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Plane Permutations and their Applications to Graph Embeddings

and Genome Rearrangements

Xiaofeng Chen

(ABSTRACT)

Maps have been extensively studied and are important in many research fields. A map is

a 2-cell embedding of a graph on an orientable surface. Motivated by a new way to read

the information provided by the skeleton of a map, we introduce new objects called plane

permutations. Plane permutations not only provide new insight into enumeration of maps

and related graph embedding problems, but they also provide a powerful framework to

study less related genome rearrangement problems. As results, we refine and extend several

existing results on enumeration of maps by counting plane permutations filtered by different

criteria. In the spirit of the topological, graph theoretical study of graph embeddings, we

study the behavior of graph embeddings under local changes. We obtain a local version

of the interpolation theorem, local genus distribution as well as an easy-to-check necessary

condition for a given embedding to be of minimum genus. Applying the plane permutation

paradigm to genome rearrangement problems, we present a unified simple framework to study

transposition distances and block-interchange distances of permutations as well as reversal

distances of signed permutations. The essential idea is associating a plane permutation to

a given permutation or signed permutation to sort, and then applying the developed plane

permutation theory.



Plane Permutations and their Applications to Graph Embeddings

and Genome Rearrangements

Xiaofeng Chen

(GENERAL AUDIENCE ABSTRACT)

This work is mainly concerned with studying two problems. The first problem starts with

a graph G consisting of vertices and lines (called edges) linking some pairs of vertices.

Intuitively, if the graph G can not be drawn on the sphere without crossing edges, it may

be possibly drawn on a torus (i.e., the surface of a doughnut) without crossing edges; if it is

still impossible, it may be possible to draw the graph G on the surface obtained by “gluing”

several tori together. Once a graph G is drawn on a surface without crossing edges, there is a

cyclic order of those edges incident to each vertex of the graph. Suppose you are not satisfied

with how the edges around a vertex are cyclically arranged, and you want to arrange them

differently. A question that arises naturally would be: is the adjusted drawing still cross-free

on the original surface, or do we need to glue more (or fewer) tori in order for it to be cross-

free? The second problem stems from genome rearrangements. In bioinformatics, people

try to understand evolution (of species) by comparing the genome sequences (e.g., DNA

sequences) of different species. Certain operations on genome sequences are believed to be

potential ways of how species evolve. The operations studied in this work are transpositions,

block-interchanges and reversals. For example, a transposition is such an operation that

swaps two consecutive segments on the given genome sequence. As a candidate indicator of

how far away one species is from another from an evolutionary perspective, we can compute

how many transpositions are required to transform the genome sequence of one species to

that of the other. In this work, we propose a plane permutation framework, which works

effectively on solving the above mentioned two problems. In addition, plane permutations

themselves are interesting objects to study and are studied as well.
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Chapter 1

Introduction and Background

In this chapter, we will introduce basic notation and will review topics related to this work.

1.1 Notation regarding permutations

Permutations are fundamental objects in many fields of mathematics, and will be used a lot

in this work. In the following, we first introduce some notation regarding permutations.

Let Sn denote the group of permutations, i.e., the group of bijections, from [n] = {1, . . . , n} to

[n], where the multiplication is the composition of maps. The following three representations

of a permutation π on [n] will be used:

Two-line form: The top line lists all elements in [n], following the natural order. The bottom

line lists the corresponding images of the elements on the top line, i.e.

π =

 1 2 3 · · · n− 2 n− 1 n

π(1) π(2) π(3) · · · π(n− 2) π(n− 1) π(n)

 .

1



2 Chapter 1. Introduction and Background

One-line form: π is represented as a sequence π = π(1)π(2) · · · π(n− 1)π(n).

Cycle form: Regarding 〈π〉 as a cyclic group, we represent π by its collection of orbits (cycles).

The set consisting of the lengths of these disjoint cycles is called the cycle-type of π. We

can encode this set into a non-increasing integer sequence λ = λ1λ2 · · · , where
∑

i λi = n,

or as λ = 1a12a2 · · ·nan , where we have ai cycles of length i. The number of disjoint cycles

of π will be denoted by C(π). A cycle of length k will be called a k-cycle. A cycle of odd

or even length will be called an odd or even cycle, respectively. For a permutation γ having

only one cycle, i.e., cycle-type n1, we will abuse the term by just calling it a cycle. It is well

known that all permutations of the same cycle-type form a conjugacy class of Sn.

It is well known (e.g., Stanley [58]) that the number qλ of permutations on [n] in the conjugacy

class of cycle-type λ = 1a12a2 · · ·nan is given by

qλ =
n!

1a12a2 · · ·nana1!a2! . . . an!
.

1.2 Graph embeddings, maps and fatgraphs

Graph embedding is one of the most important topics in topological graph theory. In par-

ticular, 2-cell embeddings of graphs (loops and multiple edges allowed) have been widely

studied. A 2-cell embedding of a given graph G on a closed surface of genus g, Sg, is an

embedding on Sg such that every face is homeomorphic to an open disk. An embedding is

also called a map. (People use the terms graph embedding or map, depending on the specific

topics they are working on. We will not differentiate between the two names and will use

them interchangeably.) The closed surfaces could be either orientable or unorientable. In

this work, we restrict ourselves to the orientable case.
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Assume the graph G has e edges and v vertices, and that G is embedded in the surface Sg

via the embedding ε. In view of Euler’s characteristic formula, we have

v − e+ f = 2− 2g ⇐⇒ 2g = β(G) + 1− f, (1.1)

where f ≥ 1 is the number of faces of ε and β(G) is the Betti number of G.

We now introduce the combinatorial counterpart of maps, i.e., fatgraphs [24]. A fatgraph is

a graph with a specified cyclic order of the ends of edges incident to each vertex of the graph.

Intuitively, the corresponding fatgraph of a map is the remaining skeleton after deleting all

faces (without boundaries) of the map. In this work, we will mainly work on fatgraphs,

although the results may be stated in terms of graph embeddings and maps.

A fatgraph of n edges can be encoded into a triple of permutations (α, β, γ) on [2n] =

{1, 2, · · · 2n}, where α is a fixed-point free involution (i.e., cycle-type 2n). This is obtained

as follows: Given a fatgraph F , we firstly call the two ends of an edge half-edges. Label all

half-edges using the labels from the set [2n] so that each label appears exactly once. Then

we immediately obtain two permutations α and β, where α is an involution without fixed

points such that each α-cycle consists of the labels of the two half-edges of an edge and each

cycle in β is the counterclockwise cyclic arrangement of all half-edges incident to a vertex.

The third permutation γ = αβ, and the cycles of γ can be interpreted as the set of boundary

components (or faces) of the fatgraph F . If γ has k cycles, the fatgraph has k boundary

components. A boundary component of the fatgraph is obtained as follows: Starting from

some half-edge, and every time when we meet a half-edge we next go to the half-edge paired

with the counterclockwise neighbor of the current half-edge until we meet the starting half-

edge again; the obtained cycle is a boundary component of the fatgraph and corresponds to

a cycle in γ. Starting from a half-edge which does not appear in the previously obtained
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boundary component (or components) and continuing this traveling process, we can obtain

all boundary components of the fatgraph.

An example of a fatgraph is illustrated in Figure 1.1; its corresponding triple of permutations

are

α = (1, 4)(2, 5)(3, 6), β = (1, 5, 3)(4, 2, 6), γ = (1, 2, 3, 4, 5, 6).

1

2

3
4

5
6

Figure 1.1: A fatgraph with 6 half-edges, where the dashed curve represents its boundary
component.

From a triple of permutations (α, β, γ) representing a fatgraph, the genus of the map repre-

sented by the fatgraph (or just the genus of the fatgraph) is determined by

C(β)− C(α) + C(γ) = 2− 2g. (1.2)

With regard to graph embeddings and maps, the following problems have been studied:

• Enumeration of one-face maps. See for instance [1, 10, 12, 13, 16, 17, 24, 31, 32, 33,

41, 42, 64, 65, 68] and the references therein.

• Determining the genus distribution of all possible embeddings of a given graph [11, 29,

46, 63, 66].
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• Determining the minimum (resp. maximum) genus [10, 22, 35, 44, 47, 52, 53, 55, 61, 67]

and constructing minimal (resp. maximal) embeddings of a given graph [26, 50, 62].

Next, we will introduce the most relevant existing results obtained in these studies.

Enumeration of one-face maps

The enumeration of maps with one face (i.e., one-face maps) has been particularly exten-

sively studied. For the purpose of enumeration, we consider rooted one-face maps, i.e., the

starting point of the boundary (when making a tour) will be marked and called the root.

Distinguishing a root facilitates the enumeration of one-face maps, as it somehow breaks the

symmetry (i.e., homeomorphic copy). (Enumerating non-homeomorphic structures is always

a hard problem.) For convenience, we always label the root with the label 1.

Now given two rooted one-face maps which are respectively encoded into the triples (α, β, γ)

and (α′, β′, γ′), they will be viewed as equivalent if there exists a permutation π such that

α′ = παπ−1, β′ = πβπ−1, π(1) = 1, (1.3)

i.e., one is just a root preserving, relabeling of the other. Certainly, if the two are equivalent,

then γ′ = πγπ−1 automatically.

It is not hard to see that two different triples (α, β, γ) and (α′, β′, γ) with γ being a cycle

must represent two different (i.e., unequivalent) rooted one-face maps, as in this case, there

is no such relabeling π to make one into the other. Because the only π satisfying

γ = πγπ−1, π(1) = 1
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is the identity permutation since γ is a cycle, and the identity permutation can not conjugate

α into a different permutation α′.

Also note that each factorization of the cycle γ into a fixed-point free involution α and a per-

mutation β determines a triple representing a one-face map. Hence, the number of different

rooted one-face maps of n edges (up to equivalence class) equals the number of factorizations

of the cycle (1, 2, . . . , 2n) into a fixed-point free involution and another permutation. It is triv-

ial to obtain the total number of rooted one-face maps to be (2n−1)!! = (2n−1)·(2n−3) · · · 1.

Next, we can see from Eq. (1.2), that the number of genus g one-face maps is equal to the

number of ways of writing the cycle (1, 2, . . . , 2n) as the product of α and β, where α is a

fixed-point free involution and β has n+ 1− 2g cycles.

Let A(n, g) denote the number of rooted one-face maps (up to equivalence) of genus g having

n edges and let An(x) =
∑

g≥0A(n, g)xn+1−2g be the corresponding generating function. Four

decades ago, Walsh and Lehman [64, Eq. (13)], using a direct recursive method and formal

power series, obtained an explicit formula for A(n, g) which can be reformulated as follows:

A(n, g) =
∑
λ`g

(n+ 1)n · · · (n+ 2− 2g − `(λ))

22g
∏

i ci!(2i+ 1)ci
(2n)!

(n+ 1)!n!
, (1.4)

where the summation is taken over all partitions λ of g, ci is the number of parts i in λ, and

`(λ) is the total number of parts.

More than a decade later, Harer and Zagier [41] obtained in the context of computing the

virtual Euler characteristics of a curve that

A(n, g) =
(2n)!

(n+ 1)!(n− 2g)!
[x2g]

(
x/2

tanhx/2

)n+1

, (1.5)

where [xk]f(x) denotes the coefficient of xk in the expansion of the function f(x). Considering
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the relation between the RHS of Eq. (1.5) and its derivatives, they obtained the following

three-term recurrence, known as the Harer-Zagier recurrence:

(n+ 1)A(n, g) = 2(2n− 1)A(n− 1, g) + (2n− 1)(n− 1)(2n− 3)A(n− 2, g − 1). (1.6)

They furthermore obtained the so-called Harer-Zagier formula:

An(x) =
(2n)!

2nn!

∑
k≥1

2k−1

(
n

k − 1

)(
x

k

)
. (1.7)

There is a body of work on how to derive these results [16, 17, 31, 32, 42]. A direct bijection

for the Harer-Zagier formula was given in [32]. Combinatorial arguments to obtain the

Lehman-Walsh formula and the Harer-Zagier recurrence were recently given in [17]. One

of the most recent advances is a new recurrence for A(n, g) obtained by Chapuy [16] via a

bijective approach:

2gA(n, g) =

g∑
k=1

(
n+ 1− 2(g − k)

2k + 1

)
A(n, g − k). (1.8)

In our work, we will see that we can refine almost all of these results and generalize some of

them.

Studies on conventional graph embeddings

The genus is one of the most important topological characteristics of a graph embedding and

surface. The minimum (resp. the maximum) genus g such that there exists an embedding

of G on the surface Sg of genus g is denoted by gmin(G) (resp. gmax(G)).

In Duke [22], an interpolation theorem is proved, which says that for any given graph G, there
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exists an embedding of genus g for any gmin(G) ≤ g ≤ gmax(G). Later, people are interested

in the problems of determining gmin(G), gmax(G), determining the genus distribution and

constructing embeddings with genera prescribed in advance.

It is proved in Thomassen [61] that determining whether gmin(G) ≤ k is NP-Complete. How-

ever, for gmax(G), there are explicit formulas to compute it in Xuong [67] and Nebesky [53].

In addition, in Furst et al. [26] and Glukhov [30] polynomial-time algorithms for determining

the maximum genus of an arbitrary graph are devised independently.

The genus distribution problem is essentially counting the number of embeddings of genus

g of a given graph for all possible g. It is conjectured in Gross et al. [29] that for any graph

G, the genus distribution polynomial, i.e.,

w(x) =
∑
g

(#of embeddings of genus g) xg,

is log-concave. This conjecture has been confirmed for some special graphs, see for in-

stance [63, 66].

In Thomassen [62], there is a polynomially bounded algorithm to find a minimum genus

embedding for a specific class of graphs. Later, in Mohar [50], it is shown that for each fixed

integer g, there is a linear-time algorithm that, for a given graph G, either constructs an

embedding of genus g for G or reports that no such an embedding exists.

The above two problems that the enumeration of one-face maps and the conventional graph

embeddings can be viewed as two angles of studying maps:

• On the enumeration of one-face maps, the number of faces and the number of edges are

fixed; from Euler’s characteristic formula, maps of different genus correspond to maps

having different number of vertices. In this case, the underlying graph may change.
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• On the conventional graph embeddings, the number of edges and the number of vertices

are fixed; from Euler’s characteristic formula, embeddings of different genus correspond

to embeddings having different number of faces. So in this case, the underlying graph

will not change.

For one-face maps and graph embeddings, the main problems we will address are as follows:

• For enumeration aspects of one-face maps, we will enumerate a generalized version of

maps, that is triples (α, β, γ) where γ = αβ and α is not necessarily a fix-point free

involution. These generalized maps are sometimes called hypermaps.

• For graph embeddings, we will study how the genus changes if we reembed a vertex

in a given graph embedding, i.e., rearrange the half-edges around the vertex. More

specifically, we will consider what is the minimum (resp. the maximum) genus can

be achieved under reembeddings; and we will compute the genus polynomial under

reembeddings. These problems can be viewed as local analogues of the problems we

introduced above.

Studying these problems is facilitated by our proposed new objects, called plane permuta-

tions. In the upcoming section, we will first share the motivation of plane permutations.

1.3 Motivation for plane permutations

Plane permutations is a new object, added to the equivalence family of maps, graph embed-

dings and fatgraphs when restricted to certain subclass. A plane permutation is basically a

two-line array, motivated by a new way to “read” a fatgraph as follows: Given a (half-edge)

labelled fatgraph, we start from a half-edge, record the half-edge (i.e., its label) and record
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its counterclockwise neighbor right below it. Diagonally, we record the half-edge paired with

the counterclockwise neighbor, namely we put the half-edge paired with the counterclock-

wise neighbor at the second entry on the top line of the array. Record the counterclockwise

neighbor of the latter right below it, and go diagonally, and iterate the process until coming

to a half-edge whose paired half-edge is the starting half-edge. When coming to that point,

we start with a half-edge which has not been recorded yet, and iterate the process again.

Iterating this process will eventually give us a two-line array, from which the given fatgraph

can be reconstructed.

Here we give an example of a fatgraph with one boundary component in Figure 1.2. The

two presentations (in the one on the RHS, edges are fattened into ribbons) are showing the

same one-face map, whose corresponding two-line array reads

 1 2 3 4 5 6 7 8

1 6 7 8 3 4 5 2

 .

1

2
3

4 5

6
7

8

1

2
3

4

5

6
7

8

Figure 1.2: A one-face map with 4 edges.

It is not hard to see, that the two-line array will give us three permutations: the upper-

horizontal, the vertical and the diagonal. In the last example, the upper-horizontal gives

us (1, 2, 3, 4, 5, 6, 7, 8), the vertical gives (1)(2, 6, 4, 8)(3, 7, 5), and the diagonal gives us

(1, 2)(3, 6)(4, 7)(5, 8). In particular, we can see that the diagonal is a fixed-point free in-

volution.

To reconstruct the fatgraph, it is easy if we use the following observations:
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• The cycles of the vertical determine the vertices of the fatgraph.

• The cycles of the diagonal determine the edges of the fatgraph.

• The cycles of the upper-horizontal represent the boundary components.

Due to the equivalence relation, studying maps can be translated into studying plane per-

mutations. We will see that working with two-line arrays provide new insights into studying

maps. In particular, a diagonal transpose action (more generally, diagonal rearrangements)

serves as the corner stone of the entire work.

In order for better illustrating the power of the diagonal transpose action and the connection

to later genome rearrangements, let’s briefly describe it here first. A diagonal transpose on

a plane permutation is essentially just a swapping of two diagonal blocks. A diagonal block

is a block of consecutive diagonal pairs. For example,

3 4 5

6 7 8

is a diagonal block in the above example. Clearly, the outcome after a diagonal transpose

action is still a plane permutation. For example, by swapping the two diagonal blocks

induced by the segments 3, 4, 5 and 6, 7, we obtain the following plane permutation:

 1 2 6 7 3 4 5 8

1 3 4 6 7 8 5 2

 .

We will compare the two plane permutations before and after the diagonal transpose:

• The upper-horizontals differ by a swapping of two segments.

• The diagonals are the same.



12 Chapter 1. Introduction and Background

• The verticals only differ at the at most 4 boundary positions determined by the two

involved diagonal blocks.

The first two items are easy to see. For the last item, let’s look at our examples above. We

can see that only the vertical images of the elements 2, 5 and 7 are different.

Following from the last item, the number of cycles in the verticals before and after a diag-

onal transpose action may be different. Note cycles in the vertical of plane permutations

correspond to vertices in maps. Hence, in terms of maps, after a diagonal transpose action,

we may end up with a map of different genus (because the number of faces and the number

of edges are fixed). This implies that we can transform plane permutations (i.e., maps) of

different genus back and forth via diagonal transposes, which may eventually allow us to

determine the relation between the number of maps of different genus. This is indeed true

as we will see later, so that we can enumerate maps of different genus recursively.

The cycle-type of the diagonal is not essential in the above analysis, so instead of a fixed-point

free involution the reasoning above works for any cycle-type. Let pλk(n) denote the number of

plane permutations having k cycles in the vertical and diagonals being a fixed permutation

of cycle-type λ. A bijection induced by certain diagonal transposes will eventually allow us

to give a recurrence for the numbers pλk(n). By restricting λ to the cycle-type 2n, we will

refine Chapuy’s recursion mentioned before.

In addition, it turns out that our graph embedding problems are related to a more general

operation of diagonal blocks. We will see in Chapter 3 that a vertex will divide a plane per-

mutation into diagonal blocks, then reembedding the vertex is just equivalent to rearranging

these diagonal blocks (not just swapping two of them). Anyway, both of them are related

to the concept of diagonal blocks, and can be treated similarly. In fact, we will see that

the numbers pλk(n) count the local genus distribution of a given graph embedding. From
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there, by studying these numbers using our obtained recurrence for them, we can determine

the local minimum/maximum genus, log-concavity, etc. These are the connections between

plane permutations and enumeration of maps as well as graph embeddings.

1.4 Genome rearrangements

In the following, we will look at another topic to which the plane permutation framework

can be applied.

In bioinformatics, people try to understand the evolution of species by comparing their

genome sequences. It was noticed that the genome sequence of one species might be just

a rearrangement of that of the other by certain operations. In particular, the problem of

determining the minimum number of certain operations required to transform one of two

given genome sequences into the other, has been extensively studied. Combinatorially, this

problem can be formulated as sorting a given permutation (or sequence) to the identity

permutation by certain operations, in a minimum number of steps. This minimum number

constitutes a distance of permutations. [5, 8, 19, 25, 48] study transpositions, [7, 19, 20, 37,

49] block-interchanges, and reversals are analyzed in[3, 6, 9, 15, 39, 40].

In what follows, we will introduce these three operations one by one.

Transposition distances

Given a sequence (one-line permutation) on [n]

s = a1 · · · ai−1ai · · · ajaj+1 · · · akak+1 · · · an,
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a transposition action on s means changing s into

s′ = a1 · · · ai−1aj+1 · · · akai · · · ajak+1 · · · an

by swapping the two adjacent continuous segments ai . . . aj and aj+1 . . . ak for some 1 ≤ i ≤

j < k ≤ n. Let en = 123 · · ·n. The transposition distance of a sequence s on [n] is the

minimum number of transpositions needed to sort s into en. Denote this distance as td(s).

