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Chapter 1: Introduction 

Improving the learning and success of students in undergraduate science, technology, 

engineering, and mathematics (STEM) courses has become an increased focus of education 

researchers within the past decade. As part of these efforts, discipline-based education research 

(DBER) has emerged within STEM education as a way to address discipline-specific challenges 

for teaching and learning, by combining expert knowledge of the various STEM disciplines with 

knowledge about teaching and learning (Dolan et al., 2018; National Research Council, 2012). 

Particularly important to furthering DBER and improving STEM education are interdisciplinary 

studies that examine how the teaching and learning of specific concepts develop among and 

across various STEM disciplines. As the National Research Council (NRC) (2012) stated in their 

DBER report: 

Interdisciplinary studies are needed to examine cross-cutting concepts and cognitive 

processes. DBER scholars have no shortage of discipline-specific problems and 

challenges to study, but crosscutting concepts … and structural or conceptual similarities 

that underlie discipline-specific problems … also merit attention. Interdisciplinary studies 

could help to increase the coherence of students’ learning experience across disciplines 

by uncovering areas of overlap and gaps in content coverage, and could facilitate an 

understanding of how to promote the transfer of knowledge from one setting to another. 

(p. 202) 

Interdisciplinary studies are especially important for mathematics education researchers, as many 

of the students enrolled in mathematics courses are studying mathematics to use within their 

chosen STEM majors and careers. As mathematics education researchers examine how students 

learn and then use various mathematical concepts throughout their undergraduate studies, they 
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can provide insights to mathematics instructors about their students and how they might teach 

those concepts effectively, helping students succeed now as well as in the future. 

Mathematics is particularly relevant to physics as a powerful tool for modeling physical 

systems, yet a common lament of physics educators is the considerable struggle students have 

with the mathematical problem solving that is an integral part of this modeling (Tuminaro & 

Redish, 2007). In line with the NRC’s call, interdisciplinary studies between mathematics 

education and physics education can be a useful endeavor for addressing the struggles students 

have in understanding and using mathematical concepts within both their mathematics and 

physics courses. Some examples of this interdisciplinary work include: (a) mathematics 

educators investigating the ways students understand and reason about the meaning of 

derivatives in physical contexts (Jones & Watson, 2018); (b) physics education researchers 

investigating multivariable calculus students’ abilities to solve problems involving slopes and 

derivatives stripped of physics contexts (Christensen & Thompson, 2012); and (c) collaborations 

between mathematics and physics educators to improve students’ understanding of multivariable 

calculus in both mathematics and physics (Gire, Wangberg, & Wangberg, 2017; Roundy et al., 

2015; Wangberg & Johnson, 2013). These studies illustrate the important and fruitful 

investigations made possible through engaging in interdisciplinary educational research. 

One of the more difficult undergraduate physics courses that relies heavily on 

mathematics, providing plentiful opportunities for interdisciplinary educational studies, is 

quantum mechanics. Physics education research on quantum mechanics has grown within the 

past two decades and has made progress in exploring experts’ and students’ understanding of, or 

difficulty with, quantum mechanical concepts, as well as effective ways to teach quantum 

mechanics. For instance, Singh and Marshman (2015) and Marshman and Singh (2015) delineate 
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several difficulties that students have with understanding quantum mechanics, including the 

jarring “paradigm shift” students encounter as they move from classical mechanics to quantum 

mechanics. Passante, Emigh, and Shaffer (2015) specifically focus on the challenges students 

encounter when reasoning about energy measurements of quantum states, such as students’ 

failure to understand the relationship between a wave function and the possible energy 

measurements, or students’ failure to recognize the role of the Hamiltonian in determining the 

possible energy values for a quantum system. Additionally, Emigh, Passante, and Shaffer (2015) 

identify several difficulties underlying student errors in reasoning about the time dependence of 

quantum systems, including a tendency for students to misinterpret the mathematical formalism 

used to model time dependent quantum mechanical systems. 

This is not to say research on students’ understanding of quantum mechanics has only 

focused on student difficulties. For example, Gire and Price (2015) outlined several features of 

different quantum mechanical notations (matrix, Dirac, and wave function) that can help 

facilitate computations and interpretation when working on quantum mechanical problems. They 

further posited that Dirac notation can be a particularly useful notation to students. As another 

example, physics faculty at Oregon State University worked to improve students’ overall 

experience in learning physics, including quantum mechanics, by completely reorganizing their 

upper-division physics curriculum (Manogue et al., 2001): 

[The] new curriculum for junior-year physics majors consists of a sequence of nine 

courses, each lasting about three weeks and meeting for seven hours per week. Each 

course is a case study involving a single physical situation or simple, conceptual 

principle. We call these case studies Paradigms. … The Paradigms are followed by six 

single-term Capstone courses that systematically present the usual deductive systems of 
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physics. (p. 979) 

In quantum mechanics specifically, junior physics students are introduced to the “paradigm 

shift” from classical mechanics to quantum through a “spins-first” approach (McIntyre, 2012). 

These changes have made it easier for teachers to point out similarities and differences between 

classical and quantum concepts, and “students [have] indicated an improved comfort level with 

applications of mathematical tools” (Manogue et al., 2001, p. 988). 

More directly relevant to undergraduate mathematics education, several studies have 

explored students’ understanding of linear algebra concepts (such as eigentheory) as they are 

used within quantum mechanics. Dreyfus, Elby, Gupta, and Sohr (2017) posit that productive 

mathematical sense-making with the eigen-equations used within quantum mechanics (e.g.,  

𝐻+|𝜓⟩ = 𝐸|𝜓⟩) requires a student to understand and employ two symbolic forms (Sherin, 2001), 

namely the transformation symbolic form (a matrix or linear operator acting on a vector 

“transforms” it into a new vector) and the eigenvector-eigenvalue symbolic form. Also 

investigating physics students’ understanding of eigentheory, Wawro, Watson, and Christensen 

(2018a, 2018b) used a Resources perspective (Hammer, 2000)1 to identify resources physics 

students activated as they reasoned about eigenvectors and eigenvalues of real 2x2 matrices, 

including how they thought about solutions to the equation !4 2
1 3# !

𝑥
𝑦# = 2 !

𝑥
𝑦#. They found that 

many students were able to recognize this equation as an instantiation of eigentheory and were 

able to find a solution, but some students were limited as they activated a resource that made 

them think the system of equations encapsulated by the matrix equation should only have a 

single solution. Hillebrand-Viljoen and Wheaton (2018) further found that students struggle to 

 
1 “A resource is a basic cognitive network that represents an element of student knowledge or a set of knowledge 
elements that the student tends to consistently activate together” (Sabella & Redish, 2007, p. 1018) 
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coordinate the “math-story” and “physics-story” spaces they have to navigate within quantum 

mechanics. They explain how solving complex quantum mechanics problems requires a facility 

with the mathematics (particularly linear algebra) involved in quantum mechanics, an 

understanding of the physical systems that are being modeled, and the ability to move back and 

forth between these two story spaces. 

One mathematical concept that is essential to quantum mechanics is normalization of 

vectors, a crosscutting idea that appears in several other mathematics and physics courses. It is 

particularly important to directional derivatives in multivariable calculus, the development of 

orthonormal bases through the Gram-Schmidt process in linear algebra and numerical analysis, 

2- or 3-dimensional motion in physics, and modeling quantum mechanical states in quantum 

physics. Despite students encountering normalization several times in their undergraduate study 

of mathematics and physics, students’ understanding of normalization has been relatively 

uninvestigated, within both undergraduate mathematics education and physics education 

research. The purpose of this study is to explore students’ various conceptions of normalization 

after encountering the concept in mathematics and physics courses, and to see how students 

make sense of the novel use of normalization for probabilistic modeling in quantum mechanics. 

More specifically, the research questions for this study are: 

1. What are the various conceptions math and physics students have about normalization 

from math and physics courses in which the concept is taught? 

2. What changes occur in physics students’ conceptions of normalization while taking a 

quantum mechanics course? 

The first research question aims to further and deepen our understanding of the ways 

students think about and conceptualize this important mathematical idea. Answering this first 
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research question will provide necessary data for delineating the components and connections 

involved in a student’s conception of normalization. These components include students’ 

understanding of mathematical norms2, vectors and vector spaces, and the reasons why 

normalization is important (Watson, 2017a, 2017b, 2018). To examine and analyze students’ 

various conceptions of normalization, I make use of coordination class theory (diSessa & Sherin, 

1998; diSessa & Wagner, 2005) which provides organization for looking at the mental structures 

and processes involved in constructing a concept such as normalization. 

The emphasis on examining students’ changing conceptions of normalization within 

quantum mechanics encapsulated in the second question has a two-fold purpose. First, 

normalization of the vectors representing quantum mechanical states is essential due to the 

probabilistic nature of quantum mechanical systems; hence, it provides a rich setting to 

investigate students’ conceptions of normalization and their perceptions of its usefulness to 

mathematics and science. Second, the use of normalization in quantum mechanics could be very 

different from the uses of normalization students encounter prior to a quantum mechanics course. 

In particular, the use of new (to the students) notational systems (e.g., Dirac Notation), vector 

spaces (e.g., 𝐿!-space or ℂ"), and norms on these various vector spaces provide ample 

opportunity to explore changes that can occur in a student’s conception of normalization.  By 

investigating this rich setting, this study has the potential to inform both mathematics and 

physics educators of specific student conceptions of normalization that seem to be productive for 

understanding normalization in novel contexts. 

To operationalize these research questions, I begin chapter 2 with the theoretical 

 
2 In mathematics education research, we sometimes talk of “social norms” and “sociomathematical norms” (e.g., 
Cobb & Yackel, 1996). In this paper, whenever the word “norm” is used, it specifically refers to the mathematical 
concept of norm, which is a function that assigns a strictly positive “length” or “size” to each vector of a specific 
vector space. 
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framework for this study. I first explain my chosen epistemological lens of constructivism. Next, 

I define what students’ conceptions are, and how these conceptions grow and develop. In 

particular, I explain how students’ ideas and conceptions consist of knowledge systems (diSessa, 

1996) that have been constructed through their experience and have proved useful for making 

sense of the world. I also elaborate how students’ constructed conceptions of normalization can 

be analyzed with coordination class theory (diSessa & Sherin, 1998; diSessa & Wagner, 2005). 

Chapter 2 additionally includes a literature review in which I explore research that has been done 

on students’ understanding of vector, absolute value, norms and normalization, and related 

concepts. Furthermore, Chapter 2 contains a deeper explanation of the mathematical connections 

between linear algebra and quantum mechanics. Chapter 2 finishes with an explanation of the 

components involved in students’ understanding of normalization that I have discovered through 

previous work (Watson, 2017a, 2017b, 2018), and how this can be combined with coordination 

class theory to analyze students’ conceptions of normalization. 

Chapter 3 is a thorough explanation of all data collection and analysis. As a brief 

overview, I will obtain the first data set (mainly focused on addressing the second research 

question) by giving a survey to physics students who are just beginning the course Introduction 

to Quantum Mechanics. This survey will assess students’ understanding of normalization of 

vectors. Based on these surveys, I will choose a diverse set of six students in the course who are 

willing to participate in 30-45 minute interviews three times during the course: within the first 

week of the course, shortly after being introduced to normalization in quantum mechanical 

systems (probably during week 2 or 3), and then later in the course after they have studied 

quantum mechanics for a decent amount of time, and covered several concepts where 

normalization is important. These interviews will focus on their initial conceptions of 
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normalization and will explore how their conceptions about normalization change and adapt as 

they learn the quantum mechanics material.  

I will obtain the second data set (focused on addressing the first research question) by 

giving the same brief survey assessing students’ conceptions of normalization to students in three 

different courses that physics students would likely take before taking quantum mechanics: 

Introduction to Multivariable Calculus, Introduction to Linear Algebra, and Math Methods in 

Physics. Additionally, this survey will be given to students in Linear Algebra I, a class that is not 

necessarily required for physics majors, but importantly explores vector spaces other than ℝ" 

and norms on these more abstract vector spaces. Based on these surveys, I will then select three 

students from each of the four classes who seem to have diverse conceptions of normalization 

and conduct single, 30-40 minute one-on-one interviews with each student. Data analysis will be 

a thematic analysis (Braun & Clarke, 2006) and will mainly consist of first and second levels of 

coding (Miles, Huberman, & Saldaña, 2014) to identify the various conceptions students hold 

about normalization, and what changes and adaptations occur in their conceptions while taking a 

quantum mechanics class. I now proceed to explain the theoretical framework for my study. 
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Chapter 2: Theory and Literature 

In this chapter, I first explain the theoretical framework for this study that draws upon the 

epistemological lens of constructivism and explicates what students’ conceptions are and how 

these can change with time and experience. This is followed by a review of literature relevant to 

students’ understanding of norms and normalization, including research on student 

understanding of vectors, absolute value, and mathematical norms. This review includes 

literature from both physics and mathematics education research. Next, I explain more 

thoroughly the mathematical connections between quantum mechanics and linear algebra. I 

conclude this chapter by explaining how normalization can be thought of as a coordination class 

and how coordination class theory can be used to investigate students’ conceptions of 

normalization. 

2.1 Theoretical Framework 

Constructivism is an epistemological lens centered on the idea that people construct their 

own knowledge based on their experience, building upon prior knowledge that they have already 

constructed. Knowledge is not simply acquired by placing known facts or truths inside our heads 

but is rather built up to make sense of the world. Constructivism could be considered as 

originating from the work of Jean Piaget (Piaget, 1952, 1954, 1970, 1977/2001) but has 

developed into a spectrum of different types of constructivism, depending on whether emphasis 

is placed on the individual or society. Examples include radical constructivism that focuses more 

on the individual (Steffe, 1991a, 1991b; von Glasersfeld, 1984, 1995, 2001), social 

constructionism that focuses more on society (Berger & Luckmann, 1967), and constructivist 

perspectives that balance a focus on the individual and society (Blumer, 1969; Cobb & Yackel, 

1996; Vygotsky, 1978, 1986/1934). 
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The constructivist spectrum could be described as consisting of four main philosophical 

tenets (Doolittle & Hicks, 2003) with various branches of constructivism emphasizing these 

tenets in different ways: 

1.  Knowledge is not passively accumulated, but rather actively constructed by individuals 

through rational thought. 

2. Cognition is always attempting to make sense of and organize one’s experiences, and the 

knowledge constructed through this process cannot ever by a perfect reflection or 

accurate representation of some external reality; hence, knowledge is subjective. 

3. Knowledge construction is an adaptive process that works to make individual’s thoughts 

and actions more viable and useful for accomplishing goals within their experiential 

environments. 

4. Knowledge is constructed through both individual psychological/neurological processes 

and interactions with society, culture, and language. 

