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Automated Runtime Analysis and Adaptation for Scalable Heterogeneous

Computing

Ahmed E. Helal

(ABSTRACT)

In the last decade, there have been tectonic shifts in computer hardware because of reaching

the physical limits of the sequential CPU performance. As a consequence, current high-

performance computing (HPC) systems integrate a wide variety of compute resources with

different capabilities and execution models, ranging from multi-core CPUs to many-core

accelerators. While such heterogeneous systems can enable dramatic acceleration of user

applications, extracting optimal performance via manual analysis and optimization is a

complicated and time-consuming process.

This dissertation presents graph-structured program representations to reason about the per-

formance bottlenecks on modern HPC systems and to guide novel automation frameworks

for performance analysis and modeling and runtime adaptation. The proposed program

representations exploit domain knowledge and capture the inherent computation and com-

munication patterns in user applications, at multiple levels of computational granularity, via

compiler analysis and dynamic instrumentation. The empirical results demonstrate that the

introduced modeling frameworks accurately estimate the realizable parallel performance and

scalability of a given sequential code when ported to heterogeneous HPC systems. As a result,

these frameworks enable efficient workload distribution schemes that utilize all the available

compute resources in a performance-proportional way. In addition, the proposed runtime

adaptation frameworks significantly improve the end-to-end performance of important real-

world applications which suffer from limited parallelism and fine-grained data dependencies.

Specifically, compared to the state-of-the-art methods, such an adaptive parallel execution

achieves up to an order-of-magnitude speedup on the target HPC systems while preserving

the inherent data dependencies of user applications.



Automated Runtime Analysis and Adaptation for Scalable Heterogeneous

Computing

Ahmed E. Helal

(GENERAL AUDIENCE ABSTRACT)

Current supercomputers integrate a massive number of heterogeneous compute units with

varying speed, computational throughput, memory bandwidth, and memory access latency.

This trend represents a major challenge to end users, as their applications have been designed

from the ground up to primarily exploit homogeneous CPUs. While heterogeneous systems

can deliver several orders of magnitude speedup compared to traditional CPU-based systems,

end users need extensive software and hardware expertise as well as significant time and effort

to efficiently utilize all the available compute resources.

To streamline such a daunting process, this dissertation presents automated frameworks for

analyzing and modeling the performance on parallel architectures and for transforming the

execution of user applications at runtime. The proposed frameworks incorporate domain

knowledge and adapt to the input data and the underlying hardware using novel static and

dynamic analyses. The experimental results show the efficacy of the introduced frameworks

across many important application domains, such as computational fluid dynamics (CFD),

and computer-aided design (CAD). In particular, the adaptive execution approach on hetero-

geneous systems achieves up to an order-of-magnitude speedup over the optimized parallel

implementations.
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Chapter 1

Introduction

The availability of scalable computing resources has been crucial for advancing scientific dis-

covery by empowering researchers to simulate complex physical phenomena and to analyze

the multitudes of available data. For decades, high-performance computing (HPC) systems

were homogeneous based on clusters of sequential CPUs [157]. With the end of frequency

scaling [185], computer architectures have shifted to parallel processing on a single chip using

a diverse set of compute resources, memory subsystems, and execution models. As a result,

HPC systems evolved to incorporate an array of heterogeneous parallel devices, ranging from

general-purpose processors to specialized accelerators. For example, the Summit supercom-

puter [86] integrates 48 latency-optimized cores, 30,720 throughput-oriented cores, and 3,840

high-density (tensor) cores in each node, delivering billions to quadrillions of floating-point

operations per second (FLOPS) with different precision and accuracy characteristics.

1.1 Research Problems

To meet the ever-increasing demand for computing power, end users need to efficiently

utilize current (and future) HPC systems by tackling three main challenges: heterogeneity,

scalability, and interoperability.

1
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Heterogeneity. The diversity of parallel architectures and execution models has com-

plicated the design and development of high-performance applications, as end users have to

decide which architecture, programming language, algorithm, and implementation technique

are the most suitable for their applications, which in turn requires significant hardware and

software expertise. In addition, extracting optimal performance demands manual design-,

compile-, and run-time analysis and optimization for each underlying hardware architecture,

which consumes significant time and effort. Therefore, while the hardware performance

continued to improve according to Moore’s Law, as a result of the transistor scaling, user

applications typically attain a fraction of the theoretical performance. Furthermore, the

transistor scaling is expected to reach the limits of lithography over the next decade [71],

effectively ending Moore’s Law and leading to the era of extreme heterogeneity [191, 192],

where improving the application performance necessitates specialization across the whole

software and hardware stack.
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Figure 1.1: The gap between the computation and communication costs on the Cascades

cluster at Virginia Tech.

Scalability. HPC systems suffer from an increasing gap between the computation and

communication costs [24]. Our experiments demonstrate that the cost of data transfers,

both within a node and across nodes, can be orders of magnitude higher than the cost

of compute operations [82, 80, 78]. For example, Figure 1.1 shows that the computation to

communication gap on Cascades, which is an HPC cluster at Virginia Tech, can be more than

two orders of magnitude. Worse, such a gap increases with the number of nodes/processes
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because of the contention on the shared network and memory bandwidth. As a consequence,

the scalability of user applications on HPC systems is limited by the communication cost.

Unfortunately, estimating and realizing the minimum communication of a given application is

extremely challenging for end users, as it requires comprehensive application and architecture

knowledge and demands significant manual analysis and optimization. Moreover, in parallel

applications, the communication arise from the inherent data dependencies between the

computational tasks. Therefore, most efforts to parallelize irregular computations with fine-

grained data dependencies has had limited scalability [79, 83], although such computations

constitute the core kernels in many important application domains, such as computational

fluid dynamics (CFD), computer-aided design (CAD), and data analytics.

Interoperability. Parallel architectures are changing faster than parallel programming

models and software. Thus, heterogeneous HPC systems require hybrid programming mod-

els and various optimization approaches to exploit their potential performance and energy

efficiency. Dealing with interoperation between different devices and programming models

is a tedious and error-prone task for end users. While many approaches have been proposed

to abstract the hardware details, such as directive-based programming models [146, 145]

and portable runtime systems [180, 129], they come with a performance penalty or lack

performance portability across different platforms [79].

1.2 Thesis Statement

To streamline the transition of scientific applications to the exascale era of heterogeneous

billion-way parallelism, this dissertation presents novel program analyses and adaptive exe-

cution approaches. The central thesis is: graph-structured program representations,

which communicate the inherent application characteristics and the complex

interdependencies to the execution environment, enable automated runtime

analysis and adaptation methods that significantly improve the performance,

scalability, and interoperability on heterogeneous HPC systems.
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1.3 Methodology

Figure 1.2 depicts the proposed methodology to enable (1) automated generation of parallel

performance and scalability models for sequential codes, (2) scalable execution of compute

operations with fine-grained data dependencies, and (3) interoperation and workload distri-

bution across heterogeneous parallel architectures. To bridge the semantic gap between user

applications and HPC platforms, we construct graph-structured program representations that

capture the inherent application characteristics and the complex (many-to-many) interde-

pendencies at multiple levels of computational granularity. These program representations

allow the generation of cross-layer abstractions (models) to reason about the performance

bottlenecks on heterogeneous parallel architectures, which makes it possible to appropri-

ately map the application kernels to the underlying hardware architectures for maximum

performance via our novel frameworks [80, 82, 83, 78, 79] for performance analysis, runtime

adaptation, and interoperation.

Programming Models

OpenMP CUDA
MPI

OpenCL SYCL

Compute Devices
Multi-core 

CPU

Many-core  

GPU

Integrated 

CPU+GPU
MIC …

Runtime Systems 

…

Compilers

User Applications

C
ro

ss
-L

ay
e

r 
A

b
st

ra
ct

io
n

s 
(M

o
d

e
ls

) 

Parallelism, information flow, data dependencies, .. 

Interoperation 
Middleware 

Runtime 
Analysis

Runtime 
Adaptation

Automation Frameworks

Figure 1.2: Overview of the proposed methodology.
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The experimental results demonstrate that the introduced methods can deliver multiplica-

tive performance gains for real-world applications, even when such applications suffer from

limited parallelism and fine-grained data dependencies. Due to the ubiquity of heteroge-

neous computing, the proposed runtime analysis and adaptation approaches are applicable

not only to the target HPC platforms, but also to embedded and mobile computing systems.

1.4 Contributions

This dissertation tackles the heterogeneity, scalability, and interoperability challenges of

modern HPC systems via innovative approaches for automated program analysis and runtime

adaptation. To this end, we demonstrate that graph-structured program representations are

powerful abstractions to reason about the performance bottlenecks not only on a single HPC

node, but also on multi-node HPC systems. Figure 1.3 presents a summary of the research

artifacts and contributions, which are detailed below.

CommAnalyzer

(Chapter 4)

AutoMatch

(Chapter 3)

Runtime Analysis

MetaMorph

(Chapter 7) 

ATA

(Chapter 5)

SPICE-H

(Chapter 6)

Runtime Adaptation

Interoperability Middleware

Node Level

Cluster Level

Figure 1.3: Dissertation overview.

1.4.1 Automated Program Analysis for Performance Modeling

Automated Estimation of Execution Cost on Heterogeneous Architectures

Projecting the relative performance of a given code across different types of HPC architec-

tures plays a critical role in the design and development of high-performance applications.
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Unlike the previous “black-box” approaches that rely on the performance of a training set of

parallel applications, the proposed AutoMatch framework [80] automatically projects the rel-

ative parallel performance of sequential codes across multi-core CPUs and many-core GPUs.

Specifically, AutoMatch constructs a graph-structured program representation at the instruc-

tion level and uses a hybrid (static and dynamic) analysis to estimate the best dependency-

preserving parallel schedule of target programs. As a result, AutoMatch enables a runtime

workload distribution scheme that simultaneously utilizes the different hardware architec-

tures within an HPC node in a performance-proportional way, i.e., the architecture with

higher performance is assigned more workload. For a set of open-source HPC applications

with different characteristics, AutoMatch turns out to be very effective, identifying the per-

formance upper-bound of sequential applications across five different HPC architectures.

In addition, AutoMatch’s workload distribution scheme achieves approximately 90% of the

performance of the profiling-driven oracle [80]. Furthermore, AutoMatch indicates that the

predicted speedup by the previous “black-box” performance modeling approaches can be

misleading, due to the lack of a diverse set of reference training applications along with their

equally-optimized parallel implementations for each architecture type.

Automated Estimation of Communication Cost and Scalability

The proposed CommAnalyzer framework [82] is a novel and automated approach for estimat-

ing the communication cost of sequential codes when ported to HPC clusters, which makes

it possible to project the scalability upper-bound of the effective distributed-memory imple-

mentation before even developing one. CommAnalyzer instruments the sequential code to

precisely capture the inherent flow of program values (information) through multiple levels

of access indirection to construct a value communication graph (VCG). Next, it uses graph

analytic algorithms to project the communication cost of VCG on distributed-memory mod-

els. Thus, CommAnalyzer is applicable for both regular and irregular problems and works

also for programs that cannot be auto-parallelized. The experiments with real-world HPC
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applications demonstrate the utility of CommAnalyzer in estimating the minimum commu-

nication cost with more than 95% accuracy on average [82]. As a result, CommAnalyzer

enables the development of optimized distributed-memory implementations that realize the

estimated communication and scalability bounds [82].

1.4.2 Runtime Adaptation for Scalable Performance

While regular applications (e.g., dense linear algebra and structured grids) have demon-

strated scalable speedup in the heterogeneous computing era, irregular applications still

suffer from limited scalability due to the inherent synchronization and communication cost.

Thus, the HPC community is moving to use irregular benchmarks for the procurement and

ranking of HPC systems [59, 134]. This dissertation proposes runtime adaptation approaches

for efficient parallel execution of irregular computations with fine-grained data dependencies.

Such workloads are extremely challenging for acceleration on heterogeneous HPC systems as

the dispatch, scheduling, communication, and synchronization cost becomes the dominant

performance bottleneck compared to the execution cost of compute operations.

Efficient Dependency Management on Massively Data-Parallel Architectures

Many-core architectures, such as GPUs, have a massive number of throughput-oriented com-

pute units that are primarily designed to support data-parallel execution. Consequently,

irregular computations with fine-grained data dependencies suffer from limited performance

on these architectures, due to the substantial overhead required to schedule the computations

and to manage their data dependencies. We propose the adaptive task aggregation (ATA)

framework [83] to efficiently execute such irregular computations on massively data-parallel

architectures. ATA represents the data-dependent computations as a hierarchical directed

acyclic graph (DAG), where nodes are multi-grained application tasks and edges are their

aggregated data dependencies. Unlike previous approaches, ATA is aware of the dependency
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structure of input problems and the processing overhead on target architectures. Therefore,

it adapts the parallel execution at runtime by selecting the appropriate task granularity

and by managing data dependencies at multiple execution levels. On a gamut of represen-

tative problems with different data-dependency structures, ATA significantly outperforms

the existing GPU task-execution approaches, achieving a geometric mean speedup of 2.2×

to 3.7× across important sparse solver kernels and delivering up to an order-of-magnitude

improvement in the end-to-end application performance [83].

Scalable Execution of Irregular Data-Dependent Computations

We propose SPICE-H [78], a heterogeneous distributed-memory framework for a representa-

tive irregular application with limited and data-dependent parallelism, namely transistor-

level circuit simulation [135]. The target application has been traditionally restricted to

a single homogenous architecture because of the sequential dependencies between its fine-

grained compute operations. SPICE-H constructs a hypergraph program representation at the

application level to drive compensation-based algorithms for program transformation that

greatly reduce the communication and synchronization overhead as well as increase the avail-

able parallelism. Unlike prior work, our framework uses model-driven runtime analysis and

adaptation to (1) find the optimal workload partitioning and load balancing, and (2) map

the partitioned kernels to the most suitable architecture that matches their characteristics.

The experimental results on Amazon EC2 heterogeneous cloud demonstrate an order-of-

magnitude speedup compared to the optimized multi-threaded implementations [78].

1.4.3 Interoperability Middleware for Simultaneous Execution

Parallel architectures are changing more rapidly than parallel programming models, and

until now, there has been no universal programming model that provides both functional

portability and performance portability. We present MetaMorph [79], a lightweight middle-
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ware that resides between user applications and hardware platforms to allow interoperability

and workload distribution across heterogeneous compute resources.

MetaMorph addresses the challenges of programming heterogeneous architectures through

its core design principles: abstraction, interoperability, and adaptability. First, it provides

high performance and abstraction using a highly-optimized back-end layer and a light-weight

interface layer that does not require significant application re-factoring. Second, MetaMorph

supports interoperability across different hardware accelerators and with existing code. Most

importantly, MetaMorph is designed to exploit runtime information to improve the perfor-

mance even more by providing access to all hardware devices present in a system to enable

simultaneous execution and workload distribution. The experimental evaluation shows that

MetaMorph reduces the development time, while delivering performance and interoperation

across an array of heterogeneous devices, including multi-core CPUs, Intel Many Integrated

Cores (MICs), AMD GPUs, and NVIDIA GPUs. In particular, MetaMorph enables a simul-

taneous execution approach that effectively uses all the heterogeneous resources in the target

HPC systems [79].

1.5 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 presents the background and

related work. Chapters 3 and 4 detail our research on projecting the parallel performance and

scalability of sequential codes. Chapter 5 describes our runtime adaptation framework for

dependency management on massively parallel GPU architectures. Chapter 6 attacks the

problem of scaling irregular data-dependent computations on heterogeneous HPC clouds.

Chapter 7 presents our middleware framework which provides interoperation and simulta-

neous access to the available compute resources in an HPC system. Finally, Chapter 8

summarizes the dissertation and outlines the future research opportunities.



Chapter 2

Background and Related Work

2.1 HPC Programming Models

With the end of frequency scaling and the shift to parallel and heterogeneous computing, de-

veloping software has become much more complex [185]. While the Message Passing Interface

(MPI) remains the de facto standard for programming distributed-memory systems [56, 20],

many approaches have been proposed to address the challenges of programming shared-

memory parallel architectures by abstracting their hardware details. This section discusses

the related parallel programming models and runtime systems.

Directive-based programming models, such as OpenMP (Open Multi-Processing) [146] and

OpenACC (Open Accelerator) [145], move the burden of explicit thread management, work-

load partitioning and scheduling, data movement across the memory hierarchy, and inter-

thread communication and synchronization to the compiler. While OpenMP and OpenACC

abstract away complex details and provide a convenient interface to describe the parallelism

to the compiler, achieving acceptable performance requires deep understanding of the under-

lying hardware architecture, runtime system, compiler limitations, and a number of complex

directive specifications. Moreover, the programmer must use thread-safe functions, eliminate

10
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inter-thread data dependencies, avoid pointer aliasing, and manage access to shared variables

and data structures. In addition, the high-level abstraction of directive-based programming

can come with a performance penalty [199, 196, 95, 50] compared to low-level programming

models, such as OpenCL (Open Computing Language) [133] and CUDA (Compute Unified

Device Architecture) [141].

Portable runtime systems, such as OpenCL [180] and OCCA [129], provide a kernel specifi-

cation language and a runtime compilation and execution environment on multiple hetero-

geneous platforms. Although these approaches support functional portability, performance

portability is not guaranteed, as the application developers need to modify and optimize

the kernel implementation for each target hardware platform to achieve the required per-

formance. Moreover, these approaches have relatively lower programmability in comparison

with directive-based programming, as the programmer must explicitly manage all the hard-

ware control operations, such as memory allocation, data transfer, thread creation/destruc-

tion, and synchronization.

Domain-specific libraries provide both abstraction and high performance for a set of kernels

and algorithms in a target domain. However, this often comes with the cost of complicated

installations and extensive application refactoring. For example, MAGMA [58] provides

highly optimized and intelligently scheduled BLAS (Basic Linear Algebra Subprograms)

kernels, but due to the dependency on external libraries is difficult to install, configure,

and tune, and it does not yet provide unified or consistent capability across its many-core

implementations. Although MAGMA supports multi-GPU BLAS kernels, there is no built-in

support for interoperability across different hardware accelerators. PARALUTION [124] and

ViennaCL [164] provide iterative solvers and preconditioners for many important application

domains, such as computational fluid dynamics (CFD), and support various multi-core and

many-core architectures. However, these solver frameworks require recasting the application

to use complex cases and object types, which presents a barrier to the incremental porting

of user applications.
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In summary, directive-based programming models trade performance with high-level abstrac-

tion, while low-level languages and portable runtime systems can achieve high performance

with the cost of low programmability and explicit hardware control. Domain-specific libraries

can achieve high-level abstraction and high performance, but only for a set of algorithms in

a specific domain and with a significant application re-factoring, complicated installation,

and steep learning curve.

2.2 Massively Parallel HPC Architectures

Here, we use graphics processing units (GPUs), which are the most popular accelerators

in modern HPC systems [130], and the OpenCL terminology to describe massively parallel

architectures and their execution models.

Figure 2.1 depicts the recent VEGA GPU architecture from AMD [10], which consists of

multiple compute units (CUs) organized into shader engines (SEs). Each CU contains single-

instruction, multiple-data (SIMD) processing elements. SEs share global memory and level-

2 (L2) cache, while CUs have their own dedicated local memory and level-1 (L1) cache.

At runtime, the control/command processor (CP) dispatches the workload (kernels) to the

available SEs and their CUs.
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Figure 2.1: VEGA GPU architecture.
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Figure 2.2: GPU kernel.

Like GPU hardware, GPU kernels have a hierarchical thread organization, as shown in

Figure 2.2, consisting of workgroups of multiple wavefronts. The SIMD elements execute

each wavefront in lockstep; thus, wavefronts are the basic scheduling units.

Massively parallel GPUs provide fundamental support for the bulk synchronous parallel

(BSP) execution model [189], where the computations proceed in data-parallel supersteps.

Figure 2.3 depicts a BSP superstep which consists of three phases: local computations on each

CU, global communication (data exchange) via main memory, and barrier synchronization.

Local Computations

Global Communication

Barrier Synchronization

Figure 2.3: The execution of a BSP superstep.

In BSP execution, the computations in each superstep must be independent and can be

executed in any order. To improve workload balance, each CU should perform a similar

amount of operations. Moreover, GPUs require massive computations in each superstep to

utilize the available compute resources and to hide the long memory-access latency. Due

to these limitations, the efficient BSP execution of irregular applications with variable and

data-dependent parallelism is challenging.
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2.3 Performance Modeling on HPC Systems

There are many approaches and substantial prior work for performance modeling on HPC

systems that can be classified into four categories: analytical modeling, simulation, auto-

mated performance prediction, and communication and scalability analysis.

2.3.1 Analytical Modeling

Analytical modeling maps the application and execution environment into a set of parame-

ters and mathematical expressions that can be evaluated to predict important performance

metrics, such as the execution time. While analytical modeling provides useful insights into

the application performance by capturing the complex interactions between the HPC plat-

form, application, and input data [200, 92], it requires tedious manual analysis of both the

target applications and hardware architectures. Typically, there is a tradeoff between the

accuracy of an analytical model and the number of its parameters. While complex perfor-

mance models have higher accuracy levels, they require extensive analysis and are harder

to generalize to different types of hardware architectures. The Roofline model [200] and

LogP model family [47, 7] are popular modeling approaches that provide a high-level view

of the application performance using a few parameters; however, they abstract away critical

factors, such as the parallelism, data locality, and synchronization overhead.

Empirical models [92, 30] use profiling and statistical analysis to calculate the critical coeffi-

cients that are hard to derive from manual analysis. Therefore, while such models can predict

the actual performance of an application on a particular architecture with high accuracy,

they require the availability of both the target hardware and optimized parallel code.

To explore the algorithmic and architectural design space, Spafford and Vetter present AS-

PEN [176], a language for describing formal application and machine models. PALM [186]

simplifies the performance modeling process by supporting the generation of standard an-

alytical models from annotated source code. Snavely et al. [175] provide a framework to
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generate analytical performance models from the execution and communication traces of

HPC applications and the abstract machine profiles.

2.3.2 Simulation

Hardware simulators, such as Sniper [31] and gem5 [25, 153], can provide accurate per-

formance prediction and detailed information about the application behavior without the

availability of target hardware architectures. However, they need the parallel application

code and typically consume significant time and compute/memory resources. In addition,

the predicted performance depends on the ability of end users to prallelize and optimize the

application to the simulated architecture. Similarly, distributed-memory simulators (e.g.,

LogGOPSim [91] and DIMEMAS [160]) incorporate detailed network and architecture mod-

els to estimate the communication time and performance from the compute/communication

traces of parallel code. MUSA [73] adopts a multi-level simulation approach with different

levels of hardware details, simulation cost, and simulation accuracy. In addition, it identifies

and simulates the representative application phases to reduce the overall simulation time.

2.3.3 Automated Performance Prediction

Recently, several tools have been proposed to automate the performance modeling and pre-

diction using program analysis and machine-learning. Table 2.1 summarizes the comparison

of the state-of-art performance prediction tools for heterogeneous HPC architectures.

COMPASS [114] generates a structured performance model from the parallel application

code using static analysis. However, the user must annotate the code to indicate the avail-

able parallelism and required data movement to generate an accurate model. Otherwise,

COMPASS may generate a conservative parallelism profile, due to the difficulty of alias

analyses [111, 156]. Therefore, COMPASS does not work well for irregular applications

whose computation and memory access patterns are data-dependent.
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Table 2.1: Comparison of recent performance prediction tools for heterogeneous HPC archi-

tectures (CPUs and GPUs)

COMPASS [114] XAPP [13] AutoMatch

Input code Annotated Sequential Sequential

Features extraction Static analysis Dynamic analysis Hybrid analysis

Machine model generation By users Training data Micro-benchmarking

Performance modeling ASPEN model Machine-learning Execution Cost model

Cache-awareness No Yes Yes

Usability Low High High

Application generality Low High High

HW generality High Low High

The tool speed Fast Slow Moderate

XAPP [13] uses machine-learning (ML) to find the correlation between the CPU execution

profile of the application and the GPU speedup. Therefore, XAPP is heavily influenced

by the training data, and its prediction accuracy depends on the availability of a diverse

set of applications along with their optimized GPU implementations. So, extending XAPP

to new architecture types requires huge effort to rewrite and re-optimize each training ap-

plication to the target architectures. Moreover, to predict the performance on a specific

GPU device, the user needs to run all the training applications on this device, which takes

days. Such long-running model generation of ML-based tools end up being orders of mag-

nitude slower than our AutoMatch framework, which generates the device parameters using

micro-benchmarks that takes few minutes. In addition, XAPP’s predicted speedup is not

the speedup upper-bound, and it depends on which optimization techniques are applied in

the training applications.

Kismet [97] predicts the potential speedup of sequential applications on multi-core processors.

It instruments the code to build the self-parallelism profile, and estimates the memory access

latency by profiling the application on a CPU cache simulator. Kismet optimistically assumes
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that the memory bandwidth is scalable with the number of threads, which is unrealistic

assumption especially for massively parallel architectures such as GPUs. Therefore, its

predicted speedup is unattainable at higher core counts and for memory-bound workloads.

As an alternative, Parallel Prophet [107] predicts the speedup of the annotated code on

multi-core CPUs. Unlike Kismet, it does not require parallelism discovery, but relies on

user annotations to identify the available parallelism. To build the performance model,

Parallel Prophet collects architectural parameters such as instruction counts and cache misses

through hardware performance counters, which requires the availability of the target CPUs

and the parallel (or annotated) code.

2.3.4 Communication and Scalability Analysis

Communication Cost Estimation

Several approaches have been proposed for estimating the communication cost of sequen-

tial codes to enable code generation for distributed-memory platforms [87, 201, 77]. The

FORTRAN-D compiler [87] uses static data-dependence analysis to detect the communica-

tion between different sections/parts of a data array, which is partitioned according to a

user-specified decomposition technique. However, this approach suffers from communication

overestimation, and it is limited to regular applications. Similarly, Gupta et al. [77] adopt

a compile-time, data-dependence analysis for estimating the communication of sequential

codes, which is only applicable for regular problems with array-based data structures. The

SUIF compiler [201] solves the communication overestimation problem using the exact static

data-flow analysis, but it is limited to affine loop nests with regular memory access pattern,

where dependencies between loop iterations and memory locations can be detected at com-

pile time. In contrast, our CommAnalyzer framework predicts the communication between

program values regardless of the underlying data structures and without any user-specified

decomposition techniques using a combination of novel dynamic analyses and graph analyt-

ics. Thus, CommAnalyzer is applicable to a wide range of regular and irregular applications.
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While the above approaches estimate the communication cost using the single program,

multiple data (SPMD) execution model, which is by far the dominant approach on HPC

systems [56, 20], Bondhugula [28] presents a polyhedral framework to estimate the commu-

nication when there is no fixed data ownership, i.e., the data can move between compute

nodes according to the distribution of the computations and data dependencies. However,

this approach is limited to regular applications with affine loop nests as well.

Communication Pattern Detection

Identifying the communication patterns of HPC applications is helpful in the design-space

exploration of both the system architectures and parallel algorithms. Several tools [163,

105] have been proposed for the detection of MPI communication patterns by finding a

match between the actual inter-process communication and a set of known communication

templates/patterns. These tools instrument the MPI implementation to capture the inter-

process communication and to generate the communication matrix across MPI processes,

and then they recognize existing communication patterns in the communication matrix.

In particular, AChax [163] can identify multiple communication patterns (such as nearest

neighbor, sweep/wavefront, broadcast, and reduction) in the communication matrix and

generate a parametrized communication model for the actual communication based on a

combination of the detected communication patterns.

Scalability Analysis

The scalability analysis tools [18, 209, 29, 33] project the performance of a given MPI imple-

mentation at a massive scale based on small-scale experiments. Typically, these tools extract

the communication, computation, and/or memory traces of MPI applications using dynamic

instrumentation and profiling. Therefore, they require the distributed-memory parallel im-

plementations and at least a single node of the target cluster to predict the performance

on multiple nodes. TAU [173] and HPC toolkit [3] are integrated frameworks for portable
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performance analysis, profiling, and visualization. Similar to scalability analysis tools, their

main goal is to simplify the performance analysis and diagnosis of the existing MPI code,

rather than estimating the potential performance at a large scale before investing effort and

time in developing the distributed-memory implementation of the original applications.

2.4 Data Dependency Management on Massively Par-

allel HPC Architectures

There is a large body of prior work on optimizing irregular applications for massively parallel

architectures. This section focuses on irregular applications that suffer from fine-grained data

dependencies, which limit their parallel performance and scalability on these architectures.

Such applications are naturally represented as directed acyclic graphs (DAGs), where nodes

are compute tasks and edges are data dependencies across tasks, to expose parallel tasks.

Researchers have designed many software and hardware frameworks to improve the per-

formance of data-dependent computations on massively data-parallel architectures, such as

many-core GPUs. In the following, we discuss the state-of-the-art dependency management

frameworks.