The cycle-graph model was firstly proposed by Bafna and Pevzner [8] to study transposition

distances. Given a permutation s = s1s2 · · · sn on [n], the cycle graph G(s) of s is obtained

as follows: Add two additional elements s0 = 0 and sn+1 = n + 1. The elements in [n + 1]∗

give the vertices of G(s). Draw a directed black edge from i to i + 1, and draw a directed

gray edge from si+1 to si, we then obtain G(s).

For example, the cycle graph for the permutation s = 31458276 is illustrated in Figure 1.3.

0 3 1 4 5 8 2 7 6 9

Figure 1.3: The cycle graph for the permutation s = 31458276.

An alternating cycle in G(s) is a directed cycle, where its edges alternate in color. An

alternating cycle is called odd if the number of black edges in the cycle is odd. Bafna and

Pevzner obtained lower bounds for td(s) in terms of the number of cycles and odd cycles of
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G(s) [8], which are respectively,

td(s) ≥ n+ 1− C(G(s))

2
, (1.9)

td(s) ≥ n+ 1− Codd(G(s))

2
, (1.10)

where C(G(s)) and Codd(G(s)) denote the number of cycles and odd cycles in G(s), respec-

tively. These lower bounds followed from observations that each transposition increases the

number of cycles (and resp. odd cycles) in the cycle graph by at most 2 and there are n+ 1

cycles in the cycle graph of the identity permutation with all of them being odd.

Algorithms of various efficiency for sorting permutations by transpositions were studied

in [8, 25] and references therein.

Block-interchange distances

A more general transposition problem, where the involved two segments are not necessarily

adjacent, was firstly studied in Christie [20]. It is referred to as the block-interchange distance

problem. The minimum number of block-interchanges needed to sort s into en is accordingly

called the block-interchange distance of s and denoted as bid(s). Christie [20] obtained an

exact formula to compute the block-interchange distance of any given permutation s, based

on the cycle-graph model. The formula is

bid(s) =
n+ 1− C(G(s))

2
. (1.11)

Algorithms for sorting permutations by block-interchanges were studied in [19, 37].
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Reversal distances

Reversals can be defined for both ordinary permutations and signed permutations. We

mainly consider reversal distances for signed permutations in this work. A signed permutation

on [n] is a pair (a, w) where a is a sequence on [n] while w is a word of length n on the alphabet

set {+,−}.

Usually, a signed permutation is represented by a single sequence aw = aw,1aw,2 · · · aw,n where

aw,k = wkak, i.e., each ak carries a sign determined by wk.

Given a signed permutation a = a1a2 · · · ai−1aiai+1 · · · aj−1ajaj+1 · · · an on [n], a reversal %i,j

acting on a will change a into

a′ = %i,j � a = a1a2 · · · ai−1(−aj)(−aj−1) · · · (−ai+1)(−ai)aj+1 · · · an

by reversing the segment si . . . sj and flipping the signs of the entries there at the same time.

The reversal distance dr(a) of a signed permutation a on [n] is the minimum number of

reversals needed to sort a into en = 12 · · ·n.

For example, the signed permutation a = −5 + 1 − 3 + 2 + 4 needs at least 4 steps to be

sorted by reversals as illustrated below:

−5 + 1 −3 + 2 + 4

−5 + 1 −2 + 3 + 4

−5 + 1 +2 + 3 + 4

−4 − 3 − 2 − 1 + 5

+1 + 2 + 3 + 4 + 5
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Let [n]− = {−1,−2, . . . ,−n}.

The most common graph model used to study reversal distance is breakpoint graph pro-

posed by Bafna and Pevzner [9]. The breakpoint graph for a given signed permutation

a = a1a2 · · · an on [n] can be obtained as follows: Replacing ai with (−ai)ai, and adding 0

at the beginning of the obtained sequence while adding −(n+ 1) at the end of the obtained

sequence, in this way we obtain a sequence b = b0b1b2 · · · b2nb2n+1 on [n]∗ ∪ [n+ 1]−. Draw a

black edge between b2i and b2i+1, as well as a grey edge between i and −(i+1) for 0 ≤ i ≤ n.

The obtained graph is the breakpoint graph BG(a) of a.

The breakpoint graph BG(a) for the signed permutation a = −5 + 1−3 + 2 + 4 is illustrated

in Figure 1.4.

0 -5 -1 1 3 -3 -2 2 -4 4 -65

Figure 1.4: The breakpoint graph BG(a) for the signed permutation a = −5 + 1− 3 + 2 + 4.

Note that each vertex in BG(a) has degree two so that it can be decomposed into disjoint

cycles. Denote the number of cycles in BG(a) as CBG(a). Then, the lower bound [9] via the

breakpoint graph is given by

dr(a) ≥ n+ 1− CBG(a). (1.12)
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Later, an exact formula for computing the reversal distance of any signed permutation and

corresponding polynomial time algorithm were presented in Hannenhalli and Pevzner [40].

Connection to plane permutations

At first sight, there is no clear connection between genome rearrangements and maps or

plane permutations. However, the introduction of the diagonal transpose action on plane

permutations motivates the idea of associating a plane permutation to a given permutation

to sort. Because, in a sense, diagonal transposes on plane permutations are just block-

interchanges on “fattened” sequences. To be more specific, the permutation to sort induces

the upper-horizontal of the plane permutation, while the vertical or the diagonal can be

chosen as needed. Furthermore, we know that diagonal transposes may change the number

of cycles in the vertical, so the variation of the number of cycles in the vertical provides a

natural statistic partially reflecting the number of diagonal transposes applied (hence the

number of block-interchanges on the upper-horizontal).

In the following, we present our first main theorem for better illustrating what we meant.

For a sequence on [n] s = a1a2 . . . an, we denote s̄ = (0 a1 a2 · · · an). Also we denote

ēn = (0 1 2 3 · · · n), pt = (n n− 1 . . . 1 0).

Let C(π), Codd(π) and Cev(π) denote the number of cycles, the number of odd cycles and

the number of even cycles in π, respectively. Furthermore, let [n]∗ = {0, 1, . . . , n}. Then for
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the transposition distance, we have the following general lower bound:

td(s) ≥ max
γ

{
max{|C(pts̄γ)− C(γ)|, |Codd(pts̄γ)− Codd(γ)|, |Cev(pts̄γ)− Cev(γ)|}

2

}
,

(1.13)

where γ ranges over all permutations on [n]∗.

Here, we associated the plane permutation (s̄, γ) to s, where s̄ specifies the upper-horizontal

and γ specifies the vertical. When s is transformed into en by transpositions, the plane

permutation (s, γ) will be transformed into the plane permutation (ēn, γs̄
−1ēn) by induced

diagonal transposes. We will later show that each diagonal transpose changes the number

of cycles (resp. odd cycles and even cycles) by at most 2, then the respective differences

between the starting vertical γ and the final vertical γs̄−1ēn over 2 will give us lower bounds.

Since the argument holds for any chosen γ, we can take the maximum over all options.

Obviously, by plugging in a specific γ, we may obtain more concrete lower bounds. It turns

out Bafna-Pevzner’s lower bounds are equivalent to the evaluation at a special γ.

Regarding reversal distances of signed permutations, we propose a way of translating rever-

sals into block-interchanges in this work, so that we can use the above idea. Full details will

be provided in Chapter 4.

1.5 Organization of the dissertation

An outline of the following chapters is as follows. In Chapter 2, we define and study plane

permutations. The study of a transpose action on diagonals of plane permutations is the key

to most of the rest of the dissertation. First, it allows us to enumerate plane permutations

filtered by different criteria, so that we can refine and extend several known enumerative
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results on maps, e.g., Chapuy’s recursion, a Zagier-Stanley result, etc. This chapter is based

on the papers “[10] Plane permutations and applications to a result of Zagier–Stanley and

distances of permutations1, SIAM J. Discrete Math. 30(3) (2016) pp. 1660–1684” and “[12]

New formulas counting one-face maps and Chapuy’s recursion, Australa. J. Combin., in

revision.”

In Chapter 3, applying the plane permutation framework, we study graph embeddings.

Specifically, we study the following problems: (i) Given an embedding of a graph, how will

the genus change if we reembed one or more vertices of the graph? (ii) What is the local

genus distribution induced by reembeddings? Studying the former problem gives us a local

version of Duke’s interpolation theorem and an easy-to-check necessary condition for an

embedding to be of minimum genus; studying the latter gives us a log-concavity result of

the local genus polynomials. This chapter is based on the paper “[11] On the local genus

distribution of graph embeddings2, J. Combin. Math. Combin. Comput. 101 (2017), pp.

157–173.”

In Chapter 4, we provide a unified framework to study the transposition distances and

the block-interchange distances of permutations, as well as the reversal distances of signed

permutations, employing plane permutations. We refine and generalize many results initially

obtained in many separate papers, e.g., the Bafna-Pevzner lower bounds and the Christie

formula based on cycle graphs, and propose some open problems. This Chapter is based

on the papers “[10] Plane permutations and applications to a result of Zagier–Stanley and

distances of permutations, SIAM J. Discrete Math. 30(3) (2016) pp. 1660–1684” and “[2] On

a lower bound for sorting signed permutations by reversals, arXiv:1602.00778 [math.CO]”.

1Copyright c© by SIAM.
2Copyright c© by JCMCC.



Chapter 2

The Theory of Plane Permutations

In this chapter, we will develop the theory of plane permutations.

2.1 Definition and basic properties

Let’s look at some definitions at first.

Definition 2.1 (Cyclic plane permutation). A cyclic plane permutation on [n] is a pair

p = (s, π) where s = (si)
n−1
i=0 is an n-cycle and π is an arbitrary permutation on [n].

In this chapter, for the purpose of simplicity, we call cyclic plane permutations just plane

permutations.

Given s = (s0 s1 · · · sn−1), a plane permutation p = (s, π) is represented by a two-row array:

p =

 s0 s1 · · · sn−2 sn−1

π(s0) π(s1) · · · π(sn−2) π(sn−1)

 . (2.1)

21
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The permutationDp induced by the diagonal-pairs (cyclically) in the array, i.e., Dp(π(si−1)) =

si for 0 < i < n, and Dp(π(sn−1)) = s0, is called the diagonal of p.

Observation: Dp = sπ−1.

In a permutation π on [n], i is called an exceedance if i < π(i) following the natural order

and an anti-exceedance otherwise. Note that s induces a partial order <s, where a <s b if a

appears before b in s from left to right (with the left most element s0). These concepts then

can be generalized for plane permutations as follows:

Definition 2.2. For a plane permutation p = (s, π), an element si is called an exceedance

of p if si <s π(si), and an anti-exceedance if si ≥s π(si).

In the following, we mean by “the cycles of p = (s, π)” the cycles of π and any comparison

of elements in s, π and Dp references the partial order <s.

Obviously, each p-cycle contains at least one anti-exceedance as it contains a minimum, si,

for which π−1(si) will be an anti-exceedance. We call these trivial anti-exceedances and refer

to a non-trivial anti-exceedance as an NTAE. Furthermore, in any cycle of length greater

than one, its minimum is always an exceedance.

Example 2.3. For the plane permutation

p =

 1 3 6 2 5 4

5 4 1 3 6 2

 , (2.2)

3 is an exceedance, 5 is an anti-exceedance and also an NTAE.

The number of exceedances of p does not depend on how we write s in the top row in the

two-row representation of p although the set of exceedances may vary according to different

cyclic shift of s. The reason is that if we cyclically shift one position, say shifting s0 to the
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end of the top row, then π−1(s0) will become an exceedance while s0 itself will become an

anti-exceedance. However, it is clear that π−1(s0) was an anti-exceedance while s0 itself was

an exceedance before the shifting. Thus, the total number of exceedances does not depend

on the way of putting s on the top row.

Let Exc(p) and AEx(p) denote the number of exceedances and anti-exceedances of p, re-

spectively. For Dp, the quantities Exc(Dp) and AEx(Dp) are defined in reference to <s. The

following lemma which relates the number of exceedances in the vertical and anti-exceedances

on the diagonal will be very useful later.

Lemma 2.4. For a plane permutation p = (s, π), we have

Exc(p) = AEx(Dp)− 1. (2.3)

Proof. By construction of the diagonal permutation Dp, we have

∀ 0 ≤ i < n− 1, si <s π(si) ⇐⇒ π(si) ≥s Dp(π(si)) = si+1.

Note that sn−1 is always an anti-exceedance of p since sn−1 ≥ π(sn−1), and that π(sn−1) is

always an anti-exceedance of Dp since Dp(π(sn−1)) = s(sn−1) = s0 and π(sn−1) ≥ s0. Thus

we have

Exc(p) = AEx(Dp)− 1,

whence the lemma.

As immediate applications of the above lemma, we have the following two results.

Proposition 2.5. For a plane permutation p = (s, π) on [n], the sum of the number of

cycles in π and in Dp is smaller than n+ 2.
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Proof. Since each cycle has at least one anti-exceedance, we have AEx(p) ≥ C(π) and

AEx(Dp) ≥ C(Dp). Using Lemma 2.4,

AEx(p) = n− Exc(p) = n+ 1− AEx(Dp) ≥ C(π).

Therefore,

n+ 1 ≥ C(π) + AEx(Dp) ≥ C(π) + C(Dp),

whence the proposition.

In fact, based on Proposition 2.5, we will prove in Chapter 3 that the maximum n + 1 is

attained for any given π, i.e., there exists p = (s, π) such that C(π) + C(Dp) = n+ 1.

Lemma 2.6. There are 2g NTAEs in any plane permutation on [2n] with n+ 1− 2g cycles

and a fix-point free involution as its diagonal.

Proof. This can be easily seen in the following way: given a plane permutation p = (s, π), its

diagonal Dp has always n exceedances and n anti-exceedances irrespective of <s since it is

an involution without fixed points. By Lemma 2.4, p has n+ 1 anti-exceedances. Therefore,

p has (n+ 1)− (n+ 1− 2g) = 2g NTAEs since π has n+ 1− 2g cycles.

We remark that Lemma 2.6 immediately implies the trisection lemma in Chapuy [16] which

is the corner stone of that work.

Proposition 2.7. For a plane permutation p = (s, π) on [n], the quantities C(π) and C(Dp)

satisfy

C(π) + C(Dp) ≡ n− 1 (mod 2). (2.4)

Proof. In view of s = Dpπ, the parity of both sides are equal. Since a k-cycle can be written
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as a product of k − 1 transpositions, the parity of the LHS is the same as n − 1 while the

parity of the RHS is the same as (n− C(π)) + (n− C(Dp)), whence the proposition.

2.2 The diagonal transpose action

In this section, we will introduce an action on the diagonals of plane permutations, which

serves as the corner stone of almost this entire work.

Given a plane permutation (s, π) on [n] and a sequence h = (i, j, k, l), such that i ≤ j < k ≤ l

and {i, j, k, l} ⊂ [n− 1], let

sh = (s0 s1 . . . si−1 sk . . . sl sj+1 . . . sk−1 si . . . sj sl+1 . . . ),

i.e., the n-cycle obtained by transposing the blocks [si, sj] and [sk, sl] in s. Note that in case

of j + 1 = k, we have

sh = (s0 s1 . . . si−1 sk . . . sl si . . . sj sl+1 . . . ).

Let furthermore

πh = D−1
p sh,

that is, the derived plane permutation, (sh, πh), can be represented as

 · · · si−1

����

sk · · · sl
����

sj+1 · · · sk−1

����

si · · · sj
����

sl+1 · · ·

· · · π(sk−1) π(sk) · · · π(sj) π(sj+1) · · · π(si−1) π(si) · · · π(sl) π(sl+1) · · ·

 .

We write (sh, πh) = χh ◦ (s, π). Note that the bottom row of the two-row representation of
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(sh, πh) is obtained by transposing the blocks [π(si−1), π(sj−1)] and [π(sk−1), π(sl−1)] of the

bottom row of (s, π). In the following, we refer to general χh as block-interchange and for

the special case of k = j + 1, we refer to χh as transposition. As a result, we observe

Lemma 2.8. Let (s, π) be a plane permutation on [n] and (sh, πh) = χh ◦ (s, π) for h =

(i, j, k, l). Then, π(sr) = πh(sr) if r ∈ {0, 1, . . . , n − 1} \ {i − 1, j, k − 1, l}. Moreover, for

j + 1 < k

πh(si−1) = π(sk−1), πh(sj) = π(sl), πh(sk−1) = π(si−1), πh(sl) = π(sj),

and for j = k − 1, we have

πh(si−1) = π(sj), πh(sj) = π(sl), πh(sl) = π(si−1).

We shall proceed by analyzing the induced changes of the π-cycles when passing to πh. By

Lemma 2.8, only the π-cycles containing si−1, sj, sl will be affected so that only these changes

will be explicitly displayed.

Lemma 2.9. Let (sh, πh) = χh◦(s, π), where h = (i, j, j+1, l). Then there exist the following

six possible scenarios for the pair (π, πh):
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Case 1 π (si−1 v
i
1 . . . vimi)(sj v

j
1 . . . vjmj)(sl v

l
1 . . . vlml)

πh (si−1 v
j
1 . . . vjmj sj v

l
1 . . . vlml sl v

i
1 . . . vimi)

Case 2 π (si−1 v
i
1 . . . vimi sl v

l
1 . . . vlml sj v

j
1 . . . vjmj)

πh (si−1 v
j
1 . . . vjmj)(sj v

l
1 . . . vlml)(sl v

i
1 . . . vimi)

Case 3 π (si−1 v
i
1 . . . vimi sj v

j
1 . . . vjmj sl v

l
1 . . . vlml)

πh (si−1 v
j
1 . . . vjmj sl v

i
1 . . . vimi sj v

l
1 . . . vlml)

Case 4 π (si−1 v
i
1 . . . vimi sj v

j
1 . . . vjmj)(sl v

l
1 . . . vlml)

πh (si−1 v
j
1 . . . vjmj)(sj v

l
1 . . . vlml sl v

i
1 . . . vimi)

Case 5 π (si−1 v
i
1 . . . vimi)(sj v

j
1 . . . vjmj sl v

l
1 . . . vlml)

πh (si−1 v
j
1 . . . vjmj sl v

i
1 . . . vimi)(sj v

l
1 . . . vlml)

Case 6 π (si−1 v
i
1 . . . vimi sl v

l
1 . . . vlml)(sj v

j
1 . . . vjmj)

πh (si−1 v
j
1 . . . vjmj sj v

l
1 . . . vlml)(sl v

i
1 . . . vimi)

Proof. We shall only prove Case 1 and Case 2, the remaining four cases can be shown

analogously. For Case 1, the π-cycles containing si−1, sj, sl are

(si−1 v
i
1 . . . vimi), (sj v

j
1 . . . vjmj), (sl v

l
1 . . . vlml).

Lemma 2.8 allows us to identify the new cycle structure by inspecting the critical points

si−1, sj and sl. Here we observe that all three cycles merge and form a single πh-cycle

(si−1 π
h(si−1) (πh)2(si−1) . . .) = (si−1 π(sj) π

2(sj) . . .)

= (si−1 v
j
1 . . . vjmj sj v

l
1 . . . vlml sl v

i
1 . . . vimi).
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For Case 2, the π-cycle containing si−1, sj, sl is

(si−1 v
i
1 . . . vimi sl v

l
1 . . . vlml sj v

j
1 . . . vjmj).

We compute the πh-cycles containing si−1, sj and sl in πh as

(sj π
h(sj) (πh)2(sj) . . .) = (sj π(sl) π

2(sl) . . .) = (sj v
l
1 . . . vlml)

(sl π
h(sl) (πh)2(sl) . . .) = (sl π(si−1) π2(si−1) . . .) = (sl v

i
1 . . . vimi)

(si−1 π
h(si−1) (πh)2(si−1) . . .) = (si−1 π(sj) π

2(sj) . . .) = (si−1 v
j
1 . . . vjmj)

whence the lemma.

If we wish to express which cycles are impacted by a transposition of scenario k acting on a

plane permutation, we shall say “the cycles are acted upon by a Case k transposition”.

We next observe

Lemma 2.10. Let ph = χh◦p where χh is a transposition. Then the difference of the number

of cycles of p and ph is even. Furthermore the difference of the number of cycles, odd cycles,

even cycles between p and ph is contained in {−2, 0, 2}.

Proof. Lemma 2.9 implies that the difference of the numbers of cycles of π and πh is even.

As for the statement about odd cycles, since the parity of the total number of elements

contained in the cycles containing si−1, sj and sl is preserved, the difference of the number

of odd cycles is even. Consequently, the difference of the number of even cycles is also even

whence the lemma.

