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Received Signal Strength-Based Localization of Non-Collaborative Emitters
in the Presence of Correlated Shadowing

Ryan C. Taylor

(ABSTRACT)

RSS-based localization is a promising solution for estimating the position of a non-collaborative
emitter using a network of collaborative sensors. This paper examines RSS-based localiza-
tion and di↵erential RSS (DRSS) localization in the presence of correlated shadowing with
no knowledge of the emitter’s reference power. A new non-linear least squares (NLS) DRSS
location estimator that uses correlated shadowing information to improve performance is
introduced. The existing maximum likelihood (ML) estimator and Cramér Rao lower bound
(CRLB) for RSS-based localization given do not account for correlated shadowing. This
paper presents a new ML estimator and CRLB for RSS-based localization that account for
spatially correlated shadowing and imperfect knowledge of the emitter’s reference power.
The performance of the ML estimator is compared to the CRLB under di↵erent simulation
conditions. The ML estimator is shown to be biased when the number of sensors is small
or the shadowing variance is large. The e↵ects of correlated shadowing on an RSS-based
location estimator are thoroughly examined. It is proven that an increase in correlated shad-
owing will improve the accuracy of an RSS-based location estimator. It is also demonstrated
that the ideal sensor geometry which minimizes the average error becomes more compact as
correlation is increased. A geometric dilution of precision (GDOP) formulation is derived
that provides a metric for the e↵ect of the position of the sensors and emitter on the location
estimator performance.

A measurement campaign is conducted that characterizes the path loss at 3.4 GHz. The
measurements are compared to the log-distance model. The errors between the model and
the measurements, which should theoretically be Gaussian, have a Kurtosis value of 1.31.
The errors were determined to be spatially correlated with an average correlation coe�cient
of 0.5 at a distance of 160 meters. The performance of the location estimators in simulation
is compared to the performance using measurements from the measurement campaign. The
performance is very similar, with the largest di↵erence between the simulated and actual
results in the ML estimator. In both cases, the new NLS DRSS estimator outperformed the
other estimators and achieved the CRLB.
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Chapter 1

Introduction

1.1 Background

With the growing demand for wireless capacity, there is a need for systems that opportunis-
tically seek out free spectrum. To do this while reducing interference, these radio systems
rely on radio environment maps (REMs), which characterize the surrounding radio emitters.
An important element of any REM is the classification of the neighboring radio emitters’
geographic positions. Specially designed radio systems may have the ability to identify their
own position via systems like the Global Positioning System (GPS) and then communicate
it to the REM, but this functionality is not an option for the legacy systems that these
systems are attempting to avoid. A specific need for this geographic positioning arose in
2010 when the Federal Communications Commission (FCC) released a memorandum that
allows secondary users to opportunistically use spectrum not occupied by certain licensed
primary users [6]. The primary users are required to report their geographic position to a
REM, which secondary users can then access to ensure they will not interfere. There is no
process for secondary users to report their position to the REM, so in order to reduce inter-
ference among secondary users, a secondary user must determine the geographic position of
neighboring secondary users.

1.2 Defining the Problem

As stated in Section 1.1, there exists a need to identify the location of non-collaborative
emitters, that is, emitters that cannot or will not identify their own location and/or com-
municate it to a REM. These emitters may be legacy communication systems in an area
of cognitive radios or emitters intentionally interfering with neighboring systems (jammers).
To solve this problem, it is assumed that there exists a network of collaborative sensing

1
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nodes that can exchange information. It is assumed the locations of these sensing nodes,
referred to as sensors, are known. Additionally, the frequency and bandwidth of the emitter
are known or readily detectable by all sensors. To maximize the application of the solution,
it is further assumed the sensors may be a diverse set of transceivers. The only required
functionality is the ability to determine the received signal strength (RSS) at the emitter’s
transmit frequency and bandwidth. The ability to determine RSS is a feature built into
nearly all transceivers and is typically referred to as the received signal strength indicator
(RSSI). An extensive list of the assumptions and constraints on the solution are listed below.
They are intended to maximize the scope of the application and reduce the complexity and
cost of the solution.

Assumptions and Constraints

1. There exists a network of collaborative sensing nodes with known positions and known
antenna patterns.

2. Sensors may be an identical or diverse set of transceivers.

3. Sensors may primarily serve purposes other than position location (e.g., WiFi, cellular
communications). Position location may be a secondary function.

4. Sensors have the ability to measure received signal strength at the frequency and
bandwidth of the emitter.

5. Bandwidth and frequency of the emitter are known or readily detectable parameters.

6. The emitter has an omni-directional antenna pattern.

7. Synchronization of internal clocks across network of sensors is not possible.

8. Signals from the emitter may be highly autocorrelated.

9. Perfect association of the received signal with the signal from emitter is possible, for
example, co-channel signals do not exist or can be mitigated.

1.3 Motivation for RSS-Based Localization

There are many well-documented methods for solving the proposed problem. But based
on the constraints and assumptions, RSS-based positioning is the most promising avenue of
research. RSS-based positioning requires simple hardware and low network overhead. It is a
solution that ensures the broadest range of transceivers can be used. Ideally, an RSS-based
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solution to the proposed problem could be implemented on existing infrastructure with no
modification to hardware and very little modification to the software.

Other positioning methods include time of arrival (TOA), time di↵erence of arrival (TDOA),
and angle of arrival (AOA). TDOA and TOA require more network bandwidth than RSS-
based methods, and in the case of AOA, require additional hardware elements. In simula-
tion and experimental analysis, RSS-based positioning systems generally perform worse in
terms of root mean-squared distance error (RMSE) than positioning systems based on TOA,
TDOA, and AOA. Despite the coarse accuracy of RSS-based positioning, it may be the only
viable solution to the problem because of the following:

1. TOA is not a viable solution because a priori knowledge of the phase or amplitude of
the transmitted signal is required to ascertain the time of flight. If this information is
not available, a priori knowledge of the transmit time is required.

2. TDOA does not require a priori knowledge of the transmitted signal, but it does re-
quire the sampling clocks on all of the sensors to be synchronized. TDOA also requires
the transmitted signal to not be autocorrelated. For instance, a narrow-band analog
AM or FM voice signal does not exhibit su�cient autocorrelation properties to provide
time resolution for TOA or TDOA algorithms. TDOA has been used to identify the
location of non-collaborative nodes, most notably in the Uplink-TDOA system imple-
mented on cellular networks [30]. The Uplink-TDOA is used to locate cellular handsets
to allow cellular providers to comply with the E-911 standard. In this case, expensive
synchronization equipment at each cellular base station is required to determine the
o↵set of the internal clocks on all base station receivers. The use of expensive synchro-
nization equipment at each sensor is not a viable solution for the proposed problem.
It may be possible to synchronize the clocks of sensors with the aid of GPS, but this
solution then precludes the use of indoor sensor nodes where the GPS signal cannot
be received. Additionally, TDOA requires all samples from the received signal to be
communicated over the network for processing at a central node.

3. AOA positioning systems require knowledge of the angle of the incoming signal from
the non-collaborative emitter. The angle of arrival is obtained from an antenna array
or multiple directional antennas on the receiver. This added complexity precludes
most legacy receivers from the solution. Also, AOA is highly susceptible to multipath
signals. If there is no line-of-sight path or the line-of-sight path is weaker than the
multipath, the estimated AOA will be in error.

RSS-based positioning is the most suitable solution because it does not require internal
clocks to be synchronized, it does not rely on specialized hardware, it requires relatively
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small network bandwidth compared to TOA and TDOA, and there are no constraints on
the signal’s autocorrelation.

1.4 Focus of Work

The main focus of this work is on furthering the understanding of RSS-based localization
methods in the presence of correlated shadowing. The existing maximum likelihood (ML)
estimator and Cramér Rao lower bound (CRLB) for RSS-based localization given in [32]
do not account for correlated shadowing. A CRLB that accounts for spatially correlated
shadowing is given in [17], but it does not account for imperfect knowledge of the emit-
ter’s reference power. This paper presents a new ML estimator and CRLB that account for
spatially correlated shadowing and imperfect knowledge of the reference power. The perfor-
mance of the ML estimator is compared to the CRLB under di↵erent simulation conditions.
New insight on the e↵ects of correlation on the CRLB is presented. A geometric dilution of
precision (GDOP) formulation is derived that provides a metric for the e↵ect of the position
of the sensors and emitter on the location estimator performance. This GDOP formulation
is used to compare several sensor geometries and how they behave under di↵erent levels of
correlated shadowing.

This paper also focuses on di↵erential RSS (DRSS) localization. Source [32] proves the
ML estimator and CRLB for DRSS localization and RSS localization are identical in the
presence of no correlated shadowing. This paper further shows DRSS and RSS localization
estimators provide identical results in the presence of correlated shadowing. Additionally,
two new DRSS objective functions are presented and compared to the ML estimator.

Finally, a measurement campaign is conducted to obtain an actual set of RSS measurements.
Most publications rely on simulations to test location estimators, but the measurements from
the campaign show the performance of the location estimators under real-world conditions.
The measurements are also used to verify the statistical log-normal shadowing model and a
spatially correlated shadowing model.

1.5 Overview of Thesis

Chapter 2: Review of RSS-Based Localization

Chapter 2 provides a review of the underlying theory of RSS-based localization. This in-
cludes deterministic and statistical models used for predicting RSS at a given distance from
an emitter. Explanations are provided for the sources of error in RSS-based localization,
which include shadowing, multipath, path loss exponent, noise, geometric configuration,
measurement noise, and antenna orientation. Existing RSS-based localization techniques
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are presented with the main focus on RSS lateration. The non-linear least squares formula-
tion of RSS lateration is presented.

Chapter 3: Review of Di↵erential RSS

Chapter 3 describes DRSS localization and its theory. A geometric explanation is given
for the ranging circles formed by DRSS. Previous work on DRSS localization is reviewed,
which includes the derivation of the ML estimator and the CRLB assuming shadowing is
not correlated.

Chapter 4: Solving NLSD and NLSR

Chapter 4 explains the method used for generating simulated RSS values and the method
for solving the non-linear objective functions. The fminsearch function in Matlab is used to
evaluate all objective functions. RSS values are simulated based on the log-normal shadowing
model. The NLSD and NLSR estimators are compared in simulation and found to perform
identically even as the correlated shadowing increases.