Juggler [23] is a data dependency management scheme for GPUs that maintains task queues

on the different compute units and employs persistent workers (workgroups) to execute ready

tasks and to resolve the data dependencies of waiting tasks. Other frameworks [178, 179, 210]

adopt a similar execution model with persistent threads (PT) on GPUs. PT execution sig-

nificantly reduces GPU resource utilization and limits the latency hiding ability of GPU

hardware schedulers. While GPUs require massive multithreading to hide the execution

and memory access latencies [66, 161, 10], PT execution only runs one worker per compute

unit. Therefore, such frameworks typically achieve a limited performance improvement com-

pared to the traditional data-parallel execution (for example, 1.05 to 1.30-fold speedup [23])
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with portability issues across different GPU devices. Conversely, our ATA framework ex-

ecutes multiple workers per compute unit to maximize the utilization of GPU resources

and to expose the inherent parallelism of user applications. Moreover, achieving workload

balance using distributed task queues is difficult and requires significant processing over-

head. As a result, PT execution approaches typically execute user tasks at the granularity

of workgroups. In contrast, ATA leverages the existing hardware schedulers for GPUs, which

perform dynamic resource management across active wavefronts, to reduce the idle/waiting

time by concurrently executing the available tasks in user applications and mapping them

to active wavefronts. Furthermore, ATA can support a wide range of granularity, ranging

from wavefronts to workgroups.

Alternatively, several runtime systems for task management [15, 21, 67, 154] support irregu-

lar applications by launching each user task as a parallel kernel and by using device streams

or queues to manage data dependencies across kernels. In such systems, the task launch

overhead is on the order of microseconds, and the dependency management using streams

(queues) only supports a finite number of pending dependencies. Thus, these approaches

are limited to irregular applications with coarse-grained tasks, where the dependency man-

agement overhead is a fraction of the overall execution time. Specifically, StarPU [15] and

Legion [21] schedule the data-dependent computations on heterogeneous architectures with

multiple CPUs and GPUs, and consider a single device (CPU or GPU) as a worker. Fur-

thermore, these runtime systems manage data dependencies on the host, which introduces

significant host-device communication and synchronization overhead.

Pagoda [207] and GeMTC [109] adopt a centralized scheduling approach to execute inde-

pendent application tasks on GPUs using a resident kernel, which distributes ready tasks

to compute units at the wavefront granularity. However, these frameworks assume that

all the dispatched tasks are ready for execution and do not support dependency tracking

and resolution. Specifically, they rely on the host to send ready tasks to the GPU after

their dependencies are resolved. Therefore, Pagoda and GeMTC suffer from host-device

communication which is limited by the PCI-E bandwidth.
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Prior software systems [62, 37, 187, 61] improve the performance of dynamic parallelism,

where a GPU kernel can launch child kernels, by aggregating the independent work-items

across child kernels to amortize the kernel launch overhead; however, these techniques are

not suitable to execute application DAGs with many-to-many relationships (dependencies)

between the predecessor and successor tasks. Conversely, in our ATA framework, work

aggregation is used to execute irregular applications with data-dependent tasks both within

and across GPU kernels, which requires efficient mechanisms to track the progress of active

tasks and to determine when waiting tasks are ready for execution. Hence, ATA aggregates

data-dependent work across user tasks with a strict partial execution order and then enforces

this order using hierarchical dependency management and low-latency task scheduling.

Alternatively, hardware approaches [2, 147, 194, 195] aggregate and execute data-dependent

computations on many-core GPUs using dedicated hardware units or specialized workgroup

(thread-block) schedulers. Unlike these approaches, the proposed ATA framework works on

current GPU architectures without needing special hardware modifications. In addition, it

supports a finer task granularity than workgroups.



Chapter 3

Automated Estimation of Execution

Cost on Heterogeneous Architectures

3.1 Introduction

With the end of Dennard scaling, the performance of sequential CPUs hit the power wall,

thus making it hard to improve the performance by increasing the clock frequency [185].

To meet the ever-increasing demand for computing performance, driven by the multitude of

data sets, computer architectures have shifted to parallel processing. However, unlike the

sequential computing era, there is no de facto standard for hardware acceleration. Instead,

the parallel architecture landscape is in flux as new platforms are emerging to meet the needs

of new workloads. Therefore, current (and future) HPC systems contain a wide variety

of heterogeneous computing resources, ranging from general-purpose CPUs to specialized

accelerators, due to both the diversity of the computational kernels in the applications and

the lack of a single architecture meeting all of their requirements [24].

Porting sequential applications to heterogeneous HPC systems for achieving high perfor-

mance requires extensive software and hardware expertise to manually analyze the target

22
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architectures and applications not only to estimate the potential speedup, but also to make

efficient use of all the different compute resources in these systems. To streamline such a

daunting task, end users need appropriate tools and frameworks to automatically predict the

potential application performance on heterogeneous HPC systems. Therefore, researchers

have created several tools classified into two categories: automated performance modeling

and machine-learning performance prediction.

Automated performance modeling tools [97, 107, 114] use static and/or dynamic analysis to

construct a performance model of the target application and hardware architecture, which

is then used to predict the potential speedup. However, these tools are either limited to

homogenous HPC systems, with traditional multi-core processors, or require code annota-

tions to indicate the available parallelism and data movement, which might not be possible

for non-expert users. In addition, tools based only on static analysis do not work well for

irregular applications, whose computation and memory access patterns are data-dependent,

due to the difficulty of alias analysis [111, 156].

On the other hand, machine-learning performance prediction tools [13, 17] adopt a “black-

box” approach and are heavily influenced by the training data. Thus, their prediction

accuracy depends on the availability of a diverse set of training applications along with

their optimized parallel implementations for every target architecture, which is often hard

to find [115]. Apart from that, the predicted speedup is not the speedup upper-bound, and

even worse it depends on which optimization techniques are applied to the reference heteroge-

neous implementations of training applications. Unfortunately, open-source heterogeneous

applications and benchmark suites are usually not equally-optimized for each architecture

type [115, 181]. For this reason, machine-learning approaches may not be suitable to predict

the relative performance between different architecture types despite the required expertise

and effort to collect the ideal training set and the significant time for training. Given all

this, there is a compelling need for a more practical approach to serve a wide range of the

users of HPC systems.
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3.1.1 AutoMatch: The First-Order Framework

This chapter presents AutoMatch, an automated framework for matching of computational

kernels to heterogeneous HPC architectures. Figure 3.1 shows the proposed framework

which analyzes a given sequential application code and constructs a graph-structured program

representation at the instruction level to estimate the benefits of porting such an application

to heterogeneous HPC systems.
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Figure 3.1: Overview of AutoMatch framework.

First, AutoMatch generates the architectural specifications via micro-benchmarking to instan-

tiate an abstract hardware model for each architecture in the target heterogeneous system.

Second, it leverages compiler-based static and dynamic analysis techniques to quantify the

maximum parallelism, the maximum data locality, and the minimum synchronization of the

sequential code for estimating the upper bounds of the parallel performance on the differ-

ent architectures. Third, AutoMatch generates high-level analytical models which combine

the abstract hardware model, application characteristics, and architectural specifications

to predict the potential parallel performance on different types of hardware devices. This

performance prediction is then used to estimate the relative execution cost across a set of

different architectures, including multi-core CPUs and many-core GPUs, thereby driving a

workload distribution scheme, which enables end users to efficiently exploit the available

heterogeneous devices in an HPC system.
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It is important to note that AutoMatch is designed as a first-order framework for users to

estimate the potential parallel performance of their sequential applications on heterogeneous

HPC systems in the early stages of the development process, i.e., without having to pay the

high cost of developing the optimized parallel code (or painfully collecting training data)

for every target architecture. While our automatically-generated models are simple, they

work well for predicting the relative performance across different architectures and the best

workload distribution strategy.

Use Cases

AutoMatch accelerates the development process of user applications and supports the emerg-

ing programming systems for performance portability and interoperability across different

accelerators (such as MetaMorph [79], which is discussed in Chapter 7).

Architecture Selection. AutoMatch predicts the relative ranking of parallel heterogeneous

architectures for sequential application codes. It serves not only those who either have not

determined the target device or cannot afford to buy multiple candidate devices, especially

when the application and inputs are often changed, but also those who lack enough expertise

to develop the optimized parallel implementation for each architecture type. Furthermore,

AutoMatch’s ranking of target hardware architectures enables the adaptivity layer of portable

programming systems to select the best performing architecture at runtime.

Algorithm Selection. AutoMatch predicts the upper bounds on parallel performance of a

given sequential application code by finding the best dependency-preserving schedule of its

operations, which performs the same operations as the sequential algorithm but in a different

order. If AutoMatch’s prediction of the original algorithm is already good enough, the user

can save the time to consider other algorithms. Conversely, if the predicted performance is

unsatisfactory, it motivates the user to explore/develop different algorithms. Nevertheless,

AutoMatch can still play a critical role even for this case. The user can analyze the sequential

code of different algorithms using AutoMatch to estimate the upper bounds on their parallel

performance beforehand without developing the optimized parallel code(s).
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Code Optimizations. AutoMatch provides detailed information about the inherent paral-

lelism, data locality, and performance bottlenecks of the sequential application code to help

users to decide on the best parallelization strategy and optimization techniques for their

applications. Moreover, since it is often hard to find reference applications that are equally-

optimized for each architecture type [115], AutoMatch’s prediction of the performance upper

bounds serve as a reference to show how close the parallel implementation is to the best pos-

sible performance. That way, AutoMatch can guide not only manual code optimization, but

also the customization/tuning of the different backends of portable programming systems.

Workload Distribution. AutoMatch’s estimation of the relative performance (execution

cost) on heterogeneous systems promotes the development of a runtime workload distribution

on top of programming systems that support the seamless execution of parallel applications

on multiple heterogeneous devices (e.g., MetaMorph [79]) to efficiently exploit the available

compute resources across these devices.

Design-Space Exploration. Even if the applications and/or the architectures are not

yet available, AutoMatch can still be used with synthetic application features and/or archi-

tectural parameters to automatically explore the design space. Detailed discussion of the

architecture selection, code optimizations, and workload distribution is provided in Section

3.3, while a study of the algorithm selection and design-space exploration is reserved for

future work.

3.1.2 Contributions

Unlike the previous approaches, AutoMatch does not require the availability of the target

platforms or the parallel application code for each platform, thereby expanding the range of

users. In addition, it is automated and applicable to different types of hardware architectures

with minimal effort, i.e., generating the architecture specifications. With the automated and

repeatable methodology of AutoMatch, users can easily adapt it to future heterogeneous

architectures. In summary, the following are the contributions of this work:
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• We propose an automated framework (AutoMatch) that constructs a fine-grained, graph-

structured program representation and uses a combination of compiler-based analysis,

micro-benchmarking, and analytical modeling to estimate (1) the performance upper

bounds of sequential applications on heterogeneous HPC systems, and (2) the relative

ranking and performance of the architecture alternatives in such systems (§3.2).

• AutoMatch’s estimation of the relative performance across the heterogeneous architec-

tures enables a workload distribution runtime that simultaneously utilizes them all in a

performance-proportional way, i.e., the architecture with higher performance is assigned

more workload (§3.2).

• Using a diverse set of open-source HPC applications, with different parallelism profiles

and memory-access patterns, we show the efficacy of the proposed white-box framework

across different HPC architectures (§3.3).

• We present case studies on both regular and irregular workloads to pinpoint the issues with

the black-box performance prediction approaches, e.g., profiling and machine-learning.

Since they rely on the performance of a training set of parallel applications, unlike the

proposed AutoMatch framework, their results can be fooled by the heterogeneous imple-

mentations that are not equally-optimized for each target architecture (§3.3).

3.2 AutoMatch Approach

3.2.1 Hardware Architecture Model

This work proposes an abstract hardware architecture model that can be generalized to dif-

ferent shared-memory architectures, including multi-core CPUs and many-core GPUs. The

proposed model extends the classical external memory model [4, 49] to parallel architectures

and considers important constraints on these systems, such as the on-chip memory access

time and the synchronization overhead.
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Figure 3.2 shows the hardware architecture model comprised of multiple compute cores that

share a fast on-chip memory connected to a slow off-chip memory. The compute cores can

only perform operations on data in their private on-chip memory, and each core executes

floating-point operations at a peak rate of π0 FLOPs per second. The floating-point through-

put is Π = np×π0, where np is the number of compute cores. The fast on-chip shared memory

is fully associative with a size of Z words, and it uses the least recently used (LRU) replace-

ment policy. The data is transferred between the compute cores, the fast memory, and the

slow memory in messages of L words. The fast on-chip shared memory has a latency αf and

a bandwidth βf , while the slow off-chip memory has a latency αs and a bandwidth βs.
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Figure 3.2: The abstract hardware architecture.

To reach a globally consistent memory state, the compute cores perform synchronization

operations whose cost depends on the memory latency and the number of compute cores.

Since the synchronization overhead, s0, significantly affects the execution time on parallel

architectures, especially at higher core counts [206, 65], the proposed model considers this

overhead. There are two synchronization types: (1) global synchronization, between coarse-

grained threads with different control units (threads on CPUs and workgroups/thread-blocks

on GPUs), and (2) local synchronization, between fine-grained threads with shared con-

trol units (SIMD lanes on CPUs and threads on GPUs). Given that local synchronization
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overhead is negligible compared to global synchronization (usually by at least an order of

magnitude) [206, 65], the proposed model ignores it.

Note, the main goal is to match the workloads to the best architecture from a set of parallel

architectures that are fundamentally different, for which our proposed high-level hardware

model works well. In light of this, the model abstracts away architecture-specific parameters

and low-level hardware details, e.g., hardware prefetchers and complex memory hierarchies.

Similarly, it ignores one-time cost overheads, such as thread creation/destruction, kernel

launching, and host-device data exchanges, which are highly-dependent on the runtime en-

vironment and the system/expansion bus rather than the target architectures.

3.2.2 Inferring the Architectural Specifications

AutoMatch figures out the specifications of hardware architectures using micro-benchmarking.

In particular, it uses the ERT [121], pointer-chasing [128, 202], and synchronization [206, 78]

micro-benchmarks to estimate the floating-point throughput and memory bandwidth, the

memory access latency, and the global synchronization overhead, respectively. To analyze

the effectiveness of AutoMatch, this work uses five heterogeneous architectures (two CPUs

and three GPUs) with different core counts and considers three subsets of architectures:

(ARC1, ARC3, ARC5), (ARC1, ARC2), and (ARC4, ARC5). The first subset contains

three significantly different architectures with few cores, hundreds of cores, and thousands

of cores, while the second and third subsets have two slightly different CPUs and GPUs,

respectively. Table 3.1 summarizes the specifications of target heterogeneous architectures.

Since modern on-chip memories support the inclusion property in their hierarchical organi-

zation [46], AutoMatch chooses the fast memory size, Z, to be the effective on-chip memory

capacity. On CPUs, Z is the last level cache; on GPUs, Z is the shared (local) memory and

L2 cache. While the proposed architecture model represents on-chip memory as a unified

fast memory, actual on-chip memories have complex hierarchies with multiple levels and

some levels are physically distributed (e.g., GPU’s local memory). Therefore, AutoMatch
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Table 3.1: The specifications of target hardware architectures.

Model Intel Intel Tesla Tesla Tesla

Parameter i5-2400 i7-4700 C2075 K20C K20X

ID ARC1 ARC2 ARC3 ARC4 ARC5

Clock (GHz) 3.1 2.4 1.15 0.732 0.732

np 4 4 448 2496 2688

π0 (GFLOPS) 20 33 0.9 0.41 0.42

Z (MB) 6 6 1.6 2.3 2.3

L (Byte) 64 64 128 128 128

βf (GB/s) 285 349 2117 2018 2424

αf (us) 0.004 0.004 0.028 0.045 0.045

βs (GB/s) 18.88 11.5 87.92 129.73 160.1

αs (us) 0.065 0.052 0.71 0.68 0.68

s0 (us) 0.2 0.44 7.22 6.5 6.5

estimates the fast memory bandwidth and latency, βf and αf , as the average memory band-

width and latency of the on-chip memory hierarchy. It turns out that the fast memory of

the target architectures is better than the slow memory by approximately a factor of 15 in

terms of memory bandwidth and latency. The only exception is ARC2, where the memory

bandwidth ratio between the fast and slow memories is ≈ 30.

Finally, AutoMatch estimates the global synchronization cost, s0, using barrier synchroniza-

tion between threads on CPUs and workgroups (thread-blocks) on GPUs. While there are

several global synchronization methods on GPUs, AutoMatch uses the host-implicit global

synchronization which is the simplest and most popular one [206]. Because the number of

active threads can significantly affect the synchronization overhead, AutoMatch estimates

the global synchronization cost at full occupancy, i.e., it launches one thread per logical

core on CPUs and four workgroups (thread-blocks) of dimension 32× 32 per compute unit

(streaming multiprocessor) on GPUs.
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3.2.3 Compiler-based Application Analysis

Design and Implementation

AutoMatch uses the LLVM compiler framework [113] and works on the intermediate repre-

sentation (IR) of the sequential code, which makes it language-independent and applicable

to any source code and programming language supported by the LLVM front-ends (e.g.,

C/C++, FORTRAN, and so on).

Figure 3.3 shows the design and implementation of the AutoMatch compiler. Clang and

other front-ends parse the sequential code of the target application and emit its IR without

any optimization. In case of multiple IR files, LLVM-LINK merges them into one file. Next,

OPT performs a set of canonicalization passes on the unoptimized LLVM IR. While the

most important pass is the memory-to-register translation, which promotes all temporal stack

memory allocation and accesses to registers and converts IR into the single static assignment

(SSA) form [132], other passes such as function inlining and constant propagation simplifies

the induction variables and control flow and makes the analysis easier. In addition, the

user provides the input data and target kernel name. After that, the AutoMatch compiler,

which is implemented in the execution engine of the dynamic compiler LLI, statically and

dynamically analyzes the optimized IR to extract the architecture-agnostic characteristics

of sequential code, which are combined with the specifications of the target heterogeneous

system to generate the final performance analysis and predictions.
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Figure 3.3: The design and implementation of AutoMatch compiler.
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Parallelism Analysis

AutoMatch uses a hybrid (static and dynamic) analysis to automatically quantify the inherent

parallelism in sequential applications, thereby estimating their computation time on the

different architectures for a given input data. In particular, it schedules the application on

a theoretical architecture with an infinite number of registers and compute units and a zero

memory access latency, such that each operation is executed as soon as its true dependencies

are satisfied. Figure 3.4 depicts our graph-structured program representation, where nodes

are dynamic instances of floating-point instructions (operations), denoted as Inm, and edges

are true dependencies between operations, after scheduling the compute operations on the

theoretical architecture using as soon as possible (ASAP) schedule constraints. For example,

if each dynamic instance m of a floating-point instruction In is scheduled at an execution

level j, then Inm must have dependencies at the execution level j − 1.

Level 0

Level 1

Level 2

Level n

Level n-1

Inm instance m of the floating-

point instruction In

True dependency

Figure 3.4: The ASAP schedule of the application operations on a theoretical architecture

with infinite resources.

This ASAP schedule is similar in spirit to the classical work-depth model [26, 49], which

represents the computations of a given algorithm using a directed acyclic graph (DAG)
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in which nodes and edges represent the compute operations and their data dependencies,

respectively. While the classical work-depth model requires manual analysis to quantify the

sequential part and average parallelism of a given algorithm, AutoMatch not only generates

the ASAP schedule automatically to estimate the computation time, but also considers the

workload imbalance, vectorization potential, instructions mix, and resource constraints of

the target architectures.

To identify the true dependencies between compute operations, AutoMatch uses several static

and dynamic analysis techniques. First, it constructs the def-use chains [132] at compile

time to track data dependencies through registers; due to the infinite number of registers,

only true dependencies exist. Second, it uses LLVM’s dynamic compiler, LLI, to profile

the application and collect the execution history of the compute instructions and memory

operations. Third, using the application execution history, AutoMatch implements a dynamic

points-to analysis [131, 106] to track data dependencies through the memory operations.

Leveraging a hash table that resembles a content-addressable memory (CAM), AutoMatch

dynamically detects true (read-after-write), anti (write-after-read), and output (write-after-

write) memory dependencies.

Based on the detected true dependencies, AutoMatch constructs the ASAP schedule of the

sequential application on the theoretical architecture and computes D, the number of ex-

ecution levels (i.e., the depth of the critical path), and wi, the total number of operations

in each execution level i. In addition, AutoMatch computes fim, the instruction mix of the

sequential application to estimate the performance degradation factor relative to the peak

floating-point throughput (π0) on parallel architectures with FMA (Fused Multiply-Add)

units. The instruction mix factor fim is defined as:

fim =
Wadd +Wmul

2×max(Wadd,Wmul)
(3.1)

where Wadd is the number of addition and subtraction operations, and Wmul is the number

of multiplication operations.

Moreover, AutoMatch leverages the LLVM vectorizer to identify the loops that are amenable
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to vectorization, and computes Wvec, the number of floating-point operations that can effi-

ciently utilize the vector (SIMD) units. Next, it estimates fv, the performance degradation

factor relative to the peak floating-point throughput on parallel architectures with vector

units, as follows:

fv =
Wvec

W
(3.2)

where W is the total number of floating-point operations.

Data Locality Analysis

AutoMatch quantifies the inherent data locality in sequential applications by analyzing their

memory access patterns on the above abstract architecture model, which assumes an ideal

cache-memory model. The main goal is to estimate the number of data transfers between the

compute cores and the fast memory, Qf , and between the fast and slow memories, Qs. Since

the proposed architecture model assumes that the fast memory is fully associative and uses

the LRU replacement policy, AutoMatch adopts the LRU stack distance analysis [127]. The

LRU stack distance (or reuse distance) is the number of distinct memory locations accessed

between two successive accesses to the same memory location; the LRU stack distance of the

first reference to a memory location is ∞. Figure 3.5 shows an example of the LRU stack

distance analysis on a memory access trace of 10 memory references.

Memory location accessed a c d b c e g e d d 

LRU stack distance ∞ ∞ ∞ ∞ 2 ∞ ∞ 1 4 0 

 

Figure 3.5: LRU stack distance analysis example

In a fully-associative cache with the LRU replacement policy, a memory reference with an

LRU stack distance larger than the fast memory size results in a miss or an access to the

slow memory. Hence, Qs and Qf can be estimated from the number of memory references

with an LRU stack distance larger than the fast memory size and the number of memory

references with an LRU stack distance less than or equal to the fast memory size, respectively.
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While the LRU stack distance analysis ignores the conflict and contention misses, AutoMatch

assumes that the memory transfers on parallel architectures are bounded by Qs and Qf , as

in prior work [27].

AutoMatch estimates the memory access cost of the target application as follows. First,

it dynamically analyzes the LLVM IR instruction stream (execution history) to capture

the load and store memory operations, and then records the referenced memory locations

(addresses) along with their last access time in a self-adjusting binary search tree [184],

which is sorted by the last access time. Second, whenever a memory location is referenced,

AutoMatch examines the memory tree to find the last access time; if the target memory

location does not exist in the memory tree, the current memory access has an LRU stack

distance of∞; otherwise, AutoMatch finds the distinct nodes accessed between the last access

to the target memory location and the current access; the number of such nodes is the LRU

stack distance of the current memory reference. Third, AutoMatch counts the number of

memory references with a particular LRU stack distance to generate the LRU stack distance

histogram. Finally, it combines this histogram with the specifications of target architectures

and the ASAP schedule of the application to compute Qf and Qs.

Synchronization Analysis

While the parallelization overheads consist of thread creation/destruction, kernel launch,

and synchronization, AutoMatch focuses on the synchronization for two reasons. First, unlike

the other overheads, the synchronization is not a one-time cost and can increase with the

problem size. Second, the synchronization overhead is significant on massively parallel GPU

architectures; as shown in Table 3.1, their synchronization overhead is an order of magnitude

higher than multi-core CPUs.

AutoMatch uses a heuristic for estimating the required global synchronization points to reach

a globally consistent memory state on parallel architectures. The proposed heuristic is based

on detecting loop-carried memory dependencies. AutoMatch dynamically analyzes the loop
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nests of the sequential application to find the inherently sequential loops (i.e., loops that

cannot run in parallel due to loop-carried memory dependencies) and the parallel loops. It

estimates the number of global synchronization points as the trip counts of the inherently

sequential loops with inner parallel loops. Figure 3.6 shows an example of two nested loops,

where the i-loop is inherently sequential and the j-loop is parallel; in this case, the number

of global synchronization points is n − 2. In addition, AutoMatch allows users to annotate

the source code to indicate the global synchronization points.

f o r ( i =1; i < n ; i++) {

f o r ( j =1; j < n ; j++) {

a [ i ] [ j ] = a [ i −1] [ j ] + 2 ;

}

}

Figure 3.6: Detection of global synchronization.

3.2.4 Analytical Modeling

Execution Cost Estimation

AutoMatch constructs the execution cost (EC) model that captures the complex interaction

of the application, input data, and target architectures. In addition, it can be generalized to

different types of hardware architectures. After analyzing the architecture-agnostic features

of the sequential application, AutoMatch combines these features with the specifications of

target architectures to generate first-order analytical models to estimate the computation

time, memory access time, and synchronization overhead.

The computation time, Tcomp, is estimated as:

Tcomp =
D

π0
+
∑ wi

min(wi, np)× (π0 × fv × fim)︸ ︷︷ ︸
∀i

(3.3)
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where D is the number of dependency levels, wi is the total operations for each dependency

level i, np is the number of cores, π0 is the maximum operation throughput per core, fv is the

vectorization factor, and fim is the instruction mix factor. This equation extends the classical

Amdahl’s law by considering the effect of instruction mix and vectorization potential on the

computation throughput. The first term models the sequential execution, which depends on

the inherent dependency chain, while the second term models the parallel execution that is

limited by either the available cores or work in a given execution (dependency) level.

The memory access time, Tmem, is computed as follows:

Tmem = (αf + αs)×D + (
Qf

βf
+
Qs

βs
)× L (3.4)

where αf and αs are the access latency of the fast and slow memories, βf and βs are the

memory bandwidth of the fast and slow memories, Qf is the number of memory transfers

between the compute cores and the fast shared memory, Qs is number of memory transfers

between the fast memory and the slow memory, D is the depth of the application ASAP

schedule, and L is the memory transfer size. This equation accounts for the memory latency

once per execution (dependency) level, and assumes that memory transfers are effectively

pipelined by the memory system such that they are limited by memory bandwidth.

The synchronization overhead, Tsyn, is estimated as:

Tsyn = S × s0 (3.5)

where S is the total number of global synchronization points, and s0 is the global synchro-

nization cost.

Finally, AutoMatch evaluates equations (3.1)-(3.5) to predict the execution cost on each archi-

tecture, which is estimated as the overall computation time, memory access time, and global

synchronization overhead. Moreover, AutoMatch predicts the parallel resource contention by

considering the access time to shared resources, such as the fast and slow memories, assum-

ing that they are shared fairly among threads. Next, AutoMatch combines the execution cost
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on the different architecture with the floating-point work of the application to predict the

maximum parallel performance on each architecture.

Workload Distribution

AutoMatch estimates the relative execution cost across the different architectures to drive a

workload distribution service for parallel compute kernels on heterogeneous CPU-GPU nodes.

The main objective of this runtime service is to distribute the workload (i.e., iteration space

and data) over the available heterogeneous architectures to minimize the overall execution

time. Instead of distributing the workload evenly across CPUs and GPUs, AutoMatch reduces

the overall execution time by considering the relative computing power of each architecture

with the execution cost prediction above. For example, if AutoMatch’s relative execution

cost of a compute kernel on the CPU and the GPU is three to one, its workload distribution

scheme partitions the workload into four parts and assigns three parts to the GPU and one

part to the CPU.

3.3 Evaluation

This section demonstrates the efficacy of AutoMatch and its utility as a first-order perfor-

mance prediction framework for sequential applications on heterogeneous HPC systems. The

experiments use AutoMatch to analyze the sequential implementation of target applications

and show its estimation in comparison to the heterogeneous parallel implementations.

The target applications are built by the following compilers: gcc 4.9, icc 13.1, and nvcc 7.5,

and AutoMatch is implemented in LLVM-3.6. While AutoMatch works with any data type

supported by LLVM, this work considers double-precision floating point only for brevity.

Since the key evaluation point is in the relative performance of the different HPC archi-

tectures at the chip level, the reported performance is for the core computational kernels

and ignores one-time cost overheads, such as I/O, data initialization (including host-device

transfer), profiling, and debugging.
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3.3.1 Performance Forecasting and Analysis Case study

This case study shows the effectiveness of AutoMatch in identifying the performance upper-

bound of sequential applications on heterogeneous HPC architectures and how close the

parallel implementation is to the best parallel performance. In addition, the study presents

the sensitivity of AutoMatch to variations in the architectural characteristics and its ability

to predict the relative ranking of the architecture alternatives.

We consider eight (8) HPC workloads from Rodinia [36] and Parboil [181] benchmarks with

different parallelism profiles and memory access patterns. The reason for choosing Rodinia

and Parboil is because they provide sequential/multi-threaded CPU implementations as

well as GPU implementations, which are used as reference for several black-box performance

prediction approaches [13, 17]. Table 3.2 presents the target workloads and the input data

sets provided by their benchmark suites.