Suppose we are given h = (i, j, k, l), where j + 1 < k, i.e., the two diagonal blocks are not

adjacent. Then using the strategy of the proof of Lemma 2.9, we have the upcoming lemma.
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Lemma 2.11. Let (sh, πh) = χh ◦ (s, π), where h = (i, j, k, l) and j + 1 < k. Then, the

difference of the numbers of π-cycles and πh-cycles is contained in {−2, 0, 2}. Furthermore,

the scenarios, where the number of πh-cycles increases by 2, are given by:

Case a π (si−1 v
i
1 . . . vimi sj v

j
1 . . . vjmj sl v

l
1 . . . vlml sk−1 v

k
1 . . . vkmk)

πh (si−1 v
k
1 . . . vkmk)(sj v

l
1 . . . vlml sk−1 v

i
1 . . . vimi)(sl v

j
1 . . . vjmj)

Case b π (si−1 v
i
1 . . . vimi sk−1 v

k
1 . . . vkmk sj v

j
1 . . . vjmj sl v

l
1 . . . vlml)

πh (si−1 v
k
1 . . . vkmk sj v

l
1 . . . vlml)(sk−1 v

i
1 . . . vimi)(sl v

j
1 . . . vjmj)

Case c π (si−1 v
i
1 . . . vimi sk−1 v

k
1 . . . vkmk sl v

l
1 . . . vlml sj v

j
1 . . . vjmj)

πh (si−1 v
k
1 . . . vkmk sl v

j
1 . . . vjmj)(sk−1 v

i
1 . . . vimi)(sj v

l
1 . . . vlml)

Case d π (si−1 v
i
1 . . . vimi sl v

l
1 . . . vlml sj v

j
1 . . . vjmj sk−1 v

k
1 . . . vkmk)

πh (si−1 v
k
1 . . . vkmk)(sj v

l
1 . . . vlml)(sk−1 v

i
1 . . . vimi sl v

j
1 . . . vjmj)

Case e π (si−1 v
i
1 . . . vimi sk−1 v

k
1 . . . vkmk)(sj v

j
1 . . . vjmj sl v

l
1 . . . vlml)

πh (si−1 v
k
1 . . . vkmk)(sj v

l
1 . . . vlml)(sk−1 v

i
1 . . . vimi)(sl v

j
1 . . . vjmj)

These tables in Lemma 2.9 and 2.11, as we have seen, are easy to obtain. However, they

provide quite a lot information and are very useful. For example, Case 1 and Case 2 in

Lemma 2.9 are kind of inverse to each other in appearance. A careful investigation could

translate this into a bijection, which will facilitate certain enumeration problems as we will

discuss in the next section.

Similar to the idea of equivalent fatgraphs, we define equivalent plane permutations.

Definition 2.12. Two plane permutations (s, π) and (s′, π′) on [n] are equivalent if there

exists a permutation α on [n] such that

s = αs′α−1, π = απ′α−1.
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Lemma 2.13. For two equivalent plane permutations p = (s, π) and p′ = (s′, π′), we have

Exc(p) = Exc(p′). (2.5)

Proof. Assume s = αs′α−1, π = απ′α−1 for some α. Since conjugation by α is equivalent to

relabeling according to α, a <s′ b implies α(a) <s α(b). Therefore, an exceedance of p′ will

uniquely correspond to an exceedance of p, whence the lemma.

2.3 Enumerative results

Let us first set up for what we want to enumerate. Let UD denote the set of plane permu-

tations having D as diagonals for some fixed permutation D on [n] of cycle-type λ. In this

section, we will divide this set into subsets by different criteria and enumerate the subsets

correspondingly.

Let qλ denote the number of permutations being of cycle-type λ. Given a permutation γ

with cycle-type λ, denote W λ
µ,η the number of different ways of writing γ as a product of α

and β, i.e., γ = αβ, where α is of cycle-type µ and β is of cycle-type η. Clearly, this number

only depends on λ instead of the specific choice of γ. In addition, We have the following

lemma reflecting certain symmetry of these numbers.

Lemma 2.14.

W λ
µ,η = W λ

η,µ, qλW λ
µ,η = qµW µ

λ,η = qηW η
λ,µ. (2.6)

Proof. For any factorization γ = αβ, we have γ−1 = β−1α−1. Furthermore, γ and γ−1 are

certainly the same cycle-type λ. Then, the first relation follows.
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Since for fixed γ, there are W λ
µ,η triples (α, β, γ) where γ = αβ, if we let γ ranges over all

permutations of cycle-type λ, the total number of triples will be qλW λ
µ,η. Next, among all

these triples, we want to know the number of triples where the first coordinate is a fixed

permutation of cycle-type µ. Since there will be qµ permutations of cycle-type µ in the first

coordinate and each of them gives the same number, the desired number would be
qλWλ

µ,η

qµ
,

i.e.,

W µ
λ,η =

qλW λ
µ,η

qµ
.

The rest of the relations come in the same way and the proof is complete.

Note p = (s, π) ∈ UD iff D = Dp = s ◦ π−1. Then, the number |UD| enumerates the ways to

write D as a product of an n-cycle with another permutation. Due to the symmetry implied

in Lemma 2.14, |UD| is also certain multiple of the number of factorizations of (1 2 · · · n)

into a permutation of cycle-type λ and another permutation, i.e., rooted hypermaps having

one face. When D is a fixed-point free involution, |UD| is a multiple of rooted one-face maps.

A hypermap is a triple of permutations (α, β1, β2), such that α = β1β2. The cycles in α are

called faces, the cycles in β1 are called (hyper)edges, and the cycles in β2 are called vertices.

2.3.1 Filtering by the number of cycles

First, let D be a fixed permutation of cycle-type λ. Recall that there is an enumeration

problem of one-face maps of n edges and genus g in Chapter 1. By Euler’s characteristic

formula, here the number of edges and faces are fixed, so the genus g is completely determined

by the number of vertices. In terms of plane permutations, that is the number of cycles in

the vertical. This motivates our first criterion of partitioning the set UD: We classify UD into

subsets such that plane permutations in the same subset have the same number of cycles.

Our objective of this section is to enumerate the size of these subsets.
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The following lemma will be presented here for later use.

Lemma 2.15. Let C1 and C2 be two π-cycles of (s, π) such that min{C1} <s min{C2}. Sup-

pose we have a Case 2 transposition on C2, splitting C2 into the three πh-cycles C21, C22, C23

in (sh, πh). Then

min{C1} <sh min{min{C21},min{C22},min{C23}}. (2.7)

Proof. Note that any Case 2 transposition on C2 will not change C1. Furthermore, it will

only impact the relative order of elements larger than min{C2}, whence the proof.

Next, we will construct a bijection between the set Y1 and Y2 ∪ Y3, where Y1 denotes the

set of pairs (p, ε), where p ∈ UD has b cycles and ε is an NTAE in p, Y2 denotes the set of

p′ ∈ UD in which there are 3 labeled cycles among the total b + 2 p′-cycles and finally Y3

denotes the set of plane permutations p′ ∈ UD where there are 3 labeled cycles among the

total b+ 2 p′-cycles and a distinguished NTAE contained in the labeled cycle that contains

the largest minimal element. Note that the plane permutations in Y1 and Y2 (as well as Y3)

belong to different groups. Thus the bijection will eventually allow us to enumerate the sizes

of these groups recursively.

The bijection is based on Case 1 and Case 2 of Lemma 2.9, and motivated by the gluing/slic-

ing bijection of Chapuy [16] for maps (i.e., D is restricted to be an involution without fixed

points). In fact, Case 1 corresponds to the gluing operation and Case 2 corresponds to the

slicing operation. The difference is that in [16], operations were defined on vertices of maps

first, then the corresponding transformations on the boundary were analyzed, while in our

approach it is more natural to study the transposition action on the boundary (i.e., face)

first and all possible transformations on vertices are immediately clear as in Lemma 2.9. Our

results extend those of [16] to general permutations (or hypermaps) as Case 1/Case 2 can
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be employed irrespective of the cycle-type of the diagonal.

Proposition 2.16. For any D, |Y1| = |Y2|+ |Y3|.

Proof. Given (p, ε) ∈ Y1 where p = (s, π). We consider the NTAE ε and identify a Case 2

transposition χh, h = (i, j, j + 1, l) as follows: assume ε is contained in the cycle

C = (si−1 v
i
1 . . . vimi sl v

l
1 . . . vlml sj v

j
1 . . . vjmj),

where si−1 = min{C}, vlml = ε, sj = π(ε) and sl has the property that sl is the smallest in

{vi1, . . . vimi , sl, v
l
1, . . . v

l
ml
} such that sj <s sl. Such an element exists by construction and we

have si−1 <s sj <s sl ≤s ε.

Let ph = (sh, πh) = χh ◦ p, we have

(s, π) =

 · · · si−1

����

si · · · sj
����

sj+1 · · · sl
����

· · · ε · · ·

· · · π(si−1) π(si) · · · π(sj) π(sj+1) · · · π(sl) · · · π(ε) · · ·

 ,

(sh, πh) =

 · · · si−1

����

sj+1 · · · sl
����

si · · · sj
����

· · · ε · · ·

· · · π(sj) π(sj+1) · · · π(si−1) π(si) · · · π(sl) · · · π(ε) · · ·

 .

Then, si−1 <sh sl <sh sj. According to Lemma 2.9, si−1, sj, sl will be contained in three

distinct cycles of πh, namely

(si−1 v
j
1 . . . vjmj), (sj v

l
1 . . . vlml), (sl v

i
1 . . . vimi).

It is clear that si−1 is still the minimum element w.r.t. <sh in its cycle. By construction we

have

{vi1, . . . vimi} ⊂ ]si−1, sj[ ∪ ]sl, sn] and {vl1, . . . vlml} ⊂ ]si−1, sj[ ∪ ]sl, sn]

in s. After transposing [si, sj] and [sj+1, sl], all elements contained in ]si−1, sj[ will be larger
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than sl in sh and all elements of ]sl, sn] remain in sh to be larger than sl. This implies

that all elements in the segment vi1 . . . v
i
mi

will be larger than sl in sh. Accordingly, sl is the

minimum element in the cycle (sl v
i
1 . . . vimi).

It remains to inspect (sj v
l
1 . . . vlml). We find two scenarios:

1. If sj is the minimum (w.r.t. <sh), then vl1 . . . v
l
ml

contains no element of ]si−1, sj[ in

s. We claim that in this case there is a bijection between the pairs (p, ε) and the

set Y2. It suffices to specify the inverse: given an Y2-element, p′ = (s′, π′) with three

labeled cycles (s′i−1 u
i
1 . . . uimi), (s′j u

j
1 . . . ujmj) and (s′l u

l
1 . . . ulml) we consider a

Case 1 transposition determined by the three minimum elements, s′i−1 <s′ s
′
j <s′ s

′
l in

the respective three cycles. This generates a plane permutation (s, π) together with a

distinguished NTAE, ε, obtained as follows: after transposing, the three cycles merge

into

C = (s′i−1 u
j
1 . . . ujmj s

′
j u

l
1 . . . ulml s

′
l u

i
1 . . . uimi),

where s′i−1 <s s
′
l <s s

′
j. Since elements contained in ul1 . . . u

l
ml

are by construction larger

than s′l w.r.t. <s′ and these elements will not be moved by the transpose, ulml >s s
′
l,

i.e., ε = ulml is the NTAE. In case of {ul1, . . . ulml} = ∅ we have ε = s′j. The following

diagram illustrates the situation

si−1 < sj < sl ≤ ε = vlml

��

s′i−1 < s′l < s′j ≤ ε = ulmlsi−1=s′i−1,sl=s
′
j

sj=s
′
loo

(si−1 · · ·vi sl · · ·vl sj · · ·vj)

Case 2

��

(s′i−1 · · ·uj s′j · · ·ul s′l · · ·ui)vi=uj ,vl=ul

vj=uioo

OO

(si−1 · · ·vj)(sj · · ·vl)(sl · · ·vi)

��

vi=uj ,vl=ul

vj=ui
// (s′i−1 · · ·ui)(s′j · · ·uj)(s′l · · ·ul)

Case 1

OO

si−1 < sl < sj
si−1=s′i−1,sl=s

′
j

sj=s
′
l

// s′i−1 < s′j < s′l

OO
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where · · ·vi denotes the sequence vi1 . . . v
i
mi

.

2. If sj is not the minimum, then {vl1, . . . vlml} 6= ∅ and ε = vlml . Since by construction,

ε ∈]sl, sn] in s, it will not be impacted by the transposition and we have sj <sh ε.

Therefore, ε persists to be an NTAE in ph. We furthermore observe

ε >sh sj >sh min{sj, vl1, . . . vlml} >sh sl >sh si−1,

where min{sj, vl1, . . . vlml} >sh sl due to the fact that, after transposing [si, sj] and

[sj+1, sl], all elements in {vl1, . . . vlml} ⊂ ]si−1, sj[ ∪ ]sl, sn] will be larger than sl following

<sh . We claim that there is a bijection between such pairs (p, ε) and the set Y3. To

this end we specify its inverse: given an element in Y3, p′ = (s′, π′) with three labeled

cycles

(s′i−1 u
i
1 . . . uimi), (s′j u

j
1 . . . ujmj), (s′l u

l
1 . . . ulml),

where ε = ulml is the distinguished NTAE. Then a Case 1 transposition w.r.t. the two

minima s′i−1 and s′j, and s′l generates a plane permutation, p, in which ε remains as a

distinguished NTAE.

This completes the proof of the proposition.

Example 2.17. Here we look at an example to illustrate the bijection. Consider the plane

permutation with 2 cycles:

p =

 3 5 1 4 8 7 2 6

8 6 3 5 4 2 7 1

 , where π = (3 8 4 5 6 1)(2 7).

Clearly, both 8 and 6 are NTAEs. For (p, 8), we find 3, 4, 8 to determine a Case 2 transpo-
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sition. After the transposition, we obtain

p′ =

 3 8 5 1 4 7 2 6

5 8 6 3 4 2 7 1

 , where π′ = (3 5 6 1)(8)(4)(2 7),

and that 3, 4, 8 are all the minimal elements in their respective cycles in π′, i.e., we have

scenario 1. For the pair (p, 6), we find 3, 1 and 4 (the smallest in {8, 4, 5, 6} which is larger

than 1) to determine a Case 2 transposition. After the transposition, we obtain

p′ =

 3 4 5 1 8 7 2 6

3 8 6 5 4 2 7 1

 , where π′ = (3)(4 8)(5 6 1)(2 7),

and that 3, 4 are the minimum in their respective cycles in π′. However, the NTAE 6 persists,

i.e., scenario 2. This NTAE needs to be distinguished for the purpose of constructing the

reverse map of the bijection.

Note that if a pair in Y1 leads to an element in Y3, e.g., the second case in the right above

example, we can apply the transposition action w.r.t. the resulting plane permutation and

the distinguished NTAE again. Iterating in this manner, each plane permutation in UD with

k cycles and a distinguished NTAE eventually leads to a plane permutation in UD having

2i + 1 labeled cycles among its total k + 2i cycles for some i > 0. Lemma 2.15 guarantees

that there is an unambiguous path to reverse the process, since the last transposition action

will always lead to the three labeled cycles with the largest minimum elements.

Therefore, combining Lemma 2.15 and Proposition 2.16, we can conclude that each plane

permutation in UD with k cycles and a distinguished NTAE is in one-to-one correspondence

with a plane permutation in UD having 2i + 1 labeled cycles among its total k + 2i cycles

for some i > 0. Then, we can obtain our first recurrence.
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Theorem 2.18. Let pλk(n) denote the number of p ∈ UD having k cycles where D is of

cycle-type λ. Let pλa,k(n) denote the number of p ∈ UD, where p has k cycles, Exc(p) = a

and D is of type λ. Then,

∑
a≥0

(n− a− k)pλa,k(n) =
∑
i≥1

(
k + 2i

k − 1

)
pλk+2i(n). (2.8)

Proof. Using the notation of Proposition 2.16 and recursively applying Lemma 2.15 as well

as Proposition 2.16, we have

|Y1| =
∑
a≥0

(n− a− k)pλa,k(n)

= |Y2|+ |Y3| =
(
k + 2

3

)
pλk+2(n) + |Y3|

=

(
k + 2

3

)
pλk+2(n) +

(
k + 4

5

)
pλk+4(n) + · · ·

whence the theorem.

Remark 2.19. Following from Proposition 2.5, the exact number of terms on the RHS of

Eq. (2.8) depends on the number of parts in λ.

Although Eq. (2.8) is not simple for general λ, it can be immediately simplified by applying

Lemma 2.6 if D is a fixed-point free involution which leads to Chapuy’s recursion [16].

Corollary 2.20 (Chapuy’s recursion [16]). The numbers A(n, g) of rooted one-face maps

having n edges and genus g satisfy the recursion

2gA(n, g) =

g∑
k=1

(
n+ 1− 2(g − k)

2k + 1

)
A(n, g − k). (2.9)

Proof. Setting λ = 2n in Eq. (2.8), and noticing that n − a − k is the number of NTAEs
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which is always 2g for maps of genus g based on Lemma 2.6, Eq. (2.8) reduces to

2gpλn+1−2g(2n) =
∑
i≥1

(
n+ 1− 2g + 2i

n− 2g

)
pλn+1−2g+2i(2n),

where λ = 2n. Using Lemma 2.14, we know A(n, g) = q2n

q(2n)1
p2n

n+1−2g(2n). The last recurrence

then implies Chapuy’s recursion.

2.3.2 Filtering by the cycle-type in the vertical

The recurrence Eq. (2.8) is not very useful as both sides are summations. We proceed to

enumerate a more refined classification of UD, i.e., classifying by the cycle-type in the vertical,

which will allow us to obtain more elegant recurrences.

Let µ, η be integer partitions of n. We write µ�2i+1 η if µ can be obtained by splitting one

η-part into (2i+1) non-zero parts. Let furthermore κµ,η denote the number of different ways

to obtain η from µ by merging `(µ)− `(η) + 1 µ-parts into one, where `(µ) and `(η) denote

the number of blocks in the partitions µ and η, respectively.

Let Uη
λ denote the set of plane permutations, p = (s, π) ∈ UD, where D is a fixed permutation

of cycle-type λ and the vertical π has cycle-type η. The size of this set is given by the following

theorem:

Theorem 2.21. Let fη,λ(n) = |Uη
λ |. For `(η) + `(λ) < n+ 1, we have

fη,λ(n) =
qλ
∑

i≥1

∑
µ�2i+1η

κµ,ηfµ,λ(n) + qη
∑

i≥1

∑
µ�2i+1λ

κµ,λfµ,η(n)

qλ[n+ 1− `(η)− `(λ)]
. (2.10)

Proof. Let fη,λ(n, a) denote the number of p ∈ Uη
λ having a exceedances. Note that every

plane permutation has at least one exceedance. Thus 0 ≤ a ≤ n− 1.
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C laim. ∑
a≥0

(n− a− `(η))fη,λ(n, a) =
∑
i≥1

∑
µ�2i+1η

κµ,ηfµ,λ(n). (2.11)

Given p = (s, π) where the cycle-type of π is η, a Case 2 transposition will result in ph =

(sh, πh) such that πh has cycle-type µ and µ �3 η. Refining the proof of Proposition 2.16,

we observe that each pair (p = (s, π), ε) for which p ∈ Uη
λ and ε is an NTAE, uniquely

corresponds to a plane permutation ph = (sh, πh) ∈ Uµ
λ with 2i + 1 labeled cycles for some

i > 0, and µ �2i+1 η. Conversely, suppose we have ph = (sh, πh) ∈ Uµ
λ with µ �2i+1 η. If

there are κµ,η ways to obtain η by merging 2i+ 1 µ-parts into one, then we can label 2i+ 1

cycles of ph in κµ,η different ways, which correspond to κµ,η pairs (p = (s, π), ε) where the

cycle-type of π is η and this implies the Claim.

Immediately, we have

∑
a≥0

(n− a− `(λ))fλ,η(n, a) =
∑
i≥1

∑
µ�2i+1λ

κµ,λfµ,η(n). (2.12)

C laim.

qλfη,λ(n, a) = qηfλ,η(n, n− 1− a). (2.13)

Note that any p = (s, π) ∈ Uη
λ satisfies s = Dπ. Taking the inverse to “reflect” the equa-

tion, we uniquely obtain s−1 = π−1D−1. The latter can be transformed into an equivalent

plane permutation p′ = (s′, π′) ∈ Uλ
η by conjugation, where elements in Uλ

η have a fixed

permutation D′ of cycle-type η as diagonal. Namely, for some γ, we have

s′ = γs−1γ−1 = γ(s0 sn−1 · · · s1)γ−1, π′ = γD−1γ−1, Dp′ = D′ = γπ−1γ−1.

Next, we will show that if p has a exceedances, the plane permutation (s−1, D−1) has n−1−a
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exceedances, so that p′ has n− 1− a exceedances according to Lemma 2.13. Indeed, if p has

a exceedances, Lemma 2.4 guarantees that D has n− (a+ 1) = n− 1− a exceedances w.r.t.

<s. Since an exceedance in D is a strict anti-exceedance (i.e., strictly decreasing) in D−1,

D−1 has n − 1 − a strict anti-exceedances w.r.t. <s. However, following the linear order

ŝ = s0sn−1sn−2 · · · s1 (induced by s−1), any strict anti-exceedance w.r.t. <s of D−1 the image

of which is not s0, will become an exceedance. It remains to distinguish the following two

situations: if s0 is not the image of a strict anti-exceedance, s0 must be a fixed point, so D−1

has n− 1− a exceedances; if s0 is not a fixed point, the strict anti-exceedance having s0 as

image remains as a strict anti-excceedance in D−1. Furthermore, s0 must be an exceedance

of D−1 (w.r.t. <s), and it remains to be an exceedance w.r.t. <ŝ. In this case, there are

also (n − 1 − a − 1) + 1 = n − 1 − a exceedances in D−1. Finally, due to the one-to-one

correspondence, fη,λ(n, a) plane permutations (s, π) imply that fη,λ(n, a) plane permutations

(s−1, D−1) have n − 1 − a exceedances. Following the same argument as Lemma 2.14, the

cardinality of the latter set is also equal to qη

qλ
fλ,η(n, n− 1− a), whence the claim.

