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ABSTRACT

The PathoSystems Resource Integration Center
(PATRIC) is the bacterial Bioinformatics Resource
Center funded by the National Institute of Allergy
and Infectious Diseases (https://www.patricbrc.org).
PATRIC supports bioinformatic analyses of all bacte-
ria with a special emphasis on pathogens, offering a
rich comparative analysis environment that provides
users with access to over 250 000 uniformly anno-
tated and publicly available genomes with curated
metadata. PATRIC offers web-based visualization and
comparative analysis tools, a private workspace in
which users can analyze their own data in the con-
text of the public collections, services that stream-
line complex bioinformatic workflows and command-
line tools for bulk data analysis. Over the past
several years, as genomic and other omics-related
experiments have become more cost-effective and
widespread, we have observed considerable growth
in the usage of and demand for easy-to-use, publicly

available bioinformatic tools and services. Here we
report the recent updates to the PATRIC resource, in-
cluding new web-based comparative analysis tools,
eight new services and the release of a command-
line interface to access, query and analyze data.

INTRODUCTION

The Bioinformatics Resource Center (BRC) program was
established by the National Institute of Allergy and In-
fectious Diseases (NIAID) in 2004 with a primary focus
on providing access to genome sequence data and analy-
sis tools for studying pathogens. PathoSystems Resource
Integration Center (PATRIC) began as one of the origi-
nal centers tasked with supporting comparative analysis of
bacterial pathogens (1–3). In 2009, PATRIC merged with
the National Microbial Pathogen Database Resource (NM-
PDR) BRC (4), which had developed the successful SEED
database and RAST (Rapid Annotation using Subsystem
Technology) annotation system for uniformly curating and
projecting genome annotations across microbial species (5–
8). Over the years, the PATRIC resource has expanded
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and adapted to keep pace with the growth in bioinformatic
datasets and the need for associated analysis tools. As of
September 2019, PATRIC includes over 250 000 publicly
available microbial genomes and a rich comparative analy-
sis environment.

Since its launch in 2008, RAST (http://rast.nmpdr.org)
has performed ∼700 000 genome annotation jobs for pri-
vate users. By providing access to genome feature identifica-
tion scripts developed by the academic community and con-
sistent projections of well-curated protein functions from
the SEED, RAST serves as a model for a successful bioin-
formatic service because it alleviates the need for users to
build their own custom annotation pipelines, and its con-
sistency enables downstream comparative analyses. Using
RAST as a template, in 2014 PATRIC began implementing
a variety of bioinformatic services through the website al-
lowing users to assemble and annotate genome sequences,
reconstruct metabolic models, analyze SNPs and INDELs,
and analyze and compare RNA-seq experiments. The re-
sults of these analysis jobs could then be compared with the
publicly available genomic and other omic data collections
in the resource, while being kept private within the user’s
workspace environment. By the end of 2016, PATRIC was
processing ∼1500 service jobs per month, not including jobs
being submitted to the RAST website (3).

Since last described in Nucleic Acids Research in 2016 (3),
PATRIC has undergone a series of updates and improve-
ments. The data collection has been improved, especially
in the area of antimicrobial resistance (AMR) (9); the web
browsing environment has been enhanced with new tools
and visualizations; and improvements to the workspace
have also made it easier to find and share research project
data. A command line interface (CLI) for bulk data acqui-
sition and analysis has been built and released for distri-
bution on Mac, Linux and Windows systems. PATRIC has
also launched eight new bioinformatic services, with recent
emphasis being placed on the ability to analyze data from
mixed cultures or metagenomic samples. At last, a rich col-
lection of tutorials has been created to help users with these
new tools (https://docs.patricbrc.org/tutorial/). This report
describes many of the recent unpublished updates to the
PATRIC resource.

WHAT’S NEW IN PATRIC?

Data growth and enhancements

One of the most dramatic changes in supporting bioinfor-
matic work since the beginning of the BRC program has
been the exponential growth in publicly available microbial
genome sequences (Figure 1). The collection of private user
genome sequences that have been annotated and indexed
by PATRIC has also grown since the establishment of the
workspace environment, and may actually exceed the size
of the public genome sequence collection within the next
year (Figure 1). Although the private set includes some re-
analyzed genome sequences,

we see no indication that microbial genome sequenc-
ing and its related bioinformatic analyses is slowing. The
increase in publicly available genome sequence data and
related structured metadata has also revolutionized the
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Figure 1. Cumulative growth of public and private genomes in PATRIC.

types of experimental analyses that are possible. For in-
stance, PATRIC provides structured and manually cu-
rated metadata associated with each genome, including
laboratory-derived AMR phenotypes, host organisms, iso-
lation sources, human body site data and geographical in-
formation. These collections of structured metadata pro-
vide the foundation for running machine learning and deep
learning experiments (10,11), and for providing predictive
tools to users (9). We anticipate that the increased use of ar-
tificial intelligence techniques in bioinformatics will drive
experimental design decisions and ultimately shorten the
time required for genetic and other laboratory-based char-
acterization experiments.

