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The pure spinor formulation of superstring theory includes an interacting sector of central charge
cλ ¼ 22, which can be realized as a curved βγ system on the cone over the orthogonal Grassmannian
OGþð5; 10Þ. We find that the spectrum of the βγ system organizes into representations of the g ¼ e6 affine
algebra at level −3, whose soð10Þ−3 ⊕ uð1Þ−4 subalgebra encodes the rotational and ghost symmetries of
the system. As a consequence, the pure spinor partition function decomposes as a sum of affine e6
characters. We interpret this as an instance of a more general pattern of enhancements in curved βγ systems,
which also includes the cases g ¼ soð8Þ and e7, corresponding to target spaces that are cones over the
complex Grassmannian Grð2; 4Þ and the complex Cayley plane OP2. We identify these curved βγ systems
with the chiral algebras of certain two-dimensional (2D) (0,2) conformal field theories arising from twisted
compactification of 4D N ¼ 2 superconformal field theories on S2.
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I. INTRODUCTION

The pure spinor formalism [1] is a reformulation of
superstring theory which has the virtue that it can be
quantized while preserving manifest covariance with
respect to ten-dimensional super-Poincaré symmetry. It
therefore provides a powerful approach to quantizing the
superstring in curved backgrounds with Ramond-Ramond
flux and computing multiloop scattering amplitudes.
Focusing on the left movers, the defining feature of this
formalism is the presence of a ghost system that is realized
in terms of a set of bosonic fields, λα, transforming in the
16 of soð10Þ, satisfying the “pure spinor” constraint

λαγμαβλ
β ¼ 0; μ ¼ 0;…; 9 ð1Þ

and contributing cλ ¼ 22 to the left central charge. In this
paper, we will argue that the pure spinor ghost sector
possesses a hidden affine ê6 symmetry at level −3, albeit
with a choice of stress tensor different from the Sugawara
one. With this choice of stress tensor, only the currents for
the csoð10Þ−3 ⊕ ûð1Þ−4 subalgebra corresponding to rota-
tional and ghost symmetries have conformal dimension 1.

Nevertheless, we find that the ghost sector partition
function [2] can be expressed as a linear combination of
ðê6Þ−3 affine characters,

Z ¼ χ̂ðê6Þ−30 − χ̂ðê6Þ−3−3ω1
: ð2Þ

To motivate our results, we will start by briefly recalling
different known realizations of the ghost system. A
convenient realization is as a curved βγ system on the
space P of ten-dimensional (10D) pure spinors. A first hint
of the enlarged symmetry follows from the work of
Levasseur et al. [3] who found that the space of differential
operators on P enjoys an action of e6; see also [4] and
especially [5]. In the physics literature, the existence of an
e6 finite-dimensional Lie algebra action on the zero modes
of the pure spinor ghost sector was first observed in [6,7].
We will find it enlightening to consider a more general

family of βγ systems whose target spaces, X̂g, have
enlarged symmetry g ¼ d4ð¼ soð8ÞÞ; e6, and e7. These
varieties can be described as cones over the complex
Grassmannian Grð2; 4Þ, the complex orthogonal
Grassmannian OGþð5; 10Þ, and the complex Cayley plane
OP2, respectively. An insightful way to realize the target
spaces X̂g is as Lagrangian submanifolds of the moduli

spaces fMg;1 of a single centered g-instanton. These moduli
spaces are in turn the Higgs branches of a family of 4D
N ¼ 2 superconformal field theories (SCFTs) Tg, whose
chiral algebra in the sense of [8] is the vacuummodule of ĝk
affine algebra, where k ¼ −2;−3;−4, respectively, for
g ¼ d4; e6, and e7. Applying a topological twist to Tg

and reducing on S2 [9], we will obtain [10] a set of 2D (0,2)

*Present address: School of Physics, Korea Institute for
Advanced Study, Seoul 02455, Korea.

†Present address: Theory Department, CERN, CH-1211
Geneva 23, Switzerland.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 026006 (2020)

2470-0010=2020=101(2)=026006(9) 026006-1 Published by the American Physical Society

https://orcid.org/0000-0002-9355-5720
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.026006&domain=pdf&date_stamp=2020-01-06
https://doi.org/10.1103/PhysRevD.101.026006
https://doi.org/10.1103/PhysRevD.101.026006
https://doi.org/10.1103/PhysRevD.101.026006
https://doi.org/10.1103/PhysRevD.101.026006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


conformal field theories T ð0;2Þ
g , whose chiral algebras we

will identify with the corresponding βγ system on X̂g.
We will present a detailed analysis of these theories in a
companion paper [10].
The global symmetry of the βγ systems is a certain

maximal subalgebra g0 of g. However, we will see that from
the perspective of geometric representation theory, it is
natural to expect the entire algebra g to act on the states of

the theory. This is indeed the case for the theory T ð0;2Þ
soð8Þ,

whose chiral algebra was found by Dedushenko and Gukov
[11] to realize the ŝoð8Þ−2 affine algebra.
We next study how the enlarged symmetry manifests

itself in the partition function for g ¼ soð8Þ and g ¼ e6. In
both cases, we will find that the partition function can be
expressed as a linear combination of two ĝk characters.