Therefore,

∑
a≥0

(n− a− `(η))qλfη,λ(n, a) +
∑
a≥0

(n− a− `(λ))qηfλ,η(n, a)

=
∑
a≥0

(n− a− `(η))qλfη,λ(n, a) + (n− (n− 1− a)− `(λ))qηfλ,η(n, n− 1− a)

=
∑
a≥0

(n− a− `(η))qλfη,λ(n, a) + (n− (n− 1− a)− `(λ))qλfη,λ(n, a)

=(n+ 1− `(η)− `(λ))
∑
a≥0

qλfη,λ(n, a)

=(n+ 1− `(η)− `(λ))qλfη,λ(n).

Multiplying qλ and qη on both sides of Eq. (2.11) and Eq. (2.12), respectively, and summing
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up the LHS and the RHS of Eq. (2.11) and Eq. (2.12), respectively, completes the proof.

In order to obtain a recurrence in terms of pλk(n), we sum over all η with `(η) = k.

Corollary 2.22. For `(λ) < n+ 1− k, we have

pλk(n) =

∑
i≥1

(
k+2i
k−1

)
pλk+2i(n)qλ +

∑
i≥1

∑
µ�2i+1λ

κµ,λp
µ
k(n)qµ

qλ[n+ 1− k − `(λ)]
. (2.14)

Proof. For any µ with `(µ) = k+ 2i, merging any 2i+ 1 parts leads to some η with `(η) = k

and µ�2i+1 η. Also note, if µ�2i+1 η does not hold, κµ,η = 0. Thus, for any µ with `(µ) =

k + 2i,
∑

η,`(η)=k κµ,η =
(
k+2i
2i+1

)
. Furthermore,

∑
µ,`(µ)=k+2i fµ,λ(n) = pλk+2i(n). Therefore,

∑
η,

`(η)=k

∑
i≥1

∑
µ�2i+1η

κµ,ηfµ,λ(n)qλ =
∑
i≥1

∑
µ,

`(µ)=k+2i

∑
η,

`(η)=k

κµ,ηfµ,λ(n)qλ

=
∑
i≥1

(
k + 2i

k − 1

)
pλk+2i(n)qλ.

We also have

∑
η,

`(η)=k

∑
i≥1

∑
µ�2i+1λ

κµ,λfµ,η(n)qη =
∑
i≥1

∑
µ�2i+1λ

κµ,λ
∑
η,

`(η)=k

fµ,η(n)qη

=
∑
i≥1

∑
µ�2i+1λ

κµ,λp
µ
k(n)qµ,

whence the corollary.

Note that pλ1(n) also counts the number of ways of writing a permutation of cycle-type

λ into two n-cycles. In Stanley [58], an explicit formula for pλ1(n) was given as, if λ =
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(1a1 , 2a2 , . . . , nan), then

pλ1(n) =
n−1∑
i=0

i!(n− 1− i)!
n

∑
r1,...,ri

(
a1 − 1

r1

)(
a2

r2

)
· · ·
(
ai
ri

)
(−1)r2+r4+r6+···,

where r1, . . . , ri ranges over all non-negative integer solutions of the equation
∑

j jrj = i.

As a quick application of Corollary 2.22, we obtain a recurrence for pλ1(n) from which we

can obtain simple closed formulas for some particular cases which seems not obvious from

Stanley’s explicit formula.

Proposition 2.23. For any λ ` n and n− `(λ) even, we have

pλ1(n) =
(n− 1)! +

∑
i≥1

∑
µ,

`(µ)=2i+`(λ)
κµ,λp

µ
1(n) q

µ

qλ

n+ 1− `(λ)
. (2.15)

In particular, for λ having only small parts, we have

p1a12a2

1 =
(n− 1)!

n+ 1− a1 − a2

, (2.16)

p1a12a231

1 =
(n− 1)![2(n− a1 − a2)− 3]

2(n− a1 − a2)(n− 2− a1 − a2)
, (2.17)

p1a12a241

1 =
(n− 1)!(n− 1− a1 − a2)

(n− 2− a1 − a2)(n− a1 − a2)
. (2.18)

Proof. Setting k = 1 in Eq. (2.14), we have

[n− `(λ)]pλ1(n) =
∑
i≥1

(
1 + 2i

0

)
pλ1+2i(n) +

∑
i≥1

∑
µ�2i+1λ

κµ,λp
µ
1(n)

qµ

qλ
.

Note, for n− `(λ) even, a permutation of cycle-type λ can be written as a product of any n-

cycle and a permutation with 2i+1 cycles for some i ≥ 0. Thus,
∑

i≥0

(
1+2i

0

)
pλ1+2i(n) = (n−1)!

whence the recursion.
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For the particular cases, we will only show the second one since the other two follow analo-

gously. For λ = 1a12a231, we observe κµ,λ 6= 0 iff µ = 1a1+32a2 . In this case, κµ,λ =
(
a1+3

3

)
.

Then, using Eq. (2.15) for 1a1+32a2 , qλ = n!
1a12a231a1!a2!1!

and qµ = n!
1a1+32a2 (a1+3)!a2!

, and we

obtain the second formula.

2.4 Refining a Zagier-Stanley result

Zagier [69] and Stanley [59] studied the following problem: how many permutations ω from

a fixed conjugacy class of Sn such that the product ω(1 2 · · · n) has exactly k cycles?

Both authors employed the character theory of the symmetric group in order to obtain

certain generating polynomials. Then, by evaluating these polynomials at specific conjugacy

classes, Zagier obtained an explicit formula for the number of rooted one-face maps (i.e.,

the conjugacy class consists of involutions without fixed points), and both, Zagier as well as

Stanley, obtained the following surprisingly simple formula for the conjugacy class n1: the

number ξ1,k(n) of ω for which ω(1 2 · · · n) has exactly k cycles is 0 if n − k is odd, and

otherwise ξ1,k(n) = 2C(n+1,k)
n(n+1)

where C(n, k) is the unsigned Stirling number of the first kind,

i.e., the number of permutations on [n] with k cycles. Stanley asked for a combinatorial

proof for this result [59]. Such proofs were later given in [27] and in [18].

In this section, we will study the above problem and refine the Zagier-Stanley result, com-

binatorially, using the framework of plane permutations.

First, it is obvious that ξ1,k(n) = 0 if n − k is odd from Proposition 2.7. In addition, note

that ξ1,k(n) = pλk(n) when λ = n1. Then, from Corollary 2.22, we obtain
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Corollary 2.24. For k ≥ 1, n ≥ 1 and n− k is even,

(n+ 1− k)ξ1,k(n) =
∑
i≥1

(
k + 2i

k − 1

)
ξ1,k+2i(n) + C(n, k). (2.19)

Proof. Inspecting Eq. (2.14), it suffices to show that

∑
i≥1

∑
µ�2i+1λ

κµ,λp
µ
k(n)

qµ

qn1 = C(n− k)− ξ1,k(n).

To this end, we first observe that for λ = n1, µ�2i+1 λ iff `(µ) = 2i+ 1. And κµ,λ = 1 then.

Also, by symmetry the number of ways of writing the n-cycle (1 2 · · · n) into a product of

a permutation with k cycles and a permutation of cycle-type µ equals to qµ

qn1 p
µ
k(n). On the

other hand, it is easy to see that ranging over all µ ` n, the total number of ways is exactly

C(n, k). Furthermore, if n− k is even, Proposition 2.7 implies that (1 2 · · · n) can be only

factorized into a permutation with k cycles and a permutation with j cycles for some odd j,

i.e., only `(µ) = 2i+ 1 matter. Thus,

∑
i≥1

∑
µ�2i+1λ

κµ,λp
µ
k(n)

qµ

qn1 =
∑
i≥1

∑
µ,

`(µ)=2i+1

pµk(n)
qµ

qn1 = C(n− k)− ξ1,k(n),

completing the proof.

Our idea to prove ξ1,k(n) = 2
n(n+1)

C(n + 1, k) for n − k even is to show both sides satisfy

the same recurrence and initial conditions. To this end, we will relate the obtained results

in terms of exceedances of plane permutations and exceedances of (ordinary) permutations.

Obviously, exceedances of a plane permutation of the form (εn, π) is the same as exceedances

of the ordinary permutation π. Let p = (s, π) ∈ UD, where p has a exceedances and k

cycles. Assume γsγ−1 = εn = (1 2 · · · n). Then, the plane permutation (εn, γπγ
−1) has a
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exceedances and k cycles according to Lemma 2.13. Furthermore, its diagonal is equal to

γDγ−1 which is of cycle-type λ.

Observation: viewing ordinary permutations π as plane permutations of the form (εn, π)

provides a new way to classify permutations, i.e., by the diagonals.

Lemma 2.25. Let p̂λa,k(n) denote the number of ordinary permutations having k cycles, a

exceedances and λ as the cycle-type of diagonals. Let p̂λk(n) denote the number of ordinary

permutations having k cycles and λ as the cycle-type of diagonals. Then,

qλpλa,k(n) = qn
1

p̂λa,k(n) = (n− 1)!p̂λa,k(n), qλpλk(n) = (n− 1)!p̂λk(n).

Proof. Let S be a set of plane permutations (s, π) on [n] having k cycles, a exceedances and

λ as the cycle-type of diagonals. Clearly, for any fixed s, the number of plane permutations

of the form (s, π) is the same as the number of plane permutations of the form (εn, π) there.

Thus, |S| = qn
1
p̂λa,k(n) = (n−1)!p̂λa,k(n). Similarly, the number of plane permutations having

a fixed permutation of cycle-type λ as diagonal does not depend on specific choice of the

permutation. Hence, |S| = qλpλa,k(n), completing the proof of the first equation. The same

reasoning leads to the second equation.

Proposition 2.26. Let pa,k(n) denote the number of permutations on [n] containing a ex-

ceedances and k cycles. Then,

∑
a≥0

(n− a− k)pa,k(n) =

bn−k
2
c∑

i=1

(
k + 2i

k − 1

)
C(n, k + 2i). (2.20)

In particular, p0,n(n) = 1, p1,n−1(n) =
(
n
2

)
.
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Proof. According to Lemma 2.25, we have

pa,k(n) =
∑
λ

p̂λa,k(n) =
∑
λ

qλ

(n− 1)!
pλa,k(n),

C(n, k) =
∑
λ

p̂λk(n) =
∑
λ

qλ

(n− 1)!
pλk(n).

Multiplying qλ

(n−1)!
on both sides of Eq. (2.8) and summing over all possible cycle-types λ

gives the proposition.

Clearly, summing over all possible number of exceedances, we get all permutations with k

cycles, i.e., we have
∑

a pa,k(n) = C(n, k), and furthermore
∑

a apa,k(n) counts the total

number of exceedances in all permutations with k cycles. Hence, reformulating Eq. (2.20),

we have the following corollary:

Corollary 2.27. The total number of exceedances in all permutations on [n] with k cycles

is given by ∑
a

apa,k(n) = (n− k)C(n, k)−
bn−k

2
c∑

i=1

(
k + 2i

k − 1

)
C(n, k + 2i). (2.21)

However, it is easy to compute the total number of exceedances as shown below.

Proposition 2.28. The total number of exceedances in all permutations on [n] with k cycles

is
(
n
2

)
C(n− 1, k).

Proof. Note the total number of exceedances in all permutations on [n] with k cycles is equal

to the size of the set X of permutations π on [n] with k cycles and with one pair (i, π(i))

distinguished, where i is an exceedance in π. Let Y denote the set of pairs (τ, α), where τ

is a subset of [n] having 2 elements and α is a permutation on [n − 1] having k cycles. We

will show that there is a bijection between X and Y . Given (π, (i, π(i))) ∈ X, we obtain
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(τ, α) ∈ Y as follows: set τ = {i, π(i)} and α′ on [n] \ {π(i)} as α′(j) = π(j) if j 6= i while

α′(i) = π2(i). Now we obtain α from α′ by substituting x − 1 for every number x > π(i).

Conversely, given (τ, α) ∈ Y , where τ = {a, b} and a < b. Define α′ from α by substituting

x + 1 for every number x ≥ b. Next we define π from α′ in the following way: π(j) = α′(j)

if j 6= a, b while π(a) = b and π(b) = α′(a). Note that by construction a is an exceedance in

π and clearly, |Y | =
(
n
2

)
C(n− 1, k), whence the proposition.

Corollary 2.27 and Proposition 2.28 give rise to a new recurrence for the unsigned Stirling

numbers of the first kind C(n, k).

Theorem 2.29. For n ≥ 1, k ≥ 1, we have

C(n+ 1, k) =
∑
i≥1

(
k + 2i

k − 1

)
C(n+ 1, k + 2i)

n+ 1− k
+

(
n+ 1

2

)
C(n, k)

n+ 1− k
. (2.22)

Reformulating Eq. (2.22), we obtain

2C(n+ 1, k)

n(n+ 1)
=
∑
i≥1

(
k + 2i

k − 1

)
1

n+ 1− k
2C(n+ 1, k + 2i)

n(n+ 1)
+

C(n, k)

n+ 1− k
. (2.23)

Comparing Eq. (2.19) and Eq. (2.23), we observe that 2
n(n+1)

C(n + 1, k) and ξ1,k(n) satisfy

the same recurrence. Furthermore, the initial value ξ1,n(n) is equal to the number of different

ways to factorize an n-cycle into an n-cycle and a permutation with n cycles. Since only

the identity map has n cycles, we have ξ1,n(n) = 1. On the other hand, C(n + 1, n) is the

number of permutations on [n+ 1] with n cycles. Such permutations have cycle-type 1n−121.

It suffices to determine the 2-cycle, which is equivalent to selecting 2 elements from [n+ 1].

Therefore, the initial value 2
n(n+1)

C(n+ 1, n) = 2
n(n+1)

(
n+1

2

)
= 1. Thus, 2

n(n+1)
C(n+ 1, k) and

ξ1,k(n) agree on the initial values. So, we have
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Proposition 2.30 (Zagier [69], Stanley [59]). For k ≥ 1, n ≥ 1 and n− k even, we have

ξ1,k(n) =
2

n(n+ 1)
C(n+ 1, k). (2.24)

2.5 From the Lehman-Walsh formula to Chapuy’s re-

cursion

Recall that the number of plane permutations is a multiple of the number of rooted one-

face maps. In 70’s, Walsh and Lehman [64, Eq. (13)], using a direct recursive method and

formal power series, obtained an explicit formula for A(n, g) (hence the number of plane

permutations) which can be reformulated as follows:

A(n, g) =
∑
λ`g

(n+ 1)n · · · (n+ 2− 2g − `(λ))

22g
∏

i ci!(2i+ 1)ci
(2n)!

(n+ 1)!n!
, (2.25)

where the summation is taken over partitions λ of g, ci is the number of parts i in λ, and

`(λ) is the total number of parts.

More than a decade later, Harer and Zagier [41] obtained the following three-term recurrence,

known as the Harer-Zagier recurrence:

(n+ 1)A(n, g) = 2(2n− 1)A(n− 1, g) + (2n− 1)(n− 1)(2n− 3)A(n− 2, g − 1). (2.26)

They furthermore obtained the so-called Harer-Zagier formula:

An(x) =
(2n)!

2nn!

∑
k≥1

2k−1

(
n

k − 1

)(
x

k

)
. (2.27)
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There is a body of work on how to derive these results [16, 17, 31, 32, 42]. A direct bijection

for the Harer-Zagier formula was given in [32]. Combinatorial arguments to obtain the

Lehman-Walsh formula and the Harer-Zagier recurrence were recently given in [17]. One

of the most recent advances is a new recurrence for A(n, g) obtained by Chapuy [16] via a

bijective approach, which was refined in our Corollary 2.20.

In this section, we will show that from the earliest Lehman-Walsh formula, we can actually

derive the Harer-Zagier results and Chapuy’s recursion, which connects all these formulas

spanning over 40 years.

2.5.1 New formulas counting one-face maps

In the following, we will first prove a new formula for A(n, g) by constructing two involutions

on pairs of permutations.

We call a cycle of a permutation odd and even if it contains an odd and even number of

elements, respectively. Let O(n+ 1, g) denote the number of permutations on [n+ 1] which

consist of n + 1 − 2g odd (disjoint) cycles. For readers familiar with the formula for the

number of permutations of a specific cycle type, see Section 1.1, it may be immediately

realized that the Lehman-Walsh expression can be rewritten as

∑
λ`g

(n+ 1)n · · · (n+ 2− 2g − `(λ))

22g
∏

i ci!(2i+ 1)ci
(2n)!

(n+ 1)!n!
=

(2n)!

(n+ 1)!n!22g
O(n+ 1, g). (2.28)

Then, we have more fundamental objects (permutations instead of maps) to work with.

First, we combinatorially obtain an explicit formula for O(n, g):
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Theorem 2.31. For n, l ≥ 0, we have

n∑
k=0

(
n

k

) ∑
i+j=l

C(n− k + 1, i)(−1)k+1−jC(k + 1, j) = 2l−2O(n+ 1,
n+ 2− l

2
). (2.29)

Proof. Let S = {a, 1, 2, . . . n, b}. Let TA,l denote the set of pairs (α, β) where α is a permu-

tation on A ⊂ S while β is a permutation on S \ A, such that the sum of the number of α-

and β-cycles equals l. Let

Tl =
⋃
A⊂S

TA,l,

where the union is taken over all A ⊂ S such that a ∈ A and b /∈ A. For each pair

(α, β) ∈ Tl, we denote the difference between |S \A| and the number of β-cycles as d(β) and

set W [(α, β)] = (−1)d(β). Then, it is clear that

Claim 1.

∑
(α,β)∈Tl

W [(α, β)] =
n∑
k=0

(
n

k

) ∑
i+j=l

C(n− k + 1, i)(−1)k+1−jC(k + 1, j).

Next, let T ′ ⊂ Tl consist of pairs (α, β) where α(a) = a and b is contained in an odd cycle.

Claim 2. ∑
(α,β)∈Tl

W [(α, β)] =
∑

(α,β)∈T ′
W [(α, β)].

Given (α, β) ∈ Tl, write both α and β in their cycle decompositions and denote the length

of the cycle containing b as B. Define a map φ : Tl → Tl as follows:

• Case 1: if (α, β) ∈ T ′, then φ : (α, β) 7→ (α, β);

• Case 2: if (α, β) /∈ T ′, we distinguish two scenarios:

– if B is odd and α(a) 6= a, then φ : (α, β) 7→ (α′, β′), where α′ is obtained by

deleting α(a) from the cycle decomposition of α while β′ is obtained by inserting
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α(a) between b and β(b) in the cycle containing b and if b = β(b), we map the

cycle (b) to (b, α(a));

– if B is even then b 6= β(b). Define φ : (α, β) 7→ (α′, β′), where α′ is obtained by

inserting β(b) between a and α(a) and for a = α(a), we map (a) to (a, β(b)). β′

is obtained by deleting β(b) from the corresponding β-cycle.

It is not hard to check that φ is an involution whose fixed points are exactly all Case 1-pairs

and the two elements in any length-2 cycle carry opposite signs, whence Claim 2.

Now, let T ′′ be the set of pairs (α, β) ∈ T ′ such that all cycles in α and β are odd.

Claim 3. ∑
(α,β)∈T ′

W [(α, β)] =
∑

(α,β)∈T ′′
W [(α, β)].

This can be proved by observing that the following defined map ϕ : T ′ → T ′ is a sign-

reversing involution which has elements in T ′′ as fixed points.

• Case 1: if (α, β) ∈ T ′′, then ϕ : (α, β) 7→ (α, β);

• Case 2: if (α, β) /∈ T ′′, there is at least one even cycle in the collection of cycles from

both α and β. Obviously, there is a unique even cycle, denoted by C, containing the

minimal element among the union of elements from all even cycles. Let ϕ : (α, β) 7→

(α′, β′), where

– if C is a cycle in α, then α′ = α \ C and β′ = β ∪ C;

– otherwise α′ = α ∪ C and β′ = β \ C.

Based on these claims above, the LHS of Eq. (2.29) equals
∑

(α,β)∈T ′′W [(α, β)]. Since in

T ′′ all cycles are odd, the number of elements and the number of cycles in β have the same
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parity. Thus, for any (α, β) ∈ T ′′, W [(α, β)] = 1, i.e the total weight over T ′′ equals the

total number of elements in T ′′.

Since a is a fixed point in α for any (α, β) ∈ T ′′, each pair (α, β) ∈ T ′′ can be viewed as a

partition of all l− 1 odd cycles of a permutation on [n]∪ {b}, except the cycle containing b,

into two ordered parts. Conversely, given a permutation on [n] ∪ {b} with l − 1 odd cycles,

there are 2l−2 different ways to partition all cycles except the one containing b into two

ordered parts. Therefore, we have

∑
(α,β)∈T ′′

W [(α, β)] = |T ′′| = 2l−2O(n+ 1,
n+ 2− l

2
),

completing the proof.

Setting l = n + 2− 2g in Eq. (2.29) and using Eq. (2.28), we obtain a new explicit formula

for A(n, g) which is more symmetric than Lehman-Walsh’s explicit fomula:

Theorem 2.32. A(n, g) = (2n)!
2nn!(n+1)!