Supporting AMR research is a major focus area for data
collection and curation at PATRIC. We actively curate both
AMR protein annotations and laboratory-derived AMR
phenotype data associated with public genomes. The anno-
tation system is able to accurately project over 600 hand-
curated AMR protein functions. It also contains a large
collection of closely related non-AMR protein functions
that have been curated to prevent false predictions of AMR
functions. To provide an additional means of comparison,
the annotation system also searches for genes with high sim-
ilarity to those curated by the CARD (12) and NCBI AMR
gene database projects (13). The laboratory-derived AMR
phenotype collection has been generated by curating data
from the literature, NCBI (https://www.ncbi.nlm.nih.gov/
pathogens) and other public sources. It has grown to in-
clude over 40 000 genome sequences and is being used by
researchers worldwide. We have also added over 10 000 plas-
mid and prophage sequences because of their importance in
studying and combatting AMR.

Services

The services provided by PATRIC are designed to enable
easy access to complex bioinformatic workflows. They can
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Figure 2. User-initiated analysis jobs completed by the PATRIC bioinfor-
matic services. The top plot shows the use of high-volume services. The
bottom plot shows the usage of lower volume and new services. Note the
difference in scale between the two plots.

be accessed via the PATRIC web interface and CLI. Most
services have the capacity to handle hundreds or even thou-
sands of jobs per day. Jobs are typically run on a series
of internal servers, with surge capacity being handled by a
large computing cluster. The PATRIC services have grown
in popularity since 2014, and as of September of 2019, over
263 000 jobs have been successfully completed (Figure 2).

Noteworthy updates to existing services. Three of our
pre=existing services, Genome Assembly, Genome Anno-
tation and RNA-seq analysis, have undergone several note-
worthy updates. The Genome Assembly Service has been
rebuilt with a new job scheduler that enables a fairer job-
queuing process that prevents large jobs from creating bot-
tlenecks (14). In addition to SPAdes (15), we have added
Canu (16) for long-read assembly and Unicycler for hy-
brid long- and short-read assemblies (17). We also pro-
vide an image of the assembly graph using Bandage (18),
and assemblies can be polished using Racon (19) and Pi-
lon (20) for long- and short-read assemblies respectively. At
last, read mapping is performed to generate accurate cov-
erage statistics using Bowtie2 (21) or Minimap2 (22), and
SAMtools (23). Two new additions to the Genome Anno-
tation Service include the ability to annotate bacteriophage
genome sequences (24) and the computation of genome
quality statistics that are based on the CheckM applica-
tion (25) and an internal RAST model that assesses qual-
ity based on the occurrence and completeness of subsys-
tem roles in the genome (26). The RNA-seq analysis Service
has also been updated to enable experiments studying host
response to microbial infections. To support this, we have
added several common eukaryotic host reference genomes
including Caenorhabditis elegans, Danio rerio, Drosophila
melanogaster, Gallus gallus, Homo sapiens, Macaca mulatta,
Mus musculus, Mustela putorius furo, Rattus norvegicus and
Sus scrofa. We have also recently added HISAT2 (hierar-
chical indexing for spliced alignment of transcripts) (27), a
highly-efficient system for aligning reads from RNA-Seq ex-

periments to host genomes and enabled import of datasets
from SRA in the RNA-seq interface, further enhancing the
capability to perform mixed differential expression analysis
of public and private data.

Comprehensive genome analysis. One of the most common
use case for analysis of private genomes at PATRIC is for
researchers to assemble and then annotate their genome se-
quences using two separate services. In the Spring of 2018,
we launched a streamlined Comprehensive Genome Anal-
ysis ‘meta-service’ that accepts sequencing reads, computes
the assembly and annotation, and provides a user-friendly
description of the genome. The output includes a genome
quality assessment, AMR genes and phenotype predictions,
specialty genes, subsystem overview, identification of the
closest genome sequences, a phylogenetic tree and a list
of features that distinguish the genome from its nearest
neighbors. The Comprehensive Genome Analysis Service
has quickly risen to be one of the most popular services in
PATRIC with over 11 000 jobs being completed since its
launch in April 2018.