Table 3.2: Rodinia and Parboil workloads.

Workload Description Input data

CUTCP Simulation of explicit-water biomolecular model which

computes the Cutoff Coulombic Potential over a 3D grid

watbox.sl40.pqr

STENCIL Iterative Jacobi solver on a 3D structured grid Grid 512x512x64

SPMV Sparse matrix-vector multiplication Dubcova3.mtx [52]

LBM Lid-driven cavity simulation using the Lattice-Boltzmann

method

120 120 150 ldc.of

LUD LU decomposition on a dense matrix Matrix 512x512

LavaMD Molecular-dynamics simulation which calculates the poten-

tial due to mutual forces between particles in a 3D space

boxes1d 10

HotSpot Thermal simulation and modeling for VLSI designs temp 1024

power 1024

SRAD Image processing used to remove locally correlated noise,

known as speckles

image 512x512
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Figure 3.7: Parallelism and LRU stack distance profiles

Figure 3.7 presents the parallelism and LRU stack distance profiles of the target workloads;

for brevity, it shows three workload results: STENCIL, SPMV, and LUD. AutoMatch indi-

cates that STENCIL is inherently parallel with a few execution levels and massive amounts

of work per level, and it has a uniform memory access pattern with few memory streams

corresponding to the dimensions of the data grid. SPMV has a small number of execution

levels; however, the work (number of compute operations) per level is significantly lower

than STENCIL, due to the sparsity of the input matrices. In addition, SPMV suffers from

low data locality, as the compulsory misses (memory references with LRU stack distance

∞) dominate the memory accesses. LUD has an irregular parallelism profile that alternates

between two bounds corresponding to the computation of the pivot column and the update

of the trailing sub-matrix, respectively. For LUD, the amount of work per execution level
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decreases as it moves down the critical path of the application schedule, which results in

workload imbalance. Moreover, LUD has scattered memory access streams, because the

data accessed decreases as the execution progresses due to workload imbalance.

Figure 3.8 shows AutoMatch’s estimation of the upper bounds of parallel performance com-

pared to the achieved performance of the OpenMP and CUDA implementations, while Figure

3.9 provides AutoMatch’s analysis of the execution bottlenecks on the different architectures.

The experiment considers the first subset of the target architectures (ARC1, ARC3 and

ARC5) which contains heterogeneous architectures with significantly different hardware ca-

pabilities. The results show that AutoMatch accurately identifies the best architecture and

the relative ranking of the different architectures in all test cases. Moreover, the actual par-

allel implementations do not exceed AutoMatch’s prediction, which indicates that AutoMatch

accurately predicts the performance upper-bound.

Figure 3.8: Achieved performance vs. AutoMatch’s upper bounds.

Optimization Studies

AutoMatch helps the user to determine how close the parallel implementations is to the

performance upper bounds. The results show that the gap between the achieved performance

and the estimated upper bounds on many-core GPUs (ARC3 and ARC5) is small in most

cases; however, this gap is quite large on the multi-core CPU (ARC1). In particular, the

actual parallel implementations show that GPU architectures achieve more than two orders-

of-magnitude speedup (up to 120×) over the CPU architecture, while AutoMatch reports

lower relative speedup between the two architectures (up to an order-of-magnitude speedup).
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Figure 3.9: AutoMatch’s prediction of execution bottlenecks.

The important question here is whether this performance gap is due to AutoMatch’s prediction

error or because the benchmark suites are not equally-optimized for each architecture type.

As Lee et al. [115] debunk the unrealistic 100X speedup of GPUs vs. CPUs and show that

it results from an unfair comparison with inferior CPU implementations, our hypothesis

is that the benchmark suites are not equally-optimized for each architecture type. After

inspecting their actual parallel implementations, it turns out that the CUDA implementation

is optimized whereas the OpenMP implementation is unoptimized, which is justified by the

following. First, the OpenMP implementation does not utilize the vector units, which reduces

the performance of compute-bound workloads (e.g., LavaMD and CUTCP). Second, the

OpenMP code is cache-unfriendly, e.g., it distributes loop iterations with unit-stride memory

accesses on different threads (STENCIL) and uses array of structures (LavaMD, CUTCP,

and LBM). Simple data-layout optimization can dramatically improve the performance of

CPU caches [42]. Third, the CPU code incorrectly uses GPU-specific optimizations, e.g.,

irregular applications (SPMV) use the GPU-friendly compressed format (JDS format).

To verify our hypothesis and to show that the estimated upper bounds are attainable, the

experiment here considers two cases: a regular workload (STENCIL) and an irregular work-

load (SPMV). First, AutoMatch indicates that STENCIL is bounded by the off-chip memory
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access time (see Figure 3.9), and it has a few memory access streams corresponding to the

dimensions of the input data grid (as detailed in Figure 3.7). We found that the original

workload distribution strategy (of the baseline OpenMP implementation) partitions the in-

put data grid along the X-axis, which has the smallest reuse distance or highest locality, and

distributes chunks of Y-Z planes over the different threads. Hence, we changed the workload

distribution strategy to distributes chunks of X-Y planes over the different threads.

Second, AutoMatch shows that SPMV suffers from low data locality and it has limited

parallelism (see Figure 3.7), which increases the load imbalance especially for architectures

with a massive number of threads. While the original OpenMP implementation uses the

jagged diagonal storage (JDS) format, which is more suitable for data-parallel architectures

with fine-grained parallelism [165], we use the compressed sparse row (CSR) format that

outperforms JDS on coarse-grained parallel architectures with large caches. In addition, we

used a dynamic workload distribution strategy that distributes chunks of 32 compressed rows

over the available cores.

As shown in Figure 3.8, the performance of our implementations, named STENCIL-OPT and

SPMV-OPT, is significantly better than the performance of the original implementations on

ARC1, which means that the estimated performance upper bounds can be achieved with

platform-specific optimizations and tuning. Moreover, while AutoMatch’s prediction gap of

the relative speedup is 91% on average for STENCIL and SPMV, it dramatically drops to

15.5% on average for STENCIL-OPT and SPMV-OPT.

The above optimization studies pinpoint the critical issue with the “black-box” prediction

approaches (e.g., profiling-driven and machine-learning). Since they rely on the performance

of a training set of parallel applications, their results can be easily fooled by heterogeneous

implementations that are not equally-optimized for each target architecture. In other words,

their predicted relative speedup (and prediction accuracy) can be misleading without the

availability of a diverse set of applications along with their optimized implementations for

each architecture type; in general, finding such applications is another daunting task.
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Finally, the gap between the the performance upper bounds and the achieved performance

on many-core GPUs is relatively large for LavaMD and CUTCP, which are bounded by

the compute time and on-chip memory access time according to AutoMatch’s analysis. The

investigation of the CUDA implementations of LavaMD and CUTCP shows that they suffer

from low occupancy (37% and 27%), due to the high registers and local memory usage which

limits the number of concurrently active wavefronts (warps) and workgroups (thread-blocks).

Kernel fission [203] can be used to improve the occupancy by partitioning the kernel into

smaller kernels with less resources usage.

Sensitivity Analysis

The experiment here considers the second and third subsets of target architectures, which

contain multi-core CPUs (ARC1 and ARC2) and many-core GPUs (ARC4 and ARC5)

architectures with similar hardware characteristics and capabilities (see Table 3.1).

Figure 3.10 shows AutoMatch’s performance prediction and the actual performance on these

architecture subsets. Surprisingly, AutoMatch accurately predicts the best architecture in

all the test cases, except for the LUD benchmark on multi-core CPUs, which shows that

our automatically-generated, high-level performance models are sensitive to the small vari-

ation of the target architectures. For LUD, AutoMatch indicates that it is bounded by the

fast memory access time on multi-core CPUs (ARC1 and ARC2), and its parallelism and

LRU stack distance profiles show a non-uniform memory access pattern, where the data

being accessed decreases as the execution progresses due to workload imbalance. Hence, our

hypothesis is that the higher memory bandwidth of ARC2 is underutilized due to the non-

uniform memory access pattern of LUD, leading to the incorrect ranking. While AutoMatch’

high-level memory model captures the data locality of the target applications, it does not

consider the uniformity of the memory access pattern and its effect on several hardware fea-

tures such as hardware prefetchers, memory coalescing units, and write buffers. In addition,

the micro-benchmarking approach has the same limitation, as it uses a stream-like memory

access pattern to measure the memory bandwidth of target architectures.
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Figure 3.10: The prediction sensitivity of AutoMatch.

3.3.2 Workload Distribution Case Study

This study shows the effectiveness of our workload distribution scheme based on the execution

cost model generated by AutoMatch from analyzing the sequential codes. Our scheme is

compared to an oracle workload distribution scheme obtained by runtime profiling of the

optimized parallel implementations.

To evaluate AutoMatch’s workload distribution, we use three applications from the structured

grids and sparse linear algebra design patterns, which are widely used in computational fluid

dynamics (CFD). MiniGhost [19] is a representative application for multi-material, hydro-

dynamics simulation. The main computational kernel is the finite difference solver, which

applies a difference stencil and explicit time-stepping scheme on a homogeneous 3D grid.

Heat2D solves the Poisson partial differential equations (PDEs) for heat diffusion in homo-

geneous two-dimensional grid [148]. SPMV is a canonical sparse-matrix dense-vector mul-

tiplication. The experiment uses the implementations provided by the MetaMorph library

[79], which supports the seamless execution of CFD applications on multiple heterogeneous
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devices, including CPUs (OpenMP back-end) and GPUs (CUDA back-end). In addition,

MiniGhost and Heat2D are configured to apply 3D 7-point and 2D 5-point stencils, respec-

tively, on a single global grid, and to use an explicit time-stepping with 100 time steps.

The target platform is a heterogeneous CPU-GPU node that includes ARC1 and ARC5

devices. Three different workload distributions are tested: default, AutoMatch, and Oracle

distribution. The default strategy is to distribute the workload evenly across the available

devices. The AutoMatch workload distribution uses AutoMatch to analyze the sequential

implementation and to predict the execution cost on the heterogeneous devices. Next, based

on the predicted execution cost, it distributes the workload to minimize the overall execution

time. The Oracle distribution is similar to AutoMatch strategy; however, instead of predicting

the execution cost, it profiles the parallel code on the target CPU and GPU and distributes

the workload based on the measured execution time.

Figure 3.11 shows the overall execution time of the target applications with the different

workload distribution strategies. The results demonstrate that the AutoMatch and Oracle

strategies achieve comparable performance, outperforming the default strategy by a factor

of 3.5× and 3.8× on average, respectively. In summary, AutoMatch’s workload distribution

achieves approximately 90% of the oracle performance, due to its accurate estimation of the

relative execution cost across CPU and GPU architectures.

3.3.3 Discussion

While AutoMatch generates simple and intuitive models, the results show that it works well

as a first-order framework; however, it has several limitations. First, AutoMatch ignores

one-time overheads such as host-device data transfers, which depend on the runtime system

and the expansion bus rather than the hardware devices, and assumes that the performance

is dominated by the compute kernels. While this is a valid assumption for long-running HPC

applications, extending AutoMatch to model the host-device interconnect and data transfers

enables the users to explore their effect on the overall performance. Second, AutoMatch
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Figure 3.11: The performance of compute kernels with the different workload distribution

strategies: Default, AutoMatch, and Oracle.

ignores low-level, architecture-specific features, such as hardware prefetchers, memory co-

alescing units, thread divergence, and resource occupancy. Although AutoMatch can be

extended, beyond its main goal as a first-order performance prediction tool, to incorporate

more sophisticated models (such as the MWP-CWP model[93]), there is a trade-off between

the tighter performance bounds and both the generalization to different architecture types

and the limited insight about the critical performance parameters.

3.4 Conclusion

This chapter presented AutoMatch, an automated framework that constructs a fine-grained,

graph-structured program representation using various compiler-based analysis techniques

to reason about the performance bottlenecks of sequential codes on heterogeneous HPC

architectures. AutoMatch combines this program representation with an abstract hardware

model, micro-benchmarking approach, and analytical performance modeling to project (1)

the realizable performance upper bounds of sequential applications on heterogeneous parallel
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architectures, (2) the relative ranking and performance of the architecture alternatives, and

(3) the best workload distribution strategy on HPC compute nodes with different parallel

hardware devices.

We implemented AutoMatch in the LLVM compiler framework, and used various static and

dynamic analysis techniques to quantify the application performance on different types of

parallel architectures, including multi-core CPUs and many-core GPUs. The experimental

results demonstrated the efficacy of the proposed framework across five different heteroge-

neous architectures and a set of HPC workloads, with different parallelism and memory access

patterns. In particular, AutoMatch’s workload distribution turns out to be very effective,

achieving comparable performance to the profiling-driven oracle.



Chapter 4

Automated Estimation of

Communication Cost and Scalability

4.1 Introduction

To deliver scalable performance to large-scale scientific and data analytic applications, HPC

cluster architectures adopt the distributed-memory model. These architectures are more

difficult to program than shared-memory models and require explicit decomposition and

distribution of the program data and computations, due to the lack of a single global address

space. The MPI programming model is the de facto standard for programming applications

on HPC clusters [56, 20]. MPI uses explicit messaging to exchange data across processes that

reside in separate address spaces, and it is often combined with shared-memory programming

models, such as OpenMP [146], to exploit the available compute resources seamlessly both

within a node and across nodes. Alternatively, the partitioned global address space (PGAS)

programming models (e.g., Chapel [55] and UPC [32]) abstract explicit communication using

distributed-memory objects; however, the user still needs to manage the data distribution

and locality across compute nodes.

49
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Current (and future) HPC cluster architectures suffer from an increasing gap between the

computation and communication costs, i.e., the cost of data transfers can be orders of

magnitude higher than the cost of compute operations [24]. Therefore, the performance

and scalability of user applications on HPC clusters are limited by the communication cost

across compute nodes. In particular, the asymptotic scalability/efficiency of a program on

distributed-memory architectures is determined by the growth of the communication with

respect to the problem size and the number of processes/nodes [76, 72].

Hence, fast and accurate prediction of the minimum communication cost and maximum

scalability of user applications plays a critical role in assessing the benefits of porting these

applications to HPC clusters as well as in guiding the development of efficient distributed-

memory implementations. Unfortunately, estimating the communication and scalability of

a given application is a complex and time-consuming process that requires extensive manual

analysis and a wide array of expertise in the application domain, HPC architecture, and

programming model.

Researchers have created several performance and scalability analyzers [18, 29, 33, 209, 73,

205] and communication pattern detectors [163, 96, 16] to study the effect of data transfers

on the application performance and to provide valuable insights on the optimization of the

communication bottlenecks. However, these tools are limited only to MPI implementations.

That is, the estimated communication is specific to the given MPI implementation and its

workload decomposition and distribution strategy rather than the inherent characteristics

of the original application. Moreover, due to the parallel programming effort and time on

distributed-memory systems, the MPI implementation is often not available in the early

stages of the development process.

Thus, there is a compelling need for automated tools, which can analyze the sequential user

applications and predict the communication cost of their parallel execution on distributed-

memory HPC clusters, to estimate the scalability and performance beforehand without need-

ing comprehensive knowledge of the target applications and cluster architectures.



51

4.1.1 CommAnalyzer Framework

This chapter presents CommAnalyzer, an automated framework for estimating the commu-

nication cost of sequential codes, to figure out the scaling characteristics of running them

in parallel on a distributed-memory HPC system. Figure 4.1 shows the proposed frame-

work which takes as inputs the sequential application code (written in any of the languages

supported by LLVM compiler [113]), representative input data, and the number of compute

nodes (e.g., 2-64 nodes).

Application

sequential code

Comm. Characterization Comm. Cost Estimation

Input data

Scalability Analysis Tools

No. of nodes

CommAnalyzer

Figure 4.1: Overview of CommAnalyzer framework.

The key idea is to reformulate the problem of estimating the communication of a parallel

program into that of analyzing the inherent flow of program values (information) in the

sequential application. Hence, CommAnalyzer uses novel dynamic program analyses that

build a value communication graph (VCG) from sequential codes taking into account the

data-flow behavior of their program values. Since parallel programs are typically optimized

to minimize the communication between compute nodes, their data transfers are likely to

serve as a cut for partitioning the VCG. CommAnalyzer in turn leverages graph partitioning

algorithms over the VCG to automatically identify sender/receiver entities and to estimate

their communication. As a result, for a given sequential application, CommAnalyzer allows

the user to project the performance upper-bound of its effective distributed-memory parallel

execution, regardless of the target programming model (e.g., MPI and PGAS).
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The communication cost estimation of CommAnalyzer can be used by scalability analysis

tools, such as Extra-P [29], to estimate the strong and weak scaling of the communication.

These tools perform regression analysis using the scaling functions (regression hypothesis)

that exist in HPC applications to estimate a user-specified metric (e.g., FLOPs, commu-

nication, etc.) at a large scale from a set of small-scale measurements or predictions with

different problem sizes and/or number of nodes. Furthermore, CommAnalyzer makes it pos-

sible to construct bound-and-bottleneck models of the parallel efficiency and scalability on

distributed-memory clusters.

Use Cases. CommAnalyzer accelerates the application and system design in the early stages

of the development process by allowing end users to figure out the communication cost and

scaling behavior of their sequential applications. As such, domain scientists can quickly make

informed decisions about the need to explore other solutions/algorithms to the problem at

hand to attain better parallel performance. That way, CommAnalyzer enables the system

designers to evaluate the HPC system design alternatives to achieve the required perfor-

mance. Even if a distributed-memory implementation of the target application is available,

CommAnalyzer still plays a critical role in the optimization process by generating bound-

and-bottleneck scaling models that show how close the current parallel implementation is

to the scalability/efficiency Roofline. In addition, by estimating the communication from

the sequential code rather than the MPI parallel code, CommAnalyzer empowers existing

scalability analysis tools for MPI applications to serve a wide range of end users.

4.1.2 Contributions

Unlike previous approaches that are limited by the imprecision of compile-time analyses [87,

201, 77], CommAnalyzer proposes a novel dynamic analysis approach that instruments the

sequential code to precisely capture the runtime information required to detect not only

static value-flow (communication) dependencies, but also dynamic value-flow dependencies

through multiple levels of access indirection. Thus, CommAnalyzer is applicable for both

regular and irregular problems and works also for programs that cannot be auto-parallelized.
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The following are the contributions of this work:

• A novel and automated approach for estimating the communication cost of sequential appli-

cations when ported to HPC clusters based on value-flow analysis, value liveness analysis,

dynamic program slicing, and graph algorithms. This approach quantifies the inherent

communication of sequential applications regardless of the underlying data structures,

and it is applicable for regular, irregular, and unstructured problems. Using the estimated

communication, we can successfully project the efficiency upper-bound of the effective

distributed-memory parallel implementations on HPC clusters (§4.4 and §4.5).

• Model validation and case studies using both regular and irregular workloads (matrix mul-

tiplication and sparse matrix-vector multiplication) as well as four structured and un-

structured representative applications (MiniGhost [19], Heat2D [148], LULESH [98], and

K-means [103]). The experimental results demonstrate the utility of CommAnalyzer in

identifying the minimum communication cost on HPC clusters with more than 95% accu-

racy on average. As a result, the optimized distributed-memory implementations realize

more than 92% of the estimated upper bounds on parallel scalability/efficiency (§4.6).

4.2 Background

4.2.1 Distributed-Memory Execution Model

We assume that the applications running on the target HPC clusters follow the single pro-

gram, multiple data (SPMD) execution model, which is the dominant approach on such

architectures [56, 20]. Figure 4.2 shows the SPMD execution model, where the program

data is partitioned and mapped to different processes (compute nodes) and all processes

execute the same program to perform computations on their data (i.e., owner-computes

rule). The data owned by each process is stored on its private (local) address space, and

when the local computations on a process involve non-local data, this data is accessed using

inter-process communication.



54

Process i

Private address space

Local data

Process j

Private address space

Local data
Inter-process comm.

Figure 4.2: The SPMD execution model.

4.2.2 Simple Estimation of Communication Cost

In the SPMD execution model, the inter-process communication results from dependencies

between local and non-local data. Therefore, a simple approach for estimating the commu-

nication cost is to partition the program data and then identify the data dependencies across

different partitions.

Figure 4.3 shows a simple communication estimation for matrix multiplication on distributed-

memory architectures. The sequential C code (a) is given to the compiler, and a traditional

data-flow analysis is used to identify the data dependence [132] (b) between the data items.

Next, a domain decomposition method such as block-cyclic (c) is used to partition and

distribute the input matrices over the compute nodes. Finally, the communication cost is

estimated as the number of data dependence edges between the data items that exist in differ-

ent nodes. This approach has been used by the auto-parallelizing compilers for distributed-

memory architectures [87, 201] in the early days of HPC. While this simple communication

analysis is sufficient for regular and structured problems such as matrix multiplication, real-

world scientific applications with irregular computation and unstructured memory access

patterns are a lot more challenging and therefore require sophisticated analysis techniques.

for (i = 0; i < n; i++){

for (j = 0; j < n; j++){

for (k = 0; k < n; k++){

C[i][j] += A[i][k] * B[k][j];

}

}

}

(a)  Sequential C code (b) Data dependence edges (c) Block-cyclic decomposition 

A B 

C 

A B 

C 

Figure 4.3: Simple estimation of communication cost for matrix multiplication.
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4.3 Challenges

for(i = 0; i < numElem; ++i){

for(j = 0; j < numNodes; ++i){

x[nodeA[i][j]] += y[nodeB[i][j]]*z[i]; 

}

} 

(a) Indirect memory access
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(b) Workspace structures mask the true data dependencies

Process 1Process 0

(c) Redundant communication

Figure 4.4: Challenges for estimating the communication cost.

4.3.1 Indirect Memory Access

Irregular and unstructured problems arise in many important scientific applications such

as hydrodynamics [94, 84]. These problems are characterized by an indirect memory access

pattern via index data structures, which cannot be determined at compile time. Figure 4.4(a)

shows an example of such an indirect access. Here, a traditional data-flow analysis fails to

precisely capture the data dependence between the x and y data arrays whose index is a

value determined at runtime. Thus, it is impossible to figure out which part of x (y) is

defined (used) due to the lack of runtime information.

4.3.2 Workspace Data Structures

In unstructured problems, it is common to gather data items from the program-level (domain-

level) data structures into workspace (temporary) data structures. The actual computations

are performed in the workspace, and then the results are scattered to the program-level

data structures. Usually, there are multiple levels of workspace data structures, i.e., the

intermediate results in a workspace are used to compute the values of another workspace.
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Figure 4.4(b) shows an example of an unstructured application that uses such workspace

data structures to perform its computations. In this common design pattern, workspace data

structures mask the true data dependence edges between the data items of the program-level

data structures. Hence, the data-flow analysis ends up generating a massive number of local

data dependence edges between the program-level data and the workspace data, which leads

to inaccurate estimation of the actual communication cost.

4.3.3 Singleton Data Items

Most scientific applications have singleton data items, i.e., data items that are used in almost

all the computations (e.g., simulation parameters and coefficients) and data items that use

the output of these computations (e.g., simulation error and time step). Hence, there is a

massive number of data dependence edges (communication edges) between these singleton

data items and the rest of the program data in the original sequential implementation.

However, typical MPI implementations create local copies of the singleton data items in

each process and use collective communication messages (e.g., broadcast and reduce) to

update their values at the beginning and end of the program and/or each time step, instead of

accessing their global copy via inter-process communication in every dependent computation.

Therefore, the detection of singleton patterns is very important for an accurate estimation

of the communication cost.

4.3.4 Redundant Communication

Computing the communication cost as the number of data dependence edges between data

items that exist in different processes is subject to overestimation. Figure 4.4(c) shows an

example of the communication overestimation, where two items in process 0 use a single

data item in process 1 and its value did not change between the two uses. If there is

sufficient memory space at process 0 to store the required data value, it can be read only
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once (instead of two times) from process 1. While the exact data-flow analysis can detect

this case in regular applications and remove the redundant communication, it is not possible

to do the same for irregular applications due to the indirect memory access.

4.4 CommAnalyzer Approach

It is a daunting challenge to analyze sequential codes and predict the communication cost

of running them in parallel on HPC clusters without the distributed-memory parallel codes.

CommAnalyzer relies on the following observation; HPC developers always optimize (min-

imize) the communication of their distributed-memory parallel programs across compute

nodes. In particular, the communication cost of the resulting SPMD implementation cannot

be smaller than the inherent data-flow (communication) cost of the original sequential pro-

gram, which would otherwise break the program correctness. As a result, analyzing the data

communication in the sequential codes can serve as a basis for estimating the communication

cost of their distributed-memory implementations. However, this presents another challenge,

i.e., how to figure out the inherent data communication of the sequential program regardless

of its underlying data structures.

The main idea to tackle this challenge is to view the sequential program as an entity that

consumes input values, computes intermediate values, and produces output values, as well

as to analyze their behaviors. In a sense, these values are small pieces of digital information.

Similar to genes, which are small pieces of heredity information, the program values are not

constrained by the underlying data structures. Rather, such values can interact, replicate,

and flow from one data structure to another as well as evolve to new values. Actually, the

program data structures are mere value containers, i.e., placeholders of the program values.

In this view, a single value can exist in more than one memory location, and it can even

get killed in its original memory location (where it was generated) while it remains alive in

another memory location.
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Algorithm 1 CommAnalyzer algorithm

Input: PROGRAM, N

Output: COMM COST

1: VAL FC ← ValFcDetection(PROGRAM)

2: VAL LIVE ← ValLiveAnalysis(PROGRAM)

3: VCG ← CommGraphFormation(VAL FC, VAL LIVE)

4: VAL PMAP ← ValDecomposition(VCG, N)

5: COMM COST ← CommEstimation(VAL FC, VAL PMAP)

To this end, CommAnalyzer uses a dynamic analysis technique, which is based on dynamic

program slicing, to analyze the generation of values, the flow of values, the lifetime of values,

and the interactions across values, thereby building the value communication graph (VCG).

Algorithm 1 shows the top-level CommAnalyzer approach which takes the sequential program

(along with representative input data) and the number (or range) of compute nodes, and

then computes the communication cost across these nodes when the program is ported

to distributed-memory architectures. In the first place, CommAnalyzer characterizes the

inherent communication of the sequential program by detecting the dynamic flow of the

program values which is encoded as value-flow chains defined as follows:

Definition 4.1 (Value-Flow Chain (VFC)). For a given program value, v, its value-flow

chain consists of v itself and all the other values on which v has data dependence, where the

values are defined as a set of unique data observed in the memory during program execution.

CommAnalyzer also analyzes the live range [132] (interval) of the program values. Together

with VFCs, it is used to generate the value communication graph (VCG) of the program.

Then, CommAnalyzer decomposes the VCG into multiple partitions to map the program

values that are tightly-connected, due to high-flow traffic between them, to the same com-

pute node/process. Once the program values are mapped to the different compute nodes,

CommAnalyzer uses the owner-computes rule (see §4.2) to estimate the communication cost

by analyzing the value-flow chains across the compute nodes.
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4.4.1 Communication Characterization

This section first defines the terminologies used in analyzing the input sequential program

and then describes how the inherent communication is understood. CommAnalyzer defines

program values as a set of unique values observed at runtime, and they are classified into

three categories: input, output, and intermediate values. The input values are the program

arguments and any memory location read for the first time at runtime, while the output values

are the returned data or those that are written to the memory and last until the program

termination. During program execution, the program values existing in memory locations

can be killed with their updates, i.e., losing the original value. That way, program values can

end up existing in memory locations only for a limited interval, and CommAnalyzer considers

them as intermediate values. Note, if a value remains in at least one memory location, it is

still live thus not an intermediate value. In addition, any program value that exists only in

registers is treated as an intermediate value.

Algorithm 2 shows the high-level algorithm for calculating the value-flow chains (i.e., the

inherent communication). CommAnalyzer needs to identify the unique values observed at

runtime and then to investigate the flow across the values by figuring out the dependence in

between. It is therefore important to know what value is currently stored in a given memory

address during program execution. For this purpose, CommAnalyzer uses a shadow memory

(MemVal) to keep track of program values that exist in the memory at the granularity of

the memory word. Thus, each shadow memory location tracks the latest value stored in

the corresponding location in the original memory. Since CommAnalyzer works on the static

single assignment (SSA) form [132] of the sequential code (e.g., the LLVM IR [113]), there

is no need to track (name) the intermediate values that exist in the registers.

For each store (write) instruction during program execution, CommAnalyzer generates a

dynamic program slice from the execution history using the reduced dynamic dependence

(RDD) graph method [5]. This slice is the set of dynamic IR instructions involved in the

computation of the value (v) being stored in the memory. To determine those values on
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Algorithm 2 Value-flow chain detection algorithm

Input: PROGRAM

Output: VAL FC

1: Values = {} . program values

2: MemVal = {} . shadow memory-to-value map

3: for each: dynamic store (write) operation w do

4: DS ← DynamicSlicing(w, PROGRAM)

5: v, s ← ValueFlowAnalysis(DS, MemVal)

6: if v /∈ Values then . writing new value

7: Values = Values ∪ v

8: VAL FC = VAL FC ∪ (v , s)

9: end if

10: MemVal [address(w)] = v

11: end for

which the value v depends, CommAnalyzer traces it back inspecting the instructions and the

registers along the data dependence edge of dynamic slice 1. Such a dependence backtracking

continues for each data dependence edge until it encounters another value that has been rec-

ognized using the shadow memory (MemVal); whenever a new value is found, CommAnalyzer

keeps it in the Values set (line 1 of Algorithm 2). Here, the found value turns out to be used

in the computation of the value (v) being stored; it is said the former flows to the latter

while the former is called a source value. At Line 5 of Algorithm 2, CommAnalyzer calculates

s which is the set of all the source values over the slice of v being stored.