Ā(n, g) where

Ā(n, g) =
n∑
k=0

(
n

k

) ∑
i+j=n+2−2g

C(n− k + 1, i)(−1)k+1−jC(k + 1, j). (2.30)

Next, we immediately obtain

Theorem 2.33. The generating functions An(x) for n ≥ 0 satisfy

∑
g≥0

A(n, g)xn+1−2g =
(2n)!

2nn!

∑
k≥0

(
n

k

)(
x+ n− k
n+ 1

)
. (2.31)
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Proof. It is wellknown that

x(x+ 1)(x+ 2) · · · (x+ n− 1) =
∑
k≥1

C(n, k)xk,

x(x− 1)(x− 2) · · · (x− n+ 1) =
∑
k≥1

(−1)n−kC(n, k)xk.

For instance, a short constructive proof can be found in [14]. From these facts and Eq. (2.30),

we immediately obtain Eq. (2.31).

Remark 2.34. Clearly, depending on n, An(x) represents, either an odd or even function,

which is not obvious from Harer-Zagier’s formula. Our new formula on the RHS of Eq. (2.31)

makes this feature immediately evident: let (a)n denote the falling factorial a(a− 1) · · · (a−

n+ 1). Then,

(
n

k

)
(x+ n− k)n+1

(n+ 1)!
= (−1)n+1

(
n

k

)
[−(x+ n− k)][−(x+ n− k − 1)] · · · [−(x− k)]

(n+ 1)!

= (−1)n+1

(
n

n− k

)
(−x+ n− (n− k))n+1

(n+ 1)!
,

which implies An(x) = (−1)n+1An(−x).

Remark 2.35. The proof of the three-term Harer-Zagier recurrence in [17] is based on a

combinatorial isomorphism. The recurrence

O(n+ 1, g) = O(n, g) + n(n− 1)O(n− 1, g − 1) (2.32)

offers an additional indirect combinatorial proof, which can be obtained by considering the

length of the cycle containing the element 1.
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2.5.2 Chapuy’s recursion refined again

In this part, by reformulating our expression for An(x) in terms of the backward shift operator

E : f(x)→ f(x− 1) and proving a property satisfied by polynomials of the form p(E)f(x),

we easily establish Chapuy’s recursion once again.

First, our new formula of An(x) implies

∑
g≥0

A(n, g)xn+1−2g =
(2n)!

2nn!(n+ 1)!
(1 + E)n(x+ n)n+1. (2.33)

We proceed by showing that any polynomial of the form p(E)(x+ n)n+1 satisfies:

Theorem 2.36. Let p(t) =
∑n

k=0 akt
k and F (x) = p(E)(x + n)n+1. If a1

a0
= an−1

an
and

kak + (n− k + 2)ak−2 = a1

a0
ak−1, for 2 ≤ k ≤ n, then

(n+ 2 +
a1

a0

)F (x) = x(F (x+ 1)− F (x− 1)). (2.34)

Moreover, let bk = [xk]p(E)(x+ n)n+1, then we have

(
n+ 2 + a1

a0

2
− k
)
bk =

∑
j≥1

(
k + 2j

2j + 1

)
bk+2j. (2.35)

Proof. Note that by assumption, the RHS of Eq. (2.34) is equal to

n∑
k=0

{akx(x+ 1 + n− k)n+1 − akx(x− 1 + n− k)n+1}.
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Clearly, we have

akx(x+ 1 + n− k)n+1 = ak(x− k + k)(x+ 1 + n− k)n+1

= (x+ 1 + n− k)ak(x+ n− k)n+1 + kak(x+ 1 + n− k)n+1,

akx(x− 1 + n− k)n+1 = ak[x+ (n− k)− (n− k)](x− 1 + n− k)n+1

= (x− k − 1)ak(x+ n− k)n+1 − (n− k)ak(x− 1 + n− k)n+1.

Then, to obtain Eq. (2.34), it suffices to show that the difference between the respective

sums of the RHS of the last two equations equals the LHS of Eq. (2.34). This follows from

the following computations:

n∑
k=0

(x+ 1 + n− k)ak(x+ n− k)n+1 −
n∑
k=0

(x− k − 1)ak(x+ n− k)n+1

=(n+ 2)
n∑
k=0

ak(x+ n− k)n+1 = (n+ 2)F (x), and

n∑
k=0

kak(x+ 1 + n− k)n+1 +
n∑
k=0

(n− k)ak(x− 1 + n− k)n+1

=
n∑
k=2

{kak(x+ 1 + n− k)n+1 + [n− (k − 2)]ak−2(x− 1 + n− (k − 2))n+1}+

a1(x+ 1 + n− 1)n+1 + [n− (n− 1)]an−1(x− 1 + n− (n− 1))n+1

=
n∑
k=2

[kak + (n− k + 2)ak−2] (x+ n− (k − 1))n+1 + a1(x+ n)n+1 + an−1(x)n+1

=
a1

a0

n−1∑
k=1

ak(x+ n− k)n+1 +
a1

a0

a0(x+ n)n+1 +
a1

a0

an(x)n+1 =
a1

a0

F (x).

Next, the polynomial F (x) is analytic and has thus a power series expansion everywhere. In
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particular, we have

F (x+ 1) =
∑
k≥0

F (k)(x)

k!
(x+ 1− x)k, F (x− 1) =

∑
k≥0

F (k)(x)

k!
(x− 1− x)k.

Then,
n+ 2 + a1

a0

2
F (x) =

x(F (x+ 1)− F (x− 1))

2
=
∑
k≥0

xF (2k+1)(x)

(2k + 1)!
,

which can be reformulated as

n+ 2 + a1

a0

2
F (x)− xF ′(x) =

∑
k≥0

(
n+ 2 + a1

a0

2
− k
)
bkx

k =
∑
j≥1

xF (2j+1)(x)

(2j + 1)!
.

Comparing the coefficients of the last equation based on the fact that

xF (2j+1)(x)

(2j + 1)!
=
∑
i≥0

(i)2j+1

(2j + 1)!
bix

i−2j,

we obtain Eq. (2.35) and the proof of the theorem is complete.

As a consequence of Theorem 2.36, we immediately obtain Chapuy’s recurrence.

Corollary 2.37 (Chapuy’s recursion).

2gA(n, g) =

g∑
k=1

(
n+ 1− 2(g − k)

2k + 1

)
A(n, g − k). (2.36)

Proof. For An(x), Eq. (2.33) gives us p(t) =
∑n

k=0 akt
k where ak = (2n)!

2nn!(n+1)!

(
n
k

)
. It is obvious



2.6. Conclusion 57

that a1

a0
= an−1

an
= n. Furthermore,

kak + (n− k + 2)ak−2 =
(2n)!

2nn!(n+ 1)!

[
k

(
n

k

)
+ [n− (k − 2)]

(
n

k − 2

)]
=

(2n)!

2nn!(n+ 1)!

[
n

(
n− 1

k − 1

)
+ n

(
n− 1

k − 2

)]
=

(2n)!

2nn!(n+ 1)!
n

(
n

k − 1

)
= nak−1.

Hence, we can apply Theorem 2.36 to An(x) and obtain

2gA(n, g) =

(
n+ 2 + n

2
− (n+ 1− 2g)

)
[xn+1−2g]An(x)

=
∑
j≥1

(
n+ 1− 2g + 2j

2j + 1

)
[xn+1−2g+2j]An(x)

=

g∑
k=1

(
n+ 1− 2(g − k)

2k + 1

)
A(n, g − k),

which is Chapuy’s recurrence.

2.6 Conclusion

In this chapter, we introduced (cyclic) plane permutations. It allowed us to enumerate maps

and hypermaps in a new insightful framework. From the enumeration of plane permutations

which is facilitated by the diagonal transpose action on plane permutations, we obtained

several recurrences. These recurrences applied to maps and hypermaps automatically, by

just a simple coefficient compensation. As consequences, we refined and extended several

existing results, e.g., Chapuy’s recursion and the Zagier-Stanley result. These are the content

in Sections 2.1–2.4, which is based on the paper “[10] Plane permutations and applications

to a result of Zagier–Stanley and distances of permutations, SIAM J. Discrete Math. 30(3)
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(2016) pp. 1660–1684”. We also proposed a way to connect different formulas counting

one-face maps, i.e., the Lehman-Walsh formula (1972), Harer-Zagier’s formulas (1986) and

Chapuy’s recursion (2011), for the first time, in Section 2.5. This latter part is based on

the paper “[12] New formulas counting one-face maps and Chapuy’s recursion, Australa. J.

Combin., in revision.”



Chapter 3

Application to Graph Embeddings

In this chapter, we will apply our plane permutation framework to graph embedding prob-

lems. Let’s first review a little bit regarding the topic.

Graph embedding is one of the most important topics in topological graph theory. In par-

ticular, 2-cell embeddings of graphs (loops and multiple edges allowed) have been widely

studied. A 2-cell embedding or map of a given graph G on a closed surface of genus g, Sg,

is an embedding on Sg such that every face is homeomorphic to an open disk. The closed

surfaces could be either orientable or unorientable. In this work, we restrict ourselves to the

orientable case.

Let gmin(G) and gmax(G) denote the minimum and the maximum genus g of the embeddings

of G, respectively. There are many studies on determining these quantities and related

problems [22, 26, 35, 44, 45, 46, 47, 50, 52, 53, 55, 61, 62, 63, 66, 67]. Assume G has e edges

and v vertices, and that G is embedded in Sg via ε. In view of Euler’s characteristic formula,

v − e+ f = 2− 2g ⇐⇒ 2g = β(G) + 1− f, (3.1)

59
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where f ≥ 1 is the number of faces of ε and β(G) is the Betti number of G. Thus, the largest

possible value of g is bβ(G)
2
c.

We already know that any embedding of G in a closed orientable surface can be equivalently

represented by a fatgraph, generated by G [24, 55]. A fatgraph generated by G is the graph

G with a specified cyclic order of edges around (i.e., incident to) each vertex of G, i.e., the

topological properties of the embedding are implied in the cyclic orderings of edges. Any

variation of the local topological structure around a vertex, i.e., the cyclic order of edges

around the vertex, may change the topological properties of the whole embedding, e.g., the

genus of the embedding. This is basically what we are going to study: the behavior of graph

embeddings under local changes, i.e., local reembeddings.

3.1 Localization and inflation

We first introduce two essential concepts in this section: localization and inflation w.r.t. a

vertex of an embedding.

For a permutation π on [n], we denote Parπ the partition of [n] induced by the cycles of π,

i.e., every set of elements in a same cycle of π contributes a part (or block) in Parπ. For a

cyclic plane permutation p = (s, π) with s = (s0s1 · · · sn−1), we assume s0 = 1 and refer to

the blocks in Parπ as p-vertices or vertices for short, and elements in a vertex half-edges.

Clearly, a fatgraph induces a unique graph, i.e., the underlying graph, by ignoring the cyclic

orders around vertices. Suppose a fatgraph is encoded into a triple (α, β, γ). Then, its

induced graph G can be recorded as the pair (α, Parβ), where each block in Parβ corresponds

to a G-vertex and each α-cycle determines a G-edge.

Recall that hypermaps represent a generalization of maps by allowing hyper-edges, i.e.,
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triples (α, β, γ), where γ = αβ and α is not necessarily fixed point free. We will also call

the pair G = (α, Parβ) the underline graph of the hypermap although it does not induce

a conventional graph. Furthermore, any hypermap (α′, β′, γ′) having G as the underlying

graph is called an embedding of G.

Definition 3.1 (Localization). Given a cyclic plane permutation p = (s, π) on [n] and a

p-vertex ν, the localization of p at ν, locν(p) = (sν , πν) is the cyclic plane permutation

(sν , πν) =

 si1 si2 · · · si(k−1) sik

π(si1) π(si2) · · · π(si(k−1)) π(sik)

 ,

which is obtained by deleting all columns not containing half-edges incident to ν in the

two-line representation of p = (s, π).

Let Dν denote the diagonal of locν(p), i.e., Dν = sν ◦ π−1
ν . Note that even if (s, π) is a map,

Dν is not necessarily a fixed-point free involution.

Example 3.2. For example, given (s, π)

 1 3 2 5 7 4 6 9 8 10 11 12

5 8 3 4 7 10 12 2 6 1 9 11

 ,

where π = (1, 5, 4, 10)(2, 3, 8, 6, 12, 11, 9)(7), let ν = {2, 3, 8, 6, 12, 9, 11}. Then,

locν(p) =

 3 2 6 9 8 11 12

8 3 12 2 6 9 11

 ,

we arrive at Dν = (2, 8)(3, 6, 11)(9, 12).

A set of consecutive diagonal-pairs in p = (s, π) is called a diagonal block. In above example,
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2 5 7 4

8 3 4 7
is a diagonal block. It is completely determined by its corners, in this case,

the lower left corner, 8, as well as the upper right corner, 4. The diagonal block is denoted

by < 8, 4 >.

Given a cyclic plane permutation p = (s, π) on [n] and a sequence h = h1h2 · · ·hn−1 on

[n − 1], let sh = (s0, sh1 , sh2 , . . . shn−1), i.e. s is acted upon by h via translation its indices,

and πh = D−1
p ◦ sh. This induces the new cyclic plane permutation (sh, πh) having by

construction the same diagonal as (s, π). Equivalently, the two-line representation of (sh, πh)

can be obtained by permuting the diagonal-pairs of (s, π). In the following, a cyclic plane

permutation written in the form like (sh, πh), always means that it is obtained from (s, π)

by permuting diagonal-pairs by h.

Lemma 3.3 (Localization lemma). Let (s, π), (s′, π′) = (sH , πH) be cyclic plane permutations

such that Parπ = Parπ′ and π and π′ exclusively differ at the vertex ν. Then, there exists

some h such that (s′ν , π
′
ν) = (shν , π

h
ν ) and furthermore (Dν , Parπν ) = (D′ν , Parπ′ν ).

Proof. Assume p = (s, π) and p′ = (s′, π′) are respectively

 · · · si0 si0+1 · · · si1 · · · sik−2
· · · sik−1

· · ·

· · · π(si0) · · · π(si1−1) π(si1) · · · π(sik−2
) · · · π(sik−1

) · · ·

 ,

 · · · s′i0 s′i0+1 · · · s′i1 · · · s′ik−2
· · · s′ik−1

· · ·

· · · π′(s′i0) · · · π′(s′i1−1) π′(s′i1) · · · π′(s′ik−2
) · · · π′(s′ik−1

) · · ·

 ,

where we assume ν = {si0 , si1 , . . . sik−1
} = {s′i0 , s

′
i1
, . . . s′ik−1

} and s′0 = s0. Since by assump-

tion π and π′ only differ at the vertex ν, we have sj = s′j for 0 ≤ j ≤ i0. Furthermore

Parπ = Parπ′ implies Parπν = Parπ′ν .
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Claim. Dν = D′ν .

To show this we observe that for fixed j, each diagonal block < π′(s′ij), s
′
ij+1

> equals the

diagonal block < π(sil), sil+1
> for some l(j), i.e.,

 s′ij+1 s′ij+2 · · · s′ij+1

π′(s′ij) π′(s′ij+1) · · · π′(s′ij+1−1)

 =

 sil+1 sil+2 · · · sil+1

π(sil) π(sil+1) · · · π(sil+1−1)


To prove this, we observe that by construction for fixed j there exists some index l such that

π(sil) = π′(s′ij) holds. This implies,

s′ij+1 = Dp ◦ π′(s′ij) = Dp ◦ π(sil) = sil+1.

In case of s′ij+1 6∈ ν, we have π′(s′ij+1) = π(s′ij+1) = π(sil+1) and derive

s′ij+2 = Dp ◦ π′(s′ij+1) = Dp ◦ π(sil+1) = sil+2.

Iterating we arrive at s′ij+1
= sil+1

, whence the two diagonal blocks are equal, the Claim

follows and the proof of the lemma is complete.

Definition 3.4. Given a cyclic plane permutation p = (s, π) on [n] and its localization at

ν, locν(p) = (sv, πv). Suppose (shν , π
h
ν ) is such that Parπν = Parπhν . Then the inflation

of (shν , π
h
ν ) w.r.t. p is the cyclic plane permutation infp((s

h
ν , π

h
ν )), obtained from (shν , π

h
ν ) by

substituting each diagonal-pair with the diagonal block in p having the diagonal-pair as its

corners.

Example 3.5. Let (shν , π
h
ν ) =

 3 9 8 11 2 6 12

12 2 6 8 3 9 11

 , then the inflation of (shν , π
h
ν )
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w.r.t. (s, π) is

infp((s
h
ν , π

h
ν )) =

 1 3 9 8 10 11 2 5 7 4 6 12

5 12 2 6 1 8 3 4 7 10 9 11

 .

Lemma 3.6 (Inflation lemma). Let infp((s
h
ν , π

h
ν )) = (s′, π′). Then we have

(Dp, Parπ) = (Dp′ , Parπ′)

and π′ differs from π only at the vertex ν.

Proof. By construction, Dp′ = Dp. Any half-edge not contained in ν, is located inside the

respective diagonal blocks, whence π and π′ are equal on these half-edges. All ν-half-edges

contribute exactly one block in Parπ and Parπ′ , since Parπν = Parπhν . Accordingly, we have

Parπ = Parπ′ , completing the proof of the lemma.

Combining Lemma 3.3 and 3.6, we obtain

Theorem 3.7. Let p = (s, π) be a cyclic plane permutation. Let X = {H | Parπ =

ParπH ∧ π(i) = πH(i), i 6∈ ν} and let Y = {h | Parπν = Parπhν }. Then there is a bijection

between X and Y and we have the commutative diagram:

(s, π)

locν
��

H: Parπ=Par
πH // (s′, π′)

(sν , πν) h: Parπν=Par
πhν

// (shν , π
h
ν )

infp

OO
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3.2 Reembedding one-face graph embeddings

In this section, we discuss locally reembedding one-face graph embeddings.

Lemma 3.8. Let p = (s, π) be a cyclic plane permutation with the underline graph G =

(Dp, Parπ). Then, p′ = (s′, π′) is an embedding of G iff (s′, π′) = (sh, πh) for some h and

(Dp′ , Parπ′) = (Dp, Parπ).

Proof. If p′ = (s′, π′) is an embedding of G = (Dp, Parπ), then, by definition, (Dp′ , Parπ′) =

(Dp, Parπ). Thus, Dp = Dp′ = s′ ◦ π′−1. Clearly, there exists some h such that s′ = sh. By

construction we have πh = D−1
p ◦ sh = D−1

p′ ◦ s′ = π′. Hence, (s′, π′) = (sh, πh) for some h.

The converse is clear, whence the lemma.

This lemma shows that any one-face embedding is originated by the action of some h on a

cyclic plane permutation. Explicitly, a new embedding is obtained by permuting diagonal-

pairs based on a fixed one-face embedding (s, π) of the graph such that Parπ = Parπh .

Corollary 3.9. Let p = (s, π) be a one-face map with the underline graph G = (Dp, Parπ).

Fixing the (local) embedding of all vertices of G as in p but the vertex ν, each local embedding

of ν leading to a one-face map p′ = (s′, π′) corresponds to a H such that (s′, π′) = (sH , πH)

and π′ differs from π only at the vertex ν.

According to the bijection between H and h in Theorem 3.7, the number of different em-

beddings of ν keeping one face is equal to the number of different h such that (shν , π
h
ν ) and

(sν , πν) having the same underlying graph. We denote this number by Rν . Moreover, the

half-edges contained in ν split the cyclic plane permutation into |ν| diagonal blocks. We

can view these diagonal blocks as they are arranged in a circular fashion, as displayed in

Figure 3.1. To reembed ν means to permute these diagonal blocks circularly.
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Si0
Si1 Si2Sik-1

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

a diagonal block

............

Figure 3.1: Circular arrangement of diagonal blocks determined by the vertex v.

Note that the localizations (shν , π
h
ν ) and (sν , πν) have the same underlying hyper-graph G, iff

both of them belong to UD where D = Dν and C(πhν ) = C(πν) = 1. Therefore, if Dν has

cycle-type λ, following our notation in Chapter 2, Rν = pλ1(|ν|). As a ressult we obtain

Theorem 3.10. Let ε be a one-face embedding of G, and ν be a vertex of G with deg(ν) ≥ 4.

Then there exists at least one additional way to reembed ν such that the obtained embedding

ε′ has the same genus as ε.

Proof. Assume d ≥ 4 and ε is localized at ν

(sν , πν) =

 v1 v2 · · · vd−1 vd

vi,1 vi,2 · · · vi,d−1 vi,d

 ,

where πν = (v1, V2, · · · , Vd−1, Vd). Firstly, if Vl = vp, Vm = vq and 1 < l < m ≤ d, 1 < p <

q ≤ d, i.e. Case 3 in Lemma 2.9, then there exists at least one additional way to reembed ν

preserving genus. Otherwise, we have πν = (v1, vd, vd−1, . . . , v2). In this case,

(sν , πν) =

 v1 v2 · · · vd−1 vd

vd v1 · · · vd−2 vd−1

 ,
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whence

Dν =

 (v1, v3, . . . , vd, v2, v4, . . . , vd−1), d ∈ odd,

(v1, v3, . . . , vd−1)(v2, v4, . . . , vd), d ∈ even.

