2] . 
Tj{r,O) = Ti (r) \I- r E [r2' r3] 

.. 
Tc(r,O) Tc(r) \I- r E [r3' r4] (2.9) 

.. 
To(r,O) = To(r) \I- r E [r4,rs] 

.. 
a(r,O) = a (r) \I- r E [r 3- r 4] 
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where, T:n(r), r; (r), ~ (r), and T~ (r), are the initial temperatures (at t = 0) of the 

mandrel, insulator, case, and outer layer, respectively. rl(r) is the initial degree of 

cure distribution in the case. The three sub models describing separate phenomena 

are solved concurrently and describe the thermo-chemical behavior occurring inside 

the FWC assembly. The solutions to Eqs (2.1) and(2.3 - 2.6) yield the temperature 

distributions inside the mandrel, insulator, composite case, and outer layer, and the 

cure rate, degree of cure, and resin viscosity as functions of position and time inside 

the composite case. The comprehensive cure model and the interdependence of the 

individual submodels is outlined in Figure 4. 

2.12 Material Properties 

The thermal and mechanical properties of composites are fundamental to the analy­

sis and design of composite structures. Composite micromechanics relates the 

properties of the fiber and the matrix to the final mechanical properties of the com­

posite using the now familiar, "rule of mixtures" approach [32,33,34]. One of the basic 

assumptions on which property estimation of the composite is based is that the 

interaction of the fiber with the matrix is purely mechanical. The chemical reaction 

of the resin does not affect the micromechanics estimation of the pertinent property 

[34]. 

Solution of the cylindrical cure model, requires that the density p, specific heat ca­

pacity C, and thermal conductivity K of the mandrel, insulator, composite case, and 

the outer layer be known. In addition, the heat of reaction of the composite case must 
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Figure 4. BLOCK DIAGRAM OF FWC CYLINDRICAL CURE MODEL: 

The individu:11 submodels (Le., the heat transfer, cure-kinetics and the viscosity models) 
form the comprehensive cure model and correlate the boundary temperatures with the 
thermal,chemical and the physical process occurring within the composite. 
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be specified. In the present analysis, it is assumed that the density, specific heat, and 

thermal conductivity of the mandrel, insulator, and outer layer do not vary signif-

icantly with temperature. Therefore, these material properties will be treated as 

constants and room temperature values will be used. 

The density, specific heat, thermal conductivity, and heat of reaction of the composite 

case depends on the temperature, degree of cure of the resin, and the fiber and resin 

volume fractions. In general, the variations in these properties with temperature and 

degree of cure are not known and cannot be readily determined. 

The "rule of mixtures" model requires that the constituent properties of the resin and 

the fiber, and resin mass fraction be prespecified. Applying the "rule of mixtures" 

model, we can calculate the resin volume fraction, vp of the composite as 

1.0 (2.10) 
1.0 + (~o _ 1.0) ~p)r 

r f 

where mr is the resin mass fraction, Pr is the resin density, and Pr is density of the 

fiber. The resin mass fraction is usually specified for a prepreg roving or tape. 

The density of the composite Pc' can be written as 

(2.11 ) 

Eq.(2.11) assumes that the sum of the volume fractions of the resin and the fiber is 

unity. The specific heat capacity of the composite, ee' can be derived as 

(2.12) 
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where Cf , is the specific heat capacity of the fiber and, Cp the specific heat capacity 

of the resin. 

The heat of reaction for the composite can be expressed as 

(2.13) 

where HR is the heat of reaction per unit mass for the composite and Hr is the heat 

of reaction per unit mass for the resin system. Hr is usually determined from DSC data 

of neat resin samples. 

The thermal conductivity of the composite normal to the fibers (r - direction) may be 

calculated from the relationship derived by Tsai and Springer [32] for a cylindrical 

filament in a square packed array 

Vf 05 Kr [ K = K (1 - 2( -) . ) + - 1t -
c r 1t 0k 

where Pk is defined as, 

(2.15) 

Vf the fiber volume fraction is expressed as, 

v, = 1.0 - vr (2.16) 
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and Kr and K" are the thermal conductivities of the resin and the fibers, respectively. 

2.13 Method of Solution 

Solution of the cylindrical cure model must be obtained by numerical methods. A 

standard finite element approach is adopted to model and solve the cure model. 
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CHAPTER 3 

FINITE ELEMENT FORMULA TION 

One dimensional field problems can be solved by effectively subdividing the region 

into finite domains or elements. The field variables within each element are approxi­

mated by separate interpolation functions, which have common values at the nodes 

of the elements in the mesh. Material properties can be different for each element, 

and in general mixed boundary conditions can be easily handled. 

The sequence of steps adopted in the finite element analysis procedure are: 

1. Identirication of a mathematical model that describes the phenomena. 
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2. Development of a discrete model, computational strategy, and numerical algo­

rithm to approximate the mathematical model. 

3. Develop and assemble the software to implement the strategy and numerical 

scheme. 

4. Postprocessing and interpretation of the predictions of the computational model. 

The mathematical model was identified as the three submodels of Chapter 2. In the 

following sections the discretization of the model and the solution strategy will be 

discussed. 

3.1 Domain Discretization 

The domain r E [rl' rs] of the FWC assembly (Figure 2) is divided into individual sub­

domains identified by the mandrel, insulator, composite case and outer layer as de­

scribed in Section 2.7. Individual subdomains are discretized into isoparametric finite 

elements. The discretized domain may be modeled by a uniform or a nonuniform set 

of finite elements. A typical example of a discretized domain for the FWC assembly 

is shown in Figure 5. 
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INNER INSULATOR 

COMPOSITE CASE 

OUTER LAYER 

y MANDREL INSULATOR I COMPOSITE CASE IOUTER LAY~ 

l I 

Figure 5. FINITE ELEMENT MODEL· Domain Discretization: 

The FWe assembly is divided in to individual subdomains comprising of the individual 
layers of the assembly. The finite element model is made up of an unsymmetric or 
symmetric mesh of axisymmetric finite elements. 
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3.2 Variational Formulation 

Consider a generalized one-dimensional unsteady heat conduction equation in radial 

coordinates with heat generation, 

(3.1) 

where Pi' CI, and, Kj are the density, specific heat capacity, and the thermal 

conductivity, respectively of the region described by the specific element, 

r E [re, re+ 1]. Tj(r,t) and H are the temperature and the rate of heat generation over the 

domain modeled by the element. ra and re+ t are the radial coordinates of the element 

as shown in Figure 6. 

The generalized heat flux boundary conditions for the element can be written as 

at r = r e (3.2) 

and 

at r (3.3) 

where 11a and 11(.+ 1 are the outward pointing normals at ra and re+ " respectively, The 

heat transfer coefficients at re and re+ 1 are denoted by he and ha+ l • T oo{t) is the cure-

cycle temperature. 
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h - 2 

AXISYMMETRIC FINITE ELEMENT MESH 

INSULATOR COMPOSITE OUTER LAYER 

.2 
'.+1 

8 1 e2. --

h~-':l = HEAT TRANSFER COEFFICIENT OF ELEMENT "81" AT NODAL LOCATION r8+'1 

h(e2):: HEAT TRANSFER COEFFICIENT OF ELEMENT "82/1 AT NODAL LOCATION r • • 

Figure 6. FINITE ELEMENT MODEL· Generalized Coordinates: 

The domain is modeled using axisymmetric finite el(!ments. The element mesh and the 
interactions at the nodal points are shown above. 
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If the properties Pi' CII and, Kj are constant over the domain modeled by the specific 

element r E [ret re+d then Eq.(3.1) can be written as : 

(3.4) 

Multiplying Eq.(3.4) by an arbitrary test function q(r) and integrating the expression 

by parts results in the general variational form of the heat conduction expression over 

r8 + 1 aT] r8 +1 cJq(r) aTj r8 + 1 • 

o = J Pj Cj q(r) -",- r dr + f Kj -~ --.~- r dr - S Pj H q(r) r dr 
'. ot r. (;r vr r. aT (3.5) 

+ [q (r)( - r Kj _ ... _J ) ] ~. + 1 

or • 

Substituting Eq.(2.3) for H into Eq.(3.5), the general variational equation can be written 

at the elemental level as 

'."1 aTj '8>-1 Dq(r) oTj r8 + 1 da o = f Pj Cj q(r) -",- r dr + J Kj - ... - -",- r dr - S Pj HR - q(r) r dr 
r. vt r. or or r. dt aT (3.6) 

+ [q{r)( -r KJ' ~)J~.+1 
or 8 

Note that Eq.(3.6) is valid for an element r E [re, re+d at a particular time, t and is the 

exact variational equation for the elements in the composite case. However, the 

governing equations for heat transfer in the mandrel, insulator, and outer layer sub-

domains do not include the heat generation term. (see Section 2.7). Thus. the general 

variational form of the heat conduction equation for elements in the mandrel, 

insulator, and outer layer subdomains follows a similar development as Eq.(3.6) 

without the heat generation term. 
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3.3 Shape Functions and Finite Element Discretization 

Interpolation fUnctions or shape functions are the primary method of approximating 

the finite element solution over the domain modeled by the element. The primary 

variable Tj(r,t) and the test function q(r) can be approximated over the domain 

r E [r e' r e+,] by the following expressions 

(3.7) 

= (3.8) 

where 'Vfe}(r) and 'Vhe)(r) are the shape functions and m is the total number of nodes 

in each element. 

Substituting the generalized boundary conditions (Eq.{3.2) and Eq.(3.3)) into Eq.(3.6) 

and taking into consideration the proper signs on the outward pointing normal at the 

boundary points of the element, Eq.(3.6) can be written as 

r.+-1 aTj r.+ 1 Dq(r) aTj r.+ 1 da 
o = J PJ Cj q(r) -,,- r dr + J Kj -", - -,,- r dr - J Pj HR -dt q(r) r dr 

r. ot r. or or r. 

+ [q(r) he + 1 r (Tj(r,t) - T oo(t))]1 r.+ 1 
(3.9) 

+ [q(r) he r (Tj(r,t) - T oo(t))] I r. 
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Substituting Eq.(3.7) for the test fu nctions and Eq.(3.8) for the temperature distribution 

into Eq.(3.9) yields 

r.+ 1 m m (e) (e) oT~e)(t) 
o = J L L p. C 'Vi 'V r " dr 

r If I := 1 p = 1 J J P ot 

-(e) iJ (e) 
r.+ 1 m m O'Vi 'lip (e) 

+ J r r Kj - o ---"" -Tp (t) rdr 
r If i ::0 1 P = 1 r or 

r e +1 m da (e) J r Pj HR-'VI rdr 
r. j = 1 dt 

~ ~ [{ (e)( (e) h }T(e)] + ~ ~ 'Vi r e + 1) 'V p ( r e + 1 ) e + 1 r e + 1 P (t) 
i=1p=1 

(3.10) 

Interchanging the order of integration and summation and rearranging Eq.{3.10) gives 

the following expression. 

iJ (e) 
m m r.+1 (e) (e) T p (t) 
r r J Pj Cj 'I'i 'I' P " r dr 

1=1 p=1 r. ot 

Ie) 0 (e) 
m m r.+1 O'Vi ~/p (e) 

+ .r r J Kj-,,---~-Tp (t)rdr 
I=:1 p = 1 r. or ur 
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= 

+ 

+ (3.11 ) 

Eq.(3.11) results in a set of simultaneous equations for the element and can be written 

in matrix notation as 

(3.12) 

where {t~e)} is the vector containing the rate of change of temperature derivatives, 

{T&e)} is the vector containing the temperature, [ClgI] is the heat capacitance matrix, 

[KIZ>] is the thermal conductivity matrix, and {Fie)} is the thermal load vector. From 

Eq.(3.11) the heat capacitance and thermal conductivity matrices and the thermal load 

vector are defined as follows 

S
re+ 1 (e) (e) 

P j C j 'I'I (r) 'I' p (r) r d r 
r. 

(3.13) 
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(3.15) 

Since Eq.(3.12) was derived for an arbitrary element, it holds for any element in the 

finite element mesh. The assembly of individual finite elements is based on the idea 

that the quadratic functional (or the variational formulation ) associated with the 

problem is equal to the sum of the quadratic functional of each element [371. If there 

are N elements in the mesh, assembly of the elements in the domain results in the 

following expression 

(3.16) 

Eq.(3.16) is a set of simultaneous equations which can be written in matrix form as 

[C] {t} + [K] {T} = {F} (3.17) 

3.4 Direct Time Integration 

In direct time integration [35], the set of algebraic equations in Eq.(3.17) are solved 

numerically without further transformation in the time domain. A'S' family of approx-

imation is used to approximate the time derivative of the dependent variable Tj(r,t) 

at two consecutive time steps t and t + ~t by linear interpolation [37], 
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~tn+1 
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where Lltn+l = tn+l - tn is the (n + 1)st time step. The parameter '9' varies between 

o and 1.0 and determines the difference scheme adopted for the time integration. 

Substituting Eq.(3.18) into Eq.(3.17) and rearranging gives 

(3.19a) 

where (C] is the modified effective capacitance matrix, [K] is the modified thermal 

conductivity matrix, and {F}n.n+ 1 is the mod ified thermal load vector defined as 

[C] (3.19b) 

[K] = [C] - ( 1. - 8)L\tn + 1 [K] (3.19c) 

{F}n,n+ 1 (3.19d) 

From Eq.(3.19 a) we get the solution at time step t = tn+l in terms of the solution 

known at time t = tn as follows 

(3.20) 

At t = 0, the solution is known from the initial conditions and Eq.(3.20), can be solved 

at t = .1t. 

In order to reduce the computational effort involved in the simulation of the composite 

curing process it was necessary to utilize large time steps. The stability analysis 

carried out by Bathe and Wilson [381 for the heat transfer equations identical to 

Eq.(3.19a) indicated that a suitable value for the parameter "8" was 0.5, which corre-

sponded to a Crank - Nicholson type of interpolation. Furthermore, an accuracy 

analysis for e = 0.5 shows that the solution was second order accurate [35 - 38]. 
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3.5 Degree of Cure Estimation 

The degree of cure a(r,t), can be calculated from the expression defined in Eq.(2.5), 

a(r,t) 
t==t 

= S dfl dt 
t 0 dt 

(3.21) 

where the cure rate ~~ can be calculated from the Eq.(2.4) and the expression in 

Appendix A. An Euler type numerical scheme was adopted to calculate the value of 

an+ 1(r,t) from an(r,t) of the previous time step. 

n+1 n n n 
(l (r,t) = a (rtt) + f1[ (( (r,t), T (r,t)] Lit (3.22) 

The degree of cure for the next time integration can be estimated from the value of 

the degree of cure of the previolls time step. 

3.6 Numerical Solution Procedure 

A Fortran computer program named "FEMCURE" was developed to implement the 

numerical procedures described in Sections 3.1 - 3.5. An overview of the step by step 

integration procedures for the FWC curing process developed and utilized in Program 

"FEMCURE" is given in Table 1. 
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Table 1. STEP BY STEP INTEGRATION PROCEDURE. 

The step by step integration procedure for the curing process 
developed and utilized in program '"FEMCURE'" is as follows :. 

1. Set up the finite element mesh and read in the initial conditions and 
time independent domain constants (Le .• the individual layer properties 
and fiber and matrix properties) 

2. Calculate all properties of the composite necessary for the process 
using micromechanics relationships between fiber and matrix. 

3. Form the thermal conductivity matrix [Kl. the heat capacitance matrix 
IC) and calculate the thermal load vector {F}. 

4. Read in the time control parameter e and calculate the 
associated parameters for the time integration. 

5. Read in the initial conditions for the process and the heat transfer 
coefficients for the surfaces in contact with the environment. 

6. Calculate the effective thermal conductLvity matrix [K]. 
the effective heat capacitance matrix [e] and the effective 
force vector {F}n,n+1 

7. Solve for the nodal point temperatures at time t + ~t 
knowing all values at time t using 

{T}n+1 = [C]-1[[i<]{T}n + {F}n.n+1] 

8. Calculate the degree of cure from the relationship 

an + 1 (r.t) = an(r.t) + '1 ( an(r,t). rn(r,t) 1 at 
9. Calculate the resin viscosity at time t + 6.t using the 

nodal temperatures and the degree of cure at that time. 
10. Check if the required degree of cure has been achieved using a search 

procedure across the composite thickness. Simultaneously store the 
minimum degree of cure and the maximum viscosity at that particular 
instant of time 

11. Reiterate for the next time step if the required degree of cure has 
not been achieved across the composite . 



CHAPTER 4 

COMPARISON STUDIES & VALIDATION 

The cure model described in Chapter 2 and the associated assumptions have to be 

verified before proceeding to the optimization and optimal control of the curing proc­

ess. The cure model is based on the heat transfer model, the cure kinetics model, 

and the viscosity model described earlier. 