Chapter 5: ML Estimator and CRLB

Chapter 5 provides the existing ML estimator and CRLB for RSS-based localization. A new
ML estimator and CRLB are presented for RSS-based localization in the presence of the
spatially correlated shadowing. The ML estimator is compared to the CRLB and shown to
be biased when the number of sensors is low or the shadowing variance is high. The e↵ect of
sensor geometry on the average miss distance is evaluated using the CRLB. It is shown that
the ideal geometric configuration changes as correlation is increased. The optimal sensor
configuration tends to be more compact as the spatial correlation increases.

Chapter 6: New Objective Function

Chapter 6 presents a new objective function that seeks to improve the performance of DRSS
localization. The residuals of the objective functions are weighted by the correlation of the
respective DRSS pairs. The objective function is compared to the RSS-based ML estimator
and standard DRSS estimator in simulation. In nearly all cases, the new objective function
slightly outperforms the standard DRSS estimator, but not the RSS-based ML estimator.
The new objective function outperforms the RSS-based ML estimator when the correlation
is low and the sensor configuration is such that the emitter is positioned at the center of a
square bounding box and the sensors are randomly placed within that box.
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Chapter 7: Measurement Campaign

Chapter 7 describes the method and results of the measurement campaign. The measurement
campaign is conducted to obtain a set of actual RSS values that can be used to evaluate
the localization estimators discussed in this paper. The measurements are compared to the
log-distance model and the variance of the errors is found to be 69.54 dB. The mean of
the errors is 0.12 dB and the distance at which correlation of the errors drops to 0.5 is 160
meters. Using the chi-square goodness-of-fit test, the null hypothesis that the errors are a
random sample from a normal distribution, is rejected at the 99% significance level. The
Kurtosis value of the errors is determined to be 1.31.

Chapter 8: Experimental Evaluation of Location Estimators

Chapter 8 provides new insight into the performance of the localization estimators by evalu-
ating them using actual RSS values. The performance of the estimators based on actual RSS
is compared to estimators based on simulated RSS. The performance is found to be very
similar. The estimator with the lowest average miss distance is the new DRSS estimator
proposed in Chapter 6.



Chapter 2

Review of RSS-Based Localization

2.1 Modeling RSS

Localization methods based on RSS generally use the distance between the emitter and sensor
as a primary measurement for determining position. This is obtained from a model describing
the relationship between RSS and distance. The model most often used in publication is the
Friis Transmission formula [1].

⌦
k

= P
t

+G
t

+G
r

+ 10↵ log10

✓
�

4⇡d
k

◆
(2.1)

where ⌦
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is the received power, P
t

is the transmit power, G
t

is the transmit gain, G
r

is the
received gain, ↵ is the path loss exponent, and d

k

is the propagation distance. If P
r

is known
at a close in location to the transmitter, Friis formula can be simplified to the log distance
path loss model. In this model, the relationship between distance and RSS is a follows [23]:
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k

, c is the power received at a close distance d0,
and ↵ is a constant path loss value. Under ideal, LOS conditions, the value of ↵ is 2, but in
practice the value can range from 2 to 6. In this paper, d0 is assumed to be 1 meter unless
stated otherwise. The distance d
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position (x, y) and the receiver position (x

k

, y
k
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The log distance model is often used as a statistical model that accounts for the e↵ects of
shadowing. In this case, it is called the log normal shadowing model,

⌦
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✓
d
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Figure 2.1: Spatially Correlated Shadow-
ing Diagram: Correlation between the
shadowing variables for two sensors is de-
pendent upon their proximity. The ran-
dom shadowing experienced at each of the
three sensors (circles) from the emitter
(square) will be di↵erent. In this exam-
ple, the shadowing variables for sensors
S1 and S2 will be more correlated than S1

and S3 or S2 and S3.

where X
k

represents the e↵ects of shadowing and is a zero mean Gaussian random variable
with a variance �2

k

. This variance of the shadowing variable has been modeled as a function
of the distance from the emitter, but in this paper it is assumed to be a constant. The
correlation between random variables X

k

and X
j

is defined by the correlation matrix �.
One model for this correlation is given in [34] where the correlation is dependent upon the
distance between the two receiving sensors. The o↵-diagonal element (i, j) of � is defined as
follows:

�(i,j) = �2
x

exp

✓
� d

ij

d
corr

ln(2)

◆
, i 6= j (2.5)

where d
ij

is the distance between sensors i and j, and d
corr

is a constant correlation distance,
which is based on the distance at which the correlation, ⇢, drops to 0.5. The diagonal
elements of � are diag(�2

x

). This model is used exclusively for the covariance matrix in this
paper. Based on this, the correlation between any two sensors i and j is as follows:

⇢(i,j) = exp

✓
� d

ij

d
corr

ln(2)

◆
(2.6)

Correlation dependent on distance is assumed to exist because sensors that are close in dis-
tance will likely have similar channels to the emitter. Fig. 2.1 illustrates the similar path
losses experienced by two sensors close in proximity. In [35] and [16], the shadowing expe-
rienced at separate receivers is shown to be spatially correlated with correlation coe�cients
as high as 0.2 for indoor and 0.8 for outdoor.

2.2 Sources of Localization Error

RSS-based localization is challenging because there are numerous factors a↵ecting the en-
ergy decay between the transmitter and emitter. These factors include shadowing, multipath,
path loss exponent estimation errors, noise, geometric configuration of the nodes, measure-
ment error, and antenna orientation. All of these have an e↵ect on the performance of
RSS-based estimators.
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Shadowing

Path loss caused by the absorption of signals by obstructions between the emitter and receiver
such as trees, buildings, or mountains is known as shadowing, or large scale fading. The
e↵ects of shadowing are nearly impossible to predict in a deterministic fashion so they most
often are modeled statistically as a zero mean Gaussian random variable on the dB scale
[23].

Multipath

Multipath occurs when multiple signal components combine either constructively or destruc-
tively at the receiver. This can occur when a LOS component combines with a non-line-
of-sight (NLOS) component. NLOS components are caused by reflections, refractions, and
di↵ractions in the channel. Rice and Rayleigh are statistical models for multipath that char-
acterize the envelope of an incoming signal. Unlike shadowing, the multipath experienced
at two di↵erent sensors is typically assumed to be uncorrelated. Multipath causes rapid
changes in the RSS that are generally smaller in magnitude than shadowing.

Path Loss Exponent

The pass loss exponent (PLE) ↵, defines the rate at which the signal power decays over
distance. Errors can result when there is imperfect knowledge of the PLE. If there is no
knowledge of PLE, it must be estimated, which makes the localization problem more di�cult
[27]. The percent error in the PLE is equivalent to the percent error in the range assuming
the log distance path loss model in Eqn. 7.1. The value of the PLE can have a significant
impact on the performance of a location estimator. As shown in Chapter 5, the RMSE
performance of an RSS-based estimator improves as the PLE increases.

Noise

Noise occurs when unwanted energy is in the spectrum band of interest. This could be
naturally occurring environmental noise, noise from the receiver components, or noise from
co-channel interference sources. If the additional energy received by the receiver cannot be
filtered, it will distort the RSS measurement. In this paper, it is assumed that co-channel
interference from other transmitters can either be filtered or does not exist.

Geometric Configuration

The e↵ect the position of the sensors and emitter has on the accuracy of the localization
result is called geometric dilution of precision (GDOP). This phenomonon is discussed in
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detail in Chapter 5.

Measurement Error

RSS measurement errors will cause errors in the localization. For instance, if the sensor has
an RSS resolution of 5 dB and ↵ = 2, the range will be o↵ by as much as 77 percent.

Antenna Orientation

In this paper, it is assumed an emitter has an omnidirectional antenna pattern such that
the received power at all angles in the horizontal plane is equal. In practice, most om-
nidirectional antennas are not perfectly omnidirectional in the horizontal plane and, more
importantly, are only designed to be omnidirectional in one plane. Therefore the orientation
of an antenna significantly impacts the gain in a given direction. Experimental analysis
performed in [4] shows that RSS can vary by a factor of 5 depending on antenna orientation
and optimally calibrated RSS localization performance can decrease by 32%. The e↵ects of
antenna orientation are mitigated in [33] with the aid of accelerometers on the emitter to
determine orientation.

2.3 RSS-Based Localization Techniques

This section reviews some of the proposed RSS-based positioning methods. The methods
are designated as range based and range free. Range-based methods use RSS as a reference
for distance, and range-free methods do not use distances or ranges. DRSS is reviewed in
Chapter 3.

2.3.1 Range Based

RSS Lateration

The coordinates of a point can be defined solely by ranges to a set of known coordinates. For
the localization of one point in 2-dimensions, three ranges are required. Fig. 2.2 illustrates
the concept of lateration with three ranging circles intersecting at a single point. One range
creates a circle centered at the respective known coordinates, and a set of three range circles
centered at three known coordinates intersect at the coordinates of a single point. This
concept of positioning is widely used, most notably in the GPS. The relationship between
the ranges and the known positions (sensors) and unknown position (emitter) is given by
the following system of non-linear equations:
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Figure 2.2: Lateration with Perfect Range Estimates

r1 =
p

(x� x1)2 + (y � y1)2

r2 =
p

(x� x2)2 + (y � y2)2

r3 =
p

(x� x3)2 + (y � y3)2

(2.7)

where r
i

is the range to sensor i, (x,y) is the emitter’s position, and (x
i

,y
i

) is the position of
sensor i.

As noted in Section 2.2, RSS measurements are corrupted by several factors that cause
errors in the resulting range estimate. These range errors cause ambiguity in the range
circles intersection point as shown in Fig. 2.3. The most common method for solving is
the least squares formulation. Least squares seeks to minimize the square error between the
observed and the predicted ranges. In this case the optimization is as follows:

✓̂ = argmin
✓

NX

i=1

⇣
10

⌦
i

+c

10↵ � r
i

⌘2
(2.8)

where ✓ = [x, y, c] is the emitter position and reference power, r
i

is the distance from sensor
i to the emitter, ⌦

i

is the power received by sensor i, and N is the number of sensors. This is
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Figure 2.3: Lateration with Erroneous Range Estimates

a non-linear, multi-modal optimization problem that has been solved with a gradient descent
solver [28]. More commonly, the problem is defined as the minimization of the squared error
between the observed RSS and the predicted RSS as follows:

✓̂ = argmin
✓

NX

i=1

(⌦
i

� c+ 10↵ log10(di))
2 (2.9)

This formulation of the problem is used extensively in this paper and is referred to as non-
linear least squares RSS (NLSR). In Chapter 5, it is shown to be equivalent to the ML
estimator if correlated shadowing is assumed to not exist.