It remains to show that if d ≥ 4 we have Rν ≥ 2 in all cases. To this end, we apply a formula

for pλ1(k) due to Stanley [58]. If λ = (1a1 , 2a2 , . . . , kak), then

pλ1(k) =
k−1∑
i=0

i!(k − 1− i)!
k

∑
<r1,...,ri>

(
a1 − 1

r1

)(
a2

r2

)
· · ·
(
ai
ri

)
(−1)r2+r4+r6+···, (3.2)

where < r1, . . . , ri > ranges over all non-negative integer solutions of the equation
∑

j jrj = i.

Applying Stanley’s formula we can compute Rν , if d ∈ odd as

Rν =
(d− 1)!

d

d−1∑
i=0

(−1)i
(
d− 1

i

)−1

=
2(d− 1)!

d+ 1
.

The simplification of the summation is stems from the following formula [60]

n∑
i=0

(−1)i
(
x

i

)−1

=
x+ 1

x+ 2
(1 + (−1)n

(
x+ 1

n+ 1

)−1

).

It is not hard to see that Rν ≥ 2 if d ≥ 4. Similarly, if 4|d and d ≥ 4, we have

Rν =

d
2
−1∑
i=0

(−1)i
i!(d− 1− i)!

d
+

d−1∑
i= d

2

(−1)i
i!(d− 1− i)!

d
[(−1)i + (−1)i−

d
2

(
2

1

)
(−1)]

=
2(d− 1)!

d+ 1
(1−

(
d
d
2

)−1

).
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If d ∈ even and 4 - d, we have

Rν =

d
2
−1∑
i=0

(−1)i
i!(d− 1− i)!

d
+

d−1∑
i= d

2

(−1)i
i!(d− 1− i)!

d
[(−1)i + (−1)i−

d
2

(
2

1

)
]

=
2(d− 1)!

d+ 1
(1 +

(
d
d
2

)−1

).

In both cases, if d ≥ 4, it is straightforward to show that Rν ≥ 2, since both 2(d−1)!
d+1

and

(1 −
(
d
d
2

)−1
) are increasing functions of d. Accordingly, in all cases, if d ≥ 4, then Rν ≥ 2,

completing the proof.

Example 3.11. Given a plane permutation

 1 2 · · · 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 7 · · · 17 14 5 20 16 6 9 19 12 8 4 15 11 2

 ,

the corresponding one-face map of which is shown on the left in Figure 3.2. Consider the

vertex v =
( 8 11 14 16 19

14 16 19 8 11

)
,

Dv =

(
8 19 16 14 11

)
=

(
8 11 14 16 19

)(
8 16 11 19 14

)
=

(
8 14 19 11 16

)(
8 14 19 11 16

)
.

Rearranging the half-edges around the vertex v following the second factorization of Dv,

we obtain another one-face map as shown on the right hand side in Figure 3.2, where after

relabeling the boundary is (1′, 2′, . . . , 20′).
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Figure 3.2: A one-face map with 10 edges (left) and rearranging half edges around one of its
vertices (right).

Note in case of a vertex ν having degree 1 or 2, the situation is clear. Thus it remains to

consider the case deg(ν) = 3. For such a vertex, a reembedding preserving genus can be

impossible. For example, Dν = (132) = (123)(312) is the unique decomposition of Dν , which

means that the genus is going to change for any way of reembedding the vertex ν.

Corollary 3.12. Any even permutation on [n] with n ≥ 4 has at least two different factor-

izations into two n-cycles.

Proof. Since Dν = sν ◦ π−1
ν and both sν as well as πν have only one cycle, Dν is an even

permutation. Theorem 3.10 implies that Dν has at least 2 factorizations into two n-cycles,

completing the proof.

Corollary 3.13. Let G be a graph having m vertices of degree no less than 4. If there exists

a one-face embedding of G, then there are at least 2m one-face embeddings of G.

Proof. If we start with a one-face embedding of G, and reembed these vertices of degree

larger than 4 sequentially such that we keep one-face property at each vertex, we will obtain

a new one-face embedding. Since at each vertex, there are two different ways to do that
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according to Corollary 3.12, we can obtain at least 2m different one-face embeddings.

Since we know how many ways of reembedding will keep one-face, we can certainly compute

the probability of a random reembedding at a vertex keeping one-face. Accordingly, we have

Theorem 3.14. Let (s, π) be a one-face embedding of G and (sν , πν) its localization at ν.

Suppose Dν has cycle-type λ = (1a1 , 2a2 , . . . , kak) where k = deg(ν), then the probability

prob1(ν) of a reembedding of ν to be one-face satisfies

2

deg(ν)− a1 + 2
≤ prob1(ν) ≤ 2

deg(ν)− a1 + 19
29

. (3.3)

In particular, for any vertex ν, prob1(ν) ≥ 2
deg(ν)+2

.

Proof. In Zagier [69], it was proved that

2(k − 1)!

k − a1 + 2
≤ pλ1(k) ≤ 2(k − 1)!

k − a1 + 19
29

.

Since there are (k − 1)! different ways to embed ν, Eq. (3.3) immediately follows in view of

pλ1(k) = Rν . Clearly, we have 2
deg(ν)−a1+2

≥ 2
deg(ν)+2

, whence the second assertion.

The following corollary gives us the probability of a random embedding of a graph to be

one-face. Clearly, if the given graph has no one-face embedding at all, the probability would

be 0. So, we will assume the given graph has at least one-face embedding.

Corollary 3.15. If there exists a one-face embedding of G, then the probability of a random

embedding of G to have one face is at least
∏

ν∈V (G)
2

deg(ν)+2
.

Proof. First, it should be clear that the probability of a random embedding to be one-face

is equal to the probability of a random reembedding of a fixed one-face embedding of the

graph preserving one-face. The latter is bounded below by the probability of sequentially
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random reembedding vertices of a fixed one-face embedding and keeping one-face at each

step. Since we know from the last theorem the probability of keeping one-face at each step,

and these steps are independent, the overall probability must be bounded by their products.

This completes the proof.

3.3 Multiple-face graph embeddings

In this section, we generalize cyclic plane permutations to general plane permutations. This

puts us in position to study graph embeddings having k faces. Although it is hard to

determine gmin(G) and gmax(G), as well as the genus distribution for a given graph G, we

will show that locally these quantities can be more easily obtained.

Definition 3.16. A plane permutation on [n] is a pair, p, of permutations s and π on [n].

The permutation Dp = s ◦ π−1 is called the diagonal of p. If s has k cycles, we write

p = (s, π)k.

Assume s = (s11, . . . s1m1)(s21, . . . s2m2) · · · (sk1, . . . skmk), where
∑

imi = n. A plane permu-

tation (s, π)k can be represented by two aligned rows:

 s11 s12 · · · s1m1 s21 · · · s2m2 · · · sk1 · · · skmk

π(s11) π(s12) · · · π(s1m1) π(s21) · · · π(s2m2) · · · π(sk1) · · · π(skmk)

 .

Dp can be defined as follows:

• For 1 ≤ i ≤ k, Dp(π(sij)) = si(j+1) if j 6= mi.

• For 1 ≤ i ≤ k, Dp(π(simi)) = si1.
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We call blocks  si1 si2 · · · simi

π(si1) π(si2) · · · π(simi)


the cycles of the plane permutation. If the face (si1, . . . , simi) is incident to a p-vertex ν, the

corresponding cycle is said to be incident to ν. Since every embedding having k faces can

be represented by a triple (α, β, γ), where γ = αβ and γ has k cycles, any embedding can

be expressed via a plane permutation (γ, β)k.

3.3.1 Local genus polynomial is always log-concave

Although the conjecture of the genus polynomial for any graph being log-concave is still

open, we can conclude in this section that its local version can be confirmed.

Let H(f) denote the set of half-edges contained in the face f . The upcoming lemma tells us

that reembedding a vertex ν has only to do with the faces incident to ν.

Lemma 3.17. Let ν be a vertex of the graph G and ε be an embedding of G, where ν is

incident to q faces, fi, for 1 ≤ i ≤ q. Let ε′ be an embedding, obtained by reembedding ν

such that ν is incident to q′ faces, f ′i , for 1 ≤ i ≤ q′. Then we have

q⋃
i=1

H(fi) =

q′⋃
i=1

H(f ′i), q ≡ q′ (mod 2).

Proof. Let ε, ε′ be two embeddings represented by p = (s, π)k and p′ = (s′, π′)k′ , respectively,

such that Dp = Dp′ and Parπ = Parπ′ . Note that ε and ε′ only differ w.r.t. the cyclic order

of the half-edges around ν. Thus, for z 6∈ ν, we have π(z) = π′(z). Clearly, any face f of ε

can be expressed as the sequence (Dpπ(z), (Dpπ)2(z), . . .) for any z ∈ H(f). The lemma is
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implied by the following

Claim. Any face f ′ of ε′ either intersects some ε-face fi for 1 ≤ i ≤ q and is incident to ν or

it coincides with an ε-face f not incident to ν.

Suppose f ′ does not intersect any fi for 1 ≤ i ≤ q. For any z ∈ H(f ′), z 6∈ ν holds and by

construction π′(z) = π(z). As a result, Dp(π(z)) = Dp(π
′(z)) = Dp′(π

′(z)), i.e. f ′ coincides

with an ε-face f that is not incident to ν.

If f ′ intersects some ε-face fi for 1 ≤ i ≤ q, we shall prove that f ′ is incident to ν. Assume

the half-edge u is contained in the ε-face fj as well as in the face f ′ of ε′. Then,

fj = (Dpπ(u), (Dpπ)2(u), . . . , vi, Dp(π(vi)), . . .)

f ′ = (Dp′π
′(u), (Dp′π

′)2(u), . . .),

where vi is the first half-edge of ν that appears in fj. Since π(z) = π′(z) if z 6∈ ν, we have

Dpπ(u) = Dpπ
′(u), whence the entire subsequence from Dp(π(u)) to vi in fj appears also in

f ′. In particular we have vi ∈ H(f ′), which means that f ′ is incident to ν and the Claim

follows.

Let ε be an embedding of the graph G and ν be a vertex of G, where ν is incident to q

faces in ε. Assume ε is represented by p = (s, π)k. Similar to the situation of one-face maps,

we can define the localization at ν which is a plane permutation having q cycles, (sν , πν)q,

and that is obtained as follows: the q cycles of (sν , πν)q are obtained from the q cycles of p

incident to ν by deleting all columns having no half-edges of ν. Let Dν denote the diagonal

of (sν , πν)q. By construction, we have sν = Dν ◦ πν , having q cycles.

Given a plane permutation (s′ν , π
′
ν)q′ , where (D′ν , Parπ′ν ) = (Dν , Parπν ), we can inflate w.r.t.
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p into an embedding of G as in the case of cyclic plane permutations. Namely, we substitute

each diagonal-pair with the corresponding diagonal block in p and then add any p-cycles

containing half-edges not incident to ν.

Fix an embedding ε, represented by the plane permutation (s, π)k, of genus g(ε). We compute

in the following the distribution of genera resulting from reembedding the vertex ν. We call

the distribution the local genus distribution (w.r.t. ν) and we can define the corresponding

local genus polynomial as ∑
∆g

Rν(∆g)z∆g,

where Rν(∆g) denote the number of different embeddings, ε′, coming from reembedding ν

such that g(ε′) = g(ε) + ∆g.

We proceed to give a formula to compute Rν(∆g). Denote the cycle-type of Dν as λ(Dν).

Then we have

Theorem 3.18.

Rν(∆g) = p
λ(Dν)
q+2∆g(deg(ν)), (3.4)

Proof. Let (s, π)k represent ε and (s′, π′)k+2∆g represent ε′, respectively. Here the index

k + 2∆g stems from g(ε′) = g(ε) + ∆g which implies that ε′ differs by 2∆g faces from ε.

According to Lemma 3.17, we have the following situation:
⋃
iH(fi) is reorganized into

q+ 2∆g ε′-faces, f ′1, . . . , f
′
q+2∆g and any other ε′-face coincides with some ε-face not incident

to ν.

Let (s′ν , π
′
ν)q+2∆g be the localization of (s′, π′)k+2∆g, having the diagonal D′ν . By definition,

s′ν = D′ν ◦ π′ν has (q + 2∆g) cycles.

Claim 1. Given ε represented by (s, π)k, any reembedding of ν, ε′ represented by (s′, π′)k+2∆g
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satisfies D′ν = Dν .

Suppose ν is incident to q ε-faces, f1, . . . fq. Furthermore, suppose the ε′-cycle of face f ′i

reads:  v′i1 x1 · · · v′i2 x2 · · · v′i3 · · · v′iti · · · y

v′ij1 · · · x′1 v′ij2 · · · x′2 v′ij3 · · · v′ijti · · · z

 ,

where v′ik, v
′
ijk
∈ ν ∧ v′ijk = π′ν(v

′
ik). Then, by the same argument as in the proof for the

Lemma 3.3, the diagonal block

xl · · · v′i(l+1)

v′ijl · · · x′l

is also a diagonal block in ε, which in turn implies D′ν = Dν .

Claim 2. Suppose (s′ν , π
′
ν)q+2∆g is a localization such that D′ν = Dν and C(π′ν) = 1. Then

(s′ν , π
′
ν)q+2∆g can be inflated into an embedding ε′ such that g(ε′) = g(ε) + ∆g, holds.

Suppose (s′ν , π
′
ν)q+2∆g is given by:

 v′11 · · · v′1t1 · · · v′(q+2∆g)1 · · · v′(q+2∆g)tq+2∆g

π′ν(v
′
11) · · · π′ν(v

′
1t1

) · · · π′ν(v
′
(q+2∆g)1) · · · π′ν(v

′
(q+2∆g)tq+2∆g

)

 .

Inflating every diagonal-pair into a diagonal block w.r.t. ε and adding the ε-cycles which

are not incident to ν, we obtain an embedding ε′ with 2∆g more faces than ε, i.e., g(ε′) =

g(ε) + ∆g. By construction, ε and ε′ only differ by cyclic rearrangement of the half-edges
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around ν.

It is conjectured in Gross et al. [29] that for any graph G, the genus distribution polynomial,

i.e., w(x) =
∑

g #of embeddings of genus g xg, is log-concave. The conjecture is still open.

However, it is implied in the paper of Stanley [59] that the sequence

. . . , pλk−2(n), pλk(n), pλk+2(n), . . .

is log-concave for any λ, n. Thus, based on Theorem 3.18, we can conclude that for any

embedding of any graph G and a vertex of G, the local genus polynomial w.r.t. the vertex

is log-concave.

3.3.2 Local minimum and maximum genus

We proceed by studying the range of ∆g in Theorem 3.18, i.e. the set {k|pλk(n) 6= 0}. Firstly,

from Proposition 2.5, we have

max{k|pλk(n) 6= 0} ≤ n+ 1− `(λ).

Next we show that the maximum can be always achieved.

Proposition 3.19. Let λ ` n and n ≥ 1. Then,

max{k|pλk(n) 6= 0} = n+ 1− `(λ). (3.5)

Proof. For n = 1, the assertion is clear, whence we can assume w.l.o.g. n ≥ 2. We apply

induction on the number of parts `(λ) in λ. For any permutation α on [n] of cycle type λ

and `(λ) = 1, we have α = αen where en is the identity permutation on [n] which obviously
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has n cycles. Therefore, in case of `(λ) = 1, max{k|pλk(n) 6= 0} = n = n+ 1− `(λ). Suppose

for any λ with 1 ≤ `(λ) = m < n holds

max{k|pλk(n) 6= 0} = n+ 1−m.

Let α′ be a permutation on [n] of cycle type λ′ and `(λ′) = m+ 1. Since m+ 1 ≥ 2, we can

always find a and b such that a and b are in different cycles of α′. Let α = α′(a, b). Thus,

α must be of cycle type µ for some µ such that `(µ) = m. By assumption, there exists a

relation α = sπ such that s has only one cycle and π has n+ 1−m cycles. Then,

α′ = α(a, b) = sπ(a, b).

Note π(a, b) has the number of cycles either n + 1−m− 1 or n + 1−m + 1. The latter is

impossible because it would contradict the bound established in Proposition 2.5. Hence, for

any λ′ with `(λ′) = m+ 1,

max{k|pλ′k (n) 6= 0} = n+ 1−m− 1 = n+ 1− `(λ′),

which completes the proof of the proposition.

Now we are ready to prove the local version of the interpolation theorem. At the same time,

we can determine the local minimum genus and maximum genus.

Corollary 3.20 (Local interpolation theorem). Let ε be a fixed embedding of the graph G.

Then for any vertex ν with localization (sν , πν)q, there exists for any

−bdeg(ν) + 1− `(λ(Dν))− q
2

c ≤ ∆g ≤ bq − 1

2
c.
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an embedding ε′ of G such that g(ε′) = g(ε) + ∆g.

Proof. According to Corollary 2.22, we have pλk(n) 6= 0 as long as pλk+2i(n) 6= 0 for some

i > 0 holds, since all coefficients there are positive. Furthermore, Proposition 3.19 implies

the number pλdeg(ν)+1−`(λ(Dν))(deg(ν)) 6= 0. Therefore, for any

1 ≤ d ≤ deg(ν) + 1− `(λ(Dν)), d ≡ q (mod 2),

reembedding ν can lead to an embedding where ν is incident to d faces. Accordingly, Euler’s

characteristic formula, implies

−bdeg(ν) + 1− `(λ(Dν))− q
2

c ≤ ∆g ≤ bq − 1

2
c,

completing the proof of the corollary.

This result is similar to the result in Duke [22], where it was shown for any gmin(G) ≤ g ≤

gmax(G), there exists an embedding of G on Sg. However, while it is very hard to obtain

gmin(G) and gmax(G), we obtained easily the local minimum and the local maximum.

Suppose we are given two vertices, such that there exists no face of ε incident to both, then

we call these two vertices ε-face disjoint. In view of Lemma 3.17, Corollary 3.20 has the

following implication.

Corollary 3.21. Let ε be an embedding of the graph G. If the vertices νi = (sνi , πνi)qi,

1 ≤ i ≤ m, are mutually ε-face disjoint, then there exists an embedding ε′ of G for any

m∑
i=1

−bdeg(νi) + 1− `(λ(Dνi))− qi
2

c ≤ ∆g ≤
m∑
i=1

bqi − 1

2
c.

such that g(ε′) = g(ε) + ∆g.
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The following corollary provides a necessary condition for an embedding of G to be of

maximum genus as well as an easy-to-check necessary condition for an embedding of G

to be of minimum genus.

Corollary 3.22. If ε is an embedding of the graph G with genus gmax(G), then every vertex

is incident to at most 2 faces in ε. Furthermore, if ε is an embedding of the graph G with

genus gmin(G), and (sν , πν)qν is a localization at ν, then

`(λ(Dν)) + qv = deg(ν) + 1. (3.6)

Proof. The assertions are implied by Corollary 3.20.

The fact that if there exists a vertex incident to at least 3 faces in an embedding, an em-

bedding with higher genus always exists, is well known, see e.g., in [45, 67]. However, to the

best of our knowledge, given an embedding ε, there is no simple characterization in order

to determine if there exists an embedding of lower genus. Corollary 3.22 gives a sufficient

condition, i.e., if `(λ(Dν))+qv 6= deg(ν)+1 for some vertex v, then there exists an embedding

of lower genus. Of course, it can be used as a necessarily condition as well.

3.4 Concrete local moves and their impacts on genus

In the following, we present analogues of Case 3 (and Case 4, 5, 6), Case 1 and Case 2 in

Lemma 2.9, which shows what local moves can increase the genus by 0, 1 and −1, respec-

tively. It is well known that applying Poincaré dual interchanges vertices and faces. In the

derivation, we will apply a kind of local Poincaré dual.



80 Chapter 3. Application to Graph Embeddings

Proposition 3.23. Let E be an embedding of the graph G and a vertex v = (sv, πv)q, where

πv = (si−1, v
i
1, . . . v

i
mi
, sj, v

j
1, . . . v

j
mj
, sl, v

l
1, . . . v

l
ml

).

If in E, there exists a face of the form (si−1, . . . sj, . . . sl, . . .), or two faces of the form

(si−1, . . . sj, . . .)(sl, . . .),

then rearranging the set of half-edges H(v) according to the cyclic order

(si−1, v
j
1, . . . v

j
mj
, sl, v

i
1, . . . v

i
mi
, sj, v

l
1, . . . v

l
ml

)

will lead to the embedding E′ with g(E′) = g(E).

Proof. Since v = (sv, πv)q, we have sv = Dv ◦ πv, where sv has q cycles and πv has only

one cycle. This is equivalent to πv = D−1
v ◦ sv which corresponds to a plane permutation

(πv, sv) with diagonal D−1
v , i.e., a kind of local Poincaré dual interchanging vertices and

faces. Now the given conditions in the proposition either agree with Case 3 or one of

{Case 4,Case 5,Case 6} in Lemma 2.9. Namely, if we transpose πv into

(si−1, v
j
1, . . . v

j
mj
, sl, v

i
1, . . . v

i
mi
, sj, v

l
1, . . . v

l
ml

),

we obtain a new plane permutation (π′v, s
′
v) where the number of cycles in s′v equals to the

number of cycles in sv. That is, rearranging H(v) according to the cyclic order

(si−1, v
j
1, . . . v

j
mj
, sl, v

i
1, . . . v

i
mi
, sj, v

l
1, . . . v

l
ml

)

will not change the number of faces of the embedding. Therefore, the resulting embedding
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E′ satisfies g(E′) = g(E).

