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(ABSTRACT)

Eigenstructure based techniques have been studied extensively in the last decade to estimate

the number and locations of incoming radiating sources using a passive sensor array. One of the

A
early limitations was the computational load involved in arriving at the eigendecompositions. The

ä introduction ofVLSI circuits and parallel processors however, has reduced the cost of computation

A tremendously. As a consequence, we study eigendecomposition algorithms with highly paraHel and A
localized data flow, in order to take advantage of VLSI capabilities.

This dissertation presents a fast Recursive/lterative Toeplitz (Herrnitian) Eigenspace (RITE)

algorithm,
and-

its extension to the generalized strongly regular eigendecomposition situation

(C·RITE). Both proeedures exhibit highly parallel structures, and their applicability to fast passive

array processing is emphasized. The algorithms compute recursively in increasing order, the

complete (generalized) eigendecompositions of the successive subproblems contained in the

maximum size one. At each order, a number of independent, structurally identical, non·linear

problems is solved in parallel. The (generalized) eigenvalues are found by quadratically convergent

iterative search techniques. Two different search methods, a restricted Newton approach and a

rational approximation based technique are considered. 'I'he eigenvectors are found by solving

Toeplitz systems efiiciently. The multiple minimum (generalized) eigenvalue case and the case of

a cluster of small (generalized) eigenvalues are treated also. Eigenpair residual norms and

orthonormality norms in comparison with IMSL library routines, indicate good performance and

stability behavior for increasing dimensions for both the RITE and C-RITE algorithrns.

Application of the procedures to the Direction OfArrival (DOA) identification problem, using

the MUSIC algorithm, is presented. The order·recursive properties of RITE and C~RITE permit

estimation of angles for all interrnediate orders imbedded in the original problem, facilitating the



earliest possible estimation of the number and location of radiating sources. The detection

algorithm based on RITE or C-RITE can then stop, thereby rninimizing the overall computational

load to that corresponding to the smallest order for which angle of arrival estimation is indicated

to be reliable.

Some extensions of the RITE procedure to Hermitian (non-Toeplitz) matrices are presented.

This corresponds in the array processing context to correlation matrices estimated from non-linear

arrays or incoming signals with non-stationary characteristics. A first—order perturbation approach

and two Subspace Iteration (SI) methods are investigated. The RITE decomposition of the

Toeplitzsized (diagonally averaged) matrix is used as a starting point. Results show that the SI

based techniques lead to good approxirnation of the eigerrinformation, with the rate of convergence

depending upon the SNR ar1d the angle difference between incoming sources, the convergence being

faster than starting the SI method from an arbitrary initial matrix.
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1.0 Introduction

1.1 Formulation of the Problem

In many applications such as radar, sonar, seismology, medical imaging, one is faced with the

problem of resolving an unknown number of incoming sources, possibly closely spaced, in a noisy

environment. Different categories of spectral techniques have been developed along the years

[KAY], the oldest ones based on direct Fourier transforrns of the data. The last decade has seen

the extensive development of new array processing methods called high resolution methods. These

techniques are based on the earlier work of Pisarenko [PIS] in the early seventies and the more

recent ones of Schmidt [SCH] or Bienvenu [BIE]. Basically, these techniques use the eigenstructure

of the received signal correlation matrix and the concept of signal and/or noise vector spaces to

determine the number of incoming sources along with their characteristic parameters such as

directions and intensities. One of their early limitations used to be in the computational load

involved with the eigenstructure decompositions. However, the introduction of VLSI circuits has

tremendously reduced the cost of computations and recent hardware implementations. Parallel

processors have provided the tools to implement these irnproved performance estimators. As a
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consequence, algorithms with highly parallel and localized data flow are presently studied to take

advantage of VLSI capabilities.

Numerous procedures based on Hermitian eigendecompositions for array processing have been

studied. Each of these have advantages and drawbacks, depending upon the user’s requirements

(computational speed, in/off line applications, small storage requirements or not, precision of the

results, etc...). For equi-spaced linear sensor arrays the signal and noise correlation often have

Herrnitian Toeplitz structure. Therefore, it seems natural to try to exploit that special structure to

reduce the computation time of the Direction-Of-Arrival (DOA) estimation process for the earliest

possible detection.

This dissertation presents a fast Recursive/iterative Toeplitz (Hermitian) Eigenspace (RITE),

algorithrn based on an idea presented earlier by Beex et al [BXl,BF l,BF3], and its extension to the

generalized strongly regularl eigendecomposition situation (Colored·RITE7, or C·RITE)

[BF2,FAl,FA2]. The procedures modify and extend an algorithm proposed earlier by Gueguen

[GUE] which was not insured to converge, and are applied to the linear sensor array processing

situation.

The basic idea implemented for the RITE and C-RITE algorithms is to use the Hermitian

Toeplitz structure of the matrix, or the pencil, to compute recursively in increasing order the

eigendecompositions of submatrices, or subpencils, imbedded in the original problem. ·At each

order a number of independent, structurally identical non-linear problems is solved in parallel,

facilitating fast implementation. The eigenvalues can be found by quadratically convergent iterative

search methods [FA2,BFB], and the eigenvectors are obtained by solving Toeplitz systems

efficiently. The multiple (generalized) eigenvalue case is treated also, using information already

found at the rank before to directly identify all but one of the eigenvectors associated with the

multiple (generalized) eigenvalue, thereby reducing the overall computational load of the algorithm.

‘
i.e. the matrices constituting the pencil have all regular minors.

7 because, in the array processing application context, the generalized eigendecomposition case appears
when dealing with incoming signals in a colored noise environment.
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‘ The RITE and C-RITE techniques are restricted to Herrnitian Toeplitz matrices. In the array

processing context, this corresponds to correlation matrices estimated from incoming signals with

stationary characteristics. However, there are situations where this assumption is not satisfactory,

such as those corresponding to time-varying or exponentially damped incoming signals. In such

cases, correlation matrices lose their Toeplitz characteristics and the proposed recursive procedures

cannot be applied directly. Nevertheless, for nearly stationary processes, leading to Herrnitian

structures, underlying stationary behavior may still be present and could potentially be used to

extend the technique. Thus, this dissertation proposes extensions of the RITE procedure (i.e. the

regular eigenproblem) to the Herrnitian case and presents applications to the array processing

situation.

1.2 Previous Results

Determining the number and location of radiating sources using a passive array of sensors is

an important problem in radar, sonar, seisrnology, and even medical imaging. In all these areas the

problem is to identify an unknown number of sources, possibly closely spaced, in a noisy

environment. Essentially, this can be viewed as a spectral estimation problem. Different categories

of estirnation techniques exist. The oldest ones are based on direct Fourier transformations of the

time series. Methods using windowing, periodograms, etc., became extremely popular in the sixties

with the development of the Fast Fourier Transform. These conventional methods assume that the

data covariance sequence is zero outside the segment under study. However, this assumption is

usually incorrect in practice and it then degrades estirnator performance.

Model-based methods belong to a different category. Here, the techniques extend the

covariance sequence outside the segment under study by using the chosen model parameters.

Hence, they completely specify the infinite covariance sequence and the problem becomes a
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parameter estimation problem. Numerous techniques _such as the Burg method, the Capon method

and ARMA modelling can be found in the literature [KAY].

Modelling methods achieve high resolution when the models chosen are appropriate, especially

when the amount of data is small. However, these modelling techniques are based on convolutive

models (i.e. noise is assumed present at the input of the model). If measurement noise is present

(i.e. uncertainty or inaccuracy in the observations is present), then these methods mismodel the data

and the perfonnances are not as good.

The above spectral estirnation techniques may be applied to array processing. However much

higher performance techniques have been developed in the past decade. These high resolution

method: use the eigenstructure of the signal correlation matrix and concepts of signal and/or noise

vector spaces to determine the number of incoming signals along with their characteristic

parameters such as directions-of-arrival and intensities. The early seventies pioneering work of

Pisarenko was restricted to the case of a one-dimensional signal nullspace and a linear array [PIS].

Schmidt [SCH] and Bienvenu and Kopp [BIE] later independently improved on the idea, and

extended it to the general array case. Schmidt developed the MU1tip1e Slgnal Characterization

(MUSIC) algorithm based on the complete eigenstructure of the correlation matrix. Independently,

Bienvenu and Kopp developed a frequency domain technique based on the eigenstructure of the

spectral density matrix of the received signals. Improved linear prediction methods, to estimate

damped sines in noise, have been proposed by Kumaresan and Tufts [KUM| and Reddy [RED].

Other eigen-based techniques have since been introduced by Johnson and DeGraaf [JOH], Bronez

and Cadzow [BRO] and Roy et al [RPK] among others. Roy et al’s technique, Estirnation of

Signal Parameters via Rotational Invariance Technique (ESPRIT), is restricted to sensor arrays

with displacernent invariance but is computationally less expensive than MUSIC and appears to

be more robust to array imperfections. More recently, Roy et al have presented an improved

ESPRIT method which uses a total least squares criterion [RPK]. The authors show that the TLS

criterion used cancels the bias affecting the regular ESPRIT technique at low SNR’s. All the

eigen-based techniques mentioned above are computationally expensive as they involve the full

eigen-decomposition of the correlation matrix, and a search procedure to recover the DOA
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information. Therefore, several researchers, such as Tufts et al [TUM] or Fuhrmann et al [FUL],

have tried to decrease the computational load by approximating the information needed to recover

the DOA parameters. _

The high-resolution techniques mentioned above yield asympotically unbiased estirnates even

in the case where the sources are partially correlated. However, difficulties arise when the sources

are coherent. In such cases, the covariance matrix of the sources becomes singular and the

eigenstructure techniques cannot be used directly any more. Several methods have been proposed

in order to overcome this difficulty [SWK,KLF,FOK,HWK,WK2,BRK]. Shan et al [SWK] for

instance, applied a spatial smoothing scheme, introduced earlier by Evans, to the DOA estirnation

problem. Basically, the idea is to construct averages of overlapping submatxices contained in the

original correlation matrix in order to destroy the cross-correlation between the coherent sources.

The Toeplitz Approximation Method (TAM), proposed by Kung et al [KLF], considered the

spatial data as the output of an ARMA process, and proposed a state space formulation approach

to recover the DOA information.

The eigenstructure methods mentioned so far usually require that the additive noise be spatially

white. When the noise is colored a.nd the algorithms designed for white noise are still used, Martin

shows that bias and poor resolution result [MAT]. The colored noise case with known correlation

structure can still be solved by prewhitening the data [BIE] or by solving a generalized eigenvalue

problem [ZOL]. Difficulties increase when the noise characteristics are not completely known. V
However, when the noise is isotropic, the Covariance Dwerence Technique can be applied to solve

itheDOA problem [PAK, TRI, TR2, PWM]. Here, small rotations of the array are used to form

the covariance difference matrix. This matrix is then used to solve the eigen-decomposition

problem.

Note that all the techniques mentioned so far estimate the correlation matrices first, followed

by computation of the eigen-decompositions. Adaptive aigorithms which can update the

eigenstructure information are often very useful because they can track slowly time-varying

processes. Karhunen [KAR], Vaccaro [VAC], Wilkes and Hayes [WIH] and Sharman [SHA]

among others have proposed adaptive irnplementations of eigen—based methods. More recently,
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Shan and Kailath have introduced a new adaptive array estimator which does not require any

a-priori information [SHK], such as an approximate range of directions of arrival of the desired

signals or SNR values.

The growing interest in these eigen-based techniques has motivated the numerous performance

analyses published recently. Wang and Kaveh [WKI], Spielman and Kailath [SPK], Sibul and

Burke [SIB], and Johnson and Miner [JOM] among others have performed analyses and studied

performance. Note that the nonlinearities involved have actually prohibited the derivation of

general analytical performance results. Most of the results are obtained from simulations or

first-order perturbation analyses. Kaveh and Barabell [KAB] however, have recently proposed an

approximate statistical performance analysis of the MUSIC and the Minimum·Norm algorithms.

They derived approximate expressions for bias and variance of the null spectra. The analysis

appears very appealing from a theoretical viewpoint but the complexity of the derivations makes it

difficult to readily interpret the expressions. Nevertheless, their approach could open the path to

more complete performance analysis.

Computing the eigen-decomposition of the correlation matrix is only the first step of the DOA

identification problem. The correct number of incoming signals and the parameters still have to

be identified. Methods used for this can be globally divided into two categories. The first approach

is to extract the information by plotting the projections of the mode vectors onto signal and/or

noise subspaces. Direct estimation of the DOA parameters may be difiicult for low SNR. In such

cases, the applied information criteria, developed by Wax and Kailath [WAK], can be used for the

decision process that deterrnines the number of sources. Unlike other statistical techniques, the

Minimum Description Length (MDL) criterion and the Akaike Information Criterion (AIC) do

not require any threshold settings; the number of signals is determined by minimization of the

criterion expressions. A first consistency analysis, proposed by Wax and Kailath, showed that the

MDL criterion yields a consistent estimate of the number of signals while the AIC criterion tends

to overestimate the number of signals asymptotically. The absence of threshold settings makes

these criteria extremely appealing and several performance studies have since been performed. For

instance, Wang and Kaveh show that the performance of the decision criteria depends on the
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quality of the covariance estimates3 [WKI, WK2]. The recent article of Zhao et al [ZKB] shows

that theoretical work is still in progress in this area. Those authors point out an incorrect

assumption made by Wax and Kailath, question the validity of their consistency analysis, and use

different arguments to derive the MDL consistency property.

The second approach to identifying the DOA parameters involves looking at the roots of the

eigenfilters. This method is sometimes referred to as the Root-Music Aégorithm. It is shown to

exhibit better resolution than the regular MUSIC algorithm [WAL]. For low SNR and/or

estimated correlation sequences, the degeneracy of the noise subspace creates spurious peaks in

MUSIC, and the zeroes tend to fall far away from their true locations on the unit circle [KUM[ in

ROOT-MUSIC. In such cases, the separation of spurious and true peaks (or extraneous and true

zeroes) becomes difficult. Additional processing may then become necessary for the identification

process [BAR, ORI, OR2[.
‘

One of the early limitations of eigen-based techniques used to be the computational load

involved in the eigenstructure decompositions, and numerous procedures aimed at minimizing the

computational cost have been proposed; [FUH,KUM] among others. For equi-spaced linear

sensor arrays the signal and noise correlation matrices often have the Herrnitian Toeplitz structure.

It seems natural then, to try to exploit that special structure to achieve gains in the throughput of

the resulting algorithrn. Interest ir1 Toeplitz matrices spreads spreads far [beyond the array

processing context and a lot of research conceming these special structured matrices has been

conducted.

A Look at Toeplitz Matrices

Toeplitz matrices are ofgreat interest in many areas. In estimation problems for instance, they

appear as covariance matrices of stationary processes. They are commonly found in time series

analysis, image and signal processing, control theory, statistics, etc... Numerous researchers have

« exploited the specific Toeplitz structure in an attempt to decrease the overall computational load

3 i.e. the number of snapshots used to compute the covariance sequence.
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of algorithm implementations. Conventionally, solving a n·dirnensional linear system of equations

requires O(n’) operations. Levinson [LEV] introduced in 1947 a recursive algorithm reducing the

computational load to O(n’) for the Hermitian case. A restriction of the Levinson algorithm to _

autoregressive models was presented by Durbin [DUR]. Trench [ZOI] and Zohar [ZO2] later

proposed a new recursive inversion algorithm applied to nonsymmetric, Herrnitian Toeplitz

systems. This algorithm was then generalized to solving Toeplitz systems by Zohar [ZO2]. See also

the algorithms introduced by Bareiss [BAE] and Jain [JAI]. Trench, Zohar, Bareiss and Jain take

advantage of the specific structure of the system to be solved by doing a.n upper a.nd lower triangular

factorization and simultaneously exploiting the Toeplitz structure.

More recently, very diverse, asymptotically fast algorithms solving Toeplitz systems in

O(nlog’n) have been proposed [BGY,BIA,HOO,MOR]. Brent et al [BGY] use the fact that solving

a Toeplitz system is closely related to frnding a rational approximation to a specific power series

known as Pade Approximation. The works of Morf [MOR] or Bitmead a.r1d Anderson [BIA],

independently published in the same period, are conceptually much easier. Their algorithms are

based on the notion ofdisplacement rank‘ and doubling techniques5 to achieve efiiciency. De Hoog

[HOO] uses the derivations of Trench and Bareiss and doubling techniques to reduce the

computational load of his algorithm.

Most of the teclmiques mentioned above are arranged in a recursive fashion. They perform,

at least implicitly, the computation of the inverse of imbedded sub-Toeplitz systems and are

restricted to matrices with all non-zero principal minors. Unfortunately, the degenerate case often

occurs, for example in estirnation. This difiiculty has directed some new attention to the Levinson

algorithm. Gueguen and Sidahmed [GUS] proposed an extension of the Levinson algorithm when

one of the minors of the matrix studied is singular. More recently, Delsarte et al [DEK] have

presented a generalization of the Levinson algorithm for solving Herrnitian Toeplitz systems

without any restriction on the nested ranks.

‘
defined, for any matrix R, as the smallest integer er such that R = }iL,U,, where L, and U, are lower and
upper triangular Toeplitz matrices [KKM]. l

5 meaning that the problem under consideration is divided into subproblems of half size.
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The development of parallel processors has reduced tremendously the cost of computations,

and parallel implementations of Toeplitz solvers which require O(n) time have been proposed

[BRL,KUl]. Furthermore, the efficiency of fast Toeplitz solvers makes them prime candidates for

practical implementations, and several numerical stability analyses have been proposed

[BUl,BU2,BU3,CYl]. Stability studies are difficult to conduct especially when the algorithms are

recursive. Furthermore, these algorithms are often used in applications which are ill-conditioned

by nature, which complicates the analyses; in such cases one has to separate the inherent stability

behavior of the procedure from the i1l—conditioning characteristics of the underlying problem the

algorithm is applied to. Some preliminary results have been given, yet stability questions are still

unanswered, especially for general Toeplitz solvers. Cybenko [CYI], for instance, addressed the

numerical stability question of the Levinson-Durbin algorithm. Using a first order error analysis,

he showed that the computed solution of a Yule-Walker equation has small residual norm when

the Toeplitz matrix is positive definite. However, he could not draw any conclusion when the

positive deftniteness restriction was dropped. Bunch [BUl,BU2,BU3] extended the notion of

stability to weak‘ and strong stability’ in order to study the stability of recursive techniques, such

as the Levinson or Trench algorithms, and some of the asymptotically fast algorithms. His analysis

showed that the Levinson or Trench-Zohar type algorithms are weakly stable if the associated

Toeplitz matrix is positive defmite.

Stability problems occuxring with fast Toeplitz solvers are often linked to the positive

definiteness property of the matrix studied. Recall that a Positive Definite (PD) matrix is strongly

regular (i.e. with all regular minors). This property is extremely appealing because methods based

— on partitioning, such as the Trench, Levinson, Zohar or Bitmead and Anderson algorithms, fail if

one of the submatrices contained in the original one is singular. Worse, they may give incorrect

6 '...An algorithm for solving linear equations in finite precision arithmetic is weakly stable for a class of
matrices 2 if, for each well-conditioned A in 2 and for each b, the computed solution x, to Ax = b is
close to x' [BU2].

7 '...An algorithm for solving linear equations in finite precision arithmetic is strongly stable for a class of
matrices 2 if, for all A in 2 and for all b, the computed solution x, to Ax = b is the exact solution to a
nearby system belonging to the same class A,x, = b,, where A, is in 2, and is close to A, and b, is close
to b' lBU2].
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results if one of the submatrices is close to singular. Most of the methods mentioned above

however, still perform well when the positive definiteness requirement is dropped, provided that the

matrix is strongly regular. Therefore, checking the potential accuracy.of a computed solution using

a PD Toeplitz matrix can be done by checking the conditioning of the matrix. When the positive

defmiteness restriction is dropped the conditioning of the entire matrix is no longer representative

(a well-conditioned non-PD matrix can have singular rninors). Stability questions dealing withI
partitioning algorithms for general Toeplitz matrices are thus more difficult to study, and answers

depend very much upon the specific structure of the particular matrix used (i.e. whether it is

strongly regular or not).