The heat transfer model will be compared with the cfassical solution for the transient 

convective heat transfer outlined in Appendix D for an infinitely long cylinder avail­

able in literature [29,30,40]. Then, the heat transfer model, with exothermir: heat gen­

eration due to reaction kinetics of the matrix resin, will be compared with the 

experimental results carried out at Morton Tiliokol Inc. 
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4.1 Comparison Studies 

The finite element solution was compared with the classical solution for an infinitely 

long solid wrought aluminum cylinder of outside diameter 0.4723 m (Figure 7). The 

material properties used for the simu lation are presented in Table 2. The simulation 

studies were carried out for the cylinder having an initial temperature of 21.11°C and 

suddenly subjected to a convective environment at 176.6°C. The heat transfer coeffi­

cient was 100 W/m2 - K. 

A symmetric mesh of quadratic axisymmetric finite elements [36] was utilized to 

simulate the heat transfer characteristics of the cylinder. The co-ordinates and the 

schematic of the mesh is presented in Figure 7. The classical transient heat transfer 

solution obtained by the method of separation of variables was compared with the 

solution of the finite element model. Temperature versus time results were compared 

at 3 radial positions. These included the centerline temperature (Le., temperature 

along axis of symmetry, r = 0.0), one arbitrarily chosen internal point and the out­

ermost point in contact with the environment. The comparisons are plotted in Figure 

8. There is e)(cellent agreement between the classical solution and the finite element 

simu lation. 

4.2 Axisymmetric Cure Model 

The validated heat transfer model was extended to include heat generation due to 

chemical reactions, resin cure kinetics, and resin viscosity. Based on the assump-
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Table 2. MATERIAL PROPERTIES FOR 5.75" BOTTLE. 

Material Properties 5.75 in bottle. 

Material Density 

p 

kgl m 3 

MANDREL AI 6061 ASTM 0.2800x1()4 

INSULATOR 30% SiOz NBR 0.1220x1()4 

CASE - FIBER T-300 0.1790x1Q4 

CASE - MATRIX FIBERITE 976 0.1260x1Q4 

OUTER LAYER POLYESTER 0.1370x1()4 

Heat Thermal Thickness 
Capacity Conductivity 

Cp K r 

J/kgK WlmK m 

0.9600x103 171.00 0.9525x10- 2 I 

1.5062x103 0.2765 0.6096x10- 2 

0.7117x103 25.97 
0.9550x10- 2 

1.256x10' 0.1674 

1.0460x103 0.1507 0.3175x10- 2 J 



SYMMETRY 
CONDITION 

y 

ASTM 
6061 Aluminum 

/CENTERLINE TEMPERATURE Tc( r } 

CENTERLINE (LINE OF SYMMETRY) 

MESH COORDINATES 

Node Radius 
No m 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

0.0000 
0.0098 
0.0196 
0.0295 
0.0393 
0.0492 
0.059'. 
0.0688 
0.0781 
0.0885 
0.0983 
0.1082 
0.1181 
0.1219 
0.1371 
0.1476 
0.1574 
0.1613 
0.1771 
0.1869 
0.1968 
0.2066 
0.2165 
0.2263 
0.2361 

CONVECTION 80'JNDARY 
aT 

K ar = -h(T-T .. ) 

Figure 7. GEOMETRY and FINITE ELEMENT MESH: 

The AI 6061 cylinder of diameter 0.4723 m is subjected to a convective environment of 
heat transfer coefficient ho = 100 W/m2 - K. The finite element mesh of axisymmetric 
finite elements and the mesh co-ordinates are also shown. 
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AXISYMMETRIC HEAT TRANSFER: 

The comparison between the classical solution and the finite element solution for an 
AI 6061 cylinder is carried out at r - 0.0 m (Le., the centerline), an arbitrary point r -
0.2271 m and the boundary point r - 0.2361 m subjected to a heat transfer coefficient 
ho = 100.0 W/m2 - K. 
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tions and the mathematical relations outlined in Chapter 2, the resulting cure model 

is a comprehensive cure model for the filament wound composite case. The cure 

model is developed as a computer program named "FEMCURE". 

Due to the complexity of the physical phenomena and the lack of temperature data 

measured during cure of a filament wound case in literature, Morton Thiokol Inc., 

agreed to wind a composite cylinder and measure the temperature distribution in the 

case during cure. 

4.3 Experimental 

A cylindrical composite bottle was wound using T300 I Fiberite 976 prepreg roving. 

The properties of the prepreg are listed in Table 2. Fiberite 976 is a 350°F curing 

system with a glass transition temperature Tg of 410°F. The resin is used for tem­

peratu re aerospace applications. 

1. MATERIALS 

a. MANDREL 

The mandrel was an ASTM 6061 wrought aluminum pipe, of outer diameter 

0.14605 m (5.75 in.), having a total end to end length of 0.1799 m (7.683 in.). 

Both the ends of the cylindrical pipe were covered with end caps made of the 

same material. A schematic of the mandrel is shown in Figure 9. 
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Figure 9. MANDREL SCHEMATIC: 

The 5.75 inch AI 6061 mandrel is shown in schematic. The mandrel has two AI 6061 
endcaps which are placed at either ends. All dimensions are in inches. [Courtesy : 
Morton Thiokol Inc - (Wasatch Division)] 
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b. INSULATOR 

The mandrel was wrapped with an elastomeric insulator made up of 30 0/0 

filled silicon dioxide, nitrile butadiene rubber (NBR), having a nominal thick­

ness of 6.096x10-3m (0.24 in.). 

c. COMPOSITE CASE 

The composite case was formed by winding the prepreg in a helical pattern 

at 24.20 with respect to the longitudinal axis of the mandrel. The applied 

winding tension was measured to be approximately 7.997x107 Nfm2. The 

preconsolidated roving thickness was measured to be 3.048x10-4 m (0.012 

in.), the resin weight percentage was 30 0/0 , and the case thickness was 

measured to be O.9550x10- 2 m (0.376 in.). 

d. OUTER LAYER 

The outer layer comprised of a perforated FEP film, Airweave breather cloth, 

and a silicon vacuum bag for a total thickness of 3.175x10- 3 m (0.125 in.). Only 

the thermal resistance of the breather cloth was used in the calcu lations. 

The properties of the materials as well as the geometric thicknesses used in the 

simulation are summarized in Table 2. 

2. TEMPERATURE MEASUREMENT 

The temperature measurements were carried out using 18 type J thermocouples 

embedded at various radial locations in the composite cylinder. Additional 
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thermocouples were placed on the inner and outer surfaces of the cylinder as 

well as above the assembly. All the thermocouples were connected to a Molitek 

recorder which was programmed to convert and record the sensor information 

onto a strip chart plotter at time intervals of 5 minutes. 

All thermocouples were measured to be at ambient temperature (21.11°C) before 

the heating cycle was switched on. An endview of the thermocouple locations is 

presented in Figure 10. 

3. CURE CYCLE 

The temperature data measured from thermocouple number 0 and thermocouple 

number 17 indicate that the oven was heated at a constant rate of 5° FI min from 

an ambient temperature of 21.11°C to the final hold temperature of 17S.SoC. The 

oven was held at 17S.SoC for a period of 300 minutes. 

The measurements of the strip chart plotter were reduced and used for the validation 

of the finite element model. The total time of the process used in the finite element 

simulations was approximately 2 hours. The finite element model of the FWC as­

sembly used an unsymmetric mesh modeled by axisymmetric quadratic finite ele­

ments. The finite element mesh and the associated boundary conditions are 

illustrated in Figure 11. 
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T.C.15 T.C.IS 
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COMPOSITE CASE 

OUTER LAYER 

T.C.14 

Figure 10. FWC ASSEMBLY (END VIEW): 

18 J type thermocouples are placed to sense the temperature at 16 locations across 
the FWC assembly and at 2 locations in the autoclave. Thermocouple number 0 and 
thermocouple number 17 measure the autoclave heating cycle. 
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CONVECTION BOUNDARY 

CONDITION 

MANDREL 

AXISYMMETRIC FINITE ELEMENT 

MESH COORDINATES 

Nod., Radlu,; 
No m 

1. 0.1524 
2. 0.1599 
3. 0.1673 
4. 0.1748 
5. 0.1823 
6. 0.1897 
7. 0.1972 
8. 0.2047 
9. 0.2121 
10. 0.2196 
11. 0.2271 
12. 0.2275 
13. 0.2278 
14. 0.2282 
15. 0.2286 
16. 0.2318 
17. 0.2350 
18. 0.2381 
19. 0.2413 
20. 0.2445 
21. 0.2477 
22. 0.2508 
23. 0.2540 
24. 0.2548 
25. 0.2556 
26. 0.2564 
27. 0.2572 

Figure 11. FINITE ELEMENT MESH and BOUNDARY CONDITIONS: 

CONVECTION BOUNDARY 
CONDITION 

The 5.75 inch bottle is modeled using an un symmetric mesh of axisymmetric finite el· 
ements. The dirchlet type of boundary conditions are also indicated. 
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4.4 Results 

The finite element solution and the experimental temperature data were compared 

at 5 relevant points (Figure 10) namely: 

1. The inner surface temperature of the hollow mandrel measured by the 

thermocouple number 1. 

2. The mandrel - insulator interface which was measured by the thermocouple 

number 3 

3. The i nsu lator 

number 5 

4. The case 

number 9 

case interface which was measured by the thermocouple 

outer layer interface which was measured by the thermocouple 

5. The outer layer surface temperature measured by thermocouple number 12. 

The temperature vs time plots of the comparisons are presented in Figure 12. The 

FEM calculations were performed using a heat transfer coefficient of 5 W/m2K on the 

inner surface of the hollow mandrel and 45 W/m2K on the outer surface in contact 

with the oven fluid. The inner surface heat transfer coefficient is much lower than that 

of the outer surface heat transfer coefficient because the inner surface of the mandrel 

does not have direct contact with the oven fluid due to the integrally wound end clo­

sures. 

CHAPTER 4 52 



180~--------------------------------------------' 

180 

140 

(3 120 

~ 
~ 100 

~ 80 

I 80 
- t-£A T't6 CYClE 

40 
• - EX~t.ENT AL 

- MANlREL - NU.ATOR 
• - EXPBlIVENT AL 

20 
- NU.ATOR - CASE 

• -~AL 
- CAse - OUTER St..AFACE 

O~--~--'---~--'---~--'---~--'---~---'---~·~ 

o 20 40 80 

TM5 <mins) 

80 100 120 

180~----------------------------------------------' 

180 

140 

(3 120 

~ 
- 100 

i :: 
40 

20 

- H!A TNG CVClE 

o :~~POINT 
<) - EX~t.ENT AL 

- OUTER stIlFACE PONT 

O+---~---.--~----r---~--~---.--~----~--~--~--~ 

o 20 40 eo 80 100 120 

Tt.E <mila) 
Figure 12. AXISYMMETRIC CURE MODEL· Temperature VB Time: 

The experimental data and the finite element analysis results are plotted as a function 
of time. The inner surface heat transfer coefficient, hi is 5 W/m2 - K and the outer 
surface heat transfer coefficient ho is 45 W/m2 - K. The symbols indicate the exper­
imental data provided by Morton Thiokol Inc. 
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The temperature vs time plots at the different locations indicate that a very good 

correlation between the finite element model and the experiment exists. The tem­

perature drop across any individual layer can be determined from the distributions 

plotted in Figure 12. The degree of cure vs time plot for the center of the case and the 

minimum degree of cure at any arbitrary point inside the case (shown in Figure 13) 

indicates that the case cures uniformly. The viscosity behavior at the center of the 

case and the maximum viscosity as a function of time are shown in Figure 14. How­

ever, since the degree of cure and the viscosity were not measured experimentally, 

no experimental data were available for comparison. 

4.5 Cure Simulation Model Results 

The axisymmetric cure model was used to simulate the curing process of two sample 

filament wound composite cases to illustrate the type of information that can be 

generated by the model and the associa~ed FORTRAN computer code "FEMCURE". 

The input parameters required by the FEMCURE program are outlined in Table 3. 

Cure simulations were performed for composite cases fabricated from Fiberite T300 

I 976 prepreg ravings and wound on an 18 inch sand PVA mandrel. The properties 

of EPDM rubber were used for the insulator and polyester was used as the outer layer 

material. The thickness and properties of each layer used in the finite element simu­

lations are given in Table 4. 

The calculations were performed using the cure cycle shown in Figure 15. The cure 

temperature was increased at a constant heating rate of 2.8°CI min (5°F/min) from 
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Figure 13. AXISYMMETRIC CURE MODEL - Degree 01 Cure vs Time (5.75 in Bottle): 

The degree of cure at the center of the case and the minimum degree of cure are 
plotted as a function of time. The prepreg being used is the FIBERITE 976 I T300 which 
cures to an acceptable degree of 0.95 in 150 mins. 
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Figure 14. AXISYMMETRIC CURE MODEL· Log Viscosity VI Time (5.75 in Bottle): 

The viscosity at the center of the case and the maximum viscosity are plotted as a 
function of time. 
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Table 3. INPUT PARAMETERS FOR PROGRAM "FEMCURE" 

GEOMETRY 6. FIBER PROPERTIES 
a. Shape of the structure. a. DenSity. 
b. Number of layers. b. Specific Heal Capacity. 
c. Thickness of Individual layers. c. Thermal Conductivity. 

MANDREL PROPERTIES 7. OUTER lAYER PROPERTIES 
a. Density. a. Density. 
b. Specific Heal Capacity. b. Specific Heat Capacity. 
c. Thermal Conductivity. c. Thermal Conductivity. 

INSULA TOR PROPERTIES I. FINITE ELEMENT MI:SH PARAMETERS 
a. Density. a. Type of elemer t being used. 
b. Specific Heat Capacity. b. Type of mesh - symmetric or unsymmetric. 
c. Thermal Conductivity. c. Number of eloments in the mesh. 

d. Number of nodes in the mesh. 
PREPREG PROPERTIES e. Number of elements modeling each subdomain. 
a. Initial resin mass fraction. r. Time step parameter 9 
b. Type of fiber being used. g. Time step 
c. Type of resin being used in the composite. h. Boundary nodes for convective heat transfer. 

RESIN PROPERTIES 8. INITIAL AND BOUNDARY CONDITIONS 
a. Density. a. Initial temperature distribution in the composite. 
b. Specific Heat Capacity. b. Initial degree of cure distribution in the composite. 
c. Thermal Conductivity. c. Cure cycle temperature as a function of time. 
d. Heat of Reaction. 
e. Relationship between cure rale. temperature and degree of cure. 
f. Relationship between viscosity. temperature and degree of cure. 
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Table 4. MATERIAL PROPERTIES FOR 18" BOTTLE 

Material Properties 18 in bottle. 

Material Density 

p 

kglm3 

MANDREL SAND PVA 0.2234x1()4 

INSULATOR EPDM RUBBER O.1100x1()4 

CASE - FIBER T - 300 O.1790x1()4 

CASE - MATRIX FI8ERITE 976 0.1260x1()4 

OUTER LAYER POLYESTER 0.1370x103 

Heat Thermal Thickness 
Capacity Conductivity 

Cp K r • 

JlkgK WlmK m 

0.8373x103 1.851 0.7468x10- 1 

0.1758x1()4 0.2077 0.1524x10- 2 

O.7117x103 25.97 
0.4343x10- 2 

1.2560x103 0.1674 

1.0460x103 0.1507 O.3175x10- 2 

... 
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Figure 15. CURE CYCLE: 
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The cure temperature was increased at a constant heating rate of 2.80 C/min (S-'F/min) 
from room temperature of 21.1°C until a maximum cure temperature of 177°C (350°F) 
was reached. 
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room temperature until a maximum cure temperature of 177°C (350°F) was reached. 

The temperature was held at 177°C until every point inside the composite case 

reached a degree of cure of 0.99. 

For all calculations, it was assu med that the convective heat transfer coefficients 

were the same for the inner surface of the mandrel and the outer surface of the outer 

layer and remained constant throughout the cure. In general the convective heat 

transfer coefficient is a complex function of the geometry of the FWC assembly, the 

velocity and the physical properties of the autoclave fluid, and the temperature dif­

ference between the solid surface and the fluid, and must be determined exper­

imentally. An assumed value for 11, and ho was taken to be 100 W/m2K and used in the 

numerical analysis. 

Thin Case 

1. TEMPERATURE 

The temperature distribution for a 0.4343x10- 2m (0.171 in.) thick case is pre­

sented in Figure 16. The temperature as a function of time at five selected lo­

cations inside the FWC assembly is shown in Figure 16. It is observed that the 

largest temperature drop occurs across the polyester breather cloth used as the 

outer layer material. The temperature difference across the composite case 

(Figure 17) is small and the case is curing uniformly. It is also noted that the 

temperatures at the inner surface of the mandrel and outer surface of the outer 

layer are quite different even though the oven temperature and the convective 

heat transfer coefficient were assumed to be the same. This could be attributed 
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to the curvature effects and the different material properties in the FWC assem­

bly. 