Proposition 3.24. Let E be an embedding of the graph G and a vertex v = (sv, πv)q, where

πv = (si−1, v
i
1, . . . v

i
mi
, sj, v

j
1, . . . v

j
mj
, sl, v

l
1, . . . v

l
ml

).

If si−1, sj and sl are contained respectively in three faces in E, then rearranging H(v) ac-

cording to the cyclic order

(si−1, v
j
1, . . . v

j
mj
, sl, v

i
1, . . . v

i
mi
, sj, v

l
1, . . . v

l
ml

)

will lead to the embedding E′ with g(E′) = g(E) + 1.

Proof. After applying the “local Poincaré dual”, the given conditions in the proposition agree

with Case 1 in Lemma 2.9 whence the proposition.

Proposition 3.25. Let E be an embedding of the graph G and a vertex v = (sv, πv)q, where

πv = (si−1, v
i
1, . . . v

i
mi
, sj, v

j
1, . . . v

j
mj
, sl, v

l
1, . . . v

l
ml

).

If in E, there exists a face of the form (si−1, . . . sl, . . . sj, . . .), then rearranging H(v) according

to the cyclic order

(si−1, v
j
1, . . . v

j
mj
, sl, v

i
1, . . . v

i
mi
, sj, v

l
1, . . . v

l
ml

)

will lead to the embedding E′ with g(E′) = g(E)− 1.

Proof. After applying the “local Poincaré dual”, the given conditions in the proposition agree

with Case 2 in Lemma 2.9 whence the proposition.
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3.5 Reembed more vertices simultaneously

In the following, we slightly generalize above results by considering changing the local struc-

ture around more vertices of the underlying graph and their local embeddings.

Firstly, we study rearrangement of half-edges around m ≥ 1 vertices simultaneously and

independently, i.e., the underlying graph is not changed. Let (s, π)k be a k-cyc plane per-

mutation which corresponds to an embedding E of genus g of the graph G into k faces in

total and V1, . . . , Vm are m vertices of G, i.e., m cycles in π, which are incident to k′ faces in

total. Similar as the case of single vertex, we can represent all these vertices by the k′-cyc

plane permutation V1−m = (s1−m, π1−m)k′ , where s1−m is obtained from s by keeping only

half edges in V1, . . . , Vm (and the induced cycle structure) and π1−m is the restriction of π to

these half-edges.

Denote Dsh1−m the number of different ways of simultaneous rearrangement of half-edges

around Vi, (1 ≤ i ≤ m), respectively, such that the resulting embedding has genus g + ∆g.

Theorem 3.26. Dsh1−m is equal to the number of different ways to factor DV1−m into γσ,

where γ has k′ + 2∆g disjoint cycles while σ has m disjoint cycles and each cycle is on the

set of half-edges of Vi, respectively.

Proof. Applying the same idea of diagonal blocks rearrangement as in the case of single

vertex completes the proof.

Now for a plane permutation (i.e., one-face embedding) (s, π) and m vertices V1, . . . , Vm in

π, if the half-edges belonging to one of these vertices are allowed to attach to another vertex

among these m vertices, i.e., change the incident relation of these vertices and half-edges

around them, how many different ways to keep one-face? Assume the degree distribution

of these m vertices is encoded by the partition µ. Let Le(V1, . . . , Vm;µ) denote the number
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of different variations (including both local incident relation and local embedding) of these

vertices to preserve the degree distribution and preserve one-face. Note the degree of a

single vertex may change, but as a whole the degree distribution will not change. Even

further, what if these m vertices become m′ vertices after reattachment and reembedding.

Let Lem′(V1, . . . , Vm) denote the number of different variations (including both local incident

relation and local embedding) of these vertices to form m′ vertices and keep one-face. Then,

we have

Theorem 3.27. Assume the cycle-type of DV1−m is λ and the total number of half-edges

around these m vertices are q. Then we have

Le(V1, . . . , Vm;µ) = fµ,λ(q), (3.7)

Lem′(V1, . . . , Vm) = pλm′(q). (3.8)

3.6 Conclusion

In this chapter, the plane permutation framework was used to study graph embeddings.

This is based on the paper “[11] On the local genus distribution of graph embeddings, J.

Combin. Math. Combin. Comput. 101 (2017), pp.157–173”. In particular, the behavior

of graph embeddings under local variation or reembedding was studied. Compared to the

global graph embeddings problems, we have seen that their local version is easier to handle.

To be specific, the local minimum and maximum genus can be exactly determined while the

global version is NP-hard (at least for the minimum); the local genus distribution can be

explicitly obtained and the local genus polynomial can be shown to be log-concave, although

the conjecture for the global version is still open.

Furthermore, studying the local behavior of graph embeddings may provide some insights
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for the global problems. For instance, via studying the local structure, we obtained an easy-

to-check necessary condition for an embedding to be of minimum. As to future research,

studying the interaction between local behavior and global properties could be one direction.



Chapter 4

Application to Genome

Rearrangements

In this chapter, we will present a unified simple framework for studying genome rearrange-

ments using plane permutations.

4.1 Background and state of the art

In bioinformatics, comparative study of genome sequences is an important tool to under-

stand evolution. In particular, the problem of determining the minimum number of certain

operations required to transform one of two given genome sequences into the other, has been

extensively studied. Combinatorially, this problem can be formulated as sorting a given

permutation (or sequence) to the identity permutation by certain operations, in a mini-

mum number of steps. The operations we will look at are transpositions [5, 8, 19, 25, 48],

block-interchanges [7, 19, 20, 37, 49] and reversals [3, 6, 9, 15, 39, 40].

85
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There are two main approaches to study these distance problems, the first being graph-

based, e.g., cycle- and breakpoint-graphs [8, 9, 20, 40]. The second approach is based on

permutation group theory [28, 37, 38, 48, 51]. Generally, the results obtained in these two

different approaches are equivalent.

In this chapter, for a sequence (one-line permutation) on [n] s = a1a2 . . . an, we denote

s̄ = (0 a1 a2 · · · an). Also we denote

ēn = (0 1 2 3 · · · n), pt = (n n− 1 . . . 1 0).

Transposition distances

Definition 4.1. Given a sequence (one-line permutation) on [n]

s = a1 · · · ai−1ai · · · ajaj+1 · · · akak+1 · · · an,

a transposition action on s means to change s into

s′ = a1 · · · ai−1aj+1 · · · akai · · · ajak+1 · · · an

by swapping the two continuous segments ai . . . aj and aj+1 . . . ak for some 1 ≤ i ≤ j < k ≤ n.

Let en = 123 · · ·n be the identity permutation on [n]. The transposition distance of a

sequence s on [n] is the minimum number of transpositions needed to sort s into en. Denote

this distance as td(s).

The cycle-graph model was firstly proposed by Bafna and Pevzner [8] to study transposition

distances. Given a permutation s = s1s2 · · · sn on [n], the cycle graph G(s) of s is constructed
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as follows: The vertices of G(s) are the elements in the set [n+ 1]∗; for 0 ≤ i < n+ 1, draw

a directed black edge from i to i + 1, and draw a directed gray edge from si+1 to si, where

we assume s0 = 0 and sn+1 = n+ 1, we then obtain G(s).

Example 4.2. The cycle graph for the permutation s = 68134725 is illustrated in Figure 4.1.

0 6 8 1 3 4 7 2 5 9

Figure 4.1: The cycle graph G(s) for the permutation s = 68134725.

An alternating cycle in G(s) is a directed cycle, where its edges alternate in color. An

alternating cycle is called odd if the number of black edges in the cycle is odd. Bafna and

Pevzner obtained lower bounds for td(s) in terms of the number of cycles and odd cycles of

G(s) [8]. The lower bounds are respectively,

td(s) ≥ n+ 1− C(G(s))

2
, (4.1)

td(s) ≥ n+ 1− Codd(G(s))

2
, (4.2)

where C(G(s)) and Codd(G(s)) denote the number of cycles and odd cycles in G(s), respec-

tively. These lower bounds followed from key observations that each transposition increases
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the number of cycles (and resp. odd cycles) in the cycle graph by at most 2 and there are

n+ 1 cycles in the cycle graph of the identity permutation. Obviously, all these cycles must

be of length 1 hence being odd cycles, as there are only n+ 1 vertices in total.

In the permutation-group based approach, see for instance [48], a transposition can be treated

as multiplying a 3-cycle on the left of pts̄. Thus, a lower bound can be obtained by computing

the minimum number of 3-cycles that pts̄ can be factored into.

There is no exact formula to compute the transposition distances, and actually sorting by

transpositions was proved to be NP-hard [5]. Algorithms of various efficiency for sorting

permutations by transpositions were studied in [8, 25] and references therein.

Block-interchange distances

A more general transposition problem, where the involved two blocks are not necessarily

adjacent, was firstly studied in Christie [20]. It is referred to as the block-interchange distance

problem. The minimum number of block-interchanges needed to sort s into en is accordingly

called the block-interchange distance of s and denoted as bid(s). Christie [20] obtained an

exact formula to compute the block-interchange distance of any given permutation s, based

on the cycle-graph model. The formula is

bid(s) =
n+ 1− C(G(s))

2
. (4.3)

Algorithms for sorting permutations by block-interchanges were studied in [19, 37].
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Reversal distances

Definition 4.3. A signed permutation on [n] is a pair (a, w) where a is a sequence on [n]

while w is a word of length n on the alphabet set {+,−}.

Usually, a signed permutation is represented by a single sequence aw = aw,1aw,2 · · · aw,n where

aw,k = wkak, i.e., each ak carries a sign determined by wk.

Definition 4.4. Given a signed permutation a = a1a2 · · · ai−1aiai+1 · · · aj−1ajaj+1 · · · an on

[n], a reversal %i,j acting on a will change a into

a′ = %i,j � a = a1a2 · · · ai−1(−aj)(−aj−1) · · · (−ai+1)(−ai)aj+1 · · · an.

The reversal distance dr(a) of a signed permutation a on [n] is the minimum number of

reversals needed to sort a into en = 12 · · ·n.

Example 4.5. The signed permutation a = −5 + 1− 3 + 2 + 4 needs at least 4 steps to be

sorted as illustrated below:

−5 + 1 −3 + 2 + 4

−5 + 1 −2 + 3 + 4

−5 + 1 +2 + 3 + 4

−4 − 3 − 2 − 1 + 5

+1 + 2 + 3 + 4 + 5

Let [n]− = {−1,−2, . . . ,−n}.

The most common graph model used to study reversal distance is breakpoint graph pro-
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posed by Bafna and Pevzner [9]. The breakpoint graph for a given signed permutation

a = a1a2 · · · an on [n] can be obtained as follows: Replacing ai with (−ai)ai, and adding 0

at the beginning of the obtained sequence while adding −(n+ 1) at the end of the obtained

sequence, in this way we obtain a sequence b = b0b1b2 · · · b2nb2n+1 on [n]∗ ∪ [n+ 1]−. Draw a

black edge between b2i and b2i+1, as well as a grey edge between i and −(i+1) for 0 ≤ i ≤ n.

The obtained graph is the breakpoint graph BG(a) of a.

Example 4.6. The breakpoint graph BG(a) for the signed permutation a = +4−2−5+1−3

is illustrated in Figure 4.2.

0 4 2 -2 5 -5 -1 1 3 -3 -6-4

Figure 4.2: The breakpoint graph BG(a) for the signed permutation a = +4− 2− 5 + 1− 3.

Note that each vertex in BG(a) has degree two so that it can be decomposed into disjoint

cycles. Denote the number of cycles in BG(a) as CBG(a). Then, the lower bound for the

reversal distance of a [9] via the break point graph is given by

dr(a) ≥ n+ 1− CBG(a). (4.4)

In reality, the above lower bound is quite good as it actually gives the exact reversal distance

for most of signed permutations. Later, by identifying additional “motifs” in breakpoint

graphs, that are those can not be captured by only cycles, an exact formula for computing
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the reversal distance of any signed permutation and corresponding polynomial time algorithm

were presented in Hannenhalli and Pevzner [40].

On the permutation group theory side, we refer the readers to [28, 51] for discussion of the

reversal distance.

In the following, we will show that (cyclic) plane permutations provide a powerful tool to

study these above defined distances. The idea comes from the observation that the diagonal

transpose action on plane permutations is a kind of transposition on “fattened” sequences.

Thus, in order to study distances of permutations, we can associate a plane permutation to

a given permutation to sort and apply the results on the diagonal transpose action of the

plane permutation.

4.2 The transposition distance

Let C(π), Codd(π) and Cev(π) denote the number of cycles, the number of odd cycles and

the number of even cycles in π, respectively. Furthermore, let [n]∗ = {0, 1, . . . , n}.

Our first result is the following general lower bound:

Theorem 4.7 (General lower bound).

td(s) ≥ max
γ

{
max{|C(pts̄γ)− C(γ)|, |Codd(pts̄γ)− Codd(γ)|, |Cev(pts̄γ)− Cev(γ)|}

2

}
,

(4.5)

where γ ranges over all permutations on [n]∗.

Proof. For an arbitrary permutation γ on [n]∗, p = (s̄, γ) is a plane permutation. By con-

struction, each transposition on the sequence s induces a transposition on p. (The auxiliary
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element 0 is used to handle the case where a1 is contained in the first block of the transpo-

sitions, because the bottom row of a transposition action on a plane permutation is forward

shifted.) If s changes to en by a series of transpositions, we have, for some β, that p changes

into the plane permutation (ēn, β). By construction, we have

Dp = s̄γ−1 = ēnβ
−1,

and accordingly

β = γs̄−1ēn.

Since each transposition changes the number of cycles by at most 2 according to Lemma 2.9,

at least |C(γs̄−1ēn)−C(γ)|
2

= |C(pts̄γ−1)−C(γ−1)|
2

transpositions are needed from γ to β. The same

argument also applies to deriving the lower bounds in terms of odd and even cycles, respec-

tively. Note that γ can be arbitrarily selected and the proof follows.

Inspecting this general formulation of Theorem 4.7, setting γ = (pts̄)
−1 we immediately

obtain

Corollary 4.8.

td(s) ≥ n+ 1− C(pts̄)

2
, (4.6)

td(s) ≥ n+ 1− Codd(pts̄)
2

. (4.7)

By examining the cycle graph model G(s) of a permutation s, it turns out the cycle graph

G(s) is actually the directed graph representation of the product s̄−1p−1
t , if we identify the

two auxiliary points 0 and n + 1. The directed graph representation of a permutation π is

the directed graph by drawing an directed edge from i to π(i). If we color the directed edge
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of s̄−1 gray and the directed edge of p−1
t black, an alternating cycle then determines a cycle

of the permutation s̄−1p−1
t (thus pts̄). Therefore, the number of cycles and odd cycles in pts̄

is equal to the number of cycles and odd cycles in G(s), respectively. As a result, the lower

bounds in Corollary 4.8 are exactly the same as the lower bounds obtained by Bafna and

Pevzner [8] and this relation was also derived in [21, 48]. In particular, in [48], this lower

bound was obtained using permutations and by translating the transposition distance of s

into the minimum number of 3-cycles, pts̄ can be factored into.

In view of Theorem 4.7 we next ask: is it possible by employing an appropriate γ, to improve

the lower bounds of in Corollary 4.8? Namely, given a permutation π, what is the maximum

number of |C(πγ) − C(γ)| (resp. |Codd(πγ) − Codd(γ)|, |Cev(πγ) − Cev(γ)|), when γ ranges

over a set of permutations.

More generally, we can study the distribution functions

∑
γ∈A

zC(πγ)−C(γ),
∑
γ∈A

zCodd(πγ)−Codd(γ),
∑
γ∈A

zCev(πγ)−Cev(γ), (4.8)

where A is a set of permutations, e.g., a conjugacy class or all permutations.

We shall compute maxγ{|C(πγ)−C(γ)|} for an arbitrary permutation π and prove that its

maximum is achieved for γ = π−1 or γ being the identity permutation. For the cases of

odd and even cycles, we have not established a general result. Here we provide an example

showing that an analogue does not hold, i.e. for even cycles, the maximum is not necessarily

achieved by γ = π−1 or γ =identity.

Example 4.9. Suppose pt = (4, 3, 2, 1, 0) and s̄ = (0, 1, 2, 4, 3). Consider |Cev(pts̄γ) −

Cev(γ)|.

• For γ = (pts̄)
−1 or γ =identity, pts̄ = (0)(1)(2, 3, 4) whence |Cev(pts̄γ)− Cev(γ)| = 0;
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• For γ = (0)(1, 3)(2, 4), pts̄γ = (0)(1, 4, 3)(2) whence |Cev(pts̄γ)− Cev(γ)| = 2.

We remark an idea on how to obtain better lower bounds is to fix γ and to analyze the

“unavoidable” transpositions which do not increase (or decrease) the number of cycles (or

odd, or even cycles) from γ to γs̄−1ên. In particular, by setting γ = pts̄, it is not hard to

analyze the number of “hurdles” as in Christie [19] using plane permutations. We shall not

go into details here.

4.3 The block-interchange distance

Using Lemma 2.11 and Theorem 4.7, we immediately obtain

bid(s) ≥ maxγ{|C(pts̄γ)− C(γ)|}
2

, (4.9)

where γ ranges over all permutations on [n]∗. Christie [20] proved an exact formula for

the block-interchange distance which implies that the maximum of the RHS of Eq. (4.9) is

achieved by γ = (pts̄)
−1. This follows immediately via plane permutations as follows:

Lemma 4.10. Let p = (s̄, π) be a plane permutation on [n]∗ where Dp = p−1
t and s̄ 6= ēn.

Then, there exist s̄i−1 <s̄ s̄j <s̄ s̄k−1 ≤s̄ s̄l such that

π(s̄i−1) = s̄k−1, π(s̄l) = s̄j.

Proof. Since s̄ 6= ēn, there exists x ∈ [n] such that x + 1 <s̄ x. Assume x = s̄k−1 is the

largest such integer and let s̄i = x + 1. Then, π(s̄i−1) = x = s̄k−1 since Dp(π(s̄i−1)) =

π(s̄i−1) + 1 = x + 1. Between s̄i−1 and x, find the largest integer which is larger than x.

Since x + 1 lies between s̄i−1 and x, this maximum exists and we denote it by y. Then we
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have by construction

s̄i−1 <s̄ s̄j = y <s̄ x = s̄k−1 <s̄ y + 1 = s̄l+1.

Therefore, π(s̄l) = D−1
p (y + 1) = y = s̄j, whence the lemma.

Then, we obtain

Theorem 4.11.

bid(s) =
n+ 1− C(pts̄)

2
=
n+ 1− C(G(s))

2
. (4.10)

Proof. Let p = (s̄, π) be a plane permutation on [n]∗ where Dp = p−1
t and s̄ 6= ēn. According

to Lemma 4.10, we either have s̄i−1 <s̄ s̄j <s̄ s̄k−1 <s̄ s̄l such that we either have π-cycle

(s̄i−1 s̄k−1 . . . s̄l s̄j . . .) or (s̄i−1 s̄k−1 . . .)(s̄l s̄j . . .),

or s̄i−1 <s̄ s̄j <s̄ s̄k−1 =s̄ s̄l such that we have the π-cycle (s̄i−1 s̄k−1 s̄j . . .). For the former

case, the determined χh is either Case c or Case e of Lemma 2.9. For the latter case, the

determined χh is Case 2 transposition of Lemma 2.11. Therefore, no matter which case, we

can always find a block-interchange to increase the number of cycles by 2. Then, arguing as

in Theorem 4.7 completes the proof.

Theorem 4.11 was also proved in [49] using permutations by translating the block-interchange

distance of s into the minimum number of pairs of 2-cycles the permutation pts̄ can be

factored into.

Furthermore, Zagier and Stanley’s result refined in Chapter 2 implies that

Corollary 4.12. Let bidk(n) denote he number of sequences s on [n] such that bid(s) = k.
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Then,

bidk(n) =
2C(n+ 2, n+ 1− 2k)

(n+ 1)(n+ 2)
. (4.11)

Proof. Let

k = bid(s) =
n+ 1− C(pts̄)

2
.

The number of s such that bid(s) = k is equal to the number of permutation s̄ such that

C(pts̄) = n+ 1− 2k. Then, applying Zagier and Stanley’s result completes the proof.

We note that the corollary above was also used by Bona and Flynn [7] to compute the

average number of block-interchanges needed to sort permutations.

In view of the general lower bound for block-interchanges Eq. (4.9) and Theorem 4.11, we

are now in position to answer one of the optimization problems mentioned earlier.

Theorem 4.13. Let α be a permutation on [n] and n ≥ 1. Then we have

max
γ
{|C(αγ)− C(γ)|} = n− C(α), (4.12)

where γ ranges over all permutations on [n].

Proof. First, from Eq. (4.9) and Theorem 4.11, we have: for arbitrary s,

max
γ
{|C(pts̄γ)− C(γ)|} = n+ 1− C(pts̄), (4.13)

where γ ranges over all permutations on [n]∗.

