
i 
 

Genomic Prediction and Genetic Dissection of Yield-Related Traits in Soft Red Winter Wheat 

 

 

Brian Phillip Ward 

 

 

 Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in 

partial fulfillment of the requirements for the degree of  

 

Doctor of Philosophy 

In  

Crop and Soil Environmental Sciences 

 

 

 

 

 

Carl A. Griffey, Chair 

M.A. Saghai Maroof 

Wade Thomason 

Jason Holliday 

 

 

April 10, 2017 

Blacksburg, VA 

 

Keywords: wheat, Triticum aestivum, genomic prediction, genomic selection, quantitative trait 

locus, genome-wide association study, yield, grain yield 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2017 Brian P. Ward 



ii 
 

Genomic Prediction and Genetic Dissection of Yield-Related Traits in Soft Red Winter Wheat 

 

Brian P. Ward 

 

ABSTRACT (Academic) 

 

In multiple species, genome-wide association (GWA) studies have become an increasingly 

prevalent method of identifying the quantitative trait loci (QTLs) that underlie complex traits. 

Despite this, relatively few GWA analyses using high-density genomic markers have been 

carried out on highly quantitative traits in wheat. We utilized single-nucleotide polymorphism 

(SNP) data generated via a genotyping-by-sequencing (GBS) protocol to perform GWA on 

multiple yield-related traits using a panel of 329 soft red winter wheat genotypes grown in four 

environments. In addition, the SNP data was used to examine linkage disequilibrium and 

population structure within the testing panel. The results indicated that an alien translocation 

from the species Triticum timopheevii was responsible for the majority of observed population 

structure. In addition, a total of 50 significant marker-trait associations were identified. However, 

a subsequent study cast some doubt upon the reproducibility and reliability of plant QTLs 

identified via GWA analyses. We used two highly-related panels of different genotypes grown in 

different sets of environments to attempt to identify highly stable QTLs. No QTLs were shared 

across panels for any trait, suggesting that QTL-by-environment and QTL-by-genetic 

background interaction effects are significant, even when testing across many environments. In 

light of the challenges involved in QTL mapping, prediction of phenotypes using whole-genome 

marker data is an attractive alternative. However, many evaluations of genomic prediction in 

crop species have utilized univariate models adapted from animal breeding. These models cannot 

directly account for genotype-by-environment interaction, and hence are often not suitable for 

use with lower-heritability traits assessed in multiple environments. We sought to test genomic 

prediction models capable of more ad-hoc analyses, utilizing highly unbalanced experimental 

designs consisting of individuals with varying degrees of relatedness. The results suggest that 

these designs can successfully be used to generate reasonably accurate phenotypic predictions. In 

addition, multivariate models can dramatically increase predictive accuracy for some traits, 

though this depends upon the quantity and characteristics of genotype-by-environment 

interaction. 
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Genomic Prediction and Genetic Dissection of Yield-Related Traits in Soft Red Winter Wheat 

 

Brian P. Ward 

 

ABSTRACT (General Audience) 

 

Quantitative traits are those traits that can display a wide range of variability within a population 

of individuals. These traits are influenced by the interaction of many different genes, and are also 

influenced by the environment to varying degrees. Traditionally, geneticists who studied 

quantitative traits had to rely on statistical models, while the biological causes of variation in the 

expression of these traits remained largely unknown. However, the advent of DNA marker 

technology granted geneticists the ability to identify specific regions of the genome that highly 

influence quantitative traits. Many studies have since attempted to find these quantitative trait 

loci (QTLs) across a wide range of traits and species. However, we are faced with something of a 

paradox when we attempt to find QTLs. Theory tells us that an idealized, truly quantitative trait 

arises due to the effects of many genes, each with an infinitesimal effect on the trait in question. 

Therefore, the more quantitative a trait, the fewer QTLs we should expect to find. In addition, 

QTLs may not be reliable, due to the effects of different environments and different genetic 

backgrounds within a population. A more recent trend involves using all available marker data 

simultaneously to predict a particular line’s performance. This method entails ignoring the 

genomic underpinnings of a trait, and instead focusing solely on its expression, much like 

classical quantitative genetics. The obvious downside of this method is that it cannot be used to 

increase our understanding of what is giving rise to the variations in the trait’s expression that we 

observe. The studies described in this dissertation were designed to 1) test whether we could 

identify QTLs for highly quantitative yield-related traits in winter wheat, 2) test the reliability of 

identified QTLs, and 3) use the DNA marker data to instead generate predictions of line 

performance. The results indicate that while we can identify QTLs for highly quantitative traits 

in winter wheat, these QTLs may not be very reliable. Therefore, predictive models may be a 

good alternative to identifying QTLs, and these methods can be readily implemented within 

breeding programs. 
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Abstract 

Grain yield remains the trait that is of paramount importance in the breeding of all cereals. In 

wheat (Triticum aestivum), grain yield has steadily increased since the Green Revolution, though 

the current rate of increase is not forecasted to keep pace with demand due to growing world 

population and affluence. In addition, recent reports suggest that the rate of yield increases may 

be plateauing in some regions. Despite this, genome-wide association studies (GWAS) for yield 

and yield-related traits using high-density markers remain rare in wheat, and even more so in 

winter wheat. A genome-wide-association study was carried out on a population of 324 soft red 

winter wheat lines across a total of four rain-fed environments in the state of Virginia using 

single-nucleotide polymorphism (SNP) marker data generated by genotyping-by-sequencing 

(GBS). Two separate mixed linear models were used to identify significant marker-trait 

associations (MTAs). The first was a single-locus model (GCTA), utilizing a leave-one-

chromosome-out approach to estimating kinship. The second was a sub-setting kinship multi-

locus method (FarmCPU). The GCTA model identified seven significant MTAs for various 

yield-related traits, while the FarmCPU model identified 49 significant MTAs. The results 

indicate promising avenues for increasing grain yield by exploiting variation in traits relating to 

the number of grains per unit area, as well as phenological traits influencing stay-green 

characteristics of genotypes. 

 

Introduction 

 Worldwide, wheat has the fourth-highest production of all crops, with a net production 

value that is second-highest of any crop (Food and Agriculture Organization of the UN, 2013).  

In addition, wheat maintains the highest harvested acreage of any crop worldwide (USDA 
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Foreign Agricultural Service, 2015).  Current best estimates by the United Nations forecast 

world population reaching close to 10 billion by 2050 – an increase of roughly 40% over the 

current population (United Nations Department of Economic and Social Affairs, Population 

Division, 2015). However, worldwide demand for food production is expected to increase by a 

higher percentage over the same period, due mainly to increasing demand for calories from 

inefficient food sources (e.g. livestock).  Indeed, global per capita meat production increased by 

more than 60% in the last forty years of the 20th century (Tilman et al., 2002).  Hence, worldwide 

cereal production will have to increase by an estimated 50% over the period ending in 2050 to 

keep pace with demand (Bruinsma, 2011).  Such a scenario requires continuing genetic gains in 

yield potential of approximately 1.1% per year. 

Sharma, et al. (2012) estimated a historical average increase in grain yields in spring 

wheat of 0.65% per year when analyzing data across 15 years and 919 environments, while a 

recent study involving winter wheat in the Eastern United States estimated yearly increases in 

grain yield between 0.56% and 1.41%, depending upon environment (Green et al., 2012).  

However, evidence suggests that anthropogenic climate change will have an adverse effect on 

yield trends in the future.  Some troubling recent reports suggest that wheat grain yield is 

plateauing in some regions.  This is especially evident in Europe, Japan, and the Indian 

subcontinent (Lin and Huybers, 2012). While a large portion of the wheat yield plateau in 

Europe is explained by policy changes implemented within the European Union, climate change 

has been shown to have a statistically significant effect as well (Moore and Lobell, 2015). As a 

cool-season crop, wheat is expected to suffer relatively high losses due to current warming trends 

over the next few decades (Lobell et al., 2011).   
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Dissecting Grain Yield 

Thus, there is justified concern over the ability of wheat grain yields to keep pace with 

demand in the coming decades.  Increasing the rate of genetic gains over time for quantitative 

traits such as grain yield will require either an increase in direct selection efficiency, or a better 

understanding of how grain yield may best be increased through functional dissection of yield 

per se and related component traits.  Yield per se may be functionally divided into sub-

components in various ways.  Donald developed a hypothesis-driven method of plant breeding 

he termed “ideotype breeding” (1968), in which he argued for a rational approach to improving 

performance for various traits, as opposed to simpler methods that he termed “defect removal” 

and “selection for yield”. Critically, Donald’s model suggested that selection for yield per se 

without any regard to how yield was increased might be unsustainable in the long term, and that 

plant breeders would be better served leveraging plant physiology theory to improve other traits, 

thereby improving yield indirectly. 

Prior to this work, Grafius (1956) had developed a simple multiplicative model for 

explaining grain yield in oats (Avena sativa) as a function of panicle and grain traits, whereby 

yield is represented as the volume of a rectangular parallelepiped with component traits as each 

of its three dimensions: 

 𝑌𝐿𝐷 = 𝑃𝑃𝐴×𝐾𝑃𝑃×𝐴𝐾𝑊 (1) 

 

Where yield potential (YLD), is a function of panicles per unit area (PPA), average kernels per 

panicle (KPP), and average kernel weight (AKW).  However, a reliable estimate of kernels per 

unit area can combine the panicles per unit area and average kernels per panicle terms from 

above to yield a simplified equation: 
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 𝑌𝐿𝐷 = 𝐾𝑃𝐴×𝐴𝐾𝑊 (2) 

Where yield potential (YLD), is a function of kernels per unit area (KPA) and average kernel 

weight (AKW). 

Alternatively, yield may be partitioned into both its biological aspects (total biomass), 

and those specific portions of biomass that are of interest to the breeder.  Niciporovic (1956) 

defined “biological yield” as the total biomass of a plant at time of harvest (though often only the 

above-ground biomass is considered).  However, in practice only a portion of this total yield is 

retained at harvest, whether it be grain, fiber, or fruit.  This portion, which is of interest to the 

breeder, the producer and the consumer, he termed the “economic yield.”  Building upon this 

partitioning of yield, Donald (1962) defined the term “harvest index” as the ratio of harvested 

seed weight to total above-ground biomass  to quantify the economic yield in crops that are 

harvested for grain.  Thus the grain yield of crops may simply be represented as the proportion of 

biological yield that goes towards grain production: 

 𝑌𝐿𝐷 = 𝐻𝐼×𝐵𝐼𝑂𝑀 (3) 

Where yield potential (YLD) is a function of harvest index (HI), and above-ground biomass 

(BIOM).  Given this relationship, it follows that a plant breeder may increase grain yield by 

increasing harvest index, biomass, or both.  However, there is a limit to how much harvest index 

may be increased, as grain production relies on the presence of adequate amounts of stem and 

leaf tissue for photosynthesis and physical support.  In many crops, including wheat, increases in 

grain yield over the course of the 20th century were primarily brought about by increases in 

harvest index.  Maize (Zea mays) is an exception, as typical harvest index values were reaching 

theoretical maximums early in the 20th century, and subsequent gains in yield came via gains in 

biomass (Hay, 1995).  In wheat, the widespread introgression of Rht dwarfing genes into most 
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breeding germplasm brought about the greatest increases in harvest index. Austin (1980) 

suggested an upper limit of ~60% for harvest index in wheat. 

 Thus, future yield gains in wheat will primarily be realized by increasing biomass.  

Biomass itself may be defined as a product of light interception and radiation use efficiency, 

such that we arrive at the following equation for yield potential: 

 𝑌𝐿𝐷 = 𝐻𝐼×𝐿𝐼×𝑅𝑈𝐸 (4) 

Where yield potential (YLD) is a function of harvest index (HI), light interception (LI), and 

radiation use efficiency (RUE).  Intuitively, RUE can be defined as biomass production per unit 

of absorbed solar energy.   

Light interception may be further decomposed into the amount of photosynthetically 

active radiation (PAR) absorbed, and the duration of absorption.  Reynolds et al. (2005) note that 

the amount of light interception is already nearly maximized in many wheat cultivars during the 

period after canopy closure and prior to leaf senescence.  This leaves only two avenues for 

further increases in light interception: faster canopy establishment through increased early-

season vigor or later senescence, i.e. the “stay-green” trait (Silva et al., 2001).   

As for increasing radiation use efficiency, one possibility is increasing the rate of 

photosynthesis, or decreasing net photorespiration. Notably, there has been little genetic gain in 

photosynthetic rate over time, and in many cases there has actually been a decrease in this trait 

value over generations (Richards, 2000). However, while increases in photosynthetic capacity 

and the rate of photosynthesis offer some potential for future yield gains, a wide body of 

literature suggests that wheat is primarily sink-limited with respect to photosynthetic assimilates 

(reviewed in Borras et al. [2004]). For instance, the manual removal of several seeds from spikes 

partway through the grain-filling period does not generally lead to any significant increase in 
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mass of the remaining seeds (Slafer and Savin, 1994).  In addition, the late-season decline in 

starch accumulation in seeds associated with physiological maturity is primarily triggered by a 

drop in the synthetic capacity of the endosperm, rather than any decline of photosynthetic 

assimilates available (Jenner and Rathjen, 1975). Hence the greatest gains in radiation use 

efficiency in the immediate future may arise from efforts to increase the quantity of assimilates 

that can be translocated into the endosperm, rather than increasing the quantity of assimilates 

available.   

 Supporting this strategy, several studies have suggested that maximizing the number of 

seeds per unit area is critical for maximizing yield (Reynolds et al., 2005). This would 

presumably provide a ready solution for circumventing the current sink limitations imposed 

during grain fill. The two possible routes for increasing seeds per unit area are to: 1) increase the 

average number of seeds per head, or 2) increase the number of heads per unit area. Of course if 

harvest index is already near its limit, either of these two approaches will necessarily entail an 

increase in biomass. 

 

Genome-Wide Association Studies 

Genome-wide association studies (GWAS) and linkage mapping are the two predominate 

methods employed in plant breeding for associating phenotypic variation with underlying genetic 

variation.   Of these two methods, GWAS is generally less laborious and faster to implement, as 

testing may be carried out on existing panels of individuals, rather than on specific populations 

which must be generated via crossing and then inbred to a sufficient level of homozygosity. 

Panels may be assembled from highly diverse and unadapted germplasm, or from more adapted 

germplasm used in breeding programs. GWAS also offers higher resolution due to many more 
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ancestral gene recombinations within the testing panel, as opposed to only one or a few meiotic 

recombinations in a linkage mapping population. However, allele frequency is a primary factor 

limiting power in GWAS studies; marker-trait associations (MTAs) will be difficult or 

impossible to detect if causal variants are rare within the testing population (Myles et al., 2009). 

Some early GWAS papers in plants came to the surprising conclusion that relatively 

small sample sizes and low marker densities were adequate to reliably detect MTAs (Atwell et 

al., 2010), as contrasted to human studies, in which low power is often inevitable even with 

many thousands of individuals and millions of markers. This is attributable to the unique 

evolutionary histories of many crop plants whereby recent domestication has resulted in genetic 

bottlenecks, generally causing extensive linkage disequilibrium (LD) and high minor allele 

frequencies. Thus many crop GWA studies can achieve reasonable power with fewer resources, 

the limitation being that mapping resolution will be limited in cases where LD is high and 

effective population size is low (Hamblin et al., 2011). However, GWAS in plants brings its own 

set of challenges; most notably increased false-positive risk due to complex genetic histories and 

population structure (Atwell et al., 2010). 

In the process of adapting GWAS from its original implementation in human studies to 

use in plants, maize geneticists developed the mixed linear model method to address the 

confounding effects of kinship and population stratification, which may be highly pronounced in 

plant populations that have undergone artificial selection (Yu et al., 2006). Since that time, 

mixed linear models have become the standard for performing GWAS in populations with high 

levels of relatedness (whether these relationships are cryptic in nature, or else known a priori), 

and many variations of these models have been developed. Compressed mixed linear models 

(CMLM) seek to improve power by assigning individuals to clusters based upon kinship (Zhang 
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et al., 2010). The multi-locus mixed model (MLMM) fits SNPs that are highly associated with 

phenotype as covariates, using a stepwise regression method (Segura et al., 2012). 

A recent development has been the advent of mixed models that utilize a subset of the 

total markers to estimate kinship, which can have the effect of increasing statistical power. The 

Fast-LMM-Select algorithm was the first implementation of such a model, in which a linear 

regression of SNPs on the tested phenotype is carried out prior to running the LMM to identify 

SNPs that are highly associated with the phenotype (Listgarten et al., n.d.). This technique makes 

use of the equivalence between a linear mixed model using a given set of markers to estimate 

genetic relationships, and a Bayesian linear regression using these same SNPs fitted as 

covariates. Only markers identified as highly associated with the phenotype in the preliminary 

linear regression stage are used to construct the kinship matrix, the exception being when an 

associated marker is in high LD with the marker being tested for association, in which case it is 

discarded from the kinship matrix. SNPs that are used to construct the kinship matrix may be 

referred to as pseudo quantitative trait nucleotides (pseudo-QTNs). The SUPER algorithm (Q. 

Wang et al., 2014), implemented in version 2 of the popular suite of GWAS tools GAPIT (Tang 

et al., 2016), generalizes the Fast-LMM-Select method for better applicability in a wider range of 

organisms by empirically determining LD between tested markers and pseudo-QTNs, rather than 

inferring LD using a distance-based cutoff as in Fast-LMM-Select. Finally, the Fixed and 

random model Circulating Probability Unification (FarmCPU) algorithm utilizes two models in 

an iterative fashion: a fixed-effect model which incorporates a multi-locus mixed model fitting 

the tested SNP with associated SNPs as covariates, and a random-effect model that is used to 

estimate kinship from the associated SNPs (Liu et al., 2016). Despite these recent advances, there 

has been disagreement as to whether kinship matrix-sub-setting methods adequately control for 
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false positives, particularly in cases of complex population stratification (Widmer et al., 2014; 

Yang et al., 2014). However, more recent models have included genotypic principle components 

to mitigate test statistic inflation due to population stratification (Tucker et al., 2014). 

 

Genotyping-by-Sequencing 

Genotyping-by-sequencing (GBS) is one of several complexity-reduction genotyping 

techniques in which genomic DNA is subjected to multiple restriction digests, with the generated 

fragments then being bridge amplified and sequenced on next-generation sequencing platforms. 

In addition, the use of a methylation-sensitive restriction enzymes can exclude many 

epigenetically-silenced genomic regions (e.g. repetitive elements) from the generated fragments 

(Elshire et al., 2011).  This development has been especially critical for the implementation of 

GBS protocols in wheat, as studies of chromosome 3B suggest that between 80% and 85% of the 

wheat genome may consist of repetitive elements (Choulet et al., 2014, 2010). Methylation-

sensitive GBS has successfully been adapted for use in wheat and barley (Poland et al., 2012).   

 DNA markers in previous wheat studies have not been ordered physically on the 

chromosomes. Genetic maps have been constructed for simple-sequence repeat (SSR) markers 

(Somers et al., 2004) as well as increasingly dense SNP microarrays (Cavanagh et al., 2013; S. 

Wang et al., 2014). Thus far, the large size of the wheat genome has hindered efforts at 

traditional sequencing by constructing bacterial artificial chromosome (BAC) clones. To date, 

only chromosome 3B has been sequenced using BAC clones (Choulet et al., 2014). In addition, 

the high degree of repetitive elements present in the wheat genome has made it resistant towards 

attempts at sequencing using the short read-lengths characteristic of next-generation sequencing 

platforms. The development of a draft genome is critical, as it allows for in-depth automated 
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annotation and prediction of genomic elements (Yandell and Ence, 2012). Recent work has 

sought to create increasingly accurate draft genomes in wheat despite the many logistical hurdles 

present. Brenchley et al. (2012) published the first survey sequence of the ‘Chinese Spring’ bread 

wheat genome using next-generation sequencing technology. This work was subsequently 

improved upon by efforts to create a proper draft genome by sequencing each individual 

chromosome arm in isolation (with the exception of chromosome 3B, which was sequenced 

whole) (IWGSC, 2014). 

Several recent studies have developed methods to create assemblies of next-generation 

sequencing (NGS) fragments using genetic mapping techniques (Mascher and Stein, 2014). One 

such technique, termed POPSEQ, was first demonstrated in barley (Mascher et al., 2013), and 

has since successfully been used in wheat to both anchor whole-genome assemblies (Chapman et 

al., 2015) and to order wheat GBS markers (Edae et al., 2015). However, a limiting factor is the 

recombination rate within the segregating population; rates of recombination vary substantially 

by chromosome position, and recombination may be nearly absent in peri-centromeric regions of 

the genome (Mascher and Stein, 2014). A recent improvement is the adaptation of new methods 

for genome-wide mapping of chromatin structure (Lieberman-Aiden et al., 2009), termed “Hi-C” 

mapping, to further enhance the accuracy of de novo assembly of large scaffolds (Putnam et al., 

2016). The incorporation of Hi-C into the wheat genome assembly pipeline should bring 

enhanced spatial resolution beyond that of POPSEQ alone. 

Ultimately, the identification of QTLs in many crop species, whether performed via 

linkage mapping or association studies, currently suffers from a lack of data curation. This 

applies to both the archiving of results , and the archiving of the raw phenotypic, genotypic, and 

environmental data used to generate results (Zamir, 2013). The development of a draft genome 
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will help to unambiguously identify various MTAs and their associated haplotypes (Welter et al., 

2014). 

 

Previous GWAS Findings 

GWAS has been used extensively in human studies over several decades, and is 

increasing being used in plant quantitative genetics research.  Despite this increasing prevalence, 

relatively few GWAS analyses for yield and yield-related traits have been conducted in wheat, 

and of these, fewer still have been conducted in winter wheat germplasm (Breseghello and 

Sorrells, 2006; Dodig et al., 2012; Neumann et al., 2011; Tadesse et al., 2015). None of these 

studies used marker data generated via GBS; many used low-density simple sequence repeat 

(SSR) markers, or else proprietary Diversity Arrays Technology (DArT) markers, making 

translation between genetic and physical chromosome positions difficult or impossible. 

Association studies have been more common in spring wheat, though the majority of these have 

been candidate-gene studies, with genome-wide studies being much more limited (Sukumaran et 

al., 2014). Finally, it has been more common to perform GWAS in crop species using assembled 

diversity panels, rather than elite germplasm in current use by breeding programs (Spindel et al., 

2015). GWAS in elite germplasm is typically limited to the identification of smaller-effect 

QTLs, as QTLs of major effect will have likely already become fixed within the mapping 

population (Salvi and Tuberosa, 2015). Nevertheless, GWAS using panels of elite germplasm 

remain useful due to their higher relevance to the process of cultivar development (Spindel et al., 

2015). 

Several GWA studies have recently been carried out in wheat. One such study by Edae et 

al. (2014) was conducted in spring wheat in irrigated and rain-fed environments in Greeley, CO 
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and Melkassa, Ethiopia using a mapping panel of 285 to 294 lines (depending upon 

environment) and 1,863 DArT markers. They found a total of eleven significant MTAs for the 

traits green leaf area, leaf width, plant height, spikelets per spike, spike number per unit area, and 

a drought susceptibility index. 

Sukumaran et al. (2014) performed GWAS using the International Maize and Wheat 

Improvement Center (CIMMYT) wheat association mapping initiative (WAMI) panel, consisting 

of 287 elite spring wheat lines. This panel was grown over four years in Ciudad Obregón, 

Mexico, and GWAS was performed using 18,704 SNP markers from the 90K Illumina iSelect 

SNP array (S. Wang et al., 2014). Sukumaran et al. found 31 significant MTAs for various yield-

related traits. Most notably, they identified two pleiotropic regions including one on chromosome 

6A affecting yield, thousand-kernel weight, plant height, chlorophyll index at grain fill, and 

canopy temperature at grain fill; and one on chromosome 5A affecting yield, thousand-kernel 

weight, and grain number m-2. 

Tadesse et al. (2015) evaluated 120 elite winter wheat genotypes for yield and grain 

quality traits under rain-fed and irrigated conditions over two years in Syria.  These lines were 

genotyped with 3,051 DArT markers, of which 1,586 had known genetic positions.  They found 

several QTLs for the traits yield, days to heading, plant height, thousand kernel weight, test 

weight, and grain protein content, in addition to QTLs for many grain quality traits.  Notably, 

they did not identify any QTLs for yield per se that were stable across years or across rain-

fed/irrigated treatments. 

Ain et al. (2015) grew 123 historic Pakistani wheat cultivars in rain-fed conditions in 

Islamabad, Pakistan across three years. GWAS was performed using 14,960 SNPs from the 90K 
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iSelect array. They detected a total of 44 significant MTAs for eight different yield-related traits, 

including five MTAs for yield per se. 

Finally, in a series of papers, Zanke et al. (2014; 2014; 2015) utilized GWAS to study 

heading date, plant height, and thousand kernel weight in a panel of 358 European winter wheat 

lines grown across eight environments. They performed GWAS using a set of 635 SSR markers 

as well as 7,769 SNP markers from the 90K iSelect array.  Utilizing the best-linear unbiased 

estimators (BLUEs) from across all environments, for heading date they found 10 significant 

SSR and 51 significant SNP marker trait associations. The majority of significant SNP-MTAs 

were located on chromosome 5B. For plant height, they found 153 significant SSR-MTAs and 

280 significant SNP-MTAs. However, combining closely-linked markers, they estimated 109 

distinct loci for the SSR data, and 87 for the SNPs. Finally, for thousand-kernel weight, they 

found two significant SSR-MTAs (on chromosomes 4A and 6D) and seven significant SNP-

MTAs (on chromosomes 3B and 5A). 

 

Materials and Methods 

Germplasm Selection 

A total of 185 lines were included in each year of the study.  The majority of lines 

changed between each year.  For each year, 31 lines were sourced from Illinois, 30 from 

Kentucky, 2 from Missouri, and 122 from Virginia.  Among the total of 329 lines, 41 were tested 

in both years; the others were only tested in the first or second year. Five checks were included 

in the study, including ‘Bess’, ‘Branson’, IL00-8250, ‘Roane’, and ‘Shirley’. All lines included 

in the study are listed in Table B.1.  With the exception of checks and several older cultivars, the 
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majority of lines were either F4 or higher filial generation. During processing of the genotypic 

data, 5 lines were removed during quality filtering, leaving 324 lines used for analysis. 

 

Experimental Design and Field Management 

 Experimental plots were planted in the 2013-14 and 2014-15 winter wheat growing 

seasons.  In Virginia, genotypes were planted in a generalized randomized complete block design 

(GRCBD) across two locations at Kentland Farm near Blacksburg, VA (Guernsey/Hayter silt 

loams, 37.1965° N, 80.5718° W, 531 m elevation) and the Eastern Virginia Agricultural 

Research and Extension Center (EVAREC) in Warsaw, VA (Kempsville sandy loam, 37.9879º 

N, 76.7770º W, 40 m elevation).  Two randomized replications were planted at each location. 

For the 2013-14 test at Warsaw, and the 2014-15 tests at Blacksburg and Warsaw, each 

experimental unit consisted of a seven-row plot with a length of 2.74 m, width of 0.91 m, row-

spacing of 15.2 cm, and a harvested area of 2.49 m2. Plots planted in Blacksburg for the 2013-14 

season were smaller, with a length of 1.98 m, width of 0.91 m, row-spacing of 15.2cm, and a 

harvested area of 1.80 m2. However, at both locations, plot areas were adjusted to 4.18 m2 to 

account for inflated yield values caused by border effects.  All plots were sown with 70 g of seed.  

Seed was treated with Raxil® MD fungicide (0.48% tebuconazole/0.64% metalaxyl; Bayer 

CropScience) at a rate of 2.95mL a.i. per kg of seed, and Gaucho® 600 flowable insecticide 

(48.7% imidacloprid; Bayer CropScience) at a rate of 0.7mL a.i. per kg of seed.  At each 

location, seed was planted to roughly coincide with the average date of first frost (see Table 

A.1). 

At Blacksburg and Warsaw, several tiller counts representative of the test area as a whole 

were used to calculate ideal nitrogen application rates at Zadok’s growth stage 25 (Zadoks et al., 
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1974) in the spring, and plant tissue tests were used to calculate ideal nitrogen application rates 

at GS30, per standard regional recommendations from the Virginia Cooperative Extension 

Service (Alley et al., 1993).  All plots at Blacksburg and Warsaw were treated with Palisade® 

2EC growth regulator (trinexapac-ethyl; Syngenta Crop Protection) to minimize lodging.  In 

addition, plots in each environment were treated with Tilt® fungicide (propiconazole, Syngenta 

Crop Protection) throughout the growing season, Prosaro® fungicide 

(prothioconazole/tebuconazole, Bayer CropScience) near heading date, Harmony® Extra SG 

herbicide (thifensulfuron-methyl/tribenuron-methyl, DuPont), and Starane® Ultra broadleaf 

herbicide (fluroxypyr 1-methylheptyl ester , Dow AgroSciences) as needed. The exact dates and 

rates of chemical applications for each environment included in the study are listed in Table A.1. 

 

Phenotyping 

 Table 1.1 lists the phenotypic traits that were assessed across all environments, with their 

abbreviations and units of measure.  For the 2014-2015 growing season only, seedling emergence 

was estimated for plots in Blacksburg and Warsaw by averaging the count of seedlings at the 

two-leaf stage (GS12) from two 0.348 m samples taken from two inner rows.  There were no 

significant differences in seedling numbers between lines where seed originated from VA or IL, 

while the number of seedlings per line was lower for KY lines due to seed source differences. 

Normalized Difference Vegetative Index (NDVI) was measured for each plot at GS25 as 

described by Phillips et al. (2004) using a Greenseeker® Handheld crop sensor (Trimble® 

Agriculture, Sunnyvale, CA).   

 Flag leaf angle was assessed visually at boot stage (GS40) and the average for each plot 

was recorded on a 1 to 9 scale (1 corresponding to completely erect, 9 corresponding to a 180° 
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curve in flag leaves).  Heading date was recorded as the Julian date at which 50% of plants 

within a plot had extruded heads from the boot. 

 After plants had reached physiological maturity (GS90), a single 0.914 m cutting of all 

above-ground plant material was taken from one of the three inner rows of each plot and placed 

within a paper bag.  All cuttings were stored in a sheltered environment for several days to allow 

for equilibration to ambient moisture levels.  Each bag was weighed to derive an estimate of 

above-ground biomass m-1 of row. Subsequently, the number of heads per cutting were counted 

manually to derive an estimate of heads m-2.  Cuttings were then threshed on a plot combine 

(Wintersteiger NA Inc., Salt Lake City, UT) with settings optimized to recover as much threshed 

seed as possible.  Threshed seed was weighed to derive an estimate of seed weight m-1 of row.  

Harvest index was calculated as the ratio of seed weight to total above-ground biomass.  The 

total number of seeds threshed from each cutting were then counted on a Count-A-Pak optical 

seed counter (Seedburo® Equipment, Des Plaines, IL) to derive an estimate of grains m-2.  In 

addition, thousand-kernel weight was defined as the net weight of the threshed seed sample 

divided by the number of seeds present * 1,000. 

 Plant height was averaged from two measurements within each plot, and was recorded as 

the distance from the soil surface to the tip of the heads (excluding any awns if present). Lodging 

was measured on a 0 to 9 scale (0 corresponding to no lodging, 9 corresponding to complete 

lodging). Plots were harvested using a Wintersteiger plot combine.  Moisture content and test 

weight (grain volume weight) of harvested grain was measured using a GAC® 2500-AGRI grain 

analysis computer (Dickey-John® Corporation, Auburn, IL).  Grain yield was calculated at 13.5% 

moisture equivalence. 

Grain ash, crude fiber, fat, starch, and protein were estimated via near-infrared (NIR) 
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spectroscopy for subsamples from each plot using an XDS Rapid Content Analyzer (FOSS NIR 

Systems, Laurel, MD).  Fifteen grain samples from each location were sent to Cumberland 

Valley Analytical Services (Hagerstown, MD) for wet-chemistry analysis of protein, starch and 

dry matter in order to generate calibration curves for the NIR data. 

 

Modelling of Phenotypic Response 

 Each location/year combination was considered as a unique environment in order to 

model phenotypic response across environments. For each trait, the following random effects 

model was fit using the lme4 package (Bates et al., 2015) in the R statistical computing 

environment (R Core Team, 2015): 

 𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝑅𝑘(𝐸𝑗) + 𝐺𝐸𝑖𝑗 + 𝜀𝑖𝑗𝑘 (5) 

Where the phenotypic response (Yijk) is a function of the overall mean (µ), the ith genotype (Gi), 

the kth replication (Rk) nested within the jth environment (Ej), the genotype-environment 

interaction (GEij) and the residual error (𝜀𝑖𝑗𝑘). For each trait, variance components for all effects 

were estimated, and entry-mean heritability (H2) was calculated. In addition, genotypic best-

linear unbiased predictors (BLUPs) were calculated for use as the phenotypic input for the 

subsequent GWAS analyses. 

 

Genotyping 

 Genomic DNA was isolated from fresh green leaf tissue using a cetyltrimethylammonium 

bromide (CTAB) extraction protocol (Saghai-Maroof et al., 1984). Genotyping-by-sequencing 

was performed at USDA Agricultural Research Service (ARS) facilities using a PstI-MseI 

double digest of genomic DNA. The SNP calling was performed using TASSEL-GBS in 
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TASSEL 5.2.24 (Bradbury et al., 2007; Glaubitz et al., 2014). The Burrows-Wheeler aligner (Li 

and Durbin, 2009) was used to align SNPs to the International Wheat Genome Sequencing 

Consortium’s whole genome assembly v0.4. In addition to the GBS genotyping described above, 

several major gene loci highly associated with agronomic performance were genotyped using 

SSR markers and LGC® KASPTM SNP genotyping assays. Table 1.3 lists the mean allelic effects 

of each KASP marker on each analyzed trait. 