2. DEGREE OF CURE 

The degree of cure a(r,t) of the resin in the composite case as a function of time 

is shown in Figure 18. Since the case is thin only the degree of cure at the center 

of the case and the minimum degree of cure at any point inside the case were 

plotted. The cure time for the composite case can be estimated from the time 

required for the degree of cure at any point in the composite to reach a pre­

specified value of 0.99 which is observed to be approximately 205 minutes. The 

degree of cure as a function of the normalized radius is shown in Figure 19. 

3. RESIN VISCOSITY 

The viscosity of the resin in the composite case is plotted as a function of time 

in Figure 20. The maximum viscosity at any point inside the composite case at 

any time can be used to estimate the location and time when the resin begins to 

gel. 

Thick Case 

1. TEMPERATURE 

The cure simulation was repeated for a thick composite case with a wall thick­

ness of 0.254x10- 1m (1.0 in.). The temperature as a function of time is presented 
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Figure 16. AXISYMMETRIC CURE MODEL· Temperature vs Time (Thin Case): 

The temperature distributions at:- (a). the inner surface of the mandrel r = r1• (b). the 
mandrel - insulator interface r = r2• (c). the insulator - case interface r = r3• (d). the 
case - outer layer interface r = r ... and (e). the outer surface point r = r5• are plotted 
as function of time for an 18 inch bottle with a 0.171 inch thick case. The heat transfer 
coefficients at the inner and outer surfaces were 100 W/m2K 
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Figure 17. TEMPERATURE DROP ACROSS THE CASE: 

The temperature distribution across the case and the temperature of the case center 
are plotted as a function of time for the 0.171 inch case. 

CHAPTER 4 63 



1·°r-------------------------------==~HRAn 

UJ 0.8 

ex:: 
::l 
o 
lL 0.8 

o 
W 
W 0.4 
ex:: 
(!l 
w 
C 0.2 

tl MINIMUM 
<> CASE CENTER 

O.Or-~HH~ .. ~~~~~II~~~~~~~~~~~~~ 
o 30 80 90 120 160 180 210 

TIME Cmins) 

Figure 18. AXISYMMETRIC CURE MODEL· Degree of Cure vs Time (Thin Case): 

The degree of cure at the case center and the minimum degree of cure are plotted as 
a function of time for the 0.17 t inch case. 
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Figure 19. AXISYMMETRIC CURE MODEL· Degree of Cure vs Normalized Radius: 

1.00 

The degree of cure variation ac:oss the FWC assembly for a 0.171 inch case is plotted 
at two different times. 
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Figure 20. AXISYMMETRIC CURE MODEL· Log Viscosity va Time (Thin Case): 

The viscosity at the center of the case and the maximum viscosity are plotted as a 
function of time. 
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in Figure 21. As expected the increased wall thickness results in a substantial 

temperature drop across the case thickness. At 120 minutes into the cure. the 

temperature at the outer surface of the case actually exceeds the cure temper­

ature by almost 10°C. The temperature overshoot occurs due to runaway re­

actions causing heat to be generated at a rate higher than it can be dissipated. 

The overshoot reaches a peak value of 22B.3°C at a time of 133.3 minutes. As the 

cure progresses the the temperature begins to fall and converges to the hold 

temperature as the specified degree of cure is achieved across the composite 

thickness. The temperature drop across the case is shown in Figure 22. The peak 

overshoot occurs at the case - outer layer interface. The temperature drop 

across the case in the lag region is fairly uniform until the exotherm occurs. The 

temperature distribution in the FWC assembly with the thick case is shown in 

Figure 23. Due to the presence of exotherms the temperature distribution in the 

FWC assembly is nonuniform. 

2. DEGREE OF CURE 

The degree of cure as a function of time is shown in Figure 24. Due to the nonu­

niformity in the temperature distribution it would be expected that the case is 

being cured nonuniformly as shown in Figure 25. The degree of cure behavior as 

a function of the normalized radius is shown in Figure 25. At t = 120.0B mins and 

t = 140.0B mins the composite is curing nonuniformly as expected due to the 

nonu niform temperature distribution in the case. 

3. RESIN VISCOSITY 
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Figura 21. AXISYMMETRIC CURE MODEL· Temperature vs TIme (Thick Case): 

The temperature distributions at: (a). the inner surface of the mandrel, = '1. (b). the 
mandrel· insulator interface r = rz• (c). the insulator - case interface r = r3' (d). the 
case - outer layer interface r = r4• and (e). the outer surface point r = r5• are plotted 
as fl'nction of time for an 18 inch boUle with a 1.0 inch thick case. The heat transfer 
coefficients at for the inner and outer surfaces were 100 W/m2K 
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Figure 22. TEMPERATURE DROP ACROSS THE CASE: 

The temperature at the insulator - case interface, tt.e center of the case and the case 
- outer layer interface is plotted as a function of time. The beginning of the reaction 
exotherm can be identi fied 
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Figure 23. AXISYMMETRIC CURE MODEL· Temperature vs Normalized Radius: 

The temperature distribution of the FWC assembly plotted at three different times: (a). 
t - 120.08 mins, a time before the temperature overshoot peaks, (b). t ... 140.08 mins, 
c: time after the temperature overshoot peak has been reached, (c). t - 230.08 mins, 
a time when desired degree of cure is achieved in the composite. 
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Figure 24. AXISYMMETRIC CURE MODEL· Degree of Cure vs Time (ThicK Case): 

The minimum degree of cure and the degree of cure at the center of the case are 
plotted as a function of time for a 1.0 inch thick composite case. 
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Figure 25. AXISYMMETRIC CURE MODEL· Degree of Cure vs Normalized Radius: 

1.00 

The degree of cure across the thickness of the FWC assembly is plotted at three dif­
ferent ti mes. 
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The resin viscosity as a function of time and the viscosity distribution for the thick 

case are shown in Figure 26. As expected the viscosity distribution is nonuniform 

and the resin in the outside layers of the composite gels quickly. Premature 

gelation may lead to poor matrix properties and decrease in the strength of the 

composite. 

Comparison Between Thin and Thick Cases 

A comparison between the degree of cure at the center of the 0.171 inch case and 

at the center of the 1.0 inch case is shown in Figure 27. Curing of the thin section 

composite is gradual as compared to curing of the thick section composite which is 

rapid due to reaction exotherms. The viscosity at the center of the case for the 0.171 

inch case and the 1.0 inch case is compared in Figure 28. It is observed that the thick 

section composite gels easily which in turn reduces the time for compaction and flow. 

The process modeling problem analyzed thus far gives the initial estimate on the time 

required for the composite to achieve a prespecified degree of cure of 0.99. For the 

thin section composite it is estimated that all the points within the composite will 

achieve a prespecified degree of cure in 180 - 200 minutes. In the case of the thick 

section composite the final time to achieve the same degree of cure it takes 230 - 240 

minutes. 
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Figure 26. AXISYMMETRIC CURE MODEL· Log Viscosity vs Time (Thick Case): 

The maximum viscosity and the viscosity at the case center for a 1.0 inch thick com­
posite case are plotted as a function of time. 
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Figure 27. COMPARISON STUDIES· Degree of Cure va Time: 

The degree of cure of the thick section composite and the thin section composite is 
compared at the center of the case as a function of time. 
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Figure 28. COMPARISON STUDIES· Log Viscosity vs Time: 

The viscosity of the thick section composite and the thin section composite is com­
pared at the center of the case as a function of time. 
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CHAPTER 5 

CURING PROCESS OPTIMAL CONTROL 

The curing process of filament wound composites was modeled and validated with 

available experimental data for a predetermined cure cycle. No attempt was made to 

optimize the cure cycle. It was also demonstrated in Section 4.5 that curing of thick 

section composites using cure cycles developed for thin laminates results in a non­

uniformly cured structure. 

It has been of primary interest that a technique be determined in order to eliminate 

the costly and time consuming trial and error procedure for determining the optimum 

cure cycle for a given application. The cure cycle pr:)cess variables, namely the 

autoclave (or oven) temperature and applied pressure, significantly influence the 

mechanical performance of the cured composite. Thus, it is imperative that we fully 
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understand the effects of the processing cycle used to cure a filament wound com­

posite. 

5.1 Effects of Processing Environment 

In a thermoset composite, the matrix' resin when subjected to an autoclave process­

ing environment of elevated temperature undergoes a transition from a soft uncured 

material to a hard, brittle, insoluble, and infusible material through exothermic 

chemical reactions. A fully cured resin does not melt upon application of heat. How­

ever, thermosetting resins have an effective upper use temperature [42 -·44] beyond 

which they suffer a loss in stiffness. This temperature is defined as the heat distortion 

temperature or the resin glass transition temperature. The glass transition temper­

ature depends on the state of cure of the resin. 

It has been demonstrated experimentally that the cure or reaction rate for 

thermosetting resins used in polymer based composites depends on the degree of 

cure and temperature [6 - 9] at any instant of time. A typical functional relationship 

for epoxy resins is given in Appendix A. The exothermic chemical reactions generate 

heat which can affect the temperature in the composite. It has been observed (Figure 

23), that the generation of heat can lead to the temperature overshoots or runaway 

reactions [43]. This is particularly true for thick filament wound composites and lami­

nates [2,43,45]. 

Observations of the viscosity variations with respect to time (Figure 28) indicates that 

upon initial heating the viscosity decreases and as the reaction progresses the 
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viscosity rises and resin gels. It was shown in Section 2.9 that both the degree of cure 

and temperature determine the viscosity of the resin in the composite. 

The temperature plays a major role in determining the extent of the cure reaction and 

the uniformity of cure in the composite. Thus, the cure temperature must be carefully 

selected for a given application. 

5.2 State, Co-state & Control Variables 

Recognition of the fact that temperature plays a dominant role in the curing process 

enables us to realize that if the temperature of the processing environment is prop­

erly controlled then we can control the thermal, chemical, and physical processes 

occurring during cure of the composite. Careful control of the curing process coupled 

with a fundamental understanding of the curing process will allow the final properties 

of the composite to be optimized. The goal of this investigation is to develop a 

technique which can be used to select the optimal cure cycle for the filament wound 

composite case. 

The mandrel - insu lator - composite case - outer layer (FWC assembly, Figure 3), 

placed in the autoclave and subjected to the cure cycle temperature becomes the 

system to be optimized. The governing partial differential equations for conduction 

heat transfer given in Eqs.(2.1a) • (2.1d) are the equations used to determine the state 

of the system (i.e., temperature as a function of space and time). In effect the 

parabolic POE's describe the unsteady, nonlinear heat transfer process in the FWC 

assembly. 

CHAPTER 5 79 



Influence of the processing cycle enters through the boundary conditions Eq.(2.7). 

The internal temperature distributions can be controlled by adjusting the cure tem­

perature on the inner and outer surfaces of the FWC assembly. Thus, the cure cycle 

temperature (T «)(t)) is the primary control variable and determines the state (temper­

ature distribution) of the system. 

The reaction rate occurring in the composite, having a functional form described by 

Eq.(2.4), is temperature dependent and affects the rate of heat generation, degree of 

cure, and resin viscosity. Since the cure reaction determines the total process time, 

the degree of cure defined in Eq.(2.5) will be considered as an active co-state of the 

system. The resin viscosity depends entirely on the degree of cure and temperature 

within the composite and is considered as a passive co-state and is not used directly 

in the optimization. 

5.3 Constraints & Stopping Conditions 

A distributed parameter system has constraints related to both the distributions in the 

spatial domain as well as the time domain. The control variable T «)(t) is constrained 

to lie within a decision space governed by the physical limitations of the autoclave. 

The autoclave has limitations on the rate of heating and cooling, as well as, on the 

maximum operating temperature. All of these factors have to be considered as the 

limiting bounds of the decision space as well as bounds on the control variable T «)(t). 

The temperature and degree of cure distributions in the composite are constrained 

to lie within bounds governed by the material system used. Ideally it is desired that 
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the composite wou Id attain prespecified acceptable properties within the shortest 

possible time. Also, it is important to control the temperature inside the composite in 

such a manner that the temperature overshoots due to runaway exothermic chemical 

reactions are controlled and minimized. 

The trial and error method of guessing or choosing a cure cycle based on empiricism 

can be eliminated by utilizing a dynamic programming approach [47 - 49] to monitor 

the curing process variables and incorporate the constraints on the system by defin­

ing an error (objective) function to be minimized. This approach will enable us to 

determine the optimal cure cycle and ensure that the composite will cure within a 

specified time or reaches a specified stopping condition. The stopping condition ter­

minates the curing process upon attaining a prespecified degree of cure and provides 

an estimate of the final process time tf• Also, the stopping condition will ensure that 

the cured composite has the desired prespecified properties. 

5.4 Constraint Specifications 

The constraints specify the boundaries of the decision space within which the optimal 

cure cycle temperature can lie. The constraints which are pertinent to the optimal 

cure process control problem are identified below: 

1. CONSTRAINT ON CONTROL VARIABLE - CURE CYCLE TEMPERATURE 

The cure cycle is physically constrained to lie within the upper or lower temper­

ature bounds of the autoclave (or oven). 
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(5.1) 

Here, Udt) is the lower bound of the autoclave temperature (usually room tem-

perature) and Uu(t) is the upper bound temperature defined as the maximum 

temperature that can be applied to the material being cured in the autoclave. The 

upper bound temperature can also be governed by the performance character-

istics of the autoclave (Le., fluid viscosity, flow characteristics, thermal load ). 

2. CONSTRAINT ON THE EXTENT OF THE REACTION 

The degree of cure a(r,t) (defined as the co-state). which characterizes the extent 

of polymerization and thermally induced crosslinking, is constrained to lie within 

prespecified bou nds. The thermo-kinetic model of the chemical reaction gives the 

degree of cure at any instant in the process. If the cure cycle heating rate or 

temperature is very high, excessive temperatures can develop in the interior of 

the composite resulting in thermolysis and gradual degradation of the stiffness 

properties of the resin matrix. It is thus necessary to control the reaction such 

that resin polymerization is achieved uniformly in the composite without damage 

or degradation of the matrix. 

The lower bound on the extent of cure is the initial degree of cure of the com-

posite at the inception of the process a"(r). 

+ 

adr,t) = a (r) (5.2) 

The upper bound on the extent of cure can be specified as, 
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(5.3) 

where aR(r,t), is the required degree of cure in the composite. 

Thus, the extent of the cure reaction can be controlled at any instant of the proc­

ess to lie within the decision space identified by the limits as follows. 

aL (r,t) .s,; a (r,t) .s,; au (r,t) (5.4) 

As an example if the initial resin is uncured then adr,t) is zero and if complete 

cure is desired then (lu(r,t) approaches unity_ 

3. STOPPING CONDITION 

The degree of cure at every point in the composite r E [r3• r4] must be uniform. 

This uniformity can be ensured if the thermal gradients at each instant of the 

process are minimized. If the temperature distribution in the composite can be 

controlled in such a manner that uniformity is maintained at all instants of the 

process, then a uniform cure can be achieved at all times. 

The constraint specification that every point within the composite must be cured 

to a prespecified degree of cure (aR(r,t)) and the cure must be uniform can be 

used as a criterion to terminate the curing process. An objective function J 1(r,t) 

to implement this criterion can be formulated as a spatial integral of the differ­

ence between the desired degree of cure distribution and the degree of cure at 

final time (t = tf ) 
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1 r4 R 2 = 2" S [a(r,tf) - a (r,tf)] dr 
r3 

(5.5) 

The degree of cure gives an estimate of the extent of the reaction in the com-

posite. This knowledge, along with the bounds on the degree of cure, can be 

utilized to recognize the particular instant (t = tf ) when sufficient polymerization 

has been attained and the reaction (or cure) can be terminated. This is the stop-

ping condition for the curing process and is defined as the time t at which the 

composite reaches the required degree of cure. Mathematically the stopping 

condition is 

(5.6) 

where tf is the final time. 

4. UNIFORMITY OF TEMPERATURE 

Since it has been recognized that the temperature plays a predominant role in the 

control of the curing process, it is necessary that the temperature distribution in 

the FWC assembly remain uniform at all instants of time. The condition of an 

uniform temperature distribution can be imposed through a dynamic objective 

function J 2{r,t) as follows 

(5.7) 
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where t, is the initial time of the process, (usually t = 0), tf is the final time, and 

TD(r,t) is the average temperature distribution in the FWC assembly at any par-

ticular instant of time t. 