Min-max

The min-max algorithm is a simplification of lateration that uses boxes instead of ranging
circles [12]. A box is constructed centered at each sensor node with a width and height
equivalent to the estimated distance to the emitter, d

i

. The two corner coordinates of the
box are defined as follows,

[x
i

� d
i

, y
i

� d
i

], [x
i

+ d
i

, y
i

+ d
i

] (2.10)

The intersection of the boxes is computed by
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[max
i

(x
i

� d
i

),max
i

(y
i

� d
i

)], [min
i

(x
i

+ d
i

),min
i

(y
i

+ d
i

)] (2.11)

and the algorithm is completed by averaging the resulting corner coordinates of the box.
Min-max is shown to be more robust to errors in the distance estimates than lateration in
[12] but is more sensitive to sensor placement. Additionally, depending on the optimization
method used to solve RSS lateration, min-max can require significantly fewer operations and
will always require the same number of operations to solve.

2.3.2 Range Free

RF Fingerprinting

Radio Frequency (RF) fingerprints are unique spectrum-based characteristics that define a
specific location. A fingerprint may consist of a set of RSS measurements, time delays, or a
characterization of the multipath for a given location. A combination of these characteristics
can also be used; in [8], both TOA and RSS measurements are used to define the fingerprints.
Assuming a set of N sensing nodes, M emitter locations can be uniquely defined by M sets
of RF fingerprints. This requires an extensive o✏ine measurement campaign to determine
the fingerprints at each of the M emitter locations. The emitter must be physically moved
to each point and the measurements at each of the sensors must be recorded. Localization is
performed by comparing the set of measurements received by the N sensors to the database
of fingerprints obtained o✏ine and finding the best match. Techniques for finding the best
match include k-nearest neighbor [24], euclidean distance [20], neural networks [19], and
bayesian statistics [3].

RF fingerprinting is not a viable option for the proposed problem due to the extensive o✏ine
RF mapping required. Also, all sensors must be stationary. If the position of sensor is
changed, a new RF mapping must be performed. Additionally, knowledge of the emitter’s
transmit power and frequency is required and, depending on the fingerprint type, must be a
constant.

Centroid

The centroid algorithm estimates the position of an emitter by finding the centroid of the
neighboring sensors [2]. The centroid is calculated as the following:

✓̂ =
1

N

NX

i=1

(x
i

, y
i

) (2.12)
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where ✓̂ is the estimated position of the emitter, N is the number of neighboring sensors, and
(x

i

, y
i

) is the position of sensor i. The algorithm is improved with Weighted Centroid Local-
ization (WCL), which performs a weighted average and assigns weights to the neighboring
nodes based on their importance. In [10], weights of either 0.5 or 1 are used based on an RSS
threshold that places more importance on sensors that are closer to the emitter. Sensors with
an RSS above the threshold receive a weight of 1, and sensors below the threshold receive a
weight of 0.5. In [22], rather than use a threshold, the neighboring sensors’ are weighted by
the inverse of their distance from the emitter as estimated by the log-distance model.



Chapter 3

Review of Di↵erential RSS

3.1 Definition

Di↵erential RSS (DRSS), proposed in [14] and [32], is based on the di↵erence in received
power at each of the sensors. The di↵erence operation removes the need to estimate the
emitter dependent parameters of frequency, transmit power, and antenna gain. Given the
log distance path loss model (Eqn. 7.1), the di↵erence in received power from a single emitter
at two sensors k and j is

v
kj

= ⌦
k

� ⌦
j

(3.1)

v
kj

= G
k

�G
j

+ 10↵ log10

✓
d
j

d
k

◆
(3.2)

where G
k

and G
j

are sensor k’s and sensor j’s antenna gains [13]. If G
k

= G
j

, then these
terms can be omitted. This formulation relaxes the number of emitter parameters that need
to be estimated, which is advantageous for the proposed problem because only transmit
frequency and bandwidth are known parameters. For N sensors, there are N(N�1)

2 unique
di↵erence pairs. These di↵erence pairs can be separated into N � 1 independent pairs and
N(N�1)

2 � (N � 1) redundant pairs. Localizing can be performed with either all the pairs or
just the independent pairs.

Assuming the log-normal shadowing model and G
k

= G
i

, 8 k, i, Eqn. 3.1 becomes

v
kj

= 10↵ log10

✓
d
j

d
k

◆
+X

ij

(3.3)

where X
ij

is the di↵erence in random shadowing variables X
i

and X
j

. X
ij

is Gaussian with
zero mean, and the variance is �2

ij

= 2(1 � ⇢
ij

)�2 [14]. As the correlation coe�cient ⇢
ij

increases, the variance of the shadowing variable decreases.

15
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Similar to RSS lateration, the least squares formulation has also been used to solve DRSS
localization [14], which is to minimize the squared error of the observations and the model
proposed in Eqn. (3.1):

✓̂ = argmin
✓

N�1X

i=1

NX

j=i+1

✓
⌦

i

� ⌦
j

� 10↵ log10

✓
d
j

d
i

◆◆2

(3.4)

where ✓ = [x, y] and N is the number of sensors, and assuming G
i

= G
j

8i, j, which will be
assumed for the remainder of this paper. Eqn. 3.4 will be referred to as NLSD.

3.2 Geometry

The di↵erence in two ranges results in one distinct circle on which the emitter must lie. Given
two sensors k and j located at positions (x

k

, y
k

) and (x
j

, y
j

), respectively, and an emitter
located at position (x, y), the distances between the emitter and sensors are as follows:

d2
k

= (x� x
k

)2 + (y � y
k

)2 (3.5)

d2
j

= (x� x
j

)2 + (y � y
j

)2 (3.6)

If the ratio d
k

/d
j

= p is a constant, then the locus of points (x, y), which satisfy Eqns. 3.5
and 3.6:

✓
d
k

d
j

◆2

= p2

d2
k

= p2d2
j

(x� x
k

)2 + (y � y
k

)2 = p2(x� x
j

)2 + p2(y � y
j

)2

x2 + 2xx
k

+ x2
k

+ y2 + 2yy
k

+ y2
k

= p2
�
x2 + 2xx

j

+ x2
j

+ y2 + 2yy
j

+ y2
j

�

Grouping like terms and dividing both sides by (1� p2) gives the following results:


x�

✓
x
k

� p2x
j

1� p2

◆�2
+


y �

✓
y
k

� p2y
j

1� p2

◆�2
=

✓
x
k

� p2x
j

1� p2

◆2

�
✓
x2
k

� p2x2
j

1� p2

◆
+

✓
y
k

� p2y
j

1� p2

◆2

�
✓
y2
k

� p2y2
j

1� p2

◆
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Figure 3.1: DRSS Localization with Three Sensors

This defines a circle in the standard (x� x0)2 + (y � y0)2 = r2 with the following:

x0 =
x
k

� p2x
j

1� p2

y0 =
y
k

� p2y
j

1� p2

r2 =

✓
x
k

� p2x
j

1� p2

◆2

�
✓
x2
k

� p2x2
j

1� p2

◆

+

✓
y
k

� p2y
j

1� p2

◆2

�
✓
y2
k

� p2y2
j

1� p2

◆

From [14], the radius of the di↵erence circle increase as ↵ increases or v
kj

decreases. It
should be noted that a minimum of 4 sensors is required for an unambiguous result. In Fig.
3.1, the 3 di↵erential ranging circles from 3 sensors illustrate an ambiguous result with two
intersection points.

3.3 Current State of DRSS

Based on an extensive literature review, work on DRSS appears to be exclusively published
in [31], [32], [13], and [14]. These four publications are authored by two separate authors, and
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both authors independently present DRSS. Source [31] derives and compares the performance
of non-linear least squares (NLS) and linear least squares estimators. Source [14] also derives
the NLS estimator and both are identical to Eqn. 3.4. [32] expands on that work and derives
the ML estimator and the CRLB for DRSS assuming correlated shadowing does not exist.
This work is further detailed in Chapter 5. Source [32] also proves the ML estimator for DRSS
(using only independent pairs) and the ML estimator for RSS are equivalent and provide
identical solutions. The ML estimator and CRLB will be di↵erent in an environment with
correlated shadowing. Source [17] does provide the CRLB for DRSS in the presence of
correlated shadowing, but only for independent di↵erence pairs.

Source [14] and [13] incorporate spatially correlated shadowing in their simulation results.
Using a variant of the NLSD estimator, they show that increasing the correlation coe�cient
reduces the RMSE of the estimator. The performance is compared to an RSS estimator with
perfect knowledge of the close in reference power c. The performance of the DRSS estimator
is better than the the performance of the RSS estimator when the correlation coe�cient is
greater than 0.5.