In this project, I adopt a type of constructivism that has a strong emphasis on the individual and 

is based on the work of Andrea diSessa and colleagues (diSessa & Sherin, 1998; Smith, diSessa, 

& Roschelle, 1993): 

Constructivism emphasizes the role of prior knowledge in learning. Students interpret 

tasks and instructional activities involving new concepts in terms of their prior 

knowledge. Errors are characteristic of initial phases of learning because students' 

existing knowledge is inadequate and supports only partial understandings. As their 

existing knowledge is recognized to be inadequate to explain phenomena and solve 

problems, students learn by transforming and refining that prior knowledge into more 

sophisticated forms. Substantial conceptual change does not take place rapidly, and 
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relatively stable intermediate states of understanding often precede conceptual mastery. 

(Smith et al., 1993, p. 123) 

In the sections that follow, I define what I mean by “conceptions” in this study, what this means 

for investigating conceptual change, and the different processes by which conceptual change 

occurs. 

2.1.1 Concepts, conceptions, and coordination classes. Models of “concept” often take 

them to be simple, unitary mental structures, or small numbers of mental structures that are all 

connected to and associated with a “concept.” For diSessa and Sherin (1998), and the perspective 

I adopt in this project, concepts are more of a knowledge system (diSessa, 1996) rather than 

nodes within a cognitive structure. 

As a consequence of adopting a system view, however, the boundaries of any concept 

become somewhat fuzzy, since many system parts are involved. Our contention is that 

this is not a disadvantage, but reflects a fundamental reality. Instead of stating that one 

either has or does not have a concept, we believe it is necessary to describe specific ways 

in which a learner’s concept system behaves like an expert’s – and the ways and 

circumstances in which it behaves differently. (diSessa & Sherin, 1998, p. 1170) 

Hence, concepts (i.e., conceptions) are knowledge systems that are constructed by an individual 

to make sense of the world. Delineating what a concept is from this perspective must be done 

both structurally (what are the parts of the system?) and functionally (how does a concept 

perform?). For this purpose, I turn to coordination class theory. 

diSessa and Sherin (1998) call specific types of concepts coordination classes, which are 

“systematically connected ways of getting information from the world” (p. 1171). Observation of 

the world is never a simple process of gathering pure data through our senses, but is rather 
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afforded and constrained by what we attend to and how we interpret it through our current 

knowledge systems. While this process of getting information from the world can sometimes 

mean determining class membership with a category, this is not the limits of a coordination class, 

as information is used for many other purposes. To emphasize the coordination class perspective, 

diSessa and Sherin (1998) choose to use the verb “coordinate” to describe how an individual sees 

or determines information from a situation, which I will also adopt in this research project. For 

example, if an individual wants to determine the magnitude of a mathematical object, they must 

recognize and coordinate several pieces of information about that object, such as classifying the 

object (e.g., Is the object a vector? A geometric shape?), deciding which properties of the object 

are salient for determining its magnitude (e.g., Does the direction or orientation of the object 

affect its magnitude?), and choosing how to measure its magnitude. 

Coordination classes contain two main components. Readout strategies, or strategies that 

“deal with the diversity of presentations of information to determine, for example, characteristic 

attributes of a concept exemplar in different situations” (diSessa & Sherin, 1998, p. 1176), 

constitute the first main component of a coordination class. These readout strategies are the way 

in which an individual more or less directly observes information from the world, and selects 

particular information to coordinate for a specific purpose (diSessa & Wagner, 2005). 

Coordination has a double meaning, and as such, a coordination class includes two types of 

coordination that are central to readout. First, within any given situation, an individual must 

coordinate multiple observations to determine the necessary information, which can be described 

as integration. Readout strategies therefore include ways to collect, select, and combine 

observations into the information required for accomplishing whatever task is at hand. Second, 

“across instances and situations, the knowledge that accomplishes readout of information must 
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reliably determine the same information” (diSessa & Sherin, 1998, p. 1172), a type of 

coordination described as invariance. Thus, a coordination class also includes strategies for 

directing attention and “seeing” the same thing in multiple situations.  

It might be tempting at this point to think of a coordination class as a way to categorize 

information that one is able to glean from the world around them, thus arriving at the idea that 

coordination classes are a fancy way to define “categories.” However, not all coordination 

classes can be considered as categories, such as the coordination class of “location.” Location is 

not category-like, since every physical object has a specific location, so objects cannot be placed 

into a bin or category generically labeled as “location.” Instead of placing things into a category 

called “location,” we most often use this coordination class to determine the location of 

something we are looking for, or to describe the location of a place. Furthermore, categorization 

is not the only goal or purpose of a coordination class. For instance, when assessing someone’s 

personality, we are not determining what things in the world are personalities and which are not; 

rather, we are interested in gathering information about a person (diSessa & Sherin, 1998). “In 

general, complex attributes like location and personality don’t make prototypical categories, 

although they are fine candidates for coordination classes” (p. 1173).  

Coordination classes take time to develop. “An accumulation of a complex and broad set 

of strategies and understandings is characteristic of coordination classes, as opposed to, say, 

learning a rule or definition” (diSessa & Sherin, 1998, p. 1173). Part of this broad set of 

strategies and understandings includes a critical pool of inferential knowledge that allows an 

individual to move from directly observable information to unobservable information. diSessa 

and Sherin (1998) call this the causal net, and it is the second main component of a coordination 

class. As an example, a force can be considered to “cause” acceleration of an object, and by 
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knowing either the force or the acceleration, one can infer the other quantity according to 

Newton’s Second Law. This law could thus be a part of an individual’s causal net in their 

individually constructed coordination class of force. 

As a main focus of their theoretical paper on coordination classes, diSessa and Sherin 

(1998) argue that physical quantities, such as force, can be coordination classes. In particular, 

they note that one must develop readout strategies to “see” specific physical quantities in the 

world around them, and the causal net for the quantity must include inferential reasoning 

strategies that enable that person to determine the value of the physical quantity from specific 

observations in the world. Furthermore, with many physical quantities, equations can play a 

pivotal role in the causal net, especially for experts. For example, understanding the equation 

𝐹 = 𝑚𝑎 in Newton’s Second Law can be a powerful component in a person’s causal net for their 

coordination class of force, enabling that person to infer or calculate either force or acceleration 

when the other quantity is known. In later work on coordination classes, diSessa and Wagner 

(2005) further posited that mathematical quantities could also be good candidates for 

coordination classes, which is particularly important to my own study. 

Readout strategies and causal nets within a coordination class are very closely related. In 

order to coordinate observations in the world to “see” a coordination class, an individual’s causal 

net of the coordination class influences and informs what readout strategies are used to look for 

necessary information. Conversely, if the readout strategies for a coordination class are relevant 

to a given situation, the causal net may allow the individual to make inferences about the 

situation beyond what is directly observable. Returning to the force example, if an individual 

wants to coordinate or see force in a given situation, the causal net that includes Newton’s 

Second Law could drive that individual’s readout strategies for observing mass and acceleration 



19 
 

in the situation to be activated. On the other hand, if an individual’s readout strategies recognize 

something in the world as a force, their causal net could enable them to make inferences about 

the acceleration. Although this close relationship exists between readout strategies and causal 

nets, it is important to note that an individual is not usually consciously aware of the readout 

strategies they activate or causal net they use to make inferences when they coordinate 

observations to obtain information from the world around them. 

2.1.2 What is conceptual change from the coordination class perspective? To begin 

answering this question, I first explain how a coordination class is constructed. Because 

coordination class theory takes a knowledge system perspective, 

We should expect no sharp line between "having" and "not having" a concept. If very 

many elements and relations are involved, certainly a few may be missing or malformed, 

and yet the person could exhibit generally competent performance. Indeed, there is every 

reason to suspect either that no humans achieve complete or perfect construction, or that 

no such state is specifiable. … states of partial construction are much more important 

to describe than "has it, or not." (diSessa & Wagner, 2005, p. 126) 

Hence, demarcating whether or not an individual has constructed a coordination class can be 

fuzzy. Still, diSessa and Wagner (2005) posit that early conceptions constructed by an individual 

are unlikely to constitute a coordination class; in particular, they explained two intrinsic 

difficulties for constructing a coordination class. First, there can be a wide variety of contexts 

and situations where a coordination class could be applicable, so an individual who has 

constructed a coordination class needs to have “conceptual resources adequate to cover a 

sufficiently wide range of contexts” (p. 128) which diSessa and Wagner call span. The second 

intrinsic difficulty is the complexity involved with coordinating different information in a variety 
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of contexts and relating them all to the same information or concept (i.e. the coordination class) 

reliably and consistently. diSessa and Wagner call this difficulty alignment.  

 Although the early conceptions of beginning learners are unlikely to be constructed 

coordination classes, it is possible to investigate the ways students coordinate various kinds of 

information related to a specific concept across a variety of relevant situations. In other words, in 

investigating students’ conceptions, students’ readout strategies and causal nets they employ as 

they attempt to obtain information about the world and accomplish certain tasks can be a focus of 

study. Furthermore, these early conceptions can be framed as the initial stages of constructing a 

coordination class. In fact, many of the nascent ideas students have about a concept can be 

productive and could ultimately be incorporated into the cognitive structure of a well-formed 

coordination class for the individual.  

With this in mind for my current study, I will refer to students with early conceptions and 

ideas as being “in the process of constructing a coordination class.” This will allow me to 

investigate and explore the readout strategies and causal nets a student employs within a given 

situation, even though these strategies and nets may not necessarily constitute a well-formed 

coordination class. This collection of readout strategies, causal nets, and other cognitive 

operations that a person uses when applying his or her concept can collectively be referred to as 

their concept projection (diSessa & Wagner, 2005); this concept projection is analogous to an 

evoked concept image in the work of  Tall and Vinner (1981) on concept image and concept 

definition. 

Conceptual change, from the coordination class perspective, thus is a shift, change, or 

modification in either or both the readout strategies and causal nets employed by an individual in 

situations where their early conception or coordination class is applicable. “Shifting the means of 
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seeing, a fortiori, is the core problem of conceptual change” (diSessa & Sherin, 1998, p. 1171). 

For example, suppose a student has constructed a naïve concept of force wherein they “see” or 

coordinate motion as being the result of force. This student has readout strategies for recognizing 

(i.e., coordinating) objects as being in motion and for “seeing” the source of that motion, which 

they coordinate as an instance of force. Their causal net could include an intuitive idea that if an 

object is moving in a certain direction, there must be a continuous force applied that “pushes” the 

object in that direction. Based on this student’s early conception for force, they may believe that 

an object thrown into the air has a force continuously acting upon it that “pushes” it upwards 

until it reaches the apex of its trajectory, at which point another force begins to “pull” the object 

back down. Through further experience, the student could experience conceptual change in their 

conception for force, making progress in constructing a coordination class for force. More 

specifically, their causal net might change as they gain experience with Newton’s Second Law, 

gaining an understanding that forces cause acceleration, a refinement of the idea that force and 

motion are related. With this shift in their causal net, the student’s readout strategies could also 

change, as they recognize the need to coordinate acceleration within the force coordination class. 

Over time, and with further experience, the student might see how the concept of force applies in 

a variety of situations (span), and begin to use the concept of force in these various contexts 

reliably and consistently (alignment). At this point, it could be said that the student has 

constructed a coordination class of force in their cognitive structure. 

diSessa and Wagner (2005) define two processes involved in this conceptual change and 

construction of a coordination class. Incorporation is the inclusion of old knowledge elements 

(e.g., readout strategies, inferential knowledge, causal nets, previously constructed coordination 

classes, facts about a situation) in the construction and operation of new ideas, concepts, or 
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coordination classes. Returning to the force example, ideas about motion, pushing, pulling, and 

effort could be incorporated into an individual’s coordination class of force. This relates to the 

learning paradox (Norton, 2009) which questions how an individual can learn or construct higher 

level concepts or ideas that they have no prior experience with. From a constructivist 

perspective, the development of more advanced conceptions and cognitive structures must be 

built from prior knowledge through some type of “bootstrapping” in order to overcome the 

learning paradox (Smith et al., 1993). Hence, from this constructivist standpoint, new 

coordination classes can be constructed by an individual through reorganizing and extending 

existing readout strategies and causal nets from known coordination classes and other prior 

knowledge (diSessa & Sherin, 1998). Sometimes no new readout strategies are needed to 

construct a coordination class, but existing readout strategies are reorganized and utilized in new 

ways; at other times, new readout strategies will be necessary. Similarly, causal nets may need to 

be reorganized and refined for a new coordination class, or new causal nets will need to be built 

up from ideas that are more primitive. 

A complementary process to incorporation is displacement, or the recognition that 

previous ideas contained in an individual’s early conception are not applicable or helpful in a 

particular context where the corresponding coordination class would be applicable. “Such 

displacement is understood to take place without prejudicing the value of the displaced ways of 

thinking in other contexts; that is, displacement is not replacement” (diSessa & Wagner, 2005, p. 

130). In the force example given in the previous paragraph, the student’s idea that a force must 

be continuously applied for motion to occur needs to be displaced before they can construct the 

coordination class of force. However, this idea does not need to be replaced, since continuous 

forces do cause a form of motion (an accelerating motion to be exact). 
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This view of conceptual change runs counter to the belief that students have 

“misconceptions” that must be replaced with productive, expert conceptions. In fact, as all 

knowledge is built from and upon prior knowledge, the term “misconception” can be deemed 

problematic. Concepts, particularly coordination classes, are complex knowledge systems that 

cannot be simply plucked out and replaced (Smith et al., 1993). Instead, conceptual change takes 

time, and consists of refining and reorganizing ideas:  

The examples suggest that mastery is achieved, in part, by using what you already know 

in more general and powerful ways and also by learning where and why pieces of 

knowledge that are conceptually correct may work only in more restricted contexts. … 

knowledge refinement [should be the] general description of conceptual change. Old 

ideas can combine (and recombine) in diverse ways with other old ideas and new ideas 

learned from instruction. (Smith et al., 1993, p. 137 & 147) 

By taking this perspective, when students’ concepts fail or are problematic, these conceptions 

cannot be thought of as misconceptions but rather extensions and applications of previously 

constructed knowledge to situations where that knowledge is either not applicable or insufficient. 

However, these early conceptions often have nascent potential, and through refinement, further 

development, and reorganization of the ideas therein, expert conceptions can develop. With 

coordination classes, these nascent ideas consist of readout strategies and causal nets that need to 

be refined, extended, reorganized, and further developed to construct a coordination class that 

fulfills the important requirements of span and alignment.  

2.1.3 Summary of Coordination Class Theory. As a way of succinctly organizing the 

functionality and structure of coordination classes, Figure 2.1 adapts Table 1 from diSessa and 

Wagner (2005, p. 131), summarizing the core function of, intrinsic difficulties in constructing, 
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and architecture of a coordination class. In sharing this, I remind the reader that diSessa and 

Wagner (2005) have pointed out that early conceptions are usually not coordination classes, but 

rather partial constructions of a coordination class. This begs the question, when can a 

coordination class be said to be completely constructed? As diSessa and Wagner explain, it 

cannot reasonably be expected that a coordination class is complete when the individual has 

Core Function of a Coordination Class 
A coordination class is a particular type of concept whose principle function is to allow 
people to read a particular class of information out of situations in the world. 

