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Chapter 3

METHODOLOGY

The present research incorporates data envelopment analysis, goal programming

and fuzzy set theory.  The literature reports extensive work in the three fields.  However,

the framework developed in this thesis draws upon the strengths of the three approaches

to provide a tool to facilitate decision-making in a fuzzy environment.

In most real life situations the decision-maker generally seeks to satisfy aspiration

levels of goals within a certain tolerance limit rather than optimize crisp goals.  Sengupta

(1992) first developed a fuzzy DEA framework for efficiency measurement where he

introduced fuzziness in the objective function and the resource (right hand side) vector

and applied it to the Charnes, Cooper and Rhodes (1978) model.  However, Sengupta’s

(1992) theoretical concepts were not implemented with real data.  Furthermore, his

formulation only extends conventional DEA to a fuzzy environment.  Girod (1996)

developed fuzzy models to measure efficiency in a fuzzy environment employing fuzzy

inputs and outputs.  However, limited research has been done in the area of achieving

multiple organizational goals with multiple decision-making levels in a fuzzy

environment.  In such scenarios optimal achievement of all goals is rarely possible.  The

decision-maker usually chooses to achieve goals as close to optimal as possible or in

some order of priority.

Under this scenario the decision-maker can avail of the fuzzy model developed in

this research which allows fuzziness in the aspiration levels.  This fuzzy model is

formulated using Athanassopoulos' (1995) framework.  First, a reformulation of

Athanassopoulos' (1995) model with slight modifications is presented.  Second, the

membership functions employed in this research are defined.  Third, the reformulated

model derived from Athannasopoulos (1995) is then fuzzified using techniques from

fuzzy goal programming.  The Fuzzy GoDEA model is followed by variations that
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capture different scenarios related to decision-making.  Finally, an interpretation of the

membership functions related to a production environment is described.

3.1 REFORMULATION OF THE ATHANASSOPOULOS (1995) GODEA

MODEL

Athanassopoulos (1995) developed a framework for multi-objective multi-level

planning where a central coordinating entity controls and/or allocates global resources

between relatively homogenous decision-making units.  This framework is used to

reformulate the GoDEA model for the current research.  The central coordinating entity

desires the maximization of pre-specified input/output global targets.  To achieve this

goal, the individual DMUs are expected to maximize their contribution toward

achievement of the global organizational targets.  Global organizational targets are

reflected in the objectives of efficiency (contribution of individual DMUs to individual

targets), effectiveness (achievement of global organizational targets), and operational

viability (maintaining minimal resource allocation of individual DMUs).  This framework

gives rise to issues regarding the assessment of global and individual DMU targets and

the reallocation of resources among the DMUs.  The challenge for the decision-maker is

to decide the relative importance of achievement of the objectives of efficiency,

effectiveness and operational viability depending on the level of decision-making.  In

reality, the optimal achievement of any one of the three objectives cannot guarantee the

best use of available resources.  Therefore, the decision-maker is likely to choose a

compromise between pre-specified satisfaction levels of the objectives.  At a given

decision-making level in the organizational hierarchy the decision-maker can prioritize

the achievement of objectives according to relative importance.  A crisp formulation does

not allow linguistic specifications such as "essentially satisfied" or "approximately

satisfied".  The need for such imprecise specification of multiple organizational goals

with varying relative importance in a hierarchical system motivates the fuzzy model

formulation in this research.  The model in this research is developed for a two-level
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hierarchy where the global and individual DMU targets are known a priori (e.g.,

historical process knowledge).

Athanassopoulos’ (1995) GoDEA model is reformulated as:

Model 3.1
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Minimal Resource Share Allocation:
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where:

N: number of DMUs

I: set of inputs

J: set of outputs

xik: level of input i for DMU k

yjk: level of output j for DMU k

xi
c, yj

c: level of input i and output j for DMU c when assessing DMU c

λk
c: activity level of DMU k when assessing DMU c

ni
k, pi

k: negative and positive deviation variables for input i of DMU k

nj
k, pj

k: negative and positive deviation variables for output j of DMU k

di
+, di

-: positive and negative deviation variables from global targets of input i and

output j

Pi
-, Pi

+: user defined preferences over the minimization of positive and negative

goal deviations of input i

Pj
-, Pj

+: user defined preferences over the minimization of positive and negative

goal deviations of output j

Pi
g, Pj

g: user-defined preferences related to global targets of input i and output j

TXi, TYj: global target levels known a priori for input i and output j

Is: subset of inputs chosen to be maintained at least at pre-specified levels

H: subset of DMUs chosen to be maintained at least at pre-specified levels for

inputs i∈ Is

ri
h: pre-specified proportion of global target TXi for input i∈ Is and h ∈ H
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Model 3.1 is a goal programming formulation.  The model has an objective

function and three sets of constraints.  The first set of constraints (equations 3.2-3.3)

provides the individual DMU representations and reflects the objective of efficiency.