Chapter 4

Solving NLSD and NLSR

4.1 Method for Simulating RSS Values

The performances of the NLSD and NLSR objective functions given by Eqn. 3.4 and Eqn.
2.9, respectively, are evaluated in a simulated environment. The simulated RSS values are
obtained using the models discussed in Chapter 2. The simulated RSS is calculated based
on the deterministic model given in Eqn. 7.1, which is solely dependent on the distance from
emitter and the PLE. The zero mean, multivariate Gaussian shadowing variable X, is solely
defined by its covariance matrix K, defined in Eqn. 7.5. Random samples are generated
from this distribution and added to the deterministic RSS values. The covariance matrix
K is factorized using Cholesky Factorization to obtain K = LLT . The random samples of
the distribution are then x = Lw, where w = [w1, w2, ..., wn

] is a vector of zero mean, unit
variance, and uncorrelated Gaussian random samples. The simulated RSS value ⌦

i

is then
defined mathematically as follows:

⌦
i

= c� 10↵log10

✓
d
i

d0

◆
+ x

i

(4.1)

4.2 Explanation of the Solving Method

The NLSD and NLSR objective functions are non-linear, non-convex, and multi-modal,
which makes them di�cult to solve with standard optimization techniques. The main focus
of this work is to evaluate the respective objective functions rather than the methods for
solving them. To this end, the downhill simplex technique is used for all of the non-linear
objective functions. Specifically, the Neader-Mead algorithm as implemented in the Matlab
function fminsearch is used to solve the objective functions. The specific parameters of the
solver are included in Table 4.2. Due to the multi-modal nature of the objective functions,

19
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Table 4.1: Optimization Settings
Parameter Value
Algorithm Nelder-Mead simplex direct search

Max Function Evaluations 200 x Number of Variables
Max Iterations 200 x Number of Variables

Function Tolerance 1e-4
Number of Random Starts 10

the performance of the estimator is dependent on the accuracy of the initial estimate. To
help ensure the global minima is found, the solvers are initialized with 10 randomly selected
estimates. These start positions are uniformly selected from a square box centered on the
actual emitter position. If reference power, c, is also being estimated, its start position is
uniformly selected from the range [c� 30 : c+30]. The solver output with the lowest utility
value from all of the start positions is selected as the solution. The solution ✓̂ = [x̂, ŷ] is
compared to the actual emitter position ✓ = [x, y] and the miss distance or root mean square
error (RMSE) is defined as follows:

RMSE =
p
(x̂� x)2 + (ŷ � y)2 (4.2)

4.3 Analysis

This section compares the performances of the NLSR and NLSD objective functions. The
performance is tested using simulated RSS values based on Eqn. 4.1 and the process outlined
in Section 4.2. The average miss distance is determined by averaging the miss distances for
4000 trials. For each trial, a set of sensors and one emitter are randomly positioned in a 1000
x 1000 meter square box. Fig. 4.1 shows the average miss distance for 4 to 16 sensors. The
NLSR estimator slightly outperforms the NLSD estimator in all cases, and the di↵erence
between the two estimators increases as correlation increases. This di↵erence is a result of
the optimization method. If the number of random start positions is increased, the di↵erence
between the estimators decreases to zero. On average across all trials, the NLSR estimator
takes 197 iterations per start position to find a solution, while the NLSD estimator takes
91 iterations per start position to find a solution. The NLSD estimator takes nearly half
the iterations because it is only estimating 2 parameters rather than 3. This di↵erence in
iterations is balanced by the fact that it takes the NLSD estimator more initial start positions
to find the global solution.

The equivalence of the NLSR and NLSD estimators concurs with [32], which shows their
performance is equivalent when correlated shadowing is zero. These results further show that
the NLSR and NLSD estimators are equivalent in simulation when correlated shadowing
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Figure 4.1: Performance Comparison of NLSD and NLSR. � = 8, ↵ = 4.

is greater than zero. These results also show the average miss distance decreases as the
correlation increases. The cause of this relationship is discussed in Section 5.3.1.
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Chapter 5

Maximum Likelihood Estimator and
Cramer Rao Lower Bound

5.1 Maximum Likelihood Estimator

This chapter provides the ML estimators and CRLBs for RSS and DRSS information sources.

5.1.1 ML Estimator Fundamentals

The ML estimator chooses as its solution the parameter that maximizes the probability of
the observed data. The likelihood function is the joint probability density function (pdf)
of the observed data, and the ML estimator solution is the parameter that maximizes this
function. The joint pdf for observed independent and identically distributed (iid) values
x
n

= (x1, x2, ..., xn

) is the following:

f(x1, x2, ...xn

|✓) = f(x1|✓)f(x2|✓)...f(xn

|✓) (5.1)

If the parameter ✓ is the variable and the observations x
n

remain fixed then the likelihood
function is as follows:

f(✓|x1, x2, ...xn

) = f(✓|x1)f(✓|x2)...f(✓|xn

) (5.2)

The logarithm of the likelihood function is used more often in practice because it turns the
product of terms into a summation:

f(✓|x1, x2, ...xn

) =
nX

i=1

L(✓|x
i

) (5.3)
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where L(✓|x
i

) is the logarithm of f(✓|x
i

). Furthermore, the logarithm is monotonic, so
maximizing the logarithm of the likelihood function is equivalent to maximizing the likelihood
function. The ML estimator is then defined as follows:

✓̂ = argmax
✓

nX

i=1

L(✓|x
i

) (5.4)

The pdf for a Gaussian random variable is the following:

f(x) =
1

�
p
2⇡

e�
(x�µ)2

2�2 (5.5)

5.1.2 Existing ML Estimators

Source [32] derives the ML estimators for RSS and DRSS assuming zero correlation between
the shadowing variables X

k

and X
j

, and the variance is known and unique for each X
k

.

ML Estimator for RSS (No Correlation)

From [32], the following vectors are defined:

✓ = [x, y, c]

⌦ = [⌦1,⌦2, ...,⌦n

]
(5.6)

where ⌦ is the received power, (x, y) is the emitter’s position, and c is the emitter’s reference
power. Based on Eqn. 5.5, the likelihood function f(✓|⌦) is then

f(✓|⌦) = c1 exp

 
�

nX

i=1

(⌦
i

� c+ 10↵ log10(di))
2

2�2

!
(5.7)

where c1 is a constant independent of ✓. The ML estimator is then the following optimization:

✓̂ = argmax
✓

f(✓|⌦) = argmin
✓

nX

i=1

⇣
⌦

i

� ⌦̃
i

⌘2

2�2
(5.8)

where ⌦̃
i

= c � 10↵ log10(di). This formulation is identical to the NLSR estimator in Eqn.
2.9.

ML Estimator for DRSS (No Correlation)

The information sources for DRSS are the n(n�1)
2 unique RSS di↵erence pairs: ⌦

kj

= ⌦
k

�⌦
j

,
1  k, j  k, j 6= k . Assuming the correlation, ⇢

jk

= 0, 8j, k, it is not possible to compute
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the ML estimator for DRSS directly because the covariance matrix is rank deficient. To
simplify, [32] reduces the number of RSS di↵erences to (n� 1) and defines fixed integer k in
the range 1 < k < n. The new set of RSS di↵erences, ⇤

k

is defined as follows:

⇤
k

= [⌦1k,⌦2k, ...,⌦(k�1)k,⌦(k+1)k, ...,⌦nk

] (5.9)

Based on ⇤
k

, the following ML estimator for ✓ = [x, y] can be derived with the proof shown
in [32],

✓̂ = argmin
✓

nX

i=1

��2
i

(⌦� 10↵log10(d)� c)2 (5.10)

where the following averages are defined as the following:

⌦ =
nX

i=1

P
n

j=1 �
2
j

��2
i

⌦
i

log10(d) =
nX

i=1

P
n

j=1 �
2
j

��2
i

log10(di)

c = ⌦+ 10↵log10(di)

(5.11)

Source [32] further shows this ML estimator for [x, y] is equivalent to the ML estimator based
on RSS information shown in Eqn. 5.8.

5.1.3 New Proposed ML Estimators

The ML estimators derived in [32] assume the random shadowing variables are not correlated.
The results in Chapter 7 show the correlation between two shadowing variables is dependent
on the distance between them. It is necessary to derive ML estimators for RSS and DRSS
information sources in the presence of spatially correlated shadowing.

ML Estimator for RSS (With Correlation)

The pdf for a multivariate Gaussian random variable is as follows:

f(x1, x2, ..., xn

) =
1

(2⇡)k/2|�|1/2 exp
✓
�1

2
(x� µ)T��1(x� µ)

◆
(5.12)

where � is the covariance matrix and µ is the mean vector. The likelihood function for RSS
assuming the log-distance model with correlated random variables is as follows:

f(✓|⌦) = c1 exp
⇣
(⌦� ⌦̃)T��1(⌦� ⌦̃)

⌘
(5.13)
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where c1 is a constant independent of ✓, ✓ = [x, y, c],⌦ = [⌦1,⌦2, ...,⌦n

], ⌦̃ = [⌦̃1, ⌦̃2, ..., ⌦̃n

],
and the covariance matrix � is as follows:

�
jk

= ⇢
jk

�2, j 6= k

�
jk

= �2, j = k
(5.14)

Since � is assumed to be the same for all ⌦, � simply becomes the following:

�
jk

= ⇢
jk

, j 6= k

�
jk

= 1, j = k
(5.15)

The ML estimator is then the following:

✓̂ = argmin
✓

⇣
(⌦� ⌦̃)T��1(⌦� ⌦̃)

⌘
(5.16)

ML Estimator for DRSS (With Correlation)

The ML estimator for position based on DRSS in the presence of correlated shadowing is
rank deficient similar to the case with no correlated shadowing. This section provides the
ML estimator although it cannot be solved due to the rank deficient covariance matrix. It
is assumed that all shadowing variables X

j

have the same variance, �2. And the correlation
between X

j

and X
k

is ⇢
jk

and is a known value. Let ✓ be redefined as ✓ = [x, y]. The
likelihood function is then
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where ⌦̃
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= 10↵ log10(
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). The derivation of the covariance matrix, � follows:
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and similarly,
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and lastly,
COV (⌦
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,⌦
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) = V AR(⌦
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) = 2(1� ⇢
jk

)�2 (5.20)
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With the elements of � defined by Eqns. 5.18, 5.19, and 5.20, the ML estimator is then the
following:

f(✓|⌦) = argmin
✓

⇣
(⌦

jk

� ⌦̃
jk

)T��1(⌦
jk

� ⌦̃
jk

)
⌘
, 81  k, j  k, j 6= k (5.21)

And if � is a constant, then the elements of � can be simplified to the following:
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) (5.24)

5.2 Cramér Rao Lower Bound

This section provides the CRLBs for RSS information and DRSS information sources in the
presence of correlated shadowing.