If such a value (v) does not exist in the Values set (i.e., new value), CommAnalyzer adds the

value-flow chains between v and s to the set of the program value-flow chains (VAL FC)

and updates the Values set; otherwise, v is not unique and already exists in Values, and

the store instruction just replicates this value and writes it to a new memory location.

Usually, the value replication happens when the dynamic program slice does not contain any

1The outgoing edges of circle nodes in Figure 4.5 correspond to data dependence edges.
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compute instructions (e.g., direct load-store relation). Finally, CommAnalyzer updates the

shadow memory MemVal with the new value. Further, at the end of the program execution,

CommAnalyzer performs the same value-flow chain detection for the return variables.

Figure 4.5 shows a simple example of the value-flow chain detection. For brevity, the example

shows the thin dynamic slice [177] instead of the actual dynamic slice, i.e., it excludes

the instructions that manipulate the memory pointers. After CommAnalyzer generates the

dynamic slice of the target store instruction (a), it uses the shadow memory (b) to track the

program values in the memory locations, and then it detects the value-flow in the dynamic

slice. Since the exact memory addresses are available in the dynamic slice, CommAnalyzer

inspects the shadow memory and records that registers #4 and #11 have values V0 and

V1, respectively. Next, a new value is computed in register #12 using the values V0 and

V1, and the target store instruction writes this value to the memory. Finally, CommAnalyzer

adds the new value-flow chain (V2, {V0, V1}) in the set of the value-flow chains VAL FC.

%2= …

%3 = getelementptr inbounds double* %indata, i64 %2

%4 = load double* %3

%9 = …

%10 = getelementptr inbounds double* %indata, i64 %9

%11 = load double* %10

%12 = fadd double %4, %11

%15 = …

%16 = getelementptr inbounds double* %outdata, i64 %15

store double %12, double* %16

V0

V1

V2

#4

V0

(a) Dynamic slice (IR code) (b) Value shadow memory

#11

V1

#12

V2

(c) Value-flow analysis

V2

V0 V1

(d) Resulting value-flow chain

Figure 4.5: An example of value-flow chain detection.

4.4.2 Communication Cost Estimation

Value Communication Graph Formation

After the detection of the value-flow chains (VFCs) between program values, CommAnalyzer

creates the value communication graph V CG(V,E), where V is a set of vertices that rep-

resents the program values and E is a set of edges that represents the value-flow chains.
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This is achieved by generating a communication edge between the values in each value-flow

chain. Specifically, at Line 5 of Algorithm 2, a connection edge is made between v and every

source value in s. V CG(V,E) is a directed and weighted graph, where the weight w of a

communication edge represents the number of times the sink (destination) value uses the

source value.

Value Graph Compression. CommAnalyzer utilizes the value liveness [132] (VAL LIVE),

which is generated during the dynamic value analysis, to reduce the communication graph

size. An intermediate value is killed when it does not exist in the registers or the program

memory. CommAnalyzer coalesces the vertices of the intermediate values that share the

same memory location at non-overlapping liveness intervals into a single vertex. Such values

are multiple exclusive updates to a single memory location. This vertex coalescing does

not impose artificial constraints on the program data partitioning according to the SPMD

execution model, where processes compute all the intermediate values for the data items

(memory locations) that they own. Finally, after the graph compression, CommAnalyzer

updates the weights of the new vertex and edge sets of the value communication graph

V CG(V,E) to account for the communication cost before graph compression.

Singleton Detection and Removal. The singleton values appear in most scientific appli-

cations and are characterized by extreme connectivity, i.e., a massive number of incoming

and/or outgoing communication edges. Example of these values are the simulation coef-

ficients, parameters, and time step. To reduce the communication on distributed-memory

architectures, the singleton values should not be mapped to a specific compute node (pro-

cess). Instead, each compute node creates a local copy of the singleton data items and uses

global communication to exchange their values once per the simulation execution and/or the

simulation time step. In fact, automated singleton detection and removal is well known in

large-scale circuit simulations [188, 78]; specifically, it reduces the overall communication by

automatically detecting and duplicating the singleton power/clock circuit nodes in each pro-

cess. Similarly, CommAnalyzer adopts a threshold-based scoring approach for the singleton

detection, which is a simplified variant of the proximity-based outlier detection methods [88].
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Algorithm 3 Singleton Detection Algorithm

Input: VCG

Output: S VAL

1: S VAL = {}

2: for each: vertex v ∈ VCG do

3: score ← max( DensityS(VCG, v), DistanceS(VCG, v) )

4: if score ≥ HIGH then . HIGH = 90%

5: S VAL = S VAL ∪ v

6: end if

7: end for

Algorithm 3 shows the high-level singleton detection algorithm where the following definitions

are used:

Definition 4.2 (Value Degree Centroid). The centroid is the minimum of the mean and the

median value degree over the VCG, where the value degree of v is defined as the number of

value vertices adjacent to v in the VCG.

Definition 4.3 (Value Degree Distance). The degree distance of a value d(v) is the distance

between its degree and the centroid of the value degree cluster.

For each value vertex in VCG, CommAnalyzer computes the singleton score, which is the

maximum of the density-based score and the distance-based score. When the singleton score

is high, the value vertex is identified as a singleton, as shown in Figure 4.6. The density

score of a value v is the density of its row and column in the value adjacency matrix, while

the distance score is computed by analyzing the value degree distribution of the VCG. If

the degree of v is larger than the degree centroid, the distance score of v is computed as

1−(centroid/d(v)); otherwise, the distance score is zero. That is, the distance score estimates

how positively far v is from the centroid.

Once CommAnalyzer identifies the singleton vertices, it removes them from the communica-

tion graph, and maps the remaining values to the compute nodes using graph partitioning.
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Figure 4.6: Automated detection of singleton values (with extreme connectivity) using the

threshold-based scoring algorithm.

Finally, it creates a local copy of the singleton values in each compute node, and accounts

for the singleton global communication to project the total communication cost.

Value Decomposition

To predict the minimum communication across compute nodes, CommAnalyzer maps the

program values to the compute nodes using a customized graph partitioning algorithm.

The value mapping problem has three different optimization objectives: 1) maximizing the

load balance which is estimated as the weighted sum of the vertices in each compute node,

2) minimizing the communication across the compute nodes which is the weighted sum

of the edge cuts, and 3) generating connected value components in each compute node.

CommAnalyzer uses the multilevel partitioning heuristics [100] to solve the value mapping

problem in polynomial time, and then generates VAL PMAP which maps each vertex in the

value communication graph to a specific compute node. Figure 4.7 shows a simple example

of the value decomposition using the graph clustering and partitioning algorithms. Finally,

CommAnalyzer maps local copies of the singleton values to each compute node.



65

Figure 4.7: Value decomposition using graph clustering and partitioning algorithms.

Communication Cost Estimation

Once the value communication graph (VCG) is decomposed, CommAnalyzer is ready to

estimate the overall communication cost and intensity across compute nodes using the value-

flow chains and the obtained value decomposition.

Algorithm 4 shows the high-level communication estimation algorithm. Once the program

values are mapped to the different compute nodes, all the value-flow pairs with non-local

values are identified as communication edges. Then, CommAnalyzer removes the redundant

communication by pruning the communication edges that carry the same value between the

compute nodes, as the destination (sink) node needs to read this value once and later reuse

the stored non-local values (see Figure 4.4(c)).

Algorithm 4 Communication Estimation Algorithm

Input: VAL FC, VAL PMAP, S VAL

Output: COMM COST

1: commEdges ← CommDetection(VAL FC, VAL PMAP)

2: commEdges ← RedundantCommPruning(commEdges)

3: COMM MAT ← CommMatGeneration(commEdges)

4: COMM MAT← SingletonComm(COMM MAT, S VAL)

5: COMM COST← TotalCost(COMM MAT)
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The final set of communication edges (after pruning) are used to update the corresponding

entries in the communication matrix COMM MAT. An entry (i, j) in the communication

matrix represents the amount of the data transferred from a compute node i to j during the

program execution. Next, CommAnalyzer accounts for the singleton communication patterns

to generate the final communication matrix. While there are several options to synchro-

nize the singleton values, such as broadcast, reduce, allgather, and allreduce, the minimum

communication cost to synchronize a singleton value is O(p − 1), where p is the number of

compute nodes. In particular, source (input), sink (output), and reduction (input/output)

singleton values require at least p−1, p−1, and 2(p−1) communication words, respectively.

CommAnalyzer uses this lower bound to account for the singleton communication cost.

Finally, CommAnalyzer estimates the communication cost as the overall cost of the above

communication matrix, and then computes the communication intensity of the program.

The communication intensity of an application is Ic = C/W , where C is the communication

cost in bytes and W is the work in FLOPs. CommAnalyzer computes W by counting the

number of floating-point IR instructions during the program instrumentation.

4.4.3 Implementation and Complexity

We implemented the proposed approach for communication cost estimation on HPC clusters

(explained above) using the LLVM compiler infrastructure [113].

CommAnalyzer uses the LLVM front-ends to parse the sequential code and to transform it

to the LLVM Intermediate Representation (IR). The main dynamic analysis algorithm is

implemented using the dynamic compiler LLI and works on the static single assignment

(SSA) form of the LLVM IR. CommAnalyzer instruments the sequential IR and runs it with

the provided input data set on top of LLI to characterize its inherent communication. Next,

CommAnalyzer generates the value communication graph (VCG) to estimate the communi-

cation cost of the sequential IR code on distributed-memory models.
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The time complexity of the instrumentation stage (§4.4.1) is linear, as generating the dy-

namic program slice using the reduced dynamic dependence (RDD) graph method requires

a fixed number of operations for each dynamic instruction. The memory complexity of

the instrumentation depends on the inherent communication of the sequential code. For

embarrassingly-parallel code, the memory complexity is linear (shadow memory), and if the

code is fully connected (each value depends on all other values), the memory complexity is

quadratic in the worst case (shadow memory and adjacent values). However, in practice,

each value depends on a limited number of neighboring values, i.e., the adjacency matrix

representation of VCG is sparse even for structured and dense code (see §4.6). Note that the

number of vertices of VCG is bounded by the number of memory words as the intermediate

values in a single memory location are stored as one vertex in VCG.

The offline analysis (§ 4.4.2) has a time complexity of O((|V | + |E|) log p) and a memory

complexity of O(|V | + |E|), where V and E are the sets of vertices and edges of VCG, and

p is the number of distributed-memory compute nodes.

4.5 Efficiency Roofline Model

To show the importance of estimating the communication cost and intensity (Ic) of a given

sequential application, this section proposes a high-level model to project the efficiency

upper-bound on distributed-memory architectures. Our analysis is inspired by the Roofline

model [200] which shows that the performance on shared-memory systems is bounded by

the computation intensity of the application, the memory bandwidth, and the floating-

point throughput, and ignores several overheads such as the memory access latency, paral-

lel/scheduling overhead, and resource contention. Such simple bound and bottleneck analysis

is useful for projecting the performance in the early stages of the development process and

for optimizing the actual parallel implementation to minimize the gap between the upper-

bound and the achieved performance. Section 4.6 shows the effectiveness of the proposed

models for projecting the performance upper-bound of real-world HPC workloads.
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In the analysis, we use the following notations:

• n, p: the problem size and the number of compute nodes.

• T1(n): the single-node execution time.

• To(n, p): the parallel overhead function.

• E(n, p): the parallel efficiency, i.e. speedup/p.

According to the classical isoefficiency analysis [76, 72], the asymptotic efficiency of a given

application on distributed-memory architectures is determined by the growth of the total

work performed and the amount of data exchanged with respect to the problem size and the

number of nodes. In particular, the parallel efficiency function is given by 2:

E(n, p) = 1/(1 +
To(n, p)

T1(n)
) (4.1)

To project the efficiency upper-bound Eu(n, p), we estimate the lower-bound on the overhead

function as follows:

To,l(n, p) =
C × (1−Oc)

Bc

(4.2)

where C is the communication in bytes, Bc is the network bisection bandwidth, and OC is

the maximum communication overlap.

The single-node execution time can be formulated as:

T1(n) = W/R (4.3)

where W is the work in FLOPs, and R is the single-node throughput.

By substituting equations (4.2) and (4.3) for To(n, p) and T1(n) in equation (4.1), and us-

ing the communication intensity definition (i.e., Ic = C/W ), the efficiency upper-bound is

computed as:

Eu(n, p) = 1/(1 +
R× Ic × (1−Oc)

Bc

) (4.4)

2 The readers can refer to [72] for understanding how equation 4.1 is derived from the ratio of the speedup

to the number of nodes.
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As such, this equation binds the efficiency upper-bound, single-node throughput, commu-

nication intensity, and network bandwidth. The communication intensity (Ic) is obtained

by CommAnalyzer, while the single-node throughput (R) can be estimated by analytical

modeling [176, 43], simulation [25, 31], or simply running the single-node implementation

on one node of the target cluster. To figure out the effective bisection bandwidth (Bc)

and the maximum communication overlap (Oc), we use Netgauge [89, 90] and Sandia MPI

Micro-Benchmark Suite (SMB) [57], respectively. Netgauge measures the bisection band-

width across a randomly-generated ring process topology to stress the different paths across

the network. SMB measures the ability of the MPI library, runtime system, and network

hardware to support independent progress of the non-blocking communication (send-recv)

operations for different message sizes (8-1M Bytes). This metric is platform-specific and

represents the maximum overlap that can be achieved by the application using non-blocking

communication.

Finally, the lower-bound on the parallel execution time is:

Tp,l(n, p) =
T1(n)

p× Eu(n, p)
(4.5)

4.6 Evaluation

We illustrate the capabilities of CommAnalyzer using two benchmarks and four real-world

HPC applications. Table 4.1 presents the workloads and input data sets considered in the

case studies.

In the experiments, we use strong scaling, where the total work is fixed on the different

number of compute nodes, as it is the most challenging problem for the parallel efficiency

prediction; in particular, at higher node counts, the average parallelism decreases, and the

parallel/scheduling overhead and resource contention become the dominant efficiency bot-

tlenecks. In addition, we explore the weak scaling problem for unstructured hydrodynamics

code, which is the standard configuration for LULESH on HPC clusters [98].
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Table 4.1: Target HPC benchmarks and applications.

Application Description Input data

MatMul Traditional matrix multiplication Three matrices of size 4K×4K

SPMV Sparse matrix vector multiplication with

Compressed Sparse Row (CSR) format

Dense square matrix of order 32K

MiniGhost [19] Representative application of hydrody-

namics simulation of solid materials in a

3D grid

3D Grid of size 1K×1K×1K

Heat2D [148] Canonical heat diffusion simulation in a ho-

mogeneous 2D space

2D Grid of size 32K×32K

LULESH [98] DARPA UHPC hydrodynamics challenge

problem for Lagrangian shock simulation

on an unstructured hexa-hedral mesh

Strong Scaling Problem: Mesh of

size 2403, Weak Scaling Problem:

Mesh of size 1203

K-means [103] Unsupervised machine-learning application

for data clustering

10M data objects in 34D features

space clustered into 5 groups

The estimated communication and performance is evaluated in comparison with the actual

MPI+OpenMP implementations. These parallel implementations utilize non-blocking com-

munication to hide the communication latency, and use MPI THREAD FUNNELED mode,

where the main thread executes the MPI calls. The applications use double-precision floating

point data types; however, the analysis works with any data type supported by LLVM.

4.6.1 Experimental Setup

As depicted in Figure 4.1, to estimate the communication and scalability at a large-scale

problem n, the experiments leverage CommAnalyzer to analyze the sequential code of the

target workloads with different problem sizes, where the largest problem size is at most

n/64 3. Using CommAnalyzer’s communication cost, scalability analysis tools can project

3Additional experiments with small-scale input data sets are available at [81].
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the strong and weak scaling of the communication. Specifically, the experiments use Extra-

P [29], a scalability analysis tool from Scalasca toolset [68], with the typical settings.

Using the estimated communication cost, we project the efficiency and performance Roofline

(see §4.5) on the target HPC cluster. The performance is presented as the grind time, i.e.,

the execution time/iteration/data element, and it has the same estimation accuracy as the

parallel efficiency (see equation 4.5). The reported communication and performance is for

the core application kernels and ignores the initialization, setup, and profiling code. The

applications run for 100 iterations, and the experiments are repeated 5 times. The error

bars show the 95% Confidence Interval.

Test Platform

The test platform is a Linux cluster consists of 196 nodes, and each node contains Intel Xeon

processor E5-2683v4 (Broadwell) running at 2.10 GHz. The nodes are connected with an

Intel OPA interconnect. The platform uses a batch queuing system that limits the number

of nodes per user to 64 nodes. The test system runs CentOS Linux 7 distribution, and the

applications are built using gcc 5.2 and OpenMPI 2.0. In the experiments, we launch one

MPI process per node and limit the number of cores per process to 16, as using more cores

increases the chance of high variance and reduced performance [151, 18].

To evaluate the efficiency Roofline model on the target cluster, we estimate the hardware

parameters using the benchmarking approach detailed in §4.5. Specifically, we use Netgauge-

2.4.6 [89, 90] and SMB-1.0 [57]. Figure 4.8 shows the effective bisection bandwidth per node

on the target cluster. The average value of the communication overlap factor Oc on the test

platform is 0.57, i.e., with enough computations to hide the data transfers, the application

developer can overlap around 60% of the communication time on average. The application

throughput per node R(n) is estimated by running the single-node implementations on one

node of the cluster.
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Figure 4.8: The effective bisection bandwidth per node.

Analysis Overhead

As explained in §4.4.3, the time and memory overheads of CommAnalyzer are bounded by the

VCG (Value Communication Graph) size, which depends on the inherent flow of information

(communication) in the sequential code and can be quadratic in the worst case (if the code

is fully connected). Table 4.2 shows the growth of the VCG size with respect to the problem

size for the test applications and the size of the largest VCGs used in the experiments4. The

results show that the VCG size grows much slower than the worst case even for dense linear

algebra (MatMul). In most applications, the VCG size grows linearly with the problem size

(i.e., each program value is connected to a limited number of neighboring values), while the

VCG size of MatMul is approximately O(n1.5).

Table 4.2: The size of value communication graph (VCG).

Application Problem size n VCG size (n) Largest VCG size

MatMul Matrix size O(4 n1.5) 8.01 GBs

SPMV Sparse matrix size O(2 n) 0.5 GBs

MiniGhost Grid size O(16 n) 4.1 GBs

Heat2D Grid size O(12 n) 3 GBs

LULESH Mesh size O(1568.2 n) 5.05 GBs

K-means Data objects size O(2 n) 0.16 GBs

4Detailed examples are available at https://github.com/vtsynergy/CommAnalyzer.
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4.6.2 Benchmarks

First, we evaluate the accuracy of CommAnalyzer using two canonical regular and irregular

workloads: MatMul and SPMV. MatMul is a traditional matrix multiplication benchmark.

The MPI implementation of MatMul uses block-cyclic domain decomposition to distribute

the matrices over the compute processes using 2D (square) process topology. SPMV is a

sparse matrix-vector multiplication using the compressed sparse row (CSR) format/repre-

sentation. SPMV is an irregular application with indirect memory accesses through index

arrays. To minimize the communication overhead, the MPI implementation of SPMV uses

1D domain decomposition to distribute row blocks of the input sparse matrix and chunks

of the input and output vectors. Each process computes a part of the output vector us-

ing its row block and the required elements of the input vector, which could exist in other

processes. Therefore, the communication cost depends on the density of the input matrix.

When the matrix is dense or semi-dense, each process requires (p− 1) remote chunks of the

input vector, where p is the number of processes, to compute its part of the output vector.

Finally, the processes exchange the output vector using collective communication.

Figure 4.9 shows the estimated communication and performance in comparison with the

actual MPI+OpenMP implementations for MatMul and SPMV. For the two benchmarks,

the actual communication intensity is bounded by 98% of the estimated value. In SPMV,

CommAnalyzer detected n output singleton values, where n is the vector size, corresponding

to the output vector. In addition, due to the density of the input matrix, CommAnalyzer iden-

tified n input singleton values which constitutes the input vector. The actual MPI+OpenMP

implementations realize 99% and 96% of the efficiency upper-bound on average for MatMul

and SPMV, respectively, while the maximum efficiency gap is 12%. At 64 nodes, SPMV

attains 88% of the projected efficiency, as the execution time per iteration drops to a few

milliseconds and fixed overheads, such as the parallelization, scheduling, and communication

setup overheads, become the dominant efficiency bottlenecks.
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(a) MatMul

(b) SPMV

Figure 4.9: The communication cost and performance of MatMul and SPMV benchmarks.

4.6.3 MiniGhost and Heat2D

MiniGhost [19, 20] and Heat2D [148] are two regular HPC applications that use the struc-

tured grids design pattern, where a physical space is mapped to a Cartesian grid of points.

Typically, the value of grid points represents a material state, such as the temperature,

energy, and momentum. MiniGhost is a representative application for 3D hydrodynamics

simulation that models the flow and dynamic deformation of solid materials. Heat2D is

a canonical heat transfer simulation that solves the Poisson partial differential equations

(PDEs) of heat diffusion in a homogeneous 2D space. The two applications use the iterative

finite-difference method with an explicit time-stepping scheme to solve the simulation equa-

tions. Specifically, Figure 4.10 shows the 3D 7-point and 2D 5-point finite-difference stencils

used in MiniGhost and Heat2D, respectively.
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Figure 4.10: The finite difference stencils used in MiniGhost and Heat2D.

Typically, the distributed-memory implementations of structured grids applications use do-

main decomposition to partition the global grid into multiple sub-grids, and to map each

sub-grid to a specific process. To compute the values of the sub-grids in each time step, the

processes exchange boundary elements (2D faces and/or 1D lines) with neighbors, which is

known as halo exchange. Therefore, the communication volume depends on the surface area

of the sub-grid boundaries and the total number of sub-grids (processes).

Figures 4.11 shows the estimated and achieved communication intensity and performance

of MiniGhost and Heat2D. The two applications use 1D domain decomposition/process

topology by default to reduce the message packing/unpacking overhead, and to ease the

programming/debugging effort. However, the results show that the projected efficiency

Roofline is only attainable using 3D and 2D domain decomposition/process topologies for

MiniGhost and Heat2D, respectively. In particular, when 1D domain decomposition is used

by the distributed-memory implementations of MiniGhost and Heat2D, the efficiency gap can

be as large as 20% with one order-of-magnitude higher communication intensity. When the

optimized MPI implementations use multi-dimensional domain decomposition, the actual

communication intensity reaches 97% of the estimated value on average. In some cases,

the optimized MPI applications slightly exceed the projected parallel efficiency, due to the

improved cache performance in comparison with the single-node implementations.
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(a) MiniGhost

(b) Heat2D

Figure 4.11: The communication cost and performance of MiniGhost and Heat2D.

4.6.4 LULESH

LULESH [98] is a Lagrangian shock hydrodynamics simulation that represents more than

30% of the DoD and DoE workloads [144], and one of the five DARPA UHPC challenge

problems. LULESH solves the Sedov blast wave problem [172] in 3D space using an unstruc-

tured, hexa-hedral mesh. Each point in the mesh is a hexahedron with a center element

that represents the thermodynamic variables (e.g., pressure and energy) and corner nodes

that track the kinematic variables (e.g., velocity and position); Figure 4.12 shows the 3D

view of a point in the mesh. In the Lagrangian hydrodynamics simulation, the mesh follows

the motion of the elements in the space and time. LULESH uses an explicit time stepping

method (Lagrange leapfrog algorithm); in each time step, it advances the nodal variables,

then updates the element variables using the new values of the nodal variables. To maintain

the numerical stability, the next time step is computed using the physical constrains on the

time step increment of all the mesh elements.
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Figure 4.12: LULESH uses an unstructured, hexa-hedral mesh with two centering.

LULESH is a relatively large code with more than 40 computational kernels. It uses indirect

memory access pattern via node and element lists and multiple-levels of workspace data

structures. The MPI implementation of LULESH uses 3D cube process topology/domain

decomposition to distribute the mesh over the available processes, where each process can

communicate with up to twenty-six neighbors. In each time step, there are three main

communication operations. First, the processes exchange the node-centered boundaries for

the positions, acceleration, and force values. Second, they communicate the element-centered

boundaries for the velocity gradients. Third, a global collective communication is used to

compute the next time step based on the physical constraints of all the mesh elements. In

particular, the MPI implementation of LULESH has three different communication patterns:

3D nearest neighbor, 3D sweep, and collective broadcast and reduction [163].

Typically, LULESH uses weak-scaling on HPC clusters [98] because the single-node through-

put significantly drops as the problem size decreases due to the parallelization overhead, e.g.,

additional data motion to handle race conditions. In addition, the message setup time is

relatively large due to the packing/unpacking of 12 data fields with different memory-access

strides. However, in the experiment, we use both strong and weak scaling to show the

efficiency gap in the presence of these overheads.

Figures 4.13 shows the estimated and actual communication intensity and performance of

LULESH. The communication intensity of the distributed-memory implementation is within

95% of CommAnalyzer’s prediction on average. In the weak-scaling problem, the actual imple-

mentation achieves 95% of the projected efficiency on average, and the maximum efficiency

gap is 6%. The strong-scaling problem has lower efficiency (as discussed above), achieving

92% of the efficiency Roofline on average with a maximum gap of 11%.



78

(a) Strong Scaling

(b) Weak Scaling

Figure 4.13: The communication cost and performance of LULESH.

4.6.5 K-means

K-means [103], one of the top 10 algorithms in data mining [204], is an unsupervised machine-

learning application for data clustering that has been used in many fields, e.g., pattern

recognition, bioinformatics, and statistics (outlier detection). For a given set of data objects

in a multi-dimensional feature space, K-means iteratively finds k groups (clusters) of data

objects based on feature similarities and generates a cluster membership label for every data

object. A data object is considered to be in a cluster c, if it is closer to the centroid (mean)

of c than that of any other cluster. In each iteration, K-means computes the centroids

(mean values) of the clusters based on their current data objects, and then generates a new

membership label for each data object using similarity distance calculation.

The MPI implementation of K-means distributes the data objects evenly among the pro-

cesses and uses global communication (reduction) to update the centroids of the clusters in
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every iteration. In particular, the computation cost of K-means is O(n m k i), while its

communication cost is O(m k i), where n is the number of data objects, m is the feature

vector size, k is the number of data clusters, and i is the number of iterations. Since n

is generally much larger than m and k, the execution time of K-means is bounded by the

computation time and achieves linear scaling on distributed-memory architectures.

Figure 4.14 shows the estimated communication and performance of K-means in comparison

with the actual distributed-memory implementation. CommAnalyzer accurately detected the

input/output singleton program values corresponding to the global (collective) communica-

tion required to update the centroids of the data clusters. Overall, the actual communication

intensity is bounded by 97% of the predicted value on average. Further, the distributed-

memory implementation of K-means attains 99% of the projected efficiency Roofline on

average, and the maximum efficiency gap is 3%.

Figure 4.14: The communication cost and performance of K-means.

4.7 Discussion

CommAnalyzer estimates the communication of the distributed-memory parallel code that

performs the same work (operations) as the given sequential code. Applying code opti-

mizations that do not change how output values are computed from input values, such as

loop tiling and data-layout transformations, does not affect the estimated communication

cost. While the original sequential algorithm may not be the best one for parallel execution
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on distributed-memory systems, the end user can still use CommAnalyzer to estimate the

communication cost of the algorithmic alternatives.

Furthermore, CommAnalyzer assumes that the distributed-memory code adopts the SPMD

execution model which is the dominant approach on HPC clusters [56, 20]. Other parallel

execution models with data migration [28], i.e., the data moves according to the distribution

of computations, require a different communication estimation. One possible extension is

to use a computation-centric analysis and to estimate the communication as the value-flow

edges across compute instructions in different nodes.

Since CommAnalyzer instruments the sequential code to estimate its parallel communication,

the problem size is limited by the available memory on a single node of the target cluster.

Thanks to scalability analysis tools [29], the user can perform small-scale analysis experi-

ments, which can be dealt with by CommAnalyzer, and project the strong and weak scaling of

the communication. Even though we did not encounter any case where the scaling function

could not be modeled by the existing scalability analysis tools, more sophisticated modeling

techniques, such as machine learning, might be needed.

While CommAnalyzer adopts the sequential multilevel graph partitioning heuristic [100],

other parallel and/or approximate graph partitioning heuristics can be used to reduce the

analysis overhead. However, this might affect the quality of the VCG decomposition and the

resulting accuracy of the communication estimation.