Phylogenetic trees. The ability to reconstruct and visual-
ize evolutionary relationships lies at the heart of biology. In
2017, PATRIC launched the Phylogenetic Tree Service that
enables users to build high-quality phylogenetic trees for
public and private genome sequences. The service currently
offers two workflows to the user. The first is a protein-based
tree-building workflow called ‘All Shared Proteins,’ which
uses the Phylogenomic Estimation with Progressive Refine-
ment (PEPR) pipeline (https://github.com/enordber/pepr).
PEPR works by defining shared protein families de novo
for a genome group using BLAST (28) and HMMER (29)
to identify similar proteins and MCL (30) to build clus-
ters. Then alignments are generated using Muscle (31), and
trimmed with Gblocks (32). At last, based on the user’s
preference, PEPR computes the tree using either FastTree
(33) or RAxML (34). In 2019, we launched a second, faster,
phylogenetic tree building workflow called ‘Codon Trees.’ It
leverages predefined PATRIC global protein families (PG-
Fams) (35), selecting a user-specified number of families
(10–1000) that are single-copy (or nearly so) among mem-
bers of a genome group. Alignments are generated for pro-
tein sequences of each family using Muscle (31), and their
corresponding nucleotide sequences are aligned to this us-
ing the codonalign function of BioPython (36). A concate-
nated alignment of all proteins and nucleotides is written to
a PHYLIP-formatted file (37). A partitions file for RaxML
(34) is then generated, which describes the alignment in
terms of the proteins and nucleotides in the first, second,
and third codon positions. Support values are generated
from 100 rounds of rapid bootstrapping in RaxML (38).

In addition to the Newick-formatted tree files, the Phy-
logenetic Tree Service returns a portable document file
(PDF), a portable network graphics (PNG) and a scal-
able vector graphics (SVG) image file of the midpoint
rooted tree images generated by FigTree (http://tree.bio.ed.
ac.uk/software/figtree/). The phylogenetic tree view on the
PATRIC website allows researchers to select nodes and
leaves, enabling the user to create groups from specific
clades for further analysis. It also generates a genome re-
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port that provides a list of the genome sequences and pro-
tein families used in the construction of tree and the counts
of genes, proteins, amino acids and nucleotides used to com-
pute the tree. At last, problematic genome sequences that
could be removed to increase the gene selection and improve
the strength of the tree are listed. Since it was built, nearly
5000 jobs have been processed by the Phylogenetic Tree Ser-
vice.

Fastq utilities. Assessing the quality of sequencing reads
is an important first step for ensuring that subsequent
analyses, such as assembly, annotation, etc. are accurate.
The Fastq Utilities Service, launched in July 2019, enables
users to align reads, measure base call quality, and trim
low-quality sequences from read files. The service accepts
long- or short-read files in single or paired-end format.
It can also retrieve read files directly from the NCBI Se-
quence Read Archive (SRA) using a run identifier as in-
put. The service has three components, ‘trim,’ ‘FastQC,’
and ‘align,’ which can be used independently or in any
combination. The trimming component uses Trim Galore
(39), which is a Perl wrapper around the Cutadapt (40)
and FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc) tools. The FastQC component provides
quality control checks on raw sequence data coming from
high-throughput sequencing pipelines and enables rapid
quality control by indicating problems that could impact
downstream analyses. The aligning function aligns reads to
a reference genome sequence using Bowtie2 (21,41), saving
unmapped reads and generating SamStat (42) reports of the
amount and quality of the alignments.

Genome alignment. In November 2018, PATRIC
launched the Genome Alignment Service to enable
users to compute whole genome sequence alignments. This
service uses the progressiveMauve application (43), which
constructs positional homology multiple genome sequence
alignments in an extension of the original Mauve algorithm
(44). The service enables researchers to align up to twenty
genome sequences at a time. The output of the service
includes a visual display of the genome that allows users to
view and explore the entire genome sequence alignment or
to zoom in to compare individual regions or genes (Figure
3).