5.2.1 CRLB Fundamentals

The CRLB on the covariance of any unbiased estimator is given by

E[(✓̂ � ✓)(✓̂ � ✓)T ] � J�1 (5.25)

where J is the Fisher information matrix (FIM) [9]. Let µ(✓) = [µ1(✓), µ2(✓), ..., µn

(✓) and
� be the covariance matrix of a multivariate normal distribution, then the elements of the
FIM are defined as follows:

J
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=
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m

��1 @µ
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+
1

2
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✓
��1 @�
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��1 @�
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n

◆
(5.26)

where T is the transpose and tr is the trace of the matrix. And in the case where � is not
dependent on ✓, the the FIM is the following:

J
m,n

=
@µT

@✓
m

��1 @µ

@✓
n

(5.27)

Let the true location of the emitter be ✓ = [x, y]. If position error is defined as e = ||✓̂�✓||,
the root mean square error (RMSE) is then

p
E[e2] and the lower bound on the RMSE, or

average miss distance is the following:
p

E[e2] =
p
E(x̂� x)2 + E(ŷ � y)2

�
q

[J�1]1,1 + [J�1]2,2
(5.28)
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5.2.2 Existing CRLB

RSS (Without Correlation)

The CRLB for RSS localization without correlation in [18]. The FIM, J , is defined as follows:

J1,1 =
1

�2

NX

i=1

✓
@f(✓)T

@x

◆2

J2,2 =
1

�2

NX

i=1

✓
@f(✓)T

@y

◆2

J2,3 = J3,2 =
1

�2

NX

i=1

@f(✓)T

@x

@f(✓)

@y

(5.29)

where
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The lower bound of the average miss distance is then defined as follows:
p

E[e2] �
q
[J�1]1,1 + [J�1]2,2 (5.31)

In this derivation, the reference power c is assumed to be known. The CRLB for RSS
localization with unknown reference power, c, has recently been published in [29].

DRSS (Without Correlation)

The CRLB for DRSS without correlation is derived in [32]. The di↵erence pairs are defined by
Eqn. 5.9 and only include the n independent pairs. The CRLB cannot be directly determined
for the entire set of di↵erence pairs because the covariance matrix is rank deficient. The lower
bound on the average miss distance is defined as follows:

p
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and averages of ⌧ and q are defined as follows:
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and w
i

=
P

n

j=1 �
2
j

�

2
i

. The proof is omitted here, but [32] shows the CRLB for DRSS in Eqn.

5.32 is equivalent to the CRLB for RSS in Eqn. 5.31.

5.2.3 New Proposed CRLB

RSS (With Correlation)

Source [17] derives the CRLB for RSS localization in the presence of correlated shadowing,
but the reference power is known, and the correlation is constant for all sensors. This section
presents the CRLB for RSS localization with correlated shadowing (based on Eqn. 2.6) and
with unknown reference power c. The FIM, J , for n RSS observations in the presence of
correlated shadowing where X ⇠ N(µ(✓),�) and ✓ = [x, y, c] is defined as the following:
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where @f(✓)T

@x

= [@f1(✓)
@x

, @f2(✓)
@x

, ..., @fn(✓)
@x

], � is defined by Eqn. 7.5, and

f
i

(✓) = c� 10↵ log10(di)

@f
i

(✓)

@x
= � 10↵

ln 10

x� x
i

d2
i

@f
i

(✓)

@y
= � 10↵

ln 10

y � y
i

d2
i

@f
i

(✓)

@c
= 1

(5.38)

where [x
i

, y
i

] is the position of sensor i. The lower bound for the average miss distance is
then the following:

p
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q
[J�1]1,1 + [J�1]2,2 (5.39)

DRSS (With Correlation)

The FIM for DRSS-based observations in the presence of correlated shadowing where X ⇠
N(µ(✓),�) is defined as

J1,1 =
@f(✓)T

@x
��1@f(✓)

@x

J2,2 =
@f(✓)T

@y
��1@f(✓)

@y

J1,2 = J2,1 =
@f(✓)T

@x
��1@f(✓)

@y

(5.40)
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The lower bound on the average miss distance is then the following:

p
E[e2] �

q
[J�1]1,1 + [J�1]2,2 (5.43)

Since � is rank deficient, it is not possible to directly solve the CRLB for position loca-
tion based on all DRSS information pairs. The CRLB can be solved using pseudo-inverse
methods, but because of the singular nature of the �, the results are not valid. In [17], the
CRLB for independent DRSS pairs in the presence of correlated shadowing is given, and it
is proven the CRLBs for RSS (with perfect knowledge of reference power) and DRSS (based
on independent pairs) in the presence of correlated shadowing are as follows:

q
E[e2

RSS

] 
q

E[e2
DRSS

] (5.44)

As stated earlier, the CRLBs for RSS (with no knowledge of reference power) and DRSS
(based on independent pairs) without correlated shadowing are equivalent. Based on this,
and the fact that DRSS is solely based on RSS information sources, it can be inferred that
the CRLB for RSS (with no knowledge of reference power) in the presence of correlated
shadowing is also a valid bound for DRSS.

5.3 Analysis of ML Estimator and CRLB

This section provides analysis of the ML estimator and the CRLB for RSS information
sources; specifically, the ML estimator in Eqn. 5.21, referred to as MLER, and the lower
bound on average miss distance specified in Eqn. 5.43, referred to as CRLB. The MLER
is tested using simulated RSS values based on Eqn. 4.1. The parameters for the simulated
RSS values are specified for each test. The emitter and sensors are randomly positioned in
a 1000-by-1000 meter box for each trial, and the results from 3000 trials are averaged to
determine the average miss distance. The error for a position estimate from trial k is defined
as follows:

e
k

= ||✓
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||

where ✓

k

= [x, y] is the emitter’s actual position and ✓̂

k

= [x̂, ŷ] is the emitter’s estimated
position. The location errors from a set of n tests with independent shadowing realizations
and a fixed geometry classified as t is defined as e

(t) = [e1, e2, ..., en]. The lower bound on
the RMSE is as follows: q

E(e(t)2) � CRLB(t)

where CRLB(t) is the CRLB for the fixed geometry classified as t. Based on this, then the
following is true:
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Figure 5.1: Performance of MLER Compared to CRLB. � = 8, ↵ = 4

In this paper, n = 1 and M = 3000. In Fig. 5.1, the MLER is compared to the CRLB
for 4 to 16 sensors when ↵ = 4, � = 8dB, and d

corr

is 150 and 600 meters. The MLER
closely matches the bound provided by the CRLB when the number of sensors is high. The
CRLB is not a valid bound when the number of sensors is small because the MLER achieves
a lower average miss distance. These results concur with [18] and [21], which show that
similar ML estimators are biased and increasingly biased as the number of sensors decreases.
The CRLB in this paper is the bound for an unbiased estimator so it is expected that it is
not valid when the number of sensors is low. The bias can also be attributed to the fact
that only one shadowing realization per geometry is used (n = 1). A di↵erent result may
be expected when the number of shadowing realizations n is increased. Fig. 5.2 shows the
CRLB and MLER versus �. This case illustrates the MLER is also biased when � is high
(above 6) because it outperforms the CRLB. So the CRLB is only a valid bound on the
MLER when the shadowing variance is low and the number of sensors is high. The MLER
is only guaranteed to be the optimal estimator when the number of sensors tends to infinity
[15]. It should also be noted that the MLER is less biased as correlation increases.

5.3.1 The E↵ect of Correlation, Variance, and ↵ on the CRLB

This section provides numerical analysis of the e↵ect of correlation, variance, and ↵ on the
CRLB. The tests are conducted by randomly positioning sensors and an emitter in a 1000-
by-1000 meter square for 3000 independent trials. The CRLB for each trial is calculated and
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Figure 5.2: Performance of MLER Compared to CRLB. ↵ = 4, d
corr

= 150m, 10 sensors

the average across all trials is denoted as the average miss distance.

The E↵ect of Correlation on the CRLB

Similar to the simulation results in the Chapter 4, Fig. 5.3 and Fig. 5.4 show that as
correlated shadowing increases, the CRLB decreases. In Fig. 5.3, the correlation is based on
Eqn. 2.6 and in Fig. 5.4, the correlation is a constant value. This result is contrary to what
one’s intuition might suggest about correlated shadowing. The relationship can be explained
by analyzing the formulation of the NLSD estimator. In this estimator, the variance of each
residual is assumed to be �2 = 2(1� ⇢)�2

x

where �2
x

is the shadowing variance for each of the
links between the emitter and the sensors. Here it is evident that as ⇢ increases, the variance
of the residuals decreases and thus will result in a better position estimate. The e↵ect of
correlation can also be explained by analyzing the FIM (which is inversely proportional to
CRLB). The first element of the FIM defined by 5.37 is as follows:

J1,1 =
1
N

F1(1� ⇢) + ⇢N2(F1 � F2)

�2 (�(N � 1)⇢2 + (N � 2)⇢+ 1)
(5.46)
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where N is the number of sensors, �2 is the shadowing variance, ⇢ = ⇢
ij

8 i, j is the constant
correlation, and
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where f 0
i

(✓) is defined by Eqn. 5.38. As the number of sensors N tends to infinity,

J1,1 !
N(F1 � F2)

�2(1� ⇢)
(5.48)

From this formulation, it is evident that the FIM increases with N and ⇢ and decreases with
� as long as F1 � F2 � 0. Based on the Cauchy-Schwartz inequality, this would only occur
if f

i

(✓) was independent of the index i as shown in [11]. Therefore, the FIM increases for
[x, y] with correlation, but decreases for [c] with correlation. The overall result is an increase
in the FIM as correlation increases.