Intrinsic Difficulties in Constructing a Coordination Class 
Reading the same information out of a wide range of situations poses core problems for 
developing a coordination class. 

Span: A learner must accumulate enough knowledge to “operate” the concept across the 
full range of contexts in which it is applicable. 
Alignment: The information determined in different situations, possibly using different 
knowledge, must be the same information. 

Architecture of a Coordination Class 
Decomposition: The knowledge in a coordination class can be partitioned by function. 

Readout Strategies: Readout strategies are the ways in which people focus their attention 
and read out (or coordinate) information from the world that are relevant to, but possibly 
not the same as, the defining information of the concept/coordination class. 
Causal Net: The causal net is the set of inferences that people use to infer the defining 
information of the concept/coordination class from related kinds of information. Inferences 
can include: (a) recognizing the mere existence of the coordination class in a situation 
within the world; (b) identifying what is required or problematic about a situation; and (c) 
determining defining information about the coordination class from other information read 
out of that situation. 

Construction Processes: Two very generic processes are involved in conceptual change and 
constructing a coordination class. 

Incorporation: Incorporation is the process of recruiting elements of prior 
conceptualization into partial encoding of the new or changing concept. 
Displacement: Displacement is the process of “dismissing” elements of prior 
conceptualization that may initially and inappropriately “take over” consideration of 
particular circumstances from a coordination class. 

Figure 2.1. Main Elements of Coordination Classes. Adapted from diSessa and Wagner (2005, p. 131) 
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incorporated all contexts where the concept is applicable into their cognitive structures, as there 

are probably an infinite amount of context variations in which a concept could be applied. 

Furthermore, even experts may initially stumble when attempting to apply a coordination class to 

a novel context. diSessa and Wagner (2005) offer three possible solutions to this question. First, 

a coordination class may be considered completely constructed when an individual adequately 

coordinates the concept across a span of “the typical range of contexts” where the concept 

operates. Second, “completeness might be an inflection point in competence, where one has 

achieved the main power of the class” (p. 138), that is, a more generalized conception that is not 

necessarily tied to a specific context. Third, it might be that an individual “develops a layer of 

meta-knowledge that allows one to generate new concept projections adequate to all (or a 

selected set) of contexts” (p. 138). In any case, diSessa and Wagner explain this needs further 

empirical investigation to determine when a person can be said to have completed the 

construction of a coordination class, which is something I will work to address in this research 

project. 

2.1.4 Examples of using coordination class theory in research. As a first example, I 

share the case study diSessa and Sherin (1998) present in their article on coordination classes. J 

was a student who had done well in high school physics and fairly well in an introductory 

university physics class. In the episodes of an extended clinical interview shared by diSessa and 

Sherin (1998), J attempted to apply her concept of force (i.e., conceptual projection) to a few 

different situations. An important aspect in J’s causal net for force was the idea that motion is the 

result of an imbalance in forces, that is, when one force overcomes another. The interviewer and 

J were discussing how a person could push a book across a table, and J explained that the force 

exerted on the book must be greater than the frictional force of the table pushing back on the 
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book. The interviewer reminded J of the equation 𝐹 = 𝑚𝑎 from Newton’s Second Law, at which 

point J began to coordinate acceleration with the situation at hand, using readout strategies for 

“seeing” acceleration in the situation in relation to the forces involved. When the interviewer 

asked how this equation made sense with pushing the book across the table with a constant 

velocity, J was puzzled. She was able to coordinate constant velocity as an indication of no 

acceleration, but with no acceleration, there must not be a net force acting on the book according 

to Newton’s Second Law. This contradicted her causal net that motion only occurs when a force 

overcomes another (in this case, the force from the hand overcoming the frictional force). While 

this episode may have provided an opportunity for J to modify, change, or displace this idea 

within her causal net in her conception of force, J actually concluded that Newton’s Second Law 

and the equation 𝐹 = 𝑚𝑎 must not apply in the situation of a book being pushed across a table. 

Still, the authors importantly note that J was working on a critical component in developing a 

coordination class, namely the discriminating aspect of readout strategies that determine when 

ideas (such as Newton’s Second Law) apply in specific situations. 

Wittmann (2002) provides another example of using coordination classes to investigate 

student reasoning of physics. In his study, students were asked several questions about the 

propagation of waves through a medium (such as a string). Wittmann found that many of the 

students coordinated (i.e., “saw”) waves as objects. Students’ readout strategies included 

“objects as points” where they focused on the peak of the propagating wave(s) to discuss the 

movement and interaction of the wave pulse overall, and “waves as solid.” Students’ causal nets 

related to these readout strategies included a variety of reasoning resources that led to a variety 

of conclusions about wave propagation. For example, thinking of a wave as an object led many 

students to think that the speed of a wave pulse along a string could be increased simply by 
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flicking the string faster, much like throwing a baseball faster requires a harder throw. The causal 

net in this case included the idea that exerted force determines the speed of an object. Another 

element of students’ causal net in thinking about waves as objects was the idea of collisions of 

objects leading to a “bounce” of the objects away from each other. This led many students to 

infer that two waves travelling toward each other would collide and “bounce back,” rather than 

pass through one another. While this was an interesting study, it was somewhat unclear if 

Wittmann was thinking of “object” as a coordination class that students were using to reason 

about waves, or if “wave” was considered a coordination class. An important part of my own 

study will be making sure to clearly explain what coordination class I am studying. 

Two more examples of coordination class research can be found in the work of Thaden-

Koch, Dufresne, and Mestre (2006) and Levrini and diSessa (2008). Exploring students’ abilities 

to judge how realistic an animation of two balls travelling down two tracks was, Thaden-Koch et 

al. (2006) found that many students were able to use readout strategies to assess the speed of the 

balls (e.g., compare to fixed background, compare balls to each other) as well as elements of a 

causal net for speed expectations (e.g., steeper slope of track means ball should go faster, ball 

should slow down on uphill portion of track) to make fairly accurate judgments about the realism 

of the animations. Levrini and diSessa (2008) used coordination class theory to show how proper 

time in special relativity can be considered a coordination class, and explained how students 

made progress in their understanding (i.e., conceptual change) during a single classroom episode. 

In particular, as students were exposed to several different problem contexts where proper time 

was relevant, students expanded the span in their abilities to determine proper time within 

several contexts. Furthermore, these contexts fostered students’ construction of important 

readout strategies (e.g., choosing a frame of reference) and causal nets (e.g., “the critical idea 
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that a phenomenon has a locus, and that locus … is the ‘home’ for determining proper time” (p. 

10)) necessary in constructing a coordination class of proper time. 

Although the examples here are not related to vector normalization, they do provide 

examples of the usefulness of coordination class theory in exploring students’ conceptions of 

complex ideas, and illustrate how conceptual change can be explored with this theoretical 

framework. Before making an argument for why normalization fits the definition of coordination 

class and how this theory will be useful in this current study, I turn to the literature that has 

already explored students’ understanding of concepts related to normalization. 

2.2 Review of Education Research Relevant to Student Understanding of Normalization 

In reviewing the mathematics and physics education literature, I could not find any 

studies that specifically focused on students’ understanding of normalization. However, 

conceptions of normalization inherently involve ideas about (a) vectors, vector spaces, and their 

representations, and (b) mathematical norms. As such, in this literature review I explore the 

research that has been conducted on student understanding of vectors and norms, as well as 

research that has touched upon the importance of understanding unit vectors in various contexts. 

2.2.1 Research on student understanding of vectors, vector spaces, and 

representations. One of the first mathematical subjects students encounter involving a 

systematic building of theory, relying on definitions and formal proofs, is Linear Algebra (Hillel, 

2000). Linear Algebra is a particularly useful branch of mathematics for much of the sciences, as 

well as higher mathematics courses, and, as such, many students are required to take linear 

algebra within the first two years of university studies (Aydin, 2014). Although linear algebra is 

a particularly powerful mathematical subject, many students struggle to make sense of some of 

the fundamental concepts in linear algebra including vector, span, linear 
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independence/dependence, and basis (Carlson, 1993). Understanding these key ideas is 

fundamental to understanding the formal definition of a vector space. These ideas are also 

important for being able to “see” or coordinate other mathematical objects, such as functions, as 

elements of vector spaces. 

To build up students’ understanding of vector, span, linear independence/dependence, 

and basis, recommendations have been made to introduce students to linear algebra and the study 

of vectors and vector spaces through the use of ℝ" and matrix arithmetic (Carlson, 1993; Harel, 

2000). Further refining this recommendation, Harel (2000) and Gueudet-Chartier (2006) have 

argued that geometrically exploring ℝ,ℝ!, and ℝ# can be helpful, giving students concrete, 

conceptual entities (e.g., vectors in ℝ! and ℝ# visualized as directed line segments) that can be 

used to explore notions, concepts, and theorems from linear algebra in a context where these 

vector space properties can be visualized and often appear self-evident. This prototype might 

then be used to promote students’ understanding of the underlying mathematical structure of 

vector space (Gueudet-Chartier, 2006; Harel, 2000). However, both Harel (2000) and Gueudet-

Chartier (2006) caution that students can become “stuck” in this geometric model of linear 

algebra and miss out on understanding the more general theory that applies to all vector spaces. 

To overcome this, students must see the geometric context as an example of the structure of 

vector space, not as the actual object of study (Harel, 2000). This can be accomplished by 

fostering an intellectual need to unify several mathematical domains under the vector space 

structure (for example, introducing students to function spaces) and by encouraging students to 

generalize the commonalities among these vector space contexts. 

Identifying further complexity with geometric conceptions of vector, Hayfa (2006) 

discusses the role of language and its impact on students’ understanding of vector. She explains 
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how the language used in vector geometry textbooks often predisposes students to think of 

vectors as “tied vectors,” which are vectors bound to a specific place in the geometric plane that 

can be uniquely represented. Hayfa argues that students who are only able to conceptualize of 

vectors as “tied vectors” miss out on an equally important conceptualization, namely that of a 

“free vector,” which is determined by its direction and length rather than by its location in the 

geometric plane. For normalization of vectors in ℝ", this latter understanding of vectors having a 

direction and length or magnitude is critical. 

Although cautions about using geometric ideas in teaching linear algebra have been 

given, success with introducing students to important linear algebra concepts through geometric 

notions can be found. One example is the Inquiry-Oriented Linear Algebra (IOLA) project 

(Wawro, Zandieh, & Rasmussen, 2013). This project is based on the instructional design theory 

of Realistic Mathematics Education (Gravemeijer, 1999) and uses experientially real contexts to 

give students the opportunity to explore and reinvent important linear algebra ideas. For 

example, Wawro, Rasmussen, Zandieh, and Larson (2012) explain how the concepts of span and 

linear independence can be reinvented by students through engaging with an instructional 

sequence called the Magic Carpet Ride sequence. In this sequence, students are presented with a 

rich, imaginary scenario of travelling using a hover-board and a magic carpet which travel in 

specific directions. This situation is used to introduce students to vectors and vector equations, 

and build on their intuitive understanding to lead them to formal definitions of span, linear 

dependence, and linear independence. Furthermore, the authors give evidence that the Magic 

Carpet Ride sequence helps develop students’ knowledge of and use of formal definitions to 

argue and justify claims, an essential skill in upper level mathematics. Furthermore, this skill of 
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understanding and using formal definitions could prove particularly useful for understanding and 

applying the definition of vector space to more abstract spaces. 

Illustrating the difficulty students can encounter with these more abstract vector spaces, 

Maracci (2006, 2008) shared examples of students struggling to make sense of questions related 

to linear combinations, linear independence, basis, and spanning set when the questions were 

asked within the context of an abstract vector space. For example, students struggled to see how 

a vector 𝑢%⃗ , written as the linear combination of five linearly independent vectors of 𝑉, could be 

contained in 𝑈$ + 𝑈!, the sum of two two-dimensional subspaces of 𝑉, but not in 𝑈$ or 𝑈! alone. 

Most of the students thought this was impossible because 𝑢%⃗  was written as five linearly 

independent vectors of 𝑉, and the sum of two two-dimensional subspaces would have at most 

four linearly independent vectors. This reasoning omitted the possibility that one of the basis 

vectors of 𝑈$ or 𝑈! could be a sum of two of the vectors in the linear combination that composed 

𝑢%⃗ . Maracci (2008) hypothesized that students may have thought of the five linearly independent 

vectors of 𝑉 as a “canonical basis,” similar to the canonical basis of ℝ", which led them to think 

that any linear combination should consist of a linear combination of these vectors. Furthermore, 

the students may have thought any subspaces of 𝑉 should have a basis consisting of these 

individual “canonical basis” vectors.  

As another possibility to explain students’ difficulties with vector spaces, Maracci (2008) 

turned to Sfard (1991) and the process-object duality. In particular, Maracci explains how linear 

combinations of vectors can be thought of both operationally (as a process) and structurally (as 

an object), but students struggled to coordinate these two. This inability to conceptualize linear 

combination as an object may have contributed to students’ difficulties with the questions posed 

about abstract vector spaces, such as their difficulties with linear dependence and spanning sets 
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Maracci’s work demonstrates the complexity of understanding important ideas related to abstract 

vector spaces, and calls attention to the need for clear delineations of how students might 

develop or construct these concepts within these more abstract settings. 

Proposing a possible pathway students might take in constructing the vector space 

concept, Parraguez and Oktaç (2010) employed the perspective of APOS theory (Arnon et al., 

2014) to explicate the mental mechanisms and constructions that are necessary for learning this 

concept. In their proposed genetic decomposition for the vector space concept, they explain that 

a student must first activate the concepts of set and binary operation (which they would have 

previously constructed) to perform an action of applying the binary operation to two elements of 

the set and obtaining the resulting element. By thinking about what this binary operation does to 

all pairs of elements of the set, this action is interiorized into a process. Further reflection on this 

process encapsulates it into an object, which can then be assimilated with the axiom schema 

(which would need to have been previously constructed) to examine whether or not a set with a 

binary operation satisfies a set of axioms. This object of a set with a binary operation that 

satisfies a set of axioms is then coordinated with the object of a field. Parraguez and Oktaç 

(2010) then explain how the concept of vector space is constructed: 

The objects that are sets with two kinds of operations (addition and multiplication by a 

scalar) can be coordinated through the related processes and the vector space axioms that 

involve both operations, to give rise to a new object that can be called a vector space.” (p. 

2116) 

The authors tested the viability of their genetic decomposition by preparing a questionnaire and 

semi-structured interview about the vector space concept, which they gave to several 

mathematics students. They concluded that students who lack the prerequisite constructions 



33 
 

(such as binary operation and set) or who have weak conceptions of these concepts will have a 

difficult time constructing the vector space concept. The authors further suggest that students 

need to be given opportunities to explore sets and binary operations that are different from the 

usual operations they may have encountered in studying vector spaces like ℝ". Furthermore, 

activities need to be designed for helping students specifically coordinate the two operations 

(such as addition and scalar multiplication) contained within the axioms for vector spaces. 