Whereas a lot of effort has been devoted to linear Toeplitz systems, less is known about the

finite Toeplitz eigenproblem which is difficult and still under study [MAK,RE2,DEG]. The inverse

Toeplitz eigenproblem, for example, is unsolved [DEG,LAU]. Note that a lot ofattention has been

given indirectly to the symmetric Toeplitz eigenproblem, as symmetric Toeplitz matrices belong to

the extensively studied class of syrnrnetric, or Hermitian, centrosymmetric matrices (i.e. matrices

which are symmetric about their diagonal and cross diagonal) [ANl,AN2,CAB,CAD]. The recent

interest in the finite Toeplitz eigenproblem, especially in engineering applications, has motivated

researchers to try to exploit the specific Toeplitz structure to reduce the computational cost of the

algorithms. Some work in this direction has been proposed [KU2,CYV,HAC,WIK], in which

researchers have been taking advantage of the properties of the Levinson algorithm. For instance,

Cybenko and Van Loan [CYV], Hayes and Clements [HAC] developed algorithms for finding the

minimum eigenvalue of a positive definite Toeplitz matrix based on the Levinson algorithm.

Wilkes and Hayes [WIH] have proposed a recursive algorithm for frnding the eigenvalues of a

Toeplitz matrix from the eigenvalues of the submatrices imbedded in the original one. Finally, Hu

and Kung [KU2] have proposed an algorithrn for computing the minimum eigenpair of a Toeplitz

matrix, where they take advantage of the fast Toeplitz solver they developed earlier [KU!] to solve

the minimum eigenproblem. The TESS algorithm proposed by Hu and Kung is an iterative

procedure based on the shifted inverse power iteration. Its performance depends upon the number

of iterations required to obtain a good approximation of the minimum eigenpair.
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1.3 Present Contributions

Chapter 2 presents the derivation of the order~recursive regular eigendecomposition (RITE)

procedure, which exhibits highly parallel computation capabilities. Two quadratically convergent

eigenvalue search techniques are considered, and their advantages and drawbacks are discussed.

The eigenvector task is presented including the minimum multiple eigenvalue case and the case for

a minimal eigenvalue cluster, both as being of practical interest in array processing. This chapter

also includes performance analyses of the procedure. The extension of RITE to the generalized

problem, denoted C·RITE, and performance analyses of that algorithm are given in Chapter 4. It

is of practical importance that no factorization of the matrix pencil is required here. Application

of the RITE and C-RITE algorithms to passive bearing estimation is described in Chapter 5. In

this application, no a-priori knowledge on the number of sources is needed; the procedures (RITE

for the white noise case, or C-RITE for the colored noise situation) use the successive (generalized)

eigendecompositions to first estimate the number of sources, and subsequently their locations. The

detection algorithm based on RITE or C-RITE (the MUSIC algorithm [SCH] and the information

criteria proposed by Wax and Kailath [WAK] are used) can then stop, minimizing the overall

computational load, at the smallest subproblem for which the DOA parameters are indicated to

be reliable. Chapter 6 presents some extensions of RITE to the non-stationary Hermitian

environment. This corresponds in the array processing context to correlation matrices estimated

from non-linear arrays or incoming signals with non-stationary characteristics. The RITE

decomposition of the Toeplitzsized (diagonally averaged) matrix is used as a starting point. Two

different approaches are considered; a first-order perturbation and a subspace iteration approach

are investigated and their performances compared. Results show that the SI based techniques lead

to good approximation of the eigen-information, with the rate of convergence depending upon the

SNR and the angle difference between sources. Finally, Chapter 7 presents conclusions and gives

recommendations for future research.
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2.0 The Recursive/Iterative Toeplitz Eigenspace

(RITE) Decomposition Approach

2.1IntroductionThe

derivation of the RITE algorithrn is presented in Section 2.2. The eigenvalue problem is

examined in Section 2.3. Two dilferent eigenvalue updating techniques, a restricted Newton

approach and a rational approximation based scheme, are considered and advantages and

drawbacks of each are presented. Section 2.4 studies the eigenvector problem, and three ditferent

cases are considered to identify the eigenvectors associated with distinct or clustered eigenvalues or

a multiple minimal eigenvalue. Section 2.5 presents some algorithmic implementation

eonsiderations. Finally, performance analyses of the RITE procedure compared with an IMSL

subroutine are given in Section 2.6.
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2.2 Order Recursive Eigendecomposition

Eigenspace Relations of Hennitian matrices

Any Hermitian Toeplitz p·dimensional matrix R, can be written in the form of its spectral

decomposition according to Golub and Van Loan [GVL]

P

Rprt=l*
= Up^pUp

The n"' colurrm of U, is the normalized (unit norm) eigenvector Q') of the Hermitian Toeplitz

matrix R, with first column [r„, rl, r,_,]'. The matrix A, is diagonal, and has as its elements the

eigenvalues 1,*;**, arranged in non-decreasing order. This formulation results in a simple

corresponding expression for the inverse

-1 -1 *R, = U,A, U, (2)

Recursive Procedure

The question we like to answer is the following: Suppose we know the eigendecomposition

(U,_,, A,_,) for R,_,, can we findfrom it the eigendecomposition (U,, A,) for R, ? That is, find all

eigenvalues and eigenvectors recursively in order. In the array processing application, the

eigen~information found for a subsystem imbedded in the original one can then be used to recover

the DOA parameters. The order-recursive RITE algorithm stops as soon as the information

contained in an intermediate eigendecomposition is suflicient for the estimation procedure, thereby

reducing the overall computational load of the algorithm.

To this end the following equation needs to be solved.

(R, — J.I)¤ = ll (3)
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Since we know the eigendecomposition for R,_,, equation (3) is rewritten as

Fo •' Al. L} I _—¤ <4>
where [ = [rl, , rP_,]'. Consequently, the solutions (,1, Q) should be found to

ro—Ä.+[*Q=O (Sa)

(Rp—l " ÄÜÜ = ‘ E (Sb)

Defrning gl as the normalization of Q = [1, Q'} then gives a new order updated eigenpair

U-${*1 M")-

First note that the matrix in (Sb) is Toeplitz Hermitian. Thus for any given J., the solution Q

can be found efiiciently, as shown later. The remaining problem then is to solve for all possible

eigenvalues lffl from (Sa). To that end, substitute (Sb) into (Sa) to eliminate Q.

fo — J. — g*(Rp_:l — ).I)—‘;= 0 (6)

Using the known eigendecomposition of RH leads to the equality

Vo — A = EUp-1(^„-1 — AA>" v;.1¤
-1

=E:
|ß„ | 2 (7)

7I=l
-1) _

Ä

where

*ßn = [ cOln(Up—1)

Therefore, the resulting system to be solved becomes:
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P-! 2Iß Iro — Ä = E (89)
n=l ln ' '!·

'

(Rp-, — ÄDE = — z (8b)

2.3 The Eigenvalue Problem

2.3.1 The Restricted Newton Scheme

Recall that the correlation matrix R is Hermitian, hence the eigenvalues satisfy the following

interlace property [GVL]:

19, S 1§£q‘* S 19 S 19**** S 19, S 19;**

where 19 represents the i"' eigenvalue associated with the p-dimensional matrix R,.

Let us define :

"*‘
aß I2

h(A)=—-r +1+ é „ (9)
° 1*:*** — 1

thus,

P-! 2I I
h’(l)= 1+ (IO)

n=I (ln
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The function h(l) is monotone between its singular points ,19***) for i= 1, , p-1, because

h'(,l) 2 l from (10). Using the interlace property mentioned above, the search intervals for each

A?) can be restricted to Ir= [Ah'), ,19***)] for all i=2, ..., p·I, If= [K,, .1}****)] and I;= [,1}}*;**, K,],

where K, and K2 are constants defined such that K, < M') and 1};** < K,. Note that the procedure

needs to be used only for distinct eigenvalues, i.e. when l§P"> — ,1 aé 0. Multiple eigenvalues can be

identiiied directly as shown later in Section 2.4. As shown below (10), h(Ä) is monotone in each

interva.l lr. Hence, the restricted Newton algorithm designed to achieve up to quadratic convergence

in the iterative search, is used to identify the updated eigenvalue lf;) in the interval I;

h(·i1)
= Ä — —7—— llyk+I k h (lk) ( )

yk+l if yk+l E lf

(1,. + 1$f‘”>12 if 1,,+, > ÄYA) <·>
lk replaces lm)

’lk+l =

(1,, + 1$;‘));2 sr 1,,+, < 1ß*) (~)
lk replaces lfq)

1£‘ 1 ‘ hl h 1 -1*+1*** ••S¤e¤( <l1>)¢ ¤¤s¤( ( 1+,)) ¢

¤¤stopifl/l*+] " 1lkI< 81]*+1

where s, is the convergence threshold chosen by the user. Note that when an iteration goes outside

the restricted interval, since the gradient is larger than one, this indicates the direction in which the

solution is to be found. Consequently the search interval for the next iteration can be further

restricted as indicated (*). To prevent the iterate from potentially bouncing between the same two

points at either side of the solution (**) is introduced. N6WtOI1’S method is hereby guaranteed to

converge, and near the solution this convergence is quadratic. Note that the eigenvalue search
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procedure is valid for general Hermitian matrices, since no speciiically Toeplitz matrix property was

used in its construction.

Initial bracketing for the extreme eigenvalues

As mentioned earlier, the search intervals for the extreme eigenvalues are If = [K,,
,1?·‘>]

and

I; = [Ap'), K,]. Several bounds on extreme eigenvalues of Herrnitian matrices have been proposed

in the literature [CYV,DEM]. Dembo [DEM} has presented easily computable bounds for positive

semidefinite Hermitian matrices H which are given in terms of the extreme eigenvalues of the

principal submatrix. For a p-dimensional Hermitia.n matrix H with elements denoted by h,,, the

bounds derived by Dembo are

A + A?"> _ hA? Q um

A A r<»—¤> _ A +
A?;‘> _

A? *))*/4 S Q (12b)

where b= [hu, , h,P]'. Therefore, using (12), the extreme bounds defined for positive definite

Hermitian matrices may be chosen as

A + A?") _ .K, A? ‘>)“;4+Q Q

h Aw-!) (13)
+ — __

IKA A A

2.3.2 The Rational Approximation Based Approach

An alternative to the restricted Newton scheme, based on an idea presented earlier by Bunch

et al [BNS], is proposed next. Bunch et al studied the rank-one modification eigenproblem, and

derived an iterative technique to update the eigenvalues. They pointed out that the Newton method
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is based on a local linear approximation of the rational eigenvalue search function, and noted that

a method based on rational approximations of the search function would potentially converge faster

to the updated eigenvalues (at least in terms of the number of iterations needed). This idea has since

been used and modified by DeGr0at and Roberts [DER] who sirnplified the approach of Bunch

et al [BNS] for the rank-one modification problem and applied it to the study of slowly time varying

signals.

The RITE procedure can be viewed as a specific rank—one extension problem [BEA] designed

for Hermitian Toeplitz matrices, and the associated eigenvalue search function differs only slightly

from the search function associated with the rank-one modification problem. Not surprinsingly

then, similar ideas to those presented by Bunch et al can be followed to derive rational

approximations to the RITE eigenvalue search function.

I
Rational Approximation Particulars

Recall that the eigenvalue search function is given by

P-! 2|ß,,I
/t(Ä)=—f0+Ä-+2:% (M)

i1=l fl

where Iß,,I'=;*°col,,(U,_,) and ;‘= [r,, , r„_,]'. Let us first assume that we are looking for the

updated eigenvalue lf! contained in [1%**, ,%),*;,*1] for k = 2, , p - 1. The cases k = 1 and k =p

are treated separately afterwards. Let

A "" np P441) = 1 + (15)
n=k ln — Ä

and

k—1 2

An=l n
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Then, the updated eigenvalue 1f) is such that

:11:*5 — ~ß(1lf')> = 0 (115

where ¢(1) is a positive decreasing convex function in the interval [11**1, 1239], as illustrated in

Figure 1 on page 25. Sirnilarly, n/«(1) is a positive increasing convex function on the same interval.

Hence, following the approach of Bunch et al, the idea is to obtain successive approximations 1,

to 1);*1 by successively approximating ¢> and i/« with rational approximations. Let us define v and u

as respectively the following rational approximations to ¢ and ab

v(1)=!+% and u(1)=r+§— (18)1 — 15: 1:+, * — 1

We then require the approximations to have the same functional values and derivatives as the

approximations, leading to the following set of constraints

All/U:) = VU:) = *11
¢=(·1:) = VU:) Q- ¢·1

A (19)
VU:) = V'U1) = W1
¢’(1:) = V'(11:)Q 4>’i

The rational approximations u and v are respectively located above gb and ¢>, as shown in Appendix

„ C. Hence, there exists 1,+,, intersection of v and u, in the search interval. Local convergence of

1,+, to the solution of (17) is quadratic, as shown in Appendix D.

Identification of 1Y* for k = 2, p — 1

The rational approximation coefiicients can be found from (19) as
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r= W1-
·»·„(2$;‘>— 2))

¤ = ·/«'r(l$£’„G" — 102
(20)

¢1 = — ¢>'1(Äz " li?-U)2

Therefore, given the i"' approximation, denoted ,1, to the root 1);**, the (i + l)'^ approximation to the

root, denoted ,1,+,, is obtained by solving ·

'+ —:"°*— =
'
+4]*:* (21)

which leads to the quadratic equation:

,1}+;: - r] + „1,+,[q + r — (: — r)(1$§"> + „1f,Q")]+(:—
(22)— «2§:’„;" — :255* = 0

Closed form solutions to (22) can then be used to identify the new iterate. Note that if the leading

coefficient of (22) is zero (i.e. t — r= 0), then the quadratic equation degenerates to a first order

linear equation with solution

Ä _ 2;/1%*) + s1$§"‘* (231+1 — q +_, )

Equatioris (22) or (23) are used to compute the updated roots AY), for i= 2, ,p— l. For the

extreme roots, the rational approximation expressions are modified as follows

Identification of 1}**

For k = p, ¢>(l) and n/1(J.) become
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P-! 1Iß„l
Ä = liM) @4-,;

.1-„1f"° (24)
~/¤(Ä) = Ä

and the rational approximations chosen are

Ä — Ä?-rl)
(26)

¤(Ä) = Ä

Hence, the corresponding quadratic equation to be solved is

q = 0 (26)

where I and q are defined as before.

Identification of ÄW

For k = 1, ¢>(Ä) and 1/1(Ä) become

¢>(Ä) = Vo
P-! 1lß„l (27)$(Ä) = Ä +n=\

n

and the rational approximations chosen are

V(Ä) = ¢

- l—L._ 28

where t, r and s are defmed as before. Hence, the equation to be solved becomes

z - r —TT= 0 (29)Äip 1) ‘ )‘l+l
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Note that equation (29) is linear. Therefore, the updated root can be directly identified and is given

by

.1,+, (30)

Performance Comparisons

The performances of the rational approximation based approach and the restricted Newton

method, in terms of the number of iterations needed to compute lf), were compared on a range

of 20 positive definite symmetric 6-dimensional matrices (recall that the eigenvalue task portion of

the algorithm is not restricted to Toeplitz matrices). The stopping criterion defined earlier by

· < cl where
ie,

= 5.l0'8

was used for the simulations. The results, given in Table l on page 24, show that on the average

35% fewer iterations were needed to compute the updated eigenvalues when using the rational

approximation based approach as opposed to when using the restricted Newton method. We note

however that the computational cost per step is somewhat higher for the rational approxirnation

approach. Recall that only the eigenvalue function and its derivative are needed for the Newton

method. In addition to those two evaluations, the rational approximation requires the computation

of the four coeflicients r,.&‘,t,q in (20) and the closed form solutions of a quadratic equation in (22)

(which involves a square root computation). Thus, the Newton technique appears more

appropriate for small dimensional problems, while the rational approximation may be more

advantageous for larger size problems. Definite conclusions regarding the computational speeds of

both approaches are difiicult to draw, as they will depend upon the type of hardware

implementation chosen, which is beyond the scope of this work.
‘(

Note that a recent comparison of the above upper quadrant rational approximation with the

more familiar existing left quadrant monotone technique of Bunch et al [BNS] for the rank-one
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modification problem was conducted by Beattie [BE2], who reported a 25-30% reduction in

iteration count when using the upper quadrant approximation scheme proposed here.

2.4 The Eigenvector Problem

When the updated eigenvalues AP are distinct, the matrix (R„_, — API) is strongly regular.

Hence, the eigenvectors yP can be found by substituting the order updated eigenvalues AP in

equation (8b) and solving for gi. The normalization ofg = [1, §']' then results in the new eigenpair

(AP, y,P). Basically, the main questions raised during the first implementations were linked to the

technique chosen to solve the Toeplitz system in (8b):

a) How can the Toeplitz system (8b) be solved efficiently?

b) How do we handle the singular case (occurring with multiple eigenvalues)?

c) How do we handle the close-to-singular case (occurring with clustered eigenvalues)?

The Toeplitz Solver

The Toeplitz solver used in this implementation is the complex version of the Zohar algorithm

[ZO2], and its implementation is presented in Appendix A. This algorithm was chosen because its

only restriction is that the matrix under study be strongly regular (i.e. with all regular submatrices).

This specific version was chosen because it minirnizes storage requirements, has optimized

performance and is easy to irnplement. Furthermore, checking numerical stability of the algorithm

is easily done° . Recall that the Zohar algorithm can be used with non positive delinite strongly

regular Toeplitz matrices. Note that (RH — API) is not positive definite for i= 2, , p.

Nevertheless, it is strongly regular, provided that R, has distinct eigenvalues or1ly. When R, has a

* The strongly non-singular property of the Toeplitz matrix used is checked by the magnitude of the
parameter FLAMDA(A) (see Appendix A).
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Table l. Number of iterations required for Newton and Rational Approximations

3 MEM 3 MENGE ¤3 GEN ¤3 GEN
Newton 32 E] ss 32 ss ss 34 ss ss 37 E] so 36
R¤tF¤¤¤' WEB 23 EEEHI 26 27 EEEEEIEEEE

Averagcd number of iterations per run

Newton (N) Rational (R) Ratio R/N
39.40 25.45 0.646

multiple eigenvalue, i.e. there is an index i such that 1fP) = 19***7 = 1Q,, then the resulting

(R,,_, — 1Y>I) is singular and the Zohar algorithm carmot be used any longer. In practice, we have

to deal carefully with nearly singular systems because of the convergence threshold irnposed on the

iterative search for the eigenvalues and the rounding errors resulting from the nurnerical

irnplementations. ln such cases, a different 2-step procedure is followed, as presented next.

Treatment of Multiple and/or Clustered Eigenvalues

The design of the RITE algorithm is closely related to the array processing application of

interest. For this application, theoretically when the incoming sources have high SNR, a

p-dimensional Toeplitz Hermitian correlation matrix is shown to have m large and distinct

eigenvalues, and p-m smaller and clustered eigenvalues (when dealing with estimated correlation

sequence information) or one smaller eigenvalue of multiplicity p-m (when dealing with true

correlation sequence information). The large eigenvalues represent the m incoherent incoming

signals, while the other ones represent the noise contribution. Therefore, the recursive algorithm

was designed for matrices with only one multiple minimum eigenvalue or one set of clustered small

eigenvalues. Thus, when the minimum eigenvalue has multiplicity k > 1 the system (8b) is singular

for 1 = 1,,,,,, and the Zohar algorithm cannot be used. For estimated correlation sequences, we get

a set of eigenvalues clustered near the true minimum eigenvalue, which in tum produces a loss of
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Figure l. Plot of the functions dz, ¢, and their respective rational approximations v and u
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orthogonality between the estimated eigenvectorsl'. Recall that the updated eigenvectors are

identified by using the updated eigenvalues and solving (8b). However, no direct information on

the previously computed vectors is used there, and therefore, clustered eigenvalues will produce

nearly dependent eigenvectors. Therefore, a different 2-step approach is followed to insure accurate

determination of the clustered or multiple eigenvectors". The procedure uses the fact that

Rank(R' — ll) = p — k, for l of multiplicity k, to first compute initial eigenvector estimates

associated with the set of clustered eigenvalues. These initial estimates are then refined in the

second step.