 

SNP Quality Filtering and Imputation 

 Prior to imputation of missing genotypes, the genotypic datasets for the 2013-2014 and 

2014-2015 material were jointly filtered to remove SNPs with missing data frequencies >50%, 

heterozygous call frequencies >15%, and minor allele frequency <5%. In addition, all unaligned 

SNPs were removed. After the initial filtering, missing data in the genotypic dataset was imputed 

using LinkImpute (Money et al., 2015). LinkImpute implements a nearest-neighbor algorithm 

using both the k nearest individuals and the l SNPs in highest LD with the specific missing SNP 

genotype that must be imputed. LinkImpute was used with its default settings, which optimize 

the number of nearest individuals and SNPs via data masking simulations at 10,000 randomly 

selected genotypes. After imputation, the dataset was once again filtered to remove SNPs with 

minor allele frequencies <5%. The imputed genotypic dataset was finally filtered in PLINK 1.9 

(Chang et al., 2015) to remove all but one SNP in clusters separated by <64bp, as this is the tag 

size used in the TASSEL-GBS SNP-calling pipeline, (i.e. all SNPs located on the same tag 

should have the same genotype prior to imputation). In addition to the positional filtering, 

PLINK was used to remove all but one SNP in groups of SNPs in perfect LD (r2 > 0.99) using a 

200-SNP sliding window, advancing by 5 SNPs with each step. 
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Population Structure and Linkage Disequilibrium 

 Prior to performing GWAS, population structure was examined via principle component 

analysis (PCA) of the filtered and imputed genotypic data using the SNPRelate package (Zheng 

et al., 2012) in R.  Linkage disequilibrium was calculated on a pairwise basis for all intra-

chromosomal SNPs in the genotypic dataset, yielding 5,582,695 comparisons. The LD decay was 

plotted for the A, B, and D genomes separately by randomly selecting 20,000 pairwise 

comparisons from each genome. Then LD was plotted for each separate chromosome of the B 

genome using 20,000 randomly-selected pairwise comparisons from each chromosome. In 

addition, inter-chromosomal LD was calculated between chromosomes within each genome. 

Inter-chromosomal LD was also calculated between homeologous chromosomes in the A, B and 

D genomes.  In each case, 1,000 SNPs were randomly selected to form inter-chromosomal pairs, 

yielding a total of 117,408 comparisons. For intra-chromosomal SNPs, r2 values for pairwise LD 

comparisons were plotted against physical distance, and a second-degree locally-weighted 

scatterplot smoothing (LOESS) curve was fit to the data (Cleveland, 1979).  For LD estimates 

from non-linked (i.e. inter-chromosomal) loci, the 98th percentile of the LD distribution was 

defined as the linkage-disequilibrium critical value.  All r2 values exceeding this value were 

assumed to have been caused by genetic linkage (Breseghello and Sorrells, 2006). 

 

Genome-Wide Association Analysis 

 For each trait, genome-wide association analysis was performed using the Genome-Wide 

Complex Trait Analysis (GCTA) software (Yang et al., 2011), using a leave-one-chromosome-

out (LOCO) method in which a separate genetic relationship matrix (GRM) is estimated from 
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SNP data for each chromosome. Specifically, the LOCO approach entails excluding all SNPs 

located on the chromosome of the SNP undergoing testing when estimating the GRM. For each 

trait, permutation testing was performed to empirically determine a significance threshold by 

randomly shuffling phenotypic data and included principle components in unison, performing the 

GCTA-LOCO analysis on the randomly-reordered data, recording the lowest observed p-value, 

and repeating this process 1,000 times. The GCTA model failed to converge for the traits 

heading date and thousand-kernel weight and, therefore, GWAS for these traits was performed 

using the rrBLUP package (Endelman, 2011) in R. 

In addition, GWAS was run on each trait using the Fixed and random model Circulating 

Probability Unification (FarmCPU) model (Liu et al., 2016) in R. Once again, permutation 

testing was performed for 1,000 iterations for each trait. In addition, to enhance our confidence 

in QTLs with p-values exceeding the significance threshold in FarmCPU, we implemented a 

bootstrapping method developed by Wallace, et al. (2016), in which 10% of the phenotypic 

observations were replaced with missing data for a total of 100 runs of the model. Subsequently, 

for each trait the resample model inclusion probability (Valdar et al., 2009) was calculated for 

each SNP by determining the fraction of bootstraps in which its p-value exceeded the 

permutation-derived significance threshold. The value 0.05 was chosen as a lower threshold for 

the RMIP as it coincided with the point of inflection in the RMIP density curve (data not shown). 

For each model, the first four principal components were included to model population 

structure, based upon visual examination of the Scree plot for variance explained by each PC, 

and clustering of lines shown in biplots of the first few PCs. However, for the traits HI and HT in 

the FarmCPU model, and GSQM in the GCTA model, a strong signal identified when including 
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the first three PCs was seemingly nullified when including the fourth PC. Therefore, these traits 

were run including the first three PCs only. 

 

SNP Translation Effect Prediction and Gene Annotation 

 As the latest WGAv04 genome assembly is not yet annotated, we were unable to use 

WGAv04 SNP positions to directly ascertain genomic features near to or overlapping SNPs 

involved in significant SNP-trait associations. Therefore, 100bp of flanking sequence on either 

side of each significant SNP identified in the GWAS was aligned against the previous wheat 

genome assembly (TGACv1, generated by the Earlham Institute, formerly the Centre for 

Genome Analysis [TGAC]; (Clavijo et al., 2016)). The TGACv1 assembly consists of unordered 

scaffolds sorted by chromosome arm, with a scaffold N50 of 88.8Kb. The Ensembl Variant 

Effect Predictor (McLaren et al., 2010) was used to classify SNPs as being either intergenic, 

intronic, exonic, or else residing in 3’ or 5’ untranslated regions. In addition, the predicted effects 

of exonic SNPs on protein translation were classified as synonymous, missense, or nonsense. For 

each intergenic SNP, distance was calculated between the SNP position and the closest end 

position of the nearest gene, if at least one gene was located on the same scaffold as the SNP. 

Peptide sequences for the transcripts of all genes contained within the set of scaffolds containing 

significant SNPs were used to perform a protein-protein BLAST search (Altschul et al., 1997, 

1990; Camacho et al., 2009) against a database containing all plant proteins downloaded from 

Ensembl Plants v33, filtered to remove proteins of unknown or putative functions. 
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Results 

General Line Performance and Trait Correlations 

 The variance components and entry-mean heritability across all four environments 

included in the study are shown in Table 1.2. Significant differences among genotypes were 

recorded for all traits except for canopy temperature depression (CTD) at anthesis, CTD during 

grain fill, and flag leaf angle at boot stage. Therefore, the latter mentioned traits were not 

assessed in the second year of the study. In addition, lodging was not extensive enough within all 

locations and years to enable reliable estimation of its effects across environments, so this trait 

was excluded from further analysis.  Trait heritability ranged from 0.41 for BIOM to 0.94 for HD 

and TKW. Heritability for YLD was slightly higher than expected at 0.83. A naïve estimation of 

allele effects for the KASP markers assaying genes of known function revealed that the stem rust 

(Puccinia graminis) resistance gene Sr36 and the sucrose-synthase gene TaSus2-2B produced 

many significant differences among genotypes for multiple traits (Table 1.3). Gene Sr36 is 

located on a 2G:2B alien translocation originating from Triticum timopheevi (AmAmGG) 

(Brown-Guedira et al., 1996; Nyquist, 1962). Gene TaSus2-2B is located on the short arm of 

chromosome 2B, and is one of the three sucrose synthase Sus2 orthologs, located on 

chromosomes 2A, 2B, and 2D (Jiang et al., 2011). Two common haplotypes for TaSus2-2B 

include Hap-H (high seed weight) and Hap-L (low seed weight). Cabrera et al. (2015) found that 

the simple sequence repeat (SSR) marker Xwmc477 used to test for the 2G:2B translocation was 

in perfect LD with TaSus2-2B, suggesting that the haplotypes of this gene can be used to 

diagnostically test for the presence or absence of the translocation. Interestingly, the presence of 

the Rht-B1b and Rht-D1b dwarfing alleles produced significant effects of opposite signs for 
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many traits, including BIOM, SSQM, TKW, and TWT. Effects were also of opposite signs for 

HT and YLD, though in both of these cases the effects of Rht-B1b were not significant. 

 Figure 1.1 depicts the pairwise Pearson correlation coefficients among all traits included 

in the study. As expected, phenological traits (e.g. HD, FLS, MAT) and traits relating to the 

intervals between phenological stages (e.g. HP, FLSG) demonstrated a high degree of positive 

correlation.  Conversely, the traits GSQM and TKW demonstrated a strong negative correlation.  

Yield was most highly correlated with the traits FLS, MAT, and GW (positive), and grain protein 

(negative). 

 

Population Structure and Linkage Disequilibrium 

Principle component analysis of the processed GBS-SNP data revealed that population 

structure was not as stratifying as expected, with the first principle component explaining ~7% of 

the total variance. No distinct point of inflection was observed in either the plot for variance 

explained by each principle component (Figure 1.2a), or the cumulative variance explained by 

principle component (Figure 1.2b). Lines included in the panel formed two distinct clusters in 

the biplot of the first two principle components. Further examination revealed that these two 

clusters were largely delineated by the presence or absence of Sr36 and TaSus2-2B as determined 

by KASP assay (Figure 1.3; similar results for TaSus2-2B not shown). Interestingly, neither the 

1B:1R nor the 1A:1R alien translocations from rye (Secale cereale) produced any discernable 

clustering of genotypes (data not shown).  

Linkage disequilibrium decay plots demonstrated significant LD extending out to large 

physical distances. Notably, intra-chromosomal LD in the B genome extended much farther than 

in either the A or D genomes (Figure 1.4). Within the B genome, chromosome 2B displayed the 
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most extensive LD, chromosomes 4B and 5B displayed intermediate LD, and chromosomes 1B, 

3B, 6B, and 7B displayed low LD more similar to the overall LD patterns observed in the A and 

D genomes (Figure 1.5). A plot of genotypic LD between the KASP Sr36 marker and all other 

SNPs located on chromosome 2B revealed extensive LD extending across the entire 

chromosome (Figure 1.6). Plotting distance between adjacent SNPs vs. LD revealed that LD 

between adjacent SNPs was largely a function of SNP density. However, there were exceptions, 

with several high-LD, low SNP-density regions occurring on chromosomes 4A, 6A, 7A, and 1D 

(Figure 1.7).  There do not appear to be significant differences in LD between inter-

chromosomal SNPs for homeologous versus non-homeologous chromosomes. 

 

Genome-Wide Association Studies 

 In general, GCTA identified far fewer significant MTAs than FarmCPU. In total, GCTA 

identified 30 significant MTAs at the empirically-determined 0.05 significance threshold. 

However, many of these were located within high-LD blocks and, therefore, clustered at the 

same putative QTLs.  Discounting those SNPs believed to co-localize to identical QTLs yielded 

seven unique trait-QTL associations for FLS, FLSG, GSQM, MAT, SSQM, and TWT (Table 

1.4). In contrast, FarmCPU identified 68 MTAs at the same significance threshold. Two of these 

MTAs involved Ppd alleles. Removing those SNPs with RMIPs below 0.05 and the two Ppd 

alleles yielded a total of 49 significant MTAs for the traits FLS, FLSG, GSQM, HD, HI, HP, HT, 

MAT, SSQM, STARCH, TKW, TWT, and YLD (Table 1.5). Several SNPs affected multiple 

traits, and hence the 49 significant MTAs involved 46 unique SNPs. As these SNPs were fitted 

as covariates by the FarmCPU model based partially upon LD analysis, it is assumed that the 

MTAs identified for each trait represent separate QTLs. SNPs with low RMIP values were tested 
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for genotypic LD with other SNPs identified as significant, but no significant SNP with a RMIP 

value below the 0.05 threshold was found to be in high LD with any SNP above the threshold. 

   

SNP Translation Effect Prediction and Gene Identification 

 The GCTA and FarmCPU analyses identified a total of 49 unique SNPs involved in 

marker-trait associations. All of these SNPs were located on separate scaffolds in the TGACv1 

assembly. Of the 49 total SNPs, 35 (71%) were intergenic, and of these intergenic SNPs, 10 were 

labeled as upstream or downstream proximal variants (i.e. within 5Kb of the start or end of a 

gene). Of the 14 SNPs located within genes, 3 occurred within 3’ untranslated regions, 5 were 

intronic, and 4 were exonic. In addition, one SNP (S4A_739598141) was putatively located 

within two overlapping genes on opposite strands. However, in both genes this SNP had no 

predicted effect on the translated peptide (i.e. the SNP was intronic in one gene and led to a 

synonymous substitution in the other gene). In addition, at this time the presence of a true 

overlap of these two genes cannot be validated. Of the 5 exonic SNPs (including 

S4A_739598141), 3 were missense variants, 1 was the aforementioned synonymous variant due 

to S4A_739598141, and 1 created a premature stop codon. For intergenic SNPs, the median 

distance to the closest end of the closest gene was 26.3Kb. Predicted translational effects of 

SNPs and distances to closest genes are given in Table C.1. 

A total of 127 genes producing 157 unique transcripts were located on the scaffolds 

containing the significant MTAs generated by both the GCTA and FarmCPU models. However, 

genes were not uniformly distributed across scaffolds containing significant MTAs. Only 36 of 

the 49 total SNPs involved in significant MTAs were located on scaffolds containing one or 

more genes. Of the 127 total genes, 5 produced noncoding RNA transcripts. Table D.1 lists the 
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results of a protein-protein BLAST search of all transcripts located on the set of scaffolds 

containing the significant MTAs from both models against all proteins of known function in 

Ensembl Plants v33. The results are filtered to include only the single best match for each 

transcript. 

  

Discussion 

 Within the testing panel used for this study, the 2G:2B translocation from T. timopheevi 

appears to be the driving force behind the last vestiges of population structure, as well as the 

more prominent LD patterns observed in the B genome and on chromosome 2B specifically 

(Figures 1.4 and 1.5). Measuring the genotypic r2 values between Sr36 and every other SNP 

present on chromosome 2B revealed that the 2G:2B translocation involved nearly all of 

chromosome 2B, and that it introduced extensive LD across the entire chromosome that is still in 

the process of decaying (Figure 1.6). The findings regarding LD in the B genome are in contrast 

to the findings of Chao et al. (2010), who reported lower levels of LD in the B genome of both 

winter and spring wheat. However, it is not known how frequently the 2G:2B translocation 

occurred in the lines they tested. It is also notable that the 1B:1R translocation did not produce 

similarly high LD in chromosome 1B. In fact, chromosomes 1B, 3B, and 6B all exhibited LD 

decay patterns that were similar to the patterns of the pooled A and D genome chromosomes. It 

is likely that LD due to the 1B:1R and 1A:1R translocations has decayed to a greater extent than 

that due to the 2G:2R translocation in the germplasm used in this study. 

The presence of several high-LD yet low SNP-density regions on chromosomes 4A, 6A, 

7A and 1D (Figure 1.7) suggests the presence of selection sweep due to linkage drag with a 

highly-important locus, or else a possible recent translocation event. None of the significant 
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MTAs identified within this study fell within any of these low SNP-density/high-LD regions. If 

these regions represent haplotype blocks in linkage with a highly important allele, it is possible 

that the causative allele may be fixed within the population. 

Population structure was generally negligible within the testing panel. This finding is in 

line with those of previous studies examining population structure in elite European winter wheat 

germplasm (Reif et al., 2011; Würschum et al., 2013). This suggests extensive past admixture 

among the lines included in the population, which is as expected given the frequent germplasm 

exchanges that are typical of public small grains breeding programs. In the testing panel used in 

this study, the T. timopheevi 2G:2B translocation explained some stratification between lines, 

though the first genotypic principle component still only explained ~7% of total variation, 

suggesting extensive past admixture among lines included in the panel. In contrast, Sukumaran et 

al. (2014) found that a panel of elite spring germplasm clustered into two distinct sub-

populations explained by the presence or absence of the rye 1B:1R translocation.  

 In addition, Sukumaran et al. (2014) found that the 1B:1R translocation explained 

significant differences among the two subpopulations for most of the traits included in the study 

(e.g. grain yield, grain number, grain weight, plant height, and several phenological traits). The 

1A:1R and 1B:1R translocations have been associated with desirable disease and insect 

resistance traits, as well as drought and general environmental stress resistance. However, the 

1B:1R translocation has been associated with lateness, and effects on yield appear to due to these 

translocations appear to be more variable, depending upon environment and genetic background 

(Ehdaie et al., 2003; Moreno-Sevilla et al., 1995; Singh et al., 1998). In the present study, many 

of the previously-characterized loci of agronomic importance interrogated with KASP-SNP 

assays had significant allelic effects for multiple traits (Table 1.3). Loci that significantly 
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affected many traits included the 1A:1R and 1B:1R translocations, the Ppd-B1 and Ppd-D1 

photosensitivity genes, the Rht-B1 and Rht-D1 dwarfing genes, the Vrn-A1 vernalization gene, as 

well as the Sr36 stem rust resistance gene and TaSus2-2B sucrose synthase gene (both thought in 

this case to indicate the presence/absence of the 2G:2B T. timopheevi translocation). However, 

despite their significant effects on many traits, these loci were generally not among the 

significant MTAs identified in the current study, the exceptions being Ppd-B1 and Ppd-D1, 

which were identified as being significantly associated with FLSG and FLS, respectively, by the 

FarmCPU model. In addition, one significant GWAS hit, SNP S1B_39294256 affecting the trait 

STARCH, appears to have been introduced on the 1B:1R translocation, as it was in high LD (r2 = 

0.87) with the KASP marker for this translocation. This would suggest that most loci 

interrogated with KASP-SNP assays were sufficiently confounded with population structure 

and/or kinship so as to be effectively nullified in the GWA analyses. 

A note on the two Rht dwarfing alleles included in the KASP assays is warranted here, as 

these two alleles (Rht-B1b and Rht-D1b) occurred mostly in repulsion within the test population. 

Of the 324 lines included in the panel, 22 had neither the Rht-B1b nor the Rht-D1b dwarfing 

alleles, one line was heterozygous for both alleles, and one line was homozygous for both alleles.  

At face value, the high degree of repulsion between Rht-B1 and Rht-D1 led to the somewhat odd 

finding that the presence of the Rht-B1b allele increased height and decreased yield (albeit non-

significantly) when allelic effects were calculated for each of the KASP assays individually 

(Table 1.3). Subsequent ANOVAs revealed that lines with either Rht-B1b or Rht-D1b were 

significantly shorter and yielded significantly higher than lines that were wild-type for both 

genes at an alpha level of 0.05. Yield was significantly higher for lines with only Rht-D1b vs. 

those with only Rht-B1b, though height was not significantly different between these two groups. 
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(These analyses excluded lines that were heterozygous for either allele, and the single line that 

was homozygous for both alleles). This perhaps serves as a good cautionary tale when 

interpreting single-locus tests such as classical GWAS methods, as inter-locus interactions such 

as linkage, LD, and epistasis can significantly alter the phenotypic expression of a single locus’ 

effects. Multi-locus methods such as FarmCPU are expected to at least partially ameliorate the 

effects of linkage and LD, though accounting for epistasis remains a computationally daunting 

task. 

 As previously mentioned, the FarmCPU model identified many more significant MTAs 

than the single-locus model implemented in GCTA. All but one of the seven significant 

associations identified by the GCTA model were also identified by FarmCPU. Cases in which a 

QTL was identified by the same SNP in both models include S5B_396479359 for the trait 

GSQM and S1A_583587147 for the trait TWT. For other traits, the same QTLs were identified 

by both models, but via different SNPs within the same high-LD blocks. These include a QTL 

for FLSG at ~64Mb on chromosome 7B, a QTL for SSQM at ~3Mb on chromosome 3A, and a 

pleiotropic QTL affecting FLS and MAT at ~58.5Mb on chromosome 7D. The QTL on 

chromosome 7D was also significant for the trait HD in the FarmCPU results, though this was 

not the case for the GCTA results. The only QTL identified via the GCTA model which was not 

identified by FarmCPU was labeled by SNP S6B_181128808 for the trait FLS. The fact that 17 

out of a total of 68 significant FarmCPU results were removed after bootstrapping due to having 

RMIP values below 0.05 suggests that caution is warranted when interpreting FarmCPU results. 

Bootstrapping was easy to implement and ran reasonably fast on modest hardware for the 

genotypic datasets used herein. 
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 There was evidence for pleiotropic effects relating to a number of different SNPs and 

traits in both the GCTA and FarmCPU results (Tables 4 and 5). The sole region of pleiotropic 

effect identified by GCTA was a QTL located at ~58.5Mb on chromosome 7D. This QTL was 

also identified by FarmCPU. For both models the SNP S7D_58449294 within this QTL was 

most highly associated with the trait FLS, while the SNP S7D_58589271 was most highly 

associated with MAT. This SNP was also associated with HD in the results of the FarmCPU 

model, though this was not the case for the GCTA results. Several other pleiotropic QTLs were 

identified by FarmCPU but not GCTA. These included the SNP S2D_35084672, significantly 

associated with the traits HD and MAT, with very similar effect sizes of -0.55 and -0.52 days for 

each respectively. Caution is warranted regarding both this QTL, and the one affecting 

phenological traits on chromosome 7D. In both cases, these QTLs had similar effects on both 

HD, as well as traits relating to late-season maturity (FLS, MAT). Therefore, it is likely that both 

of these QTLs have little if any effect on grain fill duration. The SNP S4B_626390000 was 

significantly associated with the traits HI and STARCH. However, this SNP had a low effect size 

for both of these traits (-0.01% and -0.23% respectively). In addition to the QTL located on 7D, 

there were several more examples of SNPs in close proximity to each other affecting different 

traits. The SNP marker S5B_394707451 was significantly associated with HI (though with a 

negligible estimated effect size of -0.004), while S5B_396479359 was associated with GSQM 

(with an effect size of -319 grains m-2). The genotypic r2 value between these two SNPs was 

0.94, strongly suggesting that they both reside within the same QTL. The SNP marker 

S7A_673387152 was associated with GSQM, while S7A_673436887 was associated with TKW. 

Predictably, the effect sizes for this QTL were of opposite signs for the two traits (+302 grains 



32 
 

sqm-2 for GSQM, and -0.553 grams for TKW), reflecting the negative correlation between these 

two traits. 

While the majority of significant SNP-MTAs identified by both models resided in 

intergenic spaces, several SNP-MTAs were located within genes, and 5 were exonic. The most 

severe predicted translational consequence for any of the SNP-MTAs identified by either model 

was a premature stop codon formation caused by SNP S5B_34721398, which affects whole-

grain starch content. Interestingly, this SNP resides within a gene 

(TRIAE_CS42_5BS_TGACv1_424234_AA1387820) that may be an ortholog of the disease-

resistance protein RPM1. RPM1 is a classical peripheral plasma-membrane disease resistance 

protein displaying nucleotide-binding site (NBS) and leucine-rich repeat (LRR) motifs in 

Arabidopsis thaliana (Boyes et al., 1998). The SNP S4A_726716318, affecting yield per se, was 

intronic within TRIAE_CS42_4AL_TGACv1_288738_AA0956970, a potential ortholog of 

RPS2, which is likewise a NBS-LRR resistance protein in A. thaliana (Bent et al., 1994). In A. 

thaliana, both RPM1 and RPS2 detect disturbance of the RIN4 protein by the Pseudomonas 

syringae effectors avrRpm1 and avrB, initiating a cell hypersensitive defense response (Kim et 

al., 2005), though there is no evidence to suggest that the possible orthologs of these proteins in 

wheat target P. syringae effectors specifically. The significance of the association of these 

disease-resistance proteins with the traits grain starch content and grain yield, respectively, is as 

yet unknown. However, at least in the case of the SNP affecting yield on chromosome 4A, one 

potential explanation may be the fitness cost that the expression of many resistance genes entails 

(Tian et al., 2003).  

Several other SNPs led to predicted missense amino acid substitutions. These included 

S3B_695966897 (affecting test weight), located within a gene with a conserved domain similar 
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to the human signal peptide pedtidase (SPPL2B), which is an aspartic protease (Weihofen et al., 

2002). Numerous aspartic proteases have been identified in plants, and are known to be involved 

in senescence mechanics (Roberts et al., 2012). At least one study has found an upregulation of 

an aspartic protease in wheat flag leaves undergoing senescence (Gregersen and Holm, 2007), 

while an in vitro study in tobacco found that the CND41 protease affected senescence by 

degrading denatured Rubisco (Kato et al., 2004). The SNP S6D_127384672 affected heading 

date, and was located within a putative heavy metal ATPase. Heavy metal ATPases are known to 

be involved in zinc and cadmium transport and detoxification in rice (Takahashi et al., 2012). 

Finally, SNP S7D_58449294 affected flag leaf senescence, and was located within a protein 

containing a pentatricopeptide repeat (PPR). The exact biological role of PPR proteins remains 

unknown, though numerous experiments in A. thaliana, rice, and maize suggest that they play an 

important role in post-transcriptional processing within chloroplasts and mitochondria (Schmitz-

Linneweber and Small, 2008). This suggests an enticing hypothesis linking this particular PPR 

protein with senescence mechanics within plastids, though this association remains conjectural 

for the time being. 

The data and results demonstrated that physical proximity is not always a reliable 

predictor of LD. This was evident for the SNPs S6A_614373502 (associated with the trait 

SSQM), and S6A_614660970 (associated with TWT). The physical distance between these two 

SNPs was ~287 Kb, which was within the size range of two other pleiotropic QTLs revealed in 

this study. However, the genotypic r2 value between these two SNPs was 0.16. While this is 

above the LD threshold empirically derived from non-linked loci (r2 = 0.06), it is likely still too 

low to confidently declare that these loci inhabit the same QTL.  
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 It is somewhat surprising that only a single identified QTL affected both FLS and MAT, 

as these traits are among the most highly correlated of all that were included in the study. It is 

especially surprising that while the SNP marker S2D_35084672 was associated with HD and 

MAT in the FarmCPU results, it was not associated with FLS, as this trait is likewise related to 

physiological development timing, is of similar heritability to HD and MAT, and has a timing of 

data collection falling between the two. 

 Collectively, the results identify some ancillary traits that are likely to be useful for 

increasing grain yield. The two phenological traits FLS and MAT, both relating to timing of 

senescence, had both high positive correlation with yield and higher heritability than yield, 

suggesting that selection for stay-green characteristics could be a viable and easily-implemented 

strategy to increase yield. Previous literature had concluded that the trait GSQM was critical for 

increasing yield (Reynolds et al., 2005), and in the present study this trait demonstrated high 

positive correlation with yield, as well as heritability roughly equal to that of yield (0.81 for 

GSQM vs. 0.83 for YLD).  However, dissecting this trait into two further component traits, SPH 

and SSQM, demonstrated that the trait SPH was the main factor driving the relevance of GSQM 

in determining yield, with both highly significant correlation with yield and high heritability. 

Conversely, SSQM was not significantly correlated with yield. However surprisingly, while this 

study did reveal significant MTAs for GSQM and SSQM, this was not the case for SPH.  In this 

study, grain protein content (WCPROT) was negatively correlated with yield, a finding that has 

been repeated across many studies (Cox et al., 1985; Groos et al., 2003; Terman et al., 1969). 

Several results from the current study indicated compensation between traits, suggesting that 

indirect selection for yield based upon ancillary traits could be difficult. For instance, the traits 

GSQM, SPH, and SSQM were all negatively correlated with TKW, suggesting that efforts to 



35 
 

select for higher grain number could be nullified by smaller average grain size. In addition, SPH 

and SSQM were negatively correlated, suggesting a tradeoff between head size and number of 

heads per plant. Slafer et al. (1996) suggested that there is some peril in blindly selecting for 

increased grains per unit area, as corresponding decreases in average grain weight will tend to 

negate any possible yield gains. They also suggested that this effect could potentially be 

mitigated by coupling selection for grains per unit area with selection for phenological 

characteristics to increase grain filling duration, in particular photoperiod and temperature 

response during stem elongation, and temperature response during grain fill. While the present 

study did not directly measure these traits, the identification of numerous QTLs affecting both 

GSQM and various traits relating to stay-green characteristics suggests promising avenues for 

further research. 

 The distribution of harvest index values in the testing panel (Table 1.2) suggests a 

simpler path to increased yields; the mean harvest index across all environments for the tested 

germplasm was 0.43, while the maximum value was 0.53. Both of these values are well below 

the theoretical peak harvest index value in wheat of 0.6 proposed by Austin et al. (1980). The 

FarmCPU results (Table 1.5) demonstrate the presence of 3 QTLs affecting harvest index, 

located on chromosomes 4B and 5B. In particular, one of the QTLs on 5B is pleiotropic, also 

affecting the trait GSQM, and the effects of this QTL on each trait are of the same sign. While 

harvest index is a difficult trait to select for directly, measurement of this trait on select breeding 

material could prove useful in increasing yield. 

 The current lack of a genetic map for the markers used in this study makes comparison to 

the results of previous studies difficult. No previous GWAS study in wheat has had a whole-

genome assembly available to physically anchor markers. Results were collected from several 
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recent GWAS studies focusing on yield-related traits in wheat (Ain et al., 2015; Sukumaran et 

al., 2014; C. Zanke et al., 2014; C. D. Zanke et al., 2014; Zanke et al., 2015), focusing on 

markers in which a significant MTA for the same trait was found on the same chromosome as 

the study herein. Several recent studies (Edae et al., 2014; Tadesse et al., 2015) were excluded 

due to the use of proprietary DArT markers. The flanking sequences for a total of 26 markers 

from previous studies were aligned against both the TGACv1 and WGAv04 assemblies; 

however, none of these markers co-localized to the same scaffold as the significant markers from 

this study in either assembly. Nevertheless, we cannot exclude the possibility that significant 

MTAs identified in this study are in high LD with significant MTAs identified in previous 

studies, despite residing on separate scaffolds in the TGACv1 assembly, as this study included 

several examples of SNPs in high LD with each other residing on separate scaffolds. Hopefully, 

the release of the forthcoming whole-genome assembly will help to resolve this matter. 

 

Conclusions 

The significant MTAs reported in this study indicate that there is still some degree of 

genetic variation in the tested elite germplasm that may be exploited for yield gains. In 

particular, the combination of identified QTLs affecting traits relating to grains per unit area and 

phenological development seems to offer promise for increasing the former while avoiding the 

penalizing effect of lower average grain weights, as suggested in previous literature (Slafer et al., 

1996). The findings of this study also indicate, at least for the soft winter wheat germplasm panel 

used, that increasing harvest index remains a viable approach to increasing yield. However, this 

raises some important technical and logistical considerations – direct selection for many of the 

traits included in this study, including harvest index, remains laborious. Therefore, breeders must 
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exercise prudent judgement in selecting which material to collect data on. Breeding schemes 

utilizing genomic selection may help in this regard, by limiting data collection on certain traits to 

a model training population. This study also identifies some potential targets for future in vitro 

studies to ascertain the biological functions of several genes in wheat. 
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Table 1.1: Phenotypic traits assessed in Blacksburg and Warsaw, VA during the 2013-2014 and 2014-2015 growing seasons 

Trait Abbreviation Units Trait Ontology † Ontology Description 

Heading Date HD Julian days (Jan1) TO:0000137 Days required for 50% of heads to emerge from boot 

Flag Leaf Senescence FLS Julian days (Jan1) TO:0000249 
Days required for 50% of flag leaves to lose green 

color 

Physiological Maturity MAT Julian days (Jan1) TO:0000469 
Days required for 50% of peduncles to lose green 

color 

Days from Heading to 
Maturity 

HP days - Number of days from heading to maturity 

Flag Leaf Stay Green FLSG days TO:0000249 Days between heading and flag leaf senescence 

Flag Leaf Angle at Boot Stage 
‡ 

FLA 1-9 scale TO:0000124 
Flag leaf angle is scored based on the visual estimate 

of flag leaf angle at Zadok growth stage 50 
(inflorescence emergence) 

NDVI at Zadok’s GS25 NDVI - CO_321:0000301 
Normalized-difference vegetation index measured at 

spring green-up using a Trimble Greenseeker 
instrument 

Canopy Temperature 
Depression at Anthesis ‡ 

CTDA degrees Celsius CO_321:0000006 
Canopy temperature depression (CTD) is the 

difference between the ambient air temperature (Ta) 
and the canopy temperature (Tc): CTD=Ta-Tc 

Canopy Temperature 
Depression at Grain Fill ‡ 

CTDF degrees Celsius CO_321:0000006  Same as above 

Mature Plant Height HT cm TO:0000207 
Height of plant from soil surface to tip of spike 

excluding awns 

Above-ground biomass at 
maturity 

BIOM g dwt m-1 row CO_321:0000229 
Weight of dry plant matter cut at soil level from a 1 m 

section of a center row of the plot 

Harvest Index HI - TO:0000128 Grain yield divided by above-ground biomass 

Grain weight GW g dwt m-1 row TO:0000589 
Grain yield (g dry weight) from 1 m row cut at 

physiological maturity 

Grains per square meter GSQM Grains m-2 CO_321:0000017 
Number of grains threshed from 1m row cutting, 

converted to square meters 

Spikes per square meter SSQM Spikes m-2 CO_321:0000166 
Number of spikes (fertile culms) per unit area, sample 

or plant 

Seeds per Head SPH count TO:0002759 Number of grains within an inflorescence 

Thousand Kernel Weight TKW grams TO:0000382 Seed weight estimated by weighing 1000 seeds 
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Trait Abbreviation Units Trait Ontology † Ontology Description 

Test Weight TWT g L-1 TO:0000612 
Weight per unit volume of grain at standard moisture 

level 

Yield, 13.5% moisture YLD kg ha-1 TO:0000396 
Grain yield standardized to 13.5% moisture 

equivalence 

NIR Whole grain starch STARCH % - - 

NIR Wet Chemistry-validated 
whole grain protein 

WCPROT % - - 

Lodging § LOD 0-9 scale CO_321:0001282 Degree of lodging; scale 0-9 

† Matching trait ontologies in the Planteome database: http://browser.planteome.org/amigo/search/ontology 

‡ No significant differences were observed between genotypes in data collected for the 2013-2014 season; data was subsequently not collected for the 2014-2015 season 

§ Lodging was not extensive enough for reliable rating across environments
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Table 1.2: Trait descriptive statistics, variance components, and entry-mean heritability for lines grown in Blacksburg, VA and 

Warsaw, VA for the 2013-2014 and 2014-2015 growing seasons 

Trait † Units Descriptive Statistics Variances and Heritability 

    min mean max SD σ2 G σ2 E σ2 (G x E) σ2 ε H2 

HD Julian days (Jan1) 121 128 136 3.21 2.77 8.88 0.5 0.46 0.94 

FLS Julian days (Jan1) 148 156.7 169 4.55 2.42 20.77 0.56 1.48 0.88 

MAT Julian days (Jan1) 151 159.3 171 4.72 2.68 23.52 0.48 0.93 0.92 

HP days 23 31.27 39 2.84 1.1 5.93 0.84 1.23 0.75 

FLSG days 21 28.69 38 2.76 1.44 4.28 0.74 1.75 0.78 

NDVI - 0.26 0.54 0.75 0.08 0.0004 0.005 0.0002 0.001 0.67 

HT cm 59.69 85.43 119.4 9.29 21.27 73.03 3.47 7.9 0.92 

BIOM g dwt m-1 row 122.5 225.7 350 35.54 67.87 519.3 5.43E-12 777.5 0.41 

HI - 0.28 0.43 0.53 0.032 0.0005 6.50E-05 0.0001 0.0004 0.86 

GW g dwt m-1 row 47.68 96.64 157.9 16.53 33.19 108 2.38E-11 152.5 0.64 

GSQM Grains m-2 8460 1.85E+04 3.13E+04 3277 3.17E+06 2.42E+06 3.21E+05 5.35E+06 0.81 

SSQM Spikes m-2 459.3 853 1485 161.2 7005 1.05E+04 101.6 1.12E+04 0.83 

SPH count 8.54 21.94 33.29 3.04 4.92 1.29 0.75 2.64 0.90 

TKW grams 24.1 34.57 91.6 3.98 9.33 3.48 0.65 3.09 0.94 

TWT g L-1 652.6 759 810.9 19.7 139.5 236.5 34.03 27.41 0.92 

YLD kg ha-1 3579 6627 9053 1027 1.24E+05 9.75E+05 2.84E+04 1.49E+05 0.83 

STARCH % 46.88 52.51 56.49 1.41 0.29 1.41 0.15 0.37 0.78 

WCPROT % 9.67 12.34 16.04 1.01 0.21 0.51 0.09 0.35 0.76 
 

σ2 G genotypic variance; σ2 E environmental variance; σ2 (G x E) genotype x environment variance; σ2 ε residual variance; H2 entry-mean heritability. 