Taking a different theoretical approach to students’ understanding of vector space, 

Dogan, Carrizales, and Beaven (2011) use metonymy as cognitive construct (Presmeg, 1998) to 

interpret the interview responses of a linear algebra student. They found that the student 

metonymically used “linear independence” in place of “linear combination,” metonymically 

referred to matrices as sets (e.g., “the matrix is linearly dependent”), used a metonymy of the 

“identity form” of a matrix to check for linear independence, and used symbols of “𝑥%’s” to 

metonymically refer to vectors. The authors explain that these metonymies are cognitive 

constructs that have specific meanings tied to them and are not simply strategies for recalling 

information; hence, careful attention should be paid to the metonymies students use in their 

thinking, especially concerning advanced mathematical concepts such as vector and vector 

spaces. 

In concluding this discussion of literature on students’ understanding of vector and vector 

space, it is important to note the complexity involved with understanding the concept of vector, 

particularly when thinking about vectors as elements of a vector space. In my study, it will be 

important to investigate the ways students’ conceptions of vector and vector space afford or 

constrain their conceptions of normalization. 

2.2.2 Research on student understanding of mathematical norms.  Students’ 
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conceptions of normalization not only depend on their conceptions of vectors but also their 

conceptions of mathematical norms. I first remind the reader of the mathematical definition of a 

norm before discussing research on students’ understanding of this concept.3 For a vector space 

𝑉 over a scalar field 𝔽 (with operations of vector addition and scalar multiplication), a norm 

(denoted by ‖ ‖) is a function ‖ ‖: 𝑉 → {0} ∪ ℝ& that assigns a nonnegative “length,” “size,” 

or “magnitude” to each vector of the vector space. This norm must also satisfy the following 

three properties: For 𝑎 ∈ 𝐹, and 𝒖, 𝒗 ∈ 𝑉, 

1. ‖𝑎𝒖‖ = |𝑎|‖𝒖‖ 

2. The Triangle Inequality: ‖𝒖 + 𝒗‖ ≤ ‖𝒖‖ + ‖𝒗‖ 

3. ‖𝒖‖ ≥ 0, and ‖𝒖‖ = 0 if and only if 𝒖 = 𝟎 (the zero vector). 

The rest of this section expounds upon mathematics education research that has examined (a) 

student understanding of absolute value, (b) student understanding of norms and normed vector 

spaces, and (c) student understanding of unit vectors. 

2.2.2.1 Absolute value: students’ first introduction to the concept of norm. Although 

probably no K-12 teacher introduces absolute value as an example of a mathematical norm, the 

absolute value function really is students’ first introduction to the concept of norm. More 

specifically, the absolute value is a norm for the vector space of the real numbers, 𝑉 = ℝ, over 

the scalar field of the real numbers, 𝐹 = ℝ, as it satisfies the following properties: 

1. For any 𝑎 ∈ 𝑉, and any 𝑏 ∈ 𝐹, |𝑏𝑎| = |𝑏||𝑎|. 

2. For any 𝑎, 𝑏 ∈ 𝑉, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| (The Triangle Inequality) 

3. For any 𝑎 ∈ 𝑉, |𝑎| ≥ 0, and |𝑎| = 0 if and only if 𝑎 = 0. 

In a broader, less technical sense, the absolute value assigns to each real number a “length,” 

 
3 This definition is based on that given by Dym (2013, p. 138) 
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namely its distance from the number zero. 

There are dozens of articles written for practitioner journals about ways to teach the 

concept of absolute value in a meaningful way (e.g., Brumfiel, 1980; Kidd, 2007; Taylor & 

Mittag, 2015; Wade, 2012), with most advocating (at least in part) for some version of the 

“distance from zero” conception of absolute value. Looking at mathematics education research 

into students’ understanding of absolute values, Wilhelmi, Godino, and Lacasta (2007) point out 

that the absolute value can be “partially defined” in a variety of ways: (a) arithmetical, namely 

“a rule that leaves the positive numbers unchanged and changes the negative numbers into 

positive ones” (p. 76); (b) geometrical, namely the “simple rule to ‘delete the minus sign’” (p. 

87); and (c) analytical, namely defining the absolute value as a piecewise function, in terms of a 

maximum (|𝑥| = max{𝑥, −𝑥}), or as a compound function (|𝑥| = √𝑥!). Furthermore, they argue 

that understanding only the formal mathematical definition of the concept of absolute value is 

not as effective as having a global or holistic understanding of the various meanings and ways to 

define absolute value, since having this holistic understanding allows for “effective selection of 

meanings in each specific educational circumstance” (p. 88). To support this claim, they shared 

results from a questionnaire given to 55 pre-service secondary teachers requiring them to solve a 

variety of absolute value problems. As predicted, they found that students who relied on only one 

partial meaning for the absolute value struggled on the entire questionnaire, particularly if the 

reliance was upon the arithmetical or geometric meaning. On the other hand, those who were 

able to reason with the analytical meaning of the absolute value fared much better on the 

questionnaire. Surprisingly, Wilhelmi et al. (2007) did not mention anything about defining the 

absolute value as a magnitude of a number, or its distance from zero.   

Other mathematics education research specifically examine the difficulties students have 
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with solving inequalities involving absolute values and different approaches to improving 

students’ understanding (Almog & Ilany, 2012; Sierpinska et al., 2011). Almog and Ilany (2012) 

examined students’ solution strategies for solving absolute value inequality problems and found 

several commonalities (such as a dominance of thinking only in integer values or forgetting that 

the absolute value can be zero). More pertinent for this current study, there was some evidence of 

students thinking of absolute value as giving a magnitude or distance from zero, and that these 

“immediate solutions without algebraic manipulations” (p. 351) were more often correct than 

any of the other solution methods (e.g., algebraic manipulations). Sierpinska et al. (2011) 

conducted a teaching experiment in which they used three different approaches for solving 

absolute value inequalities: (a) the theoretical approach (based off of a formal definition of 

absolute value); (b) the procedural approach (i.e., make negative numbers positive); and (c) the 

visual approach (where the formal definition was given but supplemented with graphical ideas). 

Students in the visual approach group outperformed students in the other two groups, indicating 

that a graphical or visual approach to absolute value inequalities can be highly effective. 

Furthermore, and particularly relevant to this current work, Sierpinska et al. (2011) did briefly 

argue that 

Definitions based on the notion of distance are important in applications and in 

mathematical theory, in particular in generalizations of absolute value to norms in higher 

dimensions and general vector spaces, and in generalizations of limits and continuity in 

topology. (p. 280) 

Still, neither article explored teaching absolute value explicitly as an example of a mathematical 

norm, focusing more on students’ ability to solve absolute value inequality problems rather than 

their particular conceptions of absolute value.  
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Yet, this work on students’ understanding of absolute value is useful and informative for 

my development of a model for students’ understanding of norms and normalization. More 

specifically, since the conception of absolute value of a real number as representing its distance 

from zero is particularly useful and powerful for students’ solutions of absolute value problems, 

it may be the case that thinking about mathematical norms as representing a vector’s distance 

from the zero vector4 is also particularly useful and powerful. Related to students’ reliance on 

procedural conceptions of absolute value being problematic, conceptions of mathematical norms 

that are based only on a procedure might also be problematic in solving problems using norms, 

particularly when moving into unfamiliar vector spaces.  

2.2.2.2 Research on student understanding of norms and normed vector spaces. 

Research on students’ understanding of norms is sparse, but we can gain insight into how 

students might think about norms and normed vector spaces by considering research on students’ 

understanding of the concept of “magnitude.” Thompson, Carlson, Byerley, and Hatfield (2014) 

explain that:  

The idea of magnitude, at all levels, is grounded in the idea of a quantity’s size. A 

quantity, however, is not something in the world. It is a person’s conception of an object 

and an attribute of it, and a means by which to measure that attribute. Anyone’s 

understanding of a quantity’s size will be colored by his or her conception of the quantity 

being considered and by his or her understanding of how it might be measured. (p. 2) 

 
4 Recall that on a normed vector space 𝑉 with norm ‖ ‖, the “distance” between two vectors 𝒖, 𝒗 ∈ 𝑉 can be 
defined as 𝑑(𝒖, 𝒗) = ‖𝒖 − 𝒗‖, which is also known as the norm induced metric on 𝑉. Hence, we can think of the 
norm of a vector 𝒖 ∈ 𝑉 as ‖𝒖‖ = ‖𝒖 − 𝟎‖, that is, 𝒖′𝑠 “distance” from the zero vector. 
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In other words, from a coordination class perspective, the readout strategies and causal nets an 

individual employs to determine a quantity’s magnitude will determine what aspects of the 

quantity will be focused on and how they will be measured.  

Assuming that a person can reliably determine what quantity they want to find the 

magnitude of, Thompson et al. (2014) explain five levels of meaning for a quantity’s magnitude: 

1. An awareness of size (e.g., ability to judge when one quantity is bigger/smaller than 

another), 

2. Equating the measurement of a quantity with its magnitude, 

3. Assessing the relative size of one quantity in comparison to another (e.g., quantity A is 

7/3 times as large as quantity B; quantity B is 3/7 as times as large as A), 

4. Anticipating that any measurement of a quantity with respect to an appropriate unit can 

be expressed in any other appropriate unit, but the quantity’s magnitude will remain 

invariant; and 

5. Understanding the magnitude of intensive quantities, that is, quantities composed of 

other quantities (e.g., rates of change, force), and how this magnitude, or the relationship 

between the magnitudes of the constituent quantities, is invariant with changes in units 

of measurement for either of the constituent quantities. 

This last level is the most sophisticated and is often the most important for reasoning about the 

measurement of quantities in high-level scientific or mathematical contexts. Unfortunately, as 

illustrated by Thompson et al. (2014) through data from 112 mathematics teachers answering 

questions about measurement and magnitude, a large number of mathematics teachers are ill-

prepared to teach students about magnitude, as their own thinking about magnitude is often not at 

the highest level. In my study on students’ conceptions of normalization, it will be important to 
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keep these levels of meaning in mind and investigate how students’ understandings of magnitude 

affect their conceptions of mathematical norms and normalization. 

Research on student understanding of norms and normed vector spaces is sparse; 

however, there has been recent research related to students’ understanding of these concepts. For 

example, Reed (2018) investigated undergraduate students’ abilities to generalize their 

knowledge and understanding of real analysis on ℝ, including their understanding of norms on 

ℝ, to more abstract vector spaces. He conducted two teaching experiments wherein students 

reinvented (Gravemeijer, 1999) the formal definition of a metric space through working with 

more abstract, normed vector spaces (sequence and function spaces). More specifically, students 

in his teaching experiment reinvented the concept of a metric using the norm and the structure 

afforded by the normed vector space, determining that the distance between two vectors in a 

normed vector space can be defined as 𝑑(𝒖, 𝒗) = ‖𝒖 − 𝒗‖. Reed’s study showed that students 

can generalize their knowledge and understanding of the real metric space ℝ" to more abstract 

vector spaces and are able to use reflective abstraction to extend their knowledge of norms and 

metrics on ℝ" to sequence and function spaces. This is important, as my own study will be 

looking to see if students’ can extend their understanding of norms and normalization to contexts 

of potentially unfamiliar vector spaces used in quantum mechanics, like ℂ" and 𝐿!-space. 

2.2.2.3 Research on student understanding of unit vectors. The scarcity of articles about 

students’ understanding of vector norms and normalization necessitates looking deeper into other 

education literature where these ideas may still be relevant. To this end, I briefly touch on some 

of the research that has investigated students’ understanding of unit vectors. Barniol and Zavala 

(2011) gave physics students at a Mexican university a question in which they were asked to 

draw a unit vector in the direction of a vector already drawn from the origin to the point (2,2) on 
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the Cartesian coordinate plane. Only 22% of students gave a correct answer, while others drew a 

vector from the origin to the point (1, 1) (25%), or drew the component vectors 2T̂ and 2V̂ (14%), 

along with other incorrect ideas. In a later study, Barniol and Zavala (2014) developed a multiple 

choice test that assessed students’ understanding of various ideas about vectors. On the question 

that asked students to find the unit vector in the direction of a given vector, more students were 

able to answer correctly (43%), but a large proportion of students still chose incorrect answers 

corresponding to those of the earlier study. This shows that finding a unit vector (i.e., 

normalizing) is not a trivial process. 

Vega, Christensen, Farlow, Passante, and Loverude (2016) investigated students’ abilities 

to draw unit vectors representing the motion of a particle moving in a two-dimensional plane, 

where the unit vectors were in terms of polar unit vectors (i.e., 𝑟̂ and 𝜃Y). Many students were 

unable to correctly answer this question, drawing vectors that do not satisfy the definition of a 

unit vector. More specifically, the authors explain that students need to understand four 

fundamental ideas when it comes to unit vectors in physics in order to correctly solve this 

problem: (a) unit vectors are vectors; (b) unit vectors have a length or magnitude of one; (c) unit 

vectors point in the increasing direction of the corresponding coordinate; and (d) unit vectors are 

dimensionless. Furthermore, several students drew vectors that were curved, so an important 

understanding is knowing that unit vectors are straight, directed arrows when within these 

physical motion contexts. 

Knowing that unit vectors (and relatedly normalization) are also important for directional 

derivatives in multivariable calculus, I turn to research that has investigated student 

understanding of this concept. Martínez-Planell, Gaisman, and McGee (2015, 2017) used APOS 

theory to delineate the important concepts needed to understand directional derivatives and 
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investigated students’ conceptions of these ideas. In their preliminary genetic decomposition for 

the concept, the authors present a unique conceptualization of directional derivative that involves 

calculating the “vertical change” along a plane (𝑓'(𝑎, 𝑏)Δ𝑥 + 𝑓((𝑎, 𝑏)Δ𝑦), and dividing this by 

the “horizontal change” which is the magnitude of the direction vector. By doing so, the authors 

posit that students may be able to extend their knowledge of slope from single variable calculus 

to talking about “slope” in the two-variable case. However, in interviewing students about their 

understanding of directional derivative, very few were able to discuss the concept competently. 

In fact, some evidence was shown that students may not necessarily see the need for the direction 

vector to be a unit (normalized) vector. 

These articles demonstrate a need in my own study to explore and examine how students 

think about unit vectors and normalized vectors. In particular, I want to ask students questions 

that will provide an opportunity for them to explain why they think normalization is important, 

and how it is used in a variety of contexts. For example, a student may know that normalization 

is used in calculating directional derivatives, but have no idea why it is important within that 

context. 