These DEA-like constraints compare the inputs and outputs of the assessed DMU c with

the composite units Σk λk
cxik and Σk λk

cyjk respectively.  Each composite unit is basically a

convex combination3 (as in the BCC Model) of all DMUs in the system under study with

a set of activity levels λk
c when assessing DMU c.  These constraints differ from the

conventional DEA constraints due to the introduction of positive and negative goal

deviation variables, pi
c and ni

c for inputs and pj
c and nj

c for outputs, instead of the

contraction and expansion factors respectively.  The two-way deviation variables allow

under- and over-achievement of the input and output factors and also impact the

construction of the efficiency frontier.  In conventional DEA the objective function seeks

to minimize (maximize) the contraction (expansion) factor for the inputs (outputs).  The

objective function thus drives the solution to the problem.  The efficient DMUs are

evaluated when the contraction (expansion) variable is equal to unity and the distance

between the efficient facet and the DMU is minimized via the input excess (output slack)

variables.  The efficient DMUs then represent points on the efficient frontier.  In the goal

programming model presented above the objective function seeks to minimize the two-

way deviation variables.  The two-way deviation variables represent possible contraction

and expansion of both inputs and outputs.  The minimization of these variables thus

drives the solution to the problem.  The specific cases of input and output orientations can

be obtained by appropriately modifying the objective function.  Thus, the efficient

frontier constructed in the goal programming formulation may differ from the frontier

constructed by conventional DEA

The second set of constraints (equations 3.4-3.5) reflects the objective of

effectiveness through the achievement of global input and output targets.  In his

                                               
3 Equation 3.7 is the convexity constraint that ensures variable returns to scale.  The proposed model and its

variations maintain the convexity property to model variable returns to scale.
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formulation Athanassopoulos (1995) makes an assumption that individual DMUs will

tend to use more inputs than made available by and produce less outputs than desired by

the central coordinating entity.  In the current reformulation the aim is to restrict global

consumption of each input to less than or equal to the global target and to enable global

production of output that is more than or equal to the global target.  That is, the decision-

maker desires to maximize the negative deviation from the input target and the positive

deviation from the output target.  Therefore, only deviation variables corresponding to

reduction in input usage (di
-) and the augmentation of output production (dj

+) are present

in these constraints.  Fuzzification of the global target constraints would allow positive

input deviation and negative output deviation within pre-specified tolerance limits.

Therefore, the fuzzy global target constraints correspond to the assumption made by

Athanassopoulos (1995).

The third constraint set (equation 3.6) reflects the objective of operational

viability through the concept of minimal resource share allocation.  These constraints

differ from those proposed by Athanassopoulos (1995).  While Athanassopoulos (1995)

seeks to balance commensurate (measured in the same units) inputs and outputs (e.g.,

income-expenses relationship), the constraint set in the reformulated model seeks to

maintain a minimal resource allocation for all inputs from a subset of the input set I for a

subset of the DMUs.  These constraints, thus, address the concept of maintaining minimal

operating levels of certain inputs and DMUs to remain viable in the generation of

outputs.  This constraint can be extended to apply to a pre-specified subset of the outputs.

In the current formulation only a subset of the input set is employed, as the case

considered is that of input reduction.

Equation 3.7 restricts the sum of the activity parameters λk
c’s to one and enables

variable returns to scale in the formulation.  This convexity constraint is used in the same

manner as in the BCC model for conventional DEA.  Equation 3.8 imposes the non-

negativity condition on the λk
c’s.
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The objective function of the model (equation 3.1) has two parts.  The deviation

variables are standardized to achieve a standard evaluation system (see Chapter 2,

Section 2.6, page 54).  The first part contains the positive and negative deviation

variables associated with the inputs and outputs of individual DMUs.  This allows for

over- and under-achievement of individual input/output targets for each DMU.  The

priorities associated with these deviation variables can be interpreted as the extent to

which individual DMUs contribute toward achievement of global organizational targets.

This feature differentiates Athanassopoulos' (1995) model from conventional DEA,

which always assumes input contraction and output expansion for the assessed DMU.

Also, by appropriately modifying the signs and magnitudes of the preferences Pi
-, Pi

+,

Pj
+, Pj

- different planning scenarios can be implemented (e.g., input contraction and

output expansion (conventional DEA), input contraction and output contraction, input

expansion and output expansion, etc.).  The second part of the objective function contains

the deviation variables associated with the global input and output targets.  The priorities

associated with these deviation variables represent the reward per unit deviation from the

global targets.