† BIOM above-ground biomass; FLS flag leaf senescence; FLSG flag leaf stay green; GSQM grains per square meter; GW grain weight; HD heading date; HI 

harvest index; HP maturity date minus heading date; HT plant height; MAT physiological maturity date; NDVI normalized-difference vegetation index at Zadok’s 

GS25; SPH seeds per head; SSQM spikes per square meter; STARCH whole-grain starch content; TKW thousand kernel weight; TWT test weight; WCPROT wet 

chemistry-validated whole-grain protein content; YLD grain yield;  
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Table 1.3: Allelic effects of SNP markers for agronomically important loci assessed via LGC® KASPTM SNP genotyping assays. 

Allelic effects are defined as the mean of lines homozygous for the alternate allele minus the mean of lines homozygous for the 

reference allele.  

Trait † 1RS:1AL 1RS:1BL Ppd-A1 Ppd-B1 Ppd-D1 Rht-B1 Rht-D1 Sr36 TaSus2-2B Vrn-A1-Ex4 Vrn-A1-Ex7 Vrn-B1 

HD 0.38* 0.06 -0.20 -0.41 -0.91* 0.15 -0.17 -0.03 -0.05 2.20** 0.88 -0.74 

FLS 0.13** 0.57 0.087* 0.36* -0.58 0.28 -0.01 0.58** 0.51 1.68** 1.18 0.27 

MAT 0.40** 0.65* 0.19 -0.14* -0.48 0.01 0.19 0.79** 0.79** 1.65** 1.18 0.23 

HP 0.05 0.41** 0.26 0.20** 0.29 -0.12 0.28 0.57** 0.59** -0.34 0.18 0.70** 

FLSG -0.15 0.41* 0.19 0.62** 0.21 0.10 0.15 0.48** 0.44** -0.23 0.29 0.78** 

NDVI 0.004 0.002 0.0001 0.003 0.0006 -0.001 -0.0009 -0.002 -0.0004 0.02** -0.002 -0.004 

HT -3.41** -1.05 0.47 -0.05 -4.06** 0.52 -2.00* -4.87** -4.79** 2.49 1.43 -0.24 

BIOM 0.36 2.04* -2.31** 1.05 2.31** -2.41** 2.81** -0.54 -0.54 1.99 -1.74 2.25 

HI 0.0009 -0.0001 0.0005 0.001 0.005 0.002 0.004 0.009** 0.009** -0.003 -0.02 0.005 

GW 0.23 1.71* -1.69* 1.03 2.58** -1.53* 2.72** 1.08 0.99* 1.09 -4.10 2.55* 

GSQM -139 -417 197 -705** 75 501 -267 32.70 101 635 -2040* -322 

SSQM 21.20 -26.40 4.38 -18.60 -5.42 37.50** -31.90* -2.97 -0.11 61.40** 1.46 -55.10** 

SPH -0.78 0.30 0.11 -0.41 0.301 -0.41 0.53 0.18 0.20 -0.97 -3.05* 1.26* 

TKW 0.42 2.14** -1.36 2.49** 1.56* -2.21** 2.49** 0.72 0.49 -0.80 2.46 2.54** 

TWT -0.62* -3.38 -0.64 -1.55 -0.29 -4.15* 4.37** -7.28** -8.38** -10.20** 3.52 2.36 

YLD -153* 90.50 -90.20 64.10 107* -81.4 166** 41.20 27.40 262* -7.85 131 

STARCH -0.21 -0.10 -0.03 -0.06 0.05 0.01 0.13 0.27** 0.29** 0.01 -0.16 0.18 

WCPROT 0.14 0.11 0.15 0.06 -0.05 0.07 -0.14 0.04 0.01 -0.14 0.65** -0.15* 

 
* Allelic effects are significant at the 0.05 level; ** Allelic effects are significant at the 0.01 level 

 
† HD heading date; FLS flag leaf senescence; MAT physiological maturity date; HP maturity date minus heading date; FLSG flag leaf stay green; NDVI 
normalized-difference vegetation index at Zadok’s GS25; HT mature plant height; BIOM above-ground biomass; HI harvest index; GW grain weight; GSQM 
grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW thousand kernel weight; TWT test weight; YLD grain yield; STARCH whole-
grain starch content; WCPROT wet chemistry-validated whole-grain protein content  
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Table 1.4: Significant marker-trait associations identified by the GCTA leave-one-chromosome-out method. 

TRAIT † n PCs CHROM SNP § REF ALT MAF P-VALUE EFFECT UNITS 
QTL LOWER 

BOUND 
QTL UPPER 

BOUND 

TWT 4 1A S1A_583587147 T C 0.24 1.13E-06 -3.25 g L-1 NA NA 

SSQM 4 3A S3A_3273716 T C 0.42 1.91E-06 -21.8 Spikes m-2 S3A_3086373 S3A_3273716 

GSQM 3 5B S5B_396479359 T C 0.46 5.12E-06 -452 Grains m-2 NA NA 

FLS 4 6B S6B_181128808 A G 0.06 6.14E-06 -0.95 
Julian days 

(Jan1) 
NA NA 

FLSG 4 7B S7B_64393207 G A 0.17 4.83E-06 0.31 Days NA NA 

FLS 4 7D S7D_58449294 G A 0.34 1.09E-06 -0.44 
Julian days 

(Jan1) 
S7D_55733261 S7D_59494513 

MAT 4 7D S7D_58589271 G A 0.33 8.77E-07 -0.49 
Julian days 

(Jan1) 
S7D_55733261 S7D_59494513 

 

n PCs number of principle components included in analysis; CHROM chromosome; REF reference allele; ALT alternate allele; EFFECT mean phenotype of lines 

containing alternate allele minus mean phenotype of lines containing reference allele 

† TWT test weight; SSQM spikes per square meter; GSQM grains per square meter; FLS flag leaf senescence date; FLSG flag leaf stay green duration; MAT 

physiological maturity; ‡ number of principle components used to model population structure 

§ SNP name includes physical position on chromosome; grey boxes indicate pleiotropic QTLs affecting multiple traits. 

Significance thresholds for a 95% confidence level were determined empirically by performing permutation testing for 1,000 repetitions per trait. For QTLs in 

which adjacent blocks of SNPs in high LD exceeded the significance threshold, only the SNP with the lowest p-value is reported, with the first and last SNPs in 

the QTL reported for the lower and upper bounds respectively   
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Table 1.5: Significant* marker-trait associations identified by the FarmCPU algorithm.  

TRAIT † n PCs CHROM SNP § REF ALT MAF P-VALUE EFFECT UNITS RMIP 

TKW 4 1A S1A_22935081 C T 0.09 1.05E-07 0.93 grams 0.73 

SSQM 4 1A S1A_50513589 G A 0.10 1.70E-08 27.3 Spikes m-2 0.64 

TWT 4 1A S1A_583587147 C T 0.24 6.45E-07 -2.64 g L-1 0.41 

STARCH 4 1B S1B_39294256 G A 0.23 9.02E-18 -0.20 % 0.64 

MAT 4 1B S1B_44010984 A G 0.30 3.33E-09 0.40 Julian days (Jan1) 0.23 

HD 4 1B S1B_50850397 A G 0.28 1.49E-07 0.34 Julian days (Jan1) 0.54 

STARCH 4 1B S1B_659857468 C T 0.44 7.50E-08 -0.09 % 0.06 

STARCH 4 1D S1D_6674498 G C 0.11 7.05E-08 -0.14 % 0.15 

HT 3 2A S2A_764941637 G A 0.22 5.46E-07 -0.97 cm 0.09 

GSQM 4 2B S2B_35041282 T G 0.08 3.89E-07 -693 Grains m-2 0.06 

HP 4 2B S2B_66522933 A C 0.32 3.69E-07 0.20 days 0.31 

HD 4 2D S2D_9872868 A T 0.36 5.64E-07 -0.30 Julian days (Jan1) 0.28 

HD 4 2D S2D_35084672 G A 0.12 1.39E-10 -0.55 Julian days (Jan1) 0.88 

MAT 4 2D S2D_35084672 G A 0.12 5.91E-09 -0.52 Julian days (Jan1) 0.26 

SSQM 4 3A S3A_2493807 C T 0.43 4.59E-07 14.0 Spikes m-2 0.15 

GSQM 4 3A S3A_20232500 C A 0.14 2.47E-07 -416 Grains m-2 0.05 

FLS 4 3A S3A_569991635 T C 0.08 5.21E-07 0.61 Julian days (Jan1) 0.16 

GSQM 4 3A S3A_691815364 G A 0.44 5.31E-09 -350 Grains m-2 0.14 

TWT 4 3B S3B_695966897 A G 0.07 1.78E-09 -4.79 g L-1 0.5 

YLD 4 3D S3D_511264206 C T 0.08 1.17E-06 104 kg ha-1 0.09 

YLD 4 4A S4A_726716318 G A 0.35 7.43E-07 63.6 kg ha-1 0.1 

GSQM 4 4A S4A_739598141 C T 0.10 7.34E-10 685 Grains m-2 0.27 

HI 3 4B S4B_626390000 A C 0.06 4.56E-07 -0.01 - 0.16 

STARCH 4 4B S4B_626390000 A C 0.06 4.71E-07 -0.23 % 0.18 

STARCH 4 5A S5A_9462259 A C 0.19 9.65E-07 0.10 % 0.1 

STARCH 4 5B S5B_34721398 A G 0.45 2.48E-08 0.09 % 0.31 

HT 3 5B S5B_261134879 G A 0.31 2.70E-12 1.20 cm 0.5 
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TRAIT † n PCs CHROM SNP § REF ALT MAF P-VALUE EFFECT UNITS RMIP 

HI 3 5B S5B_394707451 G A 0.46 1.24E-06 -0.004 - 0.23 

GSQM 4 5B S5B_396479359 C T 0.46 1.78E-06 -319 Grains m-2 0.21 

HI 3 5B S5B_644947034 T A 0.07 4.65E-09 -0.01 - 0.15 

STARCH 4 5D S5D_365732020 A C 0.17 2.61E-10 -0.14 % 0.26 

HT 3 5D S5D_451607895 G C 0.05 2.27E-06 -2.25 cm 0.11 

SSQM 4 5D S5D_499069158 G A 0.21 9.49E-11 27.83 Spikes m-2 0.91 

FLS 4 6A S6A_63296169 A G 0.32 1.59E-10 -0.45 Julian days (Jan1) 0.36 

SSQM 4 6A S6A_614373502 A G 0.33 5.55E-08 -11.85 Spikes m-2 0.14 

TWT 4 6A S6A_614660970 T C 0.11 1.95E-06 -3.00 g L-1 0.31 

MAT 4 6B S6B_32730233 G C 0.10 1.31E-07 -0.49 Julian days (Jan1) 0.1 

YLD 4 6B S6B_656279771 C T 0.14 7.60E-10 -107 kg ha-1 0.18 

HT 3 6B S6B_706326554 A G 0.06 2.08E-06 1.57 cm 0.15 

HD 4 6D S6D_127384672 G A 0.09 1.43E-08 -0.77 Julian days (Jan1) 0.67 

TKW 4 6D S6D_468113959 A T 0.06 2.73E-09 -1.33 grams 0.38 

GSQM 4 7A S7A_673387152 C T 0.46 1.47E-06 302 Grains m-2 0.2 

TKW 4 7A S7A_673436887 T C 0.48 6.34E-07 -0.55 grams 0.54 

HP 4 7B S7B_41890395 A C 0.26 3.77E-11 0.25 days 0.7 

FLSG 4 7B S7B_63999446 A T 0.23 9.19E-07 0.21 days 0.35 

FLS 4 7D S7D_58449294 A G 0.34 2.24E-10 -0.40 Julian days (Jan1) 0.44 

HD 4 7D S7D_58589271 A G 0.33 7.52E-13 -0.58 Julian days (Jan1) 0.82 

MAT 4 7D S7D_58589271 A G 0.33 8.22E-08 -0.36 Julian days (Jan1) 0.35 

HD 4 7D S7D_553110861 C T 0.37 1.49E-07 -0.30 Julian days (Jan1) 0.21 

FLS 4 KASP KASP_TAPPDDD001 - indel 0.33 7.65E-08 -0.35 Julian days (Jan1) 0.55 

FLSG 4 KASP PPD1_B1 - indel 0.26 3.74E-08 0.26 days 0.5 
 

* Significance thresholds for a 95% confidence level were determined empirically by performing permutation testing for 1,000 repetitions per trait. 
 
n PCs number of principle components included in analysis; CHROM chromosome; REF reference allele; ALT alternate allele; EFFECT mean phenotypic value of 

lines containing alternate allele minus mean phenotypic value of lines containing reference allele; RMIP resample model inclusion probability (proportion of 

bootstraps in which SNP exceeded significance threshold) 
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† TKW thousand kernel weight; SSQM spikes per square meter; TWT test weight; STARCH whole-grain start content; MAT physiological maturity date; HD 

heading date; HT mature plant height; GSQM grains per square meter; HP maturity date minus heading date; FLS flag leaf senescence date; YLD grain yield; HI 

harvest index; FLSG flag leaf stay green duration 

§ SNP name includes physical position on chromosome; grey boxes indicate pleiotropic QTLs affecting multiple traits
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Figure 1.1: Pearson’s correlation coefficients among traits in the ABB panel based upon 

genotypic BLUPs calculated from data collected from Warsaw, VA and Blacksburg, VA in the 

2013-2014 and 2014-2015 growing seasons 

 

 

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level 

GW grain weight; YLD grain yield; BIOM above-ground biomass; GSQM grains per square meter; STARCH whole-

grain starch content; HI harvest index; SPH seeds per head; HP maturity date minus heading date; FLSG flag leaf 

stay green duration; NDVI normalized-difference vegetation index at Zadok’s GS25; SSQM spikes per square meter; 

FLS flag leaf senescence date; MAT physiological maturity date; HD heading date; TKW thousand-kernel weight; HT 

mature plant height; TWT test weight; WCPROT wet chemistry-validated whole-grain protein content 
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Figure 1.2a: Portion of variance explained by each genotypic principle component for all lines 

included in both years of the study 

Figure 1.2b: Cumulative portion of variance explained by each genotypic principle component 

for all lines included in both years of the study
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Figure 1.3: Density plots and biplots of the first four principal components of the genotypic data shaded by presence or absence of the 

Sr36 stem rust resistance gene located on chromosome 2B 
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Figure 1.4: Linkage disequilibrium by sub-genome for the combined ABB genotypic data. Lines 

represent second-degree LOESS curves fit to 20,000 randomly-selected intra-chromosomal 

pairwise genotypic r2 estimates pooled from chromosomes in each sub-genome. Horizontal line 

corresponds to the 98th percentile of pairwise r2 estimates for non-linked (i.e. inter-chromosomal) 

SNPs. 
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Figure 1.5: Linkage disequilibrium in each chromosome of the B genome for the combined 

ABB genotypic dataset. Lines represent second-degree LOESS curves fit to 20,000 randomly-

selected intra-chromosomal pairwise genotypic r2 estimates from each chromosome in the B 

genome. Horizontal line corresponds to the 98th percentile of pairwise r2 estimates for non-linked 

(i.e. inter-chromosomal) SNPs. 
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Figure 1.6: Genotypic linkage disequilibrium (r2) measured between the KASP Sr36 marker and all other SNPs present on 

chromosome 2B 
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Figure 1.7: Linkage disequilibrium and SNP density for the combined ABB genotypic data. Red line indicates the moving average of 

genotypic LD (r2) between adjacent SNPs using a 20-SNP sliding window. Grey density curve represents SNP physical density scaled 

to a maximum value of 1 
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Abstract 

Genomic selection (GS) is a recently-developed form of marker-assisted selection (MAS) in 

which many markers spread throughout the genome are used to estimate the genetic relationships 

between individuals and generate genomic-estimated breeding values (GEBVs). While GS has 

now been used in livestock breeding for several decades, it has only recently been adopted in 

plant breeding. Thus far, the majority of studies evaluating GS for plant breeding have utilized 

two-step approaches in which adjusted means across environments are first calculated and then 

used to generate GEBVs in a subsequent mixed linear model. In addition, GS has typically been 

performed on one or a few traits using balanced experimental designs. However, such studies 

ignore or minimize some of the unique complexities of plant breeding, including highly 

significant genotype-by-environment interaction (GEI), highly unbalanced designs across 

locations and years, and the need to perform selection on multiple correlated traits 

simultaneously.  A goal of this study was to test GS for phenotypic prediction in scenarios that 

more accurately reflect early-generation yield testing by examining a total of 16 traits of varying 

heritability. Multivariate genomic best linear unbiased prediction (GBLUP) methods were used 

to build both multi-environment and multi-trait models. In general, the advantages of multi-

environment models were most pronounced for moderate-heritability traits with homogeneous 

patterns of GEI among genotypes. In contrast, multi-environment models performed worse than 

a two-step model using the adjusted means across environments if excessive numbers of cross-

over type GEI patterns were present in the training population. Multi-trait models using highly 

correlated traits generally far outperformed single-trait models in cases where GS was used to 

predict performance when each genotype had already been phenotyped for some, but not all 

traits. 
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Introduction 

Genomic selection (GS) is a type of marker-assisted selection (MAS). However, 

traditional MAS utilizes a small number of markers, each in high linkage disequilibrium (LD) 

with quantitative trait loci (QTLs) exerting large effects upon the trait of interest, whereas GS 

utilizes a large number of markers spread throughout the genome, such that every QTL is 

assumed to be in high LD with at least one marker (Meuwissen et al., 2001). All GS models 

utilize a training population (TP), which is both genotyped and phenotyped, to produce 

predictions of breeding values in a validation population (VP), which is only genotyped. Thus 

there are several qualities of the TP, and its relationship to the VP, which are critical to achieving 

high predictive accuracy. These include the TP’s nominal population size (N), its effective 

population size (Ne), the respective levels of linkage disequilibrium within the TP and the VP, 

and the degree of relatedness between the TP and VP (Bassi et al., 2016). Many of these qualities 

are interrelated; i.e. a large Ne is more generally associated with a low extent of LD within the 

population, and a lower degree of relatedness between individuals. In addition, larger Ne values 

require denser marker coverage to adequately saturate linkage groups. At the extreme, for a 

population of “unrelated” individuals, achieving a prediction accuracy of 0.9 would require (10 × 

Ne × L) SNP markers and a training population size of (2 × Ne × L), where L is the genome size 

in Morgans (Meuwissen, 2009). The central importance of Ne implies large differences in the 

resources required to effectively perform GS between species. For instance, in livestock breeding 

populations, Ne may be as low as 100, while in many human studies, Ne may be on the order of 

10,000 (Hayes et al., 2009). The size of the human female genome has been calculated at 4,782 

centiMorgans (Morton, 1991). Therefore, achieving a prediction accuracy of 0.9 for a trait in 

human females could require a training population size of close to 1 million, and the use of 

approximately 4.7 million markers. 
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 Fortunately, crop species tend to require far fewer resources for effective prediction due 

to their generally low effective population sizes and highly extensive LD. For example, a study 

on Fusarium head blight (FHB) resistance in 251 soft winter wheat (Triticum aestivum) 

genotypes sourced from the eastern United States calculated an Ne value of 45 (Benson et al., 

2012). For achieving prediction accuracies above 0.5 in wheat, Bassi et al. (2016) recommended 

a TP size of at least 50 individuals if entries of the VP are full-sibs of entries in the TP, 100 

individuals for half-sibs, and 1,000 individuals for less related TPs and VPs. 

A multitude of different models have been described for performing GS. Like many 

regression methods employing predictors sourced from genomic data, GS models must address 

the “big p, little n” problem, where the number of parameters (i.e. markers) typically far 

outweigh the number of observations (i.e. genotypes). In such settings, linear models constructed 

via ordinary least squares estimation will typically exhibit overfitting and consequently poor 

generalization across datasets. Regularization regression methods impose a penalty term for 

overfitting; these methods, which are often utilized in GS, include ridge regression (Tikhonov, 

1963), the least absolute shrinkage and selection operator (Tibshirani, 1994), and the elastic net 

(Zou and Hastie, 2005).  

Regularized regression has been incorporated into several mixed model methods for 

performing GS. These methods follow the assumption that marker effects are governed by 

Fisher’s infinitesimal model (1918). That is, marker effects are assumed to represent a large 

number of genes uniformly spread throughout the genome, with each gene, and hence each 

marker, contributing equally to the observed phenotype. Ridge regression best linear unbiased 

prediction (RR-BLUP) calculates the summation of marker effects for each individual 

(Meuwissen et al., 2001; Whittaker et al., 2000). Genomic best linear unbiased prediction 
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(GBLUP) is a closely-related method in which a realized relationship matrix is calculated from 

marker data, and then used as the variance-covariance structure for the additive genetic effects in 

the mixed model (VanRaden, 2008; VanRaden et al., 2009). Habier et al. (2007) demonstrated 

that these two methods are equivalent for a fixed number of phenotypic observations as the 

number of markers approaches infinity. Both RR-BLUP and GBLUP may be contrasted with the 

traditional BLUP method used for solving mixed-model animal breeding equations (Henderson, 

1975), in which the additive genetic variance-covariance structure is defined using the numerator 

relationship matrix, which is constructed from pedigree records. While BLUP methods for 

solving mixed models have found widespread use in animal breeding for decades, they have only 

more recently been adopted in plant breeding (Piepho et al., 2008). 

 In addition to the aforementioned frequentist methods, a number of Bayesian methods for 

performing GS have been described, starting with two models (Bayes A and Bayes B) introduced 

by Meuwissen et al. (2001). Since that time, there has been a rapid proliferation of Bayesian GS 

models (Gianola, 2013). These models all share the same linear regression of phenotypes on 

markers, but differ in the specific prior probability distributions that are employed for marker 

effects. Unlike RR-BLUP and GBLUP, in which all marker effects are assumed equal, the 

Bayesian alphabet methods as well as LASSO and elastic net incorporate variable selection, such 

that marker effects are allowed to vary. This should theoretically improve their accuracy when 

working with traits which are assumed to be controlled by fewer QTLs of large effect. All 

Bayesian methods share the characteristic of high computational burdens due to the Markov-

chain Monte-Carlo estimation of posterior distributions that must be employed. In addition, 

despite the large numbers of GS models introduced, only marginal differences in predictive 

ability between models has been observed, owing to the species being tested or the genetic 
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architecture of the trait being examined (dos Santos et al., 2016; Gianola et al., 2014). In practice 

the choice of model depends not only upon its predictive ability, but also its ease of 

implementation and use of computational resources. This combination of factors led Heslot et al. 

(2012) to recommend using either mixed-model BLUP methods incorporating shrinkage 

estimators, Bayesian LASSO, or weighted Bayesian shrinkage regression after fitting a total of 

eleven models to eight different wheat, barley (Hordeum vulgare), maize (Zea mays), and 

Arabidopsis thaliana datasets. Wimmer et al. (2013) likewise compared RR-BLUP against two 

variable-selection methods (Bayes B and LASSO), and found that the latter models did not 

outperform RR-BLUP when applied to plant breeding datasets. This applied even to traits 

assumed to be controlled by few QTLs of major effect, such as flowering time in rice (Oryza 

sativa) and FRIGIDA gene expression in A. thaliana. 

 

Multivariate Methods 

 Multivariate BLUP was originally developed to generate breeding value predictions 

utilizing data from multiple traits in livestock breeding (Henderson and Quaas, 1976). If one  

considers that multivariate techniques are equally applicable to measurements of either multiple 

traits in a single environment, or a single trait in multiple environments (Falconer and Mackay, 

1996), then the utility of multivariate BLUP for evaluating both multi-environment and multi-

trait data in plant breeding trials becomes apparent. While multivariate BLUP has been utilized 

extensively in animal breeding, it was only much more recently adopted in plant breeding 

(Piepho et al., 2008).   

Early GS studies carried out in plants utilized univariate models adopted from animal 

breeding and hence lacked the means for incorporating information across multiple environments 
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(Bernardo and Yu, 2007), which limited their applicability. Therefore, many crop GS studies 

have relied on a two-stage approach, where adjusted means across environments are first 

calculated, and then subsequently used as the phenotypic response in a GBLUP model (Oakey et 

al., 2016). Several recent GS studies have begun integrating GEI to model phenotypic 

performance across environments. Burgueño et al. (2012) developed a multi-environment model 

incorporating both pedigree and genome-wide marker data. In addition, they introduced 

nomenclature for two cross-validation schemes to test models across environments. The first 

scheme (CV1), predicts genotype performance across all environments, and hence simulates a 

scenario in which completely new genotypes are introduced to a breeding program for testing. 

The second (CV2), predicts genotype performance in some, but not all, environments, and hence 

simulates a scenario in which a genotype has been tested in a portion of the total number of 

environments included in a trial. 

 Subsequent studies have further investigated potential gains in GS predictive accuracy 

enabled by the incorporation of GEI information. One study on the traits leaf width and leaf 

length in a maize nested association mapping panel found that the CV1 multi-environment cross-

validation accuracy was significantly greater than single-environment accuracy, and that CV2 

accuracy was greater than CV1 accuracy (Guo et al., 2013). Lado et al. (2016) evaluated GS for 

grain yield in wheat in a total of 35 environments. They found that incorporating GEI 

information increased predictive accuracy, especially when predicting line performance within 

mega-environments. Oakey et al. (2016) likewise found improved predictive accuracy in 

modeling plant height data in barley when incorporating GEI information. Zhang et al. (2015) 

studied GS across multiple environments using a biparental maize population, and found that 

models incorporating GEI outperformed those ignoring GEI, but that the degree of superiority 
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was dependent upon the complexity and heritability of the trait in question; complex traits such 

as grain yield benefitted the most from incorporation of GEI, while simpler traits such as anthesis 

date demonstrated more modest gains in prediction accuracy. 

Lopez-Cruz et al. (2015) introduced a model that incorporates marker × environment 

interactions, and used it to generate predictions for grain yield in wheat across rain-fed and 

irrigated environments. Their model functions in a manner similar to previous models used to 

detect quantitative trait loci (QTL) by environment interactions (Moreau et al., 2004). This 

marker × environment model was further investigated for the traits grain yield, 1000-kernel 

weight, and heading date in a durum wheat (Triticum turgidum) panel grown in four 

environments (Crossa et al., 2016). The consensus reached by the papers mentioned above is that 

the incorporation of GEI into GS models can lead to a significant increase in prediction 

accuracies, though the magnitude of this increase may be affected by the heritability and genetic 

architecture of the trait being studied. 

 Multivariate GS models are not limited to modeling GEI; several studies have 

incorporated multiple traits into GS models. Multiple-trait selection has long been employed to 

enable selection of low-heritability traits via indirect selection of correlated high-heritability 

traits, and to prevent excessive divergent response to selection in multiple traits of high 

importance (Falconer and Mackay, 1996). Multiple-trait analysis was adopted in a GS context to 

similarly leverage the information between highly correlated traits (Calus and Veerkamp, 2011). 

Various models for multi-trait GS were subsequently examined using simulated datasets (Guo et 

al., 2014; Hayashi and Iwata, 2013; Jia and Jannink, 2012). Multi-trait models can be utilized to 

increase prediction accuracy when data on a particular trait is impossible to measure in some 

individuals within a population, as is the case with sex-linked traits, or when a trait is simply too 
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difficult or expensive to measure in all individuals within a population. In monoecious plants, 

data on a particular trait may technically be measured on all individuals within a population, but 

there are many examples of traits with measurements that are highly laborious (e.g. the 

measurement of below-ground biomass or root structure). Several studies have assessed multi-

trait genomic selection in datasets consisting of real, non-simulated phenotypic data (dos Santos 

et al., 2016; Jia and Jannink, 2012; Rutkoski et al., 2012; Schulthess et al., 2016; Wang et al., 

2016). 

 Ideally, one could incorporate data from multiple traits and multiple environments 

simultaneously, in a unified multi-trait, multi-environment model. At least one multi-trait, multi-

environment model has been developed (Montesinos-López et al., 2016). However, this model’s 

Bayesian methods coupled with potentially large numbers of environment/trait combinations 

make it very computationally demanding. 

 

GS in preliminary yield testing 

 Preliminary yield tests (PYT), e.g. first year replicated tests conducted over two or more 

environments, are a common feature of all wheat breeding programs. At this stage, genotypes 

have undergone enough generations of inbreeding prior to line selection so as to be relatively 

stable, with limited segregation due to a small number of remaining heterozygous loci. PYT 

present a few common features detailed below, mostly owing to limited seed and resource 

availability: 

1. A limited number of total testing environments 

2. Few or possibly no replications within each environment 



72 
 

3. Unbalanced designs across environments (primarily across years) due to annual 

selections and advancement 

The second point above implies a tradeoff between the number of locations trials are carried out 

over, and the degree of replication within each location. In the current study, performance of GS 

in predicting genotype performance was evaluated under the conditions listed above for a variety 

of quantitative traits with widely varying heritability and genetic architectures. Endelman et al. 

(2014) examined the question of optimal PYT designs when genome-wide marker data is 

available by evaluating both genomic prediction accuracy and response to selection for a range 

of experimental designs. However, their study focused only on grain yield, and utilized a 

univariate model for genomic prediction in which location was a fixed effect. Lado et al. (2016) 

studied the use of GS models incorporating GEI data in unbalanced datasets, although they used 

a relatively large number of environments, and only focused on grain yield.  One of the 

objectives of the current study was to test the utility of multivariate GS methods when testing 

panels represent more ad-hoc assemblies of genotypes, rather than assemblies of large families of 

full or half-sibs.  To this end, our multivariate models estimate genetic correlation between 

environments or between traits using the realized relationship matrix calculated from the marker 

data.  

 

Materials and Methods 

Germplasm Selection 

A total of 185 soft red winter wheat genotypes were included in each year of the study, 

with 41 genotypes being tested across both years (i.e. across all environments included in the 

study), and the rest changing between years. Thus the study included a total of 329 genotypes.  
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Within each year, genotypes were sourced from breeding programs in Illinois (31), Kentucky 

(30), Missouri (2), and Virginia (122). A list of all genotypes included in the study is shown in 

Table B.1. Seven genotypes were removed during quality filtering of the genotypic data, leaving 

322 genotypes among both years used for further analysis. Five checks were included in the 

study, including ‘Bess’, ‘Branson’, IL00-8250, ‘Roane’, and ‘Shirley’.  With the exception of 

checks and several older cultivars, the majority of genotypes were either F4 or F5 filial 

generation.  

 

Experimental Design and Field Management 

Experimental plots were planted in the 2013-14 and 2014-15 winter wheat growing seasons. A 

generalized randomized complete block design (GRCBD) was utilized across two locations at 

Kentland Farm near Blacksburg, VA (Guernsey/Hayter silt loams, 37.1965° N, 80.5718° W, 531 

m elevation) and the Eastern Virginia Agricultural Research and Extension Center (EVAREC) in 

Warsaw, VA (Kempsville sandy loam, 37.9879º N, 76.7770º W, 40 m elevation). Two 

randomized replications were planted at each location. 

For the 2013-14 test at Warsaw, and the 2014-15 tests at Blacksburg and Warsaw, each 

experimental unit consisted of a seven-row plot with a length of 2.74 m, width of 0.91 m, row-

spacing of 15.2 cm, and a harvested area of 2.49 m2. Plots planted in Blacksburg for the 2013-14 

crop season were smaller, with a length of 1.98 m, width of 0.91 m, row-spacing of 15.2 cm, and 

a harvested area of 1.80 m2. However, at both locations, plot areas were adjusted to 4.18 m2 to 

account for inflated yield values caused by border effects.  All plots were sown with 70 g of seed.  