2.3 A Brief Overview of Quantum Mechanics and the Importance of Normalization 

Therein 

Quantum mechanical systems are probabilistic in nature, and the mathematical modeling 

of these systems relies heavily on linear algebra concepts. In his introductory book on quantum 

mechanics, McIntyre (2012) summarizes the mathematical modeling of quantum systems 

through six postulates:  

1. “The state of a quantum mechanical system, including all the information you can know 

about it, is represented mathematically by a normalized ket |𝜓⟩.” (p. 5) 
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2. “A physical observable is represented mathematically by an operator 𝐴 that acts on 

kets.” (p. 34) 

3. “The only possible result of a measurement of the physical observable is one of the 

eigenvalues 𝑎" of the corresponding operator 𝐴.” (p. 35) 

4. “The probability of obtaining the eigenvalue 𝑎" in a measurement of the observable 𝐴 on 

the system in the state |𝜓⟩ is 

𝑃)! = |⟨𝑎"|𝜓⟩|! 

where |𝑎"⟩ is the normalized eigenvector of 𝐴 corresponding to the eigenvalue 𝑎".” 

5. “After a measurement of 𝐴 that yields the result 𝑎", the quantum system is in a new state 

that is the normalized projection of the original system ket onto the ket (or kets) 

corresponding to the result of the measurement: 

|𝜓′⟩ =
𝑃"|𝜓⟩

⟨𝜓|𝑃"|𝜓⟩
"	(p. 46) 

6. “The time evolution of a quantum system is determined by the Hamiltonian or total 

energy operator 𝐻(𝑡) through the Schrödinger equation: 

𝑖ℏ
𝑑
𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻(𝑡)|𝜓(𝑡)⟩. "	(p. 69) 

It is important to note that these kets, or state vectors, can be discrete or continuous depending on 

the quantum system in question. For example, in studying quantum spin, the kets can be 

represented by elements of ℂ", but in studying the location of quantum particles, the kets can be 

represented by wave functions (i.e., elements of 𝐿!-space). 

I share these postulates for three reasons. First, it provides a brief explanation of the 

relevance of mathematical concepts, such as eigentheory, normalization, and probability, to 

modeling quantum mechanical systems. Second, it illustrates the necessity of normalization in 
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quantum mechanics, as state vectors must be normalized, otherwise the model will not be 

probabilistic. Third, it shows the rich setting quantum mechanics provides for studying students’ 

conceptions of normalization, affording me the ability to ask students why normalization is so 

important in quantum mechanics, and how it relates to other contexts where they have 

normalized vectors in the past. 

At this time, it is important to briefly familiarize the reader with the norms generally 

encountered in a quantum mechanics course. In particular, students will generally be working 

with vectors in ℂ" or elements of  ℂ" or 𝐿!-space. For vectors in ℂ", the norm used in quantum 

mechanics is the ℓ!-norm, which is the square root of the sum of the squares of the complex 

moduli of the elements of a vector 𝒙: 

|𝒙| = jk|𝑥*|!
"

*+$

. 

Alternatively, you can also consider this norm as the square root of the inner product of the 

vector 𝒙 with itself 

|𝒙| = l〈𝒙, 𝒙〉 = l𝒙,𝒙 

with the dagger meaning the conjugate transpose of 𝒙. For example, the norm of the complex 

vector 𝒗 = ! 33𝑖# is: 

|𝒗| = l|3|! + |3𝑖|! = √9 + 9 = √18 = p[3 −3𝑖] ! 33𝑖# =
l𝒗,𝒗 

In the 𝐿!-space used in quantum mechanics, the elements are complex valued functions, and the 

𝐿!-norm of a function 𝜙 is 

|𝜙| = tu |𝜙(𝑥)|!
-

.-
𝑑𝑥 = tu 𝜙∗𝜙(𝑥)𝑑𝑥

-

.-
= l〈𝜙, 𝜙〉 
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which can be seen as analogous to or a continuous extension of the ℓ!-norm. As an example, the 

function 

𝑓(𝑥) = v sec z
𝜋𝑥
4 |						− 1 ≤ 𝑥 ≤ 1

													0													𝑥 < −1		or		𝑥 > 1
 

has 𝐿!-norm 

|𝑓| = tu |𝑓(𝑥)|!
-

.-
𝑑𝑥 = tu sec! z

𝜋𝑥
4 |

$

.$
𝑑𝑥 = t8

𝜋. 

Note these are simple examples meant to illustrate the norms students would typically encounter 

in an introductory quantum mechanics course (based on quantum mechanics courses I have 

observed previous to this study), but other vectors and norms could possibly be encountered in 

other quantum courses. 

2.4 Analytical Tool for Examining Students’ Understanding of Norms and Normalization 

In past work, I have been developing an analytical tool for examining students’ 

understanding of mathematical norms and normalization (Watson, 2018) to analyze students’ 

conceptions. This work was inspired and influenced by Zandieh’s (2000) framework for student 

understanding of derivatives and Lockwood’s (2013) model of students’ combinatorial thinking. 

Similar to the work of Lockwood (2013), I used a conceptual analysis (von Glasersfeld, 1995) or 

“a detailed description of what is involved in knowing a particular (mathematical) concept” 

(Lockwood, 2013, p. 252) to create this tool for modeling students’ understanding of norms and 

normalization. This conceptual analysis involved coordinating: (a) my own theoretical thinking 

about the constructs involved in understanding norms and normalization; (b) relevant literature, 

such as the literature discussed in the previous sections; (c) student interview data; and (d) 

feedback received during conference presentations of this research. 
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The organization of the analytical tool as it currently stands is presented in Figure 2.2. To 

model a student’s conception of norms and normalization, a researcher fills out the “general 

understanding” column of the framework according to evidence gathered from the student’s 

interview regarding the following ideas: 

 
Figure 2.2. Analytical Tool for Examining Students' Understanding of Norms and Normalization 

1. Vector Spaces – What vector spaces does the student seem to know? Can they explain the 

formal definition of a vector space? What types of vector representations (e.g., graphical, 

symbolic, matrix) does the student have access to in their conception? 

2. Norm – What mathematical norms does the student seem to know? Can they explain the 

formal definition of a norm? What procedures for finding the norm of a vector does the 

student have access to in their conception? 
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3. Normalizing – What imagery does a student use when they describe normalizing a vector 

(i.e., does normalizing transform the given vector to have a length of one, or does it 

produce a vector in the same direction as the given vector but with a length of one)? 

What procedures for normalizing a vector does the student have access to in their 

conception? 

4. Normalized Vectors – What properties about normalized vectors does the student seem to 

know? What reasons does the student give as to why normalization of vectors is 

important? 

At any time during a student’s attempt to normalize a vector, they may access their 

general understanding to understand the problem context, especially when asked to normalize 

vectors that are unfamiliar to the student (such as a complex vector). Those with more robust,  

 
Figure 2.3: Example of Modeling a Students’ Conception of Norms and Normalization 
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general understandings of norms and normalization will likely be able to access this 

understanding when working in a specific problem context to recognize mistakes and be 

successful at normalizing vectors in unfamiliar contexts (Watson, 2018). An example of how the 

framework can be used for recording and analyzing students’ normalization understanding is 

shown in Figure 2.3. 

2.4.1 How might normalization be a coordination class? In order to normalize a 

vector, a person must coordinate a number of pieces of information. First, there must be 

recognition that the object to normalize is a vector, or at least a mathematical object that has a 

specific magnitude or length that can be calculated; in other words, a person must have readout 

strategies for “seeing” the object to normalize as a vector or something with a magnitude/length. 

These readout strategies could include various ways of representing the vector, such as 

algebraically, graphically, or numerically. Second, calculations of the magnitude or norm of the 

vector, and the determination of the normalized vector (possibly by multiplying the vector by a 

factor of one over the magnitude), might make up the causal net for the coordination class of 

normalization. This causal net would allow a person to make inferences about (a) what unit 

vector is in the same direction as a given vector, or (b) what the “original” vector was, given a 

normalized vector and the magnitude of the original vector. 

It is also important to look at the characteristics of span and alignment within the 

coordination class of normalization. For span, the types of vectors an individual is familiar with, 

and the contexts within which they have had to normalize vectors in the past can be explored. 

For alignment, the consistency with which an individual is able to apply their knowledge of 

normalization to normalize vectors in a variety of problem solving contexts and vector spaces 

must be determined. 
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As a particular example of the conceptual change I am interested in exploring, consider a 

student who enters quantum mechanics with readout strategies for vector that only sees elements 

of ℝ" as vectors. As students are asked to normalize complex vectors or wave functions, how do 

students’ conceptions of normalization change? Do their readout strategies adapt to include these 

objects as vectors? Does their causal net change and adapt to include new ways of finding norms 

or magnitudes? Or, do the students compartmentalize (see Vinner & Dreyfus, 1989) 

normalization in quantum mechanics as a completely distinct concept from normalization of real 

vectors? Are students consistent in interpreting normalization of vectors across different contexts 

and vector spaces, that is, does their conception of normalization have the feature of alignment? 

2.4.1.1 An ideal normalization coordination class.  What might constitute an expert or 

“ideal” coordination class of normalization? To give a hypothetical answer to this question, I 

hypothesize the readout strategies, causal net, span, and alignment of an expert’s coordination 

class for normalization. First, an expert would have readout strategies for seeing or coordinating 

the mathematical object to be normalized as a vector, specifically an element of a particular 

vector space. These readout strategies would include strategies for representing the vector in 

different ways (such as graphically or symbolically), cognitively situating the vector within its 

proper vector space, and drawing upon their more general or formal knowledge of vector spaces. 

The expert would also have readout strategies for seeing unit vectors as vectors with a length or 

magnitude of one. Additionally, the expert would have the ability to see or coordinate a 

normalized vector as a unit vector in the same direction as the original vector (for vectors in ℝ" 

or ℂ") or with the “same shape” as the original function (for elements of 𝐿!-space). 

Second, an expert would have an intricate causal net that would give them the ability to 

calculate the norm or magnitude of vectors from a variety of vector spaces and the ability to find 
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the normalized vector. This causal net would include knowledge of different norms on vector 

spaces, properties of the norm of a vector (e.g., the norm of a nonzero vector is greater than 

zero), and different procedures for calculating those norms (e.g., using the Pythagorean theorem, 

using inner products). It would also include knowledge of different ways the normalized vector 

can be found (e.g., multiply by the reciprocal of the norm, find the “normalization constant”). 

Furthermore, the causal net would contain knowledge for the reversibility of normalization, that 

is, the ability to find an original vector given the normalized vector and the vector’s 

norm/magnitude. Lastly, the causal net would include the inferential knowledge for the 

usefulness of normalization within different problem solving contexts. For instance, in working 

with directional derivatives, an expert would understand that the directional vector must be 

normalized so that the calculated derivative is a unit rate of change. An expert might also 

understand that vectors representing quantum mechanical states must be normalized so that they 

can be used for the probabilistic modeling of quantum systems. 

For span, an expert must have seen normalization applied in a sufficient variety of 

contexts and vector spaces. That is, they must have experience with finding the norm of a variety 

of vectors from different vector spaces and finding the corresponding normalized/unit vector in 

that vector space. An expert would likely have experience normalizing vectors in ℝ", ℂ", and 

functions in 𝐿0-space. For alignment, an expert would be able to see the commonality across the 

various instances of normalization, knowing that in each context one must have a vector, find the 

norm of that vector, and then multiply the original vector by a factor of the reciprocal of that 

norm to find the normalized vector. This would be consistent and accurate across all contexts 

where a vector is to be normalized for a specific purpose. This may even include the ability to 
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apply this knowledge in novel contexts, such as normalizing a matrix from a vector space of 

matrices. 

This normalization coordination class would have been constructed through the processes 

of incorporation and displacement resulting from multiple experiences with normalization over 

time. For instance, in the expert’s early conceptions of normalization, they may have 

incorporated their knowledge of using the Pythagorean Theorem to find the length of vectors in 

ℝ! into their conception of normalization, specifically for normalizing vectors in ℝ!. As an 

example of displacement, experts may have needed to displace from their early conception of 

normalization an idea that the magnitude of any vector is found by finding the square root of the 

sum of the squares of the components of the vector. 

In this dissertation study, my goal is to explore the readout strategies and causal nets 

students employ as they work to normalize vectors in a variety of contexts. More specifically, I 

hope to identify: (a) the readout strategies students have in their conceptions of normalization; 

(b) the inferential knowledge students employ in working with normalization, that is, what is in 

the causal net of their conceptions of normalization; (c) the variations that exist among students’ 

conceptions of normalization (e.g., looking at the variations that exist among students’ readout 

strategies and causal nets for their conceptions of normalization); (d) the changes and 

development in physics students’ conceptions for normalization as they take a quantum 

mechanics class (that is, what knowledge is incorporated or displaced from their conception of 

normalization?); and (e) when a student’s conception of normalization can be considered a 

coordination class. Note that goals (a)-(c) are focused on my first research question, and goal (d) 

is focused on my second research question in this study. Furthermore, note that (e) will require 

me to specifically look for the features of span (what contexts and vector spaces can they use 
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normalization) and alignment (how consistent are they in their use of normalization across 

various contexts) in students’ conceptions of normalization. In the next chapter, I explain the 

methods I will use to accomplish these goals. 
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Chapter 3: Methods 

In this chapter, I explain the qualitative research methods I will use to address the 

research questions of this study. As a reminder, the research questions are: 

1. What are the various conceptions math and physics students have about normalization 

from math and physics courses in which the concept is taught? 

2. What changes occur in physics students’ conceptions of normalization while taking a 

quantum mechanics course? 

However, with the theoretical framework of coordination class theory explained in chapter two, I 

refine these questions as follows: 

1. What are the readout strategies and causal nets in the various conceptions of 

normalization students have from math and physics courses in which the concept is 

taught, and what are the span and alignment properties of those conceptions? 

2. What changes occur, including incorporation and displacement, in students’ conceptions 

of normalization while taking a quantum mechanics course? 

I begin by explaining the data collection methods, who will be the participants for the study, 

the survey instrument I will use to explore multiple students’ conceptions of normalization and 

for selecting interview participants, and the interview protocols for conducting semi-structured 

interviews (Bernard, 2006) intended to explore students’ conceptions of normalization. Next, I 

explain the methods of data analysis, including how the interviews will be transcribed and how 

the interview and survey data will be analyzed through thematic analysis and two-levels of 

coding (Miles et al., 2014). In particular, I address how the first and second levels of coding will 

help to (a) address the research questions for this study and (b) determine when a student can be 

considered to have constructed a coordination class of normalization. 
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3.1 Data Collection 

3.1.1 Participants. To address the first research question, I need to recruit student 

participants from a variety of mathematics and physics classes where normalization is important. 