This reformulated version of Athanassopoulos' (1995) model provides the base

model that is fuzzified and presented in this research.  The following section presents a

discussion of the membership function employed in this research.  The concepts of

membership functions are discussed related to a production environment and presented

for the input and output spaces.  The Fuzzy GoDEA model is presented subsequently.

3.2 MEMBERSHIP FUNCTIONS FOR THE INPUT AND OUTPUT SPACES

A membership function is constructed for both the input and output spaces based

on the interpretation of the bounds or tolerance limits specified for the satisfaction of the

fuzzy constraints.  The assumptions for the membership functions are outlined next.

Figures 3.1 and 3.2 show the membership functions for the input and output spaces

respectively.
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3.2.1 Assumptions

The following assumptions are made regarding the membership functions

associated with the achievement of the fuzzy goals (or constraints).  The membership

functions are assumed to be linear and monotonically increasing.  The membership

function associated with each constraint is evaluated as a linear expression (Zimmermann

(1978)) when the constraint is satisfied within the specified tolerance limits i.e.,

essentially satisfied.  The value of the membership function is equal to zero when the

constraint is evaluated at or beyond the tolerance limits i.e., completely dissatisfied and is

equal to one when the constraint is satisfied crisply.

3.2.2 The Input Space

Consider the membership function shown in Figure 3.1 for the input space.  The

observed input i for DMU c is represented by xi
c.  Using the structural efficiency concept

of DEA, the input efficiency of DMU c is assessed by comparing input xi
c with the

composite unit or convex combination in the BCC case (linear combination in the CCR

case) of all the DMUs for input i in the system.  The objective is to find a composite unit

that is less than or equal to xi
c i.e., to find a composite unit that utilizes less than or as

much of input i as DMU c.  This mathematical representation when fuzzified allows the

inequality to be satisfied up to an upper bound ui
c where ui

c ≥ xi
c.  That is, the decision-

maker is satisfied to varying degrees when the inequality is satisfied within the interval

(xi
c, ui

c).  When the composite unit is greater than or equal to ui
c then the constraint is

dissatisfied completely.  Therefore, an input realization greater than or equal to ui
c is

undesirable.  Hence, the membership function takes the value zero at ui
c and all values

greater than ui
c.  The membership function increases monotonically from zero to one in

the interval (xi
c, ui

c) as the input realization moves from ui
c to xi

c.  This is consistent with

crisp constraint satisfaction at xi
c.  For the decision-maker, the membership function

values for the efficiency constraints represent the degree of satisfaction of the DEA

representation of the constraints.  Therefore, when the membership function for the DEA
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representation of an input is equal to one it implies crisp satisfaction of the DEA structure

for that input and when the membership function value is less than one it implies a

relaxation of the DEA structure.  Accordingly, it follows that when the membership

function for an input is equal to zero the DEA structure fails to hold for that input.

A priori there is no knowledge that xi
c is an (in)efficient observation.  Therefore,

prior to the efficiency evaluation of the DMUs the input space membership function can

be considered to have a hypothetical nature.  In other words, the membership function in

the input case is assumed to be one at all values equal to and less than the observed input

realization xi
c.  Since DEA is based on "best observed practices" this assumption is

justified in the sense that it may be possible to further reduce inputs as the best observed

may not be the best possible.  Therefore, if the observed input realization is evaluated as

inefficient then the efficient frontier can be considered to lie at xi
c* (efficient input

usage)at a distance "a" units from xi
c (observed input) .  When a = 0 then xi

c (DMU c) is

an efficient observation and lies on the efficient frontier (xi
c =  xi

c*).  Alternately, "a" can

be interpreted as the projection of DMU c on to the efficient frontier that would make

DMU c an efficient observation.
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3.2.3 The Output Space

The membership function for the output space is constructed in an analogous

manner.  Consider the membership function shown in Figure 3.2 for the output space.

The observed output j for DMU c is represented by yj
c and is compared with the

composite unit to assess DMU c's output efficiency.  The objective is to find a composite

unit that is greater than or equal to yj
c i.e., to find a composite unit that produces more

than or as much of output j as DMU c.  This mathematical representation when fuzzified

allows the inequality to be satisfied up to a lower bound l j
c where l j

c ≤ yj
c and is

interpreted as the decision-maker's varying degrees of satisfaction when the inequality is

satisfied within the interval (l j
c, yj

c).  When the composite unit is less than or equal to l j
c

then the constraint is dissatisfied completely.  Therefore, an output realization less than or

equal to l j
c is undesirable.  Hence, the membership function takes the value zero at l j

c and

all values less than l j
c.  The membership function increases monotonically from zero to

one in the interval (l j
c, yj

c) as the input realization moves from l j
c to yj

c.  This is consistent

with crisp constraint satisfaction at yj
c.  As in the input case, the membership function

values for the efficiency constraints represent the degree of satisfaction of the DEA

representation of the constraints.  Therefore, when the membership function for the DEA

representation of an output is equal to one it implies crisp satisfaction of the DEA

structure for that output and when the membership function value is less than one it

implies a relaxation of the DEA structure.  Accordingly, it follows that when the

membership function for an output is equal to zero the DEA structure fails to hold for that

output.