The first step uses the specific Toeplitz structure of the correlation matrix to build recursively

k-1 of the k clustered eigenvectors (note that this approach was proposed earlier by Dclsarte and

Genin [DEG]). Let us describe this procedure with an example. Assume that the following system

of order 4 has an eigenvalue of multiplicity 2. Let us denote the set of clustered eigenvectors by

(Ml"» u$")·

C
a1(R4 — U) ,,2 = Q (31)
aa

If J. has multiplicity 2, then Rank(R, — AI) = 2. Thus a solution vector, if it exists, has two free

elements which can be fixed. Taking C = 0 in (3l) leads to

(R, - 11),3 = Q (32)

Recognize that (R, — all) is still singu1a.r, and of rank 2; therefore, one more unknown element of

the vector _ä can be fixed. For a, = l, (32) becomes

r (33)

°
i.e. the eigenvectors associated with the set of clustered eigenvalues.

1° i.e. the eigenvectors associated with the multiple eigenvalue.
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Note that we solved this problem already at the previous iteration step. Thus, the updated

eigenvector Q) is built up by using the eigenvector defined at order 3 associated with the smaller

eigenvalue, i.e. Q) = (0, Q?)')'. Then, the last clustered eigenvector Q) can be identified by deflation

on (Q), using a Gram-Schmidt orthogonalization type procedure.

In general, the initial eigenvectors of dimension p associated with the set of k clustered

eigenvalues may be identified by the following procedure:

1. Build up the first k-1 vectors of the set by using the vectors of length (p-1) defined for the set

of k-1 clustered eigenvalues at the previous order and fix their first components to 0, i.e.

^<p> 0
14,, = (,,...1) forall n=2,...,k (34)

·un—l

where QL?) represents the (n — 1)** eigenvector of the (p~l)-dimensional matrix,

2. Compute the last vector Q?) associated with the set of clustered eigenvalues by deflating a fixed

vector of unit length, chosen arbitrarily as (1,1, , 1)*/p, to the set of p already known

eigenvectors. (35)

Note that the procedure described above is based on the fact that we have a unique eigenvalue

with multiplicity k. In the estimated correlation case however, we have a set of k clustered

eigenvalues. Therefore, a single iteration of the following Shifted Inverse Power (SIP) Method

[GVL] using the fast Toeplitz solver, with shift equal to the estimated eigenvalue, is applied to the

approximate eigenvectors Q to correct the original assumption of a single multiple eigenvalue.

Numerical properties of the SIP method are examined in [PAR].

(Rp — 1?)1)Q?) = Q?) for all n = 1, , k _ (36)

This extra step will insure the production of an adequate eigenvector estimate as the shifts are

chosen very close to the true eigenvalues.
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— Theoretically, the SIP iteration needs to be used only for the eigenvectors associated with the

set of clustered eigenvalues. We have noted slight improvement in the eigenvector orthonormality

performance however, when the SIP iteration is used on all estimated eigenvectors. This is due to

the fact that the eigenvector problem is ill-conditioned for Hermitian matrices [GVL]. Recall that

the eigenvalues, estimated by an iterative process, are used in the computation of the eigenvectors.

This introduces numerical perturbations in the eigenvector estimate which are then corrected by the

SIP step.

Deflation Procedure

The deflation technique used to compute the last of the set ofmultiple or clustered eigenvectors

is known as a deflation by subtraction procedure. The basic idea is to suppress the influence of

particular eigenvectors as soon as the vectors have been identified [PAR,WIL]. In our specific

application, only the smallest eigenvalues (coxresponding to the noise eigenvalues) are clustered.

Therefore, the idea is to suppress the dominant eigenvectors and (k- 1) multiple (clustered)

eigenvectors already found in order to identify the last k"* eigenvector 33, associated with the set of

multiple (clustered) vectors. The deflation method is an iterative procedure and is defined by [WIL]:

y,,+, = R,,y,, (37a)

P
(37b)

l=2

21:+1 = }!n+1fllHn+1ll2 (37C)

where Xu represents the initial vector chosen for the iteration, and || ll, is the Euclidian norm. Note

that equation (37b) suppresses the components of (_%, ,3;,) in the vector y,,+,, while it seems that

equation (37a) tends to increase the unwanted components from already known vectors. However,

Wilkinson [WIL] has shown that (37b) can be rewritten as
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P

*1,i+iI?

(38)
1=2

Therefore, the deflation method can be viewed as a power method applied to Ii, = R, — é,l,g,y,',

which has eigenvalues fi, = = ,i,, = 0, ar1d ,i, = ,1,. Furtherrnore, Parlett [PAR, Chapter_5], has

shown that roundoff errors, present in any numerical implementation, do not degrade the

performance of this orthogonalization technique. Practically, convergence of the orthogonalization

technique is usually obtained in less than 4-5 iterations, and the vectors obtained have good

eigenproperties** .

Simulations showed that better eigen-performance*2 is obtained by this orthogonalization

technique than by reorthogonalizing against the other eigenvectors with a regular single step of the

Gram-Schmidt (GS) procedure. However, improvement in the eigen-performance for this process

can be obtained by using the GS procedure with reorthogonalization. Recall that the GS algorithm

has poor numerical properties, in that a loss of orthogonality can occur between the

"orthogonalized" vectors when they are almost parallel to begin with. In this case, the resulting

eigenvector found after applying the GS procedure is very small with a large relative error

[PAR,DGK]. Reorthogonalization can then be used to enforce numerical stability. The idea is to

apply the GS process iteratively, and the process stops when the iterate has converged.

Performance similar to that obtained with the deflation technique is reached after 2 to 3 iterations.

Note that the deflation technique was used in the implementation of the regular

eigendecomposition algorithm RITE. In the generalized eigendecomposition algorithm C-RITE,

** i.e. th:"vector obtained is 'strongly' orthonormal to the rest of the set, and the associated residual norm
is sm .

*2 defined for an eigenpair (,1,34) in terms of the residual norm of the eigenpair, and the orthonormal
behavior of the eigenvector g with the other eigenvectors of the matrix studied.

The Recursive/lterative Toeplitz Eigenspace (RITE) Decomposition Approach 29



the eigenvectors are not orthonormal in the Euclidian norm any longerß, and the GS procedure

with reorthogonalization is used, as explained further in Section 3.4. The performance of RITE is

illustrated in Section 2.6. ~

2.5 Algorithmic Implementation Considerations

A summary of the RITE algorithm is given in Table 2 on page 34. In this implementation,

the correlation sequence is norrnalized before the eigen-decomposition such that r(0)= l, which

re-scales the eigenvalues. Four threshold quantities are introduced in the procedure.

l. 64: the convergence threshold defined for the iterative eigenvalue search method, chosen as

5.10**.

2. 4:;: represents the minimum distance that separates two consecutive eigenvalues for them to

be considered as not clustered. When the eigenvalue separation is less than 5.10**, the fast

Toeplitz solver is not used as this would lead to linearly dependent eigenvectors. _

3. +:3: defines the minimum distance, chosen as 1.10**, between two consecutive eigenvalues for

them to be considered not multiple. Only the single inverse iteration step is applied to the

eigenvectors associated with the non~multiple eigenvalues.

4. +:4: is the convergence threshold used for the deflation procedure. The iterative process is

considered to have converged to the eigenvector gif), when llyfj — yff),+,[|, 5 +:4, where +:4 = 10**.

*3 however, note that the eigenvectors of the pencil (R,B) are still orthonormal in the B-inner product, i.e.
U°BU = I, where U is defined as the generalized eigenvector matrix.
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Note that a similar block decomposition of the original eigen-equation is used by Cybenko and

Van Loan [CYV] to compute the minimum eigenpair of a symmetric positive definite Toeplitz

matrix. They compute the minimum eigenvalue by using an iterative search function and present

several methods to identify the initial minimum eigenvalue search interval. The RITE algorithm

is more general in the sense that it leads to the complete eigendecomposition of a Toeplitz matrix,

which does not have to be positive definite, and it can handle the situation where the minimum

eigenvalue has multiplicity greater than one. Recall furthermore, that the eigenvalue search

functions can easily be evaluated using the eigendecomposition obtained at the previous order.

Therefore, the RITE algorithm seems more adapted for applications, such as high-resolution

eigen-techniques, where complete eigenspace information is needed to estirnate frequencies or

direction of arrival of incoming signals.

2.6 Performance Measures

A drawback of recursive procedures is the potential error accumulation from one order to the

next. In this specific case, accuracy of the eigenpairs has to be as good as possible to avoid excessive

degradation of the next decomposition. The sensitivity of the procedure is expected to depend on

the order, and the specific structure, of the matrix (i.e. on the separation of the eigenvalues). It

might be expected to be more sensitive for matrices with closely clustered eigenvalues, i.e. for

matrices as generated later in Chapter 4, from signals with high SNR. In such a case however,

correct identification of the DOA information is obtained for eigendecompositions of relatively low

dimensions, and the recursive procedure could be stopped there. Stability and sensitivity tests have

been conducted for our algorithm and comparisons of the performance of the recursive algorithm

with those of the IMSL (version 9.2) subroutine EIGCH are presented in Figure 2 on page 35 to

Figure 6 on page 39. Note that the restricted Newton scheme was used for the eigenvalue

identification task. The IMSL routine is not specifically designed for Toeplitz Herrnitian matrices.
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To the author’s knowledge however, no optimized procedures for performing Toeplitz

eigendecompositions are readily available. The subroutine EIGCH was chosen as it is highly

optimized for Hemritian matrices and widely available. The algorithm used in the

eigendecomposition routine EIGCH is as follows [IMS] :

1. The matrix is reduced to a real symmetric tridiagonal matrix.

2. The eigenvalues and (optionally) the eigenvectors of this new matrix are computed.

3. The eigenvectors (if needed) are backtransformed to retrieve the eigenvectors of the original

Hermitian matrix.

The tests used to check the performance of the Recursive Iterative Toeplitz Eigenspace (RITE)

algorithm versus EIGCH are the Averaged Residual (Frobenius) NORM squared defined as

1 2ARNoRM=; I IRPUP- UpA,,| IF

and the Averaged ORTHOnormality (Frobenius) norm squared

1 • 2
[

AORTHO=·i,— I Iupup-1„I IF

where p represents the dimension. The results represent the values obtained for 10 trial runs on

different correlation matrices. The matrices R, were built from the estimated correlation sequences

generated by two sources of variable angle locations with different SNR in a white noise

environment. A complete list of the parameters used to generate the correlation sequences can be

found in Figure 2 on page 35, where Nest represents the number of snapshots used to estirnate the

correlation sequences. Figure 2 to Figure 5 show that the RITE algorithm yields larger variations

of the Averaged Residual NORM (ARNORM) and the Averaged ORTHOnormality norm

(AORTHO) than the IMSL subroutine. This indicates a higher sensitivity of the recursive

algorithm. Recall that the RITE algoritlun uses estimated eigenvalues to solve for the eigenvectors,
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so that errors in the eigenvalues are expected to introduce errors in the determination of the

corresponding eigenvectors. Nevertheless, the average magnitude of the two norms is well behaved

with increasing dimension and they seem to stabilize for the RITE algorithm around the respectable

values of 10*** for ARNORM and 10*** for AORTHO. Realizing that a difference of 10 orders

of magnitude for AORTHO between RITE and IMSL appears large, a measure of angle difference

between IMSL and RITE eigenvectors for corresponding eigenvalues was also evaluated. This

measure is defined as

p

lß}TR[TEQ,IMSLI1=1

The results, plotted in Figure 6 on page 39, represent the values obtained for the ten trial runs

presented in Figure 2 on page 35. They show that the actual eigenvector directions, obtained with

the two different techniques, are very close. Note in Figure 2 and Figure 3 that the algorithm, at

higher dimensions, actually recovers from outlying errors at previous dimensions. The test

sequences were computed from two incoming sources in white noise, thereby generating matrices

with two large and distinct eigenvalues, while the others were small and clustered (especially for

matrices of high dimension). If the algorithm is sensitive to the multiple eigenvalue situation, it is

certainly being tested here. Recall that the purpose of the array processing application will be to

identify the DOA information as early as possible, and to then stop, or continue and confirm. In

the case of two incoming sources, correct identification of the parameters will be obtained for orders

much smaller than 50. Thus, these tests can be considered as lower performance bounds on the

procedure; they show that potential propagation errors, present in any recursive process, do not

accumulate fast enough to cause a marked degradation of the proposed algorithm for orders up to

50.
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Table 2. RITE algorithm implementation

Initialization
(U2, l\2)

II In parallel for k=p, ..., 1
ä -_I

I Eigenvalue updates using (I I)
I

I
(Convergence threshold sl)

I ¤—?——·—·—————·———·—I
I

E1genvcctor task I

I I YPS IÄI - lk-1 I > $2 no I

I
Compute Compute

II gw using gw- for t = k, , l
(4) and (Sb) using (34) and (35)

I I
(Convergencc threshold sa) I

I apply l step of SIP Il,— l,_,I > 6; no I

I I
to gw using (36)

I

I
Apply l step of SIP

I to gw using (36)
I

continue yes

no

STOP

The Recursive/lterative Toeplitz Eigenspace (RITE) Decomposition Approach 34



10·*°

HTM
——---———— ¤vERa6E mst

1 0-21

1E
10-zs / Q11rr1, 1, ß ~ •

Q ,0-26 1,1
;~“;,1;._.1;% 0 1 vl: ~ V

„ ....---— ~ · · · ·$:1* iv _ _ _ , .. -.
10-27

1-28

~

lÄYJIvß‘!’;hvI e '
·’·’

10
im \i'?i'°W i li

10-29r ill'?l0'g° ,= }"

' ß!10-Slr

l0's2
9 8 13 19 24 29 34 40 45 50

DIMENSI ON

0.
1 22 82

8~¤1¤¤> @102 ll

08Figure2. Averaged residual norms squared for the RITE algorithm: 10 trial runs. V

The Recursive/lterative Toeplitz Eigenspace (RITE) Dccomposition Approach 35



10·“

lg-*5 ---·-———~ nvsranss IMSL10·‘°

1 0-17-18

I
I_ **1*

M
I /

I
* Ü

*1, WÖVFOÜJ II
I10-21

§·)‘ ‘
j · {1*‘1··\£Äw'.1'v22

ü. II V
10° Ia i}*&;_"•„· VN;

M -24 II ÜO ‘°
lwI==· III< 10*2** 1),1;10'2° 1**O‘” V IIlO'2B .

10-28 **••·°••·‘_·-‘-•"_•_______,,,....•.•-•-•—

10-91
_, • °

l ·

10·O*
‘

3 8 13 19 24 29 34 40 45 50
DIMENSI ON

Figure 3. Averaged orthonormality norms squared for the RITE algorithm: 10 trial runs.

The Recursive/lterative Toeplitz Eigenspace (RITE) Decomposition Approach 36



10*°
·-——-———— nvsnnss 1 Ms:.l0"2‘

10**

10**
10°2‘

l0'2s

2 10**
A

_
°= « ·

,/f•'y¢"'
;•°:>'—- F •• 4~ Iz -¤ ~· JsüßE 1010** l..1 «

¤·— 1,

l0'm tl
l0"°‘

IO'!
9 9 13 19 24 29 34 40 45 50

DIMENSION

Figure 4. Averaged residual norms squared for the IMSL routine EI(.7CH: 10 trial runs.

The Recursive/lterative Toeplitz Eigenspace (RITE) Decomposition Approach 37



10*°
·---——--- 1=1vEm=16E 1 Ms:.10**

10'22

10*°
1

10**

10***0
E 280: 10‘
2

10*"

l0'2°

l0'2° ..:·;,-::::;sé5*·¢"·"“--,..

l0'm V
li

·1 2%*

I
10'82

9 9 13 19 24 29 34 40 ‘ 45 50
DIMENSION

Figure S. Averaged orthonormality norms squared for the IMSL routine EIGCH: 10 trial runs.

The Recursive/lterative Toeplitz Eigenspace (RITE) Decomposition Approach _ 38



l0'°

1

" / il - 6}}}
if fi6 6 $1161621'@?~i!’$é’•*.‘€66Av6M=~2:·«12·A@@1%M $1%// ,,6 ‘¢'6*Z

10°7 6.. ,6 1* 12: 6
E '

1
-1 iE 11

10*°
1

3 8 13 19 24 29 34 40 45 50
DIMENSION

Figure 6. Averaged angle difference between RITE and IMSL eigenvectors for corresponding
eigenvaluess 10 trial runs.

The Recursive/lterative Toeplitz Eigenspace (RITE) Decomposition Approach 39



3.0 The Generalized Eigenspace Decomposition

Extension

3. I Presentation

The RITE technique can be extended to the generalized eigendecomposition of strongly

regular" Toeplitz Hermitian pencils (R,B). The modifications needed for this extension, defined

as the Colored—RlTE (C-RITE)", tum out to be easy to implement, and in fact no factorization

of the matrix B is required for the procedure. The main differences with the regular case lie in the

definition of the (generalized) eigenvalue search functions, and the (generalized) inner product

needed for the multiple eigenvalue case. The successive decompositions are computed recursively

for pencils of increasing dimension, and optimization of the computational speed can be obtained

by taking advantage in the parallel executable steps of the algorithm, as introduced earlier in

Chapter 2 for the RITE implementation.

*‘
i.e. with all regular submatrices.

*5 because, in the array processing context, a generalized eigendecomposition is needed in order to recover
the signal information when the noise is colored.
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3.2 Order-Recursive Generalized Eigendecomposition

As for the RITE derivation, the question to answer is the following: Suppore we know the

eigendecomposition (U,_,, A,_,) of the (p-I)-dimensionalpencil (R,_,, B,_,), can we use it tofind the

eigendecomposition (U,, A,) for the p-dimensional pencil (R,_B,)? In other words: can we tind the

eigenstructure of the Hermitian Toeplitz pencil rccursively in order.

Note that the order-recursive nature of such an algorithm can then be used to estimate the

DOA parameters using the eigen-information obtained from potentialy still low—dimensional

subsystcms imbedded in the maximum size one in the array processing application considered.

To this end the following equation needs to be solved. .

(R, — lB,,)g = Q (39)

where R, and B, are Hermitian Toeplitz matrices of dimension p. Since we know the

eigendecomposition for (R,_B,), equation (39) is rewritten as

ro-16,, [-rg; [1]
= Q 40)

where g= [r,, , r,_,]' and b = [b,, , b,_,]'. Therefore, the generalized eigenpair solutions satisfy

the following system

ro — ibo + (Ä -
lb*)€

= 0 (41a)

(R,,-r — ·lB„-r)Ä = — (t — lb) (4lb)

First note that the matrix in (4lb) is Hermitian Toeplitz, so that for any given .1 the solution

gi can be found, as in the RITE procedure, and under the same strorrgly regular conditions, by using

the Toeplitz system solver proposed by Zohar [ZO2]. Thus, as before, the remaining problem is
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to solve for all possible eigenvalues ,1,%*, for n = 1, ,p, from (4la). To that end, substitute (4lb)

into (4la) to eliminate §.

Vo — ibo — (Ä — lb*)(R„-) — 48,,-1)-‘(t — lb) = 0 (42)

Substituting for BH its Choleski factorization, and restricting the analysis to the case of strongly

regular matrices B, we have:

1zp_, - rß„_, = c,j_,[c;j,12,,_,cgj, — u]c,,_, (43)
g

where C" denotes the inverse of the conjugate transpose of the matrix C. Note that SH, defined

as is Hermitian. Hence, its eigenvector matrix may be chosen to be

unitary, i.e.

and (44)

Furtherrnore, for regular pencils (R,B) we have the following generalized eigen-relationships

.l(R, B) = 2(R, C*C) = „1(C'*RC'"‘, I) (45a)

(45b)

Therefore, using properties (44) and (45) in (43) above leads to

(46)

and as a result

(Rp_, - ,1ßp_,)" = 6;, V;:l(Ap_l — .1r)" Vggcgj, (47)

where A,,_, is the diagonal generalized eigenvalue matrix with Ä.,lf‘l), n = l, ,p — l, as elements.