I hope to recruit students from five different classes: Introduction to Multivariable Calculus, 

Introduction to Linear Algebra, Linear Algebra I, Mathematical Methods in Physics, and 

Introduction to Quantum Mechanics. To recruit students from the first four courses (the non-

quantum courses), I will contact the instructors of these courses during the data collection 

semester, meet with them in person to explain my study, and ask for their help. I will ask the 

instructors when they expect to teach or use normalization in their class, and I will ask for 

permission to attend their class(es) shortly thereafter to solicit student participation. With the 

instructors’ permission, I will briefly describe my study to the students during the first 5 minutes 

of the classes I attend before I give out consent forms to all students in the class. This consent 

form will further explain the study and give students the opportunity to indicate their willingness 

to participate in one or both parts of the study. First, students may indicate a willingness to allow 

me to analyze their written work on a 15-20 minute survey asking questions about their personal 

conception of normalization (described in more detail in Section 3.1.2). Second, students may 

indicate a willingness to participate in a single, 30-40 minute, semi-structured, problem-solving 

interview during which I will further explore their conceptions of normalization (described in 

more detail in Section 3.1.3). I will collect these consent forms at the end of the class period. 

To recruit students in the quantum mechanics class, I will attend the first class of the 

semester and briefly describe my study to the students during the first 5 minutes of class, giving 

consent forms to all students in the class. This consent form will further explain the study and 

give students the opportunity to indicate their willingness to participate in one or both parts of 
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the study. First, students may indicate a willingness to allow me to analyze their written work on 

a 15-20 minute survey asking questions about their personal conception of normalization. This 

survey will be identical to the aforementioned survey that will be given to the students in the 

other classes. Second, students may indicate a willingness to participate in three, 30-40 minute, 

semi-structured, problem-solving interviews during which I will further explore their 

conceptions of normalization and investigate how these conceptions change as they take the 

quantum mechanics course. I will collect these consent forms at the end of the class period. 

The survey will be given to students in all five classes in one of two ways, dependent 

upon the instructor. First, and most preferably, the survey will be assigned to all students in the 

course as an assignment (for a grade or for extra credit). All students will then have an 

opportunity to take the survey, but I will only analyze the responses of students who gave me 

permission through the consent form described previously. Preferably the survey will be 

assigned the same day I attend class and collect consent forms from the students. Alternatively, if 

the instructors do not want to give the survey as an assignment, consenting students will be given 

the survey during the next class period. They will be instructed to answer the questions to the 

best of their ability and return the survey back to me during the next class period. In all five 

classes, this survey will need to be collected quickly to help with the selection of interview 

participants. Thus, if the survey is given as an assignment or extra credit, it will be due by the 

next class period, similar to classes where it is simply given as a survey to complete at home. 

To select three interview participants from each of the four non-quantum courses 

(Introduction to Multivariable Calculus, Introduction to Linear Algebra, Linear Algebra I, Math 

Methods in Physics), I will examine the responses on the survey of those who indicated 

willingness to participate in both the survey and the interview. In examining these responses, I 
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will specifically look for a wide range of ideas and conceptions that students demonstrated, 

choosing interview participants so I can investigate this variety in students’ conceptions about 

normalization. In doing so, I will also strive to choose a diverse group of student interviewees, so 

that different genders and races have an opportunity to be heard in the ways they conceptualize 

the mathematical concept of normalization. 

In order to address the second research question, a larger number of students will be 

recruited from the quantum mechanics class for the interviews. Similarly looking for a diverse 

group of students who demonstrated different ideas and conceptions on the survey, I will recruit 

6 students from the quantum course, asking these students to participate in three 30-40 minute 

interviews during the course of the semester. By interviewing these students multiple times 

during the course, I will be able to examine any changes that occur in their conceptions of 

normalization as they proceed through the course. 

3.1.2 Survey Instrument. The survey consists of 10 questions (see Appendix A) 

designed to explore the readout strategies and causal nets within students’ conceptions of 

normalization, as well as the span and alignment of those conceptions. The first question asks the 

student to normalize a vector from ℝ!, the second question asks the student to normalize the 

vector ! 33𝑖# from ℂ!, and the third question asks the student to normalize a function in 𝐿!-space 

(although students are not told the norm for any of the three vector spaces). These three 

questions will give me an opportunity to see elements of students’ causal nets within their 

conceptions of normalization. More specifically, I can see the procedures students use to find the 

norm, length, or magnitude of a vector and the procedures they use to normalize a vector. 

Furthermore, the second question has previously been used in interviews for Project LinAl-P 

(NSF-DUE 1452889), where we have observed students experiencing a perturbation in 
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calculating a norm, magnitude, or length of zero when trying to use the procedure of taking the 

square root of the sum of the squares of the components of the vector. This question and possible 

perturbation will allow me to observe if students understand that a norm for a vector should be 

greater than zero if the vector is not the zero vector, another possible component of their causal 

net. Furthermore, the third question gives students the opportunity to demonstrate knowledge of 

norms and normalization on a function space, giving me further ability to assess the span of their 

conception of normalization.  

The fourth question asks the student to explain what normalization of vectors means to 

them, and the fifth question asks students to give some applications for normalization and why 

normalization is important in those applications. These will give me insight into students’ 

understanding of the uses of normalization and why it is important, which I hypothesized in the 

previous chapter as being possible elements of their causal net. Questions 6 and 7 ask students to 

define what a vector is and give several examples of vectors and/or vector spaces. This will give 

me another opportunity to examine their understanding of vectors and to see if they are aware of 

vector spaces other than ℝ", which would inform me about their vector readout strategies within 

their conceptions of normalization. Questions 8 and 9 ask students if they have any geometrical 

or graphical understanding of vectors and normalization and to explain this understanding. This 

provides another opportunity for me to investigate students’ understanding of vectors, vector 

representations, and normalization (i.e. readout strategies in their normalization conception). 

Lastly, question 10 provides students an opportunity to explain what a unit vector is. There is 

always a possibility that students will not know what “normalize” or “normalization” means, and 

this question provides these students an opportunity to still demonstrate some understanding of 

the important ideas involved in the normalization of vectors, providing me a further opportunity 
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to assess students’ constructed readout strategies for unit vectors they might be able to 

incorporate into their conception of normalization as they construct it. 

The survey will be administered to the quantum mechanics students at the very start of 

the semester (the first day, if possible) to facilitate the selection of the 6 interviewees within the 

first few days of the semester so the initial interviews can be scheduled as early as possible. For 

the other four classes, the survey will be administered after students have learned or used 

normalization within the course, as determined through discussions with the instructors for the 

courses. Interviewees from these classes will then be selected and interviewed shortly thereafter. 

3.1.3 Interviews with students not in quantum mechanics. Interviews for this study 

will be semi-structured: “Semistructured, or in-depth interviewing is a scheduled activity. A 

semistructured interview is open ended, but follows a general script and covers a list of topics” 

(Bernard, 2006, p. 210). When a researcher only has one opportunity to interview a participant, 

semi-structured interviews are usually best, as they allow the researcher to focus the interview on 

the topics of most interest. For my study, I will focus the interview on exploring students’ 

personal conceptions of the normalization of vectors, including their conceptions of norm, 

vector, vector representations, and the procedures they use for normalizing vectors. In these 

interviews, I will have the opportunity to probe students’ thinking, or “to stimulate a respondent 

to produce more information” (Bernard, 2006, p. 217), beyond what they demonstrated on the 

survey. Students’ elaborations that will be produced through the interviews will provide me with 

a more-detailed look at their conceptions, giving me a better chance at answering the first of my 

research questions for this study. 

As mentioned earlier, 12 students will be asked to participate in these single, one-on-one 

interviews from the four non-quantum classes. These interviews will take place in a private and 
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quiet location on campus that is convenient for the student. These interviews will be scheduled 

after students have had a chance to participate in the survey portion of this study. Interviews will 

be video-recorded, and the video-recordings will be stored electronically on a password 

protected computer. By video-recording the interviews, I will have the ability to watch and 

analyze the students’ work and expressed thoughts multiple times; this will allow me to 

characterize the students’ conceptions of norms, vectors, and normalization as accurately as 

possible. 

The 30-40 minute interviews will further explore and probe students’ conceptions of 

normalization beyond what they demonstrated on the survey described above (see Appendix B 

for a sample interview script). I will first ask students about the mathematics courses they have 

taken, what their current major is, and how long they have been studying at the university. Next, 

I will ask the student some questions about their understanding of absolute value and see if they 

can solve an absolute value problem. Pairing this information with later questions on the 

interview where they compare across the different problems they solved will help me determine 

if students are able to recognize absolute value as an example of a mathematical norm during the 

interview. This gives me additional opportunity to assess students’ readout strategies and causal 

nets by exploring their ability to see real numbers as vectors in a vector space and the absolute 

value as an example of a norm. It will also help me further explore the span of their conceptions 

of normalization, specifically students’ awareness of various vector spaces and norms. 

I will then ask clarifying questions about their responses to the survey specifically about 

normalization. First, I will ask them to elaborate on their personal understanding of vector 

normalization; I will then give them a hypothetical definition of normalization (that normalizing 

a vector “gets rid of” the vector’s magnitude) and ask the student to comment on it. Second, I 
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will point out their answers to the three vector normalization problems, probing the students to 

explain why they chose the particular procedure they used to normalize the vector. A crucial part 

of the interview includes asking specific questions to students who had decided that they could 

not normalize either of the vectors in Questions 2 or 3 (the complex vector or the function). 

These questions will seek to have the student elaborate why they encountered difficulty in trying 

to normalize those vectors. Possible responses include not knowing how to work with a complex 

vector or a function as a vector, or obtaining a length or magnitude of zero when trying to find 

the norm of the vector. If it is the latter, I will ask students if they believe the vector should have 

a norm of zero, and have them explain. I will also ask the student to explain how normalizing the 

vector in Question 3 (a function) is similar to normalizing the vectors in Questions 1-2 (the real-

valued and complex-valued vectors). This will further assess the causal nets within their 

conceptions of normalization, as well as readout strategies for recognizing the mathematical 

objects to be normalized as vectors. 

In the next part of the interview, I will ask students about their answers to Question 9 on 

the survey, specifically seeking further elaboration about their geometric or graphical ideas about 

normalization; this will allow me to further explore their causal net for normalization, 

specifically looking for the inferential knowledge the students can call upon to calculate the 

magnitude of a vector. This will be followed by asking students to elaborate and clarify their 

answers to Questions 6-8 from the survey, seeking to elicit their personal conceptions of vectors 

and vector spaces; this will allow me to further explore their readout strategies for vectors. This 

will also give me an opportunity to see if there are any other vector spaces the students are aware 

of that they did not write down when taking the survey. 

Following students’ elaboration about vectors, I will ask students if they see connections 
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among the four different problem settings (ℝ, ℝ!, ℂ!, and 𝐿!-space) they have worked within as 

part of this research project. This is to see if the students have a more abstract or general 

understanding of mathematical norm and to assess the span of their conception of normalization. 

I will then ask the students to explain why they think normalization is important, how 

normalization has been used in their class, and probe their answers to Question 5 on the survey 

that asks the students to give examples of applications of normalization. This will be followed by 

asking the students if they see any connections between normalization and unit vectors. This 

provides an additional opportunity to explore the interconnectedness of students’ readout 

strategies and causal nets within their conceptions of normalization. 

Lastly, if time permits, I will ask students a question about normalizing a wave function. I 

will not be asking students to solve this problem, but rather I will ask them what pieces of 

information they would need to know in order to carry out the normalization. This provides 

another opportunity to see if students could recognize the function as an example of a vector, 

understand a need for a norm, and abstractly explain some procedure for normalizing the 

function. Putting the problem into more of a physics context additionally provides another 

opportunity to explore the span of students’ conceptions of normalization. 

3.1.4 Interviews with students in quantum mechanics. Interviews with the quantum 

mechanics students will similarly be semi-structured, one-on-one interviews (Bernard, 2006). 

These interviews will also take place in a quiet and private location on campus that is convenient 

for the student. Interviews will be video-recorded, and the video-recordings will be stored 

electronically on a password protected computer. Again, this provides me an opportunity to 

analyze the interviews multiple times, as I seek to characterize students’ conceptions of vector 

normalization. 
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The first interview will be identical to the interview with the other student participants in 

this study described in Section 3.1.2 (see Appendix B). This will help me establish the 

conceptions of normalization the students initially have as they enter the quantum mechanics 

course; this “base-line” conception will be critical for examining the changes that occur in these 

students’ conceptions as they learn about quantum mechanics. 

The second and third interviews will engage students in further problem solving, during 

which they will be asked to normalize vectors from different vector spaces. In particular, I will 

choose normalization problems that are situated within a quantum mechanics context, and 

normalization problems that are situated in a purely mathematical context (i.e., problems typical 

within a mathematics course), to explore how their conception of normalization might be 

changing as they take the course. More specifically, (a) what changes occur in their readout 

strategies and causal nets, and (b) what knowledge seems to have been incorporated into or 

displaced from their normalization conception. These questions will also give me an opportunity 

to investigate possible moments of conceptual change within the interviews themselves, 

specifically looking for moments during which the student seems to be incorporating previously 

constructed knowledge into their conception of normalization or displacing elements from their 

conception of normalization when those elements prove unhelpful in a particular situation or 

context. Questions will include normalizing different wave functions, normalizing complex-

valued vectors, and physics problems in which normalization is a step in the process of finding a 

solution. In addition to these problem solving tasks, I will ask students further questions about 

their conception of normalization, such as asking why normalization is important in the problem 

they are solving, or more generally, why normalization is important in their quantum mechanics 
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course; this is an additional investigation of the causal net of students’ conceptions of 

normalization. 

An important part of these second and third interviews will be questions that ask students 

how their current conceptualization of normalization in the quantum mechanics course relates to 

their initial conceptions that they demonstrated at the beginning of the course. In particular, I will 

be asking students explicitly how instances of normalization within the quantum mechanics 

course relates to the normalization of vectors they were familiar with at the beginning of the 

course. This will provide me opportunities to look for instances where students see the 

normalization in quantum mechanics as separate or distinct from the normalization of vectors 

they have seen previously, versus instances where students are able to see (i.e., coordinate) 

normalization in different contexts as instantiations of the same concept. If students are able to 

consistently apply normalization ideas across a variety of contexts, this will be evidence of span 

and alignment, indicating that the student has possibly constructed a coordination class for 

normalization. 

Because the material students see in class and the problems they are assigned in 

homework will inform these interviews, full interview protocols for these interviews will be 

developed during the course of the study. In Appendix C, I do provide some examples of the 

problems and questions I intend to ask within these interviews. In section 3.1.4, I describe the 

observation of the class, which will help to inform the development of these interview protocols. 

The first interview will take place as early as possible in the course, hopefully within the 

first week. The second interview will be scheduled with the students after they have seen 

normalization within the course and have had a chance to solve a few problems where 

normalization is involved, either in class or on the homework. The third interview will be 
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scheduled later in the course, after students have seen a fair amount of the material and have used 

normalization multiple times. Ideally, this third interview will occur after the students have seen 

quantum spin (Griffiths, 2005, pp. 171–190), because quantum spin presents a nice opportunity 

for students to see normalization of complex vectors within a physical context. 