4.8 Conclusion

This chapter presents CommAnalyzer, a novel approach to predict the communication cost

and scalability of the sequential code when executed on multiple compute nodes using the

SPMD execution model. We implemented CommAnalyzer in the LLVM compiler frame-

work and used novel graph-structured program representations, dynamic instrumentation

techniques, and graph analytics algorithms to estimate the minimum communication and

maximum efficiency/performance on HPC clusters.
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The case studies, with two benchmarks and four real-world applications, demonstrated that

CommAnalyzer predicts the communication intensity of sequential applications with more

than 95% prediction accuracy on average. Moreover, the optimized distributed-memory

(MPI+X) implementations achieve more than 92% of the projected efficiency upper-bound,

while the maximum efficiency gap is 12%. The experiments demonstrate the efficacy of

CommAnalyzer for regular, irregular, and unstructured problems that have different commu-

nication patterns, such as 2D/3D nearest neighbor, 3D sweep/wavefront, 2D broadcast, and

collective broadcast and reduction communication.



Chapter 5

Efficient Dependency Management on

Massively Data-Parallel Architectures

5.1 Introduction

Irregular computations with fine-grained data dependencies (e.g., iterative and direct solvers

for sparse linear systems [51, 166]) constitute the core kernels in many important application

domains, such as computational fluid dynamics (CFD), computer-aided design (CAD), data

analytics, and machine learning [14, 34, 54, 78, 104, 108, 122]; thus, irregular benchmarks

are used in the procurement and ranking of high-performance computing (HPC) systems [59,

134]. However, these important kernels remain challenging to execute on massively parallel

architectures, due to the sequential dependencies between the fine-grained application tasks.

Representing such irregular computations as directed acyclic graphs (DAGs), where nodes

are compute tasks and edges are data dependencies across tasks, exposes concurrent tasks

that can run in parallel without violating the strict partial order in user applications. DAG

execution requires mechanisms to determine when a task is ready by tracking the progress

of its predecessors (i.e., dependency tracking) and by ensuring that all its data dependen-

cies are met (i.e., dependency resolution). Thus, the performance of a task-parallel DAG is

82
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largely limited by its processing overhead, that is, launching the application tasks and man-

aging their dependencies. Since the target data-dependent kernels consist of fine-grained

tasks with relatively few operations, the task-launch latency and dependency-management

overhead can severely impact the speedup on massively data-parallel architectures, such as

GPUs. Therefore, the efficient execution of fine-grained, task-parallel DAGs on data-parallel

GPU architectures remains an open problem. With the increasing performance and energy

efficiency of GPUs [101, 174], driven by the exponential growth of data analytics and machine

learning applications [1, 198], addressing this problem has become paramount.

Several software approaches have been proposed to improve the performance of irregular

applications with fine-grained, data-dependent parallelism on massively data-parallel GPUs.

Level-set methods [11, 168, 136, 137, 118] adopt the bulk synchronous parallel (BSP) execu-

tion model [189] by aggregating the independent tasks in each DAG level to execute them

concurrently with barrier synchronizations between levels. Hence, these approaches are con-

strained by the available parallelism in the level-set DAG, which limits their applicability to

problems with a short critical path. Furthermore, since the level-set execution manages all

the data dependencies using global barriers, it suffers from significant workload imbalance

and resource underutilization.

Self-scheduling techniques [169, 41, 119, 120, 8] minimize the latency of task launching by

dispatching all the application tasks at once and having them actively wait (spin-loop) until

their predecessors complete and the required data is available. However, active waiting not

only wastes compute cycles, but it also severely reduces the effective memory bandwidth

due to the resource/memory contention. Specifically, the application tasks at lower DAG

levels incur substantial active-waiting overhead and interfere with their predecessor tasks,

including those on the critical path. Moreover, the application data, along with its task-

parallel DAG, must fit in the limited GPU memory, which is typically much smaller than the

host memory. To avoid deadlocks, these self-scheduling schemes rely on application-specific

characteristics or memory locks [116], which restrict their portability and performance.
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Hence, there exists a compelling need for a scalable approach to manage data dependencies

across millions of fine-grained tasks on massively data-parallel architectures. To this end, we

propose adaptive task aggregation (ATA), a software framework for the efficient execution of

irregular applications with fine-grained data dependencies on GPUs. ATA represents such

computations as hierarchical DAGs, where nodes are multi-grained application tasks and

edges are their aggregated data dependencies, to match the capabilities of GPUs by mini-

mizing the DAG processing overheads while exposing the maximum fine-grained parallelism.

Specifically, ATA ensures deadlock-free execution and performs multi-level dependency track-

ing and resolution to amortize the task launch and dependency management overheads.

First, it leverages GPU streams/queues to manage data dependencies across the aggregated

tasks [154]. Second, it uses low-latency scheduling and in-device dependency management to

enforce the execution order between the fine-grained tasks in each aggregated task. Unlike

previous work, ATA is aware of the structure and processing overhead of application DAGs.

Thus, ATA provides generalized support for efficient fine-grained, task-parallel execution on

GPUs without needing additional hardware logic. In all, our contributions are as follows:

• Unlike previous studies, we show that the performance of a fine-grained, task-parallel

DAG depends not only on the problem size and the length of critical path (i.e., number

of levels) but also on the DAG shape and structure. We point out that self-scheduling

approaches [169, 41, 119, 120, 8] are even worse than the traditional data-parallel execution

for problems with a wide DAG (§5.4).

• We propose the adaptive task aggregation (ATA) framework to efficiently execute irregular

applications with fine-grained data dependencies as a hierarchical DAG on GPU architec-

tures, regardless of the data-dependency characteristics or the shape of their DAGs (§5.3).

• The experimental results for a set of representative kernels, namely, sparse triangular solve

(SpTS) and sparse incomplete LU factorization (SpILU0), across a gamut of problems with

different data-dependency structures, show that ATA achieves a geometric mean speedup

of 2.2× to 3.7× over state-of-the-art DAG execution approaches on AMD GPUs. Thus,

ATA delivers substantial improvement in the end-to-end application performance (§5.4).
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5.2 Background and Motivation

This section provides background information about sparse solvers as a motivating example

for the target workloads, which suffer from limited performance on massively data-parallel

GPUs because of their fine-grained data dependencies.

The iterative [166] and direct methods [51] for solving sparse linear systems generally consist

of two phases: (1) a preprocessing phase that is performed only once to analyze and exploit

the underlying sparse structure and (2) a system solution phase that is repeated several

times. The system solution phase is typically dominated by irregular computations with

data-dependent parallelism, namely, preconditioners and triangular solve in iterative meth-

ods and matrix factorization/decomposition and triangular solve in direct methods. Such

data-dependent kernels can be executed in parallel as a computational DAG, where each

node represents the compute task associated with a sparse row/column and edges are the

dependencies across tasks.

Algorithm 5 and Figure 5.1 show an example of the irregular computations in sparse solvers.

In SpTS, each nonzero entry (i, j) in the triangular matrix indicates that the solution of

unknown i (task ui) depends on the solution of unknown j (task uj); hence, the DAG

representation of SpTS associates an edge from node uj to node ui. The resulting DAG can

be executed using a push or pull traversal [140]. In push traversal, the active tasks push

their results and active state to the successor tasks; while in pull traversal, the active tasks

pull the results from their predecessor tasks. In addition to the representative SpTS and

SpILU0 kernels that are extensively discussed in this work, several sparse solver kernels (e.g.,

LU/Cholesky factorization, Gauss-Seidel, and successive over-relaxation [51, 166, 2]) exhibit

similar irregular computations.

To execute a task-parallel DAG on GPUs using the data-parallel BSP model, the indepen-

dent tasks in each DAG level are aggregated and executed concurrently with global barrier

synchronization between the different levels. (This parallelization approach is often called
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Figure 5.1: A triangular matrix and the corresponding DAG for SpTS.

Algorithm 5 Sparse Triangular Solve (SpTS)

Input: L, RHS . Triangular matrix and right-hand side vector

Output: u . Solution vector for the unknowns

1: for i = 1 to n do

2: u(i) = RHS(i)

3: for j = 1 to i− 1 where L(i, j) 6= 0 do . Predecessor unknowns

4: u(i) = u(i)− L(i, j)× u(j)

5: end for

6: u(i) = u(i)/L(i, i)

7: end for

level-set execution or wavefront parallelism [166, 119].) For example, as depicted in Fig-

ure 5.2, the BSP execution of the DAG in Figure 5.1 runs tasks U1, U8, and U14 first, while

the rest of tasks will wait for their completion at the global barrier. Since the local dependen-

cies between tasks are replaced with global barriers, the BSP execution of a DAG suffers from

barrier synchronization overhead, workload imbalance, and idle/waiting time. Furthermore,

the GPU performance becomes even worse for application DAGs with limited parallelism

and a few compute operations per task [54, 197]. At this fine granularity, the dispatch,

scheduling, and dependency management overheads become the dominant bottlenecks.
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Figure 5.2: The BSP (level-set) execution of the DAG in Figure 5.1.

5.3 Adaptive Task Aggregation (ATA)

To address the limitations of the traditional data-parallel execution and previous approaches

for fine-grained, task-parallel applications, we propose the adaptive task aggregation (ATA)

framework. The main goal of ATA is to efficiently execute irregular computations, where the

parallelism is limited by data dependencies, on throughput-oriented, many-core architectures

with thousands of threads. On the one hand, there is a tradeoff between the task granularity

and concurrency; that is, the maximum parallelism and workload balance are only attainable

at the finest task granularity (e.g., a sparse row/column in sparse solvers). On the other

hand, the overhead of managing data dependencies and launching ready tasks at this fine-

grained level can adversely impact the overall performance.

Thus, ATA strives to dispatch the fine-grained application tasks, as soon as their data

dependencies are met, to the available compute units (CUs) with minimal overhead and

regardless of the DAG structure of the underlying problem. First, ATA represents the irreg-

ular computations as a hierarchical DAG by means of dependency-aware task aggregation

for high-performance execution on GPUs (§5.3.1). Second, it ensures efficient, deadlock-free

execution of the hierarchical DAG using multi-level dependency management and sorted

eager-task (SET) scheduling (§5.3.2). Furthermore, ATA supports both the push and pull

execution models of task-parallel DAGs and works on current GPU architectures without

the need for special hardware support. While any input/architecture-aware task aggregation
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can be used to benefit from ATA’s hierarchical execution and efficient scheduling and depen-

dency management, we propose concurrency-aware and locality-aware aggregation policies

to provide additional performance trade-offs (§5.3.3).

5.3.1 Hierarchical DAG Transformation

The first stage of our ATA framework analyzes the given fine-grained DAG and then generates

a hierarchy of tasks to better balance the processing overheads, that is, task launch and

dependency management overheads, while exposing the maximum parallelism to many-core

GPUs. This transformation can be incorporated in the preprocessing phase of irregular

applications, such as sparse solvers, with negligible additional overhead (see §5.4).

Consider an application DAG, G(U,E), where U is a set of nodes that represents user (or

application) tasks and E is a set of edges that represents data dependencies. Further, let n be

the number of user tasks and m be the number of dependency edges across user tasks. ATA

aggregates user tasks into adaptive tasks such that each adaptive task has a positive integer

number S of the fine-grained user tasks, where S is an architecture-dependent parameter

that can be estimated and tuned using profiling (as detailed in §5.3.3). The resulting set

A of adaptive tasks partitions the application DAG such that A1 ∪ A2 · · · ∪ Ap = U and

Ai ∩ Aj = φ ∀i and j, where p is the number of adaptive tasks, p ≤ n, and i 6= j.

This task aggregation delivers several benefits on many-core GPUs. First, the resulting adap-

tive tasks incur a fraction (1/S) of the launch overhead of user tasks. Second, adaptive tasks

reduce the execution latency of their user tasks by dispatching the irregular computations to

CUs as soon as their pending coarse-grained dependencies are resolved. Third, task aggre-

gation eliminates dependency edges across user tasks that exist in different adaptive tasks,

such that an adaptive task with independent user tasks does not require any dependency

management. Hence, ATA generates a transformed DAG with c coarse-grained dependencies

across adaptive tasks and f fine-grain dependencies across user tasks that exist in the same

adaptive task, where c+ f < m.
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Figure 5.3: ATA transformation of the application DAG in Figure 5.1 for hierarchical execu-

tion and dependency management. The adaptive tasks A1, A2, and A4 require fine-grained

dependency tracking and resolution, while A3 can be executed as a data-parallel kernel.

Figure 5.3 shows an example of the DAG transformation with an arbitrary task aggrega-

tion policy (see §5.3.3 for our proposed policies). The original DAG consists of 16 user

tasks with 20 dependency edges; after the DAG transformation such that each adaptive task

has four user tasks, ATA generates a hierarchical DAG that consists of four adaptive tasks

with only three coarse-grained dependency edges and eight fine-grained dependency edges.

Since the DAG processing overhead depends on the number of tasks and dependency edges,

the transformed DAG is more efficient for execution on GPU architectures. Specifically,

unlike level-set execution, which is constrained by managing all data dependencies using

global barriers, ATA can launch more tasks per GPU kernel to amortize the cost of kernel

launch and to reduce the idle/waiting time. Most importantly, compared to self-scheduling

approaches, ATA adjusts to the underlying dependency structure of target problems by

executing adaptive tasks without dependency management when it is possible and by dis-

patching the waiting user tasks when there is limited concurrency to efficiently utilize the

GPU resources. That way, ATA dispatches the ready adaptive tasks rather than the whole

DAG, and as a result, the waiting adaptive tasks along with their user tasks do not incur

any active-waiting overhead.
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Previous work showed the benefits of aggregating the fine-grained application tasks on CPU

architectures [149]; however, each aggregated task was assigned to one thread/core to exe-

cute sequentially without the need for managing data dependencies across its fine-grained

computations. In contrast, GPU architectures (with their massive number of compute units)

demand parallel execution both within and across aggregated tasks, which in turn introduces

several challenges and requires an efficient approach for managing the data dependencies and

executing the irregular computations at each hierarchy level of the transformed DAG.

5.3.2 Hierarchical DAG Execution on GPUs

The ATA framework orchestrates the processing of millions of fine-grained user tasks, which

are organized into a hierarchical DAG of adaptive tasks. The adaptive tasks execute as GPU

kernels on multiple compute units (CUs), while their user tasks run on the finest scheduling

unit defined by the GPU architecture (such as wavefronts) to improve workload balance and

to expose maximum parallelism.

ATA performs hierarchical dependency management by tracking and resolving the data

dependencies at two levels: (1) a coarse-grained level across adaptive tasks and (2) a fine-

grained level across user tasks in the same adaptive task. The coarse-grained dependency

management relies on host- or device-side streams/queues to monitor the progress of GPU

kernels that represent adaptive tasks and to dispatch the waiting adaptive tasks to the GPU

device once their coarse-grained dependencies are met. Currently, ATA leverages the open-

source ATMI runtime [154] to dispatch the adaptive tasks and to manage the coarse-grained

(kernel-level) dependencies.

The fine-grained dependency management requires a low-latency approach with minimal

overhead, relative to the execution time of the fine-grained user tasks. Thus, ATA manages

the fine-grained dependencies using lock-free data structures, where each user task tracks

and resolves its pending dependencies using active waiting (i.e., polling on the shared data

structures) to enforce the DAG execution order. Most importantly, ATA ensures forward
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progress and minimizes the active waiting overhead by assigning the waiting user tasks that

are more likely to meet their dependencies sooner to the active scheduling units (wavefronts)

on a GPU using SET scheduling.

SET Scheduling

To efficiently execute adaptive tasks on many-core GPUs, we propose sorted eager task

(SET) scheduling, which aims to minimize the processing overhead by eliminating the launch

and dependency resolution overheads using eager task launching and by minimizing the

dependency-tracking overhead using an implicit priority scheme.

Figure 5.4 shows the SET scheduling of a hierarchical DAG with 16 user tasks and four (4)

adaptive (aggregated) tasks. First, SET dispatches all the user tasks in an adaptive task as

a GPU kernel to eliminate the task launch overhead. That way, the entire adaptive task can

be processed by the GPU command processor (CP) to assign its user tasks to CUs before

their predecessors even complete. However, user tasks with pending dependencies check

that their predecessors finish execution using active waiting to prevent data races. Once the

predecessors of a waiting user task complete, it becomes immediately ready and proceeds for

execution, which eliminates the dependency-resolution overhead. To ensure forward progress,

the waiting user tasks cannot be scheduled on a compute unit before their predecessors are

active. While hardware memory locks [116] can be used to avoid deadlocks, they are not

suitable for scheduling large-scale DAGs with fine-grained tasks because of their limited

number and significant scheduling latency. In contrast, SET proposes a priority scheme for

deadlock-free execution with minimal overhead and without needing specialized hardware.

SET prioritizes the execution of the waiting user tasks that are more likely to be ready soon

to minimize the dependency-tracking (active waiting) overhead and to prevent deadlocks.

However, current many-core architectures do not provide a priority scheme with enough

explicit priorities to handle a large number (potentially millions) of tasks. Thus, SET uses

a more implicit technique and exploits the knowledge that hardware schedulers execute
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Figure 5.4: SET scheduling of the hierarchical DAG in Figure 5.3. Each adaptive (A)

task executes as a GPU kernel (K) with fine-grained dependency management using active

waiting when deemed necessary. SET scheduling ensures forward progress by mapping the

user (U) tasks to the worker wavefronts (W ).

wavefronts and workgroups with lower global ID first. According to GPU programming

and execution specifications, such as the HSA programming manual [161], only the oldest

workgroup (and its wavefronts) is guaranteed to make forward progress; hence, the workgroup

scheduler dispatches the oldest workgroup first when there are enough resources on target

CUs. Moreover, the wavefront scheduler runs a single wavefront until it stalls and then

picks the oldest ready wavefront [162]. As a result, the oldest hardware scheduling units

(wavefronts) with the smallest global IDs are implicitly prioritized.

Therefore, SET assigns user tasks with fewer number of dependency levels to older wave-

fronts. Since GPU hardware schedules concurrent wavefronts to maximize resource utiliza-

tion as noted in §5.3.3, the dependency level of a user task approximates its waiting time for

dependency resolution. If there are multiple user tasks with the same number of dependency

levels, SET assigns neighboring user tasks to adjacent wavefronts to improve data locality.

For example, in Figure 5.4, U1 is a root task (no predecessors), while U3, U5, and U2 have one

level of data dependency; hence, SET assigns U1, U3, U5, and U2 to the worker wavefronts

W0, W2, W3, and W1 in kernel K0. Since all U tasks in A3 are independent, SET executes

A3 without any dependency tracking and resolution and assigns the neighboring U4, U6, U7,

and U9 tasks to the adjacent W0, W1, W2, and W3 wavefronts in K2.
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Push vs. Pull Execution within Adaptive Tasks

Algorithm 6 Push or pull execution of adaptive tasks on GPU architectures.

Require: app data . For example, a sparse matrix.

Require: SET sched . Schedule of U tasks on worker wavefronts.

Require: u deps . No. of pending dependencies for each U task.

Require: u done . The state of each U task.

1: for ∀ U tasks in parallel do

2: i = GET UTASK(SET sched)

3: while ATOMIC(u deps(i) 6= 0) do . Active waiting.

4: NOOP

5: end while

6: Compute task i on the worker SIMD units

7: for each j successor of task i do

8: ATOMIC(u deps(j) = u deps(j)− 1)

9: end for

10: for each j predecessor of task i do

11: while ATOMIC(u done(j) 6= 1) do . Active waiting.

12: NOOP

13: end while

14: Perform ready ops. of task i on worker SIMD units

15: end for

16: ATOMIC(u done(i) = 1)

17: end for

ATA supports both the push and pull execution models of a computational DAG. Algo-

rithm 6 shows the high-level (abstract) execution of adaptive tasks with fine-grained data

dependencies using push or pull models (as indicated by the different gray backgrounds1).

In push execution, ATA uses an auxiliary data structure (u deps) to manage the fine-grained

data dependencies by tracking the number of pending dependencies for each user task. Once

1The lines with white background are required for both push and pull models.
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all dependencies are met, user tasks can proceed to execute on the SIMD units of their

worker wavefront. (The assignment of user tasks to worker wavefronts is determined by the

SET schedule.) When a user task completes its operations, it pushes the active state to

its successors by decreasing their pending dependencies. Hence, push execution often needs

many atomic write operations.

Conversely, the pull execution model tracks the active state of user tasks using the u done

data structure. As such, each user task pulls the state of its predecessors and cannot perform

the dependent computations until the predecessor tasks finish execution. Once a user task

completes, it updates the corresponding state in u done. Thus, pull execution performs more

read operations compared to the push model. However, it can pipeline the computations

(lines 10 and 14 in Algorithm 6) to hide the memory access latency.

5.3.3 Task Aggregation Policies

Finding the optimal granularity of a given application’s DAG on a many-core GPU is a

complicated process. First, the active waiting (dependency tracking) overhead increases

with the size of aggregated tasks. In addition, a user task on the critical path can delay

the execution of its aggregated task, including the other co-located user tasks. On the other

hand, as the size of aggregated tasks becomes larger, the cost of managing their coarse-

grained dependencies and launching user tasks decreases; moreover, increasing the size of

aggregated tasks reduces the idle/waiting time, including dependency resolution time, which

improves the resource utilization. Therefore, optimal task aggregation requires detailed

application and architecture modeling as well as sophisticated tuning and profiling. However,

by leveraging the knowledge of the target hardware architecture and application domain,

simple cross-layer models and heuristics can achieve near-optimal performance.

Unlike CPU architectures, GPUs are throughput-oriented and rely on massive multithreading

(i.e., dispatching more threads/wavefronts than the available compute resources) to maxi-

mize resource utilization and to hide the execution and memory-access latencies [66]. This
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massive multithreading is possible due to the negligible scheduling overhead between stalled

wavefronts and other active wavefronts. Thus, the GPU hardware can be efficiently used,

if and only if, enough concurrent wavefronts are active (or in-flight). Hence, if each user

task executes on a wavefront, the minimum size of an adaptive task, Smin, is limited by the

number of CUs and the occupancy (active wavefronts per CU) of the GPU device:

Smin = num CU × occupancy (5.1)

As detailed before, increasing the size of an adaptive task has several side effects. However,

any aggregation heuristic should ensure that the size of an adaptive task is large enough to

amortize the cost of launching the aggregated tasks and tracking their progress. On GPUs,

such cost is typically dominated by launching the aggregated tasks as GPU kernels (Tl). If

the average execution time of a user task is Tu, the size of an adaptive task can be tuned as

follows:

S = R× (Tl/Tu), S > 1 and R > 0 (5.2)

The above equation indicates that the execution time of an aggregated task should be much

larger than its launch cost. Typically, R is selected such that Tl is less than 1% of the

average time of an adaptive task, while the execution time of user tasks can be estimated

by profiling them in parallel to determine Tu. Since the dependency management overhead

can be several orders of magnitude higher than the execution time of user tasks (as shown

in §5.4), and the profiling is performed only once in the preprocessing phase, the additional

profiling overhead is negligible.

In summary, the proposed heuristic for tuning the granularity/size (S) of adaptive tasks,

using equations (5.1) and (5.2), ensures that the performance is limited by the inherent

application dependencies rather than resource underutilization, idle/waiting time, or kernel

launch cost. Once the granularity of adaptive tasks is selected, different task aggregation

mechanisms can be used with additional performance trade-offs. In particular, we propose

the following concurrency-aware and locality-aware aggregation techniques, which are for-

mally detailed in Algorithms 7 and 8.
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Algorithm 7 Concurrency-aware (CA) Aggregation

Require: u levels . User tasks in each DAG level.

Require: S . Granularity/size of adaptive tasks.

Ensure: a tasks . Adaptive tasks.

1: a task = GET CURRENT ATASK(a tasks)

2: for ∀ U levels do

3: i = GET LEVEL(u levels)

4: ADD UTASKS(a task, u levels(i)) . Aggregate U tasks.

5: if SIZE(a task) ≥ S then

6: a task = CREAT ATASK(a tasks)

7: end if

8: end for

Concurrency-aware (CA) Aggregation. ATA aggregates user tasks starting from the

root DAG level before moving to the next levels. If the current DAG level has more than

S user tasks, where S is the size (granularity) of adaptive tasks, ATA launches this level

as an adaptive task. Otherwise, it merges the next DAG level in the current adaptive task

and continues aggregating. That way, adaptive tasks end up having at least a size of S

user tasks. Such an aggregation mechanism increases concurrency among user tasks in the

same adaptive task and minimizes the overall critical path of the resulting hierarchical DAG;

however, it ignores data locality.

Locality-aware (LA) Aggregation. This aggregation policy improves data locality across

the memory hierarchy by merging neighboring user tasks into the same adaptive task, which

can benefit applications with high spatial locality. The task locality information is based on

knowledge of standard data formats (e.g., sparse matrix representations) and it can also be

incorporated as a programmer hint. Unlike the CA approach, LA aggregation may increase

the overall critical path of hierarchical DAGs, as a user task on the critical path can delay

the execution of neighboring user tasks.
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Algorithm 8 Locality-aware (LA) Aggregation

Require: u tasks, u loc . User tasks and their locality info.

Require: S . Granularity/size of adaptive tasks.

Ensure: a tasks . Adaptive tasks.

1: a task = GET CURRENT ATASK(a tasks)

2: for ∀ U tasks do

3: i = GET U ID(u loc)

4: ADD UTASK(a task, u tasks(i)) . Aggregate U tasks.

5: if SIZE(a task) ≥ S then

6: a task = CREAT ATASK(a tasks)

7: end if

8: end for

Figure 5.5 shows an example of the different aggregation policies, where the adaptive task

granularity is four (4) user tasks. Due to the limited concurrency at the root DAG level,

CA aggregation combines this level and the next one into the adaptive task A1. Next, it

encapsulates the third DAG level in A2 which does not require any fine-grained dependency

management. Finally, CA aggregation merges the fourth and fifth DAG levels in A3 to

reach the required granularity. In contrast, LA aggregation merges the neighboring user

tasks into four adaptive tasks. While CA aggregation achieves the same critical path as

the original application DAG, that is, five user tasks (U1 → U2 → U6 → U10 → U16), the

resulting hierarchical DAG from LA aggregation has a longer critical path of nine user tasks

(U1 → U3 → U4 → U5 → U9 → U11 → U14 → U15 → U16).

We also considered greedy aggregation, which combines the maximum number of user tasks

that can fit on the GPU2 in a single adaptive task. Compared to other aggregation policies,

greedy aggregation does not adapt to the DAG structure, leading to excessive active waiting

for application DAGs with high concurrency, as adaptive tasks are unlikely to execute without

needing a fine-grained dependency management.

2This number is limited by the available memory and maximum number of active wavefronts on the GPU.
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Figure 5.5: Concurrency- and locality-aware aggregations of the application DAG in Figure

5.1. The adaptive task granularity is four.

5.4 Evaluation

We evaluate the performance of the proposed ATA framework using a set of important and

representative kernels with fine-grained data dependencies. These kernels implement the

sparse triangular solve (SpTS) and sparse incomplete LU factorization with zero level of fill

in (SpILU0) algorithms, which are detailed in Algorithms 5 and 9. Specifically, we consider

the push and pull execution variants of SpTS using the compressed sparse column (CSC) and

compressed sparse row (CSR) formats, respectively, and the left-looking pull execution of

SpILU0 using the CSC format [51, 166]. In addition, we evaluate the end-to-end application

performance using the preconditioned conjugate gradient (PCG) sparse solver [166].

We compare ATA to the level-set execution [11, 168, 136, 137, 118] and self-scheduling

approaches [169, 41, 119, 120]. The target GPU kernels are implemented in OpenCL, while

the host code is written in C++ and leverages the open-source ATMI runtime [154] to

dispatch GPU kernels. Using double-precision arithmetic, we report the performance and

overhead numbers for the system solution phase as an average over 100 runs3. It is important

3The reported performance for SpTS (push traversal) with self-scheduling approach is based on executing

the OpenCL code from Liu et al. [119, 120].
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Algorithm 9 Sparse Incomplete LU Factorization with zero level of fill in (SpILU0)

Require: A . Input matrix that will be decomposed into L and U

1: for j = 1 to n do . Current column

2: for k = 1 to j − 1 where A(k, j) 6= 0 do . Predecessors

3: for i = k + 1 to n where A(i, k) & A(i, j) 6= 0 do

4: A(i, j) = A(i, j)−A(i, k)×A(k, j) . Elimination

5: end for

6: end for

7: for i = j + 1 to n where A(i, j) 6= 0 do

8: A(i, j) = A(i, j)/A(j, j) . Normalization

9: end for

10: end for

to note that the different DAG execution approaches, namely, ATA, level-set, and self-

scheduling, generate identical results using the same computations and only differ in the

data-dependency management, as detailed in the previous sections.