Substituting (47) into (42), yields

ro — ibo = (c- lb)?-'QÄ, V,I:)(A,,., — /7-l)" V§Ä)C§:1(:— 112) (48)
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Using the fact that C„_,U,_, = V}_,, as shown in Appendix B, where U,_, is the B-normalized

generalized eigenvector matrix associated with the pencil (R,,_,, B„_,), equation (48) becomes

fo — Abo = (g- Ab)‘Up_l(Ap_, — AI)"IUI:_1(g— Ab) (49)

Note that the matrix (A„_, — ll) is diagonal. Therefore, its inverse can easily be computed, and

equation (49) may be rewritten as

P·—l 2I ßkl(ro — Äbo) = i—— (50)AI:) ') — A

where

ßk =

(2*-Therefore,using the generalized eigen·decomposition (U,_,, A„_,) at order p-l, the new system of

equations to be solved becomes:

1 0 T-(r Abo) 0 (51)1¢=1 Ar') — A

(Rp., (z — lb) ($2)
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3.3 The Eigenvalue Problem

3.3.1 Introduction

Let us defne the generalized eigenvalue search function as

ii
lßk I 2

M1) = —ro + Äbo + T—* (53)
1:1 Älf 1) — Ä

Recall that R and B are Hermitian and strongly regular. Hence, using property (45a), we know that-

the generalized eigenvalues still satisfy the following interlacing property :

S #3*1 S 1f) S 1,*;**1 S 1*,;*1, S 1*;*;*1

Therefore, the search intervals for each updated eigenvalue AQ) can be restricted to

I; = [1,*4*;*1, .1,*;**1] for all n = 2, , p — I, If = [K,, 1]***1] and I; = [1%*1, K2], where K, and K2 are

constants defined such that K, < J.?) and .1];*1 < K2. Recall that, in the RITE derivation, the

eigenvalue search function was easily shown to be monotone between its singular points, which in

turn allowed the use of quadratically convergent iterative search techniques. Monotonicity of the

generalized search function is proved in the next section.

3.3.2 Monotone Behavior of the Generalized Search Function

The key behind the proof is to note that the set of eigenvalues associated with the matrix

C‘°RC" is identical to the set of generalized eigenvalues associated with the pencil (R, C'C), when
C’C

is strongly regular. First, we show that the eigenvalue search function for the
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eigen-decomposition of a Hermitian matrix is monotone between its poles. This result is then used

to prove that the eigenvalue search function for the generalized eigen-decomposition of the

Herrnitian pencil (R,B) is monotone between its poles also. For purposes of clarity, the eigenvalue

search function for a regular (white noise) eigen-decomposition is denoted h,,().), and the eigenvalue

search function for the general case (colored noise) is denoted hc(A). Note that the proof is restricted

to the case of distinct eigenvalues. There is no need to use a search technique to identify the
V

multiple eigenvalues as they are directly identified from the eigenvalues obtained at the previous

order.

The generalized eigenvalue search function h,(J.) for the pencil (R', BP) is defined as:

"" Iß I2
HM1) = — Vo + Abo + 2 (54)-

rz=l n

where ß„ = (g — «1b)°col„(U,,_,). From (54)

P" —2rzo¤1[ß’(1;‘oo1 (U ))] I 2ß„I
b'()~)=bo+ ‘—"—**l:—+*—:—*—— (55)

1 (rf
‘>- I)2

White Noise Case - Monotone Behavior of h

In the white noise case b„ E 1,b E Q and the above nonlinear equations degenerate to

I
"" I ß I2

I¤„,(„1)=-r0+1+2: (56)
l=I Ä'! — Ä

where ß, = ;'col,(U,_,), and

hl‘”

rn
<II”"’

- M2
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It is easy to see that h,,(1l) is monotone between its singular points 19**0 for i= 1, ,p — 1, because

h'„()I) 2 1. Note that this monotonicity property is not restricted to Toeplitz Hermitian matrices;

it is valid for all Hermitian matrices.

Colored Noise Case · Monotone Behavior of h
Using the fact that C'C is strongly regular, we have

IR,,—AB,,| = IBFI Ic;'R,,c;‘ -11I
(58)= IBPIIÄ,-,1II

where R, = Cj'R,C§‘. The Gauss Algorithm [GAT] provides altemative expressions for the

determinants. Recall that this algorithm shows that

¤ET[’égI = IAI ID — CA"BI ifA"‘ exists
(59)

= IDI IA - BD“‘CI ifD°‘ exasts

Therefore, using the above Gauss property for the matrix (R, — ll), leads to

Izi, — ul = I1$,_, - ul Ißo - 1 —E’(1$,_, - u)"EI,„ (60)
= IR,_, — ulhwu)

where R,__, is defined as the upper left (p-l)—dimensiona1 matrix contained in C;;'R,C;‘ denoted

(C;'R,C;‘),__,, and h„(l) is the regular eigenvalue search function for the Hermitian matrix R,.

Substituting (60) into (58) leads to

IRF- ABFI = IBFI IRF_l — „1lIhw(„1) (61)

Similarly, applying (59) to the matrix (R, — AB,) yields

IRP - ÄBPI = IRF_] — ,lBF_, I Iro - Abo — (5-
(62)
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Note that (1i,_, - 11)-* and (R,_, — 1B,_,)-* exist because the proof is only considering the distinct

eigenvalue case. Recall furthermore, that the C-RITE algorithm is restricted to strongly regular

matrices B. Therefore, B,_, is non-singular and applying the Gauss property (59) to IB,I leads to

BP-1 s|B,| = IL, [JI = IB,-,I Ibo—b B,l,b| (63)

Substituting (63) into (61), we get

IR, — 1B,I = Ibo — b*B;,bI Ic,§_,c,_, I IR,_‘ — 1IIh„(1)

=1<Ic;_,I I1$,_, - 1IIIC,_lIh„,(1) (64)

= KI c,’§_,(c;’R,c,j‘),_,c,_, — 1ß,_, Ih„,(1) .

Now, using the fact that (C,-’R,C;*),_, = C;j,R,_,C;j,, as shown below in lemma l, equation (64)

becomes

IR, — 1B,I = KI R,_, — 1B,_, Ih„(1) (65)

Equating (65) and (62) leads to '

K I R,_l — 1B,_,Ih„,(1)= IR,_, — 1B,_, Ihc(1) (66)

Recall that for distinct eigenvalues IR,_, — 1B,-,I aß 0, so that (66) becomes

M!) =KM!)(67)

where K= bu — b'B;l,b from (64). Hence, using the fact that h,,(1) (associated with the matrix Ä,)

is monotone between its poles 1$°-*) as shown earlier, we get the property that h„(1) (associated with
I

the pencil (R,, B,)) is monotone between the same singular points also.
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Lemma 12 Let (RR,BR) be a p-dimensional Herrnitian positive defmite pencil. Let CH and C], be

defined respectively as the upper triangular Choleski decompositions for the matrices BR_, and BR.

Then the (p·1)-dimensional upper left submatrix imbedded in the matrix
(,§'RRC;‘

is such that

(C;*RpC;l)p—l = C;;:lRp—lCp-ll (68)

Proof:

Using the matrix definitions above, we have

C 1 Q
C = P-

69
" i Q ci ( )

where g is a p-dimensional vector and c is a one-dimensional constant. Using the fact that the_

original B, is strongly regular by assumption, Cßl and CQ-}, exist, and therefore

c" -6** akC;1 = p-1 (70)
Q c

Hence,

R C-i = Rp-¤ E C;l„ —¢§l1¤¤°‘
P P E "o Q

c_l

- - 71

rcTherefore,with K, x denoting don'! care entries, we have
_ c" Q R _ c" KC;RpC;1=Iä 1;-1 j|[p1;:—1

xXx ,1
(72)

l

=
C;—1Rp—iC;-li E

x' x

I
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Example:

The monotone behavior of h,„().) and h„(»l) described above is illustrated in the following

example generated from the 3-dimensional positive defrnite symmetric Toeplitz pencil (R3, B3). The

matrices R and B are generated from their first rows

Row3(R) = [5,3,1]

Row3(B) = [4,1, -1]

The singular points of the two eigenvalue search functions are located at 0.66 and 1.60. The

updated eigenvalues of the third-dimensional pencil are located at 0.561, 0.799, and 2.139. The

functions g„(/l) = — h,(„l) and g„(l) = —h,,(«l) are plotted in Figure 7 on page 50. As expected, the

two functions are monotone between their singular points, and the constant factor K is 3.33.

3.3.3 Generalized Eigenvalue Search Implementation

As shown above, the function h().) is monotone between its singular points 1,9***. Thus,

quadratically convergent iterative techniques, similar to those presented for RITE, can be used.

The restricted Newton algorithm presented in Chapter 2, equation (11), can be applied directly to

the generalized problem. Recall that h,(l) = Kh„(l), as shown in Section 3.3.2, where h, and h,, are

the search functions associated respectively with the pencil (RP, BP) and the matrix C§'R„C;‘, and

K = b„ — b'B;l3b. Therefore, rational approximations similar to those presented for RITE can be

used for C-RITE, and the properties presented in Appendix C and D still hold for the generalized

eigenproblem.

Note that the restricted Newton technique, which was developed first, is used for the algorithm

implementations because it appears to be more competitive for small size problems than the

rational approximation based approach.
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3.4 The Eigenvector Problem

A procedure similar to that presented for the RITE derivation is followed to solve for the

eigenvectors. The generalized eigenvectors associated with distinct generalized eigenvalues are

computed using (40) and (4lb) with the efficient Toeplitz solver. The multiple and/or clustered

eigenvectors are then computed following a similar 2-step procedure as for RITE. Note that the

changes in this new 2·step procedure, are the deflation technique used to identify the last

eigenvector and the generalized version of the shifted inverse power (SIP) method.

Thus, the eigenvectors of dimension p associated with the set of k clustered eigenvalues are

identified by the following procedure:

1. Build up the first k-l vectors of the set by using the vectors of length p-1 defined for the

clustered set of k-l eigenvalues at the previous order and fix their first components to 0, i.e.

^o¤> 0
5,, = (P-;) forall n=2,,k (73)

yn—1

where
g[q‘)

represents the (ri - 1)** generalized eigenvector of the (p-l)—dimensional pencil;

2. Compute the k'* generalized eigenvector {PP by orthogonalizing in the B-inner product" a fixed

vector of unit length, chosen arbitrarily as y= [1,1, , 1]*/p, to the set of already known

eigenvectors. (74)

Then, as for the RITE derivation, a single iteration of the generalized SIP method using the

fast Toeplitz solver, with shift equal to the estimated generalized eigenvalue, is applied to the

approximate eigenvectors Q') to correct the original assumption of a single multiple eigenvalue.

1* The B-inner product of vectors 5 and Z is defined by: 5°BZ
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(R, - „1$)ß,)y,‘{'> = ß,,Q§ for all n = 1, k (75)

A summary of the algorithm is given in Table 3 on page 56. The four threshold quantities,

as defined earlier for the RITE implementation are used again. For the simulations presented,
6, = 5.10**, .·:;= 10**, s3= 10**, and sr= 10**.

3.5 Performance 11/Ieasures

Sensitivity of the recursivealgorithm to potential accumulation errors and separation of the

generalized eigenvalues is studied in the following. The performance ofC—RITE compared with the

IMSL (Version 9.2) subroutine -EIGZC- is presented in Figure 7 on page 50 to Figure 10 on page

59. The tests used generalized versions of the previous ones, and are defined as the Averaged

Residual (Frobenius) NORM squared

1 2ARNORM=? I I1z,u, -ß,u,A,I I, ,

and the Averaged ORTHOnormality (Frobenius) norm squared

AORTHO=% I I u,jß,u,- 1,I Ii,

where p represents the dimension. The results represent the values obtained for 10 trial runs on

different correlation matrices. The matrices R, were built from the estimated correlation sequences

generated by two sources of variable angle locations with different SNR in a colored noise

environment. The real and irnaginary parts of the colored noise sequences are respectively

generated by AR(2) systems, and the real and irnaginary noise part characteristics are given in terms

of their pole locations. The noise correlation matrices are then estimated from these complex noise
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sequences. A complete list of the parameters used to generate the correlation sequences can be

found in Figure 8 on page S7, where Nest represents the number of snapshots used to estimate the

correlation sequences. Figure 8 to Figure ll show that the C-RITE and IMSL algorithms yield

similar variations of the Averaged Residual NORM (ARNORM) and the Averaged

ORTHOnormality norm (AORTHO). A higher sensitivity is apparent when the pencils to be

solved are ill-conditioned, i.e. when the noise matrix B is close to singular. This situation may occur

for example when a small number of snapshots is used to estirnate the correlation sequences.

However, these tests show that the algorithm performance is satisfactory for positive defrnite pencils

of orders up to at least 30.

3.6 Recursive Eigendecomposition Timing Aspects

The computational load of RITE and C-RITE is divided into two different contributions, the

eigenvalue and eigenvector identification steps respectively, and optimization of the speed of these

algorithms can be obtained by relining the procedures used.

1. The (generalized) eigenvalue load:
F

Recall that the (generalized) eigenvalue steps, for a given order, can be performed in

parallel as they are independent of each other. The closed-form similarity of the search

function h().) and its derivative h’(„l) can be used to decrease the computational requirement

of each iteration step. In the white noise case, i.e. the RITE decomposition, the parameter

ß„ can be computed explicitly before the iterative search begins. Therefore the evaluation of

the white noise eigenvalue search function and its first order derivative are of the order O(p)

per iteration for a matrix of order p. The generalized eigenvalue search function is more

complex. The parameter ß,, can no longer be computed before the iterations begin, and the
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derivative is computationally more expensive. For each iteration, O(p*) tlops are needed to

compute the function or its derivative.

Recall that either the restricted Newton or the rational approximation method can be used

to compute the updated eigenvalues. As mentioned earlier, the approximation method

converges in fewer iterations to the updated eigenvalues, however its computational cost per

step is higher. In addition to the evaluation of the eigenvalue search function and its derivative

(which are the only computational requirements of the Newton step), the rational

approximation requires computation of four additional coeilicients and the closed form

solution of a quadratic equation, the latter involving a square root computation. Therefore,

considering the additional computational load required per step for the rational approximation,

one can expect to have a crossover dimension n„, below which the Newton scheme will be

faster (i.e. the additional number of Newton steps will still end up being faster to compute)

than the approximation based technique, while for larger dimensional problems the opposite

will hold. Again, deünite conclusions regarding the comparative speeds of these two possible

iterative techniques are diilicult to draw as they very much depend upon the type of hardware

implementation chosen, a subject beyond the scope of this work.

2. The eigenvector computational load:

The Zohar algorithrn, presently used in the algorithm implementation, solves a Toeplitz

system of order p in O(p') time. Further optimization of this task could be obtained by

irnplementing a Fast Toeplitz solver, such as the one presented by Kung and Hu [KUI] for

instance, which requires only O(p) time when using a linear array of O(p) processors.

The RITE and C·RITE algorithms are well adapted for parallel implementations. A rough

estimate of the number of operations needed in a parallel implementation of the recursive

procedures, when using the restricted Newton search, is presented next. As mentioned earlier, the

evaluation of the regular (white noise) eigenvalue search functions and its derivative are of the order

O(p) per Newton iteration for a matrix of order p. This leads to a total of n,O(n') operations for a

parallel irnplernentation of the search task, where n, is the maximum number of Newton steps at a
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given order. Due to parallelism, O(n) processors are needed in this step. The evaluation of the

generalized (colored noise) eigenvalue search function and its derivative are of the order 0(p') for

a given p-dirnensional problem. This leads to a.n order of n,O(n°/6) flops for successive

decompositions from order 3 to n, where n, is the maximum number of steps.

Using the fast Toeplitz solver proposed by Kung and Hu [KUI], a parallel implementation of

g the eigenvector task can be performed in roughly O(n*). Thus, using O(n2) processors, a parallel

implementation of the RITE procedure can be performed in roughly O(n*) time, where n represents

the maximum dimension of the problem. Similarly a parallel implementation of the C-RITE

procedure can be performed in roughly O(n°). Note that these are pessimistic estimates because no

actual parallelism was taken into account in the computation of the eigenvalue search function, and

further reduction in these time requirement estimates can be expected depending on the type of

hardware chosen for the implementation. '

The Generalized Eigenspace Decomposition Extension 55



Table 3. C·RITE algorithm implementation

Initialization
(U27 AZ)

IFPZIEE-I_fOfT(-;p,j
ii

i--
i l é- —— i

1

I
Generalized Eigenvalue updates using (11) I(Convergence threshold 61)

I I
I

'_Eig%1¤§6k'“'—“°——°’—"“—‘I

I I I
·

M ,
I Compute Compute I

I gg?) using gg?) for z= k, , 1
II (40) and (4lb) using (73) and (74)

I
(Convergence threshold 64)

I

I
I apply 1 step of SIP yes Il,— l,_,I > 6; no I

I
to gf) using (75)

I

I
Apply l step of SIP

I to gf') using (75) I

continue yes

110

STOP
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4.0 Eigen-Techniques Applied to Passive Bearing

Estimation

As mentioned in Chapter 1, numerous eigen-based techniques have been proposed in the

literature. This chapter considers the application of the order recursive RITE and C-RITE

procedures to the Direction Of Arrival (DOA) identification problem. A brief introduction to array

processing is given next in Section 4.1. The application of eigenstructure methods to the DOA

problem, in white and colored noise situations, is discussed in Section 4.2. Section 4.3 introduces

the information criteria used to estimate the number of sources. Finally, Section 4.4 presents

implementation results.

4.1 Introduction to Array Processing

Assume a linear equi-spaced array of sensors receiving narrowband signals. Under the

assumption of nondispersive propagation, sensors without distortion, and envelope Variations that
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are slow relative to the carrier frequencies of the narrowband signals, the received signal from a

passive array is

x, = r, + rz, (76)

where s, represents the narrowband signal, and n, represents the noise. Consider a linear array of

p sensor elements. The output at the q"' array element of the array, to m incoming sources arriving

at angles 0, to 0,,, is given by

M _ 2rz(q — l)dsin(0)
7 y„,q -7* + ·h + nt,q (77)

for l S q Sp

where 0, represents the i'^ signal arrival angle, w, represents the center frequency of the spatial

sources, d is the array element spacing, A, is the amplitude of each incoming signal, Q is the

wave-length, ib, represents the random phase of each incoming signal, assumed to be uniformly

distributed over [0, 21:], and n„_, is a zero mean random variable that represents the measurement

noise.

Therefore, using a vector notation for (77), the output vector at time t can be expressed by the

p-dimensional columnvectorÄ:

= Ut,l•
•}’r_p]r

(78)

Let us defme the mode vector m, as follows

mq = [1. =xp( ¤xp( —2#J(p — 1) ¤1¤(19)/¤)J' (79)

and the noise vector as

n, = [nm, , n,_p]'
(80)

Therefore, the received signal vector car1 be expressed as

Eigen-Techniques Applied to Passive Bearing Estimation 62



”
l

„, exp( -21rjdsin(6,)/Q)

xr = Ai¢KP[/{wc! + 1//;]]- - + gz, (81)
l=l

¤¤p( —2¤id(p — 1) S1¤(91)/9)

For normalized angles defined as 4 = dsin(0,)/Q, (81) can be simplilied and becomes:

1

m exp( — Zrizz)
5, = A,exp|;i[w,l + •l:,]]. . + gz, (82)

l=l

¤¤<i>( — 2¤!(p — 1)Z1)

Under the assumption that the signals and the zero mean noise are uncorrelated, and the noise is

uncorrelated with the random phase shifts, the p-dimensional spatial correlation of the measured

sensor signals takes on the form of the matrix equation

Rx = Elm;}
. 2 (83)

= MRIM + 6 B

where R, and 6*B are respectively the signal and noise correlation matrices with 6* a normalization

constant such that tr(B) = p; p being the dimension of the matrices under study. M has a

Vandermonde structure and its column vectors are the mode vectors M,.