In the absence of a priori knowledge whether yj
c is an (in)efficient observation,

the output space membership function is assumed to be equal to one at all values equal to

and greater than the observed output realization yj
c.  Since DEA is based on "best

observed practices" it may be possible to increase outputs as the best observed may not

be the best possible.  Therefore, if the observed output realization is evaluated as

inefficient then the efficient frontier can be considered to lie at yj
c* (efficient output
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production) at a distance "b" units from yj
c (observed output).  When b = 0 then yj

c (DMU

c) is an efficient observation and lies on the efficient frontier (yj
c = yj

c*).  Alternately, "b"

can be interpreted as the projection of DMU c on to the efficient frontier that would make

DMU c an efficient observation.
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The membership functions developed in the preceding sections can be evaluated

deterministically only after a solution to Model 3.3 is obtained.  Based on the solution to

Model 3.3 it is possible to calculate the values for the distances "a" and "b" for the inputs

and outputs for each DMU.  This provides a new graphical representation of the DMUs

and their location with respect to the efficient frontier.  Conventional DEA enables

graphical representation of the frontier only in the two dimensional case i.e., two inputs –

one output or two outputs – one input cases.  The construction of the membership

function proposed above is not limited to two dimensions as each input/output for each

DMU can be graphically portrayed as described.  The Fuzzy GoDEA model is presented

in the next section.
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3.3 FUZZY GOAL PROGRAMMING AND DEA (Fuzzy GODEA) MODEL

The reformulated GoDEA model presented in section 3.1 is fuzzified in this

section.  The fuzzy model is transformed into an equivalent crisp formulation using fuzzy

set theory.  This crisp formulation is then solved with suitably developed computer

programs in CPLEX.  Variations of the base Fuzzy GoDEA model are presented

subsequently to capture different decision-making scenarios.  This research aims to

present various decision-making scenarios in a fuzzy environment using the proposed

Fuzzy GoDEA model and its variations.

3.3.1 The Conceptual Model

The proposed fuzzy model structure includes goal programming, data

envelopment analysis and fuzzy set theory.  The model is developed for a hierarchical

environment with two levels of decision-making.  At the higher- or super-level is the

central decision making unit (CDMU) and at the lower- or sub-level are the individual

decision making units (DMUs).  The DMUs are under the control of the CDMU insofar

as allocation of resources and setting global targets are concerned.  The CDMU has a

given amount of resources that it wishes to allocate among the DMUs while trying to

achieve its global objectives of effectiveness, efficiency and minimal operational

viability.  The CDMU specifies global input and output targets for the DMUs based on

historical process knowledge and statistical analyses.  To achieve these objectives the

CDMU could possibly choose to give most importance to meeting global input and

output targets through maximal contribution of the DMUs.  The CDMU could consider

the objectives of efficiency and minimal viable operating levels for the DMUs to bear

secondary importance.  The DMUs could assign primary importance to the objectives of

efficiency and minimal viable operating levels, and assign secondary importance to the

objective of meeting global targets.  The model can be solved with different priorities for
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the fuzzy goals depending on the level of decision-making.  The variations to the model

follow the formulation of the base model.

…

DMU 1

DMU N

CENTRAL
DECISION
MAKING

UNIT
(CDMU)

Global Inputs
(Targets)

Global Outputs
(Targets)

DMU 2

Inputs Transformation Outputs

Global Inputs
(Observed)

Global Outputs
(Observed)

Input (Re) Allocation

Max Effectiveness

(Max Global Targets)

Max Efficiency

(Max Individual DMU Targets)

Minimal
Operational
Viability

Figure 3.3 Conceptual Model
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3.3.2 The Mathematical Formulation

Problem Statement: A hierarchical system consists of N DMUs and a central

coordinating DMU.  The CDMU provides global input and output targets and pre-

specifies tolerance limits for the global targets.  The individual DMUs specify the

tolerance limits for the individual DMU inputs and outputs.  Then, the problem is to

determine the activity levels that maximally achieve the fuzzy goals of effectiveness

(meeting global targets) and efficiency (meeting individual DEA targets) and the crisp

goal of operational viability (minimal resource allocation share).