Seed was treated with Raxil® MD fungicide (0.48% tebuconazole/0.64% metalaxyl; Bayer 

CropScience) at a rate of 2.95 mL a.i. per kg of seed, and Gaucho® 600 flowable insecticide 
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(48.7% imidacloprid; Bayer CropScience) at a rate of 0.7 mL a.i. per kg of seed.  At each 

location, seed was planted to roughly coincide with the average date of first frost (see Table 

A.1). 

At Blacksburg and Warsaw, several tiller counts representative of the test area as a whole 

were used to calculate ideal nitrogen application rates at Zadok’s growth stage 25 (Zadoks et al., 

1974) in the spring, and plant tissue tests were used to calculate ideal nitrogen application rates 

at GS30, per standard regional recommendations from the Virginia Cooperative Extension 

Service (Alley et al., 1993).  All plots at Blacksburg and Warsaw were treated with Palisade® 

2EC growth regulator (trinexapac-ethyl; Syngenta Crop Protection) to minimize lodging.  In 

addition, plots in each environment were treated with Tilt® fungicide (propiconazole, Syngenta 

Crop Protection) throughout the growing season, Prosaro® fungicide 

(prothioconazole/tebuconazole, Bayer CropScience) near heading date, Harmony® Extra SG 

herbicide (thifensulfuron-methyl/tribenuron-methyl, DuPont), and Starane® Ultra broadleaf 

herbicide (fluroxypyr 1-methylheptyl ester , Dow AgroSciences) as needed. The exact dates and 

rates of chemical applications for each environment included in the study are listed in Table A.1. 

 

Phenotyping 

 Table 2.1 lists the phenotypic traits that were assessed across all environments, with their 

abbreviations and units of measure.  For the 2014-2015 growing season only, seedling emergence 

was estimated for plots in Blacksburg and Warsaw by averaging the count of seedlings at the 

two-leaf stage (GS12) from two 0.348 m samples taken from two inner rows.  There were no 

significant differences in seedling numbers between genotypes where seed originated from VA or 

IL, while the number of seedlings per unit of row length was lower for KY genotypes due to seed 
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source. Normalized Difference Vegetative Index (NDVI) was measured for each plot at GS25 as 

described by Phillips et al. (2004) using a Greenseeker® Handheld crop sensor (Trimble® 

Agriculture, Sunnyvale, CA).   

 Heading date was recorded as the Julian date at which 50% of plant tillers within a plot 

had extruded heads from the boot. After plants had reached physiological maturity (GS90), a 

single 0.914 m cutting of all above-ground plant material was taken from one of the three inner 

rows of each plot and placed within a paper bag.  All cuttings were stored in a sheltered 

environment for several days to allow for equilibration to ambient moisture levels.  Each bag was 

weighed to derive an estimate of above-ground biomass m-1 of row. Subsequently, the number of 

heads per cutting were counted manually to derive an estimate of heads m-2.  Cuttings were then 

threshed on a plot combine (Wintersteiger NA Inc., Salt Lake City, UT) with settings optimized 

to recover as much threshed seed as possible.  Threshed seed was weighed to derive an estimate 

of seed weight m-1 of row.  Harvest index was calculated as the ratio of seed weight to total 

above-ground biomass.  The total number of seeds threshed from each cutting were then counted 

on a Count-A-Pak optical seed counter (Seedburo® Equipment, Des Plaines, IL) to derive an 

estimate of grains m-2.  Thousand-kernel weight was then calculated as the net weight of the 

threshed seed sample divided by the number of seeds present * 1,000. 

 Plant height was averaged from two measurements within each plot, and was recorded as 

the distance from the soil surface to the tip of the heads (excluding any awns if present). Lodging 

was measured on a 0 to 9 scale (0 corresponding to no lodging, 9 corresponding to complete 

lodging). Plots were harvested at maturity using a Wintersteiger plot combine.  Moisture content 

and test weight (grain volume weight) of harvested grain was measured using a GAC® 2500-

AGRI grain analysis computer (Dickey-John® Corporation, Auburn, IL).  Grain yield was 
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calculated at 13.5% moisture equivalence. 

Grain ash, crude fiber, fat, starch, and protein were estimated via near-infrared (NIR) 

spectroscopy for subsamples from each plot using an XDS Rapid Content Analyzer (FOSS NIR 

Systems, Laurel, MD).  Fifteen grain samples from each location were sent to Cumberland 

Valley Analytical Services (Hagerstown, MD) for wet-chemistry analysis of protein, starch and 

dry matter in order to generate calibration curves for the NIR data. 

 

Genotyping 

 Genomic DNA was isolated from fresh green leaf tissue using a cetyltrimethylammonium 

bromide (CTAB) extraction protocol (Saghai-Maroof et al., 1984). Genotyping-by-sequencing 

was performed at USDA Agricultural Research Service (ARS) facilities using a PstI-MseI 

double digest of genomic DNA. The SNP calling was performed using TASSEL-GBS in 

TASSEL 5.2.24 (Bradbury et al., 2007; Glaubitz et al., 2014). The Burrows-Wheeler aligner (Li 

and Durbin, 2009) was used to align SNPs to the International Wheat Genome Sequencing 

Consortium’s whole genome assembly v0.4. 

 

SNP Quality Filtering and Imputation 

 Prior to imputation of missing genotypes, the genotypic datasets for the 2013-2014 and 

2014-2015 material were jointly filtered to remove SNPs with missing data frequencies  >20%, 

heterozygous call frequencies  >15%, and minor allele frequency <5%. In addition, all unaligned 

SNPs were removed. After the initial filtering, missing data in the genotypic dataset was imputed 

using LinkImpute (Money et al., 2015). LinkImpute implements a nearest-neighbor algorithm 

using both the k nearest individuals and the l SNPs in highest LD with the specific missing SNP 
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genotype that must be imputed. LinkImpute was used with its default settings, which optimize 

the number of nearest individuals and SNPs via data masking simulations at 10,000 randomly 

selected genotypes. After imputation, the dataset was once again filtered to remove SNPs with 

minor allele frequencies <5%. The imputed genotypic dataset was finally filtered in PLINK 1.9 

(Chang et al., 2015) to remove all but one SNP in clusters separated by <64bp, as this is the tag 

size used in the TASSEL-GBS SNP-calling pipeline, (i.e. all SNPs located on the same tag 

should have the same genotype prior to imputation). In addition to the positional filtering, 

PLINK was used to remove all but one SNP in groups of SNPs in high LD (r2 > 0.8) using a 250-

SNP sliding window, advancing by 10 SNPs with each step. 

 

Phenotypic Modelling and Genomic Selection 

 A total of four GS models were fit to test various methods of predicting phenotypic 

performance by utilizing data across multiple environments or traits. The nomenclature for these 

models largely follows that utilized in Lado et al. (2016): 

1. A two-step model utilizing adjusted means (i.e. genotypic best linear unbiased estimates 

[BLUEs]) across all environments. Genotypic BLUEs were first estimated using the 

multi-environment mixed model described below. This two-step approach is hereafter 

referred to as the adjusted means model, and is denoted GBLUPM. 

2. A stratified model wherein genomic selection was performed within each environment 

separately. This model is hereafter referred to as the stratified model, and is denoted 

GBLUPS. 

3. A multivariate model fitting a GEI term, utilizing within-environment means. This model 

is hereafter referred to as the GEI model, and is denoted GBLUPGE. 
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4. A multivariate model fitting a multi-trait (G×T) interaction term, utilizing the across-

environment genotypic BLUEs. This model is hereafter referred to as the multi-trait 

model, and is denoted GBLUPGT 

Each location/year combination was considered as a unique environment in order to model 

phenotypic response across environments. For both the adjusted means model and the multi-trait 

model, the following mixed effects model was fit using the lme4 package (Bates et al., 2015) in 

R: 

 𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝑅𝑘(𝐸𝑗) + 𝐺𝐸𝑖𝑗 + 𝜀𝑖𝑗𝑘 (1) 

Where the phenotypic response (Yijk) is a function of the overall mean (µ), the ith genotype (Gi), 

the kth replication (Rk) nested within the jth environment (Ej), the genotype-environment 

interaction (GEij) and the residual error (𝜀𝑖𝑗𝑘). For each trait, variance components for all effects 

were estimated, and entry-mean heritability (H2) was calculated. In addition, genotypic best-

linear unbiased estimators (BLUEs) were calculated for use as the phenotypic vector for the 

subsequent GS mixed model described below. 

 Both the stratified model and the GEI GS models used simple genotypic arithmetic 

means calculated within each environment. Adjusted means within environments were not 

utilized as the missing data rate for all traits was extremely low. 

For all of the GS models listed above, R package ‘rrBLUP’ (Endelman, 2011) was used 

to perform genomic prediction utilizing the genomic best-linear unbiased predictor (GBLUP) 

method. Briefly, GBLUP solves the following mixed model for u: 

 𝑦 = 𝑿𝑏 + 𝒁𝑢 + 𝜀 (2) 

Where y is a vector (n × 1) of phenotypic observations, b is a vector (p × 1) of fixed effects, u is 

a vector (q × 1) of random effects, and ε is a vector (n × 1) of the residual variances. X and Z are 
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incidence matrices that relate the elements of b and u to y, with dimensions (n × p) and (n × q), 

respectively. Note that in the case of no additional fixed effects being supplied, Xb is equivalent 

to a (n × 1) vector of genotypic means (µ), such that the equation above is equivalent to: 

 𝑦 = 𝜇 + 𝒁𝑢 + 𝜀 (3) 

The variance of u is ~𝑁(0, 𝑮𝜎𝑢
2), where G is a (n × n) matrix of genetic relationships. The 

additive relationship matrix (A) was used to model genetic relationships, and was calculated 

from the marker data using the method of Endelman and Jannink (2012). The variance of ε is 

~𝑁(0, 𝑰𝜎𝜀
2), where I is a (n × n) identity matrix. 

 For the GLUPM model, y consisted of the genotypic BLUEs calculated across all 

environments using the model described in equation (1) above. For the GLUPS model, the mixed 

model was run once for each environment, and y consisted of the genotypic means within that 

environment. As the study employed an unbalanced design, this implied recalculating a separate 

A matrix for each environment, using only those genotypes appearing within each environment.  

 

Multi-Environment Genomic Selection 

The case of performing genomic selection for a single trait across multiple environments 

will be presented here; the following section will demonstrate how an equivalent method may be 

used for performing GS on multiple traits. For the GEI model, y in equation (3) above consisted 

of combinations of genotypes and environments, such that y becomes a vector of length g × e 

where g is the number of genotypes, and e is the number of environments. 

For the GEI model, var(u) is defined as the Kronecker product between the A matrix and 

the genetic correlation matrix between environments (ρ), such that 𝑢 ~𝑁(0, (𝑨 ⨂ 𝛒)𝜎𝑢
2), where 

⨂ represents the Kronecker product. The resulting square matrix has dimensions ([g × e] × [g × 
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e]). For the GBLUPGE model, genetic correlations between environments were calculated with 

the R package ‘sommer’ (Covarrubias-Pazaran, 2016) using a multivariate model as described in 

equation (3) above, again using the A matrix to model additive genetic relationships between 

genotypes. Due to the unbalanced nature of the data, this model was fit separately for each pair 

of environments, using all genotypes shared between them. Genetic correlation between each 

pair of environments was calculated using the product-moment method of Falconer and Mackay 

(1996): 

 
𝑟𝐴 =

𝑐𝑜𝑣(𝑥, 𝑦)

√𝜎𝑥
2×𝜎𝑦

2
 

(4) 

Where the genetic correlation (rA) between environments x and y is a function of the genetic 

covariance between these two environments [cov(x,y)], and the genetic variances within each 

environment (𝜎𝑥
2 and 𝜎𝑦

2). This pairwise use of environments created unstructured variance-

covariance matrices that were often not positive semi-definite. In these cases, the method of 

Higham (2002), as implemented in the nearPD() function of R package ‘Matrix’ (Bates and 

Maechler, 2016) was used to find a close, approximate, and valid correlation matrix.  

Var(ε) for the GEI model is ~𝑁(0, (𝑹𝟎  ⨂  𝑰)𝜎𝜀
2), where R0 is a (e × e) matrix of 

residuals across different environments, with diagonal elements as the residual variance within 

level e, and off-diagonal elements as the reciprocal correlations between different environments. 

I is an identity matrix of dimensions (g × g). Thus the matrix modeling the residual variance has 

dimensions ([g × e] × [g × e]).  

 

Multi-Trait Genomic Selection 

 To test the efficacy of the GLUP model when using data on multiple traits, we utilized 

the traits BIOM, GW, MAT, and YLD, as these traits were all highly intercorrelated, and 
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exhibited widely differing values for entry mean heritability, from 0.41 for BIOM to 0.92 for 

MAT. As noted above, the GS model used for multi-trait data was the same as that used for 

multi-environment data. However, in this case the vector of phenotypic observations, (y in 

equation [3] above), consisted of all genotype-trait combinations for the traits of interest. In 

addition in the context of the multi-trait model, var(u) is defined by the Kronecker product 

between the realized relationship matrix (A), and the correlation matrix between traits, which 

results in a square matrix of dimensions ([g × t] × [g × t]), where t is the number of traits. Var(ε) 

is defined in a similar manner as described in the section above, however in this case the matrix 

R0 is a (t × t) matrix of residuals, and hence the dimensions of the resulting matrix are ([g × t] × 

[g × t]). 

For the GBLUPGT model, the genotypic BLUEs calculated from equation (1) were used 

to estimate genetic correlations between traits as in equation (4), but considering x and y as 

measurements of separate traits rather than measurements of the same trait in separate 

environments. This process was once again performed using package ‘sommer’ and the A matrix 

to model genetic relationships between genotypes. Unlike the GLUPGE model, for the GLUPGT 

model, the genetic correlation matrix was estimated for all pairs of traits simultaneously, as the 

experiment was balanced with respect to trait measurements. Note also that for the GLUPGT 

model, phenotypic data was standardized within each trait to avoid extreme heteroscedasticity 

between traits due to different units. 

 

Cross-Validation 

Random subset (i.e. Monte Carlo) cross-validation was utilized to assess model 

prediction accuracy by correlating the GBLUP-generated GEBVs of genotypes in the testing set 
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with their measured phenotypes. For each model, the cross-validation process was repeated 500 

times, randomly dividing the total phenotypic observations into training and validation sets, and 

results were averaged across the replicates. For the GLUPS model, this entailed 500 replications 

of cross-validation for each separate environment.  

For both multivariate models (GLUPGE and GLUPGT), the two separate cross-validation 

schemes introduced by Burgueño et al. (2012), CV1 and CV2, were employed. For CV1, 

genotypes were assigned to either the TP or the VP across all environments (for the GLUPGE 

model) or across all traits (for the GLUPGT model). For both the GLUPGE and GLUPGT models, 

nomenclature will be used to designate the model and cross-validation scheme combination, so 

that, for instance, GLUPGE/CV1 will refer to the use of the GEI model with the CV1 cross-

validation scheme, while GLUPGT/CV2 will refer to the use of the multi-trait model with the 

CV2 cross-validation scheme.  

 For the CV2 cross-validation scheme, individual cells from the g × l vector of 

phenotypic observations were assigned to the training population, ensuring that for each 

genotype assigned to the training population, only the phenotypic data from a single trait or 

environment would be assigned to the training population. A TP/VP percent split of 80/20 was 

used for all Monte Carlo cross-validations. For the GLUPM and the GLUPGE/CV1 models, this 

entailed assigning 258 genotypes to the TP, and the remaining 64 to the VP. For the 

GLUPGE/CV2 model, this entailed assigning 581 of the 726 total genotype/environment 

combinations to the TP, while the remaining 145 observations were assigned to the VP. Finally, 

~185 genotypes were present in each environment (with some slight variation due to genotypes 

that were removed from the analysis), and hence an 80/20 training/validation split in the GLUPS 
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model entailed assigning ~148 genotypes within each environment to the TP, with the remaining 

~37 genotypes being assigned to the VP. 

The GEBV-phenotype correlations were calculated both within each level of the 

interacting variable and across all levels (e.g. within environment and across all environments for 

the GBLUPGE model). Note that given the unbalanced experimental design employed, the CV2 

cross-validation scheme primarily simulated a scenario in which phenotypic data is available for 

a particular genotype across some locations within a year, but not across years (Tables 2.3a and 

2.3b). Mean cross-validation GEBV-phenotype correlation was recorded both across all 

environments and within each environment for all models except GLUPS, where only the within-

environment correlations were calculated. For the GLUPM model, calculating within-

environment GEBV-phenotype correlations entailed correlating the model-generated across-

environment GEBVs with the genotypic means calculated within each environment. 

Note that there are a total of four possible simulation scenarios that arise when GEI 

information is incorporated into a GS model (Malosetti et al., 2013). These are the 

aforementioned CV1 and CV2, in addition to a scenario in which values for untested 

environments are predicted using tested genotypes (Heslot et al., 2013), as well as the “hardest” 

simulation, in which GEBVs are generated for untested genotypes in untested environments 

(CV4). Due to the limited number of environments included in the study, the latter two 

simulations were not considered. 

 

Training Population Size 

For the GBLUPM and GLUPGE models, the proportion of observations assigned to the TP 

and VP were varied to test the effects of varying training population size, using TP/VP percent 
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splits of 80/20, 60/40, 40/60, and 20/80. For each TP/VP ratio, 500 replications of Monte Carlo 

cross-validation were run, using both the CV1 and CV2 schemes for the GLUPGE model. Once 

again, GEBV-phenotype correlations within and across environments were recorded.  Note that 

as the TP/VP ratio decreases, the CV2 cross-validation scheme used for the GLUPGE model 

becomes more similar to the CV1 cross-validation scheme.  

 

Results 

General Line Performance and Correlation of Traits 

 The variance components and entry-mean heritability across all four environments 

included in the study are shown in Table 2.2. For reference, trait names and their abbreviations 

are shown in Table 2.1. Entry mean heritability ranged from 0.41 for BIOM to 0.94 for HD and 

TKW. Heritability for YLD was slightly higher than expected at 0.83. Figure 2.1 depicts the 

pairwise phenotypic and genetic correlation coefficients between all traits included in the study. 

YLD resides within a cluster of highly interrelated traits, all positively correlated with each 

other. This includes the relatively high-heritability phenological traits HD and MAT, as well as 

the lower-heritability traits GW and BIOM. The trait WCPROT was notable for its general 

negative correlations with traits within this group, in particular YLD, which is a finding that has 

been well-noted in many studies in the past (Cox et al., 1985; Groos et al., 2003; Terman et al., 

1969). The strongest negative correlation (both phenotypic and genetic) existed between the 

traits TKW and GSQM, reflecting a general tradeoff between grain size and grain number per 

unit area due to trait compensation. WCPROT and STARCH also demonstrated a strong negative 

correlation. The genetic correlations between traits calculated using the realized relationship 

matrix (A) generally closely mirrored the corresponding phenotypic correlations. The 
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magnitudes of the genetic correlations were typically equal to or greater than their corresponding 

phenotypic correlations, though there were exceptions, for instance with the relationship between 

GW and BIOM. 

 

Genomic Prediction Accuracy Across Environments 

 TP/VP percent splits of 80/20 were used to compare the performance of the GLUPM 

model against that of the GLUPGE model across all four environments included in the study. 

Cross-validation for the GLUPGE model was performed using both the CV1 and CV2 schemes. 

Generating prediction accuracy estimates across all environments tests a model’s ability to 

predict overall genotype performance within a breeding program’s set of environments. Table 

2.4 lists each trait’s mean across-environment GEBV-phenotype correlations and standard errors 

calculated with the GBLUPM model and the CV1 and CV2 cross-validation schemes of the 

GLUPGE model, as well as the percent differences between the GLUPM correlations and the 

corresponding GLUPGE correlations. Figure 2.2 presents regressions of the mean GEBV-

phenotype correlations produced by the GBLUPM model against those produced by each cross-

validation scheme of the GLUPGE model. Predictive accuracies generated by the GLUPM model 

and both cross-validation strategies of the GBLUPGE model varied widely across traits. In 

general, a trait’s heritability only weakly explained the accuracy of GEBVs generated by any of 

the three model/cross-validation combinations, with r2 values for regressions between trait 

heritability and mean GEBV-phenotype correlations ranging between 0.35 and 0.45 for the 

GLUPM, GLUPGE/CV1, and GELUPGE/CV2 models (data not shown). However, the lowest-

heritability trait (BIOM; H2 = 0.41) did consistently have the lowest GEBV-phenotype 

correlations across all models. One of the highest heritability traits (TKW; H2 = 0.94) also 
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produced the highest GEBV-phenotype correlations in the GLUPM model, though this was not 

the case in the GLUPGE model, where the highest predictive accuracies were observed for 

STARCH when using either cross-validation scheme. 

Predictive accuracies for several traits were notably different between the GLUPM and 

GLUPGE models. These included YLD (with the GLUPGE model outperforming the GLUPM 

model by 98% and 64% for the CV1 and CV2 cross-validation schemes, respectively), STARCH 

(with the GLUPGE model outperforming the GLUPM model by 51% and 59% for the CV1 and 

CV2 cross-validation schemes, respectively), FLSG (with the GLUPGE model underperforming 

the GLUPM model by 28% and 44% for the CV1 and CV2 cross-validation schemes, 

respectively), and SSQM (with the GLUPGE model underperforming the GLUPM model by 37% 

and 59% for the CV1 and CV2 cross-validation schemes, respectively). Several of the highest-

heritability traits (HT and TKW) had roughly equivalent predictive accuracies in both the 

GLUPM model and both cross-validation schemes of the GLUPGE model. However, other high-

heritability traits, including HD, MAT, and TWT, exhibited more variable performance across 

models. 

 

Genomic Prediction Accuracy Within Environments 

 The GLUPS model consistently underperformed both the GLUPM model and the GLUPGE 

model within environments. However, it should be noted that this is partially due to the 

unbalanced design of the experiment, as the training populations available to the GLUPS model 

within a given environment were much smaller than those available to either the GLUPM or 

GBLUPGE models. Were a completely balanced design across environments used, it is not 

known how the GLUPS model would perform in comparison to the GBLUPGE model. 
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The results produced by the GLUPGE model exhibited the effects of Simpson’s Paradox, 

as GEBV-phenotype correlations within environments did not necessarily reflect correlations 

across environments, and vice-versa. The GLUPGE/CV2 model generally outperformed all other 

models within environments, including the GBLUPGE/CV1 model. In contrast, the GLUPGE/CV1 

model generally performed equivalently to the GLUPM model, though there were some traits for 

which the GLUPGE/CV1 model consistently performed better or worse than the GLUPM model. 

Interestingly, there were several traits which exhibited high across-environment GEBV-

phenotype correlations in the GLUPGE/CV1 model, while simultaneously exhibiting several very 

low correlations within one or more environments. This was the case for YLD, for which the 

GLUPGE/CV1 model approximately doubled GEBV-phenotype correlations produced by the 

GLUPM. However, mean correlations within the 2014 Blacksburg environment were roughly half 

those produced by the GLUPM model for the same environment. This is somewhat surprising, as 

this environment appeared to cluster more closely with the majority of environments measured 

for YLD in the GGE analysis, while the 2015 Warsaw environment exhibited more distant 

similarity to the other environments. 

 

Multi-Trait Genomic Prediction 

 In the context of a multi-trait model, the CV1 cross-validation scheme simulates a 

scenario in which a target genotype’s performance across all traits is predicted using across-trait 

data from the training population. In contrast, the CV2 cross-validation scheme simulates a 

scenario in which data on some traits but not others is collected for a particular genotype, and 

hence a genotype’s data for one or more traits is used to predict its values for one or more traits 

for which data was not collected. In this study, across-trait GEBV values were 0.33 ± 0.0029 for 
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the GLUPGT model utilizing CV1 cross-validation, and 0.63 ± 0.0012 when utilizing the CV2 

cross-validation. As shown in Figure 2.4, the within-trait GEBV-phenotype correlations 

calculated with the GLUPM model and the GLUPGT/CV1 model tended to be quite similar. 

However, the within-trait correlations calculated using the GLUPGT/CV2 model tended to be far 

higher. As opposed to the GBLUPGE model, the within-trait and across-trait GEBV-phenotype 

correlations tended to be closely related for the GLUPGT model, with across-trait correlations 

tending towards the mean of each of the individual within-trait correlations. Notably, the mean 

across-trait correlation calculated using CV1 cross-validation was higher than the within-trait 

correlations for the traits BIOM and GW (whether these were calculated with the GLUPM model, 

or the GLUPGT/CV1 model). In addition, the across-trait correlation calculated using the 

GLUPGT/CV2 was higher than the within-trait correlations for BIOM and MAT. 

 

Effects of Training Population Size 

 To test the effects of training-population size on generated GEBV-phenotype 

correlations, the TP/VP ratios used for the GLUPM and GLUPGE models were varied from an 

80/20 split up to a 20/80 split. Table 2.6 presents the across-environment results of this 

experiment for the GLUPM model as well as the GLUPGE model using the CV1 and CV2 cross-

validations, while Figure 2.5 presents these results for selected traits. In general, decreases in 

predictive accuracy caused by decreases in training population size were highly consistent for the 

GLUPM model; i.e. traits tended to retain their relative accuracy rankings with varying training 

population size, with relatively little crossover between traits. In contrast, varying training 

population size produced more unpredictable changes in GEBV-phenotype correlations for the 

GLUPGE model utilizing CV1 cross-validation, and especially for the GLUPGE model utilizing 

CV2 cross-validation. Notably, the mean GEBV-phenotype correlation for the trait BIOM 
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calculated using the GLUPGE model and CV2 cross-validation decreased from 0.07 for an 80/20 

TP:VP ratio, down to precisely 0 for a 20/80 ratio. In contrast to the across-environment 

prediction accuracies, the within-environment mean GEBV-phenotype correlations for all 

models and cross-validation schemes tended to vary in a predictable fashion as TP size was 

varied. Results for within-environment accuracies are presented in Table E.1, and the results for 

select traits are shown in Figure 2.6. Interestingly, for many traits, the within-environment 

correlation accuracy for the GLUPGE/CV2 model seemed to plateau as the TP/VP ratio was 

increased from 60/40 to 80/20. 

 

Discussion 

 Overall, the results of this study suggest various scenarios in preliminary wheat breeding 

trials for which multivariate GS models are and are not well suited. Several previous studies 

reported that multi-trait GS models could be used to increase predictive accuracy for low-

heritability traits that are highly correlated with auxiliary, higher-heritability traits (Jia and 

Jannink, 2012; Schulthess et al., 2016; Wang et al., 2016). In the present study, the predictive 

accuracy of the GLUPGT model was far greater than that of the GLUPM model when using the 

CV2 cross-validation scheme, but not when using the CV1 cross-validation scheme (Figure 2.4). 

However, it should be noted that for the multi-trait model used herein, the CV2 cross-validation 

entails a scenario in which data on a particular trait is only collected in a portion of the total 

genotypes, but this data is consistently collected on these genotypes across all environments in 

which they are tested. Nevertheless, the GLUPGT/CV2 model performed well despite the use of 

an otherwise highly unbalanced design. Testing of a still sparser model, in which data for a 
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particular trait is only collected for some genotypes in some of the environments in which they 

are grown, was not attempted in this study.  

For either the CV1 or CV2 cross-validations, all traits could be used together to form 

predictions, making the multi-trait model somewhat akin to a selection index. In this case, 

accuracies were roughly equivalent to the means of the predictive accuracies of the individual 

traits involved (as calculated using the GLUPM model), meaning that the across-trait correlation 

accuracies tended to be higher than the within-trait accuracies for low-heritability traits, and 

lower than the within-trait accuracies for high-heritability traits. Overall, the data suggest that 

while the prediction of multiple trait values for newly introduced genotypes is not especially 

accurate, sparse data collection coupled with genomic prediction could be a viable option to 

decrease phenotyping costs in the field. 

 In contrast to the GLUPGT model, the across-environment and within-environment 

correlations generated by the GLUPGE model did not closely reflect one another. This was likely 

due to the lack of standardization between environments, as opposed to the GLUPGT model, 

which used standardized trait values. Across-environment GEBV-phenotype correlations were 

roughly equivalent for the CV1 and CV2 cross-validations, though occasionally worse for the 

CV2 cross-validation (Table 2.4). This is in contrast to some previous findings in which 

correlations were generally higher for CV2 (Burgueño et al., 2012; Crossa et al., 2016; Guo et 

al., 2014; Lopez-Cruz et al., 2015; Zhang et al., 2015). However, in this study the CV2 cross-

validation scheme consistently yielded better within-environment predictions than the CV1 

scheme. Thus the prediction of genotype performance within environments when a genotype has 

already been phenotyped in at least some environments is less challenging than generating 

predictions of genotype performance in the absence of any phenotypic information. The GEBV-
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phenotype correlations generated by the GLUPGE model for some traits were consistently higher 

or lower than the corresponding correlations produced by the GLUPM model, whether the CV1 

or CV2 schemes were used. The reason for this will be explained in detail below. 

The variable TP size experiment indicated that further gains in accuracy for the GLUPM 

and GLUPGE models could be realized by further increases in TP size, as the GEBV-phenotype 

correlations for the majority of traits did not appear to plateau with an 80/20 TP:VP split (Figure 

2.5). In general, the within-environment GEBV-phenotype correlations varied in a more 

predictable manner as the training population size was varied (Figure 2.6). As previously noted, 

the correlations generated by the GLUPGE/CV2 model appear to plateau for many traits at a 

60/40 training/validation split. This suggests that relatively sparse data can be used to generate 

within-environment phenotypic predictions if genotypes are tested in some environments but not 

others, though across-environment prediction accuracy would likely suffer as a result. 

As previously mentioned, several traits exhibited widely differing predictive accuracies 

in the GLUPM model vs. the GLUPGE model. These included YLD and STARCH (for which the 

GLUPGE model predictive accuracy was far higher than that of the GLUPM model), and SSQM 

and FLSG (for which the opposite was true). A trait’s heritability only explained a relatively 

small portion of this differential performance among traits. It appears that a trait’s patterns of 

GEI are much more important in determining its suitability to the GLUPGE model than its 

heritability and, by extension, overall magnitude of GEI. Finlay and Wilkinson (1963) proposed 

the regression of genotype trait values against an environmental index as a method of quantifying 

trait stability, and this method is still widely utilized today to examine GEI patterns among 

genotypes. In this method, the phenotypic values of genotypes across environments are 

compared to the mean response of all genotypes included in the trial. Figure 2.7a shows such a 
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genotype-by-environment interaction plot for the trait YLD (a trait for which the GLUPGE model 

far outperformed the GLUPM model), using the 41 genotypes that were tested across all 

environments. Figure 2.7b shows the same plot generated for the trait SSQM, for which the 

GLUPGE model underperformed the GLUPM model. Both traits have identical heritability (0.83) 

and therefore similar overall magnitudes of GEI across the tested environments. Examining the 

YLD response across environments shown in Figure 2.7a, it is clear that nearly all of the plotted 

genotypes are closely tracking the mean response across environments; i.e. while there is clearly 

some degree of overall GEI present, GEI patterns among genotypes are highly consistent. 

Eberhart and Russel (1966) labelled this pattern of GEI as “dynamic stability”. In contrast, the 

SSQM response across environments shown in Figure 7b demonstrates a case in which GEI 

patterns among genotypes are inconsistent, with a mixture of genotypes that are highly 

responsive to environmental influence (highly sloped lines), and those that are highly stable 

across environments (nearly flat lines, exhibiting “static stability” in Eberhart and Russell’s 

nomenclature). The overall GEI pattern shown for the trait SSQM exhibits a number of 

“crossover” or “rank-change” type interactions between genotypes. As the GLUPGE model 

estimates correlation between environments using the full set of genotypes shared between each 

pair of environments, these highly variable GEI patterns can have very adverse effects on 

prediction accuracies. 

 This has several practical implications for the implementation of GS models in multi-

environment breeding trials. First, GS models incorporating GEI effects appear to be most suited 

to moderate-heritability traits with consistent patterns of GEI. Checking the patterns of GEI 

exhibited by the training population is crucial for ensuring that the incorporation of GEI effects 

into a GS model will not lead to worse predictions compared to using a strategy that ignores GEI 
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(e.g. performing GS using the adjusted means across environments). For some higher-heritability 

traits, GS models incorporating GEI effects are likely to offer little additional benefit over the 

two-step model incorporating adjusted means (Zhang et al., 2015). However, this was not the 

case for all high heritability traits included in this study, as some did exhibit marginally higher 

predictive accuracy when using the GLUPGE model (e.g. HD and TWT). 

 This leaves the question of potential methods to utilize to ensure that predictions 

incorporating GEI data are in fact trustworthy in the face of highly heterogeneous crossover 

patterns. One simple though somewhat naïve strategy for generating more reliable estimates of 

GEI would be to simply increase the number of testing environments. However, this strategy is 

often not feasible due to resource limitations (as in the present study). In addition, such a “blind” 

approach may inadvertently incorporate highly dissimilar environments that exhibit crossover 

GEI during model training, thereby reducing model predictive ability. 

An alternative strategy may be to simply utilize a stratified analysis, running a separate 

GS analysis within each environment. Lopez-Cruz et al. (2015) found that a stratified model 

often yielded prediction accuracies comparable to those of a model including GEI effects, 

especially for a CV1 cross-validation scheme. However, in experiments with highly unbalanced 

designs, as was the case with the present study, this strategy is likely to yield quite low predictive 

accuracies due to the necessarily smaller training populations that are formed within each 

environment. In addition, if many environments are included, this method would entail running a 

correspondingly large number of independent models, and the combining of these results would 

utilize some form of post-hoc GEI analysis, making this an inelegant solution. 