5.4.1 Experimental Setup

Input Data

The experiments consider representative problems with different sizes and data dependency

structures that cover a wide range of application domains, including computational fluid

dynamics, electromagnetics, mechanics, atmospheric models, structural analysis, thermal

analysis, power networks, and circuit simulation [52]. Table 5.1 presents the characteristics

of the test problems, where the problem ID is assigned in an ascending order of the number of

unknowns. Further, to clarify the experimental results, we classify the resulting application

DAG of the input problems into wide DAG, L-shape DAG, and parallel DAG. Figure 5.6

shows an example of these different DAG types. The parallel DAG has a short critical path
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Table 5.1: Characteristics of the sparse problems.

Prob. ID Name #unknowns #nonzeros

P1 onetone2 36,057 222,596

P2 onetone1 36,057 335,552

P3 TSOPF RS b300 c3 42,138 4,413,449

P4 bcircuit 68,902 375,558

P5 circuit 4 80,209 307,604

P6 ASIC 100ks 99,190 578,890

P7 hcircuit 105,676 513,072

P8 twotone 120,750 1,206,265

P9 FEM 3D thermal2 147,900 3,489,300

P10 G2 circuit 150,102 726,674

P11 scircuit 170,998 958,936

P12 hvdc2 189,860 1,339,638

P13 thermomech dK 204,316 2,846,228

P14 offshore 259,789 4,242,673

P15 ASIC 320ks 321,671 1,316,085

P16 rajat21 411,676 1,876,011

P17 cage13 445,315 7,479,343

P18 af shell3 504,855 17,562,051

P19 parabolic fem 525,825 3,674,625

P20 ASIC 680ks 682,712 1,693,767

P21 apache2 715,176 4,817,870

P22 ecology2 999,999 4,995,991

P23 thermal2 1,228,045 8,580,313

P24 atmosmodd 1,270,432 8,814,880

P25 G3 circuit 1,585,478 7,660,826

P26 memchip 2,707,524 13,343,948

P27 Freescale2 2,999,349 14,313,235

P28 Freescale1 3,428,755 17,052,626

P29 circuit5M dc 3,523,317 14,865,409

P30 rajat31 4,690,002 20,316,253
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(typically less than 100 user tasks) such that the performance is bounded by the execution

time rather than the data dependencies. In L-shape DAGs, most of the user tasks are in

the higher DAG levels and the number of concurrent user tasks significantly decreases as

we move down the critical path. Conversely, in wide DAGs, the majority of DAG levels are

wide with enough user tasks to utilize at least the available SIMD elements in each compute

unit (i.e., four wavefronts per CU in target GPUs).

Wide DAG L-shape DAG Parallel DAG

Figure 5.6: An example of the different DAG classes. The x-axis shows the number of user

tasks, while the y-axis represents the DAG levels (critical path).

Test Platform

The test platform is a Linux server with an Intel Xeon E5-2637 CPU host running at 3.50

GHz and multiple GPU devices. The server runs the Debian 8 distribution and ROCm

1.8.1 software stack, and the applications are built using GCC 7.3 and CLOC (CL Offline

Compiler) 1.3.2. In the experiments, we consider two different generations of AMD GPU

devices: Radeon Vega Frontier Edition [10] (VEGA-FE) and Radeon R9 Nano [125] (R9-

NANO). Table 5.2 details the specifications of the target GPUs. For brevity, we only show

the detailed results for the VEGA-FE GPU. In addition, we use micro-benchmarks to profile

the overhead of atomic operations and kernel launch.

Table 5.2: Target GPU architectures.

GPU Max. freq. Memory Mem. BW #cores

R9-NANO 1000 MHz 4 GB 512 GB/s 4,096

VEGA-FE 1600 MHz 16 GB 483 GB/s 4,096
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5.4.2 Experimental Results

The results reported here demonstrate the capabilities of the ATA framework with its dif-

ferent aggregation policies, where the adaptive task granularity (S) is selected using the

profiling-based heuristic from Eq. (5.1) and (5.2). In the experiments, we set R to 100

in Eq. (5.2) to ensure that the overhead of coarse-grained dependency management across

adaptive tasks is less than 1% of their average execution time. To measure the overhead

of managing the data dependencies of the application DAGs, we execute these DAGs with-

out any dependency management and with the different DAG execution approaches. Such

overhead represents the kernel launch and workload imbalance (global synchronization) for

level-set execution and the active waiting for self-scheduling methods, while it shows the

processing cost of hierarchical DAGs for ATA execution as illustrated in §5.3.2.

Figure 5.7 shows the performance and overhead of SpTS kernel using push traversal and

CSC format. The results demonstrate that the ATA framework significantly outperforms

the other approaches, achieving a geometric mean speedup of 3.3× and 3.7× on VEGA-FE

and R9-NANO GPUs, respectively. Due to the higher cost of active waiting on the R9-

NANO GPU, ATA achieves better performance compared to self-scheduling. Furthermore,

the results indicate that concurrency-aware (CA) aggregation outperforms locality-aware

(LA) aggregation, as sparse applications tend to have a limited spatial locality and LA

aggregation can also increase the critical execution path (see §5.3.3). In addition, the pull

variant of SpTS shows a similar trend to the push execution, as detailed in Figure 5.8.

However, ATA has a slightly lower geometric mean speedup of 3.0× and 3.3× on VEGA-FE

and R9-NANO GPUs, respectively, compared to the push execution as the pull execution

requires lower dependency management overhead (see §5.3.2).

Most importantly, ATA has better performance across the different types of application

DAGs due to its hierarchical dependency management and efficient mapping of user tasks

to the active wavefronts using SET scheduling. In particular, the self-scheduling approach

is even worse than level-set execution for wide DAGs because the large number of user tasks
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Figure 5.7: The performance and overhead of SpTS (push traversal) kernels using the dif-

ferent execution approaches on VEGA-FE.

at the lower DAG levels incur significant active-waiting overhead; such overhead can be

higher than the computation time by more than two orders of magnitude for large-scale

problems with long critical paths, as explained in Figures 5.7 and 5.8. For L-shaped DAGs,

the average performance of level-set execution is significantly worse than the other methods

because of the limited number of concurrent user tasks in the majority of DAG levels; hence,

the overhead of global barrier synchronization becomes prohibitive, especially for problems

with deeper critical paths. On the other hand, the results for L-shaped and parallel DAGs

show that level-set execution achieves comparable (or better) performance to self-scheduling

as the length of the critical path (i.e., number of DAG levels) decreases, due to the higher

concurrency and the lower overhead of global barrier synchronization.

Figure 5.9 shows the performance and overhead of the pull execution of SpILU0 kernel using

the different DAG execution methods. Since SpILU0 performs more operations than SpTS,
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Figure 5.8: The performance and overhead of SpTS (pull traversal) kernels using the different

execution approaches on VEGA-FE.

the dependency-management overhead is relatively smaller compared to the computation

time. Specifically, in SpILU0, the number of operations is relative to the number of non-zero

elements of each user task and also the non-zero elements of its predecessors, which results

in roughly an order of magnitude smaller adaptive grain size (S) compared to SpTS. Hence,

ATA achieves a geometric mean speedup of 2.2× for the SpILU0 kernel in comparison with

a geometric mean speedup of 3.0×–3.7× for the different variants of SpTS.

Finally, Figure 5.10 presents the preprocessing cost required to generate ATA’s hierarchical

DAG from the fine-grained application DAG for each sparse problem. Since such a cost

depends on the number of user tasks and data dependencies, it increases with the problem

size; however, the maximum cost is approximately 0.1 second in the target benchmarks,

which include sparse problems with millions of tasks (i.e., unknowns) and tens of millions of

data dependencies (i.e., nonzeros). LA aggregation has a higher cost than CA aggregation
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Figure 5.9: The performance and overhead of SpILU0 (pull traversal) using the different

execution approaches on VEGA-FE.

because it typically uses a larger number of data dependencies to enforce the DAG execution

order, compared to the CA policy, as explained in §5.3.3. Specifically, the geometric mean

cost of generating the hierarchical DAG is 18 ms and 22 ms for the CA and LA aggregation

policies, respectively.

It is important to note that once the hierarchical DAG is generated, it can be used many times

during the application run. Target user applications, such as CFD and CAD applications,

typically solve a nonlinear system of equations at many time points; each nonlinear system

solution requires several iterations of a linear system solver, which in turn needs tens to

hundreds of iterations to converge [166]. Thus, in practice, such a preprocessing cost is

negligible. In addition, the preprocessing phase can be overlapped with other operations,

including the system solution phase. Optimizing the preprocessing cost is outside the scope

of this work and a further reduction of this cost is feasible.
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Figure 5.10: The cost of hierarchical DAG transformation using the different task aggregation

policies.

5.4.3 End-to-End Application Performance

To evaluate the end-to-end application performance, we use the preconditioned conjugate

gradient (PCG) method for solving sparse linear systems with a symmetric and positive-

definite (SPD) matrix [166]. We implemented a PCG solver, based on Algorithm 9.1 from

Saad [166], using the data-dependent kernels discussed in this work (namely, SpTS and

SpILU0) and open-source SpMV and BLAS kernels from clSPARSE library [74]. Specifically,

the data-dependent kernels of PCG solver perform pull traversal of application DAGs to

execute the compute tasks. In the experiment, the right-hand side is a unit vector and the

maximum number of iterations allowed to find a solution is 2000. The PCG solver converges

when the relative residual (tolerance) is below one millionth (10−6), starting from an initial

guess of zero. We evaluate three versions of the PCG solver; each version uses different SpTS

and SpILU0 kernels, based on ATA and prior level-set and self-scheduling approaches, and

the same SpMV and BLAS kernels.

Figure 5.11 presents the execution time and number of iterations of the PCG solver for the

set of SPD problems in Table 5.1. The detailed profiling indicates that the data-dependent

kernels constitute the majority of execution time, ranging from 76% to 99% of the total

runtime across PCG solver versions and input problems. As a result, the performance of the

PCG solver shows a similar trend to the data-dependent kernels discussed in §5.4.2, where
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Figure 5.11: The performance of PCG solver on VEGA-FE.

ATA significantly outperforms previous methods across the different sparse problems. The

performance gain depends on the characteristics of input problems, as detailed in §5.4.2.

Overall, this experiment demonstrates the efficacy of the proposed framework to greatly

improve the end-to-end application performance. Specifically, ATA’s PCG solver achieves

a geometric mean speedup of 4.4× and 8.9× compared to PCG solvers implemented using

prior level-set and self-scheduling methods, respectively.

5.5 Discussion

In addition to the widely adopted level-set [11, 168, 136, 137, 118] and self-scheduling [169,

41, 119, 120, 8] techniques, which we discussed in previous sections, several approaches have

been proposed to improve the performance of sparse solvers on GPUs.

Graph-coloring methods [183, 138] can increase the parallelism of sparse solvers by permuting

the rows and columns of input matrices; however, such a permutation breaks the original

data dependencies and the corresponding DAG execution order, which affects the accuracy of

the system solution and typically increases the number of iterations needed for convergence

in iterative solvers [166]. In addition, finding the color sets of a DAG is an NP-complete

problem that requires significant preprocessing overhead.
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Prior work [44, 12] used approximation algorithms to solve the target sparse system without

data dependency management. Similar to graph-coloring methods, these approximation

algorithms affect the solution accuracy and convergence rate of sparse solvers.

Various approaches [69, 158, 112, 208] exploit dense patterns in the underlying sparse prob-

lems and use dense BLAS [60] routines/kernels to improve data locality and to reduce the

indirect addressing overhead; however, such techniques are limited to problems with struc-

tured sparsity patterns. Recently, Wang et al. [197] proposed sparse level tile (SLT) format,

which is tailored for locality-aware execution of SpTS on Sunway architecture. Nevertheless,

end users need to either re-factor existing applications to use such a specialized format or

convert their sparse data before and after each call to SLT-based solvers.

5.6 Conclusion

This chapter presented the adaptive task aggregation (ATA) framework to greatly reduce the

dispatch, scheduling, and dependency management overhead of irregular computations with

fine-grained tasks and strong data dependencies on massively data-parallel architectures,

such as GPUs. Unlike previous work, ATA is aware of the processing overhead on target

architectures and it adapts the parallel execution to the dependency structure of underlying

problems using (1) hierarchical dependency management at multiple levels of computational

granularity, and (2) efficient sorted eager task (SET) scheduling of the application tasks

based on their expected dependency-resolution time. As such, the ATA framework achieves

significant performance gains across the different types of application problems. Specifically,

the experiments with various sparse solver kernels demonstrated a geometric mean speedup of

2.2× to 3.7× over the existing DAG execution approaches and up to two orders-of-magnitude

speedups for large-scale problems with a wide DAG and long critical path.



Chapter 6

Scalable Execution of Irregular

Data-Dependent Computations

6.1 Introduction

This chapter tackles the challenges of scaling irregular applications with limited parallelism

and fine-grained data dependencies on heterogeneous HPC cluster and cloud architectures.

Such applications suffer from a substantial synchronization and communication overhead on

distributed-memory systems, relative to the computation time, which traditionally restricted

their scalability to a single homogenous architecture.

To this end, we propose an adaptive parallel execution framework for a representative irreg-

ular application, namely, SPICE simulation using the direct method [135], on a cloud-based

heterogeneous system. SPICE simulation of very large scale integrated (VLSI) circuits, with

millions of elements, can take days of execution time, which makes it the most critical bot-

tleneck in the design flow. The on-demand availability of computing power on the cloud has

made it possible to economically utilize a large number of hardware resources, such as multi-

core CPUs and many-cores GPUs, once the problem has been algorithmically decomposed.

109
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Parallel SPICE simulation has been studied by many researchers in the last four decades [167,

117]. While the direct method is well-known of being robust and the most accurate, it is

extremely challenging for parallel execution. Most efforts to parallelize its fine-grained com-

putations has had limited results in terms of scalability of speedup because of the inherent

synchronization and communication cost, which limit their applicability to a single compute

node [117, 40, 39, 75, 22]. The approach of circuit partitioning using node-tearing [152] has

been extensively investigated in the early adoption phases of parallel processing for SPICE, as

it can decompose the problem into several pseudo-independent partitions [35, 45]. However,

increasing the number of these circuit partitions was always limited by solving the connec-

tivity matrix. Moreover, these efforts utilized a single computation platform. Since SPICE

simulation is a large problem with a diversity of components, a single platform is unlikely to

satisfy the needs of all computational tasks. Therefore, integrating different architectures in

a heterogeneous platform is a promising alternative to achieve scalable speedup.

This work proposes SPICE-H, an adaptive parallel execution framework for circuit simulation

on heterogeneous distributed-memory systems. Specifically, we attack the problem of effi-

ciently parallelizing the direct method for SPICE simulation on a heterogeneous HPC cloud

using circuit partitioning. This problem is challenging for several reasons. First, finding the

optimal workload partitioning and load balancing is nontrivial, especially for tightly-coupled

circuits such as post-layout designs. Second, achieving optimal scalability is very difficult

due to the parallelization and scheduling overhead and the limited amount of parallel oper-

ations in the original algorithms. Finally, assigning the partitioned computational tasks to

the most suitable architecture that matches their characteristics is complicated, and requires

extensive performance modeling and runtime analysis.

As such, SPICE-H generates a runtime adaptation model to optimally partition and distribute

the circuit across the compute nodes based on a coarse-grained, graph-structured program

representation. In addition, it uses compensation-based algorithms to greatly reduce the

synchronization and communication overhead between the fine-grained computations across

circuit partitions. Furthermore, SPICE-H divides the simulation process into four major
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computational kernels and it generates another runtime adaptation model to assign each

of these kernels to the most suitable execution platform of the Amazon EC2 heterogeneous

cloud. Unlike alternative iterative-based parallel techniques [102], SPICE-H does not impose

any restriction on the nature of the simulated circuit and it achieves the same accuracy level

as the referencer Berkeley SPICE3f5 [155]. In summary, our contributions are as follows:

• We propose the SPICE-H framework to tackle the scalability challenges of analyzing and

simulating general VLSI circuits with SPICE-level accuracy. SPICE-H generates graph-

structured program representations and runtime adaptation models to transform the target

fine-grained, data-dependent computations for efficient parallel execution on heterogeneous

distributed-memory clouds (§6.4).

• The experimental results, with diverse real-world problems, show that SPICE-H delivers

up to an order-of-magnitude speedup over the optimized multi-threaded implementations

of SPICE [139] with state-of-the-art KLU [53] and NICSLU [39] solver packages (§6.5).

6.2 Background

SPICE (Simulation Program with Integrated Circuit Emphasis) [135] maps the target circuit

into a set of partial differential equations (PDEs) using Kirchhoff’s current law (KCL) and

modified nodal analysis (MNA) [152]. These equations are discretized using a numerical

integration method such that the time domain is divided into a set of time points. The

circuit response (waveforms) at every time point is obtained using the Newton-Raphson

(NR) nonlinear solver [152].

Figure 6.1 shows the typical computational kernels in the NR solver during the transient

(time domain) circuit analysis. The NR solver starts with an initial guess and iteratively

solves the circuit equations ([Y ][V ] = [I]) using a direct linear solver [51] until convergence

is achieved. Specifically, in each iteration, the circuit equations are linearized by evaluating
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Figure 6.1: SPICE transient analysis.

the circuit device models and the resulting sparse Jacobian matrix (Y-matrix) is solved

using a direct method, such as LU factorization [51]. Alternative circuit simulators use

iterative methods to solve the Jacobian matrix. In modern circuit designs, the decreasing

feature size introduces massive parasitic coupling that makes the convergence harder to

achieve. Therefore, post-layout circuit simulations are not viable for the iterative-based

circuit simulators. In addition, the direct method of SPICE is widely known to achieve a

golden accuracy level.

Typically, the most time consuming kernels in SPICE transient analysis are the device model

evaluation and the Jacobian matrix (Y-matrix) solution [135]. The distribution of execution

time between the device model evaluation and matrix solution depends on the nature of the

circuit under simulation. The device model evaluation is the dominant part of the simulation

in pre-layout circuits with large number of transistors, while the matrix solution is the major

execution time component in post-layout circuits with a large number of parasitic elements.
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6.3 SPICE Profiling and Modeling

6.3.1 Performance Modeling Methods

Our goal is to derive analytical models that capture the complex interaction of the applica-

tion (SPICE), input data, and target architectures. These models are evaluated to identify

the most efficient architecture for the major computation kernels in SPICE. We adopt the

analysis approach introduced in Chapter 3. For simplicity, we ignore the on-chip memory

access time as the target sparse kernels typically have limited data locality.

Assuming the computations and memory accesses are perfectly overlapped [48], the execution

time of a SPICE kernel on a given architecture, Texe, is calculated as:

Texe = max{Tcomp, Tmem}+ Tsyn (6.1)

where Tcomp is the computation time, Tmem is the memory access time, and Tsyn is the

synchronization overhead. Tcomp and Tmem are given by:

Tcomp = (D(n) +
W (n)

np
)× 1

π0
(6.2)

Tmem = α D(n) +
Q(n)× L

β
(6.3)

where np is the number of cores, π0 is the maximum operation throughput per core, α is

the memory access latency, β is the peak memory bandwidth, and we assume that the total

work, critical path, and memory transfers on the parallel architecture are bounded by W (n),

D(n), and Q(n), respectively.

The synchronization time, Tsyn, is estimated as:

Tsyn = S(n)× s0 (6.4)

where S(n) is the total number of synchronization points, and s0 is the synchronization cost.
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6.3.2 Hardware Architecture Model

We target heterogeneous HPC cluster and cloud architectures with compute nodes that are

connected via low-latency, high-bandwidth network. This work considers Amazon EC2 cloud

and uses its CGI heterogeneous instances, which consist of a dual-socket CPU host and two

GPUs and are connected via 10 Gbps Ethernet with a latency of 60 µs [63]. The CPU

host has two Intel Nehalem x5570 multi-core processors coupled via QPI links with speed of

25.6 GB/s. The GPU accelerator is NVIDIA Tesla M2050, which is connected to the host

through a 12 GB/s PCI express link [150, 70, 143].

Table 6.1: Performance parameters of cg1.4xlarge instances.

HW Parameter Intel Nehalem x5570 Tesla Fermi M2050

Clock (GHz) 2.93 1.15

np 4 448

np×π0 (GFLOPS) 46.88 515

Z (MB) 8 1.6

L (Byte) 64 128

β (GB/s) 32 148.42

α (ns) 65 (on socket) 347.8

106 (off socket)

s0 (us) 0.4 (single socket) 0.25 (local)

0.6 (dual socket) 11.5 (global)

Table 6.1 summarizes the hardware performance parameters of the target Amazon EC2

cloud instances (cg1.4xlarge). We use vendors’ data to obtain the parameters np, π0, α,

and β [150, 70, 143], and a micro-benchmarking approach to measure the synchronization

cost s0. As detailed in Chapter 3, there are two main synchronization mechanisms for

GPUs: local synchronization and global synchronization. The local synchronization leverages

CUDA/OpenCL primitives, while global synchronization is achieved using kernel termination

and re-launching from the host. The GPU global memory can be used to accelerate global
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synchronization by a factor of 4-8× [206]; however, the results can be incorrect without

the use of memory fences to enforce memory consistency. With memory consistency, these

techniques are slower than kernel termination and re-launching [65]. While CUDA dynamic

parallelism may reduce the overhead of global synchronization by launching kernels on the

GPU, it is not supported on the target Tesla M2050. The fast memory size, Z, is chosen to

be the effective on-chip memory. On CPUs, Z is the last level cache; while on GPUs, Z is

the shared (local) memory and L2 cache.

6.3.3 SPICE Performance Models

Device Model Evaluation

The evaluation of circuit device models consists of several independent tasks, which can be

trivial to parallelize as they scale linearly with the number of threads. However, only one

thread at a time can perform the matrix stamping, i.e., loading the evaluated device models in

the Jacobian matrix (Y-matrix). While several techniques can decrease the synchronization

overhead, the number of synchronization points in matrix loading is only reduced by a

constant factor [167]. Based on our analysis, the following models are derived:

W (n) = O(nd d0), D(n) = O(nd + d0) (6.5)

Q(n) = O(nd +
nnz√
Z

) (6.6)

S(n) = O(nd) (6.7)

where nd is the total number of circuit devices, d0 is the average operations per device, nnz

is the total number of nonzero elements in Y-matrix. For device models such as BSIM4, the

value of d0 is around 500-1000. If we exclude the matrix loading, the new values of S(n),

D(n), and Q(n) are O(1), O(d0), and O(nd), respectively.

By substituting in equation 6.2, the execution time of device evaluation only is given by:

Texe = max{d0
π0

+
nd d0
np π0

, α d0 +
nd L

β
}+ s0 (6.8)
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Assuming nd >> d0, equation 6.8 can be simplified as:

Texe ≈ max{ d0
np π0

,
L

β
} nd (6.9)

Using the hardware performance parameters in Table 6.1, the above execution time is mini-

mized by performing the device evaluation on the target GPU architecture.

By substituting in equation 6.1, the execution time of matrix loading is calculated as:

Texe = α nd +
nnz L

β
√
Z

+ nd s0 (6.10)

Similarly, using the hardware parameters in Table 6.1, the execution time of the matrix

loading (stamping) is minimized on the target CPU due to the larger cache, and smaller

latency and synchronization overhead.

Jacobian Matrix Solution

The matrix solution consists of LU factorization and solving the factored matrix using

forward-backward substitutions. The LU factorization is the major execution component

as its complexity increases nonlinearly with the matrix size. Further, it is inherently sequen-

tial due to the large number of synchronization points, which results in a limited number

of independent operations that can be performed in parallel. The left-looking factorization

algorithms were shown to be efficient because of the extremely sparse nature of the Jacobian

Y-matrix [53]. Based on our analysis, the following models are derived:

W (n) = O(k2 n), D(n) = O(n) (6.11)

Q(n) = O(
k2 n√
Z

), k2 < n (6.12)

S(n) = O(n) (6.13)

where k is the average number of nonzero elements per column, and n is the matrix dimension

(i.e., the number of circuit equations).
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By substituting in equation 6.1, the execution time of the matrix solution is given by:

Texe = max{ n
π0

+
k2 n

np π0
, α n+

k2 n L

β
√
Z
}+ n s0 (6.14)

Given that n >> k and using the hardware performance parameters in Table 6.1, the

execution time of matrix solution is minimized on the target CPU because of the larger

cache, and lower latency and synchronization overhead.

6.4 SPICE-H Approach

Section 6.3 demonstrated that the synchronization overhead across the fine-grained com-

putations of SPICE kernels, which results from the sequential data dependencies, limits

the scalability of the fine-grained parallelization approaches and restricts their applicabil-

ity to a single computing node. As such, SPICE-H employs compensation-based program

transformations to increase the number of independent compute operations and to limit the

synchronization and communication to a constant number (O(1)) of points, which enables

the use of a heterogeneous distributed-memory architecture.

Specifically, SPICE-H uses a coarse-grained parallelization approach based on circuit node-

tearing (Diakoptics), which is a form of domain decomposition, first introduced by Kron [110].

It is adopted in SPICE simulation by partitioning the circuit into several subcircuits and by

independently obtaining the response of each one. Then, the resulting solution is corrected

to account for the effect of the circuit interface nodes (ports). The correction is performed

by evaluating the interconnection matrix and solving it to get the interconnection vector,

which is used with the solution of subcircuits to obtain the final circuit solution [152, 45].

Thus, the circuit simulation using SPICE-H can be divided into four major computational

kernels: partition device-model evaluation (PME), partition matrix factorization (PMF),

interconnection matrix evaluation (IME), and interconnection matrix factorization (IMF).

PME and PMF independently obtain the solution of each subcircuit, while IME and IMF

measure and account for the interconnection effect between the subcircuits.
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6.4.1 Adaptive Parallel Execution on Heterogeneous Distributed-

memory Systems
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Figure 6.2: An overview of SPICE-H framework.

Figure 6.2 shows the proposed SPICE-H framework for adaptive parallel execution of circuit

simulation. The simulator consists of one or more processes arranged as a master process and

multiple worker processes. Each process generates several CPU threads and launches GPU

kernels to work on the computational tasks assigned to it based on the runtime adaptation

models. The master process is responsible for initializing the application and performing

the circuit partitioning. Moreover, it uses the computation distribution algorithm to divide
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the subcircuits over the available processes. Each process is responsible for solving a set

of subcircuits along with their contribution to the interconnection matrix, and the master

process has an additional task of solving the interconnection matrix and broadcasting the

solution such that each process corrects the results of its subcircuits. The master process

receives the Newton-Raphson convergence results from the workers and either iterates on the

same time point or advances to a new one. In addition, it receives the time step suggestions

from the workers, which is calculated based on the local truncation error from the integration

method. Then, the master process computes the next global time step and broadcasts it

to the worker processes. Due to the latency of MPI communication over the 10Gbe links,

SPICE-H uses redundant computations to avoid communication whenever the execution time

of the duplicated computations is smaller than the latency penalty (which is approximately

60 µs on the target heterogeneous cloud). Finally, the master process is responsible for

writing the waveforms (circuit response) to an output file.

Unlike the prior fine-grained parallelization approaches, the number of synchronization points

required by SPICE-H is constant and does not grow with respect to the problem size (i.e., the

number of circuit equations). Compared to the iterative-based simulation methods, SPICE-H

adopts the direct method to analyze and simulate general VLSI circuits regardless of their

different types. Specifically, it uses the convergence criteria, integration methods, and time

step control of the reference Berkeley SPICE3f5 [155] to achieve the same accuracy level.

Most importantly, we derive a runtime adaptation model to optimally partition the input

circuit across the compute nodes based on its inherent communication and execution costs.

Another model is derived to assign each of the simulation kernels to the most suitable execu-

tion platform of the Amazon EC2 heterogeneous cloud. As indicated in §6.4.3, the GPU is

the most suitable architecture for device model and interconnection matrix evaluation, while

CPUs are better in loading and factorizing the Jacobian Y-submatrices and the intercon-

nection matrix. Therefore, SPICE-H assigns PME and IME kernels to GPUs, and PMF and

IMF kernels to CPUs. However, if the target GPUs are fully committed, SPICE-H distributes

the workload by using the CPUs to execute the waiting PME and IME subtasks.
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6.4.2 Adaptive Circuit Partitioning and Distribution

The SPICE-H framework constructs a graph-structured program representation to reason

about the execution bottlenecks on distributed-memory HPC systems and to guide the target

compensation-based algorithm for circuit simulation. This program representation is aware

of the input data as well as the execution platform; thus, it is used to drive an adaptive

model-based circuit partitioning that maximizes the overall performance by reducing the

communication and synchronization overhead and the idle/waiting time.

In SPICE simulation with circuit node tearing, each of the torn nodes accumulates a three-

fold overhead. First, every cut increases the order of the interconnection matrix, which is

a tightly-coupled, semi-dense matrix. Second, two forward-backward substitutions of the

LU-factored submatrices are required to form each row of the interconnection matrix [152].

Third, the communication cost is proportional to the number of interface/port nodes (J).

Therefore, minimizing J is essential to achieve scalable performance, which is achieved using

the following model-based runtime adaptation.