The Fuzzy GoDEA model can thus be written as:

Model 3.2

Find λk
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Minimal Resource Share Allocation:
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where:

N: number of DMUS

I: set of inputs

J: set of outputs

xik: level of input i of DMU k

yjk: level of output j for DMU k

xi
c, yj

c: level of input i and output j for DMU c when assessing DMU c

λk
c: activity level of DMU k when assessing DMU c

TXi, TYj: global target levels known a priori for input i and output j

Is: subset of inputs chosen to be maintained at least at pre-specified levels

H: subset of DMUs chosen to be maintained at least at pre-specified levels for

inputs i∈ Is

ri
h: pre-specified proportion of global target TXi for input i∈ Is and h ∈ H

.constraintor  goal  theof ionfuzzificat denote: "" ," "
≈≈
≥≤

The objective function and the constraints of the model are related through the

activity levels λk
c’s.  A set of activity levels is obtained when each DMU is assessed.

These activity levels are DMU specific.  In other words each DMU when assessed has its

own set of activity levels for each input and output for all the DMUs in the data set.  The

activity levels are free to take on any non-negative value.  The convexity constraint
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models variable returns to scale.  Restrictions can be relaxed on the activity levels to

incorporate constant returns to scale or weighting schemes imposed so as to avoid all the

weight to be directed toward a few inputs or outputs.

The fuzzy constraints can be treated as fuzzy goals.  The fuzzy goals imply that

the goals have to be essentially met within the specified tolerance limits or bounds.

These bounds are pre-specified by the decision-maker based on historical knowledge.

Consider the rth fuzzy goal Gr 
≈
≥  gr, which signifies that the decision-maker accepts the

constraint satisfaction up to a certain tolerance limit less than gr.  Consequently, a

membership function µr for the rth goal Gr 
≈
≥  gr is defined by Zimmermann (1978) as:

rg≥rG    if, 1 3.17

=rµ rr
rr

rr gG
Lg

LG
<<

−
−

r Lif, 3.18

rL≤rG    if, 0 3.19

where Lr is the lower bound or lower tolerance limit for fuzzy goal Gr≥ gr.

Analogously, for the sth fuzzy goal Gs 
≈
≤  gs, which signifies that the decision-maker

accepts the constraint satisfaction up to a certain tolerance limit greater than gs, the

membership function µs is defined as:

sg≤sG    if, 1 3.20

=sµ ss
ss

ss UG
gU

GU
<<

−
−

sg if,
3.21

sG≤s    Uif, 0 3.22

where Us is the upper bound or upper tolerance limit for fuzzy goal Gs ≤ gs.
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The membership functions associated with the fuzzy goals in Model 3.2 can be

expressed based on Zimmermann's (1978) definition for linear membership functions.

However, the fuzzy model outlined above cannot be solved in the present form.

Therefore, a linear crisp translation is required.  A membership function µq is associated

with each fuzzy goal Gq.  There are (i+j ) input/output factors and therefore (i+j ) DMU

representation constraints (DEA type constraints) for every DMU k = 1,2,…,N.  There are

(i+j ) global target constraints.  Therefore, in total there are N(i+j ) +(i+j ) fuzzy

constraints and consequently, N(i+j ) +(i+j ) membership functions.  Let (i+j ) = m.  Then

there are m(N+1) membership functions.  Note that the minimal resource share allocation

constraints are maintained as crisp inequalities.  These constraints serve as implicit

weight restrictions on the activity levels λk
h for the chosen subset of DMUs.

Additionally, these constraints seek to secure at least a pre-specified proportion of the

global input target for certain DMUs and inputs.  Physically, this translates into the

decision-maker deeming certain DMUs to be maintained at minimal operating levels for

inputs determined to be critical for operational viability to generate outputs.  The

structure of these constraints also allows for sensitivity analysis on the proportion ri
h of

the global input target TXi for the chosen input subset Is.  The model results can be

compared by varying the specification of ri
h as well as the subsets H and Is.

The crisp equivalent linear program for the Fuzzy GoDEA model (Model 3.2) is written

as:

Model 3.3
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µµµµ
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c
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xyxy
yxyx

Max +++Σ 3.23

Subject to:
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For the DMU representations:
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Jj
LTY

Lyy

jj

N

k
jjk

N

k

N

k
jkk

y j

∈∀
−

−++
=

∑∑
== ,

)(
11

1 λλ
µ

�

3.26

Ii
TXU

xxU

ij

N

k
ik

N

k

N

k
ikki

xi

∈∀
−

++−
=

∑∑
== ,

)(
11

1 λλ
µ

�

3.27

For the Minimal Resource Allocation Share:

( )∑
=
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N
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k
NNHhIIiTXrx
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},,2,1{,, �λ 3.28
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1
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k

c

k
�=∀=∑

=
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i

c
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where:

l j
c: lower bound on DMU output target yj

c

ui
c: upper bound on DMU input target xi

c and

Lj: lower bound on DMU global output target TYj and Lj = Σk l j
k

Ui: upper bound on global input target TXi and Ui = Σk ui
k

In this research Ui and Lj are assumed to be the sum of the individual input/output

bounds.  The µq's represent the degree of satisfaction of the decision-maker.  The

interpretation of these membership functions is explained in the next section.
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3.4 INTERPRETATION OF THE MEMBERSHIP FUNCTIONS

This section provides the interpretation for the membership functions associated

with the fuzzy constraints or goals in the Fuzzy GoDEA Model.

