RESEARCH NOTES

A NOTE ON BEST APPROXIMATION AND INVERTIBILITY OF OPERATORS ON UNIFORMLY CONVEX BANACH SPACES

by

JAMES R. HOLUB

Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

(Received October 1, 1990)

ABSTRACT

It is shown that if X is a uniformly convex Banach space and S a bounded linear operator on X for which ||I - S|| = 1, then S is invertible if and only if $||I - \frac{1}{2}S|| < 1$. From this it follows that if S is invertible on X then either (i) dist(I, [S]) < 1, or (ii) 0 is the unique best approximation to I from [S], a natural (partial) converse to the well-known sufficient condition for invertibility that dist(I, [S]) < 1.

<u>Key Words and Phrases</u>: uniformly convex space, invertible operator, unique best approximation.

1980 A.M.S. Subject Classification Codes: 47A05, 47A30, 41A52.

§1. Introduction. It is well-known [3, p. 584] that if S is a bounded linear operator on a Banach space X for which ||I - S|| < 1 then S is invertible. Equivalently, if [S] denotes the subspace of $\mathcal{L}(X)$ spanned by S, then S is invertible if dist(I,[S]) < 1. Simple examples show that in the "extreme" case when ||I - S|| = 1 the operator S may, or may not, be invertible.

In this paper we characterize the invertible operators S on X for which ||I - S|| = 1 in the case where X is a uniformly convex space (Theorem 1). As a consequence of this result we derive a necessary condition for invertibility of an operator on a uniformly convex space in terms of best approximation to the identity operator in $\mathcal{L}(X)$ which is a natural complement to the sufficient condition cited above (Theorem 2).

The terminology and notation used here is standard (e.g. [3]). For simplicity the word "operator" will be used to mean "bounded linear operator", the word "space" to mean "Banach space", and the symbol $\mathcal{L}(X)$ to denote the space of all operators on X. Finally, we recall that a space X is called <u>uniformly convex</u> [2] if for each $0 < \epsilon \le 2$ there exists $0 < \delta < 1$ so that if $||x|| \le 1$, $||y|| \le 1$, and $||x-y|| \ge \epsilon$ in X, then $||x+y|| < 2(1-\delta)$; e.g., it is well-known that every $L^{\rho}(\mu)$ -space with $1 < \rho < +\infty$ is uniformly convex [2].

J.R. HOLUB

§2. Our results are based on the following recent result of Abramovich, Aliprantis, and Burkinshaw concerning Daugavet's equation in uniformly convex spaces:

THEOREM (A-A-B) [1]. : If X is a uniformly convex space, an operator T on X satisfies the equation ||I+T|| = 1 + ||T|| if and only if ||T|| is in the approximate point spectrum of T (i.e. there is a sequence $\{x_n\}$ in X with $||x_n|| = 1$ for all n for which $||Tx_n - ||T||x_n|| \to 0$).

From this we have:

PROPOSITION 1. Let X be a uniformly convex space and T an operator on X for which ||T|| = 1. Then ||I + T|| < 2 if and only if I - T is invertible on X.

PROOF: If I - T is invertible then 1 = ||T|| is not in the approximate point spectrum of T, so by Theorem (A-A-B) above ||I + T|| < 2.

On the other hand, if ||T|| = 1 and ||I + T|| < 2 then by Theorem (A-A-B) the number 1 is not in the approximate point spectrum of T so the operator I - T must be bounded below on the unit sphere $\{x|||x|| = 1\}$ in X, and hence I - T is an isomorphism from X onto the closed subspace ran(I - T) of X. If this range of I - T were a proper subspace of X then there would exist a functional $f \in X^*$ for which ||f|| = 1 and $(I - T^*)(f) = 0$; but then $T^*f = f$, so $||I + T|| = ||I + T^*|| \ge ||(I + T^*)(f)|| = 2$, a contradiction. Therefore it must be that ran(I - T) = X, and I - T is invertible.

Now, as we remarked earlier, it is well-known that if S is an operator on a space X for which ||I-S|| < 1 then S is invertible, but if ||I-S|| = 1 no conclusion is possible. However we now show that in contrast to the general case, if X is uniformly convex we can characterize exactly which such operators are invertible.

THEOREM 1. Let X be a uniformly convex space and S an operator on X for which ||I - S|| = 1. Then the following are equivalent:

- (i) S is invertible.
- (ii) $||I \frac{1}{2}S|| < 1$.
- (iii) ||I tS|| < 1 for all 0 < t < 1.

PROOF: (i) \Rightarrow (ii). Suppose S is invertible, but $||I - \frac{1}{2}S|| \ge 1$. Since ||I - S|| = 1 it follows that $||I - \frac{1}{2}S|| = \frac{1}{2}||I + (I - S)|| \le 1$ as well, so $||I - \frac{1}{2}S|| = 1$ and hence ||I + (I - S)|| = ||2I - S|| = 2. But then by Proposition 1 (with T = I - S) we have that S = I - (I - S) is not invertible, a contradiction. Therefore, if S is invertible it must be that $||I - \frac{1}{2}S|| < 1$.