Similar genome finder. When a researcher has a new
genome sequence, one of the first things they want to iden-
tify is the closest relatives for the organism, but this can be
difficult when the public collection is so large. PATRIC pro-
vides a service called the Similar Genome Finder to allow
researchers to rapidly identify similar genome sequences us-
ing Mash (45). Mash works by reducing large sequences to
small representative sketches, which can be used to estimate
mutation distances based on shared k-mers. PATRIC allows
for comparison against all public genome sequences or the
NCBI reference genome set. The tool allows researchers to
adjust the search sensitivity by selecting the maximum num-
ber of k-mers held in common, P-value threshold or the dis-
tance. The results are returned as a list of the most similar
genome sequences with corresponding metadata. As with

all PATRIC tables, researchers can select sequences to cre-
ate groups for later analysis, or download the results.

Taxonomic classification. Launched in March of 2019, the
Taxonomic Classification Service identifies the taxonomic
composition of mixed or metagenomic samples. This service
uses the Kraken2 (46) application, which identifies k-mers
that are indicative of various taxonomic units. The Kraken
database used by the service is a full build that is based
on all RefSeq genome sequences (47), the human genome
sequence, plasmids and vector sequences. Job output in-
cludes the standard Kraken report format, with each bac-
terial taxon hyperlinked to the matching page in PATRIC.
The service also returns a Krona plot (48) that shows the
percentage of reads that mapped to each taxon and allows
the user to explore selected taxa.

Metagenomic read mapping. Researchers studying AMR
or virulence may be interested in analyzing genes in mixed
or metagenomic read sets. The Metagenome Read Map-
ping Service enables researchers to search for these specific
genes in a set of reads. It works by aligning reads against
a reference gene using KMA, which uses k-mer seeding
and the Needleman–Wunsch algorithm to accurately align
the reads to the genes of interest (49). Users can currently
align against the reference gene sets from the Comprehen-
sive Antibiotic Resistance Database (CARD) (50) and the
Virulence Factor Database (VFDB) (51). The service re-
turns html and text versions of the standard KMA report,
which shows detailed mapping information, links to genes
in PATRIC with high similarity, and a consensus sequence
assembled from the aligned reads.

Metagenomic binning. Launched in August 2017, the
Metagenomic Binning Service assembles reads from a
metagenomic sample into contigs and then attempts to sep-
arate these contigs into bins that represent the genomes of
individual species. These bins are then fully annotated and
detailed quality statistics are computed for each bin. The
binning algorithm starts by scanning contigs for specific
marker proteins that are almost always singly occurring in
the genome. The marker-protein similarity is used to recruit
similar genomes from PATRIC, which are then used to re-
cruit additional contigs based on distinguishing protein k-
mers. Similar to single isolate genomes, the bins are placed
in the user’s workspace and indexed within the PATRIC
database as private genomes, allowing the full use of the
PATRIC comparative analysis and visualization tools for
each bin.

Web-based analysis tools

The PATRIC website offers several interactive visual an-
alytic tools that enable users to compare omics datasets.
These tools integrate data of various types, perform some
computational tasks and render interactive visualizations
for the user. PATRIC currently supports many web-based
analysis tools, such as the Heat Map Viewer for comparing
shared protein content, the Pathway Viewer for exploring
metabolic pathways and the Genome Browser for display-
ing genomic features on the chromosome. We have added
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Figure 3. A data analysis workflow in PATRIC using the Genome Alignment Service. (A) The website interface allows the selection of genomes; (B)
visualization of the aligned genomic regions with any deletions, insertions or rearrangements; (C) zooming in on the alignment will show the genes on
the forward and reverse stands, which can be selected; (D) selecting a specific gene from the Genome Alignment viewer opens the PATRIC Feature Page,
where all the data available for that gene are shown. (E) The Compare Region View tab on the PATRIC Gene Page shows conservation of the selected
gene (shown in red), and also the surrounding genes. (F) Each gene is assigned to a genus-specific (PLFam) or global (PGFam) protein family that can be
selected from the Feature Page, and the family members can be compared using the Multiple Sequence Alignment/Gene Tree tool.

two new visualizations to the PATRIC website that origi-
nally existed on the RAST and SEED websites, but required
significant reengineering to be functional for use with hun-
dreds of thousands of genomes.

Compare region viewer. The Compare Region Viewer al-
lows researchers to compare gene neighborhoods (genetic
loci or chromosomal clusters) across many species. A user
selects a gene of interest, the size of the genomic region and
the number of genomes for the comparison. The display
renders the BLAST similarity of the focus gene, and the sim-
ilarity of the surrounding genes within the region (Figure
3E).