3.4.1 Membership Functions for the Constraints

Each fuzzy constraint of Model 3.2 has a membership function µ associated with

it.  Each membership function ranges from zero to one and expresses the degree of

satisfaction of the constraint.  In other words, the membership function denotes the

degree of satisfaction of the decision-maker in achieving the aspiration levels of his/her

fuzzy goals.  If the membership function takes the value one then the associated goal is

achieved crisply and if it takes the value zero then the associated goal is dissatisfied

completely.  The range between zero and one can be viewed as the percentage

satisfaction of the decision-maker in satisfying the goal.  The graphical representations of

the membership function for the "≤" and "≥" constraints are given in Figure 3.4 and

Figure 3.5 respectively.  The quantities gs
b and gr

b represent the production limits.  This

means that the membership function virtually retains its value as one beyond these

bounds ("≤" and "≥" respectively) and is represented by a dashed line.  In production

terms though it may not be possible to decrease/increase the factors to levels beyond

these bounds.
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Figure 3.4 Membership Function µ for the " ≤" Type Fuzzy Goal
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Figure 3.5 Membership Function µ for the " ≥" Type Fuzzy Goal
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3.5 ILLUSTRATION

Consider a system with N = 3 DMUs, I = 2 inputs, J = 1 output i.e., we have

N = 1,2,3 3.31

I = x1, x2 3.32

J = y1 3.33

Say, H = {1,3} and Is = x1. 3.34

Then the Fuzzy GoDEA formulation as given in Model 3.2 is given as :

Find λk
c 3.35

Subject to:

DMU Representation (Efficiency):

1
113

1
312

1
211

1
1 yyyy

≈
≥++ λλλ (DMU 1) 3.36

1
113

1
312

1
211

1
1 xxxx

≈
≤++ λλλ 3.37

1
223

1
322

1
221

1
1 xxxx

≈
≤++ λλλ 3.38

2
113

2
312

2
211

2
1 yyyy

≈
≥++ λλλ (DMU 2) 3.39

2
113

2
312

2
211

2
1 xxxx

≈
≤++ λλλ 3.40

2
223

2
322

2
221

2
1 xxxx

≈
≤++ λλλ 3.41
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3
113

3
312

3
211

3
1 yyyy

≈
≥++ λλλ (DMU 3) 3.42

3
113

3
312

3
211

3
1 xxxx

≈
≤++ λλλ 3.43

3
223

3
322

3
221

3
1 xxxx

≈
≤++ λλλ 3.44

Achievement of Global Targets: (Effectiveness):

113
3
312

3
211

3
113

2
312

2
211

2
113

1
312

1
211

1
1 )()()( TYyyyyyyyyy

≈
≥++++++++ λλλλλλλλλ 3.45

113
3
312

3
211

3
113

2
312

2
211

2
113

1
312

1
211

1
1 )()()( TXxxxxxxxxx

≈
≤++++++++ λλλλλλλλλ 3.46

223
3
322

3
221

3
123

2
322

2
221

2
123

1
322

1
221

1
1 )()()( TXxxxxxxxxx

≈
≤++++++++ λλλλλλλλλ 3.47

Minimal Resource Share Allocation: (Operational Viability):

)( 1
1

113
1
312

1
211

1
1 TXrxxx ⋅≥++ λλλ 3.48

)( 1
3

113
3
312

3
211

3
1 TXrxxx ⋅≥++ λλλ 3.49

Σk λk
c = 1, ∀ c = {1,2,…,N} 3.50

λk
c ≥ 0, 0 < ri

h < 1 3.51
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3.6 VARIATIONS OF THE FUZZY GoDEA MODEL

The Fuzzy GoDEA model (Model 3.2) (and its crisp equivalent (Model 3.3))

presented in section 3.3 is developed for the scenario when the decision-maker wishes to

specify imprecise aspiration levels for all goals.  However, real life data often offers a

combination of complete and incomplete information with respect to achievement of

goals.  Further, in the case of two or more levels of decision-making, multiple goals carry

different degrees of importance depending on the level of decision-making.  In such

circumstances the decision-maker may wish to partition the goals into fuzzy and crisp.