(ii) \Rightarrow (iii). Suppose $||I - \frac{1}{2}S|| < 1$ but $||I - t_0S|| \ge 1$ for some $0 < t_0 < 1$. Again, this implies $||I - t_0S|| = 1$, and hence that $||(1 - t_0)I + t_0(I - S)|| = ||I|| = ||I - S|| = 1$. By the Hahn-Banach

Theorem it follows easily that ||(1-t)I + t(I-S)|| = 1 for all 0 < t < 1 as well, a contradiction to (ii) when $t = \frac{1}{2}$, so (ii) \Rightarrow (iii).

(iii) \Rightarrow (i). If ||I - tS|| < 1 for all 0 < t < 1, then for <u>any</u> such t the operator tS must be invertible by the condition cited above, implying S itself is invertible.

In terms of the geometry of the space $\mathcal{L}(X)$ Theorem 1 has the equivalent formulation:

COROLLARY 1. If X is uniformly convex, $S \in \mathcal{L}(X)$, and ||I - S|| = 1, then S is invertible if and only if the open segment (I, I - S) in the unit ball B of $\mathcal{L}(X)$ contains no boundary point of B.

Recall, too, that if X is any Banach space and $T \in \mathcal{L}(X)$ satisfies ||I - T|| < 1, then not only is T invertible, but T^{-1} has the representation

$$T^{-1} = I + \sum_{n=1}^{\infty} (I - T)^n,$$

where this series converges absolutely in $\mathcal{L}(X)$ [3, p.584]. Using this result and Theorem 1 we get the same sort of representation for the inverse of an invertible operator S on a uniformly convex space even when ||I - S|| = 1.

Corollary 2. Let X be a uniformly convex space and S an invertible operator on X for which $\|I - S\| = 1$. Then

$$S^{-1} = 2I + 2\sum_{n=1}^{\infty} (I - \frac{1}{2}S)^n,$$

where this series converges absolutely in L(X).

PROOF: Since S is invertible, by Theorem 1 $||I - \frac{1}{2}S|| < 1$. It follows (as above) that $\frac{1}{2}S$ is invertible and $(\frac{1}{2}S)^{-1} = I + \sum_{n=1}^{\infty} (I - \frac{1}{2}S)^n$, from which the result follows.

Remark: While the assumption of uniform convexity in Theorem 1 is sufficient to imply the conclusions of that theorem, it is possible to weaken this requirement somewhat and still obtain the same results. For example, one can show that if X is only assumed to have a Kadec-Klee norm [4] and X^* is strictly convex then Theorem 1 still holds. On the other hand, the fact that some fairly strong geometric conditions must be imposed on X in order to obtain the conclusion of Theorem 1 can be easily seen by examples such as the following:

Example: Let $S: l^1 \to l^1$ be defined by $S(e_1) = \frac{1}{2}e_1 + \frac{1}{2}e_2$ and $S(e_n) = e_n$ for $n \ge 2$, where $\{e_n\}_{n=1}^{\infty}$ denotes the standard basis for l^1 . Clearly S is invertible, $||I - S|| = \sup ||(I - S)e_n|| = 1$, and yet $||I - \frac{1}{2}S|| = \sup ||(I - \frac{1}{2}S)e_n|| = ||e_1 - \frac{1}{2}Se_1|| = 1$ also, so Theorem 1 fails to hold for operators on l^1 .

Now let us return to a consideration of the criterion ||I - S|| < 1 for invertibility of an operator S on an arbitrary Banach space X. Since S is invertible if and only if λS is invertible for some

614 J.R. HOLUB

 $\lambda \neq 0$, this condition admits the following interpretation in terms of approximation in $\mathcal{L}(X)$:

If [S] denotes the subspace of $\mathcal{L}(X)$ spanned by S, and if dist (I,[S]) < 1, then S is invertible.

In general, of course, the converse of this result need not hold; however, if X is uniformly convex we can apply Theorem 1 to obtain an interesting partial converse which reveals further the relationship between invertibility of an operator S and best approximation to I from the subspace [S] of $\mathcal{L}(X)$.

THEOREM 2. Let X be a uniformly convex space and $S \in \mathcal{L}(X)$. If S is invertible on X then either (i) dist(I,[S]) < 1, or

(ii) 0 is the unique best approximation to I from [S].

PROOF: Suppose S is invertible on X and $dist(I,[S]) \ge 1$. Since $dist(I,[S]) \le 1$ it must then be that dist(I,[S]) = 1 = ||I - 0||, so 0 is \underline{a} best approximation to I from [S].

If 0 is not the unique best approximation there is some $\lambda \neq 0$ for which $||I - \lambda S|| = 1$ as well. Since S is assumed to be invertible, λ, S is invertible and by Theorem 1 it follows that $||I - \frac{1}{2}(\lambda S)|| < 1$. But this is a contradiction to the fact that dist(I, [S]) = 1, so 0 must, in fact, be the unique best approximation, and the result follows.

Remark: Again, the operator S of the example above shows that, in general, Theorem 2 need not hold for an arbitrary space X. Exact conditions on X for the validity of Theorem 2 are not known.

REFERENCES

- [1] Y. Abramovich, C. Aliprantis, and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, (to appear).
- [2] J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40(1936), p.396-414.
- [3] N. Dunford and J. Schwartz, Linear Operators I, Interscience Publishers, New York, NY, 1963.
- [4] D. van Dulst and I. Singer, On Kadec-Klee norms on Banach spaces, <u>Studia Math.</u> 54(1975), p.205-211.