The sequential execution time of SPICE transient analysis for any given circuit is a function

of the execution platform capabilities and the circuit characteristics, such as the number

of unknowns, the number of circuit elements, and the type of circuit elements. It can be

modeled as follows:

Ts = nγ, γ > 1 (6.15)

where n is the number of circuit equations (unknowns), and γ is a coefficient calculated

empirically. The value of γ depends on the circuit type and the execution platform.

The parallel execution time of SPICE transient analysis with circuit node tearing depends

on the interface nodes, J, and the workload balance. The parameter J models both the

communication cost and the additional computation overhead, as detailed above. Since

the execution time depends on the largest circuit partition, the workload balance sets an

upper bound on the performance scalability. Assuming a circuit partitioning algorithm that
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generates balanced partitions, the execution time of the parallel SPICE simulation with

circuit node tearing on a distributed-memory architecture, with sufficient resources to run

all the subcircuits in parallel, can be modeled as follows:

Tp = (
n

m
)γ +mσ, γ > 1, σ > 1 (6.16)

where m is the number of subcircuits, and σ is a coefficient calculated empirically. The value

of σ depends on the circuit type, the partitioning algorithm, and the execution platform.

To find the optimal number of partitions, m∗, such that the overall execution time is min-

imized, we calculate the derivative of equation 6.16 and solve the resulting equation, as

follows:

m∗ = e
ln ε
σ+γ , ε =

σ

γ
nγ (6.17)

Figure 6.3 shows the trends of the optimal number of partitions (m∗) for n = 100, 000 circuit

unknowns with the typical values of γ and σ obtained from the benchmark circuits. As γ

increases, the computational cost of circuit simulation increases and SPICE-H can generate

more circuit partitions to reduce the overall execution time. In contrast, when σ increases,

the communication and synchronization overhead increases which leads to a smaller number

of circuit partitions to make efficient use of the compute resources. Equation 6.17 shows that

m∗ can only be estimated at runtime, after n is given and γ and σ are calculated. Since m∗

is calculated once for a given circuit and execution platform, while the circuit is typically

simulated hundreds of times under different operating conditions and inputs, the overhead

of estimating m∗ is negligible with respect to the simulation time.

The adaptive circuit partitioning is performed in two stages. First, SPICE-H represents the

input circuit as a hypergraph, as shown in Figure 6.4, where vertices are circuit element

and hyperedges are circuit nodes. Each vertex and hyperedge has an associated weight to

model its computational cost. The highly-connected areas in the hypergraph representation

are clustered and collapsed into macro vertices, and the optimal number of partitions m∗ is

estimated as detailed above (see equation 6.17).
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Figure 6.3: The trend of the optimal number of partitions, m∗, for n = 100, 000 circuit

equations/unknowns.

Second, SPICE-H uses the multilevel hypergraph partitioning algorithms [99] to partition

the target hypergraph into m∗ partitions, such that each partition has almost the same

computational cost with a minimum number of cuts. Then, a custom module is used to

analyze the output of the hypergraph partitioning stage and modify it to ensure that each

partition has a valid reference circuit node and there are no floating circuit nodes. Finally,

the resulting partitions are mapped to subcircuits.

Figure 6.4: SPICE-H generates a hypergraph program representation for adaptive parallel

execution of the target application.
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Computation Distribution

Once the input circuit is partitioned and mapped to valid subcircuits, SPICE-H distributes

these subcircuits over the worker processes. We developed a simple algorithm for dividing

the overall computational cost evenly over the available processes, after excluding the cost

associated with solving the interconnection matrix. This workload distribution produces

balanced groups (clusters) of subcircuits, and then assigns each group to a worker process.

The computation distribution problem can be stated as follows: given r processes and m

subcircuits, where a subcircuit Si has a computational cost Ci; assign the subcircuits to the

compute processes such that the maximum load is minimized. The proposed mechanism for

computation distribution sorts the subcircuits in a decreasing order according to the cost

function (Ci), which is chosen to represent the number of interface nodes per subcircuit, and

then assigns the subcircuit with the largest cost to the least-loaded worker process.

6.4.3 Kernel-Architecture Matching

The proposed SPICE-H framework generates affinity prediction models to match its diverse

computational kernels, namely, PME, PMF, IME, and IMF kernels, to the different CPUs

and GPUs of the target heterogeneous HPC system. At runtime, SPICE-H adapts the ongoing

parallel execution to the dynamic system activities by modifying the affinity of the waiting

compute subtasks when deemed necessary, as detailed in §6.4.1. For example, if the GPUs

are fully committed, SPICE-H uses the CPUs to execute the waiting compute subtasks by

changing their original affinity.

Partition Model Evaluation (PME) and Matrix Factorization (PMF)

The PME kernel is responsible for evaluating the device models and loading the Jacobian

Y-submatrices of subcircuits, while the PMF kernel factorizes the Y-submatrices. Since the

subcircuits are completely independent, the PME and PMF kernels consist of m independent
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subtasks (where m is the number of subcircuits) that can execute on a distributed-memory

heterogeneous architecture without synchronization. Assuming balanced subcircuits and

reusing the analysis in §6.3.3, SPICE-H partitioning of the input circuit and transformation

of the circuit simulation modify the original performance models as follows:

• For each PME and PMF subtask, the synchronization overhead (the main sequential

bottleneck) is reduced by a factor of m.

• For each PME subtask, the work and depth is reduced by a factor of m, while the memory

accesses are reduced by a factor of m2.

• For each PMF subtask, the work and memory accesses are reduced by a factor of m3,

while the depth is reduced by a factor of m.

Similar to the original circuit, the execution time of subcircuits is minimized by performing

the partition device model evaluation (PME kernel) on the target GPU and the partition

matrix loading and factorization (PMF kernel) on the CPU.

Interconnection Matrix Evaluation (IME)

The interconnection matrix consists of J equations, which correspond to the circuit interface

(port) nodes. To form each equation, two forward-backward substitutions (solutions) of the

factorized LU submatrices are required. Since all the forward-backward substitutions are

independent, IME consists of 2×J independent LU-solve that can execute on a distributed-

memory architecture without synchronization. Assuming balanced subcircuits and using

the analysis methodology in §6.3, the execution time of each forward-backward substitution

(IME subtask) is given by:

Texe = max{ n

m π0
+

nnz

m2 np π0
,
α n

m
+

nnz L

β m2
√
Z
}+

n s0
m

(6.18)

Using the hardware performance parameters in Table 6.1, the execution time of each IME

subtask is minimized on the target CPU, due to the larger cache and the smaller latency
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and synchronization overhead. As detailed above, there are 2×J independent IME subtasks

and typically J >> m, such that each submatrix is solved for tens to hundreds of times.

Therefore, the overall execution time of the IME subtasks that belong to a single submatrix

(subcircuit) is minimized on the GPU by using a single wavefront (warp) to perform each

individual subtask and benefit from the implicit intra-wavefront synchronization (with zero

overhead).

Specifically, the implementation of the IME kernel employs several transformations to match

the GPU architecture. Each factorized submatrix is divided into lower (L) and upper (U)

halves. All of the submatrices representing the different subcircuits are put in sequence

into a continuous array. As for the right-hand side (RHS) stimulus vectors, at the interface

nodes, are stored into one long vector. Other arrays for indexing the data are also prepared.

Since each of these submatrices are used for tens to hundreds of solutions and to minimize

the number of read operations for their arrays, all the solutions that belong to the same

submatrix are performed in parallel before moving to another submatrix. A second dimension

of parallelization uses a wavefront (warp) to perform the fine-grained operations in a single

solution (IME subtask).

Interconnection Matrix Factorization (IMF)

Unlike the other computational kernels, IMF kernel is dominated by a single tightly-coupled

task, which is LU factorization of the interconnection matrix. Therefore, SPICE-H executes

it on a single compute node, due to the synchronization and communication overhead on

the target distributed-memory HPC system. Using the analysis methodology in §6.3, the

execution time of the IMF kernel is given by:

Texe = max{ J
π0

+
k2J J

npπ0
, α J +

nnzJ J L

β
√
Z
}+ J s0 (6.19)

where kJ is the average number of nonzeros per column, and nnzJ is the total number of

nonzeros in the interconnection matrix. Similar to the Y-matrix and using the hardware
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performance parameters in Table 6.1, the execution time of IMF kernel is minimized on the

target CPU, due to the larger cache and the smaller latency and synchronization overhead.

In the IMF kernel, the interconnection matrix is solved using the right-looking factorization

algorithms [51]. The Left-looking algorithm was shown to be inefficient because of the semi-

dense nature of the matrix. Specifically, this interconnection matrix is solved using a dynamic

allocation of threads depending on the required computational operations. Both the L and U

half matrices are divided into slices, with one thread at the head of each slice, together with

child threads working on the fine-grained computations within this slice. These numbers are

determined during the symbolic analysis phase of SPICE simulation (see §6.2).

6.5 Evaluation

Since no single programming model fits the target architecture, we implemented the host

code in C and used a hybrid MPI/OpenMP programming model to combine the inter-node

and intra-node parallelism. Both CUDA and OpenCL have been equally used to program

the GPU accelerators. Here, we present the CUDA results.

The experiments use two different types of circuits: analog mixed-signal and digital transistor-

dominant circuits. Table 6.2 presents the detailed characteristics of the test cases. CKT1

is a large-scale, memory-like circuit with a structured design, which is the best case for the

SPICE-H framework. CKT2 is a tightly-coupled analog circuit with a large number of para-

sitic elements, which is the worst case for the SPICE-H approach. CKT3, CKT4, and CKT5

are medium size circuits with various characteristics.

We compare SPICE-H with three different simulators: single-threaded SPICE [139], multi-

threaded SPICE with KLU solver [53], and multi-threaded SPICE with NICSLU solver [39].

Table 6.3 details the characteristics of these simulators. Unlike the previous approaches,

SPICE-H works at two different parallelism levels: a coarse-grained (circuit partitioning)

level, and a fine-grained (subcircuit operations) level.
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Table 6.2: Characteristics of test circuits.

Each BSIM4 device adds 1 resistor for gate (Rgatemod=1), and 5 resistors for substrate

(Rbodymod=1), in addition to the original elements listed below.

Circuit Type #unknowns #linear elements #devices

CKT1 Transistor-dominant 1,410,464 2,880 222,080

CKT2 Post-layout analog

mixed-signal

85,188 303,771 11,740

CKT3 Pre-layout analog

mixed-signal

35,741 185 7,804

CKT4 Transistor-dominant 45,570 7,505 10,112

CKT5 Transistor-dominant 67,044 52,846 10,112

Table 6.3: The characteristics of target simulators.

ID Description Devices Matrix

Loading

Matrix

LU/Solve

Interconnection

SPICE Single-thread SPICE Sequential Sequential Sparse1.3 n/a

SPICE-K Multi-threaded SPICE

with KLU

OpenMP OpenMP Sequential

KLU

n/a

SPICE-N Multi-threaded SPICE

with NICSLU

OpenMP OpenMP Parallel

NICSLU

n/a

SPICE-H Proposed multi-node

heterogeneous SPICE

MPI/

CUDA

MPI/

OpenMP

MPI/

OpenMP

MPI/OpenMP/

CUDA
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Table 6.4: Performance of SPICE-H.

SU1, SU2 and SU3 are speedup vs. SPICE, SPICE-K and SPICE-N.

(The resources used by SPICE-K and SPICE-N are 8 cores.)

Circuit #subcircuits Resources for SPICE-H SU1 SU2 SU3

CKT1 32 4 × cg1.4xlarge instances

(32 cores, 8 GPUs)

n/a 12.08× 12.29×

CKT2 24 3 × cg1.4xlarge instances

(24 cores, 6 GPUs)

75.65× 7.76× 2.73×

CKT3 8 1 × cg1.4xlarge instances

(8 cores, 2 GPUs)

12.67× 4.00× 3.87×

CKT4 16 2 × cg1.4xlarge instances

(16 cores, 4 GPUs)

19.69× 7.38× 6.77×

CKT5 16 2 × cg1.4xlarge instances

(16 cores, 4 GPUs)

13.77× 4.92× 4.69×

The runtime results are obtained by performing transient analysis for [0, 100] ns with a

timestep of 1ps. The circuit device models are based on BSIM4 with full parasitic, including

gate and substrate resistances. The MIT StarCluster framework [159] is used to automate

the configuration and management of the test platform, which is a virtual cluster consists

of several cg1.4xlarge instances of the Amazon EC2 cloud. The virtual cluster uses a single

placement group to ensure that all instances are connected over low-latency, high-bandwidth

interconnection links.

Table 6.4 summarizes the speedup of our SPICE-H approach in comparison with the prior

simulators. In CKT1, the best case, the proposed SPICE-H simulator achieves 12.1× and

12.3× speedup over SPICE-K and SPICE-N, respectively, while SPICE could not perform

the simulation. In CKT2, the worst case, SPICE-H outperforms SPICE, SPICE-K, and

SPICE-N by a factor of 75.7×, 7.7×, and 2.7×, respectively. In medium circuits with less

than 100,000 unknowns (circuit equations), our approach achieves on average 15.4×, 5.4×,

and 5.1× speedup over SPICE, SPICE-K and SPICE-N, respectively, which indicates that

the overhead of the SPICE-H simulation framework is insignificant.
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6.6 Conclusion

This chapter demonstrated the development of a scalable framework for SPICE circuit sim-

ulation using the direct method on a high-performance heterogeneous cloud. The proposed

SPICE-H framework constructs a coarse-grained, graph-structured program representation to

reason about the performance bottlenecks on the target platform. As a result, SPICE-H uses

compensation-based program transformations and different levels of parallelism to maximize

the performance: (1) a coarse-grained parallelism level using circuit partitioning, and (2) a

fine-grained parallelism level to solve each partition and the interconnection matrix. Unlike

prior work, SPICE-H generates runtime adaptation models for optimal workload partitioning

and mapping on heterogeneous HPC systems. The combination of these techniques dissolved

the execution bottlenecks that have limited the scalability of parallel circuit simulation.

An implementation of SPICE-H on the Amazon EC2 heterogeneous cloud proved to be

two orders-of-magnitudes faster than the basic sequential SPICE, and around one order-of-

magnitude faster than the optimized multi-threaded implementation using KLU and NIC-

SLU matrix solvers. The test circuits used in the evaluation are real-world, industrial-grade

circuits. They covered a large simulation spectrum, ranging from structured circuits, with a

large number of transistors, to post-layout, analog-mixed signal circuits.



Chapter 7

Interoperation on Heterogeneous

HPC Systems

7.1 Introduction

In the last decade, parallel computing architectures that span a wide range of execution mod-

els have emerged to meet the increasing demand for high-performance applications driven

by the multitude of large-scale datasets. Examples of these architectures are multi-core

CPUs, many-core GPUs, and Intel Many Integrated Cores (MICs). To attain scalable per-

formance efficiently — relative to power, energy, and cost — the high-performance computing

community expects future (exascale and beyond) HPC systems to consist of heterogeneous

compute nodes, with different types of hardware accelerators, connected over a high-speed,

low-latency network infrastructure. In addition to the expected many-core accelerators,

namely GPUs, that populate the top end of the Green500 and TOP500 Lists [130], other

candidate accelerators for these heterogeneous HPC systems include low-power embedded

multiprocessors, custom hardware accelerators (potentially emulated on FPGAs), and even

FPGAs themselves [24].

130
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Such heterogeneous computing systems require hybrid programming models to exploit their

potential performance and energy efficiency, and dealing with this interoperation between

different compute devices and parallel programming models is a tedious and error-prone task.

In addition, the abundance of parallel architectures has complicated the design and devel-

opment of high-performance applications even more. Scientists face several design choices

and have to decide which architecture, programming model, algorithm, and implementation

technique are the most suitable for their applications. For example, NVIDIA GPUs can be

programmed via CUDA, OpenCL, OpenMP, OpenACC, PTX, and several other research

programming models. Each option has a different learning curve and a potential perfor-

mance, but typically the best performance requires a low-level implementation approach

and significant architecture expertise, which is in short supply.

Furthermore, parallel architectures change faster than parallel programming models and

software, and scientists should not have to spend their time re-learning and rewriting code for

the new architectures. Thus, to effectively use future exascale computing systems, end users

need appropriate tools to make efficient use of the available compute resources, both within

and across compute nodes, and to do so without needing to have extensive architectural

expertise and with minimal development time.

This chapter presents MetaMorph, a middleware that resides between user applications and

hardware platforms to enable seamless execution and interoperation across heterogeneous

parallel architectures. MetaMorph is designed as a library framework to (automatically)

extract as much computational capability as possible from exascale computing systems with

three core design principles: abstraction, interoperability and adaptivity.

• MetaMorph abstracts current and future hardware accelerators behind a single interface. It

does so without complicated installations or extensive application refactoring that existing

solutions require. This, in turn, supports the development and upgrade of accelerated

applications by end users with minimal development effort and time. MetaMorph provides

not only high-level abstraction, but also high performance, comparable to hand-coded and

manually-tuned accelerated kernels (§7.2.2).



132

• MetaMorph promotes interoperability across different accelerators and with existing soft-

ware. MetaMorph’s communication interface supports data exchange between different

hardware accelerators not only in a single compute node, but also across multiple nodes.

Moreover, unlike many existing solutions that use proprietary data types, MetaMorph’s

APIs are designed, using standard data types, to be as close to pure C language constructs

as possible and to expose internal device contexts to promote interoperability with hard-

ware vendors’ libraries, domain-specific libraries, and existing code. This interoperability

is crucial in the adaptation to any new library framework (§7.2.1).

• MetaMorph is designed to be adaptive to the capabilities of the execution platform and

runtime environment. It is built to be modular and allow end users to only select the

components and features relevant to the application and hardware in hand. Furthermore,

it provides simultaneous access to all compute devices and accelerators present in a system,

promoting the development of an overarching runtime scheduler to map the accelerated

computations to the best hardware platform(s) available and to reduce the execution time.

Additionally, transparent interfaces to both intra- and inter-node data transfers provide an

opportunity for intelligent partitioning and pipelining to increase overlap of computation

and communication and to hide the data transfer latency (§7.2.3).

To demonstrate the efficacy of the proposed MetaMorph library framework, we present a

case study with the structured grids design pattern, which is heavily used in computational

fluid dynamics (CFD). Specifically, we evaluate MetaMorph with benchmarks and a larger

application, namely MiniGhost, which is a representative CFD application for solving partial

differential equations with the finite difference method. The experiments demonstrate that

MetaMorph significantly reduces the development effort and time for heterogeneous systems

without performance penalty and it can be used to seamlessly utilize all the available hard-

ware accelerators across multiple compute nodes, which include multi-core CPUs, Intel MICs,

AMD GPUs, and NVIDIA GPUs. In addition, we show MetaMorph’s interoperability with

hardware vendors’ libraries and third-party libraries such as clBLAS [9], Intel MKL [193]

and MAGMA libraries [58] (§7.4).
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7.2 Design Philosophy
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Figure 7.1: MetaMorph uses a modular, layered design to hide the complexity of executing

on and interoperating across a range of compute platforms.1

MetaMorph is designed to effectively utilize HPC systems that consist of multiple heteroge-

neous compute nodes with different hardware accelerators. Figure 7.1 shows the proposed

MetaMorph library framework, which acts as a middleware between the application code

1Dashed lines and boxes indicate components that are in development or not yet fully integrated into the

prototype.
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and compute devices, such as multi-core CPUs, many-core GPUs, Intel MICs, and FPGAs.

It hides the complexity of developing code for and executing on these heterogeneous plat-

forms by acting as a unified “meta-platform.” The application developer needs only to call

MetaMorph’s computation and communication APIs, and these operations are transparently

mapped to the proper compute devices. MetaMorph uses a modular layered design, where

each layer supports one of its core design principles and each module can be used relatively

independently.

7.2.1 Interoperability Layer

When designing complex scientific applications for HPC clusters, two types of interoper-

ability are critical: (1) interoperability between compute nodes that may have different

hardware capabilities and (2) interoperability with existing code and external computation

and communication libraries. However, existing solutions only provide one of the two types.

Many frameworks provide multi-platform portability via complex data types or custom com-

pute languages (often utilizing obtuse template meta-programming), thus satisfying the first

type of interoperability, but falling short of the second, as the entire application must be

ported to the framework’s types and/or language. Conversely, it is relatively easy to add

a platform-specific library to an existing application that already uses that platform (e.g.,

adding cuBLAS [142] calls to a CUDA application), but these are not portable to other

platforms, thus satisfying the second type of interoperability, but not the first.

MetaMorph, on the other hand, is designed from the ground up to support both types of

interoperability. Figure 7.2 provides a sketch of this interoperatbility, and a concrete example

is detailed in §7.4.

Interoperability across Different Accelerators

MetaMorph satisfies this type of interoperability with its unified API design and transpar-

ent communication interface. When a user application calls a MetaMorph API, the call is

transparently mapped to a back-end accelerator supported by the underlying platform and
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Figure 7.2: MetaMorph provides interoperability both with external libraries in a node

(dashed lines) and across nodes with varying hardware (solid lines).

the MetaMorph library running on the node, which dramatically simplifies the programming

required to coordinate multiple processes running on different hardware platforms. Further,

MetaMorph provides a communication interface to transfer back-end-resident data, agnostic

of the underlying execution platform, allowing for seamless interoperation across multiple

compute nodes with a range of different hardware configurations.

Interoperability with Existing Software

MetaMorph satisfies this type of interoperability by the careful design of its internal represen-

tation of data buffers and platform-specific back-ends. MetaMorph data buffers are specified

in the top-level APIs as simple C void pointers, with an enumerator identifying the primitive

data type that the back-end implementation should use. The back-end that a given void

pointer actually resides on is inferred at runtime from the state of the run mode variable.

To support incremental porting of existing applications developed for a specific platform,

MetaMorph’s internal context is exposed via additional API functions, so that back-end state

can be shared directly with the host application (i.e., an application can share a context with

MetaMorph via meta get state and meta set state). Thus, application developers can use

MetaMorph, while they incrementally port and validate their applications, which significantly

eases the transition process.
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7.2.2 Abstraction Layer

Achieving (and more importantly, improving) the application performance in the real and

changing world has become a function of portability; non-portable application codes stop

gaining performance if (or more accurately, when) their target platform reaches end of life.

Application codes can be manually ported to new generations of hardware architectures, but

both functional and performance portability are often difficult to achieve without extensive

expertise. Therefore, a need exists to future-proof programming solutions that obviate the

demand for users to manually port performance-critical codes to new hardware devices. The

choice to provide this capability as a library framework was natural, given the proliferation

of libraries in use in many scientific applications and the vast range of domain- or platform-

specific libraries for common operations, such as dense and sparse linear algebra.

MetaMorph provides programmability, functional portability, and performance portability

by abstracting the software back-ends (currently, OpenMP, CUDA, and OpenCL) behind

a single interface. As such, it bridges the performance-programmability gap by decompos-

ing the problem space into two parts: high performance and high-level abstraction. First,

MetaMorph achieves high performance by providing low-level implementations of common

operations, based on the best-known solutions for a given compute platform. Moreover, the

software back-ends are instantiated and individually tuned for the different heterogeneous

and parallel computing platforms (currently, multi-core CPUs, Intel MICs, AMD GPUs, and

NVIDIA GPUs).

Second, MetaMorph achieves high-level abstraction by hiding all device- and platform-specific

details behind the unified interface, which enables the end user to write the application

once and to run it on any supported device. The portability criterion is further satisfied

by providing an infrastructure for adding software back-ends for future compute devices

— without end-user intervention or modifying the application. This provides the small

population of early adopters and architecture experts with a framework that enables them

to dramatically extend the impact of their expertise to the wider community by expanding
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Figure 7.3: MetaMorph accelerates the development of new operations and kernels.

the library with new design patterns. So, rather than writing a kernel once for a single

application, these experts can write that same kernel within the MetaMorph framework,

provide it to the community, and allow it to be used across many applications.

Further, MetaMorph accelerates the development of new operations and computation/com-

munication patterns, as shown in Figure 7.3. It provides a compilation infrastructure and

helper APIs that handle the boilerplate initialization and compilation and simplify data

exchange between the host and accelerators, such that MetaMorph developers can focus on

developing the new kernels. In addition, we used our source-to-source translators [126, 170]

to largely automate the generation of MetaMorph kernels, and in the future, we aim to release

a family of such source-to-source translators and leverage the LLVM Just-In-Time compiler

to simplify the generation of the application host code and the expansion of the MetaMorph

library with new design patterns.

Finally, existing kernels (e.g., CUDA kernels) can be included in MetaMorph without re-

factoring by adding their implementation directly to the interoperability layer (e.g., CUDA

back-end) and their C/Fortran interface in the abstraction layer. However, advanced fea-

tures, like the seamless execution on different accelerators within a node and across nodes,

will work only if these kernels are implemented in all the different back-ends. Contributing a

kernel for even a single back-end is valuable as it provides the architecture-expert community

a baseline, from which to implement and integrate kernels for the remaining back-ends.
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7.2.3 Adaptivity Layer

Software written for the heterogeneous and coming exascale era must be highly adaptive,

as the expanding range of compute platforms and the increasing performance demands con-

tinually reshape the computing landscape. Accordingly, any library framework intended to

provide high performance through such changes must itself be able to quickly respond to

new opportunities to improve the performance. Therefore, MetaMorph has taken a modular

layered approach that makes upgrading performance-critical components simple, without

affecting user applications. First, the adaptivity layer provides compile-time and link-time

customization and optimization for performance-critical components. All the performance-

critical code for a given compute platform is encapsulated in a shared library object and

separated from the core MetaMorph library and all other back-ends. This library-of-libraries

construction promotes the optimization of back-ends to target specific compute devices, by

making them disjoint code objects that can be tuned in isolation for new devices and then

shared among the community. Further, the back-ends can be customized for different types

of compute devices. For example, the OpenMP back-end can be customized for multi-core

CPUs and Intel MICs, and the OpenCL back-end can be customized for CPUs, AMD GPUs,

NVIDIA GPUs, Intel MICs, and FPGAs.

Second, the adaptivity layer provides runtime services to accelerate computations and data

transfers. The accelerator-aware communication infrastructure is inspired by MPI-ACC [6],

which allows automatic partitioning and pipelining of device-resident data buffers to hide

data-transfer latencies. Another runtime service that is built into the MetaMorph design

philosophy is cross-platform runtime scheduling, which intelligently maps the computations

kernels to the best hardware platform(s) available, based on their relative performance,

to reduce execution time. Our cross-platform scheduler is based on CoreTSAR [171], an

adaptive runtime system. In summary, we highlight that our library framework facilitates

the upgrading and development of such runtime services without significant modification to

user applications, thus allowing end users to enjoy a “free ride” to better performance.



139

7.3 Prototype Implementation

We realize MetaMorph2 as a layered library of libraries. Each tier implements one of the

core principles of abstraction, interoperability, and adaptivity. The top-level user APIs and

platform-specific back-ends exist as separate library objects, with interfaces designated in

shared header files. Primarily, this encapsulation supports custom tuning of back-ends to

a specific device or class of devices, as detailed in §7.2. In addition, This design allows

the back-ends to be separately used, distributed, compiled, or even completely rewritten,

without interference with the other components.

7.3.1 Programming Models

The core API, library infrastructure, and communication interface are written in standard C

language for portability and performance. Individual accelerator back-ends are generated in

C with OpenMP and optional SIMD extensions (for CPUs and MICs), CUDA C/C++ (for

NVIDIA GPUs), and C++ with OpenCL (for GPUs, APUs, and other devices). In addition,

a wrapper around the top-level API is written in polymorphic Fortran 2003 to simplify

interoperability with Fortran applications prevalent in some fields of scientific computing.

7.3.2 Top-Level User API

The top-level API, shown in Figure 7.4, improves the programmability of user applications

by abstracting the back-ends, which provide accelerated kernels for each platform. Specifi-

cally, it implements the offload/accelerator computation model3, in which data is explicitly

allocated, copied, and manipulated via kernels within the MetaMorph context. In addition,

the front-end interface supports seamless execution of user applications on different accel-

erators. It intercepts calls to the MetaMorph communication and computation kernels and

2The prototype implementation can be downloaded from https://github.com/vtsynergy/MetaMorph
3For API cohesiveness, the OpenMP back-end mimics the offload model. However, redundant data

transfers can be eliminated, under the user’s control, via the USE UNIFIED MEMORY option.
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// Memory/Context Management

meta a l l o c ( void ∗∗ptr , s i z e t s i z e ) ;

meta f r ee ( void ∗ptr ) ;

meta copy h2d ( void ∗dst , void ∗ src , s i z e t s i z e . . . ) ;

meta copy d2h ( void ∗dst , void ∗ src , s i z e t s i z e . . . ) ;

meta copy d2d ( void ∗dst , void ∗ src , s i z e t s i z e . . . ) ;

meta se t acc ( i n t acc , meta mode mode) ;

meta get acc ( i n t ∗acc , meta mode ∗mode) ;

meta f lu sh ( ) ; // f i n i s h any outstanding work

// share meta context with with e x i s t i n g so f tware

meta ge t s t a t e ( meta platform ∗plat , meta device ∗dev , meta context ∗ context ,

meta command queue ∗queue ) ;

me t a s e t s t a t e ( meta platform plat , meta device dev , meta context context , meta command queue

queue ) ;

// Communication I n t e r f a c e

meta comm init ( i n t ∗argc , char ∗∗∗ argv ) ;

meta comm fina l i ze ( ) ;

meta packed send ( i n t dst , void ∗packed buf , s i z e t len , meta type id type . . . ) ;

meta packed recv ( i n t src , void ∗packed buf , s i z e t len , meta type id type . . . ) ;

meta pack send ( i n t dst , meta face ∗ face , void ∗buf , void ∗packed buf , meta type id type . . . ) ;

meta recv unpack ( i n t src , meta face ∗ face , void ∗buf , void ∗packed buf , meta type id type . . .