 A more nuanced strategy would be to select genotypes and/or environments to find 

subsets of each that exhibit more homogeneous GEI patterns. The present study utilized GGE 
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biplots to assess relationships among environments, though selection of environments was not 

carried out due to the overall low number of environments. Several linear-bilinear models have 

also been employed as a method of identifying and clustering genotypes or environments based 

upon GEI, including the GGE biplot method that was used in this study. Linear-bilinear models 

that treat genotype and environment as fixed include the additive main effects and multiplicative 

interaction (AMMI) model (Gauch, 1988; Gauch and Zobel, 1997), the shifted multiplicative 

model (Cornelius et al., 1992) or the sites regression model (Cornelius et al., 1993; Crossa and 

Cornelius, 1997). Factor analytic (FA) mixed models are linear-bilinear models that can treat 

genotype, environment, or both as random effects (Piepho, 1998, 1997). Burgueño et al. (2008) 

later demonstrated how to use FA models to identify clusters of environments and genotypes 

exhibiting negligible crossover-type GEI. The identification of mega-environments prior to GS 

modelling has been performed in multiple studies (Burgueño et al., 2012; Lado et al., 2016; 

Lopez-Cruz et al., 2015). Heslot et al. (2013) characterized environments in a more explicit 

manner by using GS models to identify and remove less-predictive environments from the set of 

training environments. Hoffstetter et al. (2016) performed a GS study in which they selected 

genotypes exhibiting low GEI for inclusion in the training population, but found that this practice 

had little effect on predictive accuracy for most traits, and a detrimental effect for YLD. 

However, it should be noted that this study utilized a two-step adjusted means model. 

 However, tailoring a training population to minimize crossover GEI is of little use if an 

uncharacterized environment or genotype is in reality not very closely related to the 

environments or genotypes used for training. More empirical studies are required to determine 

how accurately GEI can be predicted for genotypes or environments using genetic relationships 

or environmental covariables, respectively. Several recent studies have examined GS for the 
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prediction of trait stability values. Wang et al. (2015) generated both static and dynamic stability 

estimates for six traits in two rye (Secale cereale) populations using the methods of Eberhart and 

Russel (1966). They then performed genomic selection and found it to be relatively useful in 

predicting genotype stability, though this varied between traits, stability parameters, and 

populations. Huang et al. (2016) performed genomic selection on several different agronomic 

and quality-related traits utilizing four different models and dynamic stability estimates 

generated via both AMMI models and Eberhart and Russell regression. They found that GS 

produced useful predictions of trait stability, with accuracies ranging from 0.33 to 0.67. In 

addition, they found that the majority of traits studied did not have a high correlation with their 

corresponding stability parameters. While more work is needed to assess the potential ability of 

GS to predict trait stability parameters, one can envision a scenario in which a two-step method 

is utilized to first characterize genotypes based upon their stability, followed by the generation of 

genomic predictions for the associated trait in a multi-environment model using training 

genotypes that are predicted to exhibit similar patterns of GEI. However, such efforts would 

likely require large numbers of genotypes and environments to ensure that identified genotype or 

environment clusters contain adequate numbers of observations for training purposes. 

 

Conclusion 

 This study found that multivariate genomic selection models could be useful for 

increasing prediction accuracies over univariate models in a variety of settings. However, in the 

case of multivariate models incorporating GEI effects, careful attention must be paid to the 

patterns of GEI exhibited by genotypes within the training population; the presence of significant 

crossover GEI patterns among genotypes in the training or validation populations can lead to 
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predictive accuracies that are worse than those generated by a simpler two-step univariate model 

utilizing across-environment adjusted means. In general, multi-environment GS models showed 

the greatest gains over univariate models when used on moderate-heritability traits that exhibit 

relatively homogeneous GEI patterns. Multi-trait models generally performed equivalently to 

univariate models when predicting the performance of genotypes that lacked data on any trait, 

but exhibited much higher predictive ability if data on some traits were available for each 

genotype. Methods of clustering genotypes and/or environments used for GS model training 

deserve closer inspection, as the use of genotypes and environments exhibiting highly 

homogeneous GEI patterns can lead to much higher predictive accuracy. 
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Table 2.1: Phenotypic traits assessed in Blacksburg and Warsaw, VA during the 2013-2014 and 2014-2015 growing seasons 

Trait Abbreviation Units Trait Ontology † Ontology Description 

Heading Date HD 
Julian days 

(Jan1) 
TO:0000137 Days required for 50% of heads to emerge from boot 

Physiological Maturity MAT 
Julian days 

(Jan1) 
TO:0000469 Days required for 50% of peduncles to lose green color 

Flag Leaf Stay Green FLSG days TO:0000249 Days between heading and flag leaf senescence 

NDVI at Zadok’s GS25 NDVI - CO_321:0000301 
Normalized-difference vegetation index measured at spring 

green-up using a Trimble Greenseeker instrument 

Mature Plant Height HT cm TO:0000207 
Height of plant from soil surface to tip of spike excluding 

awns 

Above-ground biomass 
at maturity 

BIOM 
g dwt m-1 

row 
CO_321:0000229 

Weight of dry plant matter cut at soil level from a 1 m section 
of a center row of the plot 

Grain weight GW 
g dwt m-1 

row 
TO:0000589 

Grain yield (g dry weight) from 1 m row cut at physiological 
maturity 

Harvest Index HI - TO:0000128 Grain yield divided by above-ground biomass 

Grains per square meter GSQM Grains m-2 CO_321:0000017 
Number of grains threshed from 1m row cutting, converted 

to square meters 

Spikes per square meter SSQM Spikes m-2 CO_321:0000166 
Number of spikes (fertile culms) per unit area, sample or 

plant 

Seeds per Head SPH count TO:0002759 Number of grains within an inflorescence 

Thousand Kernel Weight TKW grams TO:0000382 Seed weight estimated by weighing 1000 seeds 

Test Weight TWT g L-1 TO:0000612 Weight per unit volume of grain at standard moisture level 

Yield, 13.5% moisture YLD kg ha-1 TO:0000396 Grain yield standardized to 13.5% moisture equivalence 

NIR Whole grain starch STARCH % - - 

NIR Wet Chemistry-
validated whole grain 

protein 
WCPROT % - - 

 

† Matching trait ontologies in the Planteome database: http://browser.planteome.org/amigo/search/ontology 
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Table 2.2: Trait descriptive statistics, variance components, and entry-mean heritability for lines grown in Blacksburg, VA and 

Warsaw, VA for the 2013-2014 and 2014-2015 growing seasons 

  Descriptive Statistics Variances and Heritability 

Trait † Units min mean max SD σ2 G σ2 E σ2 (G x E) σ2 ε H2 

HD Julian days (Jan1) 121 128 136 3.21 2.77 8.88 0.5 0.46 0.94 

MAT Julian days (Jan1) 151 159.3 171 4.72 2.68 23.52 0.48 0.93 0.92 

FLSG days 21 28.69 38 2.76 1.44 4.28 0.74 1.75 0.78 

NDVI - 0.26 0.54 0.75 0.08 0.0004 0.005 0.0002 0.001 0.67 

HT cm 59.69 85.43 119.4 9.29 21.27 73.03 3.47 7.9 0.92 

BIOM g dwt m-1 row 122.5 225.7 350 35.54 67.87 519.3 5.43E-12 777.5 0.41 

GW g dwt m-1 row 47.68 96.64 157.9 16.53 33.19 108 2.38E-11 152.5 0.64 

HI - 0.28 0.43 0.53 0.032 0.0005 6.50E-05 0.0001 0.0004 0.86 

GSQM Grains m-2 8460 1.85E+04 3.13E+04 3277 3.17E+06 2.42E+06 3.21E+05 5.35E+06 0.81 

SSQM Spikes m-2 459.3 853 1485 161.2 7005 1.05E+04 101.6 1.12E+04 0.83 

SPH count 8.54 21.94 33.29 3.04 4.92 1.29 0.75 2.64 0.90 

TKW grams 24.1 34.57 91.6 3.98 9.33 3.48 0.65 3.09 0.94 

TWT g L-1 652.6 759 810.9 19.7 139.5 236.5 34.03 27.41 0.92 

YLD kg ha-1 3579 6627 9053 1027 1.24E+05 9.75E+05 2.84E+04 1.49E+05 0.83 

STARCH % 46.88 52.51 56.49 1.41 0.29 1.41 0.15 0.37 0.78 

WCPROT % 9.67 12.34 16.04 1.01 0.21 0.51 0.09 0.35 0.76 
 

σ2 G genotypic variance; σ2 E environmental variance; σ2 (G x E) genotype x environment variance; σ2 ε residual variance; H2 entry-mean heritability. 

† HD heading date; MAT physiological maturity date; FLSG flag leaf stay green; NDVI normalized-difference vegetation index at Zadok’s GS25; HT plant height; 

BIOM above-ground biomass; GW grain weight; HI harvest index; GSQM grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW 

thousand kernel weight; TWT test weight; YLD grain yield; STARCH whole-grain starch content; WCPROT wet chemistry-validated whole-grain protein content 
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Table 2.3a: Example of two cross-validation schemes (CV1 and CV2) used for GEI model. 

NA’s denote trait/environment combinations that were not tested. Dots represent values set to 

missing. Note that in this example, genotypes 5 and 6 were tested across all environments. 

Numeric values are within-environment means. 

 CV1 CV2 

genotype Env1 Env2 Env3 Env4 Env1 Env2 Env3 Env4 

1 6.9 1.1 NA NA 6.9 . NA NA 

2 4.4 6.9 NA NA . 6.9 NA NA 

3 . . NA NA -0.1 1.4 NA NA 

4 4.5 4.7 NA NA 4.5 . NA NA 

5 . . . . -1.1 -1.9 . -0.8 

6 6.4 3.1 2.0 0.9 6.4 3.1 0.3 -1.1 

… .. … … … .. … … … 

319 NA NA 8.2 5.7 NA NA 8.2 5.7 

320 NA NA . . NA NA 1.4 . 

321 NA NA 3.0 2.4 NA NA . 2.4 

322 NA NA 6.0 4.5 NA NA 6.0 . 

323 NA NA . . NA NA . -1.1 

324 NA NA 6.3 3.2 NA NA 6.3 3.2 

 

Table 2.3b: Example of two cross-validation schemes (CV1 and CV2) used for multi-trait 

model. Dots represent values set to missing. Numeric values are standardized across-

environment adjusted means. 

 CV1 CV2 

genotype Trait1 Trait2 Trait3 Trait4 Trait1 Trait2 Trait3 Trait4 

1 -0.8 -0.5 0.8 1.5 . 0.4 -1.3 0.1 

2 -1.2 -0.3 -1.7 -1.3 -0.2 -1.5 . -1.0 

3 . . . . . -0.4 -0.6 1.3 

4 -0.1 0.3 0.5 0.2 0.6 -0.6 -0.7 . 

5 . . . . -0.7 . 1.7 2.0 

6 0.4 0.7 1.2 -1.1 -0.4 1.5 . -0.4 

… .. … … … .. … … … 

317 -0.5 0.8 0.5 0.8 2.3 -0.8 1.4 -0.7 

318 -0.5 -1.2 1.0 -0.7 . -1.0 0.9 -1.0 

319 . . . . . -0.5 -0.2 0.7 

320 . . . . -2.2 0.2 1.8 1.5 

321 -0.8 1.2 -0.4 -0.2 0.1 . -1.8 -1.1 

322 0.4 -0.3 0.2 -0.2 0.3 1.1 . 0.1 
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Table 2.4: Mean GEBV-phenotype correlations and their standard errors* across all 

environments included in the study for the adjusted means model and the GEI model.  

 GBLUPM 
‡ GBLUPGE CV1 § GBLUPGE CV2 § % Difference ¶ 

Trait † mean SE mean SE mean SE CV1 CV2 

HD 0.53 0.0036 0.65 0.0019 0.60 0.0020 24.7 14.6 

MAT 0.46 0.0038 0.49 0.0018 0.35 0.0025 5.7 -24.4 

FLSG 0.55 0.0034 0.40 0.0024 0.31 0.0027 -27.6 -44.1 

NDVI 0.40 0.0041 0.47 0.0026 0.34 0.0027 16.1 -15.8 

HT 0.57 0.0041 0.60 0.0019 0.57 0.0019 5.3 -0.4 

BIOM 0.27 0.0048 0.21 0.0025 0.07 0.0031 -22.5 -74.1 

GW 0.31 0.0043 0.43 0.0026 0.36 0.0028 38.4 16.2 

HI 0.43 0.0045 0.39 0.0035 0.58 0.0024 -8.1 35.8 

GSQM 0.35 0.0044 0.44 0.0033 0.46 0.0022 27.0 33.5 

SSQM 0.49 0.0036 0.31 0.0030 0.20 0.0031 -37.5 -58.8 

SPH 0.36 0.0041 0.43 0.0037 0.69 0.0016 19.6 94.2 

TKW 0.66 0.0031 0.61 0.0031 0.66 0.0025 -7.1 0.8 

TWT 0.58 0.0034 0.69 0.0019 0.68 0.0015 18.9 17.2 

YLD 0.35 0.0039 0.68 0.0020 0.57 0.0026 97.7 63.5 

STARCH 0.46 0.0040 0.70 0.0022 0.74 0.0016 51.2 59.0 

WCPROT 0.36 0.0041 0.47 0.0030 0.53 0.0022 32.3 48.2 

 

* Means and standard errors were calculated across 500 replications of Monte-Carlo cross validation, with 80% of 

observations used for training, and the remaining 20% used for validation 

† HD heading date; MAT physiological maturity date; FLSG flag leaf stay green; NDVI normalized-difference 

vegetation index at Zadok’s GS25; HT plant height; BIOM above-ground biomass; GW grain weight; HI harvest 

index; GSQM grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW thousand kernel 

weight; TWT test weight; YLD grain yield; STARCH whole-grain starch content; WCPROT wet chemistry-validated 

whole-grain protein content 

‡ Model using the adjusted means across environments 

§ Models incorporating GEI effects and utilizing either the CV1 or CV2 cross-validation schemes 

¶ Percent difference in mean GEBV-phenotype correlation between the adjusted means model and the GEI models 

utilizing the CV1 or CV2 cross-validation schemes 
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Table 2.5: Mean GEBV-phenotype correlations and their standard errors* within environments 

included in the study for the adjusted means model, the stratified model, and the GEI model 

utilizing the CV1 and CV2 cross-validation schemes.  

  14Bb ‡ 14War 15Bb 15War 

Model Trait † mean SE mean SE mean SE mean SE 

adjusted 
means 

HD 0.31 0.0060 0.44 0.0057 0.63 0.0040 0.60 0.0041 

MAT 0.33 0.0062 0.34 0.0059 0.52 0.0050 0.50 0.0048 

FLSG 0.22 0.0069 0.51 0.0051 0.52 0.0049 0.48 0.0052 

NDVI 0.30 0.0062 0.37 0.0053 0.35 0.0059 0.26 0.0068 

HT 0.46 0.0057 0.40 0.0068 0.63 0.0049 0.55 0.0056 

BIOM 0.12 0.0062 0.16 0.0066 0.27 0.0068 0.27 0.0066 

GW 0.14 0.0062 0.14 0.0066 0.34 0.0062 0.31 0.0057 

HI 0.45 0.0068 0.40 0.0065 0.38 0.0057 0.20 0.0062 

GSQM 0.46 0.0056 0.29 0.0070 0.15 0.0064 0.35 0.0060 

SSQM 0.45 0.0050 0.43 0.0059 0.39 0.0055 0.47 0.0054 

SPH 0.35 0.0061 0.32 0.0059 0.35 0.0056 0.36 0.0060 

TKW 0.63 0.0049 0.69 0.0043 0.62 0.0045 0.65 0.0044 

TWT 0.55 0.0056 0.45 0.0064 0.57 0.0047 0.56 0.0045 

YLD 0.26 0.0064 0.23 0.0065 0.33 0.0056 0.41 0.0051 

STARCH 0.44 0.0056 0.42 0.0052 0.30 0.0062 0.32 0.0061 

WCPROT 0.22 0.0070 0.17 0.0063 0.29 0.0060 0.34 0.0061 

stratified 

HD 0.21 0.0036 0.33 0.0034 0.43 0.0031 0.40 0.0031 

MAT 0.15 0.0037 0.19 0.0036 0.35 0.0029 0.31 0.0032 

FLSG 0.14 0.0036 0.40 0.0031 0.39 0.0029 0.35 0.0032 

NDVI 0.18 0.0039 0.22 0.0037 0.21 0.0033 0.18 0.0035 

HT 0.37 0.0030 0.33 0.0037 0.51 0.0027 0.38 0.0038 

BIOM 0.03 0.0029 0.05 0.0040 0.17 0.0039 0.16 0.0036 

GW 0.11 0.0036 0.04 0.0036 0.31 0.0029 0.26 0.0035 

HI 0.40 0.0035 0.27 0.0037 0.42 0.0026 0.17 0.0034 

GSQM 0.26 0.0037 0.10 0.0034 0.03 0.0030 0.16 0.0037 

SSQM 0.16 0.0036 0.19 0.0039 0.15 0.0035 0.21 0.0035 

SPH 0.21 0.0036 0.11 0.0035 0.24 0.0033 0.15 0.0033 

TKW 0.36 0.0038 0.45 0.0035 0.43 0.0025 0.45 0.0031 

TWT 0.48 0.0033 0.40 0.0032 0.46 0.0024 0.40 0.0031 

YLD 0.23 0.0037 0.17 0.0037 0.28 0.0031 0.37 0.0026 

STARCH 0.31 0.0035 0.29 0.0034 0.42 0.0025 0.34 0.0031 

WCPROT 0.15 0.0039 0.05 0.0029 0.22 0.0036 0.27 0.0032 

 
 
 
 
 
 

HD 0.20 0.0064 0.42 0.0057 0.52 0.0045 0.57 0.0042 

MAT 0.13 0.0066 0.14 0.0065 0.39 0.0057 0.36 0.0063 

FLSG 0.10 0.0069 0.53 0.0052 0.53 0.0044 0.48 0.0053 

NDVI 0.25 0.0062 0.38 0.0063 0.11 0.0069 0.23 0.0065 

HT 0.43 0.0055 0.41 0.0061 0.52 0.0048 0.42 0.0058 
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GEI CV1 

BIOM 0.09 0.0067 0.00 0.0070 0.25 0.0065 0.21 0.0062 

GW 0.18 0.0068 0.15 0.0067 0.33 0.0061 0.30 0.0052 

HI 0.42 0.0066 0.41 0.0057 0.49 0.0047 0.24 0.0061 

GSQM 0.47 0.0059 0.29 0.0068 0.17 0.0073 0.37 0.0068 

SSQM 0.38 0.0059 0.40 0.0058 0.33 0.0056 0.42 0.0057 

SPH 0.45 0.0059 0.35 0.0060 0.35 0.0058 0.39 0.0067 

TKW 0.63 0.0051 0.68 0.0045 0.61 0.0048 0.66 0.0046 

TWT 0.55 0.0059 0.55 0.0053 0.51 0.0054 0.56 0.0043 

YLD -0.01 0.0069 0.33 0.0060 0.32 0.0062 0.39 0.0057 

STARCH 0.42 0.0064 0.42 0.0050 0.15 0.0069 0.37 0.0053 

WCPROT -0.01 0.0068 0.00 0.0066 0.38 0.0060 0.23 0.0059 

GEI CV2 

HD 0.55 0.0045 0.58 0.0043 0.75 0.0032 0.83 0.0018 

MAT 0.32 0.0059 0.33 0.0055 0.52 0.0049 0.54 0.0049 

FLSG 0.24 0.0070 0.58 0.0048 0.60 0.0039 0.55 0.0047 

NDVI 0.31 0.0056 0.41 0.0057 0.17 0.0072 0.27 0.0062 

HT 0.50 0.0051 0.56 0.0052 0.71 0.0037 0.60 0.0044 

BIOM 0.22 0.0066 0.14 0.0068 0.28 0.0064 0.25 0.0057 

GW 0.30 0.0061 0.23 0.0063 0.42 0.0056 0.37 0.0052 

HI 0.70 0.0046 0.67 0.0050 0.64 0.0040 0.46 0.0051 

GSQM 0.68 0.0037 0.55 0.0050 0.35 0.0060 0.50 0.0057 

SSQM 0.58 0.0048 0.57 0.0047 0.47 0.0054 0.56 0.0044 

SPH 0.81 0.0036 0.77 0.0038 0.67 0.0033 0.71 0.0032 

TKW 0.89 0.0018 0.93 0.0011 0.78 0.0048 0.80 0.0039 

TWT 0.76 0.0033 0.78 0.0028 0.73 0.0031 0.77 0.0028 

YLD 0.19 0.0075 0.33 0.0065 0.44 0.0059 0.49 0.0049 

STARCH 0.59 0.0055 0.63 0.0044 0.27 0.0069 0.35 0.0063 

WCPROT 0.24 0.0064 0.30 0.0065 0.49 0.0051 0.32 0.0056 

 

* Means and standard errors were calculated across 500 replications of Monte-Carlo cross validation, with 80% of 

observations used for training, and the remaining 20% used for validation 

† HD heading date; MAT physiological maturity date; FLSG flag leaf stay green; NDVI normalized-difference 

vegetation index at Zadok’s GS25; HT plant height; BIOM above-ground biomass; GW grain weight; HI harvest 

index; GSQM grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW thousand kernel 

weight; TWT test weight; YLD grain yield; STARCH whole-grain starch content; WCPROT wet chemistry-validated 

whole-grain protein content 

‡ 14Bb Blacksburg, VA 2014; 14War Warsaw, VA 2014; 15Bb Blacksburg, VA 2015; 15War Warsaw, VA 2015 
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Table 2.6: Mean across-environment GEBV-phenotype correlations and their standard errors* 

across varying training/validation set proportions, from 80% training/20% validation to 20% 

training/80% validation for the adjusted means model and the GEI model utilizing the CV1 and 

CV2 cross-validation schemes. 

  80/20 ‡ 60/40 40/60 20/80 

model Trait † mean SE mean SE mean SE mean SE 

adjusted means 

HD 0.53 0.0036 0.50 0.0024 0.46 0.0020 0.39 0.0024 

MAT 0.46 0.0038 0.42 0.0025 0.37 0.0020 0.30 0.0025 

FLSG 0.55 0.0034 0.53 0.0023 0.50 0.0017 0.45 0.0019 

NDVI 0.40 0.0041 0.38 0.0026 0.35 0.0021 0.28 0.0027 

HT 0.57 0.0041 0.54 0.0024 0.51 0.0018 0.44 0.0023 

BIOM 0.27 0.0048 0.26 0.0028 0.25 0.0022 0.22 0.0024 

GW 0.31 0.0043 0.30 0.0027 0.28 0.0021 0.25 0.0024 

HI 0.43 0.0045 0.42 0.0026 0.39 0.0020 0.33 0.0026 

GSQM 0.35 0.0044 0.30 0.0029 0.25 0.0023 0.16 0.0030 

SSQM 0.49 0.0036 0.45 0.0026 0.38 0.0022 0.28 0.0027 

SPH 0.36 0.0041 0.29 0.0027 0.21 0.0023 0.14 0.0026 

TKW 0.66 0.0031 0.62 0.0022 0.57 0.0018 0.48 0.0023 

TWT 0.58 0.0034 0.55 0.0022 0.51 0.0019 0.44 0.0021 

YLD 0.35 0.0039 0.33 0.0026 0.29 0.0021 0.23 0.0025 

STARCH 0.46 0.0040 0.44 0.0026 0.41 0.0021 0.34 0.0026 

WCPROT 0.36 0.0041 0.33 0.0026 0.30 0.0020 0.24 0.0025 

GEI CV1 

HD 0.65 0.0019 0.63 0.0012 0.59 0.0010 0.51 0.0017 

MAT 0.49 0.0018 0.48 0.0012 0.46 0.0009 0.41 0.0014 

FLSG 0.40 0.0024 0.38 0.0016 0.35 0.0012 0.29 0.0014 

NDVI 0.47 0.0026 0.42 0.0016 0.36 0.0013 0.29 0.0017 

HT 0.60 0.0019 0.59 0.0012 0.57 0.0010 0.51 0.0014 

BIOM 0.21 0.0025 0.19 0.0018 0.16 0.0017 0.12 0.0018 

GW 0.43 0.0026 0.41 0.0016 0.36 0.0013 0.28 0.0015 

HI 0.39 0.0035 0.38 0.0023 0.35 0.0016 0.29 0.0023 

GSQM 0.44 0.0033 0.38 0.0024 0.30 0.0024 0.19 0.0024 

SSQM 0.31 0.0030 0.28 0.0020 0.23 0.0017 0.18 0.0017 

SPH 0.43 0.0037 0.38 0.0025 0.31 0.0022 0.22 0.0023 

TKW 0.61 0.0031 0.57 0.0022 0.52 0.0019 0.43 0.0021 

TWT 0.69 0.0019 0.64 0.0013 0.59 0.0012 0.51 0.0015 

YLD 0.68 0.0020 0.66 0.0012 0.60 0.0013 0.42 0.0024 

STARCH 0.70 0.0022 0.67 0.0015 0.62 0.0016 0.49 0.0024 

WCPROT 0.47 0.0030 0.46 0.0018 0.43 0.0015 0.34 0.0022 

 
 
 
 

HD 0.60 0.0020 0.55 0.0012 0.53 0.0010 0.39 0.0023 

MAT 0.35 0.0025 0.29 0.0017 0.33 0.0013 0.23 0.0024 

FLSG 0.31 0.0027 0.25 0.0018 0.25 0.0015 0.19 0.0018 

NDVI 0.34 0.0027 0.25 0.0021 0.23 0.0018 0.13 0.0027 
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GEI CV2 

HT 0.57 0.0019 0.54 0.0011 0.54 0.0010 0.46 0.0015 

BIOM 0.07 0.0031 0.01 0.0020 0.02 0.0018 0.00 0.0019 

GW 0.36 0.0028 0.29 0.0020 0.26 0.0016 0.18 0.0016 

HI 0.58 0.0024 0.57 0.0011 0.48 0.0012 0.36 0.0018 

GSQM 0.46 0.0022 0.40 0.0012 0.31 0.0014 0.19 0.0018 

SSQM 0.20 0.0031 0.17 0.0016 0.18 0.0014 0.19 0.0014 

SPH 0.69 0.0016 0.65 0.0008 0.52 0.0014 0.37 0.0016 

TKW 0.66 0.0025 0.63 0.0012 0.57 0.0010 0.47 0.0015 

TWT 0.68 0.0015 0.61 0.0010 0.56 0.0010 0.45 0.0019 

YLD 0.57 0.0026 0.42 0.0021 0.32 0.0020 0.14 0.0019 

STARCH 0.74 0.0016 0.68 0.0012 0.58 0.0016 0.32 0.0026 

WCPROT 0.53 0.0022 0.51 0.0012 0.46 0.0011 0.25 0.0026 

 

* Means and standard errors were calculated across 500 replications of Monte-Carlo cross validation 

† HD heading date; MAT physiological maturity date; FLSG flag leaf stay green; NDVI normalized-difference 

vegetation index at Zadok’s GS25; HT plant height; BIOM above-ground biomass; GW grain weight; HI harvest 

index; GSQM grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW thousand kernel 

weight; TWT test weight; YLD grain yield; STARCH whole-grain starch content; WCPROT wet chemistry-validated 

whole-grain protein content 

‡ Training/validation set ratio, expressed as % training / % validation 
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Figure 2.1: Correlations among traits calculated from the genotypic BLUEs. Phenotypic 

correlations are below the diagonal; genetic correlations are above. Numbers in the diagonal are 

each trait’s entry-mean heritability calculated across all environments 

 

 

WCPROT wet chemistry-validated whole-grain protein content; TWT test weight; TKW thousand kernel weight; 

NDVI normalized-difference vegetation index at Zadok’s GS25; HT plant height; SSQM spikes per square meter; 

SPH seeds per head; HI harvest index; FLSG flag leaf stay green; STARCH whole-grain starch content; GSQM grains 

per square meter; HD heading date; BIOM above-ground biomass; GW grain weight; MAT physiological maturity 

date; YLD grain yield 

* significant at the 0.05 level; ** significant at the 0.01 level 
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Figure 2.2: Regression of mean across-environment GEBV-phenotype correlations between the 

adjusted means model and the GEI model using the CV1 and CV2 cross-validation schemes 

using the 80%/20% training/validation split 

 

HD heading date; MAT physiological maturity date; FLSG flag leaf stay green; NDVI normalized-difference 

vegetation index at Zadok’s GS25; HT plant height; BIOM above-ground biomass; GW grain weight; HI harvest 

index; GSQM grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW thousand kernel 

weight; TWT test weight; YLD grain yield; STARCH whole-grain starch content; WCPROT wet chemistry-validated 

whole-grain protein content 

 



114 
 

Figure 2.3: Difference in accuracy prediction between the adjusted-means model, the stratified model, and the GEI model utilizing 

the CV1 and CV2 cross-validation schemes. Numeric values represent the percent difference between the listed model, environment, 

and trait combination and the corresponding environment, trait combination as evaluated by the model utilizing adjusted means.   

 

† HD heading date; MAT physiological maturity date; FLSG flag leaf stay green; NDVI normalized-difference vegetation index at Zadok’s GS25; HT plant height; 

BIOM above-ground biomass; GW grain weight; HI harvest index; GSQM grains per square meter; SSQM spikes per square meter; SPH seeds per head; TKW 

thousand kernel weight; TWT test weight; YLD grain yield; STARCH whole-grain starch content; WCPROT wet chemistry-validated whole-grain protein content 

‡ stratified model 

§ GEI model using either CV1 or CV2 cross-validation schemes 

¶ 14Bb Blacksburg, VA 2014; 14War Warsaw, VA 2014; 15Bb Blacksburg, VA 2015; 15War Warsaw, VA 2015 

 

Trait † H
2 14Bb ¶ 14War 15Bb 15War 14Bb 14War 15Bb 15War 14Bb 14War 15Bb 15War

HD 0.94 -31 -26 -31 -33 -35 -6 -17 -4 78 32 20 39

MAT 0.92 -54 -43 -33 -39 -60 -58 -26 -28 -3 -3 0 8 Legend

FLSG 0.78 -37 -21 -25 -29 -56 5 2 0 12 14 15 14 150

NDVI 0.67 -41 -40 -40 -29 -17 3 -68 -13 1 12 -53 4 125

HT 0.92 -18 -19 -19 -31 -6 1 -17 -24 9 39 12 9 100

BIOM 0.41 -77 -70 -35 -41 -25 -100 -4 -22 89 -16 5 -5 75

GW 0.64 -18 -70 -8 -17 30 2 -3 -2 123 62 22 19 50

HI 0.86 -11 -31 10 -14 -6 3 27 21 54 70 68 133 25

GSQM 0.81 -45 -67 -83 -55 2 1 9 5 47 89 129 42 0

SSQM 0.83 -65 -56 -61 -56 -15 -7 -15 -11 28 33 21 18 -25

SPH 0.9 -39 -67 -33 -58 29 8 0 7 130 140 91 96 -50

TKW 0.94 -44 -35 -32 -31 -1 -2 -2 1 41 35 26 22 -75

TWT 0.92 -13 -12 -19 -27 -1 21 -9 1 37 73 30 38 -100

YLD 0.83 -8 -26 -15 -10 -102 46 -4 -5 -24 48 33 17

STARCH 0.78 -29 -32 41 7 -5 0 -50 14 33 48 -11 9

WCPROT 0.76 -31 -73 -25 -21 -103 -100 30 -34 9 72 67 -7

GBLUPS ‡ GBLUPGE CV1 § GBLUPGE CV2 §
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Figure 2.4: Comparison of mean GEBV-phenotype correlations between the adjusted means 

model, and the multi-trait model using the CV1 and CV2 cross-validation schemes using an 80% 

/ 20% training/validation split. Bars represent 95% confidence intervals. Solid and dashed 

horizontal lines represent the across-trait mean GEBV-phenotype correlations calculated using 

the GLUPGE model and the CV1 or CV2 cross-validation schemes, respectively. 

 

BIOM above-ground biomass; GW grain weight; MAT physiological maturity date; YLD grain yield 
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Figure 2.5: Mean across-environment GEBV-phenotype correlations across varying 

training/validation split proportions for selected traits calculated using the adjusted means model 

and the GEI model using the CV1 and CV2 cross-validation schemes 

 

BIOM above-ground biomass; FLSG flag leaf stay green; YLD grain yield; TKW thousand kernel weight 
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Figure 2.6: Mean within-environment GEBV-phenotype correlations across varying 

training/validation split proportions for selected traits calculated using the adjusted means model 

and the GEI model using the CV1 and CV2 cross-validation schemes 

 

BIOM above-ground biomass; FLSG flag leaf stay green; YLD grain yield; TKW thousand kernel weight 

14Bb Blacksburg, VA 2014; 14War Warsaw, VA 2014; 15Bb Blacksburg, VA 2015; 15War Warsaw, VA 2015 
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Figure 2.7a: Genotype-by-environment interaction plot for the trait grain yield (YLD) across the 

four testing environments. Each line corresponds to one of the 41 genotypes tested in all 

environments. 

 

15War Warsaw, VA 2015; 14War Warsaw, VA 2014; 15Bb Blacksburg, VA 2015; 14Bb Blacksburg, VA 2014 
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Figure 2.7b: Genotype-by-environment interaction plot for the trait spikes per square meter 

(SSQM) across the four testing environments. Each line corresponds to one of the 41 genotypes 

tested in all environments. 

 

14War Warsaw, VA 2014; 15War Warsaw, VA 2015; 15Bb Blacksburg, VA 2015; 14Bb Blacksburg, VA 2014 

  



120 
 

CHAPTER III 

Genome-Wide Association Studies in Two Panels of Elite Soft Winter Wheat Lines 
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Abstract 

Myriad studies have identified quantitative trait loci (QTLs) affecting multiple traits in wheat 

(Triticum aestivum). However, few studies have verified the locations and effects of QTLs 

within additional mapping populations. This study utilized genome-wide association (GWA) 

analyses in two panels of soft winter wheat genotypes. The first, the elite panel (EP), consisted of 

273 genotypes of elite breeding germplasm grown in a total of 14 environments. The second, the 

yield validation panel (YVP), consisted of 294 genotypes grown in a total of 12 environments. In 

both panels, the traits heading date, plant height, test weight, and grain yield were examined, in 

addition to stability estimates of test weight and grain yield.  Mixed linear model GWA analysis 

was performed using both a single-locus model (GCTA) and a multi-locus model, which 

calculates the kinship matrix from a subset of markers (FarmCPU). The GCTA model identified 

a total of three significant marker-trait associations (MTAs) in the EP and one in the YVP. The 

FarmCPU model identified a total of 25 significant MTAs in the EP and six in the YVP. 