M=[m«1---l mom] *
1 1

¤xr>( —2«i=r) =xr>( —2¤Jz„„) ,84)

¤¤r>( —2«j(p — 1)Zi) ¤x1>( —2¤/(p — 1)Z„„)

The sources are assumed to be uncorrelated, so that the signal covariance matrix is given by

R.=E{1„rI} (85)
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where the narrowband vector signal 5, is defined as

5, = [sm, , (86)

with s,_, representing the i'^ narrowband signal at time t. Therefore from (85)

st,l

(87)
—‘t,m

= DIAG(P,, , Pm)

where DIAG(.) represents the diagonal matrix with diagonal elements as listed, and P, = A}

represents the power associated with each signal.

4.2 Geometrie Solution

Projections of the mode vectors onto the signal and/or noise subspaces are used to identify the

DOA parameters. Let us show how subspace projections lead to the determination of the DOA

parameters. R, has rank m equal to the number of incoming signals, B and M have each dimension

p. From (83), we get

MR,.M* = RX — 62B (88)

Using the fact that MR,M° is non-negative defmite (i.e., with non-negative eigenvalues OI1lY)„ and

that it has less than full rank, then:

).,(MR,M*)=0 for i= 1,... ,p—m (89)
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Therefore,

IMR,M'I =IR,-J6! :0 (90)

Since we restrict B to be positive definite, a full rank Choleski factorization can be used to express

the matrix as

B =
c‘c

(91)

Then, (90) becomes

IMR,M* I = I Ißl (92)

Therefore,

„1(MR,M·) = 1l(C“*R,C'°1) = „l(R,,B)
B

(93)

Using the fact that MR,M° has rank m, the number of signals, we infer from (90) that

,l„,,,,(C·'R,C·‘), i.e. 2l,,,„„(R,,B), has multiplicity q = p — m. This yields

).min(Rx,B) = 62 for i= 1, , p — m (94)

In general, from (88),

(R, -
«“ß)„,°’)

ro: all 2: 1, (95)

Note that for the minimum generalized eigenvalue of the pencil (R,,B), with y?) a corresponding

eigenvector

gißyfpi im- all 2: 1, p —- m (96)

So that
V

MR,M*y,(p)=Q forall i= 1,...,p-m (97)
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Hence, the generalized eigenvectors gi') for i= 1, , p — m associated with the smallest

generalized eigenvalue /1,,,,,, are orthonormal to the m mode vectors gn,). The eigenvectors associated

with the smallest eigenvalue span the (p — m) dimensional noise subspace UN, while the remaining

p eigenvectors span the signal subspace Us. These subspaces are B-oxthonormal [PAR].

Projections onto the noise or signal subspaces can be used to recover the DOA information, as

shown next.

4.2.1 Noise Subspace Projection

The DOA parameters can theoretically be found by fmding the mode vectors which satisfy the

property in (97). For estimated correlation matrices, (97) is not realized exactly. In such cases, the

DOA parameters can be identified by mode vectors which minimize the projection of the mode

vector m, onto the noise subspace UN:

I
MIN6(m0 UNUNm0)(98)

Equivalently

p—M

IMIN0<2
Im,y,“"I’)

(99)
I=l

4.2.2 Signal Subspace Projection

When the noise is white, the eigenproblem reduces to a regular eigen-decomposition and the

eigenvectors form an orthonormal basis. In such a case, minirnization of mode vector projections

onto the noise subspace is equivalent to maximizing the mode vector projections onto the signal
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subspace. The latter method has poor resolution however, as a small change in direction hardly

affects the shadow or projection. Much better resolution is obtained when looking at the norm

minimization of the difference between the mode vector and its projection onto Us:

MFN6(Im6 — I 2)
<¤¤o>

Equivalently

R
(101)

I=p-m+1

The above minimization procedure theoretically leads to the same result as that obtained with the

earlier noise subspace projection.

When the noise is colored, the eigenvectors y, are no longer orthonormal in the Euclidian

norm. lnstead, they are orthonormal using the generalized B·inner product (i.e. U‘BU = I). Signal

projection expressions, similar to those using the noise subspace are derived next. The idea is to

use the relationship between the pencil (R,C°C) and the matrix C*'RC" to derive the signal

subspace projections. First recall that the B-normalized generalized eigenvector matrix U of the

pencil
(R,C’

C) and the orthogonal eigenvector matrix V of C‘°RC" are closely related, as shown

in Appendix B:

V= CU (102)

From (83) we have

R = MR ' + 26
" 2M. °, . 003)

= MRSM + 6 C C _

Using the fact that B is strongly regular, pre- and post- multiplying (103) by respectively C·' and

C" leads to:
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ic"R,c" : C‘*MR,MC”1 + J1
: I\7{R,J\TI* + J1 (104)

where

117 é c"M (105)

Note that S Ä C"R,C*‘ can be viewed as the matrix obtained after prewhitening of the received

signal [BIE]. From (104), we have

ATIR,/17, : c”'R,,c”" - J1 (106)

Using the fact that R, has rank m, equal to the number of incoming signals, (106) yields:

1,(1V11z,171'):0 16160 1: 1,...,6-m (107)

and reasoning as before

„i,(C-*RxC_l)=a2 foralli=1,...,p—m (108)

Therefore, for the minimum eigenpair of S, we have:

(c"1<,„c" — J1)„‘P>
: 1ÜR,1F1'y,°’* : 0 161 all 1: 1, ,6 - m . (109)

so that

1Ü'y,‘*’):0 1616111:1,...,p—m (110)

Using a matrix form, (110) becomes

1C1'v„: 0 (111)
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where V„= span{3§•>, ,3jQ,„} is the noise subspace associated with C·‘RC·‘. As mentioned earlier,

for estimated correlation matrices (lll) is not realized exactly, and the DOA parameters are

identified by the mode vectors M which have minimal projection onto the noise subspace.

Altematively, we may again maximize the projection of the mode vector M onto the signal

subspace (since 3, are I-orthonormal for all i = l, , p). Consequently, this leads to expressions

similar to those given in (99) and (101), where the mode vectors M are replaced by the transformed

mode vectors M and the gf') are replaced by 3}*). Hence, the following minimization expressions

are appropriate to recover the DOA pararneters:

p··mM1N„<Z IE1’1§"’l*) (112)
i=1

and

p
~ ~* (116)

l=p—m

Substituting for M from (105), and for 3 from (102),

p—·M

(114)
t l=1

and

p
MINo(n1,;B”‘M - E |m,,„}”>l“> (115)

l=p-m+l

‘ Equation (115) shows that inverting the matrix B appears to be necessary to obtain good

resolution in the DOA parameter identification process using sigial subspace projections. This I

matrix inverse operation complicates the algorithmic procedure without bringing any new

Eigen-Techniques Applied to Passive Bearing Estimation 69



information, as this information is already available by using the noise subspace projection.

Furthermore, matrix inversion may potentially lead to numerical difiiculties and is best avoided,

when possible. Therefore, the results for the colored noise case use projections onto the estimated

noise subspace only.

4.2.3 Fast Numerical Implementation

The specific linear sensor array assumptions yield a structure of the mode vector that can be

used to efficiently evaluate the inner products contained in equations (99), (101) or (114). Note

from (84), that the inner products can be written in the following form

p
H10) mo"“‘

P (116)
* im

n=l

The sum can be evaluated at all normalized angles z, = 21ri/N with the following Discrete Fourier

Transform DFT„{u)(), , ug), 0, , 0}, where p is the dimension of the problem, N is the FFT

length chosen by the user, and zdf) represents the k"' component of the p-dimensional i"' eigenvector

y?). Efficient FFT or Chirp Z-Transforrn algorithms can then be used, and the accuracy in

resolving the maxima and/or minima of the projections onto the desired subspaces depends on the

amount of zero padding (N-p).
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4.3 Estimation of the Number ofSources

Theoretically, the number of incoming sources can be determined from the multiplicity of the

smallest eigenvalue of the correlation matrix. In practice we do not have a smallest eigenvalue with

high multiplicity but instead a set of clustered eigenvalues. Furthermore, for low SNRs these

eigenvalues may be spread, and deciding on the multiplicity associated with the noise eigenvalues

may become difficult. The technique introduced by Wax and Kailath [WAK] is based on

applications of the information theoretic criteria for model selection introduced independently by

Rissanen [RIl,RI2] and Schwartz ]SWZ], and the Akaike Information Criterion (AIC) introduced

by Akaike[AIK].These

criteria study the following problem:

Given a set ofN observations X and a famiht ofmodels, select the model that best jits the data.

The approach by Akaike leads to the selection of the model giving the minimum value of the

criterion function defined as

AIC=-2logf(X/Ö) + 2k (117)

where Ö is the maximum likelihood estimate of 9 , f(X/0) a family ofprobability densities associated

with the data, and k the number of free parametexs in H. The procedures by Schwartz and Rissanen

are different. Schwartz assumes that each model can be assigned an a—p1iori probability, and his

approach selects the model which gives the maximum a-posteriori probability, The method by

Rissanen looks for the model that uses the minimum code length to model the data. However, the

techniques by Schwartz and Rissanen techniques give the same asymptotical criterion defined by

MDL=—logj(X/S) + —ä7klogN (118)

For the DOA problem, Wax and Kailath have redefmed the estimation problem as a model

identification problem. Using the model covariance matrix given by
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R =
‘1·‘

+
U21

(119)

where R,
‘I',

I are p-dimensional matrices. The matrix
‘1’

= ASA', where S denotes the covariance

matrix of the signal and A is the matrix defined from the parameter vectors associated with the

signals. The following family of covariance matrices is then introduced

Alk) =
—1·"‘)

+ 1;*1 (120)

where ‘P<*> denotes a semi-positive definite matrix of rank k in the set {1, ,p— 1} and 6 is

unknown. Note that k ranges over the set of the possible number of signals detectable for a

p-dimensiona.1 matrix. The problem is reduced then to fmding out for which k the model in (120)

fits the data best. Eigenspace decomposition of the correlation matrix and the concept ofmaximum

likelihood estirnation are used to derive the criteria. The number of signals is then obtained by the

value of k for which a criterion function is minimized. The form of the AIC applied to the DOA

problem is:

P

H Ä}/0-1<> “"")^'
]=]¢+l

AIC(k) = — 2 log ——-—-—-——j
+ 2k(2p — k) (121)

1 Ä_ 1

(PTheform of the MDL applied to the DOA problem is:

P

1MDL(k) = -10g + k(2p — k) 1og(N) (122)
1 E ÄT- l

(PwhereJ., are the eigenvalues of the correlation matrix, N is the number of snapshots used to

compute the sample-covariance matrix and, p is the dimension of R.

The performance of the above criteria depends on the quality of the correlation estimates

[WAK]; overestirnation or underestimation of the correct number of sources may occur when the
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sample correlation matrix is estimated from a small number of snapshots. Note that the AIC and

MDL criteria are derived for the DOA problem in white noise, i.e. for a regular eigenproblem. The

colored noise case, with known colored noise sequence, can be solved by using the generalized

eigenproblem (R,B), or by prewhitening the data and solving the regular eigenproblem C"RC",

with B = C'C. Recall however that the eigenvalue distribution associated with the pencil (R,B) is

identical to that of the matrix C"RC
*‘.

Therefore, the order criteria can still be used for the colored

noise case solved as a generalized eigenproblem.

4.4 DOA Implementation Results

As stated in Chapter 2, the performance of eigen·based techniques for the DOA estimation

problem depends upon the quality of the received signal and noise correlation sequence estirnates.
l

Theoretically, the eigenspace information contained in the m-dimensional correlation matrix, where

m is the number of incoming signals, would be suiiicient to recover the DOA information.
W

However, in the estimated correlation case and in the presence of noise, the information contained

in the correlation is incomplete and higher dirnensional eigenspace decompositions are needed to

recover the DOA information. The recursive RITE and C-RITE algorithms compute the

decomposition of successive subproblems of increasing dimension irnbedded in the original problem

and this information can then be used for the DOA problem, as indicated in Table 4 on page 79.

The following examples first illustrate the RITE algorithm operating in a white noise environment

and the application of the MDL and AIC order determination criteria. Next, applications of the

C-RITE algorithm to signals in colored noise are presented. Problems ofbias and loss in resolution

due to incorrect estimation of the sequences" are considered afterwards. Recall that the novelty of

these procedure: resider in the recursive nature of the eigen-decomposition techniques and not in their

*7 i.e. correlations estimated with too few snapshots and incorrect colored noise structure assumption.
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specüic utilization aßerwards. They could be applied to different problems which require successive

decompositions of strongly regular Toeplitz Hermitian pencils or Toeplitz Hermitian matrices in

increasing order. For the DOA identification problem studied, simple projections of the mode

vector onto noise and/or signal subspaces, as proposed initially for the MUSIC algorithrn [SCH],

are used. No approximations are made to derive the procedure, and as seen in Chapters 2 and 3,

the propagation errors do not accumulate fast enough to deteriorate the performance of the

algoxithms. Therefore, one may expect similar pedormance ranges as those obtained with the

classical MUSIC algorithm. Numerous other applications, as mentioned earlier in Chapter 2, of

eigen·decompositions have been conducted to study the DOA problem. A MUSIC-type algorithm

was chosen because it has been studied extensively and provides good performance. Numerous

performance analyses can be found in the literature ,[SPK,SIB,.lOM,KAB].

Correlation Sequence Generation

The true correlation sequences are generated according to the expressions given earlier in

Section 4.1.

R,where R,= DIAG(P,, ,PM) and M = [M, I I MM ], with P, defined as the power in an

incoming source.

The estimated correlation sequenees are generated by:

l
PICS]

R" = nestk=l

where the measured vector is expressed as in (81)
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where

A, is the amplitude of each incomimg signal,

w, is the center frequency of the spatial sources,
‘l',

is the random phase of each incoming signal uniforrnly distributed over [0, 21:],

z, represents the normalized angle chosen between [0, 21:],

n, is the noise vector. The complex white noise vector is generated using the IMSL (version

9.2) routine GGNML. The complex colored noise sequence is generated by passing both real

and imaginary components of the complex white noise sequence through different

ARMA(p,q) type systems.

4.4.1 Simulation Results - White Noise Case

The following two examples are generated using two interference sources in white noise located

at the normalized angles 30° and 39°, impinging on a linear array of 10 sensors. The temporal

frequency is 3.5Hz and the phase variance 3 radians. The Signal-to-Noise Ratio (SNR) defined as

10 1og,,,( %) is 20dB for each souroe in the first example, and 5dB in the second example. The

following illustrates the use of the eigenvalue spread of the matrix and the information criteria for

the estimation of the number of sources. Recall that theoretically, the number of sources can be

found by examining the eigenvalue spread of the problem; the signal eigenvalues are large and

distinct while the noise eigenvalues are smaller and clustered. Table 5 on page 80 and Table 6 on

page 8l present the values of the information criteria and the eigenvalue spreads obtained for

successive eigendecompositions from order 3 to 10 for example l (SNR = 20dB). Table 6 shows
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a clear separation between the signal eigenvalue set (which has two components) ar1d the noise

eigenvalues. Thus, the number of sources can be found for subproblems of order 4 and higher.

Note that the information criteria, shown in Table 5, yield correct and marked minima for

subproblems of order 4 and higher. Next, Table 7 on page 81 and Table 8 on page 82 represent

the eigenvalue spreads and values of the information criteria obtained for successive

eigendecompositions from order 3 to 10 when the incoming sources have a SNR= 5dB. Using

Table 7, we see that the gradual decrease in eigenvalues makes it more difficult to identify the

correct number of incoming sources. However, the information criteria, given in Table 8, lead to

correct identification of the number of sources for subproblems of order 8 and higher. Once the

number of sources is estirnated, the MUSIC algorithm is used to recover the DOA angles. The

projections of the mode vector onto successive signal subspaces for increasing subproblems, as

indicated in equation (101), are illustrated in Figure 12 on page 83 and Figure 13 on page 84 for

examples 1 and 2 (the inverse of the argument of (101) is plotted). 1024 point FFT’s are used,

resulting in an angle resolution of .35°. Figure 12 shows that correct DOA angle identification is

obtained from order 5 and higher (i.e. correct peak locations are obtained from order 5 and higher,

as indicated in Figure 12). Thus, the algorithm could be stopped at order 5, long before the

eigen-decomposition at the maximum order, thereby reducing the overall computational load of the

procedure. Higher dimensional eigendecompositions are needed as expected from the remarks

made for Table 7 and Table 8, for example 2 (when the sources have a SNR equal to 5dB); a

correct identification is not obtained for subproblems of order 7 or less (see Figure 13). Note that

the bias of the estimated angles decreases when using higher dimensional eigen-information; this is

due to the fact that the information contained in the estimated correlation is incomplete, and higher

dimensional subspace decomposition may be needed to compensate.
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4.4.2 Simulation Results - Colored Noise Case

The examples are generated using either one or two closely spaced interference sources

impinging on a linear array of 10 sensors. The known noise correlation matrix is either estimated

for the estimated correlation case, or it is derived using true correlation information for the exact

correlation case. For the estimated case, the noise correlation matrix is given as

I
nes!

BP= nes: Zakäk (124)
k=l

For the true correlation situation, the noise correlation matrix becomes

Bp = (Rr + RI) +j(Rr,l " RI;) 025)

where R, and R, represent the autocorrelation of the real and imaginary noises, while R,_,

andrepresentthe cross-correlation sequences. True autocorrelation and cross-correlation sequences are

generated by using the method presented by Beex [BX2]. In the following, the noise structure is

that ofa complex AR(2) type with poles for the real part located at (.7, i 45°) and for the imaginary

part with double poles at (.7,0°). The use of 1024 point FFT’s results in a DOA quantization

interval of 0.35°. The n-dirnensional noise matrix B is norrnalized such that tr(B) = rz, this irnplies

that the noise variance is taken equal to 1. The Signal-to~Noise (SNR) ratio is then defined as

A?SNK =

10logwhereA, is the signal (interference) amplitude.

The first example is generated using two closely spaced interference sources irnpinging on the

array at the norrnalized angles of l8° and 24°. The Signal to Noise, Ratio (SNR) is 12dB for each
R

source and 600 snapshots are used to compute the correlation sequence estimates. Correct

identification of the DOA angles is obtained for correlation matrices of order 5 by using the noise
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subspace, as shown in Figure 14 on page 85. Note that the increase in order needed to identify the

DOA angles is due to the quality of the estimated received signa.l and noise correlation estimates.

Correct identification of the angles can be obtained for a pencil of order 3 when true noise and

received signal correlation sequences are used, as shown in the same figure.

Figure 15 on page 86 and Figure 16 on page 87 show the bias in the identified angle due to

incorrect noise estimation. This example has one incoming signal located at 40°. The SNR is 4dB

and 600 snapshots are used for the estimated correlation case. The noise structure is first assumed

to be white, and successive eigen-decompositions for matrices of order 3 to 9 are computed and

used for the DOA identification procedure. The results obtained are labelled: IN·dim 3 to IN-dim

9 (Incorrect Noise (IN) dimension 3 to IN dimension 9). However, early and unbiased estimation

of the DOA angle is obtained for a correct noise structure assumption, as shown by the curves

labelled: Correct Noise (CN-dirn 3) obtained for a system of order 3. Note that both estimated

(shown in Figure 15), and true correlation situations (shown in Figure 16) lead to similar results.