3.1.5 Quantum mechanics class observation. I will attend all of the quantum mechanics 

classes to observe the material students are learning within the course. I will keep detailed field 

notes of the content taught, making special note about any instances where normalization was 

used in class and how it was presented. These data will be used to inform the types of questions I 

ask in the interviews with the quantum students. The field notes will also help to contextualize 

students’ phrases, procedures, or ways of conceptualizing normalization within the broader 

context of their quantum mechanics learning. 

3.1.6 Written work in the quantum class. If the instructor and students’ give their 

permission, I will make copies of any written assignments students turn in in which 

normalization is used and is integral to solving the problems. This additional data source will 

provide an opportunity for triangulation, supplying an additional setting where students could 

demonstrate their knowledge or understanding of normalization. This is important, as some 

students may not be comfortable with the survey or interview, and may do their best work on the 

homework or in-class assignments. Collecting this data will help in the categorization of 

students’ conceptions of normalization, providing a check to the analyses that will be done on the 

survey and interview data. 

3.2 Data Analysis 

To analyze the data for this study, I will be using a thematic analysis (Braun & Clarke, 

2006). Thematic analysis can be applied across a range of theoretical and epistemological 
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perspectives, including the constructivist epistemology and coordination class theoretical 

framing I use within this study. “Thematic analysis is a method for identifying, analysing and 

reporting patterns (themes) within data. It minimally organizes and describes your data set in 

(rich) detail” (Braun & Clarke, 2006, p. 79). More specifically, this thematic analysis is a 

theoretical thematic analysis that will “be driven by the researcher’s theoretical or analytic 

interest in the area, and is thus more explicitly analyst driven” (p. 84). As I have already 

developed some sense of the important components of normalization conceptions (see Section 

2.4), I will specifically be looking for the various ways students think about and conceptualize 

vectors, vector representations, mathematical norms, and normalization. In other words, I hope to 

be able to explore the readout strategies and causal nets of students’ conceptions of 

normalization, and investigate how students’ conceptions of normalization change as they learn 

quantum mechanics through processes of incorporation and displacement. 

Thematic analyses generally consist of six steps (Braun & Clarke, 2006). First, I will 

familiarize myself with the data by transcribing all of the interviews, reading through all of the 

surveys, written work, and interview transcripts, and writing down initial ideas in analytic 

memos (Ely, Vinz, Downing, & Anzul, 1997). Second, I will generate an initial set of codes 

aimed to capture and categorize the readout strategies and causal nets within students’ 

conceptions of normalization. 

Codes are labels that assign symbolic meaning to the descriptive or inferential 

information compiled during a study. Codes usually are attached to data ‘chunks’ of 

varying size and can take the form of a straightforward, descriptive label or a more 

complex one (e.g., a metaphor). (Miles et al., 2014, pp. 71–72). 
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As such, these codes will label and describe the readout strategies and inferential knowledge in 

the causal nets that students seem to employ from their conceptions of normalization as they 

answer normalization questions. The codes will be attached to sections of the interview 

transcripts and written work (the survey and any other assignments collected) as one of the first 

steps in organizing and analyzing the data for this study. 

 The third step in my thematic analysis will consist of a second level of coding (Miles et 

al., 2014) that will consist of four different sets of thematic codes. The first set of second level 

codes will look to find themes in the data of particular elements of students’ conceptions that are 

productive or powerful for making sense of normalization and solving problems that involve 

normalization. The second set of second level codes will look for patterns and differences across 

students’ conceptions of normalization. The third set of second level codes will label instances 

when the span and alignment of students’ conceptions of normalization is evident within the 

data. Lastly, the fourth set of second level codes will help me identify changes that seem to have 

occurred in students’ conceptions of normalization, specifically looking for the incorporation of 

new ideas (e.g., readout strategies) or displacement of unproductive ideas in their conception of 

normalization. The first three sets of second level codes will help to address my first research 

question and will help with delineating when a person can be said to have constructed a 

coordination class for normalization. The fourth set of second level codes will focus on 

addressing my second research question, examining the changes that occur to students’ 

conceptions of normalization as they take quantum mechanics. 

 Fourth, I will review the themes generated in the third step of the analysis and carefully 

check that instances of readout strategies, causal nets, incorporation, displacement, span, 

alignment, and moments when I consider a student to have constructed a coordination class of 
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normalization have all been identified. This will involve making sure that the data for each 

student has been thoroughly coded and analyzed, and that codes given to students with similar 

thoughts and procedures are consistent. Additionally, the themes of productive elements in 

students’ conceptions will also be reviewed across the data, specifically looking for productive 

ideas that students had that the themes might be missing. This will lead to the fifth step in the 

analysis, during which I will name the themes found, including commonalities across students’ 

conceptions of normalization, the productive conceptions students demonstrated, and how 

students who have constructed a coordination class for normalization can be identified. 

 The final step of the thematic analysis will be a write up of the results. In writing up the 

results for both research questions, it is important to note that further analysis can and will occur 

as I engage in the writing process. As Ely et al. (1997) note, writing is a messy and chaotic 

process. As researchers try to generate and form their ideas into a coherent presentation, they 

often find that further and deeper ideas emerge and develop. Hence, I fully expect that the 

writing up of results may lead to further insights and knowledge about the variety of students’ 

conceptions of normalization and the conceptual changes that occur in physics students’ readout 

strategies and causal nets for normalization as they learn quantum mechanics. These additional 

insights might lead to a reshaping and reworking of the results through further data analysis, or 

they may lead to important topics and ideas that will be explored in the discussion chapter of this 

study. 

3.3 Pilot Study – Example of the Coordination Class Analysis 

During the Fall 2016 semester, the lead investigator of Project LinAl-P (NSF-DUE 

1452889), Megan Wawro, conducted 1-hour long, one-on-one, semi-structured interviews with 

physics students at a medium public research university in the northeastern United States. These 
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students were taking a senior-level, first semester quantum mechanics course. The interviews 

were focused on exploring how these students thought about and reasoned with linear algebra 

concepts in the quantum mechanics course. Some of the concepts that were explored through the 

interview questions include eigentheory, complex numbers, change of basis, and normalization 

of vectors. Eight students were interviewed at the beginning of the course, and nine were 

interviewed at the end of the course. This made for a total of ten students participating in at least 

one interview, with seven participating in both. Interviews were video-recorded and student work 

scanned, allowing for repeated examination and analysis of student work and answers to the 

interview questions. 

As part of this interview was specifically focused on examining these students’ 

understanding of normalization and its use in quantum mechanics (see Appendix D for the 

related questions), I now use one student and his pre-quantum interview from this data set to 

illustrate the analysis I will do with coordination class theory to explore students’ conceptions of 

normalization. It should be noted that the normalization questions in these interviews only took 

around 10-15 minutes of the hour-long interview. As such, these interviews may not be as 

revealing or informative as the data I intend to collect for this study, but they still provide a good 

opportunity to demonstrate the analysis that is made possible by using coordination class theory. 

Brett was a fourth-year, double-major in mathematics and physics who had taken an 

introductory linear algebra class about one year before taking quantum mechanics, as well as a 

math methods course offered through the Physics department. He was quite interested in how 

differential equations operated within physics contexts and was planning on going to graduate 

school for applied mathematics after graduating with his Bachelor’s degree. He mentioned linear 

algebra as a weak point in his mathematical knowledge, explaining that it might be somewhat 
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difficult to recall all of the topics in linear algebra, such as the Gram-Schmidt process. However, 

with some review of his notes, he thinks he can remember most of what he learned. 

In the Pre-quantum interview, when Brett was given the initial normalization question 

(“Normalize the following vector: 𝑣⃗ = !52#.”), he seemed to have readout strategies for 

recognizing 𝑣⃗ as a vector, talking about the vector as if he were familiar with real vectors. As he 

began to think about what he would need to do in order to normalize the vector, there seemed to 

be two causal nets that were activated in his cognitive structures: 

Brett: OK, so, if I were to normalize the vector… Wow, I’m drawing a blank. [Pause]. 

So, I have two definitions of normalize in my head right now. It’s either … just … 

[pause]. Normalizing is either, I would assume, to make it into the unit vector, or 

something like that. And so… [laughs]. That’s where I’m at right now. 

Interviewer: OK. OK. Let’s see. What was, or, was there a competing one as well, or is 

that the one you’re gonna go with? 

Brett: Well, normal, I think of, if something is normal to something, then, like, I think of 

orthogonality in a way, but I’m pretty sure that’s not what this is. 

The first causal net is a set of inferential knowledge and calculations that would help him make 

the given vector into a unit vector. The second causal net is a set of inferential knowledge and 

calculations that would lead to finding a vector normal/orthogonal to the given vector. Ultimately 

Brett decided the latter was not correct, and began an attempt to make the vector a unit vector. 

He explained that he would need to multiply the vector by some scalar, but struggled for a while 

to find that scalar. After fumbling around for a couple of minutes, Brett suddenly recalled 

important inferential knowledge from his causal net for normalization. This inferential 

knowledge included how to find the magnitude of the vector by squaring both components and 
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taking the square root, and how to find the normalized vector by immediately multiplying the 

vector by the reciprocal of that magnitude (see Figure 3.1). Brett went on to explain how he 

thought of the 5 and 2 in the 

 
Figure 3.1: Brett's Normalization of a Real Vector 

vector as directions, with 5 being the x-direction and 2 being the y-direction. He then proceeded 

to draw the labeled triangle shown in Figure 3.1, explaining how the hypotenuse can be found 

using the Pythagorean Theorem. This gives evidence that Brett had readout strategies for 

transforming the column vector into a graphical or geometrical representation; he further had the 

Pythagorean Theorem as a knowledge element in his causal net for normalization, specifically as 

a way to find the magnitude of the vector. However, it was not clear if Brett had completely 

constructed the inferential knowledge within his causal net that the square root of the sum of the 

squares of the components gives you the magnitude of the vector, never clearly calling this the 

magnitude or norm of the vector. 

 After normalizing the vector, Brett demonstrated that he had readout strategies for 

recognizing the original vector and the normalized vector as two different vectors, explaining 

that the normalized vector could not be labeled as 𝑣⃗ because it was a different vector than 𝑣⃗. The 

interviewer then explicitly asked Brett what it means to normalize: 
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Brett: Um, when you normalize a vector, you divide by, or multiply one over the square 

root of the dimensions squared—dimensions again might not be the correct term. But … 

what’s ever inside your vector, square all the terms, put it under a square root, put, like, a 

one over it… 

Interviewer: OK. 

Brett: And, the question is… 

Interviewer: Any idea why that’s something you do? 

Brett went on to give another way to normalize the vector (see Figure 3.2), and then goes on to 

say 

 
Figure 3.2: Brett’s Additional Calculation for Normalizing 

the following: 

Brett: I’m pretty sure it’s supposed to put it into its simplest form. Um, not its unit vector, 

‘cause, this [pointing to the normalized vector] would have to come out to one. But— 

which is what I was saying before. 

Here is further evidence that Brett’s causal net for normalization was not coherently constructed; 

this is because at first he thought normalizing would produce a unit vector, but later he seemed to 

think that normalizing the vector would put it into its “simplest form”. Furthermore, there is 

some evidence here that Brett did not have readout strategies for “seeing” or coordinating unit 

vectors as having a magnitude of one, but rather he seemed to think that a unit vector must 

“come out to one.” The interviewer then pressed further on this idea: 
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Interviewer: But you don’t think that’s, that’s resulting in a vector whose magnitude is 

one? 

Brett: Well I hope – you just have to – I don’t know. Depends on your values for 𝑥. 

After thinking out loud for thirty seconds more, Brett eventually said that maybe this process 

does make the vector’s magnitude one, but explained that he did not really “see” that in the 

normalized vector. In fact, he thought this process would result in a vector whose components 

are 1
√!3

 and !
√!3

, and said this “isn’t one.” Again, here is evidence that his causal net for 

normalizing a vector did not have a clear connection to producing a unit vector, and his readout 

strategies for unit vectors seemed to focus on the vector “being one” rather than having a 

magnitude of one. 

 The interviewer then gave Brett the complex vector 𝑤%%⃗ = ! 33𝑖# to normalize. Brett 

immediately explained he would stick with the same process as he used previously, and began 

writing the work in Figure 3.3. He immediately recognized he would run into a problem in using 

 
Figure 3.3: Brett’s Initial Attempt to Normalize a Complex Vector 

this process: 

Brett: That’s not going to be good. ‘Cause I’m gonna get a square root of zero? If I’m not 

mistaken. [Begins writing the fraction after the equal sign in the first line of Figure 3.3] 

Nine, i-squared … So i is the square root of negative one, so i-squared is negative one 
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… 

[After writing the fraction in the second line of Figure 3.3] Which is just bad news bears. 

Um, [mumbles while checking calculations]. Uh, yeah, so I would say it cannot be 

normalized, given that information. 

This is further evidence that Brett’s causal net for normalization was mainly made up of a rote 

procedure, namely dividing the vector by the square root of the sum of the components squared. 

He then goes on to hypothesize that this vector is in its “simplest” form, and cannot be reduced 

any further, providing additional evidence that Brett’s causal net includes the idea that 

normalization helps to get a vector into its simplest form. 

 At this point in the interview, the interviewer asks Brett how confident he is in this 

procedure and his answer to normalizing the complex vector. Brett then provides an interesting 

response: 

Brett: Um, I feel like it’s right there. Um, like I just know that’s what it is. Like, I know 

I’ve seen it before, and now that I’ve, like, worked through the problem more, I just 

remember, like I said, those examples where it would be, the vector would be [writes out 

the vector !11#] one, one, and to normalize that vector, you’d have to multiply by one over 

root two [writes $
√!

 in front of !11#], because the square root of those two summed together 

squared is square root of two. So, that, that’s in my head from like, when I hear, 

normalize the vector, and, like, you know, we did have those basis vectors, but this is 

definitely not making a unit vector, ‘cause this [circles the !11# vector] is a unit vector. 

Interviewer: It is a unit vector? One-one? 
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Brett: Well, um, it’s got a magnitude of wo—so it doesn’t! Which is why you have to 

divide by the magnitude in order to make it one. So that makes sense. 

In this exchange, there is a moment during which the previous idea that normalizing a vector 

does not produce a unit vector (part of his causal net) began to be displaced from Brett’s 

conception of normalization. Brett then went on to explain how the vector !11# actually has a 

magnitude of √2 by drawing a triangle and using the Pythagorean Theorem: 

Brett: The overall magnitude would be the square root of two. Looking at the triangle 

again [see picture Brett draws in Figure 3.4]. So, this [pointing to the square root of 2] is 

its magnitude. So, in order to normalize the vector, you have to divide by its magnitude. 

 
Figure 3.4: Brett explaining the magnitude of /111. 

Here it seemed Brett began to better incorporate his knowledge of the magnitude of vectors into 

his causal net for normalization, and recognized the need to divide a vector by its magnitude. 

With this incorporation, it seemed Brett was moving closer to the idea that normalization does 

result in a unit vector. 