However, neither method identified any MTAs that were shared across both panels. Ultimately, 

the results suggest that more caution is warranted in regards to the identification of QTLs in 

winter wheat germplasm, and that more rigorous methods of QTL validation should be 

employed. Many QTLs of major effect may be fixed within elite winter wheat lines, indicating 

that further genetic gain would likely be more easily achieved via whole-genome prediction of 

breeding values. 

 

Introduction 

The proliferation of high-density DNA marker data for many species has led to the 

advent and subsequent popularization of linkage mapping procedures. These techniques aim to 

lift the “statistical fog” of quantitative genetics by identifying quantitative trait loci (QTLs), 
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which are the genomic regions that exert a high level of influence on the phenotypic variation 

observed within a population (Mauricio, 2001). The technique of linkage mapping has been used 

extensively to localize QTLs and estimate their phenotypic effects. Linkage mapping identifies 

QTLs within mapping populations, which are purposely-constructed to display widely differing 

phenotypes for a trait of interest. Mapping populations are most often constructed by crossing 

two parents with widely differing phenotypes for a trait of interest, and then selfing the progeny 

for several generations to form recombinant inbred lines (Liu, 1998). Linkage mapping studies 

have been successfully used to identify several stable QTLs of major effect that are widely 

deployed in plant breeding programs today; for instance the Fhb1 QTL conferring partial 

resistance to Fusarium head blight (FHB; Gibberella zea [teleomorph]; Fusarium graminearum 

[anamorph]) in wheat (Waldron et al., 1999). However, linkage mapping with biparental 

populations has the disadvantages of low mapping resolution (due to all recombinations within 

the mapping population descending from a single meiosis), the presence of at most only two 

alleles at a given locus, and the relatively long time required to create and stabilize the 

population (Xu et al., 2016). Genetically pure lines can be developed via doubled haploid 

breeding methods, partially reducing the time required for population development. In addition, 

several mapping population designs have been developed by researchers to increase the 

resolution and/or allelic diversity of linkage mapping studies. These include advanced intercross 

lines (Darvasi and Soller, 1995), the multi-parent advanced generation inter-cross (MAGIC) 

population (Kover et al., 2009), and the Arabidopsis multiparent RIL (AMRIL) population 

(Huang et al., 2011). However, these population designs can only increase resolution and allelic 

diversity up to a point. 
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Obtaining a mechanistic understanding of the phenotypic effects of a QTL requires 

progressing from identification of the QTL to identification of candidate genes within the QTL, 

and ultimately to the identification of quantitative trait nucleotides (QTNs) – the physical 

polymorphisms underlying observed phenotypic variance (Mackay, 2001). Linkage analyses 

may occasionally resolve QTL positions to a great enough degree that only a handful of 

candidate genes are identified (Price, 2006). More frequently, initial mapping localizes a QTL to 

a large chromosomal segment containing dozens or hundreds of genes. In these cases additional 

fine-mapping is required to narrow the physical interval over which a QTL may reside. Such 

studies often have formidable resource requirements, as resolution is largely a function of the 

size of the mapping population. For example, fw2.2, a QTL affecting fruit weight in tomato, was 

the first QTL in plants for which the underlying causative genetic element was discovered. The 

effects of fw2.2 are caused by a single gene (ORFX), which is expressed during flower 

development and controls carpel cell number; a finding which took many years of research and 

required the screening of thousands of progeny (Alpert et al., 1995; Alpert and Tanksley, 1996; 

Frary et al., 2000). 

 

QTL Reliability 

 In addition to the logistical difficulties posed by linkage mapping, past research has found 

that estimates of the chromosomal location and phenotypic effects of QTLs can be highly 

influenced by several factors. QTL mapping studies are vulnerable to the same forms of main 

effect interactions that affect plant breeding trials in general. Mackay (2001) delineated three 

forms of QTL interaction, all of which may affect the reliability of QTL effect estimates: 

1. Genotype × environment interaction (i.e. QTL-environment interaction) 
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2. Genotype × sex interaction 

3. Genotype × genotype interaction (i.e. epistasis; QTL-genetic background interaction) 

Note that in a plant genetics context, the second category, genotype × sex interaction, only 

applies to dioecious species. Mackay further notes that the power to detect epistatic interactions 

between QTLs is generally low in mapping populations, due to factors such as stringent 

multiple-testing corrections, the relative paucity of genotypes containing rarer alleles for multiple 

QTLs, even in large studies, and the segregation of alleles for multiple QTLs aside from those 

being studied. 

The Beavis Effect is another form of bias that may affect the identification of QTLs and 

the estimation of their effects. Using a simulation study, Beavis found that as the size of a 

mapping population is decreased, the power to detect QTLs of smaller effect is diminished. 

Simultaneously, the estimates of the proportion of the genotypic variance explained from QTLs 

that are identified are inflated (1994, 1998). Beavis found that these effect estimates were highly 

overestimated when a biparental population consisting of 100 progeny was used for QTL 

mapping, slightly overestimated when the size of this population was increased to 500 progeny, 

and very nearly equivalent to the true magnitude when the population size was further increased 

to 1,000 progeny. The source of this bias is the multiple-testing correction procedure used to 

estimate a suitable significance threshold; since only those QTL exceeding the significance 

threshold are reported, QTL effect estimates are drawn from a truncated distribution (Xu, 2003). 

Multiple studies have concluded that the estimated locations and effects of QTLs may 

vary substantially, even among studies utilizing the same population. Beavis (1994) summarized 

several QTL mapping studies that all examined the same genetic background: progeny of the 

biparental maize (Zea mays subsp. mays) cross B73 × Mo17. He found that even when using this 
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single population, the location and effects of reported plant height and grain yield QTL were 

inconsistent across experiments. It should be noted that this study suffered from several 

confounding factors, such as the use of different marker sets across the original experiments, and 

differential levels of inbreeding. However, Austin and Lee (1998) performed a study with maize 

in which the same population was tested across environments in a more consistent manner. They 

performed linkage mapping using 185 F6:7 progeny of the biparental cross Mo17 × Hg99, 

evaluated for grain yield and four yield components in both moisture stressed and non-stressed 

conditions in the same location across two years. They found a total of 59 QTLs in at least one 

year, though only ten of these occurred across both years. 

QTL effect inflation may also occur when effects are estimated in the same population 

that is used for mapping (Lande and Thompson, 1990). Melchinger et al (1998) performed a 

study in maize in which they mapped QTLs with restriction fragment length polymorphism 

(RFLP) markers using one set of genotypes, and subsequently estimated the effects of these 

QTLs in an independent validation set of genotypes. They also investigated the power to detect 

QTLs across samples of different sizes, and determined the consistency of QTLs across multiple 

testcrosses. They found that estimated QTL effects were significantly lower when calculated 

using the set of validation genotypes as opposed to the original set of genotypes in which the 

QTLs were mapped. In addition, fewer QTLs were identified when a smaller mapping 

population was used, confirming the predictions of Beavis’ simulation models. Finally, >50% of 

identified QTLs were identified across multiple testcrosses for the majority of traits, with the 

exception of grain yield, for which no QTLs were shared across testcrosses. Given that this 

experiment was carried out using hybrid maize, the authors hypothesized that the lack of 
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common grain yield QTLs among the testcrosses was due to dominance effects (i.e. masking 

effects due to different alleles present within some tester lines). 

This study was followed by one in which cross-validation was used to test the stability of 

QTLs across environments, samples of genotypes, or both by dividing testcrosses of 344 F3 

maize genotypes into various training and validation sets (Utz et al., 2000). They once again 

found an upward bias in estimated QTL effect sizes when using the training set of genotypes to 

both map QTLs and estimate their effects. In addition, they found that sampling genotypes 

generally had a greater effect on QTL effect estimates than sampling environments. The results 

led the authors to recommend the use of cross-validation methods to generate unbiased 

asymptotic estimates of QTL effects. 

Finally, a larger study was carried out utilizing 976 F5 maize testcross progenies across a 

total of 19 environments (Schön et al., 2004). The authors found that both the number of QTLs 

identified and the proportion of genotypic variance that they collectively explained increased as 

the number of genotypes and number of environments were increased. However, this effect was 

influenced more by the number of genotypes than the number of environments. In addition, the 

bias of QTL effect estimates generally decreased as the number of genotypes and environments 

increased. However, despite the large amounts of resources devoted to this project, the maximum 

collective amount of phenotypic variance explained by identified QTLs for any trait was 52.3%, 

indicating that the study exhibited a significant amount of “missing heritability,” a phenomenon 

that has been well-noted in the context of QTL identification (Manolio et al., 2009). 

Studies such as those mentioned above have highlighted some of the limitations of 

linkage mapping, and indeed, there have been relatively few contemporary examples of 

rigorously-validated, stable QTLs for highly quantitative traits being integrated into cultivars in 
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proportion to the number of QTL mapping studies that have been carried out. Bernardo (2008) 

estimated that over 10,000 marker-trait associations had been reported in 12 crop species by 

2008, but examples of QTLs being successfully used in cultivar development remained rare. 

Nevertheless, there are several success stories of QTLs that have been identified and 

subsequently exploited in crop species. One particularly noteworthy example, as previously 

mentioned, is the wheat QTL Fhb1, which confers partial resistance to fusarium head blight. No 

known qualitative resistance against FHB exists. Fhb1 is located on chromosome 3B, and is 

derived from the Chinese cultivar Sumai 3. It was first identified in a population of recombinant 

inbred lines (RILs) derived from the cross Sumai 3 × ‘Stoa’ (Waldron et al., 1999). Shortly 

thereafter, the QTL was also detected in a RIL population derived from the cross ND2603 × 

‘Butte 86’ (Anderson et al., 2001). The phenotypic effects of Fhb1 were subsequently validated 

across multiple genetic backgrounds by forming multiple near-isogenic lines (NILs) differing 

only by the presence or absence of Fhb1 (Pumphrey et al., 2007).  Since the discovery of Fhb1, 

the gene(s) and QTNs underlying its FHB-resistance properties remained elusive. However, a 

recent study succeeded in positionally cloning Fhb1, and found that a pore-forming toxin-like 

(PFT) gene was the causative locus of the QTL (Rawat et al., 2016).  

 

Genome-Wide Association Analysis 

 Genome-wide association (GWA) analyses are an alternative method of identifying 

marker-trait associations, which utilize assembled panels of individuals, rather than the 

purposely-constructed mapping populations used in linkage analysis. In GWA studies, the ability 

to identify QTLs is a result of the ancestral chromosomal recombinations present within the 

panel, rather than the recombinations stemming from one or several meiosis events within a 
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population, as in linkage mapping. In addition, since GWA panels are not derived from two or a 

few parents, allelic diversity at any given locus may be higher (Rafalski, 2010). GWA studies 

typically offer higher resolution than linkage mapping studies, due to the generally more 

extensive recombination and decay of linkage disequilibrium between more distantly-related 

individuals (Zhu et al., 2008). In addition, the ability to assemble panels from a wide range of 

germplasm with varying degrees of relatedness should in theory enable the identification of 

QTLs with effects that are less population-specific than those identified via linkage mapping 

(Jannink et al., 2010). The primary disadvantage of GWA analyses is that QTLs arising from rare 

alleles will typically not be detected, unlike in linkage mapping, where the construction of a 

mapping population will inflate the frequencies of rare alleles (Myles et al., 2009). Methods of 

directly assessing QTL-environment interaction have been implemented in linkage mapping 

(Boer et al., 2007; Malosetti et al., 2008, 2004; Moreau et al., 2004). However, fewer methods 

have been developed specifically for modeling QTL-environment interaction in the context of 

GWA studies, with some notable examples being a multi-trait mixed model (Korte et al., 2012), 

and the use of both linkage mapping and GWAS in the same study (Sterken et al., 2012). 

 In recent years, the reproducibility of scientific studies has become a major concern in 

multiple fields (Open Science Collaboration, 2015), and a source of ongoing debate (Ioannidis, 

2014, 2005; Jager and Leek, 2014). In studies of human diseases, many thousands of GWA 

studies have been performed, but have come under scrutiny for yielding largely irreproducible 

results (Hirschhorn et al., 2002). This has been due in large part to the use of inadequate sample 

sizes, low coverage of the overall genetic variability within a population, and liberal significance 

thresholds (Zeggini and Ioannidis, 2009). 
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 Very few assessments of GWA study reproducibility have been carried out in the context 

of plant breeding and genetics, though the accounts that have been written suggest similar 

problems as those encountered in human studies. One GWA study of southern leaf blight 

(Cochliobolus heterostrophus [teleomorph]; Bipolaris maydis [anamorph]) carried out in a maize 

nested association mapping (NAM) panel found 245 significant MTAs (Kump et al., 2011). The 

maize NAM panel consists of ~5,000 genotypes, and shares characteristics of both linkage 

mapping populations and GWA panels, as it consists of RILs descended from multiple founder 

lines crossed to a single common parent line (Yu et al., 2008). Thus, in studies utilizing a NAM 

panel, a GWA analysis is typically performed following a joint linkage mapping of the multiple 

RIL families. Kump et al. utilized a 1,106-marker map for performing the initial joint linkage 

mapping, and 1.6 million maize haplotype map (HapMap) v1 SNPs (Gore et al., 2009) for 

performing the subsequent GWA analysis. A later analysis of the same phenotypic data using an 

updated 7,386-marker map for joint linkage mapping and 28.5 million maize HapMap v2 SNPs 

(Chia et al., 2012) identified 192 significant MTAs, but found that only 6% of the combined set 

of significant SNPs from both studies co-localized within 10 Kbp windows (Bian et al., 2014). 

Subsequently, four additional GWAS models were compared to determine the effects of model 

input parameters (e.g. genetic map used for joint linkage mapping, number of SNPs used for 

GWA analysis) on the identification of marker-trait associations. The authors found that the 

GWA analyses were highly sensitive to the model inputs and for the best match between two 

GWA models only 26% of MTAs overlapped within 10Kb windows. 

 In the present study, GWA analyses were conducted on two separate panels grown in 

separate sets of environments to assess the traits heading date, test weight, plant height, and grain 

yield, as well as stability estimates for test weight and grain yield.  The objectives of this study 
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were to (i) identify significant MTAs occurring within one or both mapping panels, and (ii) 

assess the stability of significant MTAs occurring in both panels. The same set of SNPs 

generated via a genotyping-by-sequencing (GBS) protocol was utilized in both panels, in order to 

reduce any bias due to differences in local and genome-wide marker densities. 

 

Materials and Methods 

Germplasm and Testing Environments 

Two separate genotype panels were included in the study. The first was the elite panel 

(EP), which consisted of 273 elite soft winter wheat lines sourced from breeding programs at 

Purdue, Cornell, University of Kentucky, The Ohio State University, Virginia Tech, University 

of Maryland, University of Missouri, Michigan State University, University of Illinois, and the 

University of Arkansas. A list of genotypes included in the EP is presented in Table F.1. The 

second was the yield validation panel (YVP) that consisted of 294 elite soft winter wheat lines 

sourced from breeding programs at Purdue, University of Kentucky, The Ohio State University, 

Virginia Tech, University of Maryland, University of Missouri, and University of Illinois. The 

YVP consisted of multiple sets of two or more full sibling lines. A list of the genotypes included 

in the YVP is presented in Table G.1. Only two check lines were shared in common between the 

EP and the YVP and included the Purdue genotype 05247A1-7-3-120 and the Missouri genotype 

MO080864. 

 

Phenotypic Data Collection and Analysis 

The EP was grown in the 2011-2012 and 2012-2013 winter wheat growing seasons in a 

total of 14 environments located in Kentucky, Maryland, Missouri, Ohio, and Virginia. The 
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experimental sites located at Wooster, OH and Warsaw, VA utilized two nitrogen application 

rates – one moderate (100 kg ha-1), and one low (67 kg ha-1). All other locations only used the 

moderate application rate. An environment was defined as each unique combination of year, 

location, and nitrogen treatment rate. 

The YVP was grown in the 2013-2014 and 2014-2015 winter wheat growing seasons in a 

total of 13 environments located in Kentucky, Missouri, Ohio, and Virginia. As with the EP, an 

environment was defined as a unique combination of year, location, and nitrogen application 

rate. For the YVP, the differential nitrogen applications (moderate and low) were only applied in 

Columbia, MO and Wooster, OH, with all other locations only receiving the moderate nitrogen 

application rate. All environments in which the EP and YVP were grown are listed in Table H.1. 

Genotypes were planted in standard yield test plots which varied slightly by location 

depending on equipment used and the number and length of rows planted.  In Virginia, the wheat 

lines of both tests were planted in individual plots with a length of 2.74 m, width of 0.91 m, row-

spacing of 15.2 cm, and a harvested area of 2.49 m2. The design utilized for each environment 

consisted of an incomplete block design, with repeated checks included in each block. For the 

EP, the check line ‘Branson’ was planted eight times within each block, with each block 

consisting of 64 plots (56 plots not including the check plots). Therefore, a single replication of 

the experimental design consisted of a total of five blocks. For the YVP, four separate check 

lines were randomly located once within each block; these were Branson, ‘Shirley’, ‘Milton’, 

and Pioneer ‘25R47’. Once again, each replication consisted of a total of five blocks, and each 

block consisted of a total of 60 plots (56 plots not including checks). 

The traits heading date (HD), plant height (HGT), test weight (TW), and grain yield 

(YLD) were evaluated in both the EP and YVP. However, as shown in Table H.1, all traits were 
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not evaluated in all environments. Heading date was recorded as the Julian date at which 50% of 

plants within a plot had extruded heads from the boot (Zadoks et al., 1974). Plant height was 

recorded as the height, in centimeters, from the soil surface to the tip of the heads (excluding any 

awns if present). Once plants had fully ripened (Zadoks growth stage 92), plots were harvested 

using plot combines. Test weight (kg hl-1) and grain moisture content (%) were either measured 

during harvest using the plot combine (if using a data-collecting combine), or else post-harvest 

using a GAC® 2500-AGRI grain analysis computer (Dickey-John® Corporation, Auburn, IL). 

Grain yield was calculated from the total harvested grain from each plot using units of kg ha-1 at 

13.5% moisture equivalence. 

 Analysis of phenotypic data was carried out using a two-step approach. First, the repeated 

checks were used to calculate correction factors for each individual block/trait combination using 

the formula below: 

 𝑌𝑎𝑑𝑗 = 𝑌𝑟𝑎𝑤 − (𝜇𝑊 − 𝜇𝐴) (1) 

A plot’s phenotypic value adjusted for block effect (Yadj), is a function of the unadjusted 

phenotypic value for that plot (Yraw), minus the difference between the mean of replicated checks 

within a block (µW) and the mean of the replicated checks across all blocks (µA). For the YVP, 

which had four separate repeated check genotypes, all checks were pooled together to perform 

block corrections. 

  Since the EP and the YVP both contained many environments with single-replication 

designs, the following random effects model was fit using the lme4 package (Bates et al., 2015) 

in the R statistical computing environment (R Core Team, 2015): 

 𝑌𝑖𝑗 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝜀𝑖𝑗 (2) 
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The block-adjusted phenotypic response (Yij) is a function of the overall mean (µ), the ith 

genotype (Gi), the jth environment (Ej), and the residual error (𝜀𝑖𝑗). All effects were treated as 

random. Within-environment genotypic means were calculated for all environments containing 

two replications prior to running the model described in equation (2). For each trait, variance 

components for all effects were estimated (note that variance due to GEI cannot be directly 

assessed, and is contained within the residual variance). Entry mean heritability was calculated 

for each trait using the following equation: 

 
𝐻2 =

𝜎𝑔
2

(𝜎𝜀
2/𝐸) + 𝜎𝑔

2
 

(3) 

Entry mean heritability (H2) is a function of genotypic variance (𝜎𝑔
2), the residual variance (𝜎𝜀

2), 

and the number of environments (E). In addition, genotypic best-linear unbiased predictors 

(BLUPs) were calculated from the model described in equation (2) for use as the phenotypic 

input for the subsequent GWAS analyses. 

 

Trait Stability Estimation 

 For the traits grain yield and test weight, stability estimates were generated using both  

Eberhart and Russel regression (Eberhart and Russell, 1966) and an additive main effect and 

multiplicative interaction effect (AMMI) model (Gauch, 1988), as described by Huang et al. 

(Huang et al., 2016). Briefly, ERR is a simple linear regression: 

 𝑦𝑖𝑗 = 𝜇𝑖 + 𝛽𝑖𝐼𝑗 + 𝜀𝑖𝑗 (4) 

Where yij, the phenotypic response of the ith genotype in the jth environment, is a function of 𝜇𝑖, 

the mean phenotype of the ith line across all environments, Ij, an environmental index defined as 

the mean performance of all genotypes within environment j, and the residual error 𝜀𝑖𝑗. The 
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regression coefficient, 𝛽𝑖, then functions as the stability estimate for the ith genotype. The 

AMMI model for the phenotypic response (y) of the ith genotype in the jth environment is: 

 𝑦𝑖𝑗 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + ∑ 𝜆𝑛𝛾𝑖𝑛𝛿𝑗𝑛 + 𝜀𝑖𝑗

𝑁

𝑛=1

 (5) 

Where µ is the grand mean, Gi is the main effect of the ith genotype, Ej is the main effect of the 

jth environment, 𝜆𝑛 is the eigenvalue of the nth interaction principal component (IPC) axis, 𝛾𝑖𝑛 

and 𝛿𝑗𝑛 are the genotype and environment PCA scores, respectively, for IPC axis n, N is the total 

number of IPCs retained in the analysis, and 𝜀𝑖𝑗 is the residual error. For the AMMI stability 

estimates, the first 10 and 3 IPCs were used for yield and test weight, respectively. 

 

Genotyping 

 Genomic DNA was isolated from fresh green leaf tissue using a cetyltrimethylammonium 

bromide (CTAB) extraction protocol (Saghai-Maroof et al., 1984). Genotyping-by-sequencing 

was performed at USDA Agricultural Research Service (ARS) facilities using a PstI-MseI 

double digest of genomic DNA. The SNP calling was performed using TASSEL-GBS in 

TASSEL 5.2.24 (Bradbury et al., 2007; Glaubitz et al., 2014). The Burrows-Wheeler aligner (Li 

and Durbin, 2009) was used to align SNPs to the International Wheat Genome Sequencing 

Consortium’s whole genome assembly v0.4. In addition to the GBS genotyping described above, 

several major gene loci highly associated with agronomic performance were genotyped using 

simple sequence repeat (SSR) markers and LGC® KASPTM SNP genotyping assays for the YVP 

only. 
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SNP Quality Filtering and Imputation 

 Prior to imputation of missing genotypes, the genotypic dataset for the EP and YVP 

material was jointly filtered to remove SNPs with missing data frequencies >50%, heterozygous 

call frequencies >15%, and minor allele frequency <5%. In addition, all unaligned SNPs were 

removed. After the initial filtering, missing data in the genotypic dataset was imputed using 

LinkImpute (Money et al., 2015). LinkImpute implements a nearest-neighbor algorithm using 

both the k nearest individuals and the l SNPs in highest LD with the specific missing SNP 

genotype that must be imputed. LinkImpute was used with its default settings, which optimize 

the number of nearest individuals and SNPs via data masking simulations at 10,000 randomly 

selected genotypes. After imputation, the dataset was once again filtered to remove SNPs with 

minor allele frequencies <5%. The imputed genotypic dataset was finally filtered in PLINK 1.9 

(Chang et al., 2015) to remove all but one SNP in clusters separated by <64bp, as this is the tag 

size used in the TASSEL-GBS SNP-calling pipeline, (i.e. all SNPs located on the same tag 

should have the same genotype prior to imputation). In addition to the positional filtering, 

PLINK was used to remove all but one SNP in groups of SNPs in perfect LD (r2 > 0.99) using a 

200-SNP sliding window, advancing by 5 SNPs with each step. 

 

Population Structure and Linkage Disequilibrium 

 Prior to performing GWAS, population structure for the EP and YVP material was 

examined via principle component analysis (PCA) of the filtered and imputed genotypic data 

using the SNPRelate package (Zheng et al., 2012) in R. The fixation index (FST) was calculated 

in SNPRelate using the method of Weir and Cockerham (1984) to determine the degree of 

genetic differentiation between the EP and YVP. Linkage disequilibrium (LD) was estimated on 
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a pairwise basis for all intra-chromosomal SNPs in the separate EP and YVP genotypic datasets, 

yielding 3,305,761 comparisons. The LD decay was plotted for the A, B, and D genomes 

separately by randomly selecting 20,000 pairwise comparisons from each genome. Then LD was 

plotted for each separate chromosome of the B genome using 20,000 randomly-selected pairwise 

comparisons from each chromosome. In addition, inter-chromosomal LD was calculated between 

chromosomes within each genome. For each genome, 1,000 SNPs were randomly selected to 

form inter-chromosomal pairs, yielding a total of 470,385 comparisons in the EP, and 471,019 

comparisons in the YVP. For intra-chromosomal SNPs, r2 values for pairwise LD comparisons 

were plotted against physical distance, and a second-degree locally-weighted scatterplot 

smoothing (LOESS) curve was fit to the data (Cleveland, 1979).  For LD estimates from non-

linked (i.e. inter-chromosomal) loci, the 98th percentile of the LD distribution was defined as the 

linkage-disequilibrium critical value.  All r2 values exceeding this value were assumed to have 

been caused by genetic linkage (Breseghello and Sorrells, 2006). 

 

Genome-Wide Association Analysis 

 For each trait, genome-wide association analysis was performed using the Genome-Wide 

Complex Trait Analysis (GCTA) software (Yang et al., 2011), using a leave-one-chromosome-

out (LOCO) method in which a separate genetic relationship matrix (GRM) is estimated from 

SNP data for each chromosome. Specifically, the LOCO approach entails excluding all SNPs 

located on the chromosome of the SNP undergoing testing when estimating the GRM. For each 

trait, permutation testing was performed to empirically determine a significance threshold by 

randomly shuffling phenotypic data and included principle components in unison, performing the 
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GCTA-LOCO analysis on the randomly-reordered data, recording the lowest observed p-value, 

and repeating this process 1,000 times. 

In addition, GWA analysis was run on each trait using the Fixed and random model 

Circulating Probability Unification (FarmCPU) model (Liu et al., 2016) in R. Once again, 

permutation testing was performed for 1,000 iterations for each trait. In addition, to enhance 

confidence in QTLs with p-values exceeding the significance threshold in FarmCPU, a 

bootstrapping method utilized by Wallace, et al. (2016) was implemented, in which 10% of the 

phenotypic observations were replaced with missing data for a total of 100 runs of the model. 

Subsequently, for each trait the resample model inclusion probability (Valdar et al., 2009) was 

calculated for each SNP by determining the fraction of bootstraps in which its p-value exceeded 

the permutation-derived significance threshold. The value 0.05 was chosen as a lower threshold 

for the RMIP as it coincided with the point of inflection in the RMIP density curve (data not 

shown). 

For each model, panel, and trait combination, the determination of the number of 

principle components to include to correct for population structure was based upon observation 

of the proportion of variance explained by each genotypic PC, as well as the inflation of p-values 

observed in preliminary GWA runs in which population structure was not corrected for. 

Ultimately, the first five PCs were included to correct for population structure in all GCTA 

models, as well as the FarmCPU models for direct trait measurements (i.e. not trait stability 

estimates). For the trait stability estimates analyzed with FarmCPU, the first two genotypic PCs 

were used. 
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Results 

General Genotype Performance 

 Summary statistics of general performance of genotypes for all environments and for 

each panel are reported in Table 3.1. As previously stated in the materials and methods, a list of 

the individual environments included in the study is given in Table H.1. The environments and 

genotypes included in the YVP were characterized by a later mean heading date than that 

observed in the EP (136 Julian days vs. 125), as well as lower mean grain yields (4,838 kg ha-1 

vs. 5,447). The across-environment standard deviations for each trait were highly consistent 

across both panels, with the exception of heading date, for which the standard deviation was over 

twice as high in the EP (14.05) vs. the YVP (6.34). The entry-mean heritability values calculated 

for each trait were generally highly consistent between both panels; the trait test weight exhibited 

the greatest difference in calculated heritability between the two panels (0.9 in the EP vs. 0.87 in 

the YVP), while all other traits exhibited differences in heritability values between the two 

panels of 0.01 or less. The trait with the lowest heritability was grain yield, with values of 0.79 

and 0.8 in the EP and YVP respectively, while the trait with the highest heritability was plant 

height, with values of 0.96 and 0.95 in the EP and YVP respectively. 

 Patterns of GEI and similarity of environments were assessed for each trait using GGE 

biplots. The results for the EP are displayed in Figures I.1 – I.4, while those for the YVP are 

displayed in Figures J.1 – J.4. Note that genotype labels are suppressed in these figures for the 

sake of clarity. In the context of GGE biplots, a mega-environment is defined as a set of 

environments in which a single genotype exhibits the “best” performance. This is illustrated by 

the polygon demonstrating “who won where”, where each vertex represents a genotype that 

performed best in a set of environments (Yan and Kang, 2003). Mega-environments are therefore 

delineated by the dashed lines radiating outward from the origin. Note that many of the identified 
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mega-environments may be hypothetical (i.e. not containing any of the environments included in 

the study). 

 A majority of traits demonstrated divergent GEI patterns across both panels. For instance, 

for the trait heading date, environments included in the EP mostly clustered within a single 

mega-environment, with only the 2012 Virginia and Maryland environments clustering into a 

second mega-environment. In contrast, for heading date in the YVP, environments were spread 

across three mega-environments, with both Virginia environments clustering in one mega-

environment, the 2015 Wooster, OH environments clustering in a second, and all others falling 

within a third. The opposite trend was observed for the trait plant height, where the EP 

environments fell within three mega-environments, while all YVP environments (with the 

exception of the 2014 Kentucky environment) fell within a single mega-environment. The trait 

test weight exhibited the most consistent GEI patterns across the EP and YVP. In both panels, 

environments were split into three mega-environments, with the moderate and low nitrogen 

treatments of one year’s Wooster, OH test forming a more distant cluster. In both panels, grain 

yield exhibited the most environmental diversity, with environments falling within four separate 

mega-environments. 

 

Population Structure and Linkage Disequilibrium 

 Many of the population characteristics found in the allele-based breeding panel (Chapter 

1) were also observed in both the EP and YVP. For instance, neither panel demonstrated very 

high levels of population substructure, with the first PC of the EP genotypic data explaining 

approximately 5.5% of variation, and the first PC of the YVP genotypic data explaining 

approximately 6% of variation (Figure 3.1a). Furthermore, no well-defined point of inflection 
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was observed in the genotypic PCA data (Figures 3.1a and 3.1b), suggesting significant 

admixture within each panel. 

 The two panels were also highly related to each other, as expected, with a FST value 

between the two of 0.009. The most significant portion of population structure within both panels 

appears to be explained by the presence or absence of the Sr36 stripe-rust resistance gene, as 

determined by KASP assay. It should be noted that the YVP was genotyped with this assay, 

while the EP was not. However, based upon the clustering of genotypes in the principal 

component biplot shown in Figure 3.2, it appears likely that the EP (designated by “no data” 

points in the biplot) can likewise be divided into two separate groups based upon the presence or 

absence of Sr36. In contrast, neither the 1B:1R nor the 1A:1R alien translocations from rye 

(Secale cereale) appeared to explain a significant proportion of the observed population structure 

(data not shown). 

 The number of SNPs assigned to each chromosome varied widely by genome (Figure 

3.3), with B-genome chromosomes generally having the greatest saturation. However, 

chromosomes 4A and 7A did have higher numbers of assigned SNPs than their B-genome 

homeologous counterparts. Chromosomes on the D genome invariably had the lowest numbers 

of SNPs for every homeologous chromosome set. The 98th percentile of a sample of pairwise LD 

estimates for inter-chromosomal loci was used as a significance threshold for pairwise LD 

estimates for intra-chromosomal loci. All three genomes in both panels exhibited mean LD decay 

below this threshold at a distance of between 10Mb and 15Mb (Figure 3.4a). One exception to 

this was the D genome in the YVP, which exhibited a local “valley” of LD at ~12.5Mb, with a 

slight subsequent increase in mean LD at ~17Mb. This could be due to the exceptionally poor 

SNP saturation of several chromosomes in the D genome, in particular chromosome 4D, which 
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only contained 204 SNPs. In both the EP and YVP, chromosome 2B exhibited more extensive 

LD than other chromosomes within the B genome (Figure 3.4b), suggesting that this LD is due 

to the 2G:2B translocation. 

 

Genome-Wide Association Studies 

 A greater number of significant MTAs were identified in the EP than the YVP when 

using either the GCTA or FarmCPU algorithms. Within each panel, the FarmCPU algorithm 

identified far more significant MTAs than the GCTA algorithm. In total, GCTA identified four 

MTAs exceeding the empirically-determined 0.05 alpha experiment-wide threshold (Table 3.2). 

This included three MTAs in the EP (two for plant height and one for test weight stability), and 

one MTA for ERR test weight stability in the YVP. FarmCPU identified a total of 31 significant 

MTAs (Table 3.3); 25 of these were in the EP, with the remaining 6 in the YVP. The FarmCPU-

identified MTAs in the EP affected the traits heading date, plant height, and test weight; as well 

as the ERR stability estimates for test weight and yield, and the AMMI stability estimate for 

yield. The FarmCPU-identified MTAs in the YVP affected the traits heading date and plant 

height. Notably, no significant MTAs were identified for yield per se. Of the four MTAs 

identified by GCTA, two were also identified by FarmCPU. These were S5D_39764565 (for 

ERR test weight stability) and S6A_416179127 (for plant height); both of these MTAs occurred 

in the EP. 