These results suggest that the chiral algebra of T ð0;2Þ
g

receives two types of contributions: one from states arising
from the reduction of the 4D N ¼ 2 chiral algebra and one
capturing contributions from a surface defect of the 4D
SCFT T g that is wrapped along S2.
We will also find an elegant closed form for the partition

function of the pure spinor ghost system, written in terms
of e6 Weyl invariant Jacobi forms, which agrees exactly
with the first six energy levels computed in [2]. An amusing
consequence is that the fields, ghosts, antifields, and anti-
ghosts of ten-dimensional supersymmetric Yang-Mills
theory organize into the 27 and 27 of e6.

II. THE PURE SPINOR GHOST SYSTEM

In the pure spinor formalism, the superstring is described
by a sigma model consisting of maps Σ → M from the
string worldsheet Σ into ten-dimensional super-Minkowski
space M coupled to a ghost system of central charge
cλ ¼ 22. The matter fields on the worldsheet include a set
of bosonic fields xμ in the 10 of soð10Þ and, focusing on the
left-movers, a set of periodic fermions θα in the 16 of
soð10Þ, along with their conjugate momenta pα, so that the
total left-moving central charge cL ¼ cx þ cθ þ cλ ¼ 0.
In the original minimal formalism, the ghost sector is

captured by a sigma model describing maps Σ → P into the
space of ten-dimensional Cartan pure spinors P, which is
parametrized by the bosonic fields λα satisfying the con-
straint in Eq. (1). These fields are accompanied by their
conjugate momenta wα. The physical spectrum is given by
the cohomology of the nilpotent Becchi-Rouet-Stora-
Tyutin (BRST) operator

Q¼
Z

λα
�
pαþðγμθαÞ∂xμ− 1

2
ðγμθÞαðθγμ∂θÞ

�
ð3Þ

acting on a suitable Hilbert spaceH. The Hilbert space can
be defined using the curved βγ system [2,12,13]. A
convenient way to do this is to pass to the nonminimal

formalism [14], where physical states are identified with
the cohomology of the modified BRST operator Q̄ ¼
Qþ ∂̄, where ∂̄ is a Dolbeault operator acting on P.
As we will see, the symmetry of the quantum mechanics on
P is enlarged from soð10Þ ⊕ u1 to e6. In the next section,
we will consider similar spaces with quantum mechanical
symmetry enhancement considered in [3]. For special target
spaces including P, we will argue that the quantum
mechanical enhancement will extend to enhancement in
the βγ system.

III. βγ SYSTEMS ON COMPLEX CONES

Curved βγ systems [12,15–17] are two-dimensional
sigma models of holomorphic maps γ∶Σ → X̂ with action

S ¼ 1

2π

Z
Σ
βi∂̄γi; ð4Þ

where, in a given patch, γi, i ¼ 1;…; dim X̂ serve as local
coordinates, βi are (1,0)-forms, and

γiðzÞβjðwÞ ∼ δij
dw

z − w
: ð5Þ

We consider the case where X̂ ¼ X̂g is one of the varieties
constructed by Levasseur et al. [3], which is associated to a
Lie algebra g. Constructing these varieties involves a choice
of a minuscule root of g. The minuscule root defines a
decomposition of g of the form

g ¼ g−1 ⊕ g0 ⊕ g1; ð6Þ
where g0 ¼ u1 ⊕ s, and g1 is a minuscule representation
Vω associated to the highest weightω of the semisimple Lie
algebra s [18]. LetGs be the simply connected complex Lie
group corresponding to s, and Pω be the parabolic sub-
group corresponding to ω. Then, one defines X̂g to be the
complex cone over the base PðX̂gÞ ¼ Gs=Pω. The spaces
X̂g have the following homogeneous coordinate ring:

C½X̂g� ≅ ⨁
l≥0

Vlω: ð7Þ

We focus on the following cases, where g belongs to the
Deligne-Cvitanović exceptional series, listed in Table I.
For e6, g0 is the Lie algebra d5 ⊕ u1, Vω ¼ Vω4

is the
spinor representation 16 of soð10Þ, and X̂g coincides with
P, the space of ten-dimensional pure spinors.
The βγ system on X̂g has central charge c ¼ 2 dimC X̂g

and manifest global symmetry g0 ¼ u1 ⊕ s, where the
Abelian factor acts by rescaling the cone and s acts on the
base. We consider the following partition function:

Zgðt;ms; τÞ ¼ TrHð−1ÞFe2πiτHtJ−1
2
au1 expð2πimgÞ; ð8Þ

where q ¼ e2πiτ, t ¼ e2πiσ , F is the fermion number,
H is the (left) Hamiltonian, J is the u1 generator, and
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ms ∈ hðsÞC are fugacities for s. Our definition for the
partition function differs from that of [2,19,20] by a factor
of t−

1
2
au1 , where

au1
¼ −c1ðPðX̂gÞÞ ð9Þ

is the u1 symmetry anomaly appearing in the operator
product expansion (OPE)

JðyÞTðzÞ ∼ au1

ðy − zÞ3 þ
JðzÞ

ðy − zÞ2 : ð10Þ

The u1 level, which appears in the OPE,

JðyÞJðzÞ ¼ ku1

ðy − zÞ2 ð11Þ

is given in this class of models by

ku1
¼ 1

2
au1

: ð12Þ

The u1 symmetry anomaly and level can be extracted from
the unrefined Hilbert series of X̂g [19].
The partition function displays the field-antifield sym-

metry

Zgðt;ms; τÞ ¼ ð−1ÞdimC X̂gZgð1=t;−ms; τÞ ð13Þ

and ⋆-conjugation symmetry

Zgðt;ms; τÞ ¼ −ðq1
2t−1Þ12c1ðPðX̂gÞÞZgðq=t;−ms; τÞ ð14Þ

of the βγ system [2,13]. The ground states contribute

q−
c
24t

1
2
c1ðX̂gÞHSg ð15Þ

to the partition function, whereHSg ¼
P∞

l¼0 t
lχsVlω

ðmsÞ is
the refined Hilbert series of X̂g.

IV. βγ SYSTEM FROM 4D/2D SCFT

SCFT provides an additional vantage point from which
the curved βγ systems can be studied. Indeed, the curved βγ
system with target X̂g can be identified with the holomor-
phic twist of a two-dimensional (0,2) sigma model on X̂g,
which also implies equality between the partition function
of the former and the elliptic genus of the latter [21–23].
To realize the (0,2) sigma models with the targets X̂g

listed in Table I, we begin with a triplet of four-dimensional
SCFTs T g, where g denotes the Lie algebra of the flavor
symmetry group of Tg. The theory T d4 is the N ¼ 2 super
Yang-Mills theory with gauge group SUð2Þ and four
flavors, while T e6 and T e7 are the rank-one e6 and e7
Minahan-Nemeschansky theories [24,25]. We next perform

a partial N ¼ −1 topological twist on the N ¼ 2 SCFT
along the lines of [9], and reduce the theory on a two-sphere
S2, leading to a two-dimensional theory preserving (0,2)
supersymmetry.
Four-dimensional N ¼ 2 SCFTs have both a Higgs

branch and an associated vertex operator algebra (VOA)
[8]. These invariants are intricately related to each other
[26]. The Higgs branch HiggsðT gÞ is the minimal (non-
zero) nilpotent orbit O of g, which is also the centered
moduli space of one G-instanton [27,28], and has complex
dimension 2h∨ − 2. Algebraically, the minimal nilpotent
orbit is the associated variety of the Joseph ideal J 0 [29].
The spaces X̂g are Lagrangian submanifolds of HiggsðT gÞ.
To see this, we first fix a triangular decomposition g ¼
n− ⊕ h ⊕ nþ of g. The irreducible components of the
intersection of O with nþ are called minimal orbital
varieties. They are isotropic subspaces with respect to
the Killing form, of dimension 1

2
dimO, hence Lagrangian

subvarieties of O by theorem 3.3.6 of [30], and play an
important role in geometric representation theory [3,
31–33]. Smooth orbital varieties of the minimal nilpotent
orbit are minuscule varieties [34]. The spaces X̂g are
minuscule varieties for Gs.
The associated VOA, VkðgÞ, is the affine algebra ĝk at

level k ¼ −h∨=6 − 1, where h∨ is the dual Coxeter number
of g [35]. The holomorphic twist of the (0,2) theory is a
chiral theory whose spectrum organizes into representa-
tions of the VOA. In particular, from the growth of states,
one can argue that the spectrum must include a represen-
tation of dimension hmin ¼ 1

2
ð4a4D − 5c4DÞ < 0 [9], where

ða4D; c4DÞ are the anomaly coefficients of Tg listed in
Table II. Thus, the central charge of the (0,2) theory is
shifted from the Sugawara value

cSug ¼
dim gk
h∨ þ k

ð16Þ

to the effective central charge

TABLE I. Relevant varieties.

g ω s dim g1 dimC X̂g PðX̂gÞ c1ðPðX̂gÞÞ
d4 ω4 a3 6 5 Grð2; 4Þ 4
e6 ω1 d5 16 11 OGþð5; 10Þ 8
e7 ω7 e6 27 17 OP2 12

TABLE II. Properties of the T g theories.