We now use the fact that any even permutation α′ on [n]∗ has a factorization into two (n+1)-

cycles. Assume α′ = β1β2 where β1, β2 are two (n + 1)-cycles, and pt = θβ1θ
−1. Then, we
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have

max
γ
{|C(α′γ)− C(γ)|} = max

γ
{|C(θβ1β2γθ

−1)− C(θγθ−1)|}

= max
γ
{|C(ptθβ2θ

−1θγθ−1)− C(θγθ−1)|}

= n+ 1− C(ptθβ2θ
−1)

= n+ 1− C(β1β2) = n+ 1− C(α′).

So the theorem holds for even permutations. Next we assume that α is an odd permutation.

If C(α) < n, then we can always find a transposition τ (i.e., a cycle of length 2) such that

α = α′τ , where α′ is an even permutation and C(α) = C(α′)− 1. Thus,

max
γ
{|C(αγ)− C(γ)|} = max

γ
{|C(α′τγ)− C(γ)|}

= max
γ
{|C(α′τγ)− C(τγ) + C(τγ)− C(γ)|}

≤ max
γ
{|C(α′τγ)− C(τγ)|+ |C(τγ)− C(γ)|}

= [n− C(α′)] + 1 = n− C(α).

Note that |C(αI) − C(I)| = n − C(α), where I is the the identity permutation. Hence, we

conclude that maxγ{|C(αγ)−C(γ)|} = n−C(α). When C(α) = n, i.e., α = I, it is obvious

that maxγ{|C(Iγ)−C(γ)|} = 0 = n−C(α). Hence, the theorem holds for odd permutations

as well, completing the proof.

4.4 The reversal distance

In this section, we consider the reversal distance for signed permutations, a problem ex-

tensively studied in the context of genome evolution [3, 9, 40] and the references therein.
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Lower bounds for the reversal distance based on the breakpoint graph model were obtained

in [9, 39, 40].

In our framework the reversal distance problem can be expressed as a block-interchange

distance problem. A lower bound can be easily obtained in this point of view, and the lower

bound will be shown to be the exact reversal distance for most of signed permutations.

For the given signed permutation a, we associate the sequence s = s(a) as follows

s = s0s1s2 · · · s2n = 0a1a2 · · · an(−an)(−an−1) · · · (−a2)(−a1),

i.e., s0 = 0 and sk = −s2n+1−k for 1 ≤ k ≤ 2n. Furthermore, such sequences will be referred

to as skew-symmetric sequences since we have sk = −s2n+1−k. A sequence s is called exact

if there exists si < 0 for some 1 ≤ i ≤ n.

The following lemma is obvious.

Lemma 4.14. The reversal distance of a is equal to the block-interchange distance of s(a)

into

e\n = 012 · · ·n(−n)(−n+ 1) · · · (−2)(−1),

where only certain block-interchanges are allowed, i.e., only the actions χh, h = (i, j, 2n +

1− j, 2n+ 1− i) are allowed where 1 ≤ i ≤ j ≤ n.

Hereafter, we will denote these particular block-interchanges referred to in the right above

lemma on s as reversals, %i,j.

Let

s̃ = (s) = (0 a1 a2 . . . an−1 an − an − an−1 . . . − a2 − a1),

pr = (−1 − 2 · · · − n+ 1 − n n n− 1 · · · 2 1 0).
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A plane permutation of the form (s̃, π) will be called skew-symmetric. In view of Lemma 4.14,

we immediately obtain the following lower bound:

Theorem 4.15.

dr(a) ≥ 2n+ 1− C(prs̃)

2
. (4.14)

Proof. Since reversals are restricted block-interchanges, the reversal distance will be bounded

by the block-interchange distance without restriction. Theorem 4.11 then implies Eq. (4.14).

Our approach gives rise to the question of how potent the restricted block-interchanges are.

Is it difficult to find a block-interchange increasing the number of cycles by 2 that is a reversal

(i.e., 2-reversal)?

We will call a plane permutation (s̃, π) exact, skew-symmetric if s̃ is exact and skew-

symmetric. The following lemma will show that there is almost always a 2-reversal.

Lemma 4.16. Let p = (s̃, π) be exact and skew-symmetric on [n]∗ ∪ [n]−, where Dp = p−1
r .

Then, there always exist i− 1 and 2n− j such that

π(si−1) = s2n−j, (4.15)

where 0 ≤ i− 1 ≤ n− 1 and n+ 1 ≤ 2n− j ≤ 2n. Furthermore, we have the following cases

(a) If si−1 <s sj <s s2n−j <s s2n+1−i, then

π(si−1) = s2n−j, π(sj) = s2n+1−i. (4.16)
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(b) If sj <s si−1 <s s2n+1−i <s s2n−j, then

π(si−1) = s2n−j, π(sj) = s2n+1−i. (4.17)

Proof. We firstly prove the former part. Assume si is the smallest negative element among

the subsequence s1s2 · · · sn. If si = −n, then we have s2n+1−i = −si = n by symmetry. Since

Dp = p−1
r , for any k, sk+1 = p−1

r (sk) = sk + 1 where n + 1 is interpreted as −n. Thus,

π(si−1) = D−1
p (si) = D−1

p (−n) = n = s2n+1−i. Let 2n− j = 2n+ 1− i, then 2n− j ≥ n+ 1

and we are done. If si > −n, then we have π(si−1) = D−1
p (si) = si− 1 ≥ −n. Since si is the

smallest negative element among st for 1 ≤ t ≤ n, if s2n−j = si−1 < si, then 2n− j ≥ n+ 1,

whence the former part.

Using Dp = p−1
r and the skew-symmetry sk = −s2n+1−k, we have in case of (a) the following

situation in p (only relevant entries are illustrated)


i− 1 i · · · j j + 1 · · · 2n+ 1− j · · · 2n+ 1− i

si−1 (s2n−j + 1) · · · sj −s2n−j · · · −sj · · · (−s2n−j − 1)

s2n−j ♦ · · · (−s2n−j − 1) ♦ · · · ♦ · · · ♦

 .

Therefore, we have

π(si−1) = s2n−j, π(sj) = −s2n−j − 1 = s2n+1−i.

Analogously we have in case of (b) the situation


j j + 1 · · · i− 1 i · · · 2n+ 1− i 2n+ 2− i · · · 2n− j

sj −s2n−j · · · si−1 s2n−j + 1 · · · −s2n−j − 1 −si−1 · · · s2n−j

−s2n−j − 1 ♦ · · · s2n−j ♦ · · · ♦ ♦ · · · ♦

 .
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Therefore, we have

π(si−1) = s2n−j, π(sj) = −s2n−j − 1 = s2n+1−i.

This completes the proof.

Remark 4.17. The pair si−1 and s2n−j such that π(si−1) = s2n−j is not unique. For instance,

assume the positive integer k, 1 ≤ k ≤ n− 1, is not in the subsequence s1s2 · · · sn but k + 1

is, then π−1(k) and k = D−1
p (k + 1) form such a pair.

Inspection of Lemma 2.11 and Lemma 4.16 shows that there is almost always a 2-reversal

for signed permutations. The only critical cases, not covered in Lemma 4.16, are

• The signs of all elements in the given signed permutation are positive.

• Exact signed permutation which for 1 ≤ i ≤ n and n+ 1 ≤ 2n− j, π(si−1) = s2n−j iff

2n− j = 2n+ 1− i.

We proceed to analyze the latter case. Since π(si−1) = s2n+1−i = −si, we have

 si−1 si · · · sn −sn · · · s2n+1−i s2n+2−i

π(si−1) ♦ · · · ♦ ♦ · · · ♦ ♦


=

 si−1 si · · · sn −sn · · · −si −si−1

−si ♦ · · · ♦ ♦ · · · ♦ ♦

 .

Due to Dp, Dp(−si) = si = −si+1 (note that n+1 is interpreted as −n). The only situation

satisfying this condition is that si = −n, i.e., the sign of n in the given signed permutation

is negative. Then, we have π(si−1) = s2n−j = s2n+1−i = n. We believe that in this case

Lemma 2.9 (instead of Lemma 2.11) provides a 2-reversal. Namely, si−1 (i.e., the preimage
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of n), sn and n = s2n+1−i will form a Case 2 transposition in Lemma 2.9, which will be true

if n and sn are in the same cycle of π, i.e., π has a cycle (si−1 s2n+1−i . . . sn . . .). In order

to illustrate this we consider

Example 4.18.

 0 −3 1 2 −4 4 −2 −1 3

−4 0 1 4 3 −3 −2 2 −1

 =⇒ π = (0 − 4 3 − 1 2 4 − 3)(1)(−2)

 0 2 −4 −1 3 −3 1 4 −2

1 4 −2 2 −4 0 3 −3 −1

 =⇒ π = (0 1 3 − 4 − 2 − 1 2 4 − 3)

We inspect, that in the first case si−1 = 2, sn = −4 and n = 4 form a Case 2 transposition of

Lemma 2.9. In the second case si−1 = 2, sn = 3 and n = 4 form again a Case 2 transposition

of Lemma 2.9.

In the next section, we will show that this speculation is correct. As a consequence, we can

conclude that for a random signed permutation, it is likely to be possible to transform s

into e\n via a sequence of 2-reversals. In fact, many examples, including Braga [6, Table 3.2],

indicate that the lower bound of Theorem 4.15 gives the exact reversal distances.

4.5 Compare our lower bound and the Bafna-Pevzner

lower bound

Note that the lower bound obtained in [9, 39] via breakpoint graphs also provides the exact

reversal distance for most of signed permutations. It is a question worthy of being addressed

that which lower bound is better, ours in Theorem 4.15 or the Bafna-Pevzner lower bound
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Eq. (4.4). It turns out that they are actually equal. This section is devoted to show this

result.

Algebraically, we can express Eq. (4.4) in a form similar to our lower bound. Let θ1, θ2 be

the two involutions (without fixed points) determined by the black edges and grey edges in

the breakpoint graph, respectively, i.e.,

θ1 = (b0 b1)(b2 b3) · · · (b2n b2n+1),

θ2 = (0 − 1)(1 − 2) · · · (n − n− 1).

It is not hard to observe that CBG(a) = C(θ1θ2)
2

. Therefore, we have

Proposition 4.19.

dr(a) ≥ 2n+ 2− C(θ1θ2)

2
. (4.18)

To show the equality of our lower bound in Theorem 4.15 and the Bafna-Pevzner lower

bound Eq. (4.4), it suffices to show

C(prs̃) = C(θ1θ2)− 1 = 2CBG(a)− 1.

Definition 4.20. Let σ be a permutation on the set [n]± = {−n, . . . ,−1, 0, 1, . . . , n}. We

associate to σ the matrix Aσ = [aij],

aij =

 1 if i = σ(j)

0 if i 6= σ(j)

where i, j ∈ [n]±, index rows and columns, following the order −n,−n+1, . . .−1, 0, 1, . . . , n,
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respectively. Aσ is the permutation matrix associated to σ and this is denoted by σ ∼ Aσ.

Recall now, that σ ∼ Aσ ⇔ σ−1 ∼ ATσ . Furthermore if τ ∼ Aτ then στ = AσAτ . And finally

for id, the identity permutation on [n]±, we have that id ∼ Aid = I2n+1 (i.e. the identity

matrix).

Lemma 4.21. Let

pr = (0,−1,−2, . . .− n, n, n− 1, . . . 1) ∼ Ap = P,

s̃ = (0, a1, a2, . . . an,−an,−an−1, . . .− a1) ∼ As̃ = S.

Let R = [rij] be the (2n + 1) × (2n + 1) unitary anti-diagonal matrix, also known as the

exchange matrix. Namely,

rij =

 1 if j = 2n− i+ 2

0 if j 6= 2n− i+ 2

where i, j ∈ [2n+ 1] index rows and columns of R respectively.

Then

PS = (PR)(RS), (4.19)

Proof. It suffices to check that R = RT . Then, since R is a permutation matrix we have

R2 = RRT = I2n+1.

We next show that both permutations PR and RS are involutions with a unique fixed point.

Lemma 4.22. The permutation corresponding to the matrix PR is the involution

pinvo = (−n, n− 1)(−n+ 1, n− 2) · · · (−1, 0)(n).
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Proof. We compute

PR =



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 1

1 0 0 0 . . . 0 0





0 0 0 0 . . . 0 1

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 1 0 . . . 0 0

0 1 0 0 . . . 0 0

1 0 0 0 . . . 0 0



=



0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 0

0 0 0 . . . 0 0 0

...
...

...
. . .

...
...

0 1 0 . . . 0 0 0

1 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1


Converting the resulting matrix into its associated permutation completes the proof.

Lemma 4.23. The permutation corresponding to the matrix RS is the involution

sinvo = (0,−a1)(a1,−a2) · · · (an−1,−an)(an)

Proof. It is easy to check that left multiplication by the exchange matrix R reverses the

order on the rows of the multiplied matrix S = [xij], i, j ∈ [n]±. Since xi,j = 1⇐⇒ i = s(j),

when multiplied by the matrix R, the row indexed by i, in the matrix S, is sent to the row

indexed by −i. This is due to the symmetry of [n]±. However, this in turn means that in the

permutation sinvo ∼ RS, we have j
sinvo−−−→ −i for any j ∈ [n]± such that s̃(j) = i. But now

by virtue of the structure of the cycle s̃ = (0, a1, a2, . . . an,−an,−an−1, . . .− a1), we have

sinvo = (0,−a1)(a1,−a2) · · · (an−1,−an)(an)

and the lemma follows.

So far we have shown that both PR and RS are matrices corresponding to involutions. We
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have thus exhibited an involution decomposition of ps̃. Furthermore, we note that each of

the two involutions has a unique fixed point, namely n and sn respectively. We proceed now

to prove some results regarding the product of two involutions.

Lemma 4.24. Let σ1, σ2 be two fixed-point free involutions on a set T , with |T | = 2n for

n ≥ 1. Then, there does not exist k ≥ 1 such that σ1(σ2σ1)k(x) = x.

Proof. Assume by contradiction that there exists a k ≥ 1 such that σ1(σ2σ1)k(x) = x. Then,

since σ1 is an involution, we have σ1(x) = (σ2σ1)k(x).

Now if k = 1, we have σ1(x) = σ2σ1(x), implying that σ1(x) is a fixed point of σ2, which is

a contradiction.

If k > 1, since σ2 is an involution, we have

σ2σ1(x) = (σ1σ2)k−1(σ1(x)) = σ1(σ2σ1)k−1(x).

Now, if k − 1 = 1, we have that σ2σ1(x) has to be a fixed point of σ1, which is again a con-

tradiction. Otherwise, we can set y = σ2σ1(x) and obtain y = σ1(σ2σ1)k−1(y), and iterate

the previous argument. In this way, we eventually obtain a fixed point, either for σ1 or σ2,

which contradicts our assumption, hence the lemma follows.

Lemma 4.25. Let σ1, σ2 be two involutions on a set T such that each of them has a unique

fixed point, a and b respectively. Then σ2σ1 has a cycle which contains both a and b.
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Proof. There is nothing to prove if a = b, so we will assume a 6= b in the following. Let now

σ1 = (p1, p2)(p3, p4) · · · (p2t−1, p2t)(a),

σ2 = (q1, q2)(q3, q4) · · · (q2t−1, q2t)(b),

σ′1 = (p1, p2)(p3, p4) · · · (p2t−1, p2t)(a, x),

σ′2 = (q1, q2)(q3, q4) · · · (q2t−1, q2t)(b, x),

where σ′1 and σ′2 are involutions on T ∪ {x}, where x /∈ T . We now compare the following

two iterations:

a→ σ1(a)→ σ2σ1(a)→ σ1σ2σ1(a)→ (σ2σ1)2(a) · · · (σ2σ1)k1(a) = a,

x→ σ′1(x)→ σ′2σ
′
1(x)→ σ′1σ

′
2σ
′
1(x)→ (σ′2σ

′
1)2(x) · · ·σ′1(σ′2σ

′
1)k2−1(x)→ (σ′2σ

′
1)k2(x) = x.

Note that σ1(a) = σ′1(x) = a, and that σ1 and σ′1, excluding x, differ only at the image of a.

Similarly, σ2 and σ′2, excluding x, differ only at the image of b. Thus, the iterations starting

with σ1(a) and σ′1(x) agree with each other until reaching a or b.

Claim 1. The iteration starting with x→ σ′1(x) = a will not reach a for a second time.

This is because, otherwise, there must exists some k ≥ 1, such that σ′1(σ′2σ
′
1)k(x) = a or

(σ′2σ
′
1)k(x) = a. The former case can not happen, otherwise (σ′2σ

′
1)k(x) = x, which will

close the iteration instead of continuing to a. By Lemma 4.24, the latter case, (σ′2σ
′
1)k(x) =

σ′2(σ′1σ
′
2)k−1(σ′1(x)) = σ′2(σ′1σ

′
2)k−1(a) = a cannot happen either. Hence, Claim 1 follows.

Claim 2. The iteration starting with σ′1(x) = a will reach b at least once.

This is obvious since σ′1(σ′2σ
′
1)k2−1(x) = b.

Now consider the first time the iteration starting with σ′1(x) reaches b. This must also

be the first time the iteration starting with σ1(a) reaches b. There are two cases: either
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(σ2σ1)k(a) = b or σ1(σ2σ1)k(a) = b for some k ≥ 1. For the former case, we already have a

and b as being in the same cycle of σ2σ1;

For the latter case, we have (σ2σ1)k+1(a) = σ2(b) = b, which also implies that a and b are in

the same cycle of σ2σ1. This completes the proof.

Remark 4.26. Lemma 4.25 can be alternatively proved in the following approach: first, we

show that there is a way to assign signs ‘+’ and ‘-’ to elements in the set T such that in both

σ1 and σ2, every 2-cycle has exactly one ‘+’ element and one ‘-’ elelment while a and b are

positive, see a dihedral group action argument as in the Intersection-Theorem [56]. Then,

we apply the Garsia-Milne Involution Principle [34] to explain that a and b are in the same

cycle of the product σ1σ2.

Lemma 4.27. Let σ1, σ2, σ
′
1, σ

′
2 be defined as in the proof of Lemma 4.25. Then,

C(σ′1σ
′
2)− 1 = C(σ1σ2). (4.20)

Proof. Following the discussion in the proof of Lemma 4.25, any cycle, of σ′1σ
′
2, not containing

a or b or x is also a cycle of σ1σ2. Thus, the difference C(σ′1σ
′
2)−C(σ1σ2) equals the difference

of the number of cycles containing a, b and x in σ′1σ
′
2 and the number of cycles containing a

and b in σ1σ2.

On the one hand, we have already shown that a and b are in the same cycle of σ1σ2. On

the other hand, it is clear that σ′1σ
′
2(a) = b; and by Claim 1 in the proof of Lemma 4.25, x

and a are not in the same cycle of σ′1σ
′
2. Hence, the difference is exactly 1, completing the

proof.

Based on these lemmas above, we can easily prove



4.6. Conclusion and open problems 109

Theorem 4.28. For any given signed permutation a, we have

C(prs̃) = C(θ1θ2)− 1. (4.21)

Proof. By construction, the relation between the pair sinvo, pinvo and θ1, θ2 is exactly the

same as the pair σ1, σ2 and σ′1, σ
′
2. Applying Lemma 4.27, we have

C(θ1θ2)− 1 = C(pinvosinvo) = C(ps̃),

completing the proof.

Accordingly, our lower bound in Theorem 4.15 equals the Bafna-Pevzner lower bound Eq. (4.4)

through breakpoint graphs [9, 40].

In addition, we confirmed our speculation in the last section that

Theorem 4.29. For any signed permutation a, the elements n and an are in the same cycle

of the product prs̃.

Proof. Applying Lemma 4.25 to the involution decomposition

prs̃ = pinvosinvo

the theorem follows.

4.6 Conclusion and open problems

Here we provided a unified framework for the transposition and block-interchange distance

of permutations as well as the reversal distance of signed permutations. This plane permu-
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tation framework augments the graph-based approaches and permutation based approaches.

Specifically, we obtained general lower bounds for the transposition distance and the block-

interchange distance, that give rise to novel optimization problems in terms of a new free

parameter. The lower bounds obtained by Bafna-Pevzner [8], Christie [20], Lin et al. [49],

Huang et al. [37], Labarre [48] can be refined in terms of this parameter. As for the reversal

distance of signed permutations, plane permutations allowed us to connect with the block-

interchange distances of skew-symmetric sequences and to immediately obtained a lower

bound. This lower bound for the reversal distance was proved to be actually equal to the

wellknown Bafna-Pevzner lower bound. Sections 4.2–4.4 are based on the paper “[10] Plane

permutations and applications to a result of Zagier–Stanley and distances of permutations,

SIAM J. Discrete Math. 30(3) (2016) pp. 1660–1684” while Section 4.5 is based on “[2] On

a lower bound for sorting signed permutations by reversals, arXiv:1602.00778 [math.CO]”.

As for future directions and outlook, we propose the following open problem: Solve the

optimization problem for odd and even cycles w.r.t. Theorem 4.7, i.e., obtaining a result

similar to Theorem 4.13. This is not only important in the context of the cycle-graph model

or its variations, but also interesting as a purely combinatorial problem. Furthermore, it is

also meaningful to examine if we can have more efficient algorithms for sorting permutations

based on our plane permutation framework.
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