5. CONSTRAINTS ON THE TEMPERATURE DISTRIBUTION 

The objective J 2(r,t) identified in Eq.(5.7) represents the least squares error be­

tween the actual temperature T(r,t) and the average temperature TD{r,t). For a 

distributed system, the average temperature TD(r,t) at any instant of time t can be 

calculated as follows. 

1 rs --- J T(r,t) dr 
(r5 - r1) r, 

r E 

In order to determine the constraints on the internal temperature distribution two 

very important aspects of the curing process have to be recognized. Namely the 

presence of an exotherm (i.e., heat generation due to the chemical reactions) and 

a lag in the temperature response of the system. It is noted that both the 

exotherm and the thermal lag are thickness (i.e .• geometry) and time dependent. 

a. CONSTRAINT IDENTIFICATION FOR THE EXOTHERM REGION 

As the oven heats up and the curing process in the FWC assembly is initi-

ated, the time at which the exotherm begins can be estimated as the time at 

which any point within the composite case has a temperature T(r,t) greater 

than the cure cycle temperature at that instant. This instant of time will be 

denoted tr. and called the exotherm initiation time. 
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After identifying the exotherm initiation time, it is necessary to estimate the 

extent of the peak exotherm for the reaction. This can be done by tracking the 

difference between the temperature of the composite and the cure cycle 

temperature at every point within the composite at each instant of time. The 

peak exotherm temperature is specified as T~(r,t) at the maximum difference 

point. 

Beyond the peak exotherm, temperature decreases and approaches the cure 

cycle temperature T oo(r,t) (Figure 29). The time tf is defined as the time be-

yond which there are no exothermic reactions occurring inside the compos-

ite. 

Once the exothermic region is recognized, the temperature distribution in 

this region can be constrained to lie within feasible bounds enabling us to 

minimize the least squares error between the actual temperature and the 

average temperature. An estimate of the average temperature distribution 

can be written as 

(5.9) 

where T~(r,t) is the modified average temperature distribution valid for all 

times t E [tr, tf] in the exotherm region. In Eq.(5.9) the first term on the right 

hand side corresponds to the average temperature (Eq.(5.8)) and the second 

term is used to correct the average temperature when exotherms are pres-

ent. It is to be noted that the second term is a correction factor which ap-

proaches zero as the exotherm of the system decreases. Thus, as the system 
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Figure 29. eXOTHERM REGION .. Temperature vs Time: 

CHAPTER 5 

The inception of the exotherm region is at a time t - tr and reaches a peak overshoot 
temperature of T;(r,t). The exotherm then converges to the cure temperature of 
T oo(r,t) at a time t - t,. The exotherm region lies in the time domain t E [ tf, t1 ] 
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exotherm is minimized the modified average approaches the actual average 

temperature distribution. 

b. CONSTRAINT IDENTIFICATION FOR THE LAG REGION 

As the exothermic region was recognized, a similar approach can be adopted 

to recognize the lag region (Figure 30). The time th at which the lag begins, 

and the time ti-, where the lag ends can be recognized as the temporal 

bounds of the region. The maximum difference between the actual temper-

ature and the cure cycle temperature T oo(t) is the peak lag temperature which 

is denoted by T~(r,t). The modified average temperature for the lag region is 

denoted as TE(r,t) and expressed as follows 

D T dr,t) = (5.10) 

where the first term on the right hand side represents the average temper-

ature distribution defined in Eq.(S.8) and the second term is used to correct 

the average temperature in the lag region. It is to be noted that the second 

term on the right hand side of Eq.(S.10) is a correction factor which ap-

proaches zero as the lag of the system decreases. Thus, as the system lag 

decreases the modified average approaches the actual average temperature 

distribution. 

The objective functions J 1(r,t) and J2(r,t) described earlier in this section are com-

bined to form a single scalar valued overall performance index J{r,t) [49]. 
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J(r,t) 
1 r4 R 2 1 t, rs 0' 

= - J [a(r,t) - a (r,t) 1 dr + -2 J J [T(r,t) - T (r,t) J dr dt 
2 r3 tj r1 

(5.11 ) 

The primary aim of the optimal control problem is to minimize the performance index 

J(r,t) by suitably altering the cure cycle temperature T oo(r,t) applied at the boundaries 

of the system. 
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CHAPTER 6 

OPTIMAL CURE CYCLE IDENTIFICATION 

The curing process control problem is governed by a performance index J(r,t) (see 

Section 5.4) that needs to be minimized subject to constraints on the temperature 

distribution in the FWC assembly, degree of cure distribution in the composite, and 

the cure temperature T C()(r,t). The performance index can be written as 

J(r.t) 
1 r 4 R 2 1 t, r 5 D 2 = 2" J [a(r,tf) - a (r,t f)] dr + 2" J J [T(r,t) - T (r,t)] dr dt 

r 3 tl r 1 

(6.1) 

and describes the individual objectives of uniformity of cure (Eq.(5.5)) at final time 

(t = tf ) and the unirormity of temperature (Eq.(5.7» simultaneously. 
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6.1 Equation Of State For Control 

It is observed from the definition of the objectives functions J\(r,t) and J2(r,t) in Sec-

tion 5.4 that both objectives have to be minimized in order to minimize the perform-

ance index J(r,t) (Eq.(6.1)). This is rather difficult if both objectives J\(r,t) and J2(r,t) 

are independent. From the definition of J2(r,t). that the least squares error between 

the actual temperature distribution T(r,t) and the average temperature distribution 

TO(r,t) be minimized simultaneously in the time domain as well as the spatial domain, 

allows us to treat J2(r,t) as an additional state variable and treat the least squares 

error as a stochastic disturbance input to the system. 

Consider the one-dimensional unsteady heat conduction equation in radial coordi-

nates with heat generation, 

(6.2) 

where PI' Cj , and, Kj are the density, specific heat capacity, and the thermal 

conductivity, respectively of the region described by the specific domain, r E [rt, rs]. 

Tj(r,t) and H are the temperature and the rate of heat generation over the domain 

modeled. 

The generalized heat flux boundary conditions for the domain can be written as 

(6.3) 

and 
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at r = rs (6.4) 

where 111 and 115 are the outward pointing normals at r, and r5• respectively. The heat 

transfer coefficients at r1 and r5 are denoted by hI and hs. T oo(t) is the cure cycle 

temperature. 

If the state of the system (Le., temperature) in the domain r E [r1• rs] can be described 

completely by 'M' discrete equations of the type Eq.(6.2) then the space described 

by these 'M' equations is said to be 'M' dimensional. Thus, if the discretized state of 

the system has a dimension 'M' and if J 2(r,t) is treated as an additional state variable 

then it can be written as 

\} t ~ 0 (6.5) 

Eq.(6.5) implies that the state of the system instead of being of dimension 'M' as in 

the process modeling problem would be of dimension 'M + l' for the control problem 

where TM+l(r,t) is the added state. Substituting Eq.(5.7) for J2(r,t) in Eq.(6.5) we get 

(6.6) 

Differentiating Eq.(6.6) with respect to time t, gives 

1 ~ 0 2 
= "2 J [T(r,t) - T (r,t)] dr 

r1 

(6.7) 

subject to the initial condition 

at t = 0 (6.8) 
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and the final time condition 

at t = t1 (6.9) 

Following the work of Tzafestas and Nightingale [23], if the objective function J 2(r,t) 

is treated as an additional state variable TM+ '(r,t) Substituting Eq.(2.3) for H(t) into 

Eq.(6.2) the equation of state for the control problem can be written as 

aT 
at (6.10) 

where PI' CI, and Kj are assumed constant in the domain. 8(r,t) is a known matrix 

operator acting on the stochastic disturbance input W(r,t). 

Treating J2(r,t) as an additional state variable allows us to treat the least squares er­

ror between the temperature T(r,t) and the average temperature TD(r,t) distributions 

Eq.(6.7) as a stochastic disturbance input W(r,t). Hence for the optimal process control 

problem the stochastic disturbance input W(r,t) can be written as 

1 rs 0 2 
W(r,t) = "2 S [T(r,t) - T (r,t)] dr 

r 1 

(6.11 ) 

Substituting Eqs.(6.2) and (6.11) into Eq.(6.1 0) gives the equation of state for the curing 

process optimal control problem 

aT K a2T K"'T P H v 1 r {_l ___ + __ 1 _ _ (.1_ + r r r } S 5 TD 2 at = CjPj or2 CjP{ ar PjC] f1 (T,a) + 2" r
1 

[T(r,t) - (r,t)] dr (6.12) 

It is to be noted from Eq.(6.12) that the operator 8(r,t) is taken to be unity. Eq.{6.12) is 

the generalized equation of state for the control problem valid for all discretized 
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points in the domain of the FWC assembly (r E [rt, rs]). However, heat generation is 

present only in the subdomain (r E [r3, r4]) representing the composite case. For the 

mandrel, insulator, and outer layer Eq.(S.12) is valid without the heat generation term. 

6.2 Co-state Equation 

In addition to the equation of state (Eq.(6.12)). the continuum is governed by the co-

state equation (Eq.(2.4)) which is the expression specifying the cure or the reaction 

rate of the resin system being used as the matrix material. The co-state equation 

was written in Chapter 2 as 

da(t) _ f (T 
~- 1 ,a) 

6.3 Initial Conditions 

(6.13) 

The generalized equations governing the state (temperature) and the co-state (de-

gree of cure) of the system Eq.(6.12) and Eq.(6.13), respectively are governed by initial 

conditions at t = O. The initial conditions governing the system are 

T(r,O) T~(r) (6.14) 

(6.15) 
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where, Ta(r) and a"(r) are the initial temperature and degree of cure distributions. The 

initial condition on the added state Eq.(6.8) also needs to be satisfied in addition to 

Eq.(6.14) and Eq.(6.15). 

6.4 Hamiltonian Functions 

The system performance index J(r,t) (Eq.(6.1 )). the generalized equation of state 

(Eq.(6.2)), the generalized boundary conditions (Eq.(6.3) and Eq.(6.4)) and the gener-

alized co-state equation (Eq.(6.13)) are used to define the system Lagrangian (modi-

-fied performance index) J(r,t) by adjoining Eq.(6.2) - Eq.(6.4) and Eq.(6.13) using 

Lagrange multipliers 

-J(r,t) = 

1 r4 R 2 2"J [a(r.t) - a (r.t)] dr 
r3 

(6.16) 

where, Al(r,t) is the Lagrange multiplier associated with the state equation, A,2(r,t) is 

the Lagrange multiplier associated with boundary conditions and A3(r,t) is the 

Lagrange multiplier associated with the co-state equation. 
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Holliday and Storey [52] developed a simple yet effective method to derive the nec-

essary conditions for optimality for a distributed parameter system. They identified 

the individual sub Hamiltonians for the system and applied the calculus of variations 

technique to minimize the system Lagrangian. The system Lagrangian or modified 

-
performance index J(r,t) for the curing process is defined in Eq.(6.16). The individual 

Hamiltonian functions can be recognized from Eq.(6.16). The state Hamiltonian func-

tion HI can be written as 

where the first term on the right hand side of Eq.(6.17) comes from the objective 

function J2(r,t) being considered as an additional state variable. The second term on 

the right hand side comes from adjoining the state equation Eq.{6.2) with the 

Lagrange multiplier A,(r,t). 

The boundary condition Hamiltonian H2 valid only at the boundaries of the domain 

r E [rl' r5] is formed by adjoining the boundary condition Lagrange multiplier A2(r,t) to 

the generalized boundary conditions Eq.(6.3} and Eq.(6.4) and can be written as 

'\ [oT Irs] 1\.2(r,t) Kj-",-llr + tlr [T(r,t) - T oo(t) 1 r, 
or 

(6.18) 

The co-state Hamiltonian is formed by adjoining the Lagrange multiplier A3(r,t) to the 

co-state Equation (Eq.(6.13)) and can be written as 

(6.19) 
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Eq.(6.17) - Eq.(6.19) are the generalized expressions for the Hamiltonians associated 

with specific Lagrange multipliers. The total Hamiltonian describing the system can 

be written as 

(6.20) 

6.5 Transversality Conditions 

-The transversality conditions are based on the fact that the system Hamiltonian H 

(Eq.(6.20)) is a constant along the optimal path [52]. The equation relating the adjoint 

variable of state A1(r,t) to the state (temperature) and the co-state (degree of cure) is 

derived from the system Hamiltonian (Eq.(6.20)) and the modified performance index 

-J(r,t) (Eq.{6.16)). The derivation is based on the idea that the first variation of the 
... 

modified performance index J(r,t) (Eq.(6.16)) should vanish for arbitrary variations in 

the state (T(r,t)), co-state (a(r,t)), and the control variable T oo(r,t). This idea leads to the 

transversality conditions or the adjoint equations for the Lagrange multipliers A,(r,t), 

A2(r,t), and A3(r,t), as well as, the boundary conditions that need to be satisfied, both 

in the spatial domain r E [rl' rs] and in the time domain t E [tl , tf]. The calculus of vari-

ations approach leads to the fact that the optimu m for the system lies on canonical 

paths. Applying the canonical relationship between the adjoint variable A1(r,t) and the 

-system Hamiltonian H (Eq.(6.20)), the transversality conditions on the state adjoint 

variable Al(r,t) can be derived as 

- -
= _ {aH } + 0 {oH } 

oT or oTr 
(6.21) 
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where, ,,,,(r,t) has been previously defined as the Lagrange multiplier associated with 

the state of the system T(r,t). Tr(r,t) is the first partial derivative of the state of the 

system T(r,t) with respect to the spatial parameter ' r', and Trr(r,t) is the second partial 

derivative of the state of the system with respect to the spatial parameter 'r'. 

Substituting Eqs.(6.17) - (6.19) into Eq.(6.20), differentiating Eq.(S.20) and substituting 

into Eq.(6.21) gives the adjoint state equation in the domain r E [r l , rs] becomes 

The domain of the FWC assembly r E [r" rs] can be divided into discrete subdomains 

representing the mandrel, insulator, composite case, and the outer layer. Eq.(S.22) 

can be written for each subdomain by considering appropriate material properties 

and by neglecting the heat generation term in the mandrel, insulator and outer layer. 

The set of adjoint state equations for the individual domains of the FWC assembly 

(Figure 2) can be written as 

eJA1 
= Dt 

Km ;/A1 
+ 

Km a [~J (T - TO) -
PmCm '" 2 PmCm or r 

or 

0)"1 

at 
Kj riA1 

+ Kj 0 [1..1 ] 0 ---- ---- -- - (T - T ) 
PiCj '" 2 t)jCj or r or 

l1A1 
= at 

Kc ii'''1 ----
PcCc or2 

(6.23) 

Of1 D 
A3 aT - (T - T ) 

= 
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where, Km, Pm. and Cm are the thermal conductivity, density and the specific heat of 

the mandrel, Ki• Pi' and Cj are the thermal conductivity, density and the specific heat 

of the insulator, Ke. Pc. and Cc are the thermal conductivity, density and the specific 

heat of the composite case, and Ko. Po. and Co are the thermal conductivity, density 

and the specific heat of the outer layer respectively. Pr' Hr, and vr are the density, heat 

of reaction and the volume fraction of the resin system used as the matrix material. 

The adjoint co-state variable t..3(r,t) can be related to the co-state variable a{r,t) 

through the canonical relationship 

(S.24) 

The adjoint co-state equation can be derived from Eq.(S.24) and the system 

Hamiltonian H (Eq.(6.20)) as follows 

= (S.25) 

For the composite case Eq.(6.25) can be written as 

= (6.26) 

The temperature of the system (state variable) alone influences the boundary condi-

tions through the boundary condition Hamiltonian H2 which is defined only at the do­

main boundaries r1 and rs. The adjoint operator· A2(r,t) acting on the generalized 

boundary conditions Eq.(S.3) and Eq.(6.4), shown in Eq.(6.18), can be eliminated from 

the set of equations by Al(r,t). Holliday and Storey [52] showed that the adjoint 
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boundary conditions can be calculated from the following expressions of the state 

Hamiltonian Ht and the boundary condition Hamiltonian H2• From the first variation of 

... 
the modified performance index J(r,t) we get 

a[H2J 
+ 

o[H1J a O[H11 
0 --- = aT oTr or 8Trr 

(S.27) 

o[H21 
+ 

o[H11 
0 = oTr 8Trr 

(S.28) 

= 0 (S.29) 

Substituting Eq.(S.17) for H, and Eq.(S.18) for H2 into Eqs.(S.27) - (S.29) and simplifying 

we get, the adjoint boundary conditions at r = r t and r = rs as 

=0 (S.30) 

where Kj is the thermal conductivity of the domain, hr is the heat transfer coefficient, 

and llr is the outward drawn normal at the radial position 'r'. 