T g h∨ cSug a4D c4D hmin ceff

T d4 6 −14 23
24

7
6

−1 10

T e6 12 −26 41
24

13
6

−2 22

T e7 18 −38 59
24

19
6

−3 34
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ceff ¼ cSug − 24hmin ¼ 2 dim X̂g; ð17Þ

which coincides with the central charge of the βγ system on
X̂g. The shift in central charge can be traced back to the fact
that the stress-energy tensor differs from the Sugawara
stress tensor by a correction term [11,13,19],

T ¼ TSug þ ∂J; ð18Þ
which gives rise to the u1 anomaly of Eq. (10). Since the
JðyÞTSugðzÞ OPE has no anomaly, the u1 symmetry
anomaly and level are proportional, with relation given
by Eq. (12). Similarly, after the modification of the stress
tensor, the currents in g0 retain conformal dimension 1,
while the currents in g1 and g−1 acquire the new conformal
dimensions 2 and 0, respectively.
Altogether, these considerations suggest that the (0,2)

theories we constructed flow in the IR to a sigma model on
the Lagrangian submanifold X̂g of HiggsðT gÞ and that their
elliptic genus coincides with the partition function of the
corresponding βγ system. Indeed, for g ¼ d4, the twisted
compactification of T d4 is the Dedushenko-Gukov (0,2)
model, which has been argued to flow to a (0,2) sigma
model on X̂d4 [11]. We conjecture that an analogous result
holds for g ¼ e6 and e7 as well.

V. SYMMETRY ENHANCEMENT

The βγ system with target X̂g has a manifest affine ĝ0 ⊂ ĝ
symmetry. In this section, we argue that in fact the βγ
system enjoys affine ĝ symmetry. First, let us review how
enhancement to g ¼ g−1 ⊕ g0 ⊕ g1 occurs in the quantum
mechanics on X̂g, a fact which has been studied in [6,7].
The differential operators, DðX̂gÞ, on X̂g are equivalent to
UðgÞ=J 0, where UðgÞ is the universal enveloping algebra
of g and J 0 is the Joseph ideal [3]. Infinitesimal rotation
and dilatation symmetries of X̂g are generated by differ-
ential operators transforming in g0. Differential operators
realizing g−1 and g1 also have a simple description: those in
g−1 correspond to coordinate multiplication, while those in
g1 act like generalized special conformal transformations.
Next let us discuss how the identification betweenDðX̂gÞ

and UðgÞ=J 0 suggests a relationship between the βγ
system on X̂g and the VOA VkðgÞ. On the one hand, the
operators realizing the affine ĝk symmetry in the βγ system,
whose explicit construction we defer to future work [10],
are expected to reduce to differential operators on X̂g in the
limit of quantum mechanics. On the other hand, the
chiralization of the algebra UðgÞ=JW ≅ C ×UðgÞ=J 0

is the VOA VkðgÞ, where the ideal JW of UðgÞ is defined
in [36]. This means that the Zhu algebra of VkðgÞ is
C ×UðgÞ=J 0. This suggests that we can view the VOA
VkðgÞ as an algebraic analog of the curved βγ system on X̂g.
The various relations are summarized in the following
diagram:

The relation between the βγ system and the twisted S2

compactification of the T g theory provides a further reason
to expect the appearance of the affine ĝk algebra. Indeed, as
we have seen in the previous section, the chiral algebra of
the resulting (0,2) model provides a representation of the
VOA VkðgÞ.
In the remainder of this section, we discuss in detail how

the symmetry enhancement manifests itself in the partition
function in the csoð8Þ−2 and ðê6Þ−3 cases. Zhu’s theorem
[37] relates the classification of simple highest weight
VkðgÞ-modules to Joseph’s classification [33] of simple
highest weight UðgÞ=J 0-modules [36]. We use this clas-
sification in the following examples.