For example, in one case the decision-maker may choose to specify the goals related to

efficiency (DEA representation) in a crisp sense and maintain the goals related to

effectiveness (achievement of global targets) as fuzzy.  Further, the relative importance of

goals can also be modeled by setting priority levels for the goals.

The different models that capture these variations are outlined in this section.  All

the variations outlined carry only the goals of efficiency and effectiveness and represent a

two-level hierarchy.  The variations are presented as the final crisp equivalents obtained

after crisp transformation of any fuzzy goals.  Due to unavailability of information and

the need to maintain consistency for comparison the third constraint of operational

viability is not modeled for the application, and henceforth omitted.  Thus the variations

of the Fuzzy GoDEA Base Model presented next contain only two goals, that of

efficiency and effectiveness.  It should be noted, however, that the operational viability

goal maybe relevant for certain situations and can be modeled with suitably available

information.
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3.6.1 Variation 1:

Model 3.4

)(
,,,

µµµµ
iijj

c
i

c
i

c
j

c
j

ji
c
j

c
i

xxyyxxyy
yxyx

wwwwMax +++Σ 3.52

Subject to:

For the DMU representations:

Jj

ly

ly
c

j

c

j

N

k

c

jjk

c

k

yc
j

∈∀
−

−
=

∑
= ,1
λ

µ
},,2,1{ Nc �∈∀

3.53

Ii
xu

xu
c

i

c

i

N

k
ik

c

k

c

i

xc
i

∈∀
−

−
=

∑
= ,1
λ

µ 3.54

For the achievement of Global Targets:

Jj
LTY

Lyy

jj

N

k
jjk

N

k

N

k
jkk

y j

∈∀
−

−++
=

∑∑
== ,

)(
11

1 λλ
µ

�

3.55

Ii
TXU

xxU

ii

N

k
ik

N

k

N

k
ikki

xi

∈∀
−

++−
=

∑∑
== ,

)(
11

1 λλ
µ

�

3.56

},,2,1{,1
1

Nc
N

k

c

k
�=∀=∑

=
λ

3.57

0,,,and,0,1,,,0 ≥≥≤≤ wwww ij
c
i

c
jij

c
i

c
j

xyxy

c

kxyxy
λµµµµ 3.58
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In this case the objective function is of the weighted additive type.  Here the µ’s are

weighted according to the importance that the decision-maker wishes to assign each goal.

3.6.2 Variation 2:

Model 3.5

Stage 1:

)(
,

µµ
ij

ji
xy

yx

Max +Σ 3.59

Subject to:

For the achievement of Global Targets:

Jj
LTY

Lyy

jj

N

k
jjk

N

k

N

k
jkk

y j

∈∀
−

−++
=

∑∑
== ,

)(
11

1 λλ
µ

�

3.60

Ii
TXU

xxU

ii

N

k
ik

N

k

N

k
ikki

xi

∈∀
−

++−
=

∑∑
== ,

)(
11

1 λλ
µ

�

3.61

},,2,1{,1
1

Nc
N

k

c

k
�=∀=∑

=
λ

3.62

,0,1,0 ≥≤≤ λµµ c

kxy ij

3.63

Stage 2:

)(
,

µµ c
i

c
jc

j
c
i

xy
yx

Max +Σ 3.64
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Subject to:

For the DMU representations:

Jj

ly

ly
c

j

c

j

N

k

c

jjk

c

k

yc
j

∈∀
−

−
=

∑
= ,1
λ

µ
},,2,1{ Nc �∈∀

3.65

Ii
xu

xu
c

i

c

i

N

k
ik

c

k

c

i
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i
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−

−
=

∑
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µ 3.66

For the achievement of Global Targets:

Jj
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N

k
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N
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N
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jkk
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3.68

},,2,1{,1
1

Nc
N

k

c

k
�=∀=∑

=
λ

3.69

µµµµλµµ **
,and,0,1,0

iijj
c
i

c
j xxyy

c

kxy
==≥≤≤ 3.70

Here the achievement of global targets is considered as the more important goal in stage

1 and solved for optimality.  The optimal solution µ* ’s obtained from stage 1 are passed

as constraints for the stage 2 problem.  The objective of efficiency is then evaluated in

stage 2.  The solution obtained for stage 2 will thus maintain the solution to stage 1.
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3.6.3 Variation 3:

Model 3.6

Stage 1:

)(
,

µµ c
i

c
jc

j
c
i

xy
yx

Max +Σ 3.71

Subject to:

For the DMU representations:
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k
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i
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i

∈∀
−

−
=

∑
= ,1
λ

µ 3.73

},,2,1{,1
1

Nc
N

k

c

k
�=∀=∑

=
λ

3.74

0,1,0 ≥≤≤ λµµ c

kxy c
i

c
j

3.75

Stage 2:

)(
,

µµ
ij

ji
xy

yx

Max +Σ 3.76

Subject to:
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For the DMU representations:

Jj

ly
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c

j

c

j

N

k

c

jjk

c

k
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j

∈∀
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−
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∑
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For the achievement of Global Targets:
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k
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=
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µµµµλµµ **
,and,0,10

c
ii

c
j

c
jij xxyy

c

kxy
==≥≤≤ 3.82

Here the achievement of individual DMU targets i.e., the goal of efficiency is considered

as the more important goal in stage 1 and solved for optimality.  The optimal solution

µ* ’s obtained from stage 1 are passed as constraints for the stage 2 problem.  The

objective of effectiveness i.e., achievement of global targets is then evaluated in stage 2.

The solution obtained for stage 2 will thus maintain the solution to stage 1.
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3.6.4 Variation 4:

Model 3.7

)(
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Subject to:

For the DMU representations:
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For the achievement of Global Targets:
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0,1,0 ≥≤≤ λµµ c

kxy c
i

c
j

3.89

In this case the constraints related to efficiency (DMU representation) are fuzzy while the

constraints related to achievement of global targets are crisp.  The objective function

seeks to maximize the sum of the µ’s associated with the efficiency constraints.  The
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decision-maker would typically desire that the global consumption of inputs is

maintained below the global target and the global production of output exceeds the global

target.  Accordingly, the right hand side of each of these constraints represents the sum of

the individual bounds of the inputs and outputs.  This is consistent with the fact that the

individual bounds represent the risk-free scenarios and, therefore, the goal would be to

improve upon the sum of these bounds at the global level.

3.6.5 Variation 5:

Model 3.8
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},,2,1{,1
1

Nc
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�=∀=∑

=
λ
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0,10 ≥≤≤ λµµ c

kxy ij

3.96

In this case the constraints related to efficiency (DMU representation) are crisp while the

constraints related to achievement of global targets are fuzzy.  The objective function

seeks to maximize the sum of the µ’s associated with the effectiveness constraints.  The

crisp DMU representation constraints measure each unit relative to a composite unit as in

conventional DEA to measure efficiency.

3.6.6 Variation 6:

Model 3.9

Stage 1:

)(
,

µµ c
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Here the stage 1 problem tries to maximize satisfaction of the fuzzy DMU representations

or efficiency constraints.  The stage 2 problem consists of fuzzy efficiency constraints

and crisp effectiveness constraints.  The optimal solution µ* ’s is passed as a constraint to

the stage 2 problem.  The objective function in stage 2 tries to minimize the deviations

from the global targets.  Only negative deviation from the output target and positive

deviation from the input target are minimized since positive output deviation and

negative input deviation are considered acceptable.  Thus the solution to the stage 2

problem will maintain the optimal solution to the stage 1 problem.  Consequently, the

solution to the deviation variables in stage 2 reveal the extent of satisfaction of the

effectiveness constraints given a certain acceptable level of satisfaction of the efficiency

constraints.

3.6.7 Variation 7:

Model 3.10
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This variation reverses the priority attached to the goals in variation 6. In stage 1 the

objective function minimizes the deviations from the global targets.  The solution to the

deviation variables is then passed as a constrain to the stage 2 problem.  In stage 2 the

objective is to maximize satisfaction of the fuzzy DMU representations or efficiency

constraints.  The stage 2 problem consists of fuzzy efficiency constraints and crisp

effectiveness constraints.  The solution to the stage 2 problem reveals the extent of

satisfaction of the efficiency constraints given the least deviation from the effectiveness

constraints.

3.6.8 Variation 8:
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Stage 2:
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In this variation the stage 1 problem is to minimize the deviations from the crisp

efficiency targets for each DMU.  These crisp DMU representations measure relative

efficiency in the conventional DEA sense.  The DMUs for which the deviations reach

zero are evaluated as efficient.  The solutions for the deviations are passed as constraints
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to the stage 2 problem.  The stage 2 objective is to maximize the satisfaction of the fuzzy

effectiveness constraints while maintaining the efficiency goal achieved in stage 1.

3.6.9 Variation 9:
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Subject to:

For the DMU representations:
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In this variation the priorities associated with the efficiency and effectiveness constraints

are reversed.  The stage 1 problem is to maximize the satisfaction of the fuzzy

effectiveness constraints.  The solution µ*s are passed to the stage 2 problem where the

objective is to minimize the deviations from the efficiency targets for the individual

DMUs.  The solution to the stage 2 problem maintains the satisfaction of the fuzzy

effectiveness goals achieved in stage 1.

Chapter 4 presents a real-life application of the current research.