Overall there was little evidence to suggest the presence of any pleiotropic regions in the 

GCTA or FarmCPU results of either panel (Tables 3.2 and 3.3). In the FarmCPU EP results, two 

significant MTAs on chromosome 3A (S3A_15558351 S3A_699195908) were associated with 

the ERR stability estimate for test weight and plant height, respectively. Three significant MTAs 
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on chromosome 4B (S4B_25886179, S4B_289037575, and S4B_415342383) were associated 

with the traits plant height, ERR test weight stability, and ERR yield stability, respectively. Two 

MTAs located on chromosome 5B (S5B_42564147 and S5B_550563262) were associated with 

the ERR test weight stability estimate and heading date. Two MTAs on chromosome 5D 

(S5D_39764565 and S5D_543090768) were associated with the ERR test weight stability 

estimate, and the AMMI stability estimate for yield, respectively. Three MTAs on chromosome 

6A (S6A_416179127, S6A_569599082, and S6A_99931123) were associated with plant height, 

and the ERR and AMMI yield stability estimates, respectively. Finally, three MTAs on 

chromosome 7B (S7B_641908294, S7B_653950790, and S7B_724034080) were associated with 

the ERR stability estimates for yield and test weight. In the YVP panel, two MTAs on 

chromosome 3B (S3B_23975004 and S3B_782374448) were associated with heading date and 

plant height, respectively. However, for all the groups of MTAs located on common 

chromosomes listed above, LD between individual SNPs tended to be quite low, with a 

maximum genotypic r2 value of 0.16 between the SNPs S6A_99931123 and S6A_416179127 in 

the EP, suggesting that any significant MTAs located on common chromosomes likely do not 

reside within any common QTLs. 

In addition, there was no evidence of any MTA being identified across both panels. In the 

FarmCPU analysis, MTAs for plant height were identified at two sites (S4B_25886179 and 

S4B_662927988) on chromosome 4B in the EP and YVP, respectively. However, the genotypic 

r2 between these two SNPs in the joint EP/YVP genotypic data was low (0.002), suggesting that 

these two SNPs represent separate QTLs. The maximum genotypic r2 value between two 

significant MTAs (0.44) occurred between the loci S6A_68995191 and S6A_416179127, which 

were associated with the trait heading date in the YVP and plant height in the EP. However, the 
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physical distance between these two SNPs is ~347Mb, making it highly unlikely that the linkage 

disequilibrium between these two loci is being caused by physical linkage. 

 

Discussion 

 The two panels used in this study were highly genetically homogeneous with respect to 

each other, indicating that they could be assumed to have been sampled from a single population. 

Indeed, the division of genotypes between the two panels did not coincide with any obvious 

patterns of population structure present within the joint genotypic data (data not shown). Instead, 

it was the presence or absence of the Sr36 stem rust resistance gene that best described the 

population structure of both panels (Figure 3.2). As noted in chapter 1, Sr36 is located on the 

2G:2B alien translocation, which originated from Triticum timopheevi (AmAmGG) (Brown-

Guedira et al., 1996, p.; Nyquist, 1962). An LD analysis of the Sr36 locus in the allele-based 

breeding panel in chapter 1 demonstrated very high levels of LD throughout most of 

chromosome 2B, indicating that the 2G:2B translocation has yet to undergo significant LD decay 

since its incorporation into common wheat breeding germplasm. While the Sr36 locus was only 

interrogated in the YVP in the present study, the presence of higher degrees of long-range LD in 

chromosome 2B as opposed to the rest of the B genome (Figure 3.4b) indicates that the EP and 

YVP likely both exhibit a similar high-LD block present on 2B. 

 Given the close interrelatedness of the two testing panels, it is somewhat surprising that 

no common MTAs were identified between them for any of the assessed traits. In light of the 

very few significant MTAs identified in either panel by the conventional mixed model approach 

implemented in GCTA (Table 3.2), it is likely that the study was underpowered. The results of 

GWA analyses using elite breeding material carry the advantage of being more immediately 
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applicable to the objectives of an applied breeding program (Spindel et al., 2015), though one 

potential complication arising from such studies is an overall lack of genetic diversity. Given the 

relatively homogeneous nature of the tested germplasm, it is likely that many QTLs of major 

effect are already fixed within each panel. Ultimately, much larger, more powerful experimental 

designs may be required for further genetic dissection of traits in elite wheat germplasm, one 

example being the nested association mapping panel, which has the advantage of compensating 

for the effects of population structure by design (Yu et al., 2008). However, as previously noted, 

even this design has delivered inconsistent GWA results in studies of maize Southern Leaf 

Blight. Nevertheless, the FarmCPU method did identify many MTAs that GCTA failed to detect 

(Table 3.3). However, these QTLs were not reliably detected across both panels, suggesting that 

they are highly influenced by interaction effects, as will be discussed below. Despite a general 

inability to detect reliable MTAs, both panels did still demonstrate phenotypic variation for each 

trait (Table 3.1), suggesting the continued presence of exploitable genetic variation. However, 

this variation may arise largely due to the interaction of many loci of slight effect, as described 

by Fisher’s infinitesimal model (Fisher, 1918). Therefore, the recent trend of using genome-wide 

marker data for predictive modelling of plant phenotypes rather than genetic dissection of traits 

(Jannink et al., 2010) would likely be well suited to germplasm panels such as those utilized 

herein.    

Out of the traits that were analyzed in this study, heading date, as assessed using the 

GCTA model, came closest to identifying MTAs common to both the EP and YVP (Figure 

3.5a). However, no SNPs exceeded the significance threshold for either panel. The SNP 

appearing closest to the top-right portion of the graph (i.e. the SNP with the highest combined -

log(p) values for both the EP and YVP) is S7D_69293982.  This pattern was not evident in the 
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FarmCPU data (Figure 3.5b). As FarmCPU implements a multi-locus model taking LD between 

SNPs into account, it indicates that a large proportion of SNPs appearing to show concordance 

between the EP and YVP GWA analyses in Figure 3.5a may in fact simply be in LD with one or 

a few QTLs of minor effect that are present in both panels, albeit without a strong enough 

association to surpass the multiple-testing significance thresholds for either panel.  In the 

FarmCPU model, S7D_69293982 had a -log(p) value of 4.28, a value that is reasonably high, but 

nevertheless not qualifying as significant. In contrast, this SNP’s -log(p) value in the EP (0.72) 

was unequivocally non-significant. A majority of traits analyzed using the GCTA algorithm 

exhibited bivariate -log(p) value distributions similar to that shown for the trait test weight in 

Figure 3.5c, with no SNPs demonstrating large -log(p) values in both panels. 

As noted in the introduction, QTL effect estimates will be affected by both QTL-

environment interaction and QTL-genetic background interaction, and in the case of the study 

detailed herein, these two interaction terms are confounded. Increasing the number of testing 

environments and using multiple mapping populations represents a simple, though “blind” 

approach to QTL validation, through which the confounding of QTL interaction effects may be 

lessened, but not resolved outright. As previously mentioned, experimental approaches have 

been developed specifically for evaluating QTL × environment interactions in linkage mapping 

studies (Boer et al., 2007; Malosetti et al., 2004; Moreau et al., 2004), as well as in GWA studies 

(Korte et al., 2012), though the latter was not used herein due to the large number of 

environments involved. 

In addition, statistical methods exist for the detection of QTL × genetic background 

interaction; one straightforward approach being the implementation of a Monte Carlo sampling 

procedure in which a QTL mapping experiment is repeated many times, each time using only a 
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random portion of the mapping population (Beavis, 1994). The bootstrapping method used to 

calculate RMIP values for the FarmCPU MTAs in the present study is an example of such a 

Monte Carlo procedure. One of the two MTAs identified by both the GCTA and FarmCPU 

methods, S5D_39764565 (associated with the ERR estimate of test weight stability), did have 

the highest RMIP of any of the significant FarmCPU MTAs, at 0.66. However, the other MTA 

identified by both methods, S6A_416179127 (associated with plant height), had a RMIP of 0.28. 

Overall, there was no discernable relationship between a MTA’s effect size (standardized in 

relation to the trait mean), p-value, or its RMIP value (data not shown). In the present study, a 

RMIP threshold of 0.05 was chosen based on a point of inflection in the density curve of the 

RMIP values of all FarmCPU-identified MTAs passing the chosen significance threshold (data 

not shown). However, in many cases it may be advisable to select a more stringent RMIP 

threshold to further limit identified MTAs to those that are more stable in relation to varying 

genetic backgrounds. For instance, Valdar et al. (2009) used a RMIP threshold of 0.25 to classify 

the most stable and robust MTAs. 

Ultimately, while it is advantageous to detect patterns of QTL-environment and QTL-

genetic background interaction, this information is of little practical use if it only identifies 

relatively unstable QTLs that cannot be deployed in applied breeding programs. The present 

study attempted to combine the identification of novel QTLs in two separate panels using GWA 

methods with a comparison of the results between panels. Searching for QTLs in multiple 

mapping populations or panels is a typical first step in validation, but is generally insufficient to 

test QTL effects for applied purposes due to confounding of the two forms of QTL/main effect 

interaction described above. In a GWA framework, a more elegant solution would be the use of a 

multi-trait mixed linear model (Korte et al., 2012), here considering the measurement of the 
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same trait in separate environments. However, the relatively large number of environments used 

herein could make this a burdensome task. An experimental design similar to that employed by 

Utz et al (2000) could be adapted for GWA studies, which would allow for bootstrapping of 

environments, genotypes or both in order to assess QTL stability across environments and 

genetic backgrounds. In addition, such a design would allow for the separation of QTL 

identification and effects estimation into different mapping populations. However, the time and 

resources required to establish a project of this scale were beyond the scope of the present study. 

Meta-analyses of linkage mapping studies (Goffinet and Gerber, 2000) and GWA studies 

(Evangelou and Ioannidis, 2013; Zeggini and Ioannidis, 2009) offer modelling methods for 

standardizing and summarizing the results of multiple individual QTL identification 

experiments. However, the winter wheat research community has not had access to the same 

degree of standardized, curated data that has been available to human genetics researchers. In 

addition, the issue of “real world” validation of QTL effects remains. Pumphrey et al (2007) 

developed a method of creating multiple near-isogenic lines (NILs) to validate the effects of the 

Fhb1 QTL. This method has the advantages of minimizing QTL-genetic background interaction 

for each NIL, and of allowing for the estimation of the effects of QTL introgression in a variety 

of genetic backgrounds used within an applied breeding program, making it somewhat more 

pragmatic. However, this technique requires a target QTL that is well characterized, and requires 

that this QTL can be reliably introgressed into various genetic backgrounds. 

 

Conclusion 

 Previous studies have found that GWA analyses can be highly influenced by model 

inputs, and that QTLs identified via linkage mapping can be highly influenced by interaction 
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effects. The present study was not designed specifically to quantify the reliability of significant 

MTAs, but the lack of findings that were consistent across both panels included in the study 

suggests that substantial QTL-environment and QTL-genetic background effects are still present 

when utilizing assembled panels of genotypes for GWA analysis. In addition, it cannot be ruled 

out that future mapping of novel, reliable QTLs in winter wheat will simply require larger 

populations in order to resolve QTLs of smaller effect. Ultimately, in an applied plant breeding 

setting, GWA methods may be better suited to screening for loci of major effect, such as disease 

resistance genes, in order to enable subsequent introgression into breeding germplasm. In many 

cases, elite breeding lines may only be segregating for QTLs of more moderate effect, such that 

genome-wide marker data may be put to better use through genome-wide prediction of 

phenotypes. 
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Table 3.1: Trait descriptive statistics, variance components, and entry mean heritability for genotypes in the elite panel and yield 

validation panel 

 
   Descriptive Statistics§ Variances and Heritability§ 

Panel † Trait ‡ Units n Envs min mean max SD CV σ2 G σ2 E σ2 ε H2 

EP 

HD Julian days (Jan1) 14 90 125 150 14.05 0.11 5.65 203 3.95 0.95 

HGT cm 12 54.23 89.49 155.1 11.62 0.13 42.23 81.59 21.9 0.96 

TW g L-1 12 503.6 756 880.4 32.75 0.04 171 720.7 218.4 0.90 

YLD kg ha-1 12 1770 5447 9272 1197 0.22 99874 1075033 321971 0.79 

AMMI_TW - 12 2.785 6.787 28.09 2.759 0.41 - - - - 

AMMI_YLD - 12 0.266 10.64 33.12 5.823 0.55 - - - - 

ERR_TW - 12 0.525 1.019 1.742 0.198 0.19 - - - - 

ERR_YLD - 12 0.364 0.978 1.544 0.179 0.18 - - - - 

YVP 

HD Julian days (Jan1) 9 120 136 151 6.34 0.05 2.43 49.4 1.76 0.94 

HGT cm 11 56.39 86.1 128.3 8.96 0.10 31.2 30.45 19.39 0.95 

TW g L-1 8 572.2 727 940.7 38.41 0.05 183.6 1069 319.6 0.87 

YLD kg ha-1 12 1877 4838 7943 969 0.20 70554 688788 214884 0.80 

AMMI_TW - 8 0.413 3.120 9.265 1.623 0.52 - - - - 

AMMI_YLD - 12 17.38 43.43 82.67 11.03 0.25 - - - - 

ERR_TW - 8 0.195 0.993 2.083 0.272 0.27 - - - - 

ERR_YLD - 12 0.487 0.999 1.574 0.202 0.20 - - - - 
 

† EP elite panel; YVP yield validation panel 
‡ HD heading date; HGT plant height; TW test weight; YLD grain yield; AMMI_TW AMMI estimate of test weight stability; AMMI_YLD 
AMMI estimate of grain yield stability; ERR_TW Eberhart Russel regression estimate of test weight stability; ERR_YLD Eberhart Russel 
regression estimate of grain yield stability 
§ SD standard deviation; CV coefficient of variation; σ2 G genotypic variance; σ2 E environmental variance; σ2 ε residual variance; H2 entry-mean heritability 
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Table 3.2: Significant marker-trait associations identified by the GCTA-LOCO algorithm† 

 

Panel‡ Trait§ n PCs Chrom SNP¶ Ref Alt MAF P-Value Effect Units 

EP HGT 5 4D S4D_25419579 C T 0.079926 7.44E-06 3.50881 cm 

EP HGT 5 6A S6A_416179127 # A G 0.421933 7.30E-06 -1.57832 cm 

EP ERR_TW 5 5D S5D_39764565 # C G 0.052632 5.64E-06 0.145293 - 

YVP ERR_TW 5 7A S7A_709743594 A T 0.05137 3.86E-06 0.2306 - 
 

† Significance thresholds for a 95% confidence level were determined empirically by performing permutation testing for 1,000 repetitions per trait. 

Column label abbreviations: n PCs, number of principle components included in analysis; Chrom chromosome; SNP single nucleotide polymorphism; Ref, 

reference allele; Alt, alternate allele; MAF, minor allele frequency; Effect, mean value of lines containing alternate allele minus mean of lines containing 

reference allele 

‡ EP elite panel; YVP yield validation panel 

§ HGT plant height; TW test weight; “AMMI” and “ERR” indicate AMMI model and Eberhart and Russel Regression estimates of trait stability, respectively 

¶ SNP name includes physical position on chromosome 

# SNP also identified as significant using FarmCPU 
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Table 3.3: Significant marker-trait associations identified by the FarmCPU algorithm† 

Panel‡ Trait§ n PCs Chrom SNP¶ MAF P-Value Effect Units RMIP 

EP HD 5 2A S2A_49189737 0.421933086 6.90E-07 0.426915757 Julian days (Jan1) 0.07 

EP HD 5 2D S2D_73207210 0.43866171 3.12E-06 -0.40499538 Julian days (Jan1) 0.22 

YNVP HD 5 3B S3B_23975004 0.110169492 2.51E-06 -0.376602915 Julian days (Jan1) 0.26 

YNVP HD 5 5A S5A_579626304 0.227118644 2.73E-08 -0.381922012 Julian days (Jan1) 0.09 

EP HD 5 5B S5B_550563262 0.42936803 5.57E-09 0.537947102 Julian days (Jan1) 0.37 

YNVP HD 5 6A S6A_68995191 0.484745763 1.39E-12 0.410135591 Julian days (Jan1) 0.44 

EP HGT 5 3A S3A_699195908 0.074349442 9.20E-07 2.393005081 cm 0.23 

YNVP HGT 5 3B S3B_782374448 0.447457627 5.66E-07 0.597132427 cm 0.22 

EP HGT 5 4A S4A_617431757 0.32527881 2.65E-10 -1.632926237 cm 0.45 

EP HGT 5 4B S4B_25886179 0.06133829 2.00E-06 2.260203461 cm 0.53 

YNVP HGT 5 4B S4B_662927988 0.169491525 1.82E-07 1.475843966 cm 0.63 

EP HGT 5 6A S6A_416179127 # 0.421933086 4.75E-09 -1.482115269 cm 0.28 

EP HGT 5 6B S6B_162549774 0.197026022 7.91E-10 -1.819714331 cm 0.44 

YNVP HGT 5 7A S7A_727298781 0.13220339 1.50E-07 -1.49728356 cm 0.42 

EP TW 5 1B S1B_667448097 0.130111524 6.84E-12 -4.738346122 g L-1 0.32 

EP TW 5 2B S2B_3264617 0.288104089 7.08E-08 2.473327564 g L-1 0.4 

EP TW 5 2B S2B_33519842 0.07063197 9.27E-07 -3.723769347 g L-1 0.13 

EP TW 5 7A S7A_694870296 0.072490706 3.96E-07 -5.331670075 g L-1 0.23 

EP ERR_TW 2 3A S3A_15558351 0.443609023 1.10E-07 -0.040385479 - 0.06 

EP ERR_TW 2 4B S4B_289037575 0.278195489 4.28E-07 0.047275099 - 0.34 

EP ERR_TW 2 5B S5B_42564147 0.088345865 1.09E-06 0.087106602 - 0.13 

EP ERR_TW 2 5D S5D_39764565 # 0.052631579 1.21E-10 0.145277609 - 0.66 

EP ERR_TW 2 7B S7B_653950790 0.434210526 4.09E-10 0.05487766 - 0.15 

EP AMMI_YLD 2 3D S3D_565086710 0.172932331 1.01E-07 1.73282742 - 0.49 

EP AMMI_YLD 2 5D S5D_543090768 0.244360902 1.78E-08 1.612227799 - 0.41 

EP AMMI_YLD 2 6A S6A_99931123 0.172932331 1.81E-06 1.388438128 - 0.12 

EP ERR_YLD 2 4B S4B_415342383 0.163533835 7.20E-09 0.063210363 - 0.22 

EP ERR_YLD 2 6A S6A_569599082 0.12406015 1.97E-07 -0.065043739 - 0.17 
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Panel‡ Trait§ n PCs Chrom SNP¶ MAF P-Value Effect Units RMIP 

EP ERR_YLD 2 7B S7B_641908294 0.182330827 1.99E-06 0.04324683 - 0.06 

EP ERR_YLD 2 7B S7B_724034080 0.411654135 6.64E-07 0.036787807 - 0.09 

EP ERR_YLD 2 7D S7D_582607444 0.080827068 2.31E-06 0.061460157 - 0.1 

 

† Significance thresholds for a 95% confidence level were determined empirically by performing permutation testing for 1,000 repetitions per trait. 

Column label abbreviations: n PCs, number of principle components included in analysis; Chrom chromosome; SNP single nucleotide polymorphism; Ref, 

reference allele; Alt, alternate allele; MAF, minor allele frequency; Effect, mean value of lines containing alternate allele minus mean of lines containing 

reference allele 

‡ EP elite panel; YVP yield validation panel 

§ HGT plant height; TW test weight; “AMMI” and “ERR” indicate AMMI model and Eberhart and Russel Regression estimates of trait stability, respectively 

¶ SNP name includes physical position on chromosome 

# SNP also identified as significant using FarmCPU 
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Figure 3.1a: Portion of variance explained by each genotypic principal component for genotypes 

in the elite panel (EP) and yield validation panel (YVP) 
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Figure 3.1b: Cumulative Portion of variance explained by each genotypic principal component 

for genotypes in the elite panel (EP) and yield validation panel (YVP) 
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Figure 3.2: Biplot of the first two genotypic principal components of the combined elite panel 

and yield validation panel data, with coloring by presence or absence of the Sr36 stem rust 

resistance gene located on chromosome 2B. The majority of genotypes with Sr36 data are in the 

yield validation panel, while those without data are in the elite panel. 
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Figure 3.3: Number of SNPs per chromosome in the processed, filtered GBS genotypic dataset. 

This figure applies to both the elite panel and the yield validation panel, as genotypic data was 

generated for these two panels jointly. 
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Figure 3.4a: Linkage disequilibrium by genome for the elite panel (EP) and yield validation 

panel (YVP). Lines represent second-degree LOESS curves fit to 20,000 randomly-selected 

intra-chromosomal pairwise genotypic r2 estimates pooled from chromosomes in each sub-

genome. Horizontal line corresponds to the 98th percentile of pairwise r2 estimates for non-linked 

(i.e. inter-chromosomal) SNPs averaged between the two panels. 
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Figure 3.4b: Linkage disequilibrium in each chromosome of the B genome for the elite panel 

(EP) and yield validation panel (YVP). Lines represent second-degree LOESS curves fit to 

20,000 randomly-selected intra-chromosomal pairwise genotypic r2 estimates from each 

chromosome in the B genome. Horizontal line corresponds to the 98th percentile of pairwise r2 

estimates for non-linked (i.e. inter-chromosomal) SNPs averaged between the two panels. 
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Figure 3.5a: Regression of GCTA-LOCO-generated -log transformed p-values of SNPs for the 

trait heading date in the elite panel (EP) against -log transformed p-values for the same SNPs in 

the yield validation panel (YVP). Diagonal line represents identity; horizontal and vertical 

dashed lines represent the significance thresholds as determined by permutation for the YVP and 

EP, respectively. 
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Figure 3.5b: Regression of FarmCPU-generated -log transformed p-values of SNPs for the trait 

heading date in the elite panel (EP) against -log transformed p-values for the same SNPs in the 

yield validation panel (YVP). Diagonal line represents identity; horizontal and vertical dashed 

lines represent the significance thresholds as determined by permutation for the YVP and EP, 

respectively. 
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Table 3.5c: Regression of GCTA-LOCO-generated -log transformed p-values of SNPs for the 

trait test weight in the elite panel (EP) against -log transformed p-values for the same SNPs in 

the yield validation panel (YVP). Diagonal line represents identity; horizontal and vertical 

dashed lines represent the significance thresholds as determined by permutation for the YVP and 

EP, respectively. 
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APPENDIX A: Chemical and fertilizer applications, planting dates, and harvest dates for 

all environments included in chapters I & II 

 

Table A.1: Chemical and fertilizer applications, planting dates, and harvest dates for all 

environments included in chapters I & II 

 

Environment Event Application Rate Date 

Blacksburg, VA; 
2013-2014 season 

Fall Granular Fertilizer Application 34-52-67 (N-P-K) kg ha-1 9/25/2013 

Planting Date - 9/30/2013 

Harmony® Extra SG Herbicide Treatment 21 g a.i. ha-1 11/21/2013 

Spring N Application GS25 28 kg ha-1 2/11/2014 

Palisade® 2EC Growth Regulator 90 g a.i. ha-1 4/1/2014 

Tilt® Fungicide Application 62.5 g a.i. ha-1 4/1/2014 

Spring N Application GS30 67 kg ha-1 4/2/2014 

Harmony® Extra SG Herbicide Treatment 26 g a.i. ha-1 4/2/2014 

Tilt® Fungicide Application 125 g a.i. ha-1 4/25/2014 

Prosaro® Fungicide Application 207 g a.i. ha-1 5/13/2014 

Tilt® Fungicide Application 62.5 g a.i. ha-1 5/27/2014 

Harvest - 6/30/2014 

Warsaw, VA; 2013-
2014 season 

Fall Granular Fertilizer Application 
34-67-67-5.6 (N-P-K-S) kg ha-

1 
10/18/2013 

Planting Date - 10/22/2013 

Winter N Application 28 kg ha-1 11/21/2013 

Spring N Application GS25 34 kg ha-1 3/1/2014 

Starane® broadleaf herbicide treatment 159 g a.e. ha-1 3/11/2014 

Harmony® Extra SG Herbicide Treatment 26 g a.i. ha-1 3/11/2014 

Spring N Application GS30 67.3 kg ha-1 4/4/2014 

Palisade® 2EC Growth Regulator 90 g a.i. ha-1 4/4/2014 

Tilt® Fungicide Application 125 g a.i. ha-1 4/10/2014 

Prosaro® Fungicide Application 245 g a.i. ha-1 5/8/2014 

Tilt® Fungicide Application 125 g a.i. ha-1 5/8/2014 

Harvest - 6/24/2014 

Blacksburg, VA 
2014-2015 

Fall Granular Fertilizer Application 34-56-56 (N-P-K) kg ha-1 9/25/2014 

Planting Date - 9/22/2014 

Harmony Extra SG Herbicide Treatment 26 g a.i. ha-1 10/31/2014 

Spring N Application GS25 34 kg ha-1 3/18/2015 

Spring N Application GS30 56 kg ha-1 4/8/2015 

Harmony Extra SG Herbicide Treatment 26 g a.i. ha-1 4/8/2015 

Manni-Plex® 3.8% Boron Application 0.95 L ha-1 4/11/2015 

Crop Smart 16.7% Zinc Application 0.95 L ha-1 4/11/2015 

Tilt® Fungicide Application 62.5 g a.i. ha-1 4/13/2015 
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Palisade® 2EC Growth Regulator 72 g a.i. ha-1 4/13/2015 

Prosaro® Fungicide Application 207 g a.i. ha-1 5/8/2015 

Tilt® Fungicide Application 62.5 g a.i. ha-1 5/11/2015 

Harvest - 6/29/2015 

Warsaw, VA 2014-
2015 

Fall Granular Fertilizer Application 
34-67-67-5.6 (N-P-K-S) kg ha-

1 
10/6/2014 

Planting Date - 10/21/2014 

Winter N application 34 kg ha-1 12/15/2014 

Spring N Application GS25 34 kg ha-1 2/6/2015 

Starane® broadleaf herbicide treatment 159 g a.e. ha-1 3/24/2015 

Harmony® Extra SG Herbicide Treatment 26 g a.i. ha-1 3/24/2015 

Spring N Application GS30 67.3 kg ha-1 4/5/2015 

Palisade® 2EC Growth Regulator 72 g a.i. ha-1 4/6/2015 

Tilt® Fungicide Application 125 g a.i. ha-1 4/10/2015 

Manni-Plex® 3.8% Boron Application 1.9 L ha-1 4/12/2015 

Crop Smart 16.7% Zinc Application 0.59 L ha-1 4/12/2015 

Prosaro® Fungicide Application 245 g a.i. ha-1 5/14/2015 

Tilt® Fungicide Application 125 g a.i. ha-1 5/14/2015 

Harvest - 6/22/2015 
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APPENDIX B: List of genotypes included in chapters I & II 

 

The table below lists all genotypes included in chapters I & II, with their state of origin and 

pedigree (if known) 

 

Table B.1: List of genotypes included in chapters I & II 

GENOTYPE ORIGIN PEDIGREE 

BESS Virginia MO11769/MADISON 

BRANSON Virginia PIO2737W/891-4584A 

DH11SRW061-5 Virginia LA01139D-56-1/VA08W-294//TRIBUTE] 

DH11SRW063-1 Virginia VA08W-294//TRIBUTE]/GA08279-G3-G1-G8 

DH11SRW063-14 Virginia VA08W-294//TRIBUTE]/GA08279-G3-G1-G8 

DH11SRW063-2 Virginia VA08W-294//TRIBUTE]/GA08279-G3-G1-G8 

DH11SRW065-8 Virginia AGS2038/VA08W-294//TRIBUTE] 

DH11SRW066-2 Virginia PIONEER25R32/VA08W-176 

DH11SRW067-7 Virginia GA00067-8E35/IL04-8445/IL97-3578 

DH11SRW068-1 Virginia IL04-8445/IL97-3578]/SHIRLEY 

DH11SRW070-14 Virginia GA00067-8E35/SHIRLEY 

DH11SRW070-28 Virginia GA00067-8E35/SHIRLEY 

FEATHERSTONE VA258 Virginia VA05W-258=VA98W-130/GORE)//CK9835/SS520 

FFR 555W Virginia COKER76-35/3/DOUBLECROP//VA72-54-14/VA76-52-12//COKER76-
35/3/VA76-52-24/COKER65-20/ARTHUR/KAVKAZ//COKER65-
20/ARTHUR 

IL00-8530 Illinois IL89-1687//IL90-6364/IL93-2489 

IL11-33669-1 Illinois 01-11934/VA-FE24-13 

IL12-10819 Illinois 04-7942/02-19463 

IL12-10971 Illinois 04-8445/00-8530 

IL12-12368 Illinois 04-10721/P0172A1-12-1 

IL12-13178 Illinois 04-11003/04-7874 

IL12-14458 Illinois 06-7155/M99-3098 

IL12-14670 Illinois 06-7155/06-14303 

IL12-15121 Illinois 06-8209/M99-3098 

IL12-15424 Illinois 06-8209/02-18228 

IL12-16207 Illinois 06-12909/79-002T 

IL12-17334 Illinois 06-14303/06-11448 

IL12-1862 Illinois M03-3616-11B/02-18228 

IL12-18670 Illinois MO050699/02-19463//00-8061 

IL12-20965 Illinois 97-1828/00-8641//06-14303 

IL12-24232 Illinois 01-16170/OH02-12686//06-14303 

IL12-25066 Illinois 01-16170/01-6262//06-13878 

IL12-25758 Illinois 01-34159/79-002T//06-7155 

IL12-26707 Illinois 02-7735/00-8530//00-8530 

IL12-27938 Illinois 04-10721/99-26442//04-7874 

IL12-29068 Illinois 05-28110/04-10741//PIO25W60 

IL12-31210 Illinois 94-6727/01-34159//01-11934 

IL12-3229 Illinois P0179A1-17/79-002T 
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GENOTYPE ORIGIN PEDIGREE 

IL12-37468 Illinois 01-34159/04-8445 

IL12-3748 Illinois P03112A1-7-14/04-10145 

IL12-4448 Illinois 97-1828/MO061041 

IL12-5169 Illinois 97-1828/06-14303 

IL12-6376 Illinois 00-8641/06-11448 

IL12-8119 Illinois 01-11934/02-18228 

IL12-8643 Illinois 01-34159/02-18228 

IL12-9329 Illinois 02-18228/MO061041 

IL12-9637 Illinois 02-18228/04-11003 

IL13-10367 Illinois 06-8223/04-10741 

IL13-11145 Illinois 06-9607/06-18051 

IL13-11556 Illinois 06-13721/PO128A1-22-22 

IL13-12179 Illinois 06-14262/06-12109 

IL13-12333 Illinois 06-16639/02-18228 

IL13-15308 Illinois VA03W-409/04-8445//068223 

IL13-19403 Illinois 01-16170/VA03W-409//02-18228 

IL13-20171 Illinois 01-11934/02-18228//06-14262 

IL13-21219 Illinois 02-19463/00-8633//06-13024 

IL13-227 Illinois NCO6-27/04-10741 

IL13-23803 Illinois 06-14303/01-6262/SHIRLEY 

IL13-26034 Illinois VA01W-476/03-1009//01-34159/04-8445 

IL13-26521 Illinois 01-6262/02-7735 

IL13-26648 Illinois BESS//01-6262/05-38426 

IL13-27973 Illinois 97-3632/97-7010//01-11934 

IL13-28449 Illinois 03-18438/VA01W-476//01-6262/03-18438 

IL13-29257 Illinois 00-8530//00-8530/VA01W-4766 

IL13-4504 Illinois ARS04-1249/97-1828 

IL13-4606 Illinois ARS04-1249/02-19463 

IL13-5421 Illinois 00-8061/06-18051 

IL13-5462 Illinois 00-8061/06-25634 

IL13-5564 Illinois 00-8530/04-24668 

IL13-6421 Illinois 01-16170/M0080104 

IL13-7346 Illinois 02-18228/01-6262 

IL13-7361 Illinois 02-18228/04-24668 

IL13-7526 Illinois 02-18228/06-7034 

IL13-8124 Illinois 04-9942/02-18228 

IL13-9332 Illinois 06-7034/01-34159 

IL13-9656 Illinois 06-7550/02-18228 

KY03C-1002-02 Kentucky 25W33/25W60//25W33/KY90C-042-37-1 

KY03C-1195-10-1-5 Kentucky KY92C-0010-17//25R18/KY92C-0010-17 

KY03C-1195-10-8-5 Kentucky KY92C-0010-17//25R18/KY92C-0010-17 

KY03C-1237-32 Kentucky 25R18/92C-0010-17//KY96C-0767-1 

KY04C-1008-68-16-3 Kentucky KY93C-0876-66/KY94C-0325-40-2//NC98-26192/KY93C-1238-17 

KY04C-1128-38-1-5 Kentucky SX1411/NC98-26192//25R78 

KY04C-2004-1-1-1 Kentucky ROANE/ALLEGIANCE 

KY04C-2006-41-1-1 Kentucky ROANE/KY93C-1238-17-1 

KY04C-2031-29-6-1 Kentucky TRUMAN/VA97W-375WS 

KY04C-3051-4-2-1 Kentucky 25R23/SS560 
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GENOTYPE ORIGIN PEDIGREE 