A. Enhancement to (d̂4) − 2 in theGr(2;4) cone βγ system

We start with the βγ system on the complex cone over
Grð2; 4Þ. There exist at least two convenient UV descrip-
tions of the corresponding (0,2) sigma model, for which the
appearance of an affine ðd̂4Þ−2 algebra was found in [11]:
the first is as a two-dimensional (0,2) SUð2Þ gauge theory
with four fundamental chiral multiplets, which arises
directly from the twisted compactification of the 4D
N ¼ 2 theory T soð8Þ; the second is as a (0,2) Landau-
Ginzburg model consisting of a single Fermi superfield, Ψ
and a set of chiral superfields Φ in the ∧2 4 ¼ 6 repre-
sentation of SUð4Þ, coupled via a J-type superpotential
interaction term J ¼ ΨPfðΦÞ.
Classically, the vacuum moduli space of this model is a

quadric in C6, specifically the affine cone over Gð2; 4Þ,
which is the closure of X̂soð8Þ. Quantum corrections will
modify this picture in the interior. As we will discuss in
[10], in analogy with the pure spinor case, we conjecture
[38] that quantum corrections move the singular vertex
of the affine cone infinitely far away, realizing a two-
dimensional (0,2) sigma model on X̂soð8Þ.
For this theory, g0 ¼ u1 ⊕ a3 is the manifest global

symmetry, while g−1 ¼ g1 is the Vω2
¼ 6 representation

of a3. The partition function can be computed straight-
forwardly, either as the elliptic genus of the (0,2) SQCD
theory [39] following [40–42], or directly as the partition
function of the curved βγ system on Grð2; 4Þ [13]. It is
given by

Zd4ðt;ma3 ; τÞ ¼ iηðτÞ5θ1ð2σ; τÞQ
w∈6θ1ðσ þ ðma3 ; wÞ; τÞ : ð19Þ

The product in the denominator is over the weights in 6 of
a3. We now proceed to express the partition function in
terms of ðd̂4Þ−2 characters. The embedding of u1 ⊕ a3 into
d4 implies the following mapping of parameters:

R. EAGER, G. LOCKHART, and E. SHARPE PHYS. REV. D 101, 026006 (2020)

026006-4



md4
i ¼ ma3

i for i ¼ 1; 2; 3;

md4
4 ¼ σ −

ma3
1

2
−ma3

2 −
ma3

3

2
:

The algebra ðd̂4Þ−2 is known to possess four irreducible
highest weight representations, corresponding to the fol-
lowing choices of highest weight [36,43]:

0; −2ω1; −2ω3; −2ω4: ð20Þ

The three nonvacuum representations are related by triality.
While each of these highest weights is not dominant, it is
still the case that there exists a unique dominant weightΛ in
the shifted Weyl orbit of the highest weight. As a
consequence [44,45], the corresponding affine characters
are determined in terms of Kazhdan-Lusztig polynomials
[44,45]. By an explicit computation, we find that the
partition function is given by a sum of two characters,

Zd4ðt;ma3 ; τÞ ¼ χ̂ðd̂4Þ−20 ðmd4 ; τÞ − χ̂ðd̂4Þ−2−2ω4
ðmd4 ; τÞ: ð21Þ

The vacuum character has the following q expansion:

χ̂ðd̂4Þ−20 ¼ q
14
24ð1þ χd428qþ ðχd4300 þ χd428 þ 1Þq2 þ…Þ: ð22Þ

The nonvacuum character has conformal dimension
h ¼ −1, consistent with Table II. As noted in [26], it
has the property that an infinite number of states appear at
each energy level. In particular, its lowest energy level
component, expressed in u1 ⊕ a3 fugacities, has the
following series expansion:

−q14
24
−1t2

X∞
l¼0

tlχa3Vlω2
ðma3Þ; ð23Þ

which encodes the ground states of the partition function of
the βγ system, Eq. (15). At the next energy level, one finds
the following contributions:

q
14
24ð2 − t2ðχa315 þ 1Þ − t2ðχa315 þ 1Þ − t3ðχa364 þ 2χa36 Þ þ…Þ:

ð24Þ

Interestingly, it appears natural to define the following new
combination of characters:

ξ̂ðd̂4Þ−2−2ω4
ðmd4 ;τÞ ¼−χ̂ðd̂4Þ−2−2ω4

ðmd4 ;τÞþ 2χ̂ðd̂4Þ−20 ðmd4 ;τÞ; ð25Þ

in terms of which

Zd4ðt;ma3 ; τÞ ¼ −χ̂ðd̂4Þ−20 ðmd4 ; τÞ þ ξ̂ðd̂4Þ−2−2ω4
ðmd4 ; τÞ: ð26Þ

The ðd̂4Þ−2 characters, once expressed in terms of u1 ⊕ a3
fugacities, satisfy the following simple relation:

t2

q
χ̂ðd̂4Þ−20 ðτ − σ;ma3 ; τÞ ¼ ξ̂ðd̂4Þ−20 ðσ;ma3 ; τÞ; ð27Þ

which guarantees that the partition function obeys the
⋆-conjugation symmetry of Eq. (14).