 The next part of the interview provided even further opportunities for Brett to change and 

refine his conception of normalization when the interviewer asked Brett if he had a geometric  
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Figure 3.5: Brett’s Graphical Representation of 𝑤33⃗ = / 33𝑖1 

way to think about the complex vector 𝑤%%⃗ . Brett drew the picture in Figure 3.5 (note that this 

drawing is actually more of a representation of the complex number 3 + 3𝑖, but the drawing was 

still a powerful tool for Brett in his thinking), leading the interviewer to ask the following: 

Interviewer: What about the notion of length? You had mentioned that before. Did you 

think about length at all when you were thinking about this w? 

Brett: Um, I mean, yeah. I mean, it’s, it’s similar I guess. The length of this vector 

[pointing to the vector drawn in Figure 3.5] would be that right there. Um, and I know 

it’s, you’re summing it the same, it’s just something of three magnitude in the imaginary 

direction, and then three, uh… 

Interviewer: OK, does that show up in that calculation you did before? 

Brett: Um, yeah, it’s … I think we’re dividing by the length is what we’re doing. It’s, it’s 

one over the length of the vector, so, which in this case is apparently zero. Or the square 

root of zero, which doesn’t really make sense. So… 

Interviewer: So, do you trust your picture more, or your calculation more? Or do you 

think they can both be right? 

Brett: I’m trusting my picture more now! So… I think it’d just be three and three. The 

question is, do you square the absolute values of these things, and so the i goes away. So 

you’d want…now that I’ve seen the picture, um, I know that it does have some length, 
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which would be three squared plus three squared which is 18, so it would be square root 

of 18. 

After debating a bit further over whether the length of 𝑤%%⃗  should be zero or √18, Brett eventually 

concluded that it should be √18, and further explained that the calculation to find the length 

should actually be the square root of the sum of the squares of the magnitudes of the 

components. With some prompting from the interviewer, Brett then pulled out a new sheet of 

paper, and redid the normalization problem, shown in Figure 3.6. When asked further about what  

 

Figure 3.6: Brett’s Second Attempt to Normalize a Complex Vector 

changed his mind from his first answer that 𝑤%%⃗  cannot be normalized to his second answer, Brett 

said the following: 

Brett: Um, drawing a picture helped me out to see that the vector clearly has a length. 

And then what I did [previously] just didn’t make sense [laughs]. So, that’s really just it.   

In this excerpt the beginnings of a construction and incorporation of important inferential 

knowledge within Brett’s causal net for normalization can be seen. More specifically that 

nonzero vectors always have a length or magnitude greater than zero, that is, they must have 

some “length”. 
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 While this interview only gave Brett two vectors to normalize, there are still some 

changes in the span and alignment of Brett’s conception of normalization evident during this 

problem solving session. At first, Brett’s conception of normalization did not align well over the 

two different vectors, leading Brett to conclude that the complex vector could not be normalized. 

This further indicated that the span of Brett’s conception of normalization may have been limited 

to real vectors. However, through using his readout strategies for translating vectors into 

geometric representations, Brett was able to modify his causal net for normalization, concluding 

that the magnitude of a complex vector should be found by taking the square root of the sum of 

the squares of the magnitudes (or “absolute values”) of the components. With this modification 

to his causal net, Brett increased the possibility of his conception of normalization having a 

greater amount of alignment, as this could also apply in the real vector case. The span of his 

conception of normalization likewise increased as he gained important successful experience 

with normalizing complex vectors. 

 This is not to say Brett had constructed a coordination class for normalization at this 

point. For instance, we did not assess his knowledge of normalization of functions, and he may 

have struggled to see how something like a function could be normalized. Furthermore, complex 

vectors such as !3 + 2𝑖4 − 6𝑖# may have presented a new challenge, as these vectors cannot easily be 

thought about geometrically. Hence, the span of Brett’s conception of normalization was 

probably not sufficient enough to be considered a coordination class at this point. Additionally, 

more time would probably be needed beyond this interview for Brett to solidify in his conception 

that normalization produces a unit vector in the same direction as the original vector.  

Understanding normalized vectors as unit vectors is an extremely important piece of knowledge 
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to have in the causal net for normalization, particularly for understanding the important uses of 

normalization in various contexts, and it was not clear that he had constructed this understanding. 
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Postscript 
Written by Megan Wawro, PhD 

Kevin Watson’s dissertation advisor 

 

Kevin began collecting data for his dissertation, as outlined in these chapters, in the 

spring semester of 2019. Towards the end of the semester, Kevin fell ill.  After more than a year 

of fighting an aggressive brain cancer, Kevin passed away peacefully on July 9, 2020.  

The data collected during Spring 2019 consisted of nearly 200 written surveys, as 

detailed in Appendix A. The surveys were completed by students from all five of Kevin’s target 

classes. He also conducted twelve individual interviews with six unique students: five students 

from Quantum Mechanics (two participated in three interviews, two in two interviews, and one 

in one interview). One student from Mathematical Methods participated in one interview. Kevin 

was able to begin his initial analyses of this data set. I anticipate that trusted colleagues will carry 

the mantle of continuing to analyze Kevin’s data, striving to do it justice according to Kevin’s 

vision and passion for his work.  

Kevin was a valued member of the Virginia Tech community. His kindness, positive 

energy, and curiosity will be sorely missed. Kevin was from Springville, Utah. He was an active 

member of the Church of Jesus Christ of Latter Day Saints, and he loved his faith and family. He 

is survived by his wife Jennifer and his children Abby, Christian, Nicholas, and Ethan. 
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Appendix A: Survey Instrument 

Thank you for your willingness to participate in this survey. Below you will find several 

questions about normalization of vectors. Please answer the questions to the best of your ability 

without using outside resources. If you do not know how to answer a question, please write “I do 

not know” as your response. This survey will take approximately 20 minutes to complete. 

 

Question 1: Please normalize the following vector if possible: 

! 3−4# 

 

 

 

Question 2: Please normalize the following vector if possible (here 𝑖 = √−1): 

! 33𝑖# 

 

 

 

 

 

 

Question 3: Please normalize the following vector if possible: 

𝑓(𝑥) = v sec z
𝜋𝑥
4 |						− 1 ≤ 𝑥 ≤ 1

													0													𝑥 < −1		or		𝑥 > 1
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Question 4: To you, what does it mean to normalize a vector? 

 

 

 

 

 

 

Question 5: What are some applications of normalization, and why is normalization important in 

those applications? 

 

 

 

 

 

Question 6: How do you define what a vector is? 

 

 

 

 

 

 

Question 7: Please give some examples of vectors and/or vector spaces below. 
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Question 8: Do you have a graphical or geometric way to think about vectors? Please explain. 

 

 

 

 

 

 

Question 9: Do you have a graphical or geometric way to think about normalization? Please 

explain. 

 

 

 

 

 

 

Question 10: Please describe what a unit vector is. 

 

 

 

 

Results from this survey will be used to select potential interview candidates. I am purposefully 
trying to select participants that have a variety of lived experiences, thus I am collecting the 
following data:   
 
What is your gender identity? 
 
What is your racial/ethnic identity? 
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Appendix B: Sample Interview Protocol (First Interview) 

Interviewer _______________ 
Camera operator _______________ 

Date _______________ 
 

Introduction Prompt  
“Thank you for agreeing to help me by participating in this interview. I expect this interview to take 30-40 minutes.  
 
I am interested in finding out more about how students actually think about mathematical norms and normalization. 
I am curious to see how you personally think about these concepts. Please try to be as honest as possible about how 
you’re thinking.  Please keep in mind that I am NOT looking for particular answers, I really just want to understand 
how you think about the mathematical ideas. 
 
Please feel free to use the paper and markers and write anything you wish during the interview. Do you have any 
questions before we begin?”  

 
1. Personal Information 

a. “What university mathematics courses have you taken?” 
b. “What is your current major?” 
c. “How long have you been studying here?” 

 
2. Absolute Value 

a. “People think about concepts in mathematics in many different ways. I am curious, how 
would you describe and define what absolute value is?” 

i. (If needed) Do you have any other ways you think about absolute value? 
ii. (If needed) What are some properties of absolute values? 

iii. (If needed) Can you give me a couple examples to illustrate your understanding? 
iv. (If needed) Do you have a graphical way to think about absolute value? 
v. “Please try to solve the following problem, and think out loud as you solve it.”  

|x − 7| = 3 
 

3. Norms and Normalization 
“I have here your answers to the normalization survey you filled out recently. I would like to ask 
you some further questions to understand your thinking about these ideas. 

a.  “You said here on question three that normalizing a vector means [insert student’s 
description of normalization]. Can you elaborate on that?” 

i. Another student described normalization this way: “We normalize a vector to get 
rid of its magnitude, so we are only left with direction.” What do you think of 
this statement?  

b. “In question 1, why did you choose that procedure to normalize the vector?” 
i. “Similarly, in question 2, why did you choose that particular procedure?” 

ii. (If applicable) “Similarly, in question 3, why did you choose that particular 
procedure?” 

iii. (If applicable) “You wrote that you did not know how to normalize the vector on 
(Question 2/Question 3). Do you have any ideas how you might do so?” 

iv. “Are there other ways you could have normalized those vectors?” 
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c. (If applicable) “It looks like you decided the complex vector could not be normalized. 
Why was that the case?” 

d. (If applicable) “Why do you think you had trouble with the complex vector?” 
e. (If applicable) “Do you think that complex vector should have a norm/length/magnitude 

of zero? Why or why not?” 
f. (If applicable) “How is the normalization of that function similar to normalizing the 

vectors?” 
g. “How would you describe and define a mathematical norm?” 

i. (If applicable) “That is alright that you do not know that term. What if I asked 
you to describe and define the magnitude of a vector?” 

h. “On question eight, you said [insert student’s graphical or geometric description of 
normalization]. Can you elaborate on that?” 

i. (If needed) “You said you do not have a geometric or graphical way to think 
about normalization. Why do you think that is the case?” 

ii. (If needed) “Do you have a graphical or geometric way of thinking about the 
norm of a vector?” 

i. “Suppose I told you a vector has a length of √13 and its corresponding normalized vector 

is )−2/√13
−3/√13

,. Can you find the vector?” 

 
4. Vectors and Vector Spaces 

a. “On question five, you defined a vector as [insert student’s definition here]. Is there 
anything you want to add to that definition?” 

b. “You gave the following as examples of vectors/vector spaces on question six. Are there 
any other vectors or vector spaces you know of?” 

c. “Are there any other ways you could represent those vectors?” 
 

5. Properties of Norms and Normalized Vectors 
a. “Looking at the problems you have solved in this interview and on the survey, what 

similarities or connections, if any, do you see between them?” 
i. “Do you think it makes sense to normalize a real number, say 5? Please explain.” 

b. “If you had to try and define what a mathematical norm is now, would your answer be 
different from before? Why or why not?” 

c. “Why do you think mathematical norms are useful?” 
d. “On question four, you described [insert student’s applications here] as being (an) 

application(s) of normalization. Can you explain again why normalization is important 
for that application?” 

i. (If needed) “Has normalization come up in your class? In what context?” 
ii. (If needed) “Why do you think normalization was used there?” 

e. “Do you see unit vectors as connected to normalization? How so?” 
 

6. (If Time Permits) Normalizing a Wave Function 
a. What would you need to know in order to find 𝜓! so that the wave function 

𝜓(𝑥) = 𝜓!𝑒"($"$!)
"/('(") 

is normalized?
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Appendix C: Sample Questions for Interviews 2 and 3 with Quantum Students 

Problem Solving Tasks 
1. Problem 1.5 in Griffiths (2005, p. 14) 

“Consider the wave function 
𝜓(𝑥, 𝑡) = 𝐴𝑒.4|'|𝑒.%67 , 

where 𝐴, 𝜆, and 𝜔 are positive real constants. 
(a) Normalize 𝜓. 
(b) Determine the expectation values of 𝑥 and 𝑥!.” 

2. Problem 2.7 in Griffiths (2005, pp. 39-40) 
“A particle in the infinite square well has the initial wave function 

𝜓(𝑥, 0) = �
𝐴𝑥,																						0 ≤ 𝑥 ≤ 𝑎/2
𝐴(𝑎 − 𝑥),											𝑎/2 ≤ 𝑥 ≤ 𝑎 

(a) Sketch 𝜓(𝑥, 0), and determine the constant 𝐴. 
(b) Find 𝜓(𝑥, 𝑡) 
(c) What is the probability that a measurement of the energy would yield the value 

𝐸$? 
(d) Find the expectation value of the energy.” 

3. Normalize the following vector: 
𝑣 = !4𝑖4 # 

4. Problem 4.27 in Griffiths (2005, p. 177) 
“An electron is in the spin state 

𝜒 = 𝐴 z3𝑖4 | 
(a) Determine the normalization constant 𝐴. 
(b) Find the expectation values of 𝑆', 𝑆(, and 𝑆8.” 

5. What do you think it would mean to normalize the matrix !1 2
2 −3#? 

 
Discussion Questions 

1. Why is normalization important within this problem? 
2. Why did you choose that procedure to normalize the wave function/quantum state? Are 

there other ways you could have done it? 
3. Why is normalization important in quantum mechanics in general? 
4. How does normalizing wave functions/quantum states in this class compare to 

normalization of vectors you have encountered in the past? 
5. Do you see normalization in quantum mechanics as being similar to or different from 

normalizing a vector such as !34#? 
6. Are there other applications of normalization (such as those you may have learned in 

previous classes) that you feel are just as important as normalization within quantum?
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Appendix D: Pre- and Post-Quantum Interview Questions from Project LinAl-P Fall 2016 
Data Collection 

 

Pre-Quantum Interview 

1. Normalization 
Please read this out loud and then begin your work on this problem: (Hand interviewee 

Student Page 1 which says “Normalize the following vector: 𝑣⃗ = !52#.”) 

• What does it mean to normalize? 
• Why did you choose that procedure to normalize 𝑣⃗? 
• Do you have a geometric or graphical way to think about normalization? 

• Normalize the vector: 𝑤%%⃗ = ! 33𝑖#.	(Write that vector on SP 1) 

o Why did you choose that procedure to normalize 𝑤? 
o Do you have a geometric/graphical way to think about this problem? 
o (If the student mentioned ‘length’ in regards to normalization) You 

mentioned before that normalization is related to length. How do you 
make sense of that with this vector 𝑤%%⃗ ? 

 

Post-Quantum Interview 

Normalization & Probability 
a. Please normalize a vector whose components are 3 and 2i. 

§ How do you think about what it means to normalize a vector? 
§ Do you have a geometric or graphical way you think about normalization? 
§ You used [Dirac notation / matrix representation / both] in your solution.  Tell me about 

that. 
b. In general, what does normalization mean to you? 

§ What if you were asked to think about other objects, like a vector with all complex 
components or a wave function. Do you think you think about normalization and 
normalized vectors or states in the same way as what you described? 

§ [If relevant]: Are there any other ways you think of norm, normalization, and normalized 
vectors/states that are not based on length?  

 