4 6 8 10 12 14 16
0

500

1000

1500

Number of Sensors

A
vg

 M
is

s 
D

is
ta

n
ce

 (
m

)

 

 
d

corr
 = 0

d
corr

 = 400

d
corr

 = 800

d
corr

 = 1200

d
corr

 = 1600

Figure 5.3: CRLB with Correlation Based on Eqn. 2.6
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Figure 5.4: CRLB with Constant Correlation for all Sensors

The E↵ect of Variance on the CRLB

Fig. 5.5 shows that variance has a proportional relationship with the CRLB. This result
concurs with simulation results shown in Fig. 4.2.
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Figure 5.5: CRLB with Varying �

The E↵ect of ↵ on the CRLB

Fig. 5.6 shows that ↵ has an inversely proportional relationship with the CRLB. This result
concurs with other work in [14].
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Figure 5.6: CRLB with Varying ↵

5.4 Geometric Dilution of Precision

Geometric dilution of precision (GDOP) is primarily used in the context of the GPS where it
describes the position errors that can be attributed to the location of the satellites. GDOP
can be applied to any positioning system and it describes the e↵ect the geometry of the
elements of the system has on the error of the estimated position. It relates how changes
in the measurements will a↵ect the position estimate. Specifically, GDOP translates range
or measurement domain errors to position errors. For most range based systems, the ideal
configuration that results in the lowest GDOP is the one with the largest volume created
by the sensors (or emitters in the case of GPS). This configuration is when the sensors are
equally spaced on a circle with the emitter at the center of the circle. A GDOP term can be
derived for RSS-based positioning in the presence of correlated shadowing by removing all
variables from the CRLB that do not relate to the geometry. In this case, the CRLB in Eqn.
5.43 is evaluated with ↵ and �2 removed. This new formulation is then solely defined by d

corr

and the positions of the emitter and the sensors. It should be noted ↵ has a direct inversely
proportional relationship with the CRLB and � has a directly proportional relationship with
the CRLB. The GDOP formulation makes it is possible to determine the optimal geometric
configurations for RSS-based positioning for specific values of d

corr

.
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5.4.1 Sensor Geometry

In this section, the e↵ect of sensor and emitter geometry on the CRLB is evaluated. This
GDOP formulation will be referred to as g and is a metric of expected localization perfor-
mance based on the sensor geometry. It is defined as

g = CRLB
unit

(5.49)

where CRLB
unit

is the CRLB evaluated when ↵ = 1 and � = 1. Fig. 5.7 shows the
distribution of g for three di↵erent general sensor configurations described in Table 5.1. For
this test, the box size is 2000-by-2000 meters, the number of sensors is 8, and d

corr

= 150m.
The results from 10,000 independent trials are included in each of the distributions. From
these distributions, it is clear that the geometry of the sensors and emitter has a significant
e↵ect on the lower bound of the average miss distance. Fig. 5.8 shows the mean value
of each distribution for varying d

corr

values. The best configuration for all values of d
corr

ranging from 100 to 1000 meters is Configuration 2. When correlation is low, Configuration
3 outperforms Configuration 1, but as correlation increases Configuration 1 outperforms
Configuration 3.

Table 5.1: Sensor Configurations

Configuration 1
Emitter is centered and the sensors are confined

to the lower left quadrant of the box.

Configuration 2
Emitter is centered in the box and the sensors

are randomly placed in the box.
Configuration 3 Emitter and sensors are randomly placed in the box.

5.4.2 Visualizing the E↵ect of Correlation

This section reviews the e↵ect of correlated shadowing on GDOP for fixed geometric sensor
configurations. It has already been shown that an increase in correlation will decrease
the CRLB (and consequently g). This section analyzes how g changes for a fixed sensor
configuration when the correlation is changed. Fig. 5.9 and Fig. 5.10 show the surface
of g�1 for two di↵erent fixed sensor configurations. The black lines represent the sensor
locations. The surface is generated by calculating g at each point on a square grid centered
at [0,0]. The grid is 1200 x 1200 meters on the sides and has a grid spacing of 20. Each grid
point represents a value of g for an emitter located at that respective point. From Fig. 5.9
and Fig. 5.10, it is evident that the surface of g�1 is significantly di↵erent when the sensors
are in a circle versus when the sensors are in a line. Viewing the surface of g�1 in this
manner gives insight into the optimal performance areas for a given sensor configuration.
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(a) Configuration 1: Emitter is centered and
the sensors are confined to the lower left
quadrant of the box.
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(b) Configuration 2: Emitter is centered in
the box and the sensors are randomly placed
in the box.
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(c) Configuration 3: Emitter and sensors are
randomly placed in the box.

Figure 5.7: Distributions of g

For instance, the optimal location for the emitter to be located with the circle configuration
is within the circle but not necessarily at the center of the circle. The optimal location for
the emitter to be located with the line configuration is along a line close to and parallel to
the line of sensors.

A series of three experiments are conducted that illustrate the e↵ect of correlated shadowing
on the optimal sensor geometry. For the first experiment, eight sensors are equally spaced
on the circumference of a circle centered at [0,0] with a radius of 500 meters as shown in
Fig. 5.9. One metric of interest is the mean value of g across the entire 1200-by-1200 meter
grid surface. This metric gives an indication of the average position error to be expected
within the 1200-by-1200 meter area for the given fixed sensor configuration. To find this
value, all values of g on the grid are averaged with the exception of those that lie on the
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Figure 5.8: Comparison of g for 3 Configurations

circumference of the circle. Calculating g on the circumference of the circle is not possible
because CRLB becomes unstable due to the geometry. The value of g rises to infinity as the
emitter position approaches the circumference of the sensor circle. Based on this knowledge,
the mean of the grid surface is calculated as the mean of all grid points that are not on the
circumference of the sensor circle. The mean value of g is 85.7 meters when d

corr

= 100m
and 56.9 meters when d

corr

= 1000m. Fig. 5.11 compares the value of g for the circle with
varying radii. In this case, the optimal circle radius for reducing the average position error
in the 1200-by-1200 meter area is 450 meters when d

corr

= 1000m and 600 meters when
d
corr

= 100m. The optimal radius is slightly smaller when correlation is high versus when it
is low. Also, when the radius of the circle is small, the di↵erence between the two GDOP is
larger than when the radius of the circle is larger.

For the second experiment, 9 sensors are positioned in a symmetric 3 by 3 square grid
configuration. Fig. 5.12 shows the sensor configuration when the spacing between adjacent
sensors in the same row and column is 300, and it also shows the surface of g when d

corr

=
100m and d

corr

= 1000m. The same 1200-by-1200 meter grid surface as the previous test is
used. Fig. 5.12 shows the value of g rises significantly outside the convex hull of the sensor
grid. Fig. 5.12 also shows the increase in correlation decreases the di↵erence between the
peaks and valleys of the surface. For this experiment, all values of the grid surface are used
to compute the average g since there are no points where g cannot be computed. Fig. 5.13
compares the mean values of g with varying sensor grid spacing. The sensor grid spacing is
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Figure 5.9: Surface of g�1 for Circle Configuration. The black lines are the fixed sensor
positions.

defined as the distance between any two adjacent sensors in the same row or column. In this
case, the optimal sensor spacing is 350 meters when d

corr

= 1000m and 400 meters when
d
corr

= 100m. For this scenario, similar to the previous test with the circle, the optimal
configuration when the correlation is high is slightly more compact than when correlation is
low.

For the third experiment, 8 sensors are randomly positioned within a square box centered
at [0,0], and the emitter is randomly positioned within a di↵erent square box centered at
[0,0] and with sides of length 2000 meters. The length of the sides of the sensor box range
from 800 to 3000 meters. 10,000 trials are conducted for each sensor box size. A single trial
consists of a random set of sensors and emitter drawn from their respective boxes, and the
calculated g. Fig. 5.14 shows the average value of g from the 10,000 trials for each of the
sensor box sizes. When d

corr

= 100m, the optimal sensor box size is 2600 meters, when
d
corr

= 1000m, the optimal sensor box size is 2000 meters.

All three experiments show that the optimal sensor configuration for the 1200-by-1200 meter
area gets smaller as the correlated shadowing is increased.
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Figure 5.10: Surface of g�1 for Line Configuration. The black lines are the fixed sensor
positions.
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Figure 5.12: Surface of g for Grid Configuration. The black lines represent the fixed sensor
positions.
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Chapter 6

New Objective Functions

6.1 Definition and Theory

A new objective function for DRSS-based localization is presented in this section. The DRSS-
based localization methods presented so far include the NLSD estimator (Eqn. 3.4) and the
ML estimator with independent di↵erence pairs (Eqn. 5.10). An ideal NLSD estimator
would be weighted by the variance as follows [32]:

✓̂ = argmin
✓

N�1X

i=1

NX

j=i+1

1

�2
ij

✓
⌦

i

� ⌦
j

� 10↵ log10

✓
d
j

d
i

◆◆2

(6.1)

In this formulation, the di↵erence pairs with the higher variance are given less weight than
the di↵erence pairs with lower variance. If the variances are all equal or unknown, then the
function reduces to the original NLSD estimator in Eqn. 3.4. In this paper, it is assumed
the variance �2

i

between the emitter and sensor i is equivalent to the variance between the
emitter and any other sensor j. Specifically, �2

j

= �2
i

8i, j. Assuming this, the variance for
any di↵erence pair is �2

ij

= 2(1� ⇢
ij

)�2
x

, where �2
x

= �2
i

= �2
j

. If this definition of variance is
used, Eqn. 6.1 becomes the following:

✓̂ = argmin
✓

N�1X

i=1

NX

j=i+1

1

(1� ⇢
ij

)

✓
⌦

i

� ⌦
j

� 10↵ log10

✓
d
j

d
i

◆◆2

(6.2)

With this formulation, knowledge of �
x

is not required. This is a practical result because in
reality, it is di�cult to determine �

x

. The value of ⇢
ij

can be estimated using the model in
Eqn. 2.6 where it is solely dependent upon the distance between two sensors. In this case,
the knowledge of d

c

orr must exist or it must be estimated. This objective function in Eqn.
6.2 will be referred to as the non-linear least squares weighted DRSS (NLSWD) estimator.
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An alternate NLSWD estimator is as follows:

✓̂ = argmin
✓

N�1X

i=1

NX

j=i+1

⇢
ij

✓
⌦

i

� ⌦
j

� 10↵ log10

✓
d
j

d
i

◆◆2

(6.3)

This formulation of the NLSWD estimator is identical to original, except the weight is ⇢
instead of 1

(1�⇢) . The two weights serve similar functions by weighting the residuals with
higher variance lower than the residuals with lower variance, but the values of the weights
are drastically di↵erent. The weight of 1

(1�⇢) applies an exponential transformation to the
value of ⇢. The estimator in Eqn. 6.3 is denoted as NLSAD in this paper.

6.2 Simulation Analysis

This section compares the performances of the NLSD, NLSWD, NLSAD, and the MLER
estimators. The performances of the NLSD and NLSR estimators are compared in Chapter
4 and are found to be very similar. The performance is tested using the same simulated RSS
values based on Eqn. 4.1 and the process outlined in Chapter 4. The average miss distance is
determined by averaging the miss distances for 4000 trials. For each trial, a set of sensors and
one emitter are randomly positioned in a 1000-by-1000-meter square box. Fig. 6.1 shows the
results of the estimators from tests ranging from 4 to 16 sensors. The average of the average
miss distances for 4 to 16 sensors for each estimator is given in Table 6.1. The performances
are very similar when d

corr

is low, but the MLER estimator clearly outperforms the others
when d

corr

is high. This result is expected because the MLER estimator fully accounts for all
of the correlated shadowing information. And as shown in Chapter 5, the MLER estimator
is optimal and nearly achieves the CRLB. The performance increase of the weighted DRSS
estimators over the standard DRSS estimator is minimal.