In RAST, this tool relies on a precomputed database of
all-to-all BLAST (28) similarities to determine the set of
genomes having a match to the gene of interest, and com-
putes a detailed pairwise comparison of genes in the se-
lected region to color code the data. Due to the number
of genomes in the PATRIC database, this method is too
slow for real time use. The PATRIC version of this tool
bases the focus gene lookup and color coding on either the
genus-specific (PLFam) or global (PGFam) protein families

(35), which are precomputed for each genome, so the search
space is more scoped. However, this visualization is scalable
because BLAST is only used to compute protein similarity
for the focus genes within the set.

Subsystems. Subsystems are collections of functionally re-
lated proteins and are a vital conceptual device for identify-
ing and projecting protein functions across species (7,52).
PATRIC now computes and displays subsystem data for
each public and privately annotated genome sequence. Sub-
systems, which result from manual annotation by a team
of expert curators, are divided into Superclass (example:
Metabolism), Class (example: Stress Response, Defense and
Virulence), Subclass (example: Resistance to antibiotics and
toxic compounds), Subsystem Name (example: Arsenic re-
sistance) and the functional role of each of the included
genes. Clicking on the subsystems tab for any genome pro-
vides three different views. The Subsystems Overview shows
a pie chart that displays the percent of the genes that are
in a particular Superclass. The Subsystems tab includes
the number of genes found in a particular Superclass. The
Genes tab includes a list of all the genes across all the sub-
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systems, and includes the PATRIC and RefSeq locus tags
(47). Subsystem information is not only available for in-
dividual genomes, but is also summed for each taxonomic
level, all the way up to Superkingdom using the NCBI tax-
onomy (53). A heatmap view showing presence and absence
of specific proteins per selected subsystem across a taxon or
a specific genome group can be created by the user.

Command-Line Interface (CLI)

For the past 5 years, the PATRIC data store has been
managed using a NoSQL Apache Solr database structure.
To accommodate the rapidly growing data collection and
to take advantages scalability and resilience, the PATRIC
database architecture was converted to an Apache Solr-
Cloud database architecture in the spring of 2019. The
SolrCloud database is divided into a series of SolrCores
for managing related data types, such as genome fea-
tures, sequences and transcriptomic data. An underlying
application programming interface (API) enables program-
matic access to these cores and the data that they con-
tain; however, data acquisition can become complex when
navigating and merging fields from the various cores. We
have developed a set of command-line scripts that use the
API for accessing the data store and performing common
analyses. This distribution is available for Mac, Windows
and Linux operating systems, including Ubuntu and Cen-
tOS 6 and 7, and Fedora 28 and 29 (https://github.com/
PATRIC3/PATRIC-distribution/releases). Both the distri-
bution and the PATRIC website contain tutorials on how
to use the scripts with examples (https://docs.patricbrc.org/
cli tutorial/). The 482MB distribution contains many of the
underlying scripts of the PATIRC environment. Some en-
able the bulk downloading, merging and manipulation of
data and others enable more complex analyses. The distri-
bution also includes useful scripts from earlier SEED (5)
and RASTtk (8) projects. A particularly noteworthy func-
tionality offered by the PATRIC CLI distribution is the
ability to manage files in the workspace. Users can log into a
private workspace, create subdirectories, move files into or
out of the workspace and launch annotation and assembly
jobs. These scripts provide the means for assembling and an-
notating hundreds or even thousands of genome sequences.
Additionally, we have also made the PATRIC workspace ac-
cessible via File Transfer Protocol (FTP), which provides an
alternative means of moving large amounts of data into and
out of the workspace. Users can access the workspace us-
ing the command-line or by using a FTP file manager. We
plan to continue developing the command-line tools to al-
low greater access to services and easier data manipulation.

FUTURE DIRECTIONS

In 2020, the PATRIC team at the University of Chicago,
University of Virginia and the Fellowship for Interpreta-
tion of Genomes will combine with the viral BRC team that
supports the ViPR (Virus Pathogen Database and Analy-
sis Resource) and IRD (Influenza Research Database) re-
sources at the J. Craig Venter Institute (JCVI). The newly
formed bacterial and viral BRC team (BV-BRC) will con-
tinue to maintain the PATRIC, IRD and ViPR websites

while adding new crosscutting functionality. We intend to
focus heavily on improving the utility of the new BV-BRC
resource for epidemiological analysis, expanding the data
store to include other data and metadata types, increasing
access to structured data that can be used in artificial intel-
ligence applications, and improving the deployment archi-
tecture for the tools and services.
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