For the FWC assembly the adjoint state boundary condition at the inner surface of the 

mandrel (r = r,) can be written as 

(S.31 ) 

at the inner surface r = r, of the hollow mandrel. 
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At the interfacial points of the FWC assembly, the continuity of the heat flux is speci-

fied as : 

iJ'A1 A1 Km + 
OA1 j"1 Kj 

0 at (KmTr - -r-)11 mr (K1-",- -r-}l1lr = r = r2 
or 

OA1 A1KI 
+ 

0'1.1 A1 Kc 
0 at (6.32) (K1-,,- -r-)l1ir (KcTr -r-)l1cr r = r3 

or 

OA1 A1 Kc + 
O}"1 '''1 K

o 0 at (KcTr -r-)l1cr (Ko-,,- -r-)11or = r = r4 
or 

For the outer most point of the outer layer in contact with the oven fluid, the flux 

bou ndary condition is, 

at r = r5 (6.33) 

where 11mrr llir' llcr' and llor are the outerward pointing normals at the boundary points 

of the mandrel, insulator, composite case and the outer layer repectively. 

In addition to the spatial boundary conditions the adjoint variables A1(r,t) and A3(r,t) 

need to satisfy final time conditions which arise from the first variation of the system 

-Lagrangian or the modified performance index J{r,t). The final time condition on the 

state variable is defi ned as 

= (6.34) 

where J 2(r,t) is the objective function described in Section 5.4. Since J 2(r,t) is treated 

as an additional state variable and is considered as part of the state equation for the 
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optimal control problem (see Section 6.3), then J2(r,t) can be treated as a constant at 

final time t = tf • Hence the final time condition on the adjoint state becomes 

(6.35) 

Considering the uniformity of cure objective J ,(r,t) defined in Eq.(5.5) as 

1 r4 R 2 
J1 (r,t) = "2 S [a(r,tf) - a (r,tf)] dr 

ra 

at any spatial location r E [r3, r4] a terminal error function E(r,t) can be defined as 

E(r,t) 1 R 2 
= "2 [a(r,t) - a (r,t)] at t = tt (6.36) 

where aR(r,t) is the required degree of cure in the composite at final time tf. The final 

time condition on the co-state Lagrange multiplier A3(r,t) becomes 

oE(r,t,) 

oa (6.37) 

Differentiating Eq.(6.36) with respect to a(r,t) gives the following result at final time 

(6.38) 

If the final time (t = tf ) is an unknown, then it can be derived as the time at which the 

Hamilton - Jacobi Equation [26] is zero. 

= 0 (6.39) 
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subject to the additional final time conditions on the state and co-state. 

-It is noted that in Eq.(6.39), J(r,t) is the modified performance index evaluated for the 

optimal cure cycle T oo(t). Eq.{6.1) - Eq.(6.39) complete the identification of the condi-

tions needed for the curing process to be optimized. The calculus of variations ap-

proach adopted has lead to a two point boundary value problem (TPBVP) that needs 

to be solved subject to constraints. 

6.3 Minimum Principle 

-The heating cycle T oo(r,t} which minimizes the modified performance index J(r,t) 
... 

(Eq.(6.16)) can be said to be optimal if the system Hamiltonian H Eq.(6.20) is a mini-

mum when all the constraints are satisfied [19,26,53]. An arbitrary change in the cure 

cycle temperature &T ro(t) leads to a corresponding change in the temperature oT(r,t) 

and the degree of cure ou(r,t) which leads to changes in the adjoint variables. The 
... 

first variation in the modified performance index J(r,t) due to a variation in the cure 

cycle temperature oT ro(t), can be written as 

... 
oJ(r.t) at r = r1 and r = r5 (6.40) 

Differentiati ng Eq.{6.18) with respect to T ro(t), gives 

at r = r1 and r = r5 (6.41a) 

CHAPTER 6 104 



Eliminating A2(r,t) using Eq.(6.28). and substituting the result into Eq.(6.41a) gives 

oJ(r,t) 
t = t J f oT 00 (t) ( 
t=O 

where Cj , Pi are the specific heat and density, respectively of the material at the 

boundaries, hr is the heat transfer coefficient at the boundary point of interest, and 

11r is the outward pointing normal at the boundary points. 

The variation in the cure cycle oT ro(t) cannot be arbitrarily chosen if the cure cycle 

temperature T CX)(t) is restricted to lie within a decision space Udt) ~ T CX)(t) ~ Uu(t). 

The optimal cure cycle may end up hitting either the upper bound Uu(t) or the lower 

bound Udt) of the decision space. This is called the bang-bang phenomena and the 

cure cycle is said to be bang-bang [53,54]. 

6.4 First Order Gradient Method 

The calculus of variations approach leads to a descent type of algorithm to seek the 

optimal point in the decision space. The perturbation in the cure cycle temperature 

oT CX)(t) (Eq.(6.40)) should be appropriately chosen so that changes in the performance 

- -index oJ(r,t) will make J(r,t) the performance index move towards a minimum point. 

It is observed from Eq.(6.40) that an appropriate perturbation in the cure cycle should 

be of the form 

oT oo(t) = at r = r1 and r = rs (6.42) 
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where W1(t) is a positive weighing function chosen such that the cure cycle T oo(t) lies 

within the restricted decision space Udt) :s: T oo(t) :s: Uu(t). Using Eq.(6.41a) for the 

partial of the boundary condition Hamiltonian H2 with respect to T oo(t) gives 

(6.43) 

The first order gradient method gives the magnitude of the change in the cure cycle 

as well as, the direction for the performance index to change towards a minimum. 

6.5 Computational Algorithm 

It is observed from the methods adopted to convert the minimization problem with 

constraints on the state and co-state variables to an unconstrained minimization 

problem, that the objective function, the constraints, and the stopping conditions are 

all implicit functions of the state and co-state variables and time. From Pontryagin's 

-minimum principle [16,26,48] derivatives of the modified performance index J(r,t) are 

required to predict the direction of minimization in order to converge to an optimum 

point [55]. 

The optimal control problem can be divided into two primarily independent problems 

with regard to the final time: 
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1. The fixed final time problem, where the final process time is fixed and the con­

straints are satisfied at the specified final time tf • This can be called as the optimal 

filtering problem 

2. The final time is unrestricted making the optimal control problem a final time 

prediction problem where 

a. if tf is greater than the final time of the initial problem, it is an extrapolation 

problem. 

b. if tf is less than the final time of the initial problem, it is treated as an in­

terpolation problem in the time domain. 

Both cases of the unrestricted final time problem can be treated as a series of fixed 

time problems. If the objective function is not minimum or if any of the constraints 

are violated then the final time can be adjusted to arrive at an improved cure cycle. 

This procedure is repeated until the true optimal cure cycle can be identified which 

satisfies all constraints and minimizes the performance index. 

Step by Step Computation Procedure 

The calculus of variations approach naturally leads to a steepest descent type of al­

gorithm. An outline of the solution procedure is given as follows 

1. Assume an initial heating cycle T~(t) 
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2. The cure model with the assumed heating cycle is then used to calculate the 

temperature distribution in the FWC assembly and the degree of cure and 

viscosity in the composite case. The final time condition is used as the initial final 

time estimate for the optimal control problem. 

3. Solve the state and co-state estimation problem for the assumed heating cycle 

T~(t), (where i denotes the ith iteration) by integrating forward in time from t = 

o to a time t = t}, where either the stopping condition terminates the process or 

the final time conditions are satisfied. 

4. Calculate the derivative functions ~6. I T and ~a 101 at all instants of time. 
vU oT 

5. Solve the adjoint state and co-state equations (6.23 - 6.2S), by integrating back-

wards in time from t = t} to t = O. This is necessary as the resu Itant two point 

boundary value problem needs final time conditions to be satisfied as described 

earlier. The principle of duality in distributed parameter systems, as stated by 

Tzafestas and Nightingale [23] and Hermes and Lasalle [50], is utilized to convert 

the final time boundary condition problem to an initial value problem by making 

a time transformation of the form 

I 
t = tf - t (6.44) 

where t} is the final time of the ith iteration. Using the principle of duality, inte-

gration is performed on the dual variable AI(r,t) and the solution to the adjoint 

equations Aj(r,t) can be recovered using Eq.(S.44). 
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6. On arriving at the solution to the dual problem, the direction of descent is est i-

mated by the application of the minimum principle. The resulting variation in the 

objective function is estimated as indicated in Eq.(S.41 b). 

7. The variation in the cure cycle is then calculated from the first order gradient 

described in Section S.4. The resultant perturbation Eq.(S.43) is a function of the 

weighting function W l(t) and can be chosen so as to prevent any violation of the 

constraints on the cure cycle. 

8. The variation in the control can be applied to the heating cycle of the present it-

eration Tioo(t), to calculate a new heating cycle 

(S.45) 

can be calculated from Eq.(S.43) 

(6.46) 

where Wj(t) acts as the control on the step size and thus permits the cure cycle 

to lie within the specified decision space. 

9. The performance index is calculated at each iteration and compared with the 

performance index obtained from the previous iterate. The steepest descent 

method is stopped when the performance index is a minimum. This can be 

checked by evaluation of a pre specified criterion on the performance index 

CHAPTER 6 

I J i + 1 ,- J i I ~ E 

JI 
(S.47) 
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where E is a chosen tolerance TOl1. 

Unrestricted Final Time 

All steps outlined above in the solution procedure are common to the case of a 

specified final time, as well as, to the case of unrestricted final time. However, one 

additional condition needs to be satisfied for the case of unrestricted final time as 

outlined by Denn et al.[18], Bryson and Ho [47], and Leondes and Niemann [56]. This 

condition specifies the magnitude of the change in the time step needed to extrapo-

late the time domain. The extrapolation in the time step is calculated using the 

stationarity of the system Hamiltonian as the necessary condition to be satisfied. The 

time estimate for the next iteration is calculated as 

and Bt} is defined as 

I iJE(r,t,) 
Bt, = Wj(t)--,,­

ot, 

(6.48) 

(6.49) 

where E(r,t) the error fu nction in Eq.(6.36) specified at final time tf and defined at any 

prespecified spatial location 'r/. 
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Method For Estimating Final Time Increments 

Since it is the primary objective to achieve a prespecified degree of cure in the 

composite at the final time, the objective fu nction J l(r,t) is used to define a terminal 

error function E(r,t) (see Section 6.5) 

Consider the objective function J 1(r,t) defined by 

1 Sr4 R 2 J1 (r,t) = 2" [a(r,t) - a (r,t) J dr 
r3 

at t = t, 

At any spatial location r E [r3• r4]. the terminal error function E(r,t) has been previously 

defined in Eq.(6.36) as 

E(r,t) = ~[ a(r,t) - aR(r.t) ]2 at t = tf (6.36) 

where (XR(r,t) is the required degree of cure in the composite at final time tf• From 

Eq.(6.36) it is clear that the minimum value of E(r,t) is zero. Thus, the problem of de-

termining an optimal tf can be considered as a problem of minimizing the error func-

tion E(r,t). 

Consider a small change in final time tf , say otf , the corresponding change in the error 

E(r,t) is then equal to 

L\E(r,t,) E(r,tf + Stf} - E(r,tf) 
= 

L\t, Stf 
(6.50) 

Neglecting the higher order terms in otr, Eq.(6.50) can be written as 
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(6.51 ) 

In order to make E(r,tf) a minimum, we can choose 3tf such that 

(6.S2) 

where W1(t) is a scalar constant. Differentiating Eq.(6.36) with respect to the final time 

tf Eq.(6.S2) can be written as 

(6.53) 

Eq.(6.S3) can be discretized using the values for the degree of cure a{r,tf) at the final 

time for the previous iteration (i-1) and the degree of cure at the final time at the 

present iteration (i) to estimate 3tf
i as follows 

i I R [a(r,t~) - f,«(r.t~ 1)] } 
ott = Wi(t) [a(r,tf) - (l (r,tf)] { , '1 

[t~ - t~ ] 
(6.54) 

Thus, the final time for the i + 1 iteration can be estimated using Eq.(6.S4) and 

Eq.(6.48) 

(6.S5) 

where 
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Hence, the change in the next time iteration can be determined from the estimated 

final time. The algorithm iterates on the final time tf • In order to use this approach an 

initial guess of the final time is needed. The final time is determined by solving the 

process modeling problem as an initial value problem and calculating the final time 

at which the the process is stopped and at least one of the points in the composite 

will have reached the required degree of cure. The significance of each event in the 

optimal control of the curing process is illustrated in the flow chart presented in Fig-

ure 31. 

The value of the scalar weight function Wj(t) in Eq.(6.48) and Eq.(6.49) can be chosen 

for an axisymmetric system [26] as 

at and (6.56) 

where TOL2 is an arbitrary constant chosen such that any perturbation on the control 

or the time increment lie within the allowed decision space. The extension of the 

fixed time problem to the unrestricted final time case requires solution of the 

Hamilton - Jacobi equation (Eq.(6.39)). 

=0 (6.39) 

.... 
where, J(r,t) is the modified performance index evaluated for Lhe optimal cure cycle 
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The step by step solution procedure outlined above is contained in a FORTRAN 

computer program "CUREOPT". The input parameters describing the variables 

needed for the program "CUREOPT", are briefly outlined in Table 5. 

CHAPTER 6 114 



Figure 31. OPTIMAL CURE· Flow Chart: 

CHAPTER 6 

The flow chart illustrates the heirarchy of events for the optimal control strategy de· 
vel oped in optimal cure program "CUREOPT", 
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Table 5. INPUT PARAMETERS FOR PROGRAM "CUREOPT". 

1. CONTROL PARAMETERS AND TOLERANCES 6. RESIN PROPERTIES 
a. Initial estimate of the final time of cure. a. Density. 
b. Initial time estimates for lag and overshoot regions. b. Specific Heat Capacity. 
c. Lower and upper bounds of the degree of cure. c. Thermal Conductivity. 
d. Required degree of cure at all points of the composite. d. Heat of Reaction. 
e. Lower and upper bounds of the cure cycle. e. Relationship between cure rate, temperature and degree of cure. 
t. Initial operational weight on the cure cycle perturbations f. Relationship between viscosity, temperature and degree of cure. 
g. Initial operational weight on the time perturbations. 7. FIBER PROPERTIES 
h. Required tolerance on the objective error function. a. Density. 
i. Required tolerance on the time weight parameter. b. Specific Heat Capacity. 

2. GEOMETRY c. Thermal Conductivity. 
a. Shape of the structure. 8. OUTER LAYER PROPERTIES 
b. Number of layers. a. Density. 
c. Thickness of Individual layers. b. Specific Heat Capacity. 

3. MANDREL PROPERTIES c. Thermal Conductivity. 
a. Density. 9. FINITE ELEMENT MESH PARAMETERS 
b. Specific Heat Capacity. a. Type of element being used. 
c. Thermal Conductivity. b. Type of mesh - symmetric or unsymmetric. 

4. INSULATOR PROPERTIES c. Number of elements in the mesh. 
a. Density. d. Number of nodes in the mesh. 
b. Specific Heat Capacity. e. Number of elements modeling each subdomain. 
c. Thermal Conductivity. f. Time step parameter e 

5. PREPREG PROPERTIES g. Time step 
a. Inilial resin mass fraclion. h. Boundary nodes for convective heat transfer. 
b. Type of riber being used. 10. INITIAL AND BOUNDARY CONDITIONS 
c. Type of resin being used in the composite. a. Initial temperature distribution in the composite. 

b. Initial degree of cure distribution in the composite. 
c. Cure cycle temperature as a function of time . 
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CHAPTER 7 

OPTIMUM CURE CONTROL CYCLE 

The axisymmetric cure model for a filament wound composite has been proposed 

and validated thus far. The optimal control of the curing process and a computational 

strategy have been proposed in Chapter 6. The method of tailoring the composite to 

have a property that can be controlled through a process control variable has been 

described in Figure 31. The computational strategy adopted here, is initially verified 

for a linear heat transfer problem popularly called the Butkovskii .. Sakawa boundary 

control problem and then extended to the nonlinear heat transfer problem with heat 

generation describing the curing process in composites. 
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7.1 Optimal Control : Linear Diffusion Problem 

The optimization technique developed for the FWC assembly in Chapters 5 and 6 was 

used to solve the Butkovskii - Sakawa boundary control problem. The temperature 

distribution in a homogeneous flat plate can be steered to a desired temperature 

distribution at the end of the heating process by suitably altering the temperatures 

of the heating cycle applied at the boundary of the flat plate. This was initially pro-

posed by Butkovskii [16] and solved by Sakawa [17]. This problem came to be known 

as the Butkovskii - Sakawa boundary control problem. The state equation and 

boundary conditions for the Butkovskii - Sakawa boundary control problem are stated 

below 

a0 rl0 --=--
a-r a~2 

v ~ E rOt 1] (7.1 ) 

where 0(r.t) is the dimensionless temperature, t is the dimensionless time, and ~ is 

the dimensionless position. The boundary and initial conditions can be written as 

iJ0 = 0 
a~ 

at ~ = 1 V -r (7.2) 

00 = h (0 - U(-r)) 
v~ 

at ~ = 0 V t (7.3) 

0(1;,0) 0 at -r = 0 (7.4) 

where h is a constant coefficient of the surface in contact with the convective envi-

ronment. U(-r) is the heating cycle temperature. 
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Since the objective is to achieve a nondimensional temperature of 0.2 at a specified 

time t f the performance index for the linear diffusion problem can be written as 

1 
J(~, tf} = S [ 0.2 - e(~, t f} ]2 d~ (7.5) 

o 

where 0.2 is the desired temperature distribution inside the flat plate and e(~. t f } is 

the temperature inside the flat plate at final time 'tf • The p~rformance index J(~, 'tf ) 

measures the error between desired temperature and existing temperature in the flat 

plate due to a particular heating environment. 