B. Enhancement to (ê6) − 3 in the pure spinor βγ system

We now turn to the pure spinor βγ system and discuss
how the affine ðê6Þ−3 symmetry manifests itself at the level
of the partition function. The partition function has been
computed up to energy level five by fixed point techniques
in [13], and an all-order expression in the md5 → 0 limit
was found in [46] using local algebra [47]. In what follows,
we will be able to give a very simple closed form for the
partition function for arbitrary values of me6 fugacities.
For this theory, g0 is the u1 ⊕ d5 ghost and rotational

symmetry of the pure spinor ghost system. The components
g−1 and g1 correspond to the 16 and 16 representations of
d5, respectively. We begin by discussing the e6 → u1 ⊕ d5
branching rules. The realization of the space P of pure
spinors as the variety X̂e6 implies the following mapping of
parameters between e6 and u1 ⊕ d5:

0
BBBBBBBBBB@

me6
1

me6
2

me6
3

me6
4

me6
5

me6
6

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

−3 − 1
2

−1 − 3
2

− 3
4

− 5
4

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1
CCCCCCCCCCA

·

0
BBBBBBBBBB@

mu1

md5
1

md5
2

md5
3

md5
4

md5
5

1
CCCCCCCCCCA

(see Appendix A for our conventions). At the level of
representations, the 27 and adjoint of e6 decompose as
follows, where the subscript denotes u1 charge,

27 → 1−4 þ 16−1 þ 102;

78 → 16−3 þ 10 þ 450 þ 163:

Furthermore, to match the pure spinor formalism conven-
tions, in Eq. (8), we must set

t ¼ e2πi·ð−3mu1 Þ: ð28Þ

The algebra ðê6Þ−3 possesses a finite number of irreduc-
ible modules [36] corresponding to the highest weights

0; −3ω1; −3ω6; ω1−2ω3; ω6−2ω5; −2ω2;−ω4:

ð29Þ

The nonvacuum representations have conformal dimension
−2which equals the value of hmin given in Table II. We find
that the pure spinor partition function is given by the
following combination of ðê6Þ−3 characters:
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Ze6ðt;ma3 ; τÞ ¼ χ̂ðê6Þ−30 ðme6 ; τÞ − χ̂ðê6Þ−3−3ω1
ðme6 ; τÞ: ð30Þ

The lowest energy component of the nonvacuum term is the
Hilbert series of theWallach representation of the e6 finite-
dimensional Lie algebra [5] corresponding to highest
weight −3ω1, up to an overall factor of −q26

24
−2t4.

Expressed in terms of u1 ⊕ d5 fugacities, it is given by

−q−22
24t4

X∞
l¼0

tlχd5Vlω5
ðmd5Þ; ð31Þ

in agreement with the Hilbert series of the cone over the
orthogonal Grassmannian OGþð5; 10Þ, which is the space
of pure spinors in ten dimensions.
Again, it appears natural to define the following combi-

nation of characters:

ξ̂ðê6Þ−3−3ω1
ðme6 ; τÞ ¼ −χ̂ðê6Þ−3−3ω1

ðme6 ; τÞ þ 2χ̂ðê6Þ−30 ðme6 ; τÞ; ð32Þ

in terms of which

Ze6ðt;md5 ; τÞ ¼ −χ̂ðê6Þ−30 ðme6 ; τÞ þ ξ̂ðê6Þ−3−3ω1
ðme6 ; τÞ: ð33Þ

The ðê6Þ−3 characters, expressed in terms of u1 ⊕ d5
fugacities, satisfy the following relation:

t4

q2
χ̂ðê6Þ−30 ðτ − σ;md5 ; τÞ ¼ ξ̂ðê6Þ−30 ðσ;md5 ; τÞ; ð34Þ

which guarantees that the partition function obeys the
⋆-conjugation symmetry described by Eq. (14). The
significance of writing the partition function as in

Eq. (33) is that the ξ̂ðê6Þ−3−3ω1
character captures the contribution

of the globally defined operators, which are identified with

the zeroth cohomology H0ð∂̄Þ, while χ̂ðê6Þ−30 captures the
contribution from the “missing states” in the Hilbert space
of the pure spinor system, which are built out of the b ghost
and correspond to H3ð∂̄Þ.
We also find that the pure spinor partition function,

written in terms of e6 fugacities, can be written in the
following very simple closed form:

Ze6ðme6 ; τÞ ¼ ð2iÞ−1α−5;1ðm̃e6 ; τÞ
ηðτÞ22Q16

j¼1 φ−1;1=2ððme6 ; α∨16;jÞ; τÞ
: ð35Þ

The product in the denominator is over the subset α∨16 of
coroots of e6 that belong to g−1 ¼ 16 under the grading in
Eq. (6). On the other hand, the numerator is given in terms
of the Weyl½e6�-invariant Jacobi form αe6−5;1ðme6 ; τÞ (see
Appendix B), with the following subtlety: the argument
me6 is replaced by the shifted e6 fugacities m̃ ¼ P

i m̃
e6
i ωi,

where m̃e6
i ¼ mi for i ¼ 2;…; 6, but

m̃e6
1 ¼ −3m1 − 3m2 − 5m3 − 6m4 − 4m5 − 2m6: ð36Þ

Under e6 → d5 ⊕ u1, this shift corresponds to setting
mu1 → −3mu1 , while keeping md5 invariant.
Using the modular transformation properties of the

numerator [and taking into account the shift (36)], one
finds that under τ → −1=τ Ze6 transforms as follows:

Ze6

�
me6

τ
;−

1

τ

�
¼ exp

�
−3

πi
τ
ðme6 ;me6Þ

�
Ze6ðme6 ; τÞ;

where the phase factor is consistent with the occurrence of
the ðê6Þ−3 algebra [48].
It is now straightforward to express the partition function

(35) in terms of the pure spinor fugacities t and md5 via
Eq. (B6); after doing so, we find an exact match with [2],
where Ze6 was computed up to the fifth energy level by
fixed point techniques.
Rewriting the partition function as

Ze6ðme6 ; τÞ ¼ χ̂ðê6Þ1ω1
ðme6 ; τÞ − χ̂ðê6Þ1ω6

ðme6 ; τÞQ
16
i¼1 ηðτÞ−1θ1ððm; α∨16;iÞ; τÞ

; ð37Þ

where χ̂ðê6Þ1ω1;6 ¼ Θe6
ω1;6=η

6 are level 1 e6 affine characters,
suggests a possible alternative interpretation as a level 1 e6
sector coupled to 16 complex bosons; we do not pursue this
direction further in this paper.

VI. CONCLUSIONS

We have found that the states in the βγ system with target
X̂g organize into a direct sum of irreducible modules of an
affine ĝ symmetry algebra. When the target is the space of
ten-dimensional pure spinors, P, the symmetry algebra is
ðê6Þ−3. This knowledge led us to find a compact closed
form expression for the full partition function of the ghost
system of the pure spinor superstring in Eq. (35). We leave
it to future work to study possible implications for the
computation of operator product expansions and scattering
amplitudes in superstring theory.
While we have given several arguments for the appear-

ance of the ĝk symmetry, it should be possible to explicitly
realize its generators in the curved βγ system. We have
focused on three different smooth targets for the βγ system.
It would also be natural to extend our analysis to other
targets, possibly with singularities.
We have seen that the appearance of ĝk symmetry has

a natural explanation from the perspective of the four-
dimensional SCFT, Tg, dimensionally reduced on S2. This
also explains the appearance of the vacuum module of ĝ
in the elliptic genus. It remains however to explain the
occurrence of a second module. A possible hint is that
the unflavored limit of the vacuum character of the VOA
VðgkÞ, for g belonging to the Deligne-Cvitanović excep-
tional series, satisfies a second order linear modular
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differential equation [26,49]; the other solution has been
conjectured by Beem and Rastelli to arise from a surface
operator in the Tg theory. This suggests an interpretation of
the second module in the (0,2) theory as originating from a
surface defect wrapping the S2. We plan to return to this
issue in a separate work [10].
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APPENDIX A: LIE ALGEBRAS

Given a Lie algebra g, let hðgÞ be its Cartan subalgebra,
Δg its root lattice, αi, i ¼ 1;…; rankðgÞ a choice of simple
roots, and α∨i the corresponding coroots. The fundamental
weights ωi are defined by

ðωi; α∨j Þ ¼ δij; ðA1Þ

where (·; ·) is the invariant bilinear form on hðgÞC, nor-
malized such that ðα; αÞ ¼ 2 for the long roots. We adopt

Bourbaki’s numbering convention for the ωi. We denote the
irreducible representations associated to the highest weight
ω either by Vω or by its dimension, following the
conventions of [51] (see, e.g., Fig. 1). The character of a
highest weight representation R of g is given by

χRðmgÞ ¼
X
w∈R

expð2πiðmg; wÞÞ; ðA2Þ

where mg ¼ P
i m

g
iωi ∈ h�C. The character of a g ¼ u1

representation of charge k is just e2πikm
u1 . For an affine Lie

algebra, we denote a highest weight representation simply
by the finite part ω ¼ P

i niωi of its highest weight
ðω; k; nÞ. We denote by χ̂ĝkω ðmg; τÞ the corresponding affine
character.