Figure 17 on page 88 and Figure 18 on page 89 illustrate the loss in resolution in identifying

the angles of arrival when the noise structure is assurned incorrectly. This example is generated

using 2 sources at l8° and 24° with a SNR of 12dB. Figure 17 and Figure 18 present respectively

the estimated and true correlation situations. The SNR is 12dB and 600 snapshots a.re used for the

correlation sequence estimates. Assurning the noise to be white (curve labelled as: IN-dim 5 and

IN-dim 8 respectively) does not lead to correct identification of the arrival angles. However, the

assumption of a correct noise structure of high enough dimension facilitates the identification of

both peaks, as shown by the curves labelled CN-dim 5 and CN-dim 3 respectively.
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Table 4. Recursive algorithms applied to the DOA problem

Initialization
(U21 A2)

IlTI'_EoTRI'l—'E____———_In
parallel for k= p, ..., 1

I
I (Generalized) Eigenvalue updates

I
I

(Convergcnce threshold 6;)

I.__.._.._..__.......I
I

I
Eigenvector task I

I

I
yes I lk * lk-; I > B; HÖ I

I
Compute Compute I

I gi') gi'), for t= k, , 1
I

I
(Convergence threshold 64)

I apply 1 step of SIP yes no I

I
I

to gp
I

I I Apply I step of SIP I

I
to gi')

J
Use (UP, A,) if needed for

the DOA identification process

yes Identification completed? no

continue es
for verification

no

STOP
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Table S. MDL and AIC functions for decompositions from order 3 to 10 - Example 1

Matrix order p MDL AIC
K
-

0, ..., p-1

0.33380E + 03 0.66761E + 03
0.13788E + 02 0.27577E + 02
0.80000E + 01* 0.16000E + 02*
0.50320E + 03 0.1006412 + 04
0.42838E + 02 0.8567613 + 02
0.12047E + 02* 0.2409315 + 02*
0.15000E + 02 0.30000E + 02
0.67944E + 03 0.13589E + 04' 0.96640E + 02 0.19328E + 03
0.16283E + 02* 0.32565E + 02* .
0.21107E+02 0.42213E+02
0.24000E + 02 0.48000E + 02
0.85900E + 03 0.17180E + 04
0.16944E + 03 0.33889E + 03
0.20703E + 02* 0.41405E + 02*
0.27419E + 02 0.54839E + 02
0.32128E + 02 0.64256E + 02
0.35000E + 02 0.70000E + 02

K• 0 0.10459E + 04 0.2091915 + 04
K- 1 0.26439E + 03 0.52877E + 03
K• 2 0.25854E + 02* 0.51708E + 02*
K
·

3 0.34163E + 02 0.6832713 + 02
K• 4 0.40777E + 02 0.81553E + 02
K- 5 0.45435E + 02 0.90871E + 02
K
-

6 0.48000E + 02 0.96000E+ 02
K' 0 0.12370E+04 0.24741E+04
K• 1 0.37627E + 03 0.75253E + 03
K• 2 0.31068E + 02* 0.62135E + 02*
K
-

3 0.41005E + 02 0.82009E + 02
K ' 4 0.49351E+ 02 0.98702E + 02
K ' 5 0.55730E + 02 0.11146E + 03
K• 6 0.60308E + 02 0.12062E + 03
K• 7 0.63000E+ 02 0.12600E + 03
K' 0 0.14427E+04 0.28854E+04K• 1 0.51381E+03 0.10276E+04
K• 2 0.48435E + 02* 0.9686915 + 02*
K• 3 0.56260E + 02 0.11252E + 03
K• 4 0.65687E + 02 0.13137E + 03
K* 5 0.73308E + 02 0.14662E + 03
K • 6 0.78598E + 02 0.15720E + 03
K • 7 0.80920E + 02 0.16184E+03
K• 8 0.80000E + 02 0.16000E + 03
K• 0 0.16715E+04 0.3342915 +04
K• 1 0.68434E + 03 0.13687E + 04
K' 2 0.85605E+02' 0.17l21E+03*
K' 3 0.92401E+02 0.l8480E+03
K ' 4 0.98757E + 02 0.19751E + 03
K' 5 0.10719E+03 0.2l437E+03K•

6 0.11220E+03 0.22441E+03
K
-

7 0.11435E + 03 0.22870E + 03K•
8 0.10595E+03 0.21191E+03

K• 9 0.99000E + 02 0.19800E + 03

* indicates the position of the minimum obtained for the criteria
for each order p
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Table 6. Eigenvalue spread from order 3 to 10 · Example l

3 0.662863227E-02 0.2I5050623E-0I 0.29718663I E + 01
0.647941 I99E·02 0.725826063E-02 0.426363675E·01
0.394362596E + 01
0.624947813E-02 0.687499980E-02 0.836673272E-02
0.764 1 4869315-01 0.49020939ZE + 01
0.591376931E~02 0.677480820E-02 0.751561749E~02
0.91629 1 47615-02 0.126574 1 23E + 00 0.584405877E + 01

7 0.55977404 1 E-02 0.67401 1545E-02 0.7 I 5885734E·02
0.82741 5334E-02 0.101953507E-01 0.195033503E + 00
0.676'700028E + 01
0.504578597E-02 0.67I423908E-02 0.692502774E-02
0.807563567E-02 0.355610758E-02 0.1 14785432E-01
0.2852 1004915 + 00 0.76679946 1 E + 01
0.417652852E-02 0.655452259E—02 0.67647 I 83515-02
0.77423382SE-02 0.81931 1636E-02 0.961 161917E-02
0.1 38229970E-0I 0.398045863E + 00 0.854508830E + 01
0.3533812IOE—02 0.613599774E-02 0.673476317E·02
0.764597733E·02 0.780170308E-02 0.9093 18199E-02
0.97422 I 786E-02 0.I7S733I37E-01 0.535542707E + 00
0.9396 I 9633E + 01

Table 7. Eigenvalue spread from order 3 to 10 - Example 2

E*s¤¤v=¤¤¤·=¤
3 0.169627530E + 00 0.195168758E + 00 0.26352037I E + 01

0.16684741 IE+ 00 0.17978728lE + 00 0.2I5809580E + 00
0.343755573E + 01
0.164455498E + 00 0.17519763SE + 00 0.l87018365E + 00
0.244315504E + 00 0.42290 1 300E + 01
0.I61977008E + 00 0.I6934I568E+ 00 0.I86304I72E + 00
0.187402593E + 00 0.29039773I E + 00 0.500457693E + 01

7 0.I59582968E + 00 0.168 1 46853E + 00 0.178793703E + 00
0.1871 18283E + 00 0.192278472E + 00 0.349581 I99E + 00
0.576449852E + 01
0.I56390458E + 00 0.I67702433E + 00 0.I73983556E+ 00
0.183554056E + 00 0.I90756235E + 00 0.1951 24028E + 00
0.426897235E + 00 0.650559200E + 01
0.149256574E + 00 0.166753466E + 00 0.169807876E + 00
0.179791 308E + 00 0.I90I984I4E + 00 0.19150509SE + 00
0.210209504E + 00 0.510539003E+ 00 0.723193876E + 01 g
0.142296690E + 00 0.16490648IE + 00 0.I68893IS3E + 00
0.17641I699E+00 0.188I63607E+00 0.I9I211678E+00
0. 194352261 E + 00 0.224355302E + 00 0.609399920E + 00
0.79400092l E + 01
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Table 8. MDL and AIC functions for decompositions from order 3 to 10 - Example 2

Matrix order p MDL AIC
K
-

0, ..., p·l

0.10593E + 03 0.2118615 + 03
0.S2134E+01* 0.10427E+02*
0.8000015 + 01 0.16000E + 02
0.16526E + 03 0.33052E+ 03
0.77725E + 01* 0.15545E + 02*
0.12061E+02 0.24l21E+02
0.15000E + 02 0.30000E + 02
0.22543E + 03 0.45087E+ 03
0.11054E + 02* 0.22107E + 02*
0.16179E + 02 0.32359E + 02
0.21043E + 02 0.42087E + 02
0.24000E + 02 0.48000E + 02
0.28564E + 03 0.57128E + 03
0.16098E + 02* 0.32196E + 02*
0.20336E + 02 0.40673E + 02
0.27224E + 02 0.54447E + 02
0.32021E + 02 0.6404315 + 02
0.35000E + 02 0.70000E + 02

K· 0 0.34586E + 03 0.69172E + 03
K• 1 0.23153E + 02* 0.46306E + 02*
K' 2 0.24505E + 02 0.49010E + 02
K
-

3 ‘ 0.33316E + 02 0.66631E + 02
K * 4 0.40141E + 02 0.80281E + 02
K • 5 0.45030E + 02 0.9005915 + 02
K - 6 0.48000E + 02 0.96000E + 02
K* 0 0.40626E + 03 0.81252E + 03
K• 1 0.33146E + 02 0.66293E + 02
K • 2 0.28751 E + 02* 0.57503E + 02*
K* 3 0.39519E + 02 0.79039E + 02
K• 4 0.48293E + 02 0.9658715 + 02
K" 5 0.55127E+02 0.11025E+03
K" 6 0.60053E + 02 0.12011E + 03
K •' 7 0.63000E + 02 0.12600E+ 03
K '• 0 0.46679E + 03 0.93359E + 03
K ' 1 0.45246E + 02 0.90491E + 02
K• 2 0.33615E + 02* 0.67230E + 02*
K
-

3 0.45943E + 02 0.91886E + 02
K• 4 056709E + 02 0.11342E+ 03
K' 5 0.65390E + 02 0.13078E + 03
K• 6 0.72209E + 02 0.14442E + 03
K • 7 0.77133E + 02 0.15427E + 03
K• 8 0.8000013 + 02 0.16000E + 03
K" 0 0.52751E+03 0.10550E+04
K' I 0.60155E+02 · 0.1203lE+03
K• 2 0.38749E + 02* 0.77498E + 02*K• 3 0.52512E+02 0.10502E+03
K• 4 0.65225E + 02 0.13045E + 03K• 5 0.75917E+02 0.15l83E+03
K* 6 0.84553E + 02 0.1691 IE + 03
K- 7 0.91368E + 02 0.18274E + 03
K
•

8 0.96236E + 02 0.19247E + 03
K
-

9 0.99000E + 02 0.19800E + 03

* indicates the position ol the minimum ohtained for the eriteria
for each order p
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5.0 Using RITE in the Non-Stationary

Environment

5.1 Introduction

As stated in Chapter 2, the RITE technique is designed for Toeplitz matrices. Its application

to the DOA problem is thus restricted to incoming signals with stationary characteristics in white

noise. However, there are situations where this assumption is not satisfactory. ln such cases,

correlation matrices are still Hermitian, but they have lost their Toeplitz structure, as is the case for

example with correlation matxices for exponentially damped (interference) signals in white noise.

Nevertheless, for nearly stationary processes, the underlying stationary behavior may be of some

use. Note that the analysis presented here is restricted to the RITE procedure, i.e. the

eigen-decomposition of the pencil (R,I). The idea behind this extension is to take advantage of the

fast RITE decomposition eigenpair information and to apply it to the non-Toeplitz Hermitian

environment. Two different approaches are investigated here. The fxrst one considers the

non-stationary case as a perturbation problem. The averaged Toeplitz matrix R, is extracted from

the non-stationary correlation matrix R,, and is used to analyze the underlying stationary
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characteristics of the process. The perturbation matrix P = R, — R, is then used to correct the

Toeplitz eigenpairs. The above approach characterizes the perturbation of individual eigenvectors.

However, only the concept of signal and/or noise subspace is important, as the needed information

(such as DOA angles) is invaxiant to a change of basis in the correctly identified subspace.

Therefore, the second method investigated uses the concept ofSubspace Iteration (SI) [GVL,PAR],

and builds on previous work by Kirsteins and Tufts [KIT] and Vaccaro and Kot [VAK]. Here, the

Toeplitz eigenspace decomposition is used as the initial starting point leading to an approximation

of the eigenspace decomposition for the Hemritian correlation.

5.2 Pcrturbation Approach

The perturbation approach used for the non-stationary extension is similar to the eigenpair

perturbation analysis proposed by Wilkinson [WIL]. Let us define the Hermitian correlation matrix

R,, as

R;,=R,+sP ° (126)

where R, and 6P are respectively the Toeplitz approxirnation and the perturbation matrix, and e is

a small real constant scaling the perturbation matrix. Let us define (y(c), l(s)) and (y, rl) to be the

eigenpairs of the n·dimensional matrices R,, and R, respectively. Then, the 'Herrnitian'

eigenpairs1* (y,(s), l,(c)) can be expressed in terms of the 'Toeplitz" eigenpairs1° (14,, ,1.,) for all

i = l, ,p

y!(s) = 14] + az?) +
.·r’;,‘”

+ _ (127a)

1* i.e. the eigenpairs associated with the Hermitian matrix.

1* i.e. the eigenpairs associated with the Toeplitz matrix.
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.1,0) = A, + my) + Jay) + (127b)

where zy) can be expressed in terms of the orthonormal basis of eigenvectors of R,. Therefore,

z§')=Z—=)‘ä’¤), 028)
1681

For a first order (linear) pcrturbation approach, only those terms which are constant or linear in 6

are taken into account. Therefore, (127a) and (127b) become

( = U)
Q 6) Q + sz; (129a)

Ä/(6) = Ä] +
6a?)

(129b)

Thus, the identification procedure of (Q(6), l,(6)) is performed by the following 2 steps:

l. identify the eigenpairs (Q, A,) using RITE,

2. identify the (linear) perturbation terms ay) and zy) (i.e. all coefficients xy} for all k ¢j).

For convenience, as the analysis is restricted to a first-order perturbation, the subscripts on z, and

a, will be dropped in the following.

5.2.1 Eigenvalue perturbation

The first order (linear) perturbation scherne leads to the following equality:

(R, + sP)(Q + 6:1/)) = (Ä.} + 6aw)(Q + szm) (130)

For all small 6 then, (130) can be decomposed as follows
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R,34_, = ,1,34, (131a)

pg, + R,zw = $1,, + 2,;"> (13116)

Note that (131a) is always true by our definition of the "Toep1itz" eigenpair. Substituting in (131b)

for zw its expression in terms of the eigenvector basis (y,, , 34,), from (128) leads to

py, + R,[Z 1,94,] = M14, + 1,21,914,, (132)
#1 #1

Using the fact that R44, = ,1,34,,, (132) becomes:

P34, (1,, — /1.,)s,(!)y,, = awq (133)
k¢/

Pre·mu1tiplying (133) by leads to

I U) I .- U) I34,P34,+Z(l,,—l,)s,,14,34,,—a 34,34, (134)
#/

R, is Toeplitz Hermitian, and therefore, (34,, , 34,,) fomr an orthonorrnal basis. From (134) then

«‘”=1,fP3,,
i¤ra111=1,...,p (135)

Therefore, from (129b) and (134), the first order perturbation eigenvalues associated with the

Hermitian matrix R, are given by

„1,(a) = 1, + 14,.8PLg for allj = 1, ,p (136)

Note that, from (131a), we can write this as
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,1V,(6) = @*11,14, + @:sP@,
(137)= 4 RM

5.2.2 Eigenvector perturbation

The perturbation term zw is uniquely identified once its coefiicients sw are known for all k aßj.

Pre-multiplying (133) by @], for m aéj, leads to

um
#!

Due to the orthonormality of @, we have @?@ = 0 for all iaéj and therefore,

* (I)@,,P@ + (,1,,, — 11,):,,, = 0 (139)

which leads to

U
P V

s,g,)=—iuL1fj; forallmaéj and ,1,,,¢,1, (140)
m
‘

J

Therefore, from (129a), the k first order perturbation eigenvectors @(6), associated with the signal

subspace of the Hermitian matrix R,, given by

@(6) = @ + a2 sg)y,,
kat!

141ukspuj ( )
‘ “/ '° 1,, — 1,

“R
kaéj
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Note that this approach is restricted to the identification of the signal subspace eigenvectors, i.e.

those with distinct eigenvalues. Equation (140) is i1l·conditioned when ,1,,, - .1,:0. This approach

cannot be used to identify the first order perturbation noise subspace eigenvectors due to the

clustering of the noise eigenvalues. However, for nearly stationary processes (i.e. small 6P matrix),

the number of incoming signals can be extracted from the Toeplitz eigen—decomposition. The

above computation can then safely be restricted to the signal subspace eigenvectors. Next, the

DOA information is obtained by using projections of the mode vector onto the signal subspace,

as was presented for the Toeplitz case in Section 4.2. Performance results for the estirnated

eigenpairs are presented at the end of the section.

An alternative, and updated, estirnate of a first order perturbation eigenvalue can be obtained

using the Rayleigh quotient of the estimated Hermitian eigenvector. Recall that the Rayleigh

quotient associated with the Hermitian eigenvector 14}* is given by [PAR]

r>;(¤) = 19h·R;„u;h (142)

5.3 Subspace Iteration Approaches

As stated in Section 5.1, the advantage of the SI method is that concepts of signal and noise

subspaces are used to compute the eigen-decomposition of the Toeplitz matrix associated with

diagonally averaging of the Hermitian matrix. The important difference with the first order (linear)

perturbation approach introduced in the preceding section is that the eigenvectors are not

considered individually for this computation. As a result, the method is less sensitive to problems

due to clustered eigenvalues. Furthermore, it leads to complete identification of signal and noise

subspace estimates, if so desired. Subspace iteration methods have been extensively studied in the

literature. Performance analyses and convergence behaviors can be found elsewhere [GVL,PAR].

Note that the performance of these techniques depends upon the number of iterations used, the
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eigenvalue spread and the starting point. The purpose of this section is to first introduce the

concept of SI and to present its potential application to the non-stationary situation. A modified

SI which uses the modified GS procedure is presented next. Finally, performance comparisons with

the perturbation approach are presented at the end of the section.

5.3.1 Introduction to Subspace Iteration

Subspace iteration is a generalization of the Power and lnverse Power method (PM and IPM)

[PAR]. The straight PM leads to identification of the leading eigenvector'° 14,,,,,, of a p-dimensional

Hermitian matrix R by computing successive iterations of R*,5, where 5 is an initial starting vector.

This result is easily understood by expanding R in terms of its spectral decomposition.

p
IR = E Mau (143)

l=l

P
If5 = Zug, then

l=l

P a A I4J J

1=2 ‘

Therefore, R*5 converges to a scaled version of 14,,,,,, = 14, for large enough k if .1, > .1, for allj aß 1 .

The SI method generalizes the idea to the concept of iterating on a subspace (5,, , 5,,,). Then

R"U,„ is spanned by S = (R"5,, , R*5,,,). This expression shows that the SI method can be viewed

as k individual PM iterations, each of which converges to the leading eigenvector. Therefore, S is

becoming a poor basis for the potentially good approximation of the subspace spanned by R*U,,,.

. However, convergence to the correct subspace is insured if the iterated subspace is orthogonalized

N i.e. the eigenvector associated with the maximum eigenvalue.
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after each iteration of the procedure. The improvement is drastic especially when the matrix has

clustered eigenvalues [PAR].

5.3.2 Subspace iteration and the perturbation problem

The idea behind this approach is to obtain an approximation to the signal eigenspace

spar1(U;) of the Herrnitian matrix R, by using the Toeplitz signal eigenspace information

span(U,_,). Thus U,_, is used to find a basis which approximately spans the sa.me subspace as U;.

Using the first order small perturbation, R, may be rewritten as R, = R, + 6P. Let us apply one step

of the Sl method to the matrix U,_,, using the non-stationary Herrnitian correlation matrix R,. We

get _

R, U,._, = R,U_,_, + sPU_,·, (145)

Equation (145) depends linearly on the perturbation matrix. Using the properties of the SI method

introduced above, it can be viewed as a first-order approximation of the subspace sparmed by U,_,,

as iterating several times on U,_, will produce a set of vectors which will converge to the subspace

sparmed by U;. Recall that the rate of convergence actually depends upon the gap between the

eigenvalue set /1(U,_,) and l(U;), where U; represents the orthogonal complement to U;. Hence,

a slower rate ofconvergence to the true eigenvectors is to be expected when dealing with closely

spaced sources, or incoming signals with low SNR, as this generates an eigenvalue distribution with

a smaller gap between 1(U;) and 1(U;) (see examples presented in Section 4.4, Table 6 and

Table 7). Furtherrnore, note that the dimension of the subspace to be approxirnated is numerically

limited if accurate orthogonalization of the vectors cannot be performed after each iteration.

Therefore, a Gram-Schmidt orthogonalization of the iterated subspace is performed after each

iteration to insure orthogonality of the eigenvectors.
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5.3.3 Modified subspace iteration

A Modified SI (MSI) method is investigated next. It uses the modified Gram-Schmidt (GS)

procedure [PAR] to estimate the same dominant Hermitian subspace as before. This method was

studied because the modified GS has better numerical properties [GVL], which might lead to a

better approximation of the Herrnitian subspace U,_,. Let us assume that we want to recover the

k dominant eigenvectors of the Herrnitian matrix R,. At each step the MSI transforrns an

orthonormal basis Q, into an orthonormal basis QM by the following algorithm

a) Compute DM = R,,Q,,

b) Use the modified GS procedure to orthonormalize DM, which gives QM.