) ;

// data marshal ing

meta pack face ( void ∗packed buf , void ∗buf , meta face ∗ face , meta type type . . . ) ;

meta unpack face ( void ∗packed buf , void ∗buf , meta face ∗ face , meta type type . . . ) ;

meta t ranspo s e f a c e ( void ∗ ind , void ∗outd , dim2 ∗ s i z e , meta type type . . . ) ;

meta face ∗make slab ( meta s lab pos po s i t i on , void ∗buf , dim3 ∗ s i z e , i n t th i c kne s s . . . ) ;

// Timers

me t a t ime r s i n i t ( ) ;

m e t a t im e r s f i n a l i z e ( ) ;

// Compute Kerne ls

meta kernel name ( . . . ) ;

. . .

Figure 7.4: Overview of the main user API exposed by MetaMorph.

transparently maps them to a back-end accelerator supported by the underlying platform.

The only times that a user application needs to explicitly manage platforms are as follows:

• at compile time, when the library is advised what back-ends might be available (via

conditional compilation with -D WITH BACK-END definitions), and

• at run time, when the execution mode is set to one of the compiled-in back-ends (via the

METAMORPH MODE environment variable or a call to meta set acc()).
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Memory Management

The top-level user API provides memory management functions for allocating/freeing a

MetaMorph buffer and for transferring data to/from the host. MetaMorph implements its own

implicit buffer types for a set of primitive data types — currently single-precision and double-

precision floating points, signed and unsigned integers, and unsigned 64-bit integers — using

a type enumerator and void pointer(s). Thus, individual API wrappers can dynamically map

the provided void pointer to the correct type for the back-end implementation by inferring

the backend-native type at runtime from the global run mode variable. In addition, these

API wrappers take standard C types for scalars and size t[N] vectors for multi-dimensional

(N-D) problem size variables, which are transmuted to appropriate types when the back-end

implementation performs the actual kernel launch.

Context Management

A number of functions are exposed to exert high-level control on MetaMorph, for example,

getting/setting the current execution back-end, forcing outstanding asynchronous work to

complete, and sharing MetaMorph context with the existing software. To ensure compatibility

and to minimize performance overhead, when only a subset of capabilities is needed, the top-

level API code uses conditional compilation, such that the library users only pay the memory

and performance overhead for the back-ends and options that are needed by “opting-in” at

compile time.

Communication Interface

MetaMorph has been designed from the start for heterogeneous HPC clusters, hence ensuring

convenient data exchange between its processes is critical.

Domain-decomposition. In many scientific application domains, including CFD, when

the problem domain is sufficiently large and cannot fit on a single compute device or node,

the domain is decomposed into multiple smaller sub-domains that can be computed relatively
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independently. However, once decomposed, each sub-domain needs access to a current copy

of data from its logical neighbors. This results in a compute-then-communicate iterative

loop, where neighboring sub-domains residing in separate memory spaces must synchronize

their boundary data in each iteration, i.e., exchange a face or slab of the sub-domain with

neighbors, as shown in Figure 7.5.

proc0 proc1

Figure 7.5: Neighboring processes must exchange boundary data every iteration.

Face Specification. As noted above, the boundary (ghost) element exchange is an impor-

tant communication pattern in many scientific domains. When multi-dimensional grids are

stored as standard C arrays, only two faces are stored contiguously, while the other faces

have their elements scattered at well-defined stride offsets. Therefore, a concise representa-

tion is needed for defining the set of memory addresses that make up a face, so that they can

all be appropriately read and exchanged. Rather than using a pointer list, we re-purpose

the gslice data structure from libstdc++, which is designed specifically for recording such

structured offset information about a multi-dimensional array. The data structure represents

the offset computation as a tree of height N (number of dimensions), in which each successive

level from the root is a finer stride through memory. That is, the leaf nodes represent the

unit-stride dimension, their parents represent the dim0-stride dimension, grandparents the

dim0 ∗dim1-stride dimension, and so on. Figure 7.6 shows an example of this data structure,

which requires O(D) memory space (where D is the dimension of the data grid).
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0 1 2

9 10 11

18 19 20

(a) A row-major 3D region

with unit-dimensional indices

count = 3

start = 2

size[3] = {3,3,1} 

stride[3] = {9,3,0}

(b) Specification of the right-most 2D face

with compressed indexing structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2 11 20

2 5 8 11 14 17 20 23 26

2 5 8 11 14 17 20 23 26

size[0]=3, stride[0]=9

size[1]=3, stride[0]=3

size[2]=1, stride[2]=0

start=2, count=3

(c) Hierarchical computation of strided layout of face indices

Figure 7.6: Face description data structure and hierarchical index computation.

Data Marshaling. On-device packing and unpacking of a multi-dimensional dense grid

can significantly reduce the data transfer and synchronization overhead. So, instead of using

host-side data marshaling, we provide back-end variants of parallel gather/scatter operations

to support the exchange of portions of a back-end-resident data buffer. In these kernels, the

threads compute data indices into the unpacked buffer in parallel from the face specification,

then perform a direct copy between the packed and full buffers.

Communication Meta-Operations. We expose a family of four communication oper-

ations that support exchanging data across MetaMorph processes and back-ends, in both
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blocking and non-blocking modes. We provide simple packed send and packed recv APIs,

which transparently move data between the back-ends via a host-side staging buffer. In

addition, two more operations are provided: pack send and recv unpack. These opera-

tions allow the user to specify face exchanges at a higher level of abstraction to concisely

describe the exchange being performed. Currently, the user only provides the target process,

the back-end-resident, multi-dimensional buffer, and the packed buffer, along with a valid

face specification (as described above). Moreover, MetaMorph’s communication interface has

preliminary GPU-Direct support for exchanging buffers directly between two MetaMorph

processes with the CUDA back-end and a GPU-aware MPI, such as MVAPICH2.

Asynchronous Communication. To overlap the computation with communication, MPI

exchanges are frequently performed in an asynchronous mode. As such, all data exchange

functions can operate in either blocking or non-blocking mode (via callbacks and helper func-

tions). In practice, each high-level exchange operation consists of two to four asynchronous

steps. For example, a pack send operation on a non-GPU Direct back-end must 1) run the

pack kernel asynchronously, 2) perform an asynchronous device-to-host copy of the packed

buffer, whenever the pack kernel finishes, 3) send the host buffer using MPI ISend , and 4)

free the temporary host buffer.

Therefore, an infrastructure is provided to coordinate such asynchronous pipelines, which is

built from three main components: an MPI request queue, helper functions that trigger after

pending requests complete, and callback functions that are triggered by the back-ends after

kernels/transfers finish. When an asynchronous MPI operation is invoked, its corresponding

request is registered on a queue alongside the type of meta-operation being performed, and

the necessary data and helper function required to finish any remaining work. At this

time, the pending requests are only checked for completion, when a meta flush is called.

However, there is an opportunity to check for completion more frequently. Each time an

asynchronous device kernel or transfer is invoked, the necessary data and callback function

can be specified such that the back-end runtime triggers the remaining work upon completion

of the accelerated device operations.
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Companion Features

The final software component of the front-end API is a set of companion features that provide

optional capability, which may not be needed by all users. Currently, MetaMorph provides

the following features:

• Timing infrastructure that performs transparent timing of kernels and data transfers across

the different software back-ends.

• Fortran compatibility that exposes both polymorphic Fortran 2003 and ISO C BINDINGS-

compatible versions of the user-level API.

7.3.3 Accelerator Back-Ends

As a consequence of the dissimilarity of platform-specific programming models, the software

back-ends are less uniformly constructed. However, ultimately each is responsible for pro-

viding a standard C interface to the accelerated kernels. The back-ends are segregated from

one another in order to allow separate compilation and encapsulation of platform-specific

nuances. Consequently, if a given back-end requires special-purpose libraries or tools to build

that are not present on the target machine, it can be easily excluded from a given build of

the library as a whole without loss of function in the remaining back-ends.

OpenMP Back-End. The OpenMP back-end provides standard C variants of all API

functions and should be considered the default back-end, as it provides functionally correct

results on any CPU, regardless of whether the compiler respects OpenMP pragmas. For

some kernels, additional compile-time options are provided to further accelerate code, such

as the option to use SIMD (vector) intrinsics.

CUDA Back-End. The CUDA back-end includes both the kernel functions and the host-

side wrappers responsible for executing the kernel — and when necessary, auto-generating

a CUDA grid/block configuration from the provided problem size. It uses the CUDA C

execution configuration syntax and mixed device/host source files. When a kernel supports

multiple data types, simple templates are used in order to minimize code duplication.
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OpenCL Back-End. The OpenCL back-end is similar to the CUDA back-end, with a few

exceptions. The kernels and host code are stored in separate files, as is common in OpenCL

development. The OpenCL host code includes functions for automatically performing the

OpenCL initialization boilerplate. This includes selection of OpenCL platform and device,

construction of a command queue and context for executing on the device, just-in-time

compilation of kernel code, and management of the resulting program and kernel objects.

7.4 Evaluation

This section presents a detailed case study of the proposed MetaMorph framework with the

structured grids design pattern, which is widely used in computational fluid dynamics (CFD).

The study demonstrates MetaMorph’s capabilities with benchmarks and a representative

CFD application. It shows that a program written once using MetaMorph’s abstraction

layer can seamlessly utilize a wide range of hardware accelerators across multiple compute

nodes. The experiments evaluate MetaMorph on an experimental heterogeneous cluster with

multi-core CPUs, Intel MICs, NVIDIA GPUs, and AMD GPUs, and perform scalability

analysis on a large-scale CPU-GPU cluster. In addition, the study shows MetaMorph’s

interoperability with platform-specific libraries, such as clBLAS [9], Intel MKL [193], and

MAGMA libraries [58].

7.4.1 Applications

3D Dot-Product Benchmark

We designed a benchmark that simulates the exchange of boundary or ”ghost” regions in a

structured grids computation, followed by a global dot-product on a 3D grid. This benchmark

represent a heavily-used pattern in the iterative solvers for partial differential equations

(PDEs), e.g., conjugate gradient (CG), biconjugate gradient stabilized (Bi-CGSTAB), and

generalized minimum residual (GMRES).
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Algorithm 10 describes our test benchmark that models a 3D structured grid computation

on a domain of size Nx×Ny×Nz. After initialization, the global domain is decomposed into

multiple regions (sub-domains) of size nx×ny×nz, which are logically connected in a torus

along the X dimension, and each local sub-domain is assigned to a compute process. Each

MPI process exchanges boundary elements with nearest neighbors, and performs a 3D dot-

product on its local sub-domain. The final output is computed by combining the partial

results from all processes.

Algorithm 10 3D Dot-Product Benchmark

Input: Nx×Ny ×Nz . global domain size

Input: N . number of sub-domains

Input: Iters . number of iterations

Output: result . global 3D dot-product result

1: Allocate and initialize the global domain

2: Perform domain-decomposition along the X dimension

3: Allocate and Initialize local domains of size (nx+ 1)× ny × nz

4: for i ∈ 0:Iters-1 do

5: Pack ghost cells into send buffer

6: Send send buffer to proc+ 1 process

7: Receive ghost cells from proc− 1 process into recv buffer

8: Unpack ghost cells from recv buffer into local domains

9: Compute 3D dot-product on the local domains

10: Perform global reduction to compute result

11: end for

12: return result

MiniGhost

MiniGhost [19, 20] is a representative (proxy) application for CTH [85], a multi-material

shock hydrodynamics code developed at Sandia Lab to model the hydrodynamic flow and

dynamic deformation of solid materials. MiniGhost solves the partial differential equations
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of multiple variables, which represent a material state such as energy, mass, and momentum,

using the finite difference method. It implements a difference stencil (e.g., 3D seven-point

stencil) and explicit time-stepping scheme on a homogenous 3D domain (grid). MiniGhost

supports two communication modes: a bulk synchronous parallel with message aggregation

(BSPMA) mode and a single variable, aggregated face data (SVAF) mode. In BSPMA, the

boundary data for all variables are exchanged in aggregated messages, while in SVAF the

boundary data for each variable is sent/received in a dedicated message. When the number

of variables is one, the two communication modes are equivalent.

Algorithm 11 illustrates the main computations and communication patterns in MiniGhost

with the SVAF communication mode. After initialization, the global domain is decomposed

along the X, Y, and Z dimensions into multiple sub-domains, and each sub-domain is mapped

to a process. In each time step, the processes exchange boundary elements (2D faces) with

neighbors that share a face in the X, Y, and Z dimensions. Next, the processes apply a finite

difference stencil on their sub-domains. Finally, the value of the global domain is computed

using a global summation.

7.4.2 Programmability and Productivity

Figure 7.7 shows the MetaMorph compute APIs that were used to accelerate the target

workloads, in addition to the core APIs (see Figure 7.4). We implemented a MetaMorph

version of the 3D dot-product and MiniGhost applications. To show MetaMorph’s inter-

operability with external libraries, we created a variant of the 3D dot-product benchmark

using MetaMorph and the platform-specific BLAS libraries, namely, clBLAS, Intel MKL,

and MAGMA. Since the platform-specific BLAS libraries do not provide data marshaling

primitives nor accelerator-aware communication interface, we use MetaMorph to do so, and

only perform the dot-product operation with BLAS libraries.

To evaluate the programmability of MetaMorph, the study uses the number of effective code

lines changed or added to accelerate the baseline MPI version as the target metric. We are
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Algorithm 11 MiniGhost with SVAF communication mode

Input: Nx×Ny ×Nz . global domain size

Input: N . number of sub-domains

Input: Nvar . number of variables

Input: TimeSteps . number of time steps

Input: Stencil . stencil type (3D7P, 3D27P,...)

Output: GridSum[Nvar] . global domain value

1: b . number of neighbors per dimension (2 for 3D7P stencil)

2: Allocate and initialize the global domain

3: Perform domain-decomposition along the X, Y and Z dimensions

4: Allocate and initialize local domains of size (nx+ b)× (ny + b)× (nz + b)

5: for i ∈ 0:TimeSteps-1 do

6: for j ∈ 0:Nvar-1 do

7: Pack boundary data into send buffer

8: Send send buffer to neighbors

9: Receive boundary data from neighbors into recv buffer

10: Unpack boundary data from recv buffer into local domain

11: Apply boundary conditions on the local domain

12: Compute finite-difference stencils on the local domain

13: Perform global reduction to compute GridSum[j]

14: end for

15: end for

16: return GridSum
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// Compute Kerne ls

me t a s t en c i l ( void ∗ ind , void ∗outd , dim3 ∗ s i z e , dim3 ∗ s t a r t , dim3 ∗end , meta type type . . . ) ;

meta dotProd ( void ∗ ind1 , void ∗ ind2 , dim3 ∗ s i z e , dim3 ∗ s t a r t , dim3 ∗end , void ∗ r e su l t ,

meta type type . . . ) ;

meta reduce ( void ∗ ind , dim3 ∗ s i z e , dim3 ∗ s t a r t , dim3 ∗end , void ∗ r e su l t , meta type type . . . ) ;

Figure 7.7: MetaMorph’s compute APIs that are used to accelerate the target applications.

interested in the source code lines that perform the core functionality. So, we do not consider

any code lines used for profiling, timing, debugging or optional features. The applications use

a single data type (double), although applications accelerated with MetaMorph can use five

different data types without code modifications. Table 7.1 shows the lines of code changed or

added to accelerate the sequential applications using MetaMorph, MetaMorph with platform-

specific BLAS libraries, and directive-based programming models such as OpenMP. Due

to its abstraction layer, MetaMorph has competitive programmability and productivity with

directive-based programming models; however, unlike these programming models, it provides

simultaneous access to several heterogeneous accelerators (with different characteristics and

execution models) without code modifications. Moreover, through the interoperability layer,

MetaMorph enables the user to utilize the existing platform-specific libraries.

Table 7.1: The number of effective code lines changed/added to accelerate the baseline MPI

implementation.

Application OpenMP MetaMorph MetaMorph+BLAS

3D dot-product 10 19 40

MiniGhost 23 38 NA

7.4.3 Experimental Results

Due to the lack of a large-scale heterogeneous cluster with different accelerators, covering

all the currently supported back-ends in MetaMorph, the study considers an experimental

heterogeneous cluster with multi-core CPUs, Intel MICs, NVIDIA GPUs, and AMD GPUs.
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Table 7.2: The experimental cluster’s configurations.

Machine Name CPU(s) Accelerator(s) OS MPI Compiler(s)

ht20 Intel Xeon NVIDIA Tesla Debian MPICH gcc 4.8.2

E5-2697v2 (2x) K20Xm (2x) Jessie 3.1.4 nvcc 6.0.1

dna1 Intel Core AMD Debian MPICH gcc 4.7.2

i5-2400 Radeon 7970 Wheezy 3.1.4

mic Intel Xeon Intel MIC CentOS MPICH icc 13.1.1

E5-2697v2 (2x) SC7120P (2x) Linux 6 3.1.4

Table 7.3: The CPU-GPU cluster’s configurations.

CPU(s) Accelerator(s) OS MPI (Interconnect) Compiler(s)

Intel Xeon

E5645

NVIDIA Tesla

C2050 (2x)

CentOS

Linux 6

OpenMPI 1.6.4 (QDR

InfiniBand)

gcc 4.5, icc 13.1,

nvcc 5

In addition, it perform scalability analysis on HokieSpeed, which is a large-scale CPU-GPU

cluster at Virginia Tech. Details of the experimental nodes and the CPU-GPU cluster are

provided in Table 7.2 and Table 7.3, respectively.

In the experiments, MiniGhost is configured to apply a 3D 7-point stencil on a global grid

and to use an explicit time-stepping scheme with 100 time steps. The reported performance

does not include sequential overheads, such as data initialization and boundary conditions.

While MetaMorph supports several data types, the experiments use double-precision floating

point only for brevity.

Figures 7.8, 7.9, and 7.10 show the performance of the 3D dot-product and MiniGhost

applications on the experimental heterogeneous cluster. In the experiments, we launch four

processes, each running on one of the supported back-end accelerators: multi-core CPU (Intel

Xeon E5-2697), Intel MIC (Intel Xeon Phi SC7120P), NVIDIA GPU (K20Xm), and AMD

GPU (AMD Radeon 7970). We use weak scaling with local grid sizes that are typically used

in CFD applications. However, AMD Radeon 7970 could not execute the problem size of
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(a) 3D dot-product benchmark (b) MiniGhost

Figure 7.8: The performance of target applications with the different MetaMorph (MM)

back-ends on the experimental cluster.

512x512x512, due to its limited global memory. Since the test compute resources are only

interconnected with a high-traffic 1Gb ethernet, shared with approximately 30 other compute

and memory nodes, resulting in too much network noise for meaningful intercommunication

performance characterization, the reported performance does not include the inter-node data

transmission time.

Figure 7.8 shows the execution time of each process of the 3D dot-product and MiniGhost

applications running on one of the supported back-ends in comparison with the sequential

reference implementation running on Intel Xeon E5-2697. The results show that MetaMorph

achieves up to 21x and 17x speedup over the reference implementation in 3D dot-product

and MiniGhost, respectively. Since structured grids applications are characterized by regular

memory access pattern and low computational intensity, their performance is limited by the

memory system; hence, they are suitable for many-core accelerators (GPUs and Intel MICs)

with large memory bandwidth. However, the problem size must be large enough such that

the kernel launch overhead and the additional data transfers are effectively amortized.

Figure 7.9 shows the runtime distribution of MiniGhost with 256x256x512 local problem size

on the different MetaMorph back-ends. The main computation and communication kernels
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Figure 7.9: The runtime distribution of MiniGhost using a 256X256X512 local grid with the

different MetaMorph (MM) back-ends on the experimental cluster.

of MiniGhost are stencil, reduction sum, data marshaling, and intra-node data transfer.

On many-core accelerators, the intra-node data transfer includes host-to-device, device-to-

host, and on-device data movement, while on CPUs it includes on-device data movement.

MiniGhost has many on-device data transfers, as its finite-difference solver uses temporary

work buffers to hold the intermediate results, while solving the partial differential equations

of the material state variables. On multi-core CPUs, due to their limited memory bandwidth,

the stencil kernel and the intra-node data transfers consume the majority of execution time.

Many-core devices, with their large memory bandwidth, accelerate all kernels. However,

data marshaling suffers from performance degradation on Intel MIC. The profiling data

shows that data marshaling kernels do not utilize the vector units on Intel MIC efficiently,

due to the non-unit stride memory access pattern and complex control flow. In addition, the

hardware prefetcher in Intel MIC is less powerful than mainstream multi-core CPUs, when

the memory access stream is non-contiguous (scattered) [64].

Figure 7.10 shows the performance of the 3D dot-product benchmark, when accelerated

using MetaMorph with platform-specific BLAS libraries. The results demonstrate that the

MetaMorph variant (Figure 7.8a) has comparable performance to the MetaMorph with BLAS

libraries version on multi-core CPU, AMD GPU, and NVIDIA GPU, although MetaMorph’s

3D dot product is more flexible than the simple contiguous dot product available in BLAS

libraries, as it allows the user to perform dot product on an arbitrary sub-region of the 3D

grid; this is very useful for CFD applications, where neighbor ghost cells data is often stored
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Figure 7.10: The performance of the 3D dot-product benchmark on the different MetaMorph

(MM) backends with platform-specific BLAS libraries on the experimental cluster.

contiguously with local data to simplify stencil operations. However, MetaMorph with MKL

outperforms MetaMorph only on Intel MIC for small problem sizes (less than 256x256x256).

Our hypothesis is that Intel MKL adapts to the different inputs and problem sizes, which is

a feature currently in development in MetaMorph.

Figure 7.11 shows the scalability analysis of MiniGhost on the large-scale CPU-GPU cluster.

The weak scaling experiments use a problem size of 512x512x512 per node, and the strong

scaling experiments use a global grid of size 1024x1024x1024. In comparison with the refer-

ence MPI+OpenMP implementation, MetaMorph achieves 7-8x speedup in the weak scaling

problem. The main reason is that MetaMorph effectively utilizes all the available accelerators

(CPUs and GPUs) within a node and across nodes. Unlike the reference MPI+OpenMP

approach, the MetaMorph version transparently maps the workload to hardware accelera-

tors from different vendors with diverse execution models and programming approaches.

The workload is distributed based on the relative performance of the accelerators and the

available on-device memory. In the strong scaling problem, the performance gap between

MetaMorph and the reference parallel implementation decreases at lower node counts, as

most of the workload is mapped to the host, due to the limited GPU memory. However, at

larger node counts, MetaMorph achieves up to 6x speedup over the reference implementation.
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(a) Weak scaling: 512X512X512 local grid per node (b) Strong scaling: 1024X1024X1024 global grid

Figure 7.11: The scalability analysis of MiniGhost on the HokieSpeed cluster with Meta-

Morph vs. the reference MPI+OpenMP implementation.

7.5 Conclusion

This chapter presented MetaMorph, a middleware designed to enable interoperation and

workload distribution across a range of current and future accelerator architectures, without

a significant time investment in development and learning platform-specific nuances. We

showed how the core principles of adaptivity, abstraction, and interoperability are instan-

tiated in the MetaMorph prototype implementation. Through these principles, MetaMorph

is able to transparently and efficiently map common computation/communication patterns

across several compute nodes bearing hardware accelerators, from different vendors, with

diverse execution models and programming approaches.

The experimental results demonstrated that while MetaMorph has comparable programma-

bility and productivity to directive-based programming models, it provides performance and

interoperability across an array of heterogeneous devices, including multi-core CPUs, Intel

MICs, AMD GPUs, and NVIDIA GPUs. In addition, high performance similar to domain-

and accelerator-specific approaches is achievable through the MetaMorph library. Further,

by effectively utilizing all the available hardware accelerators, within a compute node and

across compute nodes, MetaMorph achieves an order of magnitude scalable speedup over the

reference parallel implementations.
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Conclusion and Future Work

With the increasing demand for performance and energy efficiency, driven by the exponential

growth of data sets and machine learning (ML) applications, computer hardware is becoming

more complicated and heterogeneous. This paradigm shift in high-performance computing

has made it increasingly difficult for end users to extract the potential performance across

the various hardware architectures and execution models in a large-scale system.

This dissertation explored the use of graph analytics to reason about the performance bot-

tlenecks of user applications and to tackle the heterogeneity, scalability, and interoperability

challenges of modern HPC systems, both at the node level and the cluster level. Specifically,

the previous chapters described in detail our (1) graph-structured program representations to

bridge the semantic gap between user applications and heterogeneous parallel architectures,

and (2) automation frameworks for performance analysis and modeling, runtime adapta-

tion, interoperation, and workload mapping and distribution. The extensive analysis and

experiments conducted in this work demonstrated the efficacy of these innovative frame-

works and showed that the proposed methods can achieve multiplicative performance gains

for challenging applications (with limited parallelism and fine-grained data dependencies) in

many important scientific domains, including computational fluid dynamics, computer-aided

design, and electronic design automation.

156
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8.1 Dissertation Summary

To summarize, this work made the following contributions:

• The AutoMatch framework projects the relative execution cost of a given sequential code

across heterogeneous parallel architectures, which allows efficient workload distribution

that simultaneously utilizes all the available compute resources in a system (§3).

• The CommAnalyzer framework estimates the minimum communication cost and maximum

scalability of a given sequential code when ported to distributed-memory architectures.

As a result, it enables the development of effective parallel implementations that realize

the estimated communication and scalability bounds (§4).

• The ATA framework efficiently schedules application tasks and manages their fine-grained

data dependencies on massively data-parallel architectures. By adapting to the depen-

dency structure of input problems and the processing overhead on target architectures,

ATA delivers up to an order-of-magnitude improvement in the end-to-end performance of

sparse solvers, compared to the existing GPU task-execution approaches (§5).

• The SPICE-H framework provides a scalable execution of irregular computations with

limited and data-dependent parallelism, which have been traditionally restricted to a single

computing platform, on heterogeneous distributed-memory systems. For a representative

and challenging application, namely, SPICE circuit simulation using the direct method,

SPICE-H achieves up to an order-of-magnitude speedup over the optimized multi-threaded

implementations (§6).

• The MetaMorph library framework is a middleware that resides between user applications

and hardware platforms to support interoperation across an array of heterogeneous parallel

architectures, including multi-core CPUs, many-core GPUs, and specialized accelerators.

As a result, MetaMorph reduces the development effort, and it enables a simultaneous

execution approach that effectively utilizes all the heterogeneous computing resources in

an HPC system (§7).
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8.2 Future Work

There are many research opportunities to expand on our program analysis and runtime

adaptation methods to address the power efficiency and extreme heterogeneity challenges of

future HPC systems.

While the shift to heterogeneous parallel computing has been crucial to attain scalable per-

formance with power efficiency, HPC systems are becoming increasingly constrained by their

power consumption. Therefore, the U.S. Department of Energy (DOE) has identified power

consumption as a leading design constraint for future HPC systems and it is challenging the

HPC community to achieve exascale computing (1018 operations per second) under 20-40

MW power budget [123]. This problem is even more complicated for the emerging machine

learning and data analytics applications. Recently, Strubell et al. showed that training a

single deep learning model can emit as much carbon as five cars in their lifetime [182]. Hence,

there is an emerging need for automated runtime adaptations to sustain the performance

improvement under strict power budget. To this end, the proposed automation frameworks

for runtime analysis and adaptation can be extended to generate multi-objective cost models

for relative performance and energy efficiency, laying the foundation for an intelligent parallel

execution runtime.

Due to the end of transistor scaling, another paradigm shift in HPC systems is expected to

happen over the next decade [71, 191, 192]. In this era, HPC systems will be built from an

aggregation of custom accelerators specialized for different types of workloads. This extreme

heterogeneity will significantly increase the complexity of developing HPC applications. To

improve the end user productivity, the machine learning community is researching domain-

specific languages (DSL), compilers, and runtime systems [38, 190] to adapt their rapidly

changing workloads to the latest heterogeneous hardware. Such DSL systems separate the

hardware-agnostic algorithms from the hardware-specific optimizations. Specifically, this

separation of concerns is achieved by allowing end users to describe their workloads at a

high level using domain-specific program constructs, while offloading the task of efficiently
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scheduling the computations and memory accesses on a specific architecture to the DSL

compiler and runtime. Building on the proposed research for automated program analysis,

transformation, and runtime adaptation, future work could explore the use of domain-aware

program representations and emerging DSL compilers and runtime systems to support the

automated optimization of challenging application kernels (such as sparse linear algebra and

graph processing kernels) on heterogeneous parallel architectures.
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