APPENDIX B: MODULAR AND JACOBI FORMS

The Dedekind η function is defined as follows:

ηðτÞ ¼ q1=24ðq; qÞ∞ ¼ q1=24
Y∞
k¼1

ð1 − qkÞ: ðB1Þ

The Jacobi theta functions are given by

θ1ðζ; τÞ ¼ i
X

n∈Zþ1
2

ð−1Þnznqn2
2 ; θ2ðζ; τÞ ¼

X
n∈Zþ1

2

znq
n2
2 ;

θ3ðζ; τÞ ¼
X
n∈Z

znq
1
2
n2 ; θ4ðζ; τÞ ¼

X
n∈Z

ð−1Þnznq1
2
n2 ;

where z ¼ e2πiζ. Closely related is the weak Jacobi form of
weight −1 and index 1

2
,

φ−1;1=2ðζ; τÞ ¼
θ1ðζ; τÞ
ηðτÞ3 : ðB2Þ

We also make use of Weyl-invariant weak Jacobi forms
[52–55]. Under a modular transformation, a Weyl½g�-
invariant weak Jacobi form φw;n∶hðgÞ × H → C of weight
w and index n transforms as

φw;n

�
z

cτ þ d
;
aτ þ b
cτ þ d

�

¼ ðcτ þ dÞw exp
�

πinc
cτ þ d

ðz; zÞ
�
φw;nðz; τÞ; ðB3Þ

while for s ∈ Weyl½g�

φw;nðsz; τÞ ¼ φw;nðz; τÞ: ðB4Þ

Let Jgw;n be the vector space of Weyl½g�-invariant weak
Jacobi forms of weight w and index n. For g ≠ e8, the
bigraded ring Jg�;� ¼ ⨁w;nJ

g
w;n is a polynomial ring over

the ring of SLð2;ZÞ modular forms, which is known to beFIG. 1. Dynkin diagrams showing our labeling conventions.
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generated by rkðgÞ þ 1 independent forms αgw;n of specified
weight and index. For g ¼ e6, the seven generators

αe60;1; αe6−2;1; αe6−5;1; αe6−6;2; αe6−8;2; αe6−9;2; αe6−12;3

have been constructed in [53,54]. In this paper, we make
use of the unique Weyl½e6�-invariant weak Jacobi form of
weight −5 and index 1,

αe6−5;1ðme6 ; τÞ ¼ 2iðΘe6
ω1
ðme6 ; τÞ − Θe6

ω6
ðme6 ; τÞÞ

ηðτÞ16 ; ðB5Þ

where the level 1 e6 theta functions

Θe6
ω1;6ðme6 ; τÞ ¼

X
w∈Δe6þω1;6

exp ðπiτðw;wÞ þ 2πiðw;me6ÞÞ

have the following q-series expansions:

Θω1
e6 ðm; τÞ

q11=24ηðτÞ5 ¼ χe627 þ qχe6351 þ q2ðχe61728 þ χe63510 Þ þOðq3Þ;

Θω6
e6 ðm; τÞ

q11=24ηðτÞ5 ¼ χe6
27
þ qχe6

351
þ q2ðχe6

1728
þ χe6

3510
Þ þOðq3Þ:

In terms of d5 ⊕ u1 fugacities,

Θe6
ω1
ðm; τÞ ¼ q1=6

2

X4
k¼1

σke−2πiμθkð3μ − τ; 3τÞ
Y5
j¼1

θkðμj; τÞ;

Θe6
ω6
ðm; τÞ ¼ q1=6

2

X4
k¼1

σke2πiμθkð3μþ τ; 3τÞ
Y5
j¼1

θkðμj; τÞ;

ðB6Þ

where −σ1 ¼ σ2 ¼ σ3 ¼ −σ4 ¼ 1, μ ¼ −2mu1 and

μ1 ¼ md5
1 þmd5

2 þmd5
3 þ 1

2
md5

4 þ 1

2
md5

5 ;

μ2 ¼ md5
2 þmd5

3 þ 1

2
md5

4 þ 1

2
md5

5 ;

μ3 ¼ md5
3 þ 1

2
md5

4 þ 1

2
md5

5 ;

μ4 ¼
1

2
md5

4 þ 1

2
md5

5 ; μ5 ¼ −
1

2
md5

4 þ 1

2
md5

5

are d5 fugacities expressed in the orthogonal basis.
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