The iterative procedure stops when the vectors have converged to the desired direction [PAR], and

the resulting orthonormal matrix Q forms an orthonormal basis for the eigenvector space. The.

eigenvectors must then be recomputed by means of a change of basis, thereby increasing the

computational load of the procedure compared to the regular SI method.

If one is interested in only a subset of the eigenvectors contained in Q, then the computational

load to recover the eigenvectors can be reduced, as shown next. Let Q = [Q,, Q,] be the

p-dimensional orthogonal matrix obtained after applying the MSI procedure to a p-dimensional set

of starting vectors, where Q, contains the k column vectors of interest. Then pre- and post-

multiplying R, by Q' and Q leads to

s • •

Q'R„Q= [Qi]R„cQ.. Q,.1 = [QiR"Q’ QiR"Q"] (146)Qn Q„RhQ„ QnRnQn

R, is Hermitian, therefore Q is orthogonal, and Q, and Q, have orthonormal column vectors.

Hence, U, Q span(Q,) and U, Q span(Q,,) are invariant, a.nd Q;R,Q,, = Q,jR,Q, = 0. Therefore, (146)

becomes
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. Q*R Q 0QRhQ=
’

"
’

. (147)
O QnRhQn

and

»1(Q'R„Q) = 4(Q.$R„Q.> 11 1(QZ.R„Q„) = MR,.) (148)

Thus, the eigenvalues associated with the subspace UM can be recovered from those of Q}R,,Q,.

Now let us assume (0,, ,5,) to be the eigenpairs of the k-dimensional matrix Q§R,,Q,. Then, using

(147) leads to

’R
0Qi hQs
, for all i= 1, ,k (148)

O QnRhQn

Therefore, with (147), (148) leads to

Q*R,,Q[ä] = for all i= 1, , k (149)

Using the fact that Q is orthogonal, (149) becomes

R,,(Q[älD = 0,Q[ä] for all i = 1, , k (150)

Hence, (150) shows that QIQ5}, 0*]*, for all i= 1, , k, are eigenvectors of R,,. Therefore,

(0,, QIQ5}, 0*]*), for i= 1, , k are the eigenpairs of R, spanning the subspace UM.

Closed form expressions for the eigenpairs of Q[R,,Q, exist when the matrix is of dimension

k $ 3. For k > 3, iterative methods have to be used to recover the eigenpairs (0,, 5,) of Q;R,„Q,,

thereby increasing the computational load of the a.lgorithm. For some applications however, one

may expect the dimension k for UM to be small because it represents the number of DOA angles

to be identified. Perfomiance comparisons of the different non-stationary extensions are presented

next.
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5.4 Performance Comparisons

The quality of the different extensions is first compared in terms of residual norms and angle

difference between Hermitian (true) and estimated (using the extension techniques) eigenvectors.

A summary of the performance checks is given in Figure 19 on page 103. Next, the extensions are

compared in terms of DOA performance results using the MUSIC algoritlun as before.

Implementation Comments

The different non·stationary extensions are tested on Hermitian correlation matrices generated

from exponentially damped sinusoids in white noise. The Hermitian correlation matrices are

generated by:

1
nes!

Rn =gXM1 (151)
k=1

where the measured vector is expressed as

1m exp( —21:(jz + ot ))
5, = ZA,exp[(iw,.! +

•/1,)]. . I I
+ n, (152)

l=l ,
·¤XP(··2¤(/Z1 + “1)(P · 1))

where 2, represents the normalized angle chosen between [0, 21I„’], a, is the damping factor, A, is the

peak amplitude of each incoming source, w, is the center frequency of the spatial sources, and ifa,

is the random phase ofeach incoming signal uniformly distributed over [0, 21:]. The complex white

noise vector is generated using the IMSL (version 9.2) routine GGNML. We saw in (99), (101),

and (114), that evaluation of inner products is required to estirnate the location of the radiating

sources. As indicated in Section 4.2.3, equation (116), the inner products can be efficiently

evaluated with FFT algorithms. Similar comments still hold when dealing with damped spatial

Using RITE in the Non-Stationary Environment 100



frequenciesewhen the darnping factors 6:, are assumed to be known. Therefore, we consider the

damping factors to be known, and restrict the considered DOA application to estirnation of the

angles of arrival7*. In such a case, projections onto noise or signal subspaces still yield the same

expressions as those given in (99), (l0l), and (114). The only difference lies in the definition of the

mode vector m,. The associated mode matrix, with mode vectors gg, as column vectors, is now

given by

M=[m61! l mm]
1 1

—
exp( —2rz(jz, + 6:,)) exp( —2:z(j2,,, + 6:,,,))

(153)

¤¤1>(—2¤(p — 1)(iZ1 + am ¤xp( —2¤<p — l)(iz„„ + ¤=„„>>

Therefore, the new inner products to be evaluated become

p

"j," (154)

n=l

The sum can be evaluated at all norrnalized angles 2, = 21:k/N with the following Discrete Fourier

Transform DFT„{:4f), 149:2*
•v, , u@e‘<•‘*>‘v,

0, ,0}, where p is the dimension of the problem, N

is the FFT length chosen by the user, :45) represents the k"* component of the p-dimensional i"'

eigenvector gf'), and 6:, is the i'^ darnping factor. As for the Toeplitz case studied in Chapter 4,

efficient FFT algorithms can then be used, and the accuracy in resolving the maxima and/or

minima of the projections onto the different subspaces depends on the amount of zero padding

(N-r>)-

7* This problem is equivalent to estimating the pole frequencies of exponentially damped sinusoids in noise,
assuming the damping factors to be known.
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Eigenstructure Performance

The eigenstructure quality of the extensions is first compared by the residual norms
r‘ defined

as r·· = I(R,, - ,l*l)1: I, where (,1*, 1:) represent the eigenpairs of the original Hermitian matrix, the

averaged Toeplitz matrix, or those rcsulting from the extensions. Note that eigen-based techniques

applied to the DOA problem usually use only either the signal or the noise eigenvectors (not the

eigenvalues) to recover the desired information (in the sequel, the number of incoming sources is

assumed to be known and the comparisons are conducted on the signal subspace ponion only of

the eigendecomposition). Therefore, a more application oriented comparison of the extensions

involving only the estimated eigenvectors is considered next. Assuming the eigenvalues of the

Hermitian matrix to be known, the following residual norms are compared: 4** = I(R,,—- Ä.^I)1:I ,

where )." is a known eigenvalue of R,,. ln the latter s* characterizes the quality of the estimated

eigenvectors only, as no additional error comes from the eigenvalues. Finally, the angle difference

between Hermitian (true) and approximated (by the extension teclmiques) eigenvectors is evaluated

also, This measure is defined as

9: = a¤8(!41,1>ERr· !4:,1MsL)

where y,_„„S,_ and y,_„„„ respectively represent the i"' Herrnitian eigenvector and its estimate obtained

by one of the extension techniques studied. Direct eigen-decomposition information of the

Hermitian matrix is obtained with the IMSL (version 9.2) routine EIGCH.

Correlation sequences created from two exponentially damped signals irnpinging on a 10 sensor

linear array are used to build the Hermitian matrices. The location and SNR of the sources are

variables used to study the effects of the eigenvalue distribution and the convergence behavior of

the Subspace Iteration techniques. The first example considers two exponentially damped signals

at l8° and 30° with SNR equal to 5dB. The Hermitian correlation matrix is estimated from using

500 snaphots. A damping factor of -0.1 is chosen and 10 iterations are used for the SI and MSI

techniques. This correlation sequence is used to build the matrices of order 3, 6 and 10 generated

for Table 9, Table 10 and Table ll. The different extension techniques are compared in terms
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R„ ·——>—·—| NSL —‘*— (·4"·M") 'f“= ßkh ‘ '4"[W4

4Tocplitzsizc
R!

RITE

(lßu') r' = 4(R»„— mu'!
s' = I(R,, — l"I)g'I

l
H' = ¤¤ß(u’„ E')

Perturbation
approaches

linear, or
SI or MSI

4(R„ — A¤·'I>w·'|
Xprr

=
__ Apnypcrl

Hpsr = ang(yp••r, uh)

Figure I9. Performance comparisons for pcrturbation approaches
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of the eigenvalue estimates, the residual norms and the angle differences for the set of signal

eigenvectors, i.e. the eigenvectors associated with the two largest eigenvalues denoted A; and A; in

this section. The measures of angle difference between the corresponding estimated and true signal

eigenvectors are defined by 9, = ar1g(y,_„,„, y,,_,„s,_) and 9, = ar1g(g,_,_„RT, g,,_,_,„_„_). The Rayleigh

quotient, as defmed in (142) is used to estimate the eigenvalues obtained for the SI technique, even

if they are not needed to estimate the eigenvectors. Finally, eigenvalues ar1d residual norms are

included for the original Hermitian matrix so as to give a point of comparison between

approximated and direct eigenspace decompositions.

Several observations can be made from Table 9 to Table ll. The averaged Toeplitz matrix

does not of itself lead to a good approximation of either the eigenvalue set or the eigenvector set
A

(the residual norms r' and s' are large). This seems to contradict the previous finding that

”Toeplitzsizing" leads to improvement [MOB]. The latter was the result of making the correct

assumption about the underlying data. In the present context the underlying data is known to lead

to a Hermitian, non~Toeplitz, correlation and therefore Toeplitzsizing imposes the wrong

constraint.

The first order (linear) perturbation introduces some improvement on the eigenvalue set but

the corresponding residual norms appear to be still large. The Hermitian matrix in this example is

probably too far from its averaged Toeplitz structure to justify such a first order linear

approximation. The direct effect of the damping factor on the Toeplitz and first order linear

perturbation techniques can be viewed by comparing the performance on examples 1 and 2 given

respectively in Table 9 to Table ll and Table 12 to Table 14. Identical parameters, except for a

damping of -0.01, are used to generate the matrices for example 2. The Toeplitz and linear

perturbation methods lead to better results for smaller damping. Recall that the eigenvectors

associated with Hermitian matrices are ill~conditioned, i.e. they are very sensitive to perturbations.

This may explain the lack of more improvement in sl"'. The results show that the SI and MSI

techniques have produced similar performances, and have the smaller residual norms sl"' and angle

differences of the extension techniques. This is due to the fact that eigenspaces are much less

sensitive to perturbations than individual eigenvectors. Note that convergence to the Hermitian
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eigenvectors is faster (i.e. fewer iterations are required) when using the Toeplitzsized (diagonally

averaged) matrix than when using an arbitrary (in this case identity) matrix to start the iterative SI

technique. The irnprovement can be seen in Table I5 which compares the angle differences

between true and estimated angles, when either the Toeplitzsized matrix (denoted SI, in

Table 15) or the identity matrix (denoted SI, in Table 15) are used to start the iterative procedure

for example l. Similar comments could be drawn from example 2. The number of iterations used

in each of the trial runs is shown in Table 15. The difference in performance decreases when the

number of iterations is allowed to increase, as both iterative procedures will tend to converge to the

same eigenvector space. The decrease in iterations needed to get estimates of the Hermitian

eigenvectors, when using the Toeplitzsized matrix however, is very interesting for real-tirne

applications where one wants to minimize the computational load. _

Further comments can be made on the SI and MSI techniques. Note that a degradation of

the performance is visible for the second signal eigenvector. This was expected because the leading

eigenvector converges faster towards the true direction, and the number of iterations was fixed

rather than determined by a residual based stopping criteria. The relationship between the

convergence rate of the signal subspace iteration technique and the gap between the signa.l and noise

eigenvalue sets is illustrated in Table 9 and Table 12, which show that the SI techniques converge

faster for larger gaps (i.e. for smaller ratio ,1,/A,).

Table 10 and Table 13 show that good eigenvalue estimates are obtained by any of the

extension techniques. This was to be expected as the Hennitian eigenvalue problem is well

conditioned (while the corresponding eigenvector problem is not). Finally, Table ll a.nd

Table 14 give abetter interpretation of the actual direction difference between estimated and true

eigenvector directions for all the different extension techniques investigated. As expected from our

previous comments, the smaller angle differences are obtained using the SI techniques.
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DOA Performance Comparisons

The performance of the extension techniques is compared next in terms of the DOA

identification results. Projections of the mode vector onto the signal subspace, obtained for the

l0~dimensional correlation matrix, using the Toeplitzsized matrix, the linear perturbation

approximation, the Sl technique, and the true Hermitian decomposition are given in Figure 20 and

Figure 21 for examples l and 2. Several observations can be made from these examples. First,

note that the incoming angles estirnated using the Toeplitsized matrix or the linear perturbation

approach exhibit a higher bias than those from the SI technique. Again we see that Toeplitzsizing

is not a good idea if the Toeplitz assumption is erroneous. Next, note that the linear perturbation

approach leads to correct DOA identification for very small damping only. Therefore, its range of

application is extremely limited. Much better results are obtained using the SI technique, which for

both examples exhibits the same performance as that obtained with the Hermitian decomposition.

In conclusion, the simple subspace iteration techniques studied here appear to be a good

altemative to directly computing the Hermitian signal subspace as they lead to accurate and fast

approximations. However, the rate of convergence will depend upon the gap between signal and

noise eigenvalue sets, i.e. convergence to the Hermitian signal subspace will be faster when the

incoming sources are not too closely spaced or the SNR is not too low. Finally, note that the

non-stationary extension does not actually need to be performed for every order of the RITE

decompositions. The altemative is to use RITE up to a high enough order to then apply an
1

"extension" to get an improved approximation to the Hermitian signal subspace.
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Table 9. Performance comparisons of extensions - Example l

DIMENSION 3
(1,/1, = 0.857)

·

IMSL Toeplitz Lin. Pert. Sl (l0it) MSI (10it)
«(1,)
—

0.471801 0.727 0.4798-08 0.2098-06
$(1,) 0.2858-28 0.728 0.2068-06 0.1398-03
.(1,)
—

0.804 0.7000.1398-02$(1,)
0.5538-27 0.806 0.700 0.1398-02 0.1398-02

DIMENSION 6
(1,/1, = 0.657)

-

IMSL Toeplitz Lin. Pert. SI (l0it) MSI (l0it)
$(1,)
—

0.2642801 0.664 0.5568-08 0.5638-08
$(1,) 0.3878-27 0.131801 0.2468-06 0.2468-06
.(1,)
—

0.128801 0.585 03978-03 0.3978-03
$(1,) 0.1368-26 0.572 0.3978-03 0.3978-03

DIMENSION l0(1,/1, = 0.406) p

=
IMSL Toeplitz Lin. Pert. SI (10it) MSI (l0it)

.(1,)
—

0.149801 ß0.5578-08 0.8298-05
s(}.,) 0.698E-28 0.l53E0l 0.209 0.250E—06 0.829E-05
.(1,)
—

0.149801 0.1028 0.8298-05 0.8298-05
$(1,) 0.3868-26 6.94831 0.8298-05 0.8298-05
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Table 10. Comparison of cstimated eigcnvalues · Example 1

:MsL Toepaatz Lan. Pen. S1(10it) Ms: (10it)
J.; 32.47291 18.36350 32.31153 32.47291 32.47291
J.; 2.842257 2.816618 2.98768 2.84214 2.84214

DIMENSION 6
:MsL Toepaazz Lin. Pen. s: (aoaa) Ms: (101:)

1. 47.86343 32.61854 47.52143 47.86344 47.86344
J.; 4.109717 4.492380 4.35553 4.10971 4.10971

DIMENSION 10

I :MsL Tncpaacz Lin. rm. s: (10it) Ms: (:0aa)
J.: 56.81421 48.56268 56.72791 56.81421 56.81421
J1; 6.97541 8.99168 6.94831 6.97541 6.97541

Table 11. Comparison of angle dilfcrences - Example 1

DIMENSION 3
Tonpaaez Lan. pm. s: (10it) Ms: (10it)

6. 6- 66.-) 4-:26 6-m
66 66:;-) 6-666_

DlMENSlON 6—
Tnnpaaen Lin. rm. s: (10it) Ms: (10it)

0. (in deg.) 10.351 5.037 0.193E-05 0.193E-05
0; (in deg.) 17.008 8.2382 0.904E-01 0.904E-01

DIMENSION 10
Lin. ven. s: (aoae) Ms: (10it)

0. (in deg.) 17.820 2.367 0.330E~05 0.330E-05
0, (an dag.) ß 6.1365 0.113E—01 0.::3::-0:
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Table 12. Performance comparisons of extensions - Example 2

131M1;Ns10N 3(1,/1, = 0.834)

-

IMSL Toeplitz Lin. Pert. SI (l0it)
i

MSI (l0it)
$(1,)
—

0.755E-01 0.123E-01 0.1671:-06 0.1671:-06
$(1,) 0.3641;-zs 0.2631;-06 0.2631:-06$0-) 0-06601 IHIEZKIHEZK60-) 0-7260-27

0-064202DIMENSION6
(1,/1, = 0.542)

-

IMSL Toeplitz Lin. Pert. SI (l0it) MSI (l0it)$12-) lI!i¤E¤ZI$ 0-604607 0-604607
$(1,) 0.1601:-26 ß 0.1031:-01 0.269E·06 0.2691:-06
$(1,)
—

0.230 0.6321-:01 0.3131;-04 0.3131;-04
$(1,) 0.1141:-23 0.1171;-01 0.3131;-04 0.3131;-04

DIMENSIQN l0
(1,/1, = 0.221)

IMSL Toeplitz Lin. Pert. Sl (l0it) MSI (10it)
$(1,)
—

0.336 0.363E-07 0.3311;-07
$(1,) 0.6041;-23 0.269E-06 0.2691;-06
$(1,)

-

0.236 0.3191;-02 0.3631;-06 0.3641;-06
$(1,) 0.4001;-26 0.236 0.7921;-02 0.3631;-06 03661;-06
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Table 13. Comparison of estimated eigenvalues - Example 2

IMSL Tocpnnnz Lin. rene. sn (10it) nvnsn (nom
J. 32.47291 35.66505 37.85878 37.86682 37.86682
J.; 2.89845 2.755292 2.60411 2.89839 2.89839

DIMENSION 6

-

IMSL Tncpmz Lin. rm. sn (10it) Msn (nom
J., 69.92986 67.09294 69.25076 69.29860 69.29860
J.; 4.97046 4.80342 4.63745 4.97046 4.97046

DIMENSION 10

-

IMSL Toeplitz Lin. Pert. SI (10it) MSI (10it)
J. 104.88771 1 03.62096 104.78490 104.88771 104.88771
J.: 12.89462 12.88180 12.87351 12.89462 12.89462

Table 14. Comparison of angle diüerences - Example 2

Tnepnaez Lin. pen. sn (nom nvnsn (nom
0, (an deg.) 0.940 0.5860.9068-o60;

(in deg.) 2.507 1.754 0.408 0.408

Lin. Pen. sn (nom nvnsn (10it)6. on 6-537 9468665 IEEE!9z on....0_

Tnepnnnz Lin. rm. sn (10it) Msn (nom0, (n. ...,.)..6660,
(an .1.;.) 0.348 0.6741-:-os 0.1138-os
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Table IS. Comparison of angle differences with different initial matrices - Example l

-

$1,411:) $1,411:) Sl,(5it) $1,461:) $1,4101:) $1,4101:)
0, 4111 11:;.)ß 7.392 0.16811-4 0.31011-3 0.1138-6
0, 4111 ae;.)ß 56.579 5.864 39.032 ß 20.01s

131~11sN$10N 6—
$1,411:) $1,411:) $1,461:) $1,461:) $1,4101:) $1,4101:)01

<¤··
00:-) 0-0350-0070-00,

4111 11g;.) 7.569 76.654 ß 30.550 0.904E-l 3.537

DIMENSION l0—
$1,411:) $1,411:) $1,461:) $1,461:) $1,4101:) $1,4101:)

0, 4111 1111;.) 1.732 ß 0.2010-3 0.1711:-2 0.331:-6 0.28411:-6
0, 4111 1111;.) 7.893 78.744 0.308 7.061 0.1131:-1 ß
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6.0 Conclusions and Recommendations

We have presented a new recursive/iterative Toeplitz Hermitian eigenspace (RITE) procedure

and its extension to the generalized eigenspace (C—RlTE) problem. Both procedures exhibit highly

parallel computational features, and have been applied here to passive array processing. The

derivation of the RITE algorithm has been presented in Chapter 2. RITE uses the Toeplitz

Hermitian structure of the matrix to recursively compute in increasing order, successive

eigendecompositions of the submatrices irnbedded in the original problem. At each order, a

number of independent, structurally identical, non-linear problems is solved in parallel. The

eigenvalues can be found by quadratically convergent iterative search techniques. Two different

eigenvalue search methods, a restricted Newton approach and a rational approximation based

search technique, have been investigated. The restricted Newton approach is computationally

cheap, performs well, and is more suitable for problems of small dimension._ The rational

approximation based search technique seems more competitive for large dimensional ones. The

eigenvectors can be found etliciently by solving Toeplitz systems. The minimal multiple eigenvalue

case and the case of a clustered set of small eigenvalues are also treated. Both use information

already available from the decomposition at the previous rank to directly identify all but one of the

eigenvectors associated with the multiple eigenvalue or the set of clustered eigenvalues. The case

of a clustered set of small eigenvalues is solved by frrst assuming the eigenvalues to be identical to
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get estimates of the corresponding eigenvectors, followed by correcting this assumption by using

one iteration of the shifted inverse power method.