Comparison Studies 

The one dimensional heat transfer problem stated above is solved using quadratic 

finite elements and compared with the solutions obtained for the temperature be-

havior from reference [18]. 

The spatial domain and the time domain were both equally divided into 20 divisions 

giving 21 discrelized nodal points. The coefficient h is taken as 10.0, and the desired 

temperature in the flat plate is 0.2 with a constant initial heating of U(t) = 1.0. The 

weight Wj(t) in Eq.(6.46) was arbitrarily set at 10. It was chosen such that it would 

carry the heating cycle temperature to a boundary of the admissible region of the 

decision space defined by 0.0 ~ U(t) ~ 1.0 and halved whenever a decrease in the 

objective Eq.(7.5) was not obtained. 

Figure 32, shows a comparison between the predicted temperature distribution from 

the program and the measured temperature data obtained from reference 18, for an 
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1.60~------------------------------------------------, 

o - TEMPERATURE DISTRIBUTION DATA 
- TEMPERATURE DISTRIBUTION 

• - OPT I MAL TEMPERATURE : 10 I TERAT IONS 
- OPT I MAL TEMPERATURE : 10 I TERAT IONS 
- OPTIMAL TEMPERATURE: 41 ITERATIONS 
- DESIRED TEMPERATURE DISTRIBUTION 

0.76 

0.60 

-'----
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Figure 32. LINEAR DIFFUSION PROBLEM· Temperature vs Normalized Radius: 

Temperature profiles at t - 0.2 using an initial heatin~ cycle U(t) - 1.0. The symbols 
represent data from reference 18. 
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initial heating cycle U("C) = 1.0. The desired temperature distribution of 0.2 is 

achieved within 10 iterations. The data obtained from reference 18, was measured 

assuming the transportation lag (time needed by the heating cycle to attain a speci­

fied hold temperature from the initial temperature) of the heating cycle was 0.04. 

Since the transportation lag was small it was neglected for our study. The optimal 

heating cycles plotted in Figure 33 as a function of the nondimensional time, indicate 

that the heating cycle appears to approach the boundaries of the decision space. 

Thus, the optimal heating cycle for the flat plate problem shows a tendency to ap­

proach a bang - bang behavior. 

Figure 34 shows the reduction in the objective for the steepest descent calculations 

starting from the constant heating cycles of U("C) = 0.5 and 1.0. It is observed that the 

objective Eq.(7.S) approaches the minimum fairly rapidly within the first 10 iterations 

and does not indicate a large change after that. 

7.2 Cure Cycle Optimization 

It has been observed during cure of thermoset composites that exothermic chemical 

reactions occur which may lead to runaway reactions and nonuniformity of cure. It is 

characteristic of thick section composites that as the thickness increases, thermal 

gradients develop due to differential temperature drop across the composite thick­

ness. Munjal [2} made a qualitative assessment of the effect of thickness variations 

and processing of large thick section rocket motor components. It was concluded that 

there is a 20 - 30 % degradation of Kevlar reinforced pressure vessel strength as the 
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Figure 33. LINEAR DIFFUSION PROBLEM· Control Cycle vs Time: 

o. 15 0.20 

Successive approximations to the optimal heating cycle using initial heating cycle as 
U(t) - 1.0. The symbols represent data from reference 18. 
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Figure 34. LINEAR DIFFUSION PROBLEM - Objective J( ~, t ) vs Iterations: 

The variation of the object~ve as the function of the number of needed to reach the 
minimum. 
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geometry is changed from a 5.75 inch diameter pressure vessels with a case thick­

ness of 0.05 inch, to a 90.0 inch diameter vessel with a 1 inch thick case. A similar 

study for identical cases fabricated with graphite fibers indicated a degradation of 10 

0/0. 

A Fortran computer code "CUREOPT" was developed to optimize the curing process 

of the FWC assembly using the techniques described in Chapters 5 and 6. Results of 

the cure simulations for the 18 inch test bottle with a 0.0254 m thick graphite - epoxy 

case showed (a). a very large thermal lag in the FWC assembly during heat up and 

(b). a large temperature overshoot inside the composite (see Section 4.5). The opti­

mization program was used to determine a modified cure cycle which would reduce 

the thermal lag and at the same time eliminate the temperature overshoot. Specif­

ically, the optimization program was used to determine the optimal cure cycle for the 

following problems: 

1. Exotherm minimization subject to process time being minimum. 

2. Simultaneous lag and exotherm minimization subject to process time being min­

imum. 

3. Effect of changes on the initial cure cycle on the optimum process time. 

4. Effect of changes in mandrel material on the optimum process time. 

The temperature and temperature dependent property tailoring (Le., tailoring of the 

degree of cure to achieve an uniform distribution and a desired prespecified degree 

across the thickness of the composite), for all the above cases was carried out ac-
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cording to a common design cure window which facilitated a common basis for the 

comparison studies. 

7.3 Design Cure Window 

The design cure window defines: 

1. The decision space within which the optimal control cycle should lie. 

2. Describes the constraints on the state and co-state variables. 

The design cure window used for the curing process optimal control problem can be 

identified by : 

1. BOUNDS ON THE PROCESS CONTROL VARIABLE 

The cure cycle temperature T oo(t). is restricted to lie within bounds specified by 

a lower and an upper limit. The lower bound Udt) = 21.11°C and the upper 

bound is taken to be Uu(t) = 180.0°C for all the four cases considered. 

2. BOUNDS ON THE EXTENT OF REACTION 

The initial degree of cure was used as the lower bound adr,t) = 0.0. The upper 

bou nd of the degree of cure was taken to be the desired degree of cure of the 

composite. For the optimal process control problem it was taken to be o.u(r,t) 

0.99. 

CHAPTER 7 125 



3. STOPPING CONDITION 

The stopping condition can be described as the time at which all the points in the 

composite achieved the desired degree of cure. 

4. PROCESS PARAMETERS 

The geometry used for the case study was the FWC assembly shown in Figure 

2. The outer diameter of the mandrel was 18 inches (referred to as an 18 inch test 

bottle) and the properties of each layer in the in the assembly are given in Table 

6. Tile mandrel properties were changed for the final case when aluminum was 

used instead of PVA SAND. The resin system used in all the four cases was 

Fiberite 976, along with T-300 graphite fibers. The composite was 1 inch thick. The 

inner insulator was EPDM rubber while the outer layer was a layer of polyester 

film. The heat transfer coefficients at the inner surface of the mandrel and outer 

surface outer layer were taken to be 100 W/m2K. 

5. CURE CYCLE 

The initial cure cycle used for all the cases (except Case 3) was a cycle where the 

cure temperature was increased at a constant heating rate of 2.80 C/min (SOF/min) 

from room temperature of 21.1°C to the maximum cure temperature of 177°C 

350°F). The temperature was held at 177°C until cure was complete. It is termed 

as a single step cycle. The cure cycle used for Case 3 will be described later. 
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6. INITIAL ESTIMATE OF THE FINAL TIME 

The initial estimate for the final time of the process was calculated from the cure 

model using the single step cure cycle described in the preceding paragraph. 

This was used as an intial prediction of the final time for the optimal process 

control problem. The minimum degree of cure in the composite case at the esti­

mated final time was used as a first estimated for the degree of cure at final time. 

Both the intial estimate of the final time as well as the minimum degree of cure 

achieved in the composite at this time were used as input variables for the opti­

mal control problem. 

A nonuniform finite element mesh made up of axisymmetric finite elements is used 

to model the spatial domain. The mesh used for the optimal control problem in the 

spatial domain is similar to that used earlier for the cure simulation of the 5.75 inch 

bottle. The time domain is allowed to change at a time step of ~t = 100 sees. The 

spatial domain is divided into 15 quadratic finite elements.Due to the varying ge­

ometric thickness of each individual layer the domain is modeled by an unsymmetric 

mesh. The weight Wj(t) on the cure cycle oT ro(t) in Eq.(6.46), as well as, that on the 

time ot} in Eq.(6.55) was taken to be a positive scalar value not greater than 10. The 

tolerance TOl1 and TOl2 (see Section 6.5) were both taken to be 0.0001. 

1.4 Optimal Cure Simulation: Case - 1 

Exotherm Minimization 
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The cure cycle optimization program was used to determine a cure cycle which 

minimizes the exothermic chemical reactions in the composite case. 

1. OPTIMIZED - 1 : FIXED FINAL TIME PROBLEM 

In this case, the initial time estimate of the curing process tt is taken as the final 

process time of the optimal control problem and no changes in the time domain 

is permitted. (Le., the final process time is fixed). The temperature vs time pro­

files for the center of the case are shown in Figure 3S. The temperature versus 

time curve for the initial single step cure cycle (initial response, Figure 3S) indi­

cates that the reaction exotherm begins around t = 110.0 mins and reaches a 

maximum of 228.9°C at 133.3 mins into the process. 

At this stage the initial time estimate for the optimal curing process control 

problem is taken as 1S8.3 mins. The average distributed temperature TD(r,t) is 

calculated according to Eq.(S.8) and corrected using the cure cycle temperature 

and the peak exotherm temperature as per Eq.(S.9). The objective functions 

J ,(r,t) and J2(r,t) are calculated using Eq.{S.6) and Eq.(S.7), respectively. The cu­

mulative error due to both the objectives is estimated and the overall perform­

ance index J(r,t) is calcu lated us; ng Eq.{5.11). Both the objective fu nctions J ,(r,t) 

and J2{r,t) are objective functions which are quadratic in nature. 

The perturbation in the control is then calculated from the solution of the min­

imization problem posed by the optimality conditions and the minimum principle. 

The perturbation on the control can then be evaluated as a function of time using 

Eq.(6.24). It is observed that the optimum cure cycle indicated as OPTIMIZED - 1 

in Figure 36, has an identical heating rate as that of the initial cure cycle of 
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Figure 35. EXOTHERM MINIMIZATION. Temperature va Time: 

Temperature vs Time profiles at the case center for the initial case and three opti­
mized cases :- (a). OPTIMIZED - 1 - Fixed final time case. (b). OPTIMIZED - 2 - Var­
iable process time. (c). OPTIMIZED - 3 - Actual final time. 
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2.8°C/min. However, in the hold region of the initial cure cycle, a distinct depar­

ture from the final cure temperature is observed. The fixed time optimal control 

cycle approaches the upper temperature bound Uu(t) in a small region at the be­

ginning of the hold region. In the exotherm region (see Figure 35), the optimal 

cure cycle dips down and shows a maximum departure of about 27°C below the 

initial cure cycle hold temperature of 176.6°C. 

The OPTIMIZED - 1 response (Figure 35) to the new cure cycle indicates a sig­

nificant reduction in the peak exotherm temperature. It is observed that the fixed 

time exotherm minimization cure cycle causes composite to reach a degree of 

cure of 0.99 at the center of the case. The number of iterations taken to approach 

the minimum performance index in this case was 10 (this depends to a certain 

extent on the value of the weight taken in Eq.(6.46)). This indicates that if the en­

tire composite is to reach an uniform degree of cure of 0.99 the process control 

time will have to be extended. 

2. OPTIMIZED - 2 : VARIABLE PROCESS TIME 

The extention of the process time from the final time of the fixed time problem is 

carried out by calculating the extrapolation in the final time using Eq.(6.55) where 

ot} is calculated using Eq.(6.54) and the error function E(r.t). 

OPTIMIZED - 2 curves are the intermediate times between the initial final time 

estimate of 158.3 mins and the actual final time estimate. The Optimized - 2 

search is stopped wh€'n more than half of the discretized points across the 

thickess of the composite attain a degree of cure of 0.99. The tempe'rature vs 

time profile shown in Figure 35 indicates the time domain has been extended to 
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Figure 36. EXOTHERM MINIMIZATION· Cure Cycles: 

Control policy profiles for the initial case and three optimized cases :- (a). OPTIMIZED 
- 1 - Fixed final time case. (b). OPTIMIZED - 2 - Variable process time. (c). OPTI­
MIZED - 3 .. Actual final time. 
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t = 181.7 mins. In this case the number of iterations needed to reach the mini­

mu m by the performance index were 11. A further decrease in the peak temper­

ature overshoot is observed and more than one point inside the composite have 

reached a degree of cure of 0.99. The cure cycle temperature for this case, de­

noted OPTIMIZED - 2 in Figure 36 follows a similar trend as indicated by the fixed 

time cure cycle (OPTIMIZED - 1), but shows a greater departure from the initial 

cure cycle. The maximum departure is estimated to be about 42°C. 

3. OPTIMIZED - 3 : ACTUAL FINAL PROCESS TIME 

In order for all the points across the thickness of the composite case to achieve 

an uniform degree of cure of 0.99, further extrapolation of the final time was re­

quired. The final time was estimated by the stopping condition Eq.(5.5) which 

satisfies the Hamilton - Jacobi equation, Eq.(6.39). The total number of iterations 

to converge to the minimum were 10. For the curing process under consideration 

it came out to be 210.0 mins. The temperature vs time response and the OPTI­

MIZED - 3 cure cycle are shown in Figure 35, and Figure 36, respectively. The 

cure cycle converges to the maximum cure temperature at a longer time than 

observed for the fixed time case or the intermediate time case. The additional 

time allows all points inside the composite to achieve an uniform temperature 

and reach the specified degree of cure. 

The degree of cure vs time profiles are shown in Figure 37. The initial cure cycle 

results in rapid curing due to the presence of large reaction exotherms leading to a 

greater amount of non-uniformity in the state of cure through the thickness of the 
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composite. As the cure cycle is modified the degree of cure shows a response more 

like the degree of cure of an uniformly cured composite case (Figure 18). As the time 

domain is extended, the degree of cure at the center of the composite approaches the 

required value of 0.99 as the final time is reached. 

The temperature distribution across the cross section of the FWC assembly is shown 

in Figure 38. The solid line represents the temperature distribution at 133 minutes 

(time of maximum temperature overshoot, Figure 35) for the initial cure while the 

dashed line represents the temperature distribution for the OPTIMIZED - 3 cure at the 

same time. It is to be noted that the temperature distribution for the FWC assembly 

using the OPTIMIZED - 3 cure cycle is much more uniform than the temperature dis­

tribution for the initial case. 

The degree of cure vs normalized radius profiles are plotted for a time of 133 minutes 

(time of maximum temperature overshoot) in Figure 39. It is obvious from the curves 

that the presence of reaction exotherms in the initial response leads to non-uniformity 

of cure across the case thickness. Minimizing the cure exotherms provides a more 

uniform cure distribution across the case thickness. 

The minimum degree of cure and the degree of cure at the composite center for the 

initial cure and the optimized cure are plotted as a function of time in Figure 40. It is 

observed that the cure rate is slower and more uniform for the optimized cure as 

compared to the initial cure with the presence of reaction exotherms. This can be 

observed at 120.0 minutes into the process where the rate of cure for the optimum 

cure is slower than the initial cure. One of the primary reasons for this behavior can 

be attributed to the reduction of thermal gradients across the thickness of the com-
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Figure 37. EXOTHERM MINIMIZATION. Degree of Cure va Time.: 

Degree of Cure vs Time at the center of the composite for the initial cure and three 
optimized cures :- (a). OPTIMIZED - 1 - Fixed final time case. (b). OPTIMIZED - 2 -
Variable process time. (c). OPTIMIZEr> - 3 - Actual final time. 
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Figure 38. EXOTHERM MINIMIZATION - Temperature vs Normalized Radius.: 

Temperature vs Normalized Radius profiles at :- (a). INITIAL OVERSHOOT ,. temper~ 
ature distribution across the thickness at time t - 133.33 mins for the initial cure cycle. 
(b). OPTIMIZED OVERSHOOT - temperature distribution across the thickness at time 
t - 133.33 mins for the optimized - 3 cure cycle. 
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Degree of Cure vs Normalized Radius profiles at :- (a). INITIAL DISTRIBUTION - De­
gree of Cure distribution across the case thickness at time t - 133.33 mins for the 
initial cure cycle. (b). OPTIMIZED DISTRIBUTION - Degree of Cure distribution at time 
t - 133.33 mins for the optimized - 3 case. 
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posite, as well as, the minimization of reaction exotherms, thus reducing the differ-

entia! drop in the temperature across the case thickness. 