Table 6.1: Average Performance for 4-16 Sensors

Estimator d
corr

= 150m (m) d
corr

= 600m (m)
NLSD 251.3 207.1

NLSWD 250.4 202.5
NLSAD 242.2 202.9
MLER 239.7 179.7

In the previous experiment, perfect knowledge of d
corr

is used for the estimators. A second
round of tests is performed to evaluate the impact of imperfect knowledge of d

corr

on the
average miss distance. In this test, 10 sensors are randomly positioned in a 1000-by-1000
meter square box for 4000 trials. Fig. 6.2(a) shows the results from a test where the actual
value of d

corr

= 150m and the value of d
corr

used with the estimators ranges from 50 to
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Figure 6.1: Performance Comparison of Estimators

800 meters. Fig. 6.2(b) shows similar results except the actual value of d
corr

= 600m. The
MLER estimator is nearly always the optimal estimator even when imperfect knowledge of
d
corr

is used. Table 6.2 contains the average performance for each estimator for all of the
estimated d

corr

values. Here it is evident, the MLER estimator outperforms the three other
estimators when the estimated d

corr

value varies from 50 to 800 meters. Interestingly, the
estimated value of d

corr

that results in the lowest average miss distance is not necessarily the
actual value of d

corr

.

Table 6.2: Average Performance for Estimated d
corr

= 50 to 800 m

Estimator Actual d
corr

= 150m (m) Actual d
corr

= 600m (m)
NLSD 218.5 170.9

NLSWD 219.5 170.8
NLSAD 216.2 170.5
MLER 204.9 156.5
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6.3 Special Sensor and Emitter Geometry

Section 6.2 evaluated the estimators with the emitter and sensors randomly positioned in a
box. This section presents the case where the emitter position is fixed at the center of the
box and the sensors are randomly placed in the box. The experiment consists of 4000 trials
and the average miss distance is the average error from all trials. Fig. 6.3 compares the
performance of the estimators for 4 to 16 sensors. For this sensor configuration, the NLSAD
estimator is the best performing estimator when d

corr

is 150 meters.
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Chapter 7

Measurement Campaign

7.1 Overview

The purpose of this measurement campaign is to obtain a set of actual RSS values that can
be used to compare the RSS-based localization methods discussed in this paper. Rather
than rely on the statistical log-distance model with log-normal shadowing to generate RSS
values, actual RSS values and sensor coordinates can be used. The results will also be used
to validate the log-distance model (Eqn. 5.4, and the spatially correlated shadowing model
(Eqn. 2.6). This chapter details the procedure for obtaining the measurements and analysis
of the results.

The localization methods being evaluated rely on a distributed network of sensors that
measure RSS from a single emitter at a given time t

x

. The number of sensors in the network
can range from 4 to more than 25. To reduce the cost of the measurement campaign,
only one sensor is used to evaluate RSS at di↵erent locations. That is, the measured RSS
from a single transmitter is measured by a single receiver that is moved around to several
locations. The receiver is mounted to either a bicycle or a car and measurements are taken
continuously as the receiver is in motion. The e↵ects of multipath are averaged over a
distance of approximately 50 wavelengths, which is su�cient to obtain a measurement of
the local mean power due to slow fading (shadowing). Sources [5] and [7] perform similar
measurement campaigns that assume averaging RSS over this distance gives an accurate
estimate of the shadowing. Since the measurements are based on shadowing e↵ects, it is a
valid to assume that RSS measurements at di↵erent locations [X1, X2..Xn

] taken at times
[t1, t2...tn] are equivalent to RSS measurements at di↵erent locations [X1, X2..Xn

] taken at
a single time t

x

. This assumption is made by [25], which states there is no evidence that
shadowing significantly changes in time over a fixed path.
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Figure 7.1: Field of View to the South of the Transmit Antenna

Figure 7.2: Transmitter Block Diagram

7.1.1 Transmitter

Virginia Tech has an FCC license to transmit in the 3.3 to 3.5 GHz spectrum at a maximum
ERP of 100 W. This band is classified as a HAM radio band. A survey of the band shows
little to no spectral energy aside from environmental and measurement noise. To verify
the non-existence of any co-channel interference, the spectrum is evaluated at 3.395 GHz at
several locations in the area of interest. The noise floor is calculated to be -125 dBm over a
bandwidth of 1 kHz.

The transmit antenna is located on the roof of Durham Hall on Virginia Tech’s campus;
the exact coordinates of the antenna are 37.2317543 W, -80.4234772 N. The antenna is a
monocone that was constructed in Virginia Tech’s MPRG lab. It has an omni-directional
antenna pattern and operates over a wide bandwidth. The VSWR at 3.395 GHz is 1.55:1
and the return loss is 13.38 dB. Fig. 7.1 shows a panoramic photo of the field of view from
the transmit antenna’s perspective. The transmit path of the antenna is shadowed to the
North by a wall and is shadowed in nearly all other directions from the ground by campus
buildings. From bearings 020� T to 080� T, the antenna has a few LOS paths to the ground.

A continuous wave (CW) tone at 3.395 GHz is generated by a signal generator and passed
to through a 48 dB power amplifier. Before the signal is transmitted, it is passed through a
lowpass filter to reduce spectral content created by the power amplifier. A block diagram of
the setup is given in Fig. 7.2.
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Table 7.1: RF Hawk Spectrum Analyzer Settings

Setting Value

HREF -50 dBm
Pre-amp On
RBW 10 Hz
Measured BW 1 kHz
Center Frequency 3.395 GHz

Figure 7.3: Receiver Block Diagram

7.1.2 Receiver

The receiver consists of an antenna and mobile spectrum analyzer. The antenna is a bicone
manufactured by Electro-Metrics (model number EM-6865) with 0 dB gain over an isotropic
radiator. The coaxial cable connecting the antenna to the spectrum analyzer has a loss of
0.2 dB. The spectrum analyzer is the Tektronix SA2600 RF Hawk. It has a built-in GPS
receiver, which makes it capable of automatically logging the geographic position associated
with each channel power measurement. The GPS a typical horizontal position accuracy of
less than 9 meters. A block diagram of the receiver is given in Fig. 7.3. The RF Hawk is
configured with settings listed in Table 7.1.

The receiver is mounted to a bicycle and to a car; the measurements from both are combined.
The bicycle allows for measurements to be taken on sidewalks and closer to and between
buildings.

7.2 Determining Reference Power

The log-distance model is used to to evaluate the the path loss measurements. This section
describes the method to determine the values of c and d0 in the log-distance model,

⌦
k

= c� 10↵log10

✓
d
k

d0

◆
(7.1)

where ⌦
k

is the received power at distance d
k

, and c is the power received at a close distance



Ryan C. Taylor Chapter 7. Measurement Campaign 54

1 2 4 8 16
−70

−65

−60

−55

−50

−45

−40

−35

Distance from Transmitter (m)

R
S

S
 (

d
B

m
)

 

 

Measured RSS
Linear Line of Best Fit

Figure 7.4: RSS at a Close Range with Line of Sight

d0. The value for c encompasses the losses from the signal generator to the spectrum analyzer
due to the coaxial cables and the antennas combined with the power radiated.

⌦
k

is measured by placing the receive antenna 3 feet from the transmit antenna at the same
elevation and then progressively moving it to a distance of 53 feet. These measurements are
conducted with the signal generator set to a power of 14.9 dBm and the power amplifier is
removed. The results are plotted in Fig. 7.4. A linear line of best fit is computed and the
slope is 2.2686, which is close to the theoretical value of 2. Using any point on the line of
best fit, the reference power, c, is selected to be -38.05 dBm with a corresponding d0 of 3
feet. Since the measurements were conducted without the power amplifier, the value of c is
adjusted to �38.05 + 48� (14.9� 2.1) = �2.85 dBm. This value is used for the remainder
of the analysis and is denoted as c

a

= �2.85.

7.3 Analysis of Measurements

An RSS measurement ⌦
i

has a coordinate position defined as (x
i

, y
i

). The local mean power,
LP

i

, is defined as
LP

i

= mean(A
i

) (7.2)
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where A
i

is the set of all ⌦ that are within a 4-meter radius of ⌦
i

. And LP
i

has same
position as ⌦

i

. Any duplicates in the set of [LP
i

, (x
i

, y
i

)] are removed leaving just one of the
duplicate local mean powers. Unless stated otherwise, the rest of the analysis in this paper
is on the local mean powers, LP , and will be referred to as the measurements.

The measurements are confined to the Virginia Tech campus and the town of Blacksburg.
The maximum distance from the transmitter is 1.42 kilometers. The distribution of the
distances between the measurement locations and the transmitter is shown in Fig. 7.5.

A heat map of the measurements is shown in Fig. 7.6. The measurements in the LOS region
of the antenna are significantly higher than the measurements in the NLOS regions. Fig. 7.7
compares the received power to distance, and the log-distance model is applied and plotted
as well. The path loss exponent, ↵, is calculated to be the value that reduces the RMSE
between the model and the measurements,

↵̂ = argmin
↵

MX

i=1

✓
LP

i

� c
a

+ 10↵log10

✓
d
i

d0

◆◆2

(7.3)

where M is the total number of local power measurements and d
i

is the distance from the
transmitter. ↵ is calculated to be 3.25. The di↵erence between the log-distance model and
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Figure 7.6: Heat Map of RSS Measurements
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the measurements, E, is due to shadowing and is defined as follows:

E
x

= LP
x

� c
a

+ 10↵ log10(
d
i

d0
) (7.4)

Source [23] shows these errors should follow a log-normal distribution with zero mean, and
a variance, �2

x

. The normalized empirical distribution of E is shown in Fig. 7.8(a). The
mean is 0.12 dBm and the �2

x

is 69.54 dB. Fig. 7.8(a) also shows a Gauss distribution with
zero mean and �2

x

= 69.54. From this view, it is evident the empirical distribution is skewed
to the right and is not a perfect Gauss distribution. Table 7.2 shows the theoretical Gauss
distribution fitted to the observed frequencies of E. Using the chi-square goodness-of-fit
test, the null hypothesis that the vector E is a random sample from a normal distribution, is
rejected at the 99% significance level. The Kurtosis value of the distribution is 1.31 (a normal
distribution has a value of 0). The standard error of Kurtosis with 3236 RSS measurements

is approximately
q

24
3236 = .0861 [26]. The value 1.31 is well beyond two standard errors of

Kurtosis. Since the Kurtosis value is positive, the distribution is leptokurtic, meaning that
the peak is too tall.