The modifications needed for the generalized eigendecomposition problem (R,B) presented in

Chapter 3, C-RITE, tum out to be easy to irnplement. It is of practical importance that no

factorization of the noise matrix B is required for this procedure. The main differences with RITE

lie in the definition of the generalized eigenvalue functions, and the generalized inner products

needed for the multiple eigenvalue case or the case of a set of clustered generalized eigenvalues.

Residual norm and orthonormality norm performance checks, when compared with those for the

IMSL library (version 9.2) routines EIGCH and EIGZC, indicate good stability behavior of RITE

and C-RITE for increasing dimensions.

Applications of our procedures to the Direction of Arrival identification problem, using the

MUSIC algorithrn, were presented in Chapter 4. The order-recursive properties of RITE and

C-RITE permit estimation of angles for interrnediate orders imbedded in the orignal problems,

facilitating the earliest possible estimation of the number of sources. The detection algorithm based

on RITE or C~RITE can then stop, thereby rninimizing the overall computational load to that

corresponding to the smallest order for which angle of arrival estimation is indicated to be reliable.

Extensions of the RITE procedure to Hermitian non-Toeplitz matrices have been considered

in Chapter 5. In the array processing context, this corresponds for instance to correlation matrices

estimated from non-linear arrays or incoming signals with non·stationary characteristics. Two

different procedures have been considered; a first-order perturbation approach and a Subspace

Iteration (SI) based method. These techniques take advantage of the fast RITE eigen-information

by using the Toeplitz eigendecomposition as an initial approximation of the desired Hermitian

eigen-information. Results show that the SI based techniques lead to a good approximation of the

Hermitian eigen-information, with the rate of convergence depending upon the SNR and the angle

difference between incoming sources.
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Recommendations

Two different iterative search techniques have been proposed for the (generalized) eigenvalue
search portion of the procedures. Additional study would be needed to define the optimal range
of application for each of these methods. Furtherrnore, additional analyses of the eigenvalue

interpolants in a finite·precision environment would be of practical interest. Note that among the
interpolants that produce efficient and stable calculation, or1ly upper bounding interpolants were

available. 'This produced an upper quadrant approximation of the root, as opposed to the left

quadrant approximation resulting from the approach by Bunch et al. The upper quadrant

approximation, as defined, is not insured to converge monotically to the root, yet we saw that the

approximations are quite good. Nevertheless, the absence of monotone convergence to the root

could potentially introduce accumulation errors in the evaluation of the (generalized) eigenvalue

search function, which then could accumulate from step to step. Although, this has not appeared

on any of the runs performed to date, strict guarantees of stability are desired prior to detailed.

eonsideration of implementation issues for high performance applications, such as occur in VLSI

design.

The RITE and C-RITE algorithrns have been designed for Hermitian Toeplitz structures, and

eigenvectors are presently found using fast Toeplitz solvers and a vector iteration, if needed. For

non·Toeplitz Hermitian matrices or pencils, the corresponding eigenvectors may still be recovercd

with a vector iteration. However, a potentially preferable approach, more conducive to high

performance implementation, would involve a non-iterative process. After many conversations

with Dr. C.A. Beattie (VPI&SU, Department of Mathematics) [BFB], it appears that such an

approach, based- on an idea presented earlier by Bunch et al [BNS], would possible. The

non·iterative eigenvector task would involve direct computation of eigenvectors associated with

distinct eigenvalues, and a process of deflation to compute eigenvectors associated with multiple

eigenvalues. A careful study and analysis of eigenvector accuracy when round-off errors are

introduced would have to be conducted.
i

Finally, adding adaptive capability to RITE, C-RITE, and their Hermitian upgrade would be

very useful. Adaptive algorithms which can update (in time) and forget (exponentially) the
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eigen-information by using new data samples are very useful to track moving sources. Such an

extension will jvc the procedures the ability of tracking moving sources during the course of

repeated extension in subproblem dimensions, thereby taking full advantage of the latest

information available. A first potential adaptive extension would be to consider the tracking of

time-varying signals in a stationary noise environment. For tracking of time-varying narrow-band

signals, windowing of the received signal before estirnating the correlation matrix is usually

introduced to emphasize the most recent data available. Recall that the p-dimensional correlation

matrix R1") estimated from k snapshots can be expressed as

Risk) = XFX; = &(l)Ä(l)* + + £(/<)&(!<)* (155)

The addition of new information to the data matrix AQ, in the form of data vector ,3%*+*), results in

the rank·or1e modified matrix 1

R(k+1)_ Rat)
+

x(k+l)&(k+l)*
(156)P

—
P

A time varying correlation matrix
Ä,§*+‘>

can then be recursively defined as

E(k+1) = aE(k) _+_
(1

_ a)x(k+1)X(k+1)* (157)P P

where [Ef) Ä ,;“>;<‘>', and a is an exponential forgetting memory factor defined in [0, 1]. Note that

the forms of (156) and (157) are both rank~one modifications. .

With the introduction of adaptive capability to the order recursive technique, a new problem

formulation would result. Now, assuming the (p-1)-dimensional eigendccomposition of

(R,_,, BH) to be known, the problem is to compute efliciently the eigendecomposition of the pencil

(11,, B,), where

• R + 912* E B 1 Ü
Rp=

P-1
a.nd Bp=

pi,
(158)

E fo b bo
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where pzzl represents the additional rank-one correlation information. Thus, the above is

equivalent to simultaneously performing a rank-one modification and a rank-one extension of the

original problem. The associated generalized eigenvalue search function can be defined using

[BEA,BE2| but is more complex. Note that we are actually performing a rank-two perturbation

of the original pencil (RP_,, BP_,) [PAR]. In such a case, the Cauchy interlace theorem no longer

guarantees the updated eigenvalues of (IEP, BP) to be between adjacent eigenvalues of (RP, BP).

Spectrum slicing formulas developed in [BEA,BE2] could then be used to regain the fmer level of

a~priori localization we used for parallel computation advantage.

The next logical step would be to study the potential extension of the adaptive upgrade

discussed above to signals in the time-varying colored noise situation. Following the framework

discussed earlier, the problem would then be to compute efficiently the eigenstructure of the matrix

pencil (IEP, [iP), where IIP and ÄP a.re both time·varying, and given by

E Vo IZ bo

where the eigen-information of (RP_,, BP_,) is assumed to be known. It is expected that methods

that can be applied for the rank-one extension or the rank-one modification problem would prove

effective for this problem setting. Feasibility of deflation and numexical stability of the eigenvector

computations would have to be carefully investigated also.
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I lAppendix A. Complex Version of the Zohar
IAlgonthm.

C SIBRUJTINE -TPLIZ6-
C 'I'he algorithn presented by Zohar Ifor real Toeplitz natrices)
C is extended here to the
C case of a conplex Hermitian Toeplitz system of equations.
C
c ------•-------—------—-----—------------------••--------------•-----c
C R*X = SD (ORDER H) _
c
C Reference : S. ZOHAR, Fortran Subroutines for the Solution
C OF Toeplitz Sets of Linear Equations. ·
C A$$P—Z7; FB. 6; DEC. 79
C • Correction to the article : S. ZOHAR
C Ä$$P'28: DB. 5a XT. 80
C
C RESTRICTIGI : Strongly Regular Square Matrix.
C
C INPUT PARAMETERS :
C H = dimension of the system
C RI) z main diagonal element of the ~ trix;
C RTI .) : contains the remainder of the first column of the
C Illtfikv
C ATI.) : contains the remainder of the first row of the
C matrix;
C SDTI .): contains the rijwt-hand side vector in input;
C on return it contains the solution vector;
C ETI.); GTI.) : work arrays. .
C

C
C .

SIBRUJTINE TPLIZGIM;R0;RT;AT;$DT;ET;GT1
IMPLICIT CGIPLEX IA-H;0-Z)

Appendix A. Complex Version of the Zohar Algorithm. l26



· CG1PLEX RT!H);$OT!M)•ET!H)»AT!M)•G'T!M)
REAL RO

C
N=H-1
T=1 ./R0
DO 14 I=1 aN
RT! I )=T·¤·RT! I)
AT! I )=T¤AT! IJ

14 SOT! I )=T*$OT! I 1
SOT! M )=T*$OT! M)

C
ET! 1 )=-AT! 1)
GT! 1 )=-RT! 1)~
FLAMDA=1 . -AT! 1 )*RT! 1)

C
OO OZ I=1 9N
IP=I•1
TETLAH=SOTl IP)
ETALAM=-AT! IP)
GAMLAM=-RT! IP )

C
DO O3 J=1•I
IMJ=IP-J
TETLAM=TETLAM - RT! J )·¤·SOT! IMJ)
GAMLAM=GAMLAH - RT! J )*GT! IMJ)
ETALAM=ETALAH - AT!J)*ET! IMJ)

03 CGITINJE
C

TETLAM = TETLAM/FLAMDA
C D0 09J*1•I·

IHJ=IP-J
SOT!J )= SOT! J) •TETLAM¤·ET! IMJ)

09 CQITINJE
C

SOT! IP )=TETl.AH
IF! I'N) 11•2•2

11 GAMLAM=GAMLAM/FLAMOA
T=ETALAM
ETALAM=ETALAH/FLAHDA
FLAMOA=FLAMOA — T*GAMLAH

C
DO 06 J=1 rx
IMJ=IP—J
T=ET! J)
ET!J) = ET!J) •

ETALAM·¤GT!IMJ)
GT! IMJ) = GT! IHJ) • GAMLAH¤·T

06 CINTIMJE
C

ET! IP) = ETALAH ·
GT! IP) = GAHLAH

02 CONTIMIE
RETURN
ENO

C
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Appendix B. Relations between Eigenvectors and

Generalized Eigenvectors

This appendix gives proof of the relation between eigenvectors and generalized eigenvectors used

in Chapter 3.

Lemma:

For R and B = CC Herrnitian matrices and B nonsingular, the generalized B~nom1alized (i.e.

such that U'BU = I ) eigenvector matrix U of the pencil (R,B) and the orthogonal (i.e. such that
V‘

V = I) eigenvector matrix V of the matrix C·'RC·‘ satisfy the following relation:

V= CU

Proof:

The matrix C·'RC·‘ is Hermitian and therefore has the following eigendecomposition, with

orthogonal V,

Consequently, for any eigenpair (11,1)
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A3
, 1 (B.2)C' [ R — AB

]C“
3 = Q

For B a full rank matrix, i.e. C nonsiugular, (B.2) is equivalerit to

[R—AB]C'l2=Q (B.3)
R

This implies that C"3 is a generalized eigenvector associated with the pencil (R,B). Writing this in

matrix form yields V

U =
C'} V equivalently V= CU (B.4)

Note that

U*BU: (6*** V)'B(c”‘ V) : V' V: 1 . (B.6)

Therefore, the generalized eigenvector matrix U is automatically B-normalized when the

eigenvector matrix V is chosen to be unitary.

I
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Appendix C. Rational approximation based approach

of the regular eigenvalue search ftmction

This appendix derives the relationships between the rational approximation and the regular (white-

noise) eigenvalue search function defined in Chapter 2.

Lemma 2 Suppose that 1 is given. Let t, q, r, s be defined by equation (20). Then

v(1) Ä t+ q/(1 — dk) 2 ¢>(1) and u(1) Ä r+ s/(d,,_,, — 1) 2 $(1) V16[d,,, dm], where d,, Ä 12**** for all

k.

Proof: _

Part a: v 2 ¢

Defne

h(Ä) = VU) — ¢(·i) (C-1)

Let us show that h(1) 2 0 for all 161; = [dk, dm]. Define
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1:
y(1) = h(1)I-[(1 — 4) (C.2)

I=¤l

k
Note that ]'[(J. — ¢L) 2 0 Viel;. Thus from (C.2), proving

l=l

h(l) 2 0 Vlelf (C.3)

is equivalent to proving

y(A) 2 0 Vlelf (C.4)

Substituting h(„1) by its expression in terms of v(l) and ¢().), given in (16), in (C.2), yields

I
I: 3 1:I Iy(l)=(¢+ä—ro—Zä H<1—«1>

l=l l=1
1: 1:-1 Ia 1: (C5)

=<=—:„>H<1—«1>+«H<1—¤1>—Z¤ß,l’ H (1-:9)
l==l l=l i=l j¢l,]=l

where ß, = g'co1,(U,_,). Note that y(1l) is a polynomial of order k. The idea behind the derivation

is to show that y has a double zero, but does not change sign in the interval I;.

First, recall from (19) that the coefiicients r and .1* are defined such that

v(A,) = da, and v'(}.,) =
¢>’,.

This implies that y(Ä.,) =y’(l,) = O. Therefore, y has a double zero

located at 111. Next, from (C.5) follows, for m = 1, , k — 1

1: 1:
1'(4„)= — Z

lß,¤’
H <d„. — :9) <c-6)

l=l j¢l,j=l

Hence, sign(y(d,„)) = ( -1)*****+*, which shows that the sign ofy changes between each root d,„ for

m = 1, ,k - 1. Therefore, y(l) has k — 2 zeroes located between d, and d,,_,.
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- Thus, the k"' order polynomial y(l) has k·2 zeroes located between d, and d,‘_,, and a double

zero at 111. Therefore, y does not change sign in I;. Furthermore, sign(y(d,,_,)) = 1 implies that

y(1l) 2 0 for all 1161;. Using (C.2), this implies h()l) 2 0, and therefore from (C.l), v(l) 2 ¢>(A) for all

le];.

Par: b.· u 2 :/1

Similarly to part a, let us define

h(1) = ¤(1)- $(1) (C7)

and

p—l

y(1) = h(1) (16 - 1) (C-8)
]=Ic+l

Note that

p—l

(Q — .1) 2 0 Vlslf (C.9)
_/=k+1

Thus y(1l) and h(l) have the same sign in I;. Let us show that

y(„l) 2 0 Vlelf
I

(C.l0)

Substituting h(l) by its expression in terms of u(.l) and :/(.1), gven in (15), in (C.8) leads to

p—l 2
p—1

I I*’III=<’+%TI‘ E ä lle-1>I‘+‘ 1:1;+1 I ;=k+1 C llP-! P-! P-! p-! ( ' I

=(*-1) H (dl-1)+: H @-1)- (6}-1)
j=k+1 ]=k+2 l=k+1 _/$l,]=k+l
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Note that y(1) is a polynomial of order p — k. Recall that r and s were defined in (19) such that

u(,1,) = (/1, and 1/(1,)= •//,, which leads to y(1,) =y'(1,) = 0. Thus, y has a double zero at 1,.

From (C.11) follows, for m = k + 2, ,p - 1

P-! P-!
y<d„.>=— Z lßrlz H <«9—d„.> (cm

]=k+l j¢i,j=]¢+l

Hence, sign(y(d„,)) = ( -1)""", which indicates that y(1) has p — k - 3 zeroes located between @+2

and @,_,, and a double zero located at 1,. Next, let us show that the last zero is located to the right

of @,_,.

Using (C.l2), we have

sign|;y(dp__,)] = ( —1)p"‘”k (C.l3)

Note that

p—l

limy(1)=1im -1 (@-1) (C.l4)
1-oo 1—•oc j=]¢+1

Using the fact that @—1<0 for a11j=k+ 1,... ,p— 1 since 1>d,,_,_ then

Sisrwf/,122,y(l)] = - ( —!)'—H° (C-15)

Equations (C.13) and (C.15) show that y(1) changes sign, i.e. it has a zero located in the interval

[@,, oo). Thus from (C.l2), y has a double zero, but does not change sign in I;. Furthermore,

equation (C.l2) yields that sign[y(d,,,„)] = 1. Therefore,

y(1) 2 0 \/16lf (C.l6)

and from (C.8)
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h(,l) 2 0 Vlslf (C.l7)

and from (C.7) _

u(Ä.) 2 Vlslf (C.l8)

¤
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Appendix D. Proof of Local quadratic convergence

for the rational approximation based approach

Theorem: Given 1,eI; = [d,„ d,„,], where d,, é Ap, let .1,, be the solution of _

r +Ü
—t — #-:1-: = 0. Then for k sutiiciently large, we have:

|.1,,_, — ttl s cl 1,, — rt I = where h represents the updated eigenvalue in 1; and Cis a constant value.

Proof: We shall show that I1, — ul = 0(I1,— pv).

Let a, and az be defined as

S1 = ll * [L(D.and

L

82 = L2 •

[I.Thenit is sufiicient to show that

la! =¤(=i> am
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Following the approach by Bunch et al [BNS], Taylor series expansions about ,u of the functions

¢ and $ are used. The expressions $(1,), $(1,), $(11) and, $(p) are written as ¢,, $,, (Ä, and
1/I)

in

the following.

The new iterate Az is found by solving

D.4dk+l ‘ 12 12 — dk ( )

with, from (19),

'°=1/11~1=

(D 5)
¢=¢1+¢'1(·11 **111;) ·

q=—¢·'1<11-d1.>“ .

Substituting (D.5) in (D.4) yields ‘

(d1«+1 " Ä1)2 (*1 ‘ dk)2
$—$' d -1. +$'——=¢ +¢>’

1-d — '— D.61 1( 11+1 1) 1 1 l(l 11)

¢1whichleads to

'
Gl I 6] .

1l’l+)pl—E;°(Ä2°Äl)=¢l+¢l;;('l·2—'l·1) (D-7)

where

1111 = dIz+l " ·11· 1112 = *111+1 ‘*2öl
='l'1_dk• 62=·12'd1z

Using a Taylor series expansion of (6, and ¢', about p leads to

¢=$+¢11 2 (119)
, ^, ^(2)¢1=¢ +*1141* +°"
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Substituting (D.9) in the right-hand side R of (D.7), we get

^ $i ^<2> ^ ^<2) $i ^<¤> 61 :1R=6,¢>'+?¢ + ¢'+e,¢> +E—¢> E-(11,-1l,)+O(s,) (D.10)

Using the fact from (D.1), (D.2), and (D.8), that 1 — gl =äin (D.10), and rearranging the
2 2

terms in the equation leads to

R = $, 8l(£2 " $1)
+ jä $(2) + 6182 [$,

+ E $(2)] + 00:2) (D U)6, 2 6, * ¤ ·

Thus from (D.11),

+ 6
R = 4>',(j#- >¤, + O(.·;¥) (D.12)

A similar expansion about 11 of 11:, and
1ß’,,

in the leü-hand side L of (D.7), leads to

1, = .1·,(%°l )„, + O(e¥) (1).13)

Equating (D.12) and (D.l3) yields

° 1 **2 1*2* (81 1 = T(G1 " 81)¢ 12

Hence, _

— 6 +¤<=¥>=—=1[¢'„(i%)—¢'1<%)] (D-15)

Note that

— 6 +um ma lim —J—i=1 (1).16)11- 4:-•u 2 111 ¤lz—•# 62
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Thereforc, from (D.16) and (10),

— Ö + 6 A A
1 ,,,2 ¢* 1 62

•// ¢> 21 (D 17)

which implies from (D. 15)

iszl = 0(6§) (1).16)

I
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