The maximum viscosity and the viscosity at the center of the case are plotted as a 

function of time in Figure 41. The optimized cure cycle leads increases the resin gel 

time compared to the resin gel time for the initial cure cycle. The increased gel time 

may lead to a larger amount of resin flow and better compaction in thick section 

composites. 

The cure rate sensitivity derivative ~: I T characterizing the change in the cure rate 

with respect to the changes in the degree of cure at the center of the case is shown 

in Figure 42. The sensitivity is very low initially, but in the exotherm region the sen-

sitivity suddenly drops and reaches a minimum value at the same time as the peak 

reaction overshoot occurs for the initial cure cycle. The sensitivity derivative for the 

Optimized - 3 cure cycle becomes more uniform as the temperature gradients, as 

well as, the cure rate are reduced. 

The cure rate sensitivity derivative ~a I CI characterizes the change in the cure rate 
oT 

due to changes in temperature with the degree of cure remaining a constant. The 

sensitivity plots for the initial and optimized behavior at the center of the case are 

shown in Figure 43. It is observed that the sensitivity derivative reaches a maximum 

value at the time of the peak overshoot temperature for the initial cure. The cure rate 

sensitivity derivative rises rapidly in the exotherm region for the initial cure cycle but 

changes gradually for the optimized cure. The uniformity of temperature ensures a 

more uniform cure rate behavior as indicated by the optimized sensitivity curve. 
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Figure 40. EXOTHERM MINIMIZATION· Degree of Cure va Time: 

Degree of Cure va Time profiles at :. (a). INITIAL MINIMUM - the minimum degree 
of cure as a function of time tor the initial cure cycle. (b). INITIAL CENTER - the de­
gree of cure at the center of the case for the initial cure cycle. (c). OPTIMIZED MINI­
MUM - the minimum degree of cure as a function of time for the optimized - 3 case. 
(d). OPTIMIZED CENTER - the degree of cure at the center of the case for the opti­
mized - 3 case. 
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Figure 41. EXOTHERM MINIMIZATION· Log Viscosity vs Time: 

Log Viscosity vs Time profiles at ;- (a). INITIAL MAXIMUM - the maximum log 
viscosity as a function of time for the initial cure cycle. (b). INITIAL CENTER - the log 
viscosity at the center of the case for the initial cure cycle. (c). OPTIMIZED MAXIMUM 
- the maximum log viscosity as a function of time for the optimized - 3 case. (d). 
OPTIMIZED CENTER - the log viscosity at the center of the case for the optimized -
3 case. 
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Figure 42. EXOTHERM MINIMIZATION. Cure Rate Sensitivity Derivative vs Time: 

Cure rate sensitivity derivative at constant temperature vs time (a). INITIAL SENSI· 
TIVITY - Cure rate sensitivity derivative for the initial cure cycle. (b). OPTIMIZED 
SENSITIVITY - Cure rate sensitivity derivative for the optimized - 3 case. 
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Figure 43. EXOTHERM MINIMIZATION· Cure Rate Sensitivity Derivative va Time: 

Cure rate sensitivity derivative at constant degree of cure vs time ;- (a). INITIAL SEN­
SITIVITY - Cure rate sensitivity derivative for the initial cure cycle. (b). OPTIMIZED 
SENSITIVITY - Cure rate sensitivity derivative for the optimized - 3 case. 
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The steepest descent of the objective function J(r,t) as it approaches the minimum is 

shown for the three optimized cure cycles in Figure 44. 

The cure cycle optimization procedure clearly indicates that the method adopted can 

lead to minimization of the peak exotherms occurring during cure of thick section 

composites. It also enables the tailoring of temperature dependent properties like the 

degree of cure within a composite by ensuring the minimization of temperature gra­

dients during the process. This procedure is now extended to a problem where the 

thermal lag, as well as, the exotherrn are minimized simultaneously. 

7.5 Optimal Cure Simulation: Case - 2 

Exotherm and Lag Minimization 

The simultaneous minimization of the exotherm, as well as, the thermal lag is again 

divided into three suboptimal time domain problems. The approach adopted for the 

exotherm minimization procedure is extended to include the thermal lag by tailoring 

the temperature in the lag region to satisfy additional constraint. 

1. OPTIMIZED - 1 : FIXED FINAL TIME PROBLEM 

The cure simulation is repeated for the initial cure cycle used in Case 1 (see 

Section 7.4 and Figure 35). The final time is fixed and the lag as well as the 
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Figure 44. EXOTHERM MINIMIZATION· Objective J(r.t) va Iterations: 

Steepest descent behavior as a function of number of iterations taken to reach a 
minimum :- (a). OPTIMIZED - 1 ... Steepest descent behavior of the objective for the 
fixed time problem. (b). OPTIMIZED - 2 - Steepest descent behavior of the objective 
for the variable time problem with intermediate final time t - 181.7 mins. (c). OPTI­
MIZED - 3 - Steepest descent behavior of the objective for the variable time problem 
with actual final process control time t - 210.0 mins. 
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exotherm have to be minimized for this fixed final time. The temperature vs time 

profiles for the center of the case are shown in Figure 45. 

Again the initial time estimate for the optimal curing process control problem is 

taken as 158.3 mins. The average distributed temperature TD(r,t) is calculated 

using Eq.(5.9) in the exotherm region, as well as, Eq.(5.10) in the lag region. The 

rest of the procedure for the simultaneous minimization is similar to the exotherm 

minimization case. It is observed that the optimum cure cycle indicated as OP­

TIMIZED - 1 in Figure 46, shows a distinct bang-bang behavior hitting the upper 

bound temperature of 180.0°C. However, around 70 mins into the process a dis­

tinct departure from the upper boundary temperature is observed for the optimal 

cure cycle. 

The OPTIMIZED - 1 response (Figure 45) to the new cure cycle indicates a shift 

in the peak temperature. The peak temperature is reduced along with a reduction 

in the temperature lag. It should be noted that the fixed time minimization prob­

lem resulted in the center of the case to achieving a degree of cure of 0.99. The 

performance index reaches a minimum in 6 iterations. 

2. OPTIMIZED - 2 : VARIABLE PROCESS TIME 

The extention of the process time from the final time of the fixed time problem 

is carried out by calculating the extrarolation in the final time using Eq.(6.55) 

where ot} is calculated using Eq.{6.54) and the error function E(r,t). 

OPTIMIZED - 2 curves are at times between the initial final time estimate of 158.3 

mins and the actual final time estimate. The temperature vs time profile shown 
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figure 45. EXOTHERM & LAG MINIMIZATION· Temperature vs Time: 

Temperature vs Time profiles at the case center for the initial case and three opti­
mized cases: (a). OPTIMIZED· 1 - Fixed final time case. (b). OPTIMIZED - 2 - Vari­
able process time. (c). OPTIMIZED - 3 - Actual final time. 
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Figure 46. EXOTHERM & LAG MINIMIZATION· Cure Cycles: 

Control policy profiles for the initial case and three optimized cases: (a). OPTIMIZED 
- 1 - Fixed final time case. (b). OPTIMIZED - 2 - Variable process time. (c). OPTI­
MIZED - 3 - Actual final time. 
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in Figure 45 shows the temperature response to the OPTIMIZED - 2 cure cycle. 

The extrapolated final time is t = 190.0 mins. A further decrease in the peak 

overshoot temperature is observed. The additional process time allows more 

than one point in the composite to reach a degree of cure of 0.99. The perform­

ance index reaches a minimum in 6 iterations. The OPTIMIZED cure cycle tem­

perature shown in Figure 46 is similar to the OPTIMIZED - 1 cure cycle except for 

the additional process time. 

3. OPTIMIZED - 3 : ACTUAL FINAL PROCESS TIME 

In order for all the points inside the composite to achieve a uniform degree of 

cure of 0.99 the final time was extended. The final time was estimated by the 

stopping condition Eq.(5.5) and by satisfying of the Hamilton - Jacobi equation 

Eq.(6.21). For the curi ng process under consideration the final time was estimated 

to be 201.0 mins. The temperature vs time response and the OPTIMIZED - 3 cure 

cycle are shown in Figure 45 and Figure 46, respectively. The cure cycle con­

verges towards the final initial cure temperature and the longer cure time allows 

all the points inside the composite to achieve a uniform temperature and a de­

gree of cure of 0.99. 

The degree of cure vs time curves for the initial cure and the optimized cure are 

shown in Figure 47. Reducing the peak exotherm temperature decreases the cure 

rate resulting in a more uniformly cured composite. The viscosity vs time for the in .. 

itial and the optimized cures are compared in Figure 48. Minimizing the temperature 

lag during heat up shifts the viscosity curves to the left reducing the gel time. 
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Figure 47. EXOTHERM & LAG MINIMIZATION. Degree of Cure vs Time.: 

Degree of Cure vs Time at the center of the composite for the initial cure and three 
optimized cures :- (a). OPTIMIZED - 1 - Fixed final time case. (b). OPTIMIZED - 2 _ 
Variable process time. (c). OPTIMIZED - 3 - Actual final time. 
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Figure 48. EXOTHERM & LAG MINIMIZATION· Log Viscosity vs Time.: 

Log Viscosity vs Time at the center of the composite for the initial cure and three op­
timized cures :- (a). OPTIMIZED - 1 - Fixed finaldme case. (b). OPTIMIZED - 2 
Variable process time. (c). OPTIMIZED - 3 - Actual final time. 
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The temperature distribution across the cross section of the FWC assembly is shown 

in Figure 49. The temperature distribution due to the initial cure cycle and the opti­

mized cure cycle are compared at 133 minutes. 

The degree of cure vs normalized radius is plotted at time t = 133 mins for the initial 

and the optimized cure cycles in Figure 50. It is observed from Figure 50 that the 

optimized cure cycle results in uniform cure of the composite case. 

The minimum degree of cure and the degree of cure at the center of the composite 

case for the initial cure cycle and the optimized cure cycle are plotted as a function 

of time in Figure 51. It is observed that the rate of curing is slower and more uniform 

for the optimized cure when compared to the initial cure with reaction exotherms 

being present. 

The maximum viscosity and the viscosity at the center of the composite case are 

plotted as a function of time in Figure 52 for the initial cure cycle and the optimized 

cure cycle. 

The cure rate sensitivity derivative ~~ I T characterizing the change in the cure rate 

with respect to the changes in the degree of cure at the center of the case is shown 

in Figure 53. The sensitivity derivative for he initial cure cycle suddenly drops and 

reaches a minimum around the same time as the peak temperature overshoot occurs 

inthe composite. As expected the cure rate sensitivity derivative is more uniform for 

the optimized cure cycle. 

The cure rate sensitivity derivative ~~ lor: characterizes the change in the cure rate 

due to changes in the temperature with degree of cure remaining constant. The sen-
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Figure 49. EXOTHERM & LAG MINIMIZATION· Temperature vs Normalized Radius.: 

CHAPTER 7 

Temperature vs Normalized Radius profiles at :~ (a). INITIAL DISTRIBUTION - tem­
perature distribution across the thickness at time t =- 133.33 mins for the initial case. 
(b). OPTIMIZED DISTRIBUTION - temperature distribution across the thickness at 
time t - 133.33 mins for optimized - 3 case. 
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':-;qure 50. EXOTHERM & LAG MINIMIZATION· Degree of Cure vs Normalized Radius.: 

Degree of Cure vs Normalized Radius profiles at :- (a). INITIAL DISTRIBUTION - De­
gree of Cure distribution for the composite case at time t - 133.33 mins for the initial 
cure cycle. (b). OPTIMIZED DISTRIBUTION - Degree of Cure distribution at time t 
.. 133.33 mins for the optimized - 3 case. 
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Figure 51. EXOTHERM & LAG MINIMIZATION· Degree of Cure vs Time: 

Degree of Cure vs Time profiles at :- (a). INITIAL MINIMUM - the minimum degree 
of cure as a function of time for the initial cure cycle. (b). INITIAL CENTER;' the de­
gree of cure at the center of the composite case for the initial cure cycle. (c). OPTI­
MIZED MINIMUM - the minimum degree of cure as a function of time for the 
optimized - 3 case. (d). OPTIMIZED CENTER - the degree of cure at the center of the 
composite case for the optimized - 3 case. 
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Figure 52. EXOTHERM & LAG MINIMIZATION· Log Viscosity vs Time: 

Log Viscosity vs Time profiles at ;- (a). INITIAL MAXIMUM - the maximum log 
viscosity as a function of time for the initial cure cycle. (b). INITIAL CENTER ... the log 
viscosity at the center of the composite case for the initial cure cycle. (c). OPTIMIZED 
MAXIMUM - the maximum degree of cure as a function of time for the optimized - 3 
case. (d). OPTIMIZED CENTER - the log viscosity at the center of the composite case 
for the optimized - 3 case. 
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Figure 53. EXOTHERM & LAG MINIMIZATION· Cure Rate Sensitivity Derivative vs Time: 

Cure rate sensitivity derivative at constant temperature vs time (a). INITIAL SENSI· 
TIVITY - Cure rate sensitivity derivative for the initial cure cycle. (b). OPTIMIZED 
SENSITIVITY - Cure rate sensitivity derivative for the optimized - 3 case. 
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sitivity plots for the initial and optimized behavior at the center of the case are shown 

in Figure 54. It is observed that the sensitivity peaks at the time of the peak overshoot 

temperature for the initial cure. The sensitivity derivative increases rapidly in the 

exotherm region for the initial cure but changes gradually for the optimized behavior. 

The uniformity of temperature ensures a more uniform cure rate as indicated by the 

optimized sensitivity curve. 

The steepest descent of the performance index J(r.t) (Eq.(6.1)) approaches the mini­

mum is shown for the three optimized cure cycles in Figure 55. 

7.6 Optimal Cure Simulation : Case - 3 

Effect of Cure Cycle 

The effect of changing the initial assumption for the cure cycle was studied in Case 

3. The design window is identical to that specified for the two previously considered 

cases and the constraints, as well as, the program control parameters are similar. 

Again, the only change is in the cure cycle considered as the initial assumption. 

The cure cycle considered is a cycle starting at 21.11°C and rising at a steady rate 

of 2.77°CI min to an intermediate hold temperature of 115.5°C. The cycle is then held 

at this temperature for the next 22 minutes. Temperature is then raised at a rate of 

2.77°C/ min to the final hold temperature of 176.6°C and held at this temperature until 

the composite cures. This is referred to as a double step cycle. 
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Figure 54. EXOTHERM & LAG MINIMIZATION - Cure Rate Sensitivity Derivative vs Time: 

Cure rate sensitivity derivative at constant degree of cure vs time :- (a). INITIAL SEN­
SITIVITY - Cure rate sensitivity derivative for the initial cure cycle. (b). OPTIMIZED 
SENSITIVITY - Cure rate sensitivity derivative for the optimized - 3 case. 
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Figure 55. EXOTHERM & LAG MINIMIZATION· Objective J(r,t) va Iterations: 

Steepest descent behavior as a function of number of iterations taken to reach a 
minimum :- (a). OPTIMIZED - 1 =- Steepest descent behavior of the objective for the 
fixed time problem. (b). OPTIMIZED - 2 - Steepest descent behavior of the objective 
for the variable time problem with intermediate final time t - 190.0 mins. (c). OPTI­
MIZED - 3 - Steepest descent behavior of the objective for the variable time problem 
with actual final process control time t - 201.0 mins. 
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Figure 56. DOUBLE STEP CURE CYCLE· Temperature va Time: 

The temperature b~havior at the center of the composite case are plotted as a function 
of time for the initial double step cure cycle and the optimized cure cycle. 
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The search for the optimum cure cycle is carried out in a similar manner as the op-

timization procedure outlined for the exotherm and lag minimization. The temperature 

vs time curves are shown in Figure 56. The composite requires 205 minutes to reach 

a degree of cure of 0.99 at the center when cured using the initial cure cycle. The 

optimal cure cycle, shown in Figure 57, indicates that the uniform cure is achieved 

at a final time of 265 minutes. It is to be observed that the optimal cure cycle also 

shows a bang-bang behavior particularly at the beginning of the process. 