The n Gauss shadowing variables associated with the links from the emitter to each sensor
can be defined by an n⇥n covariance matrix, �. Source [7] shows the correlation between two
links is dependent upon the distance between the two sensors. As the distance between two
sensors decreases, the statistical correlation between the two shadowing variables increases.
Fig. 7.8(b) illustrates the E at each measurement location. From Fig. 7.8(b), it is evident
that spatial correlation exists because the errors tend to be grouped together in groups of
similar error. One model for spatial correlation is given in [34] where an o↵-diagonal element,
(i, j) of � is defined as follows:

�(i,j) = �2
x

exp

✓
� d

ij

d
corr

ln(2)

◆
, i 6= j (7.5)

where d
ij

is the distance between sensors i and j, and d
corr

is a constant correlation distance,
which is based on the distance at which the correlation ⇢ drops to 0.5.

In order to verify Eqn. (7.5), the distance where ⇢ drops to 0.5 is determined. The set S
v,r

is defined as follows:

S
v,r

= [(E(0)
j

, E
(0)
k

), (E(1)
j

, E
(1)
k

), ..., (E(M�1)
j

, E
k

)(M�1)] (7.6)

is the set of all unique pairs of (E
j

, E
k

) where v < d
jk

< v + r and j > k. And d
jk

=p
(x

k

� x
j

)2 + (y
k

� y
j

)2. The set S
v,r

is sorted by d
j

k and then broken up into 50 equal

subsets, S
v,r

= [S(0)
v,r

, S
(1)
v,r

, ..., S
(49)
v,r

].

The correlation coe�cient is defined using the sample Pearson correlation coe�cient and ⇢
v,r

is the correlation of the set S
v,r

:

⇢
v,r

=
1

50

49X

j=0

⇢(j)
v,r

(7.7)
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Table 7.2: Theoretical Normal Distribution Fitted to Observed Frequency
Class
Limit
X

x = X�.12
8.33 P( x) Di↵erence

3236 x Di↵erence
= theoretical frequency

Observed
Frequency

-36 -4.09 0
.00009 .29124 17

-31 -3.52 .00009
.00077 2.4917 18

-26 -2.96 .00086
.00476 15.403 35

-21 -2.39 .00562
.02086 67.503 59

-16 -1.82 .02468
.06447 208.62 172

-11 -1.26 .09095
.14031 454.04 344

-6 -.693 .23126
.21526 696.58 653

-1 -.127 .44652
.232280 753.34 852

4 .439 .67932
.17747 574.29 641

9 1.01 .85679
.09538 308.65 281

14 1.57 .95217
.03612 116.88 126

19 2.14 .98829
.00964 31.195 38

24 2.70 .99793
.00181 5.8572 0

29 3.26 .99974
Total 3235.2 3236.0
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Fig. 7.9 shows the calculated ⇢

v,r

based on Eqn. 7.7 when v is the vector [0, 40, 80...3000]
and r = 40. Based on these results, the value for d

corr

is ⇡ 160 meters.



Chapter 8

Experimental Evaluation of Location
Estimators

The measurements obtained in Chapter 7 are now used to evaluate the location estimators.
Each LP

i

is assumed to be a realization of a sensor position and measured RSS. A database
of LP s and their positions is created to ensure experiments are repeatable on the same set
of measurements. To create the database, LP s and corresponding positions are uniformly
selected from the data set. A set of 16 LP s and positions are placed in each row of the
database. Each row represents an independent trial. So a single trial with 6 sensors uses
the first 6 LP s and positions in the first row of the database. The database is structured as
shown in Table 8.1.

Table 8.1: Structure of Sensor Database

Trial Sensor 1 RSS Sensor 1 Position Sensor 2 RSS Sensor 2 Position ...
1 LP

i

(x
i

, y
i

) LP
j

(x
j

, y
j

) ...
2 LP

k

(x
k

, y
k

) LP
m

(x
m

, y
m

) ...
... ... ... ... ... ...
N LP

n

t (x
n

, y
n

) LP
t

(x
t

, y
t

) ...

It should be noted that because the measurement campaign was conducted with one emitter
at a fixed location, the average performance of the estimators will most likely be better than
the performance of the estimators in practice. As shown in Chapter 5, this geometry has a
significantly lower average miss distance than when the emitter is randomly positioned as
well as the sensors.
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8.1 Comparing Theoretical and Actual RSS

This sections compares the performance of the estimators using simulated RSS values versus
the estimators using actual RSS values. The simulated RSS values are generated using Eqn.
4.1 with the following parameters: �2= 69.54 dB, mean = 0, d

corr

= 160 meters, ↵=3.25.
These parameters are equivalent to the empirical characteristics of the measurements as
detailed in Chapter 7. The simulated RSS values are generated at the same positions as
the corresponding actual RSS values. The only di↵erence between the simulated and actual
RSS results is that the simulated RSS comes from a perfect Gauss distribution. The miss
distances for each estimator from 3000 trials are averaged and shown in Fig. 8.1. The CRLB
is calculated using the same sensor positions as the trials and averaged across all trials. The
di↵erence between the average miss distances for an estimator using simulated RSS versus
actual RSS is small. Table 8.2 shows the average of the average miss distances for 4 to
16 sensors for each of the estimators. This small di↵erence between the estimators using
theoretical and actual RSS helps to validate the theoretical models for RSS.

The theoretical results are superior than the actual results for all estimators except the
NLSAD. This is due to the fact that the theoretical RSS values are drawn from an ideal
distribution. The maximum separation in average miss distances between an estimator based
on theoretical RSS versus actual RSS comes from the MLER estimator and is 8.6%. This
is expected because the MLER estimator is based on the assumption that the distribution
is Gauss and takes full advantage of the information in the covariance matrix. And thus
deviations from these assumptions will have a greater e↵ect on the performance of the MLER
estimator than the other estimators. This shows that while the MLER estimator performs
best in simulation, it may not perform best under actual conditions.

Table 8.2: Average Performance for 4-16 Sensors

Estimator Theoretical RSS (m) Actual RSS (m)
NLSD 221.7 230.1

NLSWD 220.6 229.1
NLSAD 196.6 189.4
MLER 216.7 235.3

The NLSAD estimator consistently has the lowest average miss distance for 4 to 16 sensors
from both the theoretical and actual RSS values. This is consistent with the results in Chap-
ter 5, which show the NLSAD estimator outperforms the other estimators when correlation
is relatively low, and the emitter position is fixed at the center. The results further show
that the NLSAD estimator is less e↵ected by imperfect distribution of the actual RSS values.
The NLSAD estimator actually performs better with the actual RSS values compared to the
theoretical RSS values, while the other estimators are opposite.
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The results also show that the CRLB is a good indicator of the expected performance, not
only in simulation, but also with actual RSS values. When the number of sensors is high (>
10), the CRLB closely matches the average miss distance of the NLSAD estimator.

8.2 Further Analysis of Estimators using Actual RSS

This section evaluates the e↵ect of imperfect knowledge of d
corr

on the estimators using actual
RSS values. In Chapter 7, d

corr

of the measurements is estimated to be 160 meters. Section
8.1 evaluated the estimators using this value of d

corr

. Fig. 8.2 compares the estimators’
performance when the estimated d

corr

ranges from 50 to 800 meters. Table 8.3 shows the
average performance for all of the d

corr

estimates. The NLSAD is nearly always superior to
the other estimators, and it has a much lower average miss distance across the range of d

corr

estimates.

Table 8.3: Average Performance for Estimated d
corr

of 50 to 800 meters

Estimator Average Miss Distance (m)
NLSD 219.1

NLSWD 200.7
NLSAD 175.6
MLER 201.2
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Figure 8.1: Comparison of Theoretical and Actual RSS



Ryan C. Taylor Chapter 8. Experimental Evaluation of Location Estimators 65

0 100 200 300 400 500 600 700 800
160

170

180

190

200

210

220

230

Estimated d
corr

 (m)

A
vg

 M
is

s 
D

is
ta

n
ce

 (
m

)

 

 
NLSD
NLSWD
NLSAD
MLER

Figure 8.2: Performance of Estimators with Varying Knowledge of d
corr

. 10 sensors



Chapter 9

Conclusions

RSS-based localization is a promising localization solution for scenarios that involve the
localization of non-collaborative emitters. These scenarios include the localization of com-
bative jamming devices, or the localization of legacy systems in the same area as cognitive
systems that are seeking open spectrum. RSS-based localization is an ideally suited solution
because it needs low network overhead, little knowledge of the emitter’s signal, and allows
for a diverse set of devices to be used. In this paper, RSS-based localization in the pres-
ence of correlated shadowing was examined. The location estimators were examined both in
simulation and using an actual set of measurements. A new ML estimator and CRLB were
presented that account for spatially correlated shadowing and imperfect knowledge of the
emitter’s reference power. It was shown that correlated shadowing has a positive e↵ect on
the accuracy of an RSS-based location estimator. A list of the major contributions of this
paper is given below:

1. This paper presented a new ML estimator and CRLB for RSS-based localization in the
presence of correlated and imperfect knowledge of the emitter’s reference power.

2. The e↵ects of correlated shadowing on an RSS-based location estimator were thor-
oughly examined. It was shown that an increase in correlated shadowing will improve
the accuracy of an RSS-based location estimator. It was also demonstrated that the
ideal sensor geometry which minimizes the average error becomes more compact as
correlation is increased.

3. The paper introduced a new DRSS location estimator that uses correlated shadowing
information to improve performance. The estimator performed better than the ML
estimator when the emitter was at a fixed position and the sensors were randomly
placed around it.

4. A measurement campaign was conducted that characterized path loss at 3.4 GHz. The
measurements were compared to the log-distance model, and the errors between the
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model and the measurements had a Kurtosis value of 1.31. The errors were determined
to be spatially correlated with an average correlation coe�cient of 0.5 at a distance of
160 meters.

5. The performance of the location estimators in simulation was compared to the perfor-
mance using measurements from the measurement campaign. The performance was
very similar, with the largest di↵erences in the ML estimator. In both cases, the new
DRSS estimator outperformed the other estimators and achieved the CRLB.
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