The minimum degree of cure and the degree of cure at the composite center for the 

initial cure and the optimized cure are plotted as a function of time in Figure 58. It is 

observed that for the optimized cycle the rate of curing is initially faster for the initial 

cure due to the higher cure temperature. However, as the cure progresses the cure 

reactions become slower and more uniform for the optimized case compared with the 

initial case with high reaction exotherms present. This can be observed around 160.0 

minutes into the process where the cure rate for the optimum case is slower than the 

initial cure. 

The maximum viscosity and the viscosity at the center of the composite are plotted 

as a function of time in Figure 59. The optimized cure cycle leads to an earlier gel 

time as compared to the gel time for the initial cure cycle. The viscosity is actually 

more nonuniform for the optimized casp due to the higher initial cure temperature 

required to minimize the thermal lag. 

The cure rate sensitivity derivatives Daa I T and ~a 10:' and the temperature and de-
C( oT 

gree of cure distributions show a similar trends reported in Cases 1 and 2. 
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Figure 57. DOUBLE STEP CURE CYCLE· Cure Cycle: 

Cure cycle profiles for the initial cure and the optimal curing cycle plotted as a function 
of time. 
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Figure 58. DOUBLE STEP CURE CYCLE· Degree of Cure VI Time: 

CHAPTER 7 

Degree of Cure vs Time profiles at :- (a). INITIAL MINIMUM - the minimum degree 
of cure as a function of time for the initial cure cycle. (b). INITIAL CENTER - the de­
gree of cure at the center of the composite case for the initial cure cycle. (c). OPTI. 
MIZED MINIMUM - the minimum degree of cure as a function of time for the 
optimized cure cycle. (d).OPTIMIZED CENTER "'" the degree of cure at the center of 
the composite case for the optimized cure cycle. 
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Figure 59. DOUBLE STEP CURE CYCLE· log Viscosity VI Time: 

CHAPTER 7 

Log Viscosity vs Time profiles at :- (a). INITIAL MAXIMUM - the maximum log 
viscosity as a function of time for the initial cure cycle. (b). INITIAL CENTER - the log 
viscosity at the center of the composite case for the initial cure cycle. (c). OPTIMIZED 
MAXIMUM - the maximum log viscosity as :} function of time for the optimized cure 
cycle. (d).OPTIMIZED CENTER - the log viscosity at the center of the composite case 
for the optimized cure cycle. 
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7.7 Optimal Cure Simulation: Case - 4 

Effect of Mandrel Material 

The effect of changes in mandrel material on the curing of thick. section composites 

can be studied using an aluminum AI 6061 mandrel instead of the PVA Sand mandrel. 

The higher conductivity of aluminium as compared to sand can influence the cure 

characteristics, as well as, the optimal curing time. Using the single step cure cycle, 

it is observed that the center of the case reaches a degree of cure of 0.96 in 141.0 

mins as compared to 158.3 mins with the PVA Sand mandrel. Figure 60, shows the 

temperature vs time profiles at the center of the composite case. The optimized re­

sponse shows initial lag correction but as the process progresses the lag correction 

does not occur to a very great extent. The exotherm is minimized and a uniform 

temperature is achieved. A final time of 208.3 mins is required to minimize the per· 

formance index and to obtain a degree of cure distribution in the composite of 0.99. 

The cure cycle temperature is plotted as a fu nction of time in Figure 61. The optimal 

cure cycle is observed to increase at a finite rate and then shows a clear bang - bang 

behavior as it hits both the lower and upper bounds of the design window. This 

clearly indicates that if the thermal lag is be minimized a different upper bound tem­

perature will have to be chosen. The optimal cure cycle behaves exactly like the 

other cases in the exotherm region, as well as, towards the end of the curing process 

ensuring an exotherm minimization and achieving uniform temperature distribution. 

The minimum degree of cure and the degree of cure at the composite center for the 

initial cure and the optimized cure are plotted as a function of time in Figure 62. It is 
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Figure 60. AI 6061 MANDREL· Temperature vs Time: 

The temperature behavior at the center of the composite case are plotted as a function 
of time for the initial single step cure cycle and the optimized cure cycle. 
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Figure 61. AL 6061 MANDREL· Cure Cycle: 

Cure cycle profiles for the initial cure and the optimal curing cycle are plotted as a 
function of time. 
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observed that for the optimized cure the rate of curing is initially faster due to in­

creased heating from the surroundings. However, as the reaction progresses the cure 

rate becomes slower and more uniform compared to the initial cure with reaction 

exotherms being present. 

The maximum viscosity and the viscosity at the center of the case are plotted as a 

function of time in Figure 63. The optimized cure cycle leads to a delayed gel time 

as compared to the gel time for the initial cure cycle. 

The cure rate sensitivity derivatives, ~~ I T and ~~ I a' described earlier and the tem­

perature and degree of cure distributions show a similar type of trend as seen in 

CASE 2. 

The minimization procedure clearly indicates that the method adopted can lead to the 

minimization of the peak exotherms occurring during the curing of thick section 

composites subject to different types of cure cycles. However, in order to facilitate 

exact temperature tailoring additional temperature constraints would have to be 

specified during the process. The effects of changes in material properties of the 

individual layers of the FWC assembly can influence the behavior of the cure cycle, 

as well as, the tailoring of temperature dependent properties inside the composite. 
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Figure 62. AI 6061 MANDREL· Degree of Cure va Time: 

Degree of Cure vs Time profifes at ;- (a). INITIAL MINIMUM - the minimum degree 
of cure as a function of time for the initial cure cycle. (b). INITIAL CENTER - the de­
gree of cure at the center of the composite case for the initial cure cycle. (c). OPTI· 
MIZED MINIMUM - the minimum degree of cure as a function of time for the 
optimized cure cycle. (d). OPTIMIZED CENTER - the degree of cure at the center of 
the composite case for the optimized cure cycle. 
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Figure 63. AL 6061 MANDREL· Log Viscosity vs Time: 

CHAPTER 7 

Log Viscosity vs Time profiles at :- (a). INITIAL MAXIMUM - the maximum log 
viscosity as a function of time for the initial cure cycle. (b). INITIAL CENTER - the log 
viscosity at the center of the composite case for the initial cure cycle. (c). OPTIMIZED 
MAXIMUM - the maximum degree of cure as a function of time for the optimized cure 
cycle. (d). OPTIMIZED CENTER - the log viscosity at the center of the composite case 
for the optimi;zed cure cycle. 
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CHAPTER 8 

IN CONCLUSION 

8.1 Curing Process in Filament Wound Composites 

1. Models were developed which can be used to simulate the curing process of an 

axisymmetric filament wound composite case. The models relate the cure cycle 

to the thermal, chemical and physical processes occurring in the FWC assembly 

during cure. 

2. The axisymmetric heat transfer model can be extended to an axisymmetric cure 

model by taking into account the resin cure kinetics and the resin viscosity be­

havior. 

3. On the basis of the model, a finite element computer code "FEMCURE" was de­

veloped which can be used to determine the following information was developed 
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used to determine the following information for filament wound composites cured 

by a specified cure cycle :-

a. The temperature inside the mandrel, insulator, composite, and outer layer 

as a function of position and time. 

b. The degree of cure of the resin as a function of position and time. 

c. The resin viscosity as a function of position and time. 

d. The effects of geometry. material properties and cure cycle on the curing of 

filament wound composites. 

4. The input parameters required in the computer code for the solution of the mod­

els were specified. 

5. Experimental data measuring the temperature distribution in a 0.14605 m (5.75 in.) 

diameter bottle with a graphite - epoxy composite case were obtained and used 

to validate the axisymmetric cure model. 

6. Cure simulations were carried out on an 18 diameter graphite - epoxy case to il­

lustrate the type of information that can be generated by the model and to deter­

mine the effects of various processing parameters on the curing process. 
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8.2 Curing Process Optimal Control 

The composite cure problem was extended to an optimal process control problem. 

It has been demonstrated that the cure cycle significantly influences the final me­

chanical properties of the composite. Curing of thick section composites using cure 

cycles developed for thin laminates often results in large thermal gradients due to the 

presence of exothermic chemical reactions resulting in a nonuniformly cured com­

posite. Thus, it is necessary to tailor the cure cycle such that reaction exotherms 

would be minimized, the composite temperature distribution is uniform (uniform 

cure), and the composite achieves the desired degree of cure at the end of the proc­

ess. 

The process control problem was looked upon as a free time optimal control problem 

with end point constraints, a stopping condition, as well as, a uniformity constraint 

on the state and co-state variables. The state and co-state variables were related to 

the constraints through adjoint variables. The individual Hamiltonians were recog­

nized and the control variable was identified. The calculus of variations approach 

adopted to formulate the optimal control problem lead to the calculation of 

transversality conditions, system of adjoint equations, and final time conditions 

needed to be satisfied by the adjoint variables. 

The solution of the state estimation problem and the adjoint problem was recognized 

as a classical two point boundary value problem posed by the calculus of variations 

approach to distributed parameter systems. The curing process was modeled as a 

nonlinear, time optimal control problem with the cure cycle temperature entering 

through the flux boundary of the state equations. 
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A Fortran computer code "CUREOPT" was developed to solve the time optimal control 

problem. The program had the capability to solve both the fixed time and variable 

time problems in order to satisfy the design criteria identified by the design window. 

The program was initially verified using the classical Butkovskii - Sakawa boundary 

control problem for optimal control of the heat transfer process in flat plates. The 

program was then extended to solve the nonlinear, variable time, unsteady heat 

transfer process in filament wound composites. 

In summary the following major conclusions could be arrived at for the optimal 

process control problem :-

1. The exotherms caused by runaway reactions in thick section thermoset compos­

ites could be minimized. 

2. In all the cases studied it was observed that the optimal cure cycle showed 

tendencies of approaching a bang - bang nature. 

3. The method adopted gave an estimate of the cure rate design sensitivities. The 

cure rate sensitivities give an indication of how the rate of cure of the system 

changes with changes in the state (temperature) and co-state (degree of cure) 

variables during the optimal curing of composites. 

4. The final optimal process time could be logically derived and identified, from the 

degree of cure and the stopping condition. 

5. The optimal process control of the curing process gave a logical and effective 

method to arrive at an optimal cure cycle. 
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8.3 Future Research 

The program "CUREOPT" can be used as an operational base to set up an expert 

control system for the optimal control and temperature related property tailoring of 

composites. It can ,be utilized to extend the existing knowledge base in the quality 

assurance, and design of composite structures. Real time optimal control of com­

posite curing has not yet been implemented and is an area where optimal control 

techniques can be applied. 
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Appendix A. VARIATION OF REACTION RATE 

In this appendix an empirical expression for the variation of the cure rate, ~7' with 

time, t, and temperature, T, is presented. The expression for the cure rate was ob-

tained by fitting an empirical model to the experimental data. In [39], the following 

expressions, were fou nd to yield good agreement with data available for epoxy resins 

da 
dt 

df'( 

dt 

The temperature dependent factors are given by 

Ko = AoT + 82 
_ AE1 

K1 = A1e RT 

_ I.\E2 

K2 = A2e RT 

_ I.\E3 

K3 Aae RT 
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where Ao. is the linear factor. A1, A2 and A3 are pre-exponential factors, and AE1, AE2 

and AE3 are the activation energies. R is the universal gas constant and T is the ab­

solute temperature. 8 1, 8 2, a, b, c and d are constants of the reaction. independent 

of temperature. Table 6, gives the activation energies, pre-exponential factors and 

the constants used to characterize the variation of reaction rate, for the resin systems 

used as matrix material for this study 
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Table 6. REACTION RATE CONSTANTS FOR FIBERITE 976. 

1. LINEAR FACTOR Ao 

Ao = 0.0044 \It T < 4800K 
Ao = 0.0000 \It T > 4800K 

2. PRE-EXPONENTIAL FACTORS A" Az• and, A, 

A1 = 4400.00 1/ sec 
Az = 7050.00 1/ sec 
As = not applicable 

3. ACTIVA liON ENERGIES t,.E" t,.Ez• t,.E, 

t,.E, = 6250.00 Joule/mol 
t,.Ez = 5680.00 Joule/mol 
t,.E, = not applicable 

4. HEAT OF REACTION FOR THE RESIN H, 

Hr = 530000.00 Joule/kg 

S. TEMPERATURE INDEPENDENT CONSTANTS B,. Bz• a, b, c, d 

B, = 1.0 
8 z = -1.0 \It T < 4800K 
8 2 = 1.0 \It T > 4800K 
a = 1.03 
b = 1.22 
c = 0.00 
d = not applicable 
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Appendix B. CURE RATE DERIVATIVES 

Consider the cure rate equation discribed in Appendix A. The partial derivatives of 

the cure rate with respect to the degree of cure at constant temperature and the 

partial of the cure rate with respect to the temperature at constant a, give the sensi-

tivity of the rate expression to the changes in the state and co-state variables. They 

are very important regarding the optimal process control problem and playa signif-

icant role in determining the perturbation in the control 

1. VARIATION OF ~~ DURING CURE. 

aT la = 

aT la = Va> ac (8.2) 
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The variation of ~* gives an estimate of the change of the cure rate caused due 

to the changes in the temperature. 

2. VARIATION OF ~: DURING CURE 

The change in cure rate due to the variations of the co-state variable ex (t) can be 

derived from the co-state equation Eq.(A.1) as 

ail I 
iJa T 

K a 1 b c 
o ( K2 a ex ) (81 - a) (1.0 - u) 

\I- a > (Xc (8.4) 

It is to be noted that the above equations characterizing the sensitivity [57] of the re-

action to the state and co-state behavior are empirical, being derived from the em-

pirical relationship governing the reaction rate of the matrix resin being used. 
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Appendix C. VARIATION OF VISCOSITY 

The resin viscosity as functions of the temperature and degree of cure and hence 

time are related by an empirical relationship given by 

U 
J.l = J.loo exp( RT + KJ.lCt) (C.1) 

where J!<:Ot is a constant, U is the activation energy for viscosity and K~ is a constant 

independent of temperature relating the behavior of the degree of cure variations to 

the viscosity of the resin system. 

Using Eq.(C.1)t excellent correlation between data and prediction was shown in [7,8], 

for a few commonly used resin systems. Table 7 summarizes the constants for the 

resin system used in this study. 
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Table 7. VISCOSITY CONSTANTS FOR FIBERITE 976. 

1. VISCOSITY CONSTANT J.loo 

J.loo = 4.96 X 10-1 Pa.sec 

2. ACTIVA TION ENERGY ~E 

~E = 4020.00 Joule/mol 

3. TEMPERATURE rNDEPENDENT CONSTANTS Kp 

= 19.3 

Appendix C. VARIATION OF VISCOSITY 187 



Appendix D. CLASSICAL HEAT TRANSFER 

The exact transient analysis, for regular geometries and isotropic systems have been 

carried out by various investigators. One of the primary methods used to solve the 

heat transfer problem is to apply fourier series as a solution to the transient heat 

transfer and estimate the coefficients of the series using Bessel's functions. 

The classical solution for an infinitely long cylinder is based on the following as­

sumptions 

1. It is assumed that the body is at unirorm temperature Ti(r,O) at t = 0. 

2. The surface of the body is suddenly exposed to a uniform convection environ­

ment, heat transfer coefficient ho' and temperature of the surroundings of T CQ(t) 

3. The temperature varies with time and a single spatial variable r. 

The non-dimensionalized governing equation for one dimensional, conduction heat 

transfer in an infinitely long cylinder, without heat generation is given by 
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aT 
at (0.1) 

where a is the thermal diffusivity, r is the radial position, T(r,t), is the temperature, 

and t is the time. 

The boundary conditions for the heat transfer problem are written as 

aT 
or = 0 (0.2) 

along the line of symmetry, and at the surface in contact with the fluid the flux 

bou ndary condition becomes 

(0.3) 

where ho is the heat transfer coefficient or the fluid, T oo(t), is the ambient temperature 

of the fluid in contact with the surface, and K is the thermal conductivity_ 

The initial condition governing all points at t = 0 is 

(0.4) 

The fourier series solution to the above problem have been presented in literature 

[29,30,40], as 

(0.5) 

The coefficients C1 are 
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and PI are the roots of the algebraic equation 

= (D.6) 

and J, and J o are the Bessel's functions of the first kind and Bi is the Biot number. 

The constants C1 can be calculated with the help of the Heisler charts. Heisler [41] 

recommends that for non - dimensional time r > 0.2 , only the coefficient C1 plays a 

significant part in contributing to the overall solution. Using this argument, and the 

centerline r = 0 as the reference, the temperature of the innermost point, (Le., the 

point that takes the longest time to heat up) can be written as 

2 .. 

Tc{r) = Too + (Tj(r) - Too ) C1 e - n, t (D.l) 

Temperatures at all other radial locations in the domain are related to the centerline 

temperature through the expression 

(T(r) - Too ) 

(Ti(r) - Too ) 
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