KY05C-1020-4-6-5 Kentucky 981517A1-1-5-2/25R18 

KY05C-1126-50-12-1 Kentucky MCCORMICK/ALLEGIANCE//KY97C-0554-02 

KY05C-1169-45-10-5 Kentucky 25R78/KY93C-1238-17-1//VA01W-476 

KY05C-1169-45-9-3 Kentucky 25R78/KY93C-1238-17-1//VA01W-476 

KY05C-1169-61-14-1 Kentucky 25R78/KY93C-1238-17-1//VA01W-476 

KY05C-1282-17-1-1 Kentucky 26R15/25R18//KY96C-0769-7-1 

KY05C-1287-25-1-3 Kentucky 26R15/25R18//KY98C-1517-01 

KY05C-1287-28-10-1 Kentucky 26R15/25R18//KY98C-1517-01 

KY05C-1287-28-13-5 Kentucky 26R15/25R18//KY98C-1517-01 

KY06C-1003-139-17-5 Kentucky TRUMAN/MCCORMICK//25R37 

KY06C-1003-140-3-3 Kentucky TRUMAN/MCCORMICK//25R37 

KY06C-1003-140-4-3 Kentucky TRUMAN/MCCORMICK//25R37 

KY06C-1177-15-18-1 Kentucky KY93C-0004-22-1/NC03-11458//KY97C-0546-17-01 

KY06C-2020-11-6-1 Kentucky IL99-15867/B990081 

KY06C-2067-15-1-1 Kentucky KY97C-0519-04-05/AGRIPROCOOPER 

KY06C-2093-34-19-1 Kentucky KY98C-1169-06/B990081 

KY09-1572-59-6-5 Kentucky AGRIPROCOKER9511/IL04-8445 

KY09C-0118-5-16-5 Kentucky SSMPV-57//IL02-19463/KY97C-0546-20-05 

KY09C-1073-54-5-1 Kentucky VA03W-412/AGRIPROCOKER9511 

KY09C-1119-46-14-1 Kentucky KY00C-2109-01/KY01C-1537-05 

KY09C-1245-100-9-3 Kentucky LA01-425/VA06W-558 

KY09C-1245-98-3-5 Kentucky LA01-425/VA06W-558 

KY09C-1501-93-17-3 Kentucky KY00C-2039-15/VA05W-534 

KY09C-1528-87-17-5 Kentucky IL02-19463/IL01-34159 

KY09C-1572-60-11-5 Kentucky AGRIPROCOKER9511/IL04-8445 

KY09C-1581-102-10-1 Kentucky KY00C-2039-15/IL04-8445 

KY16-1-28-1 Kentucky 26R15/25R18//KY98C-1517-01 

KY221123 Kentucky KY97C-0321-05-2*3/VA01W-476 

KY409616 Kentucky KY97C-0540-01-03*4/VA01W476 

KY716506 Kentucky KY98C-1474-02*4/VA01W476 

MADISON Virginia ABE//BLUEBOY/VA71-54-147/3/VA72-54-14 

MCCORMICK Virginia VA98W-591=92-51-39/AL870365 

ROANE Virginia VA71-54-147/C68-15//IN65309C1-18-2-3-2 

SALUDA Virginia VA71-54-147/COKER68-15 

SHIRLEY Virginia VA94-52-25/COKER9835//VA96-54-234 

SISSON Virginia COKER9803/FREEDOM 

TRIBUTE Virginia VA98W-593=92-51-39/AL870365 

TRIBUTE Virginia VA98W-593=92-51-39/AL870365 

TYLER Virginia BLUEBOY //5* THORNE / 199-4 /3/ BLUEBOY SEL. 68-24-42 ; 199-4 = 
ASOSAN /3/ SUPREZA / REDHARD // CHANCELLOR /4/ P55-47.1 -5 

USG 3555 Virginia VA02W-555=VA94-52-60/PION2643//USG3209 

VA07MAS12-8752-4-1-4 Virginia U3960-3R-3-11-6/VA02W-398//GA96693-4E16 

VA07MAS13-8833-1-4-3-1 Virginia NC03-11458/TRIBUTE//SS5205 

VA07MAS14-9260-8-2-2 Virginia NC03-11458/IL99-15867//VA05W-436 

VA07MAS1-7031-7-1-2-1 Virginia MCCORMICK/AGS2060//SS5205 

VA07MAS1-7031-7-1-2-4 Virginia MCCORMICK/AGS2060//SS5205 

VA07MAS1-7047-1-1-4-2 Virginia MCCORMICK/AGS2060//SS5205 

VA07MAS1-7054-3-3-2-1 Virginia MCCORMICK/AGS2060//SS5205 

VA07MAS1-7054-3-3-2-4 Virginia MCCORMICK/AGS2060//SS5205 
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VA07MAS3-7304-3-1-2-3 Virginia SHIRLEY/AGS2060//SS8404 

VA07MAS3-7304-3-2-2-3 Virginia SHIRLEY/AGS2060//SS8404 

VA07MAS3-7304-3-2-4 Virginia SHIRLEY/GA951231-4E26//SS8404 

VA07MAS3-7304-3-2-4-2 Virginia SHIRLEY/AGS2060//SS8404 

VA07MAS3-7304-3-2-4-3 Virginia SHIRLEY/AGS2060//SS8404 

VA07MAS3-7304-8-1-4 Virginia SHIRLEY/GA951231-4E26//SS8404 

VA07MAS4-7416-5-4-2 Virginia GA951231-4E25/SS8404//SHIRLEY 

VA07MAS4-7417-1-3-3 Virginia GA951231-4E25/SS8404//SHIRLEY 

VA07MAS4-7454-3-3-4 Virginia GA951231-4E25/SS8404//SHIRLEY 

VA07MAS4-7463-6-2-2-2 Virginia OGLETHORPE/SS8404//SHIRLEY 

VA07MAS4-7463-6-2-2-4 Virginia OGLETHORPE/SS8404//SHIRLEY 

VA07MAS4-7520-2-3-1 Virginia GA951231-4E25/SS8404//SHIRLEY 

VA07MAS9-8189-7-2-3-2 Virginia AGS2026/PEMBROKE//SHIRLEY 

VA08MAS1-188-6-4 Virginia VA05W-640/VA05W-693//SHIRLEY 

VA08MAS1-188-6-4-1 Virginia VA05W-640/VA05W-693//SHIRLEY 

VA08MAS1-188-6-4-3 Virginia VA05W-640/VA05W-693//SHIRLEY 

VA08MAS1-190-4-1 Virginia VA05W-640/VA05W-693//SHIRLEY 

VA08MAS1-85-8-2 Virginia VA05W-640/VA05W-693//SHIRLEY 

VA08MAS-369 Virginia MCCORMICK/GA881130LE5 

VA08MAS5-157-6-1-2 Virginia BALDWIN/SHIRLEY//VA04W-360 

VA08MAS5-18-3-1 Virginia GA981621-1-3-5/SHIRLEY//VA04W-360 

VA08MAS5-39-6-4 Virginia GA981621-1-3-5/SHIRLEY//VA04W-360 

VA08MAS6-174-7-4 Virginia VA05W-693/SHIRLEY//GA001532-6E26 

VA09MAS1-12-5-1 Virginia GA991371-6E13/USG3555//OAKES 

VA09MAS1-12-8-4 Virginia GA991371-6E13/USG3555//OAKES 

VA09MAS2-131-6-2 Virginia GA991227-6A33/SHIRLEY//G41730 

VA09MAS3-10-2-3 Virginia VA05W-139/SS5205//GA031238-DH7-7A28 

VA09MAS3-34-2-1 Virginia VA05W-139/SS5205//GA031238-DH7-7A28 

VA09MAS6-122-7-1 Virginia SHIRLEY/GA991371-6E13//SS5205 

VA09MAS6-55-4-4 Virginia SHIRLEY/GA991371-6E13//SS5205 

VA09MAS7-166-8-2 Virginia VA06W-256/SS8641//12V51 

VA09MAS7-168-6-3 Virginia VA06W-256/SS8641//12V51 

VA09MAS7-190-7-3 Virginia VA06W-256/SS8641//12V51 

VA09MAS7-30-2-1 Virginia VA06W-256/SS8641//12V51 

VA09MAS7-52-3-1 Virginia VA06W-256/SS8641//12V51 

VA09MAS7-61-2-1 Virginia VA06W-256/SS8641//12V51 

VA09MAS7-80-4-1 Virginia VA06W-256/SS8641//12V51 

VA09MAS8-34-2-4 Virginia SHIRLEY/USG3120//P992231A1-2-1 

VA09MAS8-34-5-2 Virginia SHIRLEY/USG3120//P992231A1-2-1 

VA09W-192WS Virginia TW137-003/VA97W-375WS 

VA10W-119 Virginia KY97C-0540-04/G/F951079-2E31 

VA10W-123 Virginia PIONEER25R47/G/F951079-2E31 

VA10W-140 Virginia VA01W-210/SS520//TRIBUTE 

VA10W-21 Virginia Z00-5018/VA01W-158 

VA10W-21_BSR124 Virginia Z00-5018/VA01W-158 

VA10W-42 Virginia JAMESTOWN/M99*3098 

VA10W-96 Virginia F/G95195/JAMESTOWN 

VA11MAS-7383-6-3-155 Virginia SHIRLEY/AGS2060//SS8404 
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VA11MAS-7520-2-3-255 Virginia OGLETHORPE/SS8404//SHIRLEY 

VA11MAS-9409-8-2-798 Virginia VA04W-433/SS8404//VA02W-398 

VA11W-106 Virginia PIONEER25R47/JAMESTOWN 

VA11W-108 Virginia PIONEER25R47/JAMESTOWN 

VA11W-111 Virginia PIONEER25R47/JAMESTOWN 

VA11W-182 Virginia BRANSON/SHIRLEY 

VA11W-194 Virginia SSMPV57/M99*3098//VA03W-434 

VA11W-230 Virginia SS520/G/F951208-2E35//JAMESTOWN 

VA11W-278 Virginia NC00-15389/GF951079-2E31//USG3555 

VA11W-279 Virginia NC00-15389/GF951079-2E31//USG3555 

VA11W-301 Virginia PIONEER25R47/NC00-15389//JAMESTOWN 

VA11W-31 Virginia F/G95195/JAMESTOWN 

VA11W-313 Virginia PIONEER25R47/G/F951079-2E31//USG3555 

VA11W-95 Virginia PIONEER25R47/JAMESTOWN 

VA11W-FHB4 Virginia P97397B1-4-5/MCCORMICK//COKER9511 

VA11W-FHB60 Virginia VA97W-375RS/FG95195//VA04W-547 

VA12FHB-34 Virginia GA991109-4-1-3/PIONEER26R15 

VA12FHB-37 Virginia VA04W-433/SS8404 

VA12FHB-4 Virginia IL99-15867/VA04W-433 

VA12FHB-53 Virginia VA04W-433/BRANSON 

VA12FHB-55 Virginia VA04W-433/BRANSON 

VA12FHB-77 Virginia IL99-15867/VA04W-433//SS8404 

VA12FHB-8 Virginia IL99-27048/VA04W-486//SHIRLEY 

VA12FHB-85 Virginia IL96-24851-1/VA03W-434[ROANE/CK9835//96-54-270)//SS8404 

VA12W-100 Virginia VA03W-436/IL99-15867 

VA12W-101 Virginia VA03W-436/IL99-15867 

VA12W-102 Virginia VA03W-436/IL99-15867 

VA12W-104 Virginia VA03W-436/IL99-15867 

VA12W-150 Virginia IL99-15867/JAMESTOWN 

VA12W-209 Virginia VA03W-249/SS8641//USG3315 

VA12W-22 Virginia KY93C-1238-17-1/VA03W-436 

VA12W-232 Virginia VA01W-353/SS8641//RENWOOD3706 

VA12W-241 Virginia KY93C-1238-17-1/VA03W-436//SS8404 

VA12W-248 Virginia KY97C-0574-01/USG3555//USG3295 

VA12W-26 Virginia SSMPV57/M99*3098//RENWOOD3434 

VA12W-272 Virginia VA03W-235/SS8641//VA04W-86 

VA12W-283 Virginia CHESAPEAKE/SS8641//VA04W-439 

VA12W-31 Virginia SSMPV57/M99*3098//VA03W-434 

VA12W-45 Virginia SS520/G/F951208-2E35//JAMESTOWN 

VA12W-49 Virginia NC00-15389/GF951079-2E31//USG3555 

VA12W-54 Virginia NC00-15389/GF951079-2E31//USG3555 

VA12W-68 Virginia PIONEER25R47/G/F951079-2E31//USG3555 

VA12W-69 Virginia PIONEER25R47/G/F951079-2E31//USG3555 

VA12W-72 Virginia PIONEER25R47/G/F951079-2E31//USG3555 

VA12W-97 Virginia MERL/AGS2026 

VA13FHB-1 Virginia P97397J1-4-1-4-7/VA04W-433//VA02W-398 

VA13FHB-11 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-13 Virginia IL99-15867/VA04W-433//SS8404 
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VA13FHB-17 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-18 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-26 Virginia VA05W-436/VA05W-641 

VA13FHB-32 Virginia VA05W-641/AGS2020 

VA13FHB-5 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-8 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-9 Virginia IL99-15867/VA04W-433//SS8404 

VA13W-111 Virginia SHIRLEY/GA98249G1-G1-2 

VA13W-124 Virginia 12V51/AGS2026 

VA13W-138 Virginia VA05W-363/VA97-51-26//CK9835/SS520]/VA03W-310[VA95-51-
21/CK9904//RENWOOD3260 

VA13W-144 Virginia JAMESTOWN/SS8404//VA04W-259 

VA13W-148 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-150 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-154 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-162 Virginia JAMESTOWN/USG3295//VA02W-398 

VA13W-165 Virginia JAMESTOWN/USG3295//VA02W-398 

VA13W-169 Virginia JAMESTOWN/AGS2026//SS8404 

VA13W-174 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-177 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-178 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-179 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-180 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-191 Virginia VA04W-259[VA97W-533/NC95-11612/SS8404//AGS2026 

VA13W-20 Virginia SS520/GF951208-2E35//JAMESTOWN 

VA13W-212 Virginia W-1377/VA03W-310//JAMESTOWN 

VA13W-217 Virginia M01*1019/VA03W-203//AGS2020 

VA13W-220 Virginia KEY/VA02W-398//VA05W-436 

VA13W-37 Virginia IL99-15867/JAMESTOWN 

VA13W-38 Virginia IL99-15867/JAMESTOWN 

VA13W-41 Virginia IL99-15867/JAMESTOWN 

VA13W-42 Virginia IL99-15867/JAMESTOWN 

VA13W-47 Virginia IL99-15867/JAMESTOWN 

VA13W-52 Virginia USG3555/SHIRLEY//JAMESTOWN 

VA13W-56 Virginia USG3555/SHIRLEY//JAMESTOWN 

VA13W-57 Virginia USG3555/SHIRLEY//JAMESTOWN 

VA13W-8 Virginia FG95195/JAMESTOWN 

VA13W-9 Virginia FG95195/JAMESTOWN 

VA13W-97 Virginia SHIRLEY/GA98249G1-G1-2 

VA13W-99 Virginia SHIRLEY/GA98249G1-G1-2 

VA14FHB-12 Virginia VA05W-436/VA05W-641 

VA14FHB-13 Virginia VA05W-436/VA05W-641 

VA14FHB-14 Virginia VA05W-436/VA05W-641 

VA14FHB-15 Virginia VA05W-510/GA991336-6E9 

VA14FHB-17 Virginia IL03-18438/VA04W-360 

VA14FHB-18 Virginia IL03-18438/VA04W-360 

VA14FHB-21 Virginia UNKNOWN 

VA14FHB-22 Virginia UNKNOWN 

VA14FHB-23 Virginia UNKNOWN 
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VA14FHB-26 Virginia UNKNOWN 

VA14FHB-28 Virginia UNKNOWN 

VA14FHB-29 Virginia UNKNOWN 

VA14FHB-31 Virginia UNKNOWN 

VA14FHB-7 Virginia VA05W-436/VA05W-641 

VA14FHB-9 Virginia VA05W-436/VA05W-641 

VA14W-11 Virginia SHIRLEY/AGS2020//JAMESTOWN 

VA14W-12 Virginia SHIRLEY/AGS2020//JAMESTOWN 

VA14W-17 Virginia VA04W-259/NC95-11612)]/B020815 

VA14W-26 Virginia VA05W-139/MCCORMICK)]/SS5205 

VA14W-28 Virginia VA05W-139/MCCORMICK)]/SS5205 

VA14W-29 Virginia VA05W-139/MCCORMICK)]/SS5205 

VA14W-3 Virginia JAMESTOWN/SHIRLEY//SS8404 

VA14W-32 Virginia VA05W-139/MCCORMICK)]/SS5205 

VA14W-34 Virginia VA05W-139/MCCORMICK)]/SS5205 

VA14W-35 Virginia VA05W-139/MCCORMICK)]/SS5205 

VA14W-4 Virginia JAMESTOWN/SHIRLEY//SS8404 

VA14W-40 Virginia VA06W-112/VA06W-256 

VA14W-41 Virginia VA06W-112/VA06W-256 

VA14W-46 Virginia VA06W-256/JAMESTOWN 

VA14W-50 Virginia VA06W-256/JAMESTOWN 

VA14W-55 Virginia VA06W-256/JAMESTOWN 

VA14W-57 Virginia VA06W-627/VA06W-256 

VA14W-59 Virginia VA06W-627/VA06W-256 

VA14W-6 Virginia JAMESTOWN/SHIRLEY//SS8404 

VA14W-60 Virginia VA06W-627/VA06W-256 

VA14W-62 Virginia MO-011126/VA03W-203//VA06W-6/ 

VA14W-69_YR Virginia [YR 15/6*AVOCET(S) / RENWOOD3434 [VA03W-434=ROANE(93-54-
429)/ CK9835// 96-54-270 (88-54-612 (MSY*2/ BALKAN)/FFR511W)] 
//(YR 5/6*AVOCET(S)/COKER9553[D00*6874-2=89M-4035A (IL77-2656/ 
NK79W810/ PIO2580)] /3/ [NC04-20814(NC94-6275/ P86958// 
SISSON"S" (VA96-54-234)], F6 

VA14W-7 Virginia JAMESTOWN/SHIRLEY//SS8404 

VA14W-70_YR Virginia [YR 15/6*AVOCET(S) / RENWOOD3434 [VA03W-434=ROANE(93-54-
429)/ CK9835// 96-54-270 (88-54-612 (MSY*2/ BALKAN)/FFR511W)] 
//(YR 5/6*AVOCET(S)/COKER9553[D00*6874-2=89M-4035A (IL77-2656/ 
NK79W810/ PIO2580)] /3/ [NC04-20814(NC94-6275/ P86958// 
SISSON"S" (VA96-54-234)], F6 

VA14W-73_YR Virginia [YR 15/6*AVOCET(S) / RENWOOD3434 [VA03W-434=ROANE(93-54-
429)/ CK9835// 96-54-270 (88-54-612 (MSY*2/ BALKAN)/FFR511W)] 
//(YR 5/6*AVOCET(S)/COKER9553[D00*6874-2=89M-4035A (IL77-2656/ 
NK79W810/ PIO2580)] /3/ [NC04-20814(NC94-6275/ P86958// 
SISSON"S" (VA96-54-234)], F6 

VA14W-8 Virginia JAMESTOWN/SHIRLEY//SS8404 

WAKEFIELD Virginia ARTHUR // CI 13836 /8* CHANCELLOR , VA 68-22 -7// CI 13836 /8* 
CHANCELLOR , DOUBLECROP // ABE / VA 68-24 - 42 /3/ CI 13836 /8* 
CHANCELLOR , AND OASIS / VA 68-24 - 42 // CI 13836 /8* CHANCELLOR 

X08C-1039-58-9-1 Kentucky VA03W-409/IL01-34159 

X08C-1074-46-14-5 Kentucky AGRIPROCOKERBRANSON/P.03630A1-18 
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X08C-1077-10-13-5 Kentucky SSMPV-57/P.03630A1 

X08C-1089-77-13-1 Kentucky KY97C-0321-02-01/P.981129A1--17 

X08C-1089-78-14-3 Kentucky KY97C-0321-02-01/P.981129A1--17 

X08C-1181-62-14-5 Kentucky OH02-12686/IL02-19463 

X08C-1501-21-8-3 Kentucky IL02-19463/KY97C-0554-03-02 

X08C-1502-26-4-1 Kentucky MD01W233-06-1/KY97C-0554-03-02 

X08C-1502-26-8-3 Kentucky MD01W233-06-1/KY97C-0554-03-02 

X08C-1502-28-7-3 Kentucky MD01W233-06-1/KY97C-0554-03-02 

X10-0003-16-8-5 Kentucky SSMPV-57//KY97C-0519-04-07/KY02C-3005-25 

X10-0049-3-11-3 Kentucky SSMPV-57//KY97C-0519-04-07/KY01C-1537-05 

X10-0049-3-1-5 Kentucky SSMPV-57//KY97C-0519-04-07/KY01C-1537-05 

X10-0049-4-7-1 Kentucky SSMPV-57//KY97C-0519-04-07/KY01C-1537-05 

X10-0060-5-18-5 Kentucky SSMPV-57//KY97C-0519-04-07/IL02-19463 

X10-0218-25-7-5 Kentucky KY02C-3004-07//PEMBROKE/KY03C-2170-24 

X10-0225-27-14-1 Kentucky SSMPV-57//PEMBROKE/COKER9511 

X10-0267-33-5-3 Kentucky KY97C-0519-04-07//PEMBROKE/BESS 

X10-0269-34-13-5 Kentucky SSMPV-57//PEMBROKE/BESS 

X10-0503-45-17-5 Kentucky KY02C-3007-41//KY97C-0321-02-01/MD99W483-06-11 
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APPENDIX C: Predicted translational effects and distance to closest genes for significant 

marker-trait associations identified in chapter I 

 

NOTE: The SNP S4A_739598141 resides within two predicted genes; not all scaffolds 

containing a significant marker-trait association contain genes 

 

The code below may be copied and pasted into a text editor and saved with a .csv extension to 

create a data table that can readily be opened as a spreadsheet: 

 

MODEL,TRAIT,SNP,TGAC_POS,ALLELES,SNP_CLASS,CLOSEST_GENE,DISTANCE_TO_GENE,RESI

DUES,CODONS 

farmcpu,TKW,S1A_22935081,TGACv1_scaffold_019544_1AS:35763,C/T,intergenic,TRIA

E_CS42_1AS_TGACv1_019544_AA0067890,6153,-,- 

farmcpu,SSQM,S1A_50513589,TGACv1_scaffold_019020_1AS:184277,G/A,3' proximal 

intergenic,TRIAE_CS42_1AS_TGACv1_019020_AA0058200,1388,-,- 

gcta; farmcpu,TWT,S1A_583587147,TGACv1_scaffold_000910_1AL:23788,C/T,5' 

proximal intergenic,TRIAE_CS42_1AL_TGACv1_000910_AA0021640,3543,-,- 

farmcpu,STARCH,S1B_39294256,TGACv1_scaffold_049505_1BS:21361,G/A,intronic,TRI

AE_CS42_1BS_TGACv1_049505_AA0155360,0,-,- 

farmcpu,MAT,S1B_44010984,TGACv1_scaffold_049567_1BS:4059,A/G,intergenic,TRIAE

_CS42_1BS_TGACv1_049567_AA0157010,26087,-,- 

farmcpu,HD,S1B_50850397,TGACv1_scaffold_050247_1BS:70050,A/G,3' proximal 

intergenic,TRIAE_CS42_1BS_TGACv1_050247_AA0169640,1230,-,- 

farmcpu,STARCH,S1B_659857468,TGACv1_scaffold_031997_1BL:15691,C/T,5' proximal 

intergenic,TRIAE_CS42_1BL_TGACv1_031997_AA0124020,756,-,- 

farmcpu,STARCH,S1D_6674498,TGACv1_scaffold_080394_1DS:80273,G/C,3' 

UTR,TRIAE_CS42_1DS_TGACv1_080394_AA0247280,0,-,- 

farmcpu,HT,S2A_764941637,TGACv1_scaffold_093694_2AL:9813,G/A,intergenic,TRIAE

_CS42_2AL_TGACv1_093694_AA0285290,26304,-,- 

farmcpu,GSQM,S2B_35041282,TGACv1_scaffold_145905_2BS:18213,T/G,intergenic,TRI

AE_CS42_2BS_TGACv1_145905_AA0448870,27333,-,- 

farmcpu,HP,S2B_66522933,TGACv1_scaffold_146004_2BS:81183,A/C,intergenic,TRIAE

_CS42_2BS_TGACv1_146004_AA0452740,18071,-,- 

farmcpu,HD; MAT,S2D_35084672,TGACv1_scaffold_177832_2DS:20809,G/A,5' proximal 

intergenic,TRIAE_CS42_2DS_TGACv1_177832_AA0585380,2957,-,- 

farmcpu,HD,S2D_9872868,TGACv1_scaffold_177916_2DS:19528,A/T,5' proximal 

intergenic,TRIAE_CS42_2DS_TGACv1_177916_AA0587150,255,-,- 

farmcpu,GSQM,S3A_20232500,TGACv1_scaffold_211731_3AS:33827,C/A,5' proximal 

intergenic,TRIAE_CS42_3AS_TGACv1_211731_AA0693510,2932,-,- 

farmcpu,SSQM,S3A_2493807,TGACv1_scaffold_213057_3AS:28456,C/T,intergenic,TRIA

E_CS42_3AS_TGACv1_213057_AA0705070,9411,-,- 
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gcta,SSQM,S3A_3273716,TGACv1_scaffold_213380_3AS:13893,T/C,intergenic,-,-,-,- 

farmcpu,FLS,S3A_569991635,TGACv1_scaffold_202710_3AL:2242,T/C,intergenic,-,-

,-,- 

farmcpu,GSQM,S3A_691815364,TGACv1_scaffold_198180_3AL:8087,G/A,intergenic,-,-

,-,- 

farmcpu,TWT,S3B_695966897,TGACv1_scaffold_223320_3B:37476,A/G,missense,TRIAE_

CS42_3B_TGACv1_223320_AA0780190,0,T/A,Acg/Gcg 

farmcpu,YLD,S3D_511264206,TGACv1_scaffold_251777_3DL:4545,C/T,intergenic,-,-

,-,- 

farmcpu,YLD,S4A_726716318,TGACv1_scaffold_288738_4AL:72223,G/A,intronic,TRIAE

_CS42_4AL_TGACv1_288738_AA0956970,0,-,- 

farmcpu,GSQM,S4A_739598141,TGACv1_scaffold_288585_4AL:104660,C/T,synonymous,T

RIAE_CS42_4AL_TGACv1_288585_AA0953000,0,K,aaG/aaA 

farmcpu,GSQM,S4A_739598141,TGACv1_scaffold_288585_4AL:104660,C/T,intronic,TRI

AE_CS42_4AL_TGACv1_288585_AA0953010,0,-,- 

farmcpu,HI; 

STARCH,S4B_626390000,TGACv1_scaffold_320403_4BL:205740,A/C,intergenic,TRIAE_C

S42_4BL_TGACv1_320403_AA1037940,19266,-,- 

farmcpu,STARCH,S5A_9462259,TGACv1_scaffold_393202_5AS:84259,A/C,intronic,TRIA

E_CS42_5AS_TGACv1_393202_AA1269790,0,-,- 

farmcpu,HT,S5B_261134879,TGACv1_scaffold_407709_5BL:36111,G/A,3' proximal 

intergenic,TRIAE_CS42_5BL_TGACv1_407709_AA1359020,1901,-,- 

farmcpu,STARCH,S5B_34721398,TGACv1_scaffold_424234_5BS:41438,A/G,premature 

stop,TRIAE_CS42_5BS_TGACv1_424234_AA1387820,0,stop/Q,Taa/Caa 

farmcpu,HI,S5B_394707451,TGACv1_scaffold_404873_5BL:52196,G/A,intergenic,TRIA

E_CS42_5BL_TGACv1_404873_AA1313490,35687,-,- 

gcta; 

farmcpu,GSQM,S5B_396479359,TGACv1_scaffold_641320_U:51261,C/T,intergenic,TRIA

E_CS42_U_TGACv1_641320_AA2091830,9205,-,- 

farmcpu,HI,S5B_644947034,TGACv1_scaffold_405672_5BL:24458,T/A,5' proximal 

intergenic,TRIAE_CS42_5BL_TGACv1_405672_AA1332610,3083,-,- 

farmcpu,STARCH,S5D_365732020,TGACv1_scaffold_433921_5DL:59862,A/C,3' 

UTR,TRIAE_CS42_5DL_TGACv1_433921_AA1425280,0,-,- 

farmcpu,HT,S5D_451607895,TGACv1_scaffold_445874_5DL:694,G/C,intergenic,-,-,-

,- 

farmcpu,SSQM,S5D_499069158,TGACv1_scaffold_434033_5DL:22481,G/A,intergenic,-

,-,-,- 

farmcpu,SSQM,S6A_614373502,TGACv1_scaffold_470886_6AL:28755,A/G,intergenic,TR

IAE_CS42_6AL_TGACv1_470886_AA1497490,6007,-,- 
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farmcpu,TWT,S6A_614660970,TGACv1_scaffold_471361_6AL:101992,T/C,intronic,TRIA

E_CS42_6AL_TGACv1_471361_AA1507680,0,-,- 

farmcpu,FLS,S6A_63296169,TGACv1_scaffold_488607_6AS:3941,A/G,intergenic,-,-,-

,- 

gcta,FLS,S6B_181128808,TGACv1_scaffold_513186_6BS:5592,A/G,intergenic,TRIAE_C

S42_6BS_TGACv1_513186_AA1633420,23564,-,- 

farmcpu,MAT,S6B_32730233,TGACv1_scaffold_513471_6BS:85717,G/C,intergenic,-,-

,-,- 

farmcpu,YLD,S6B_656279771,TGACv1_scaffold_499780_6BL:147271,C/T,3' 

UTR,TRIAE_CS42_6BL_TGACv1_499780_AA1591550,0,-,- 

farmcpu,HT,S6B_706326554,TGACv1_scaffold_500675_6BL:59205,A/G,intronic,TRIAE_

CS42_6BL_TGACv1_500675_AA1608280,0,-,- 

farmcpu,HD,S6D_127384672,TGACv1_scaffold_543118_6DS:58895,G/A,missense,TRIAE_

CS42_6DS_TGACv1_543118_AA1735700,0,A/V,gCt/gTt 

farmcpu,TKW,S6D_468113959,TGACv1_scaffold_526541_6DL:60185,A/T,intergenic,TRI

AE_CS42_6DL_TGACv1_526541_AA1686520,13781,-,- 

farmcpu,GSQM,S7A_673387152,TGACv1_scaffold_558731_7AL:5864,C/T,intergenic,-,-

,-,- 

farmcpu,TKW,S7A_673436887,TGACv1_scaffold_556548_7AL:99192,T/C,intergenic,-,-

,-,- 

farmcpu,HP,S7B_41890395,TGACv1_scaffold_592761_7BS:63052,A/C,intergenic,-,-,-

,- 

farmcpu,FLSG,S7B_63999446,TGACv1_scaffold_593873_7BS:8658,A/T,intergenic,-,-

,-,- 

gcta,FLSG,S7B_64393207,TGACv1_scaffold_592109_7BS:67699,G/A,intergenic,TRIAE_

CS42_7BS_TGACv1_592109_AA1930670,21488,-,- 

farmcpu,HD,S7D_553110861,TGACv1_scaffold_604806_7DL:19877,C/T,intergenic,-,-

,-,- 

gcta; 

farmcpu,FLS,S7D_58449294,TGACv1_scaffold_623041_7DS:21730,A/G,missense,TRIAE_

CS42_7DS_TGACv1_623041_AA2048950,0,M/V,Atg/Gtg 

gcta; farmcpu,HD; 

MAT,S7D_58589271,TGACv1_scaffold_622088_7DS:62338,A/G,intronic,TRIAE_CS42_7DS

_TGACv1_622088_AA2032520,0,-,-  
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APPENDIX D: Protein-protein BLAST results for all transcripts located on genomic 

(TGACv1 assembly) scaffolds containing significant marker-trait associations identified in 

chapter I 

 

The code below may be copied and pasted into a text editor and saved with a .csv extension to 

create a data table that can readily be opened as a spreadsheet: 

 

QUERY_ENSEMBL_ID,SUBJECT_ENSEMBL_ID,SUBJECT_DESCRIPTION,QUERY_START,QUERY_END

,SUBJECT_START,SUBJECT_END,E_VALUE,PERCENT_IDENT,QUERY_COVERAGE,BITSCORE,CLOS

EST_SNP,SNP_TRAIT,SNP_DIST_FROM_QUERY,SNP_CLASS 

TRIAE_CS42_1AL_TGACv1_000910_AA0021640.1,TRIUR3_21554-P1,L-type lectin-domain 

containing receptor kinase IX.1  

[Source:UniProtKB/TrEMBL;Acc:M7YC97],1,424,1,380,0,84.24,88,624,S1A_583587147

,TWT,3543,5' proximal intergenic 

TRIAE_CS42_1AL_TGACv1_000910_AA0021650.1,TRIUR3_09155-P1,Ankyrin-3  

[Source:UniProtKB/TrEMBL;Acc:M8A2S2],6,468,448,887,1.00E-

102,44.08,99,332,S1A_583587147,TWT,-968,5' proximal intergenic 

TRIAE_CS42_1AL_TGACv1_000910_AA0021670.1,MLOC_75180.4,Endoplasmin homolog  

[Source:UniProtKB/Swiss-Prot;Acc:P36183],81,493,1,449,1.00E-

144,53.74,81,430,S1A_583587147,TWT,-64431,5' proximal intergenic 

TRIAE_CS42_1AL_TGACv1_000910_AA0021670.2,MLOC_75180.4,Endoplasmin homolog  

[Source:UniProtKB/Swiss-Prot;Acc:P36183],58,470,1,449,3.00E-

145,53.74,84,431,S1A_583587147,TWT,-64431,5' proximal intergenic 

TRIAE_CS42_1AS_TGACv1_019020_AA0058140.1,EMT11556,SKP1-like protein 1B  

[Source:UniProtKB/TrEMBL;Acc:M8BC34],57,140,218,300,4.00E-

07,35.71,29,53.9,S1A_50513589,SSQM,141072,3' proximal intergenic 

TRIAE_CS42_1AS_TGACv1_019020_AA0058160.1,AES91877,ubiquitin-like-specific 

protease ESD4-like protein,307,492,304,486,1.00E-

13,27.23,36,76.3,S1A_50513589,SSQM,127332,3' proximal intergenic 

TRIAE_CS42_1AS_TGACv1_019020_AA0058200.1,GSMUA_Achr10P13520_001,Myb-related 

protein MYBAS1 

[Source:GMGC_GENE;Acc:GSMUA_Achr10G13520_001],15,211,14,230,5.00E-

74,55.96,91,229,S1A_50513589,SSQM,1388,3' proximal intergenic 

TRIAE_CS42_1AS_TGACv1_019020_AA0058200.2,GSMUA_Achr10P13520_001,Myb-related 

protein MYBAS1 

[Source:GMGC_GENE;Acc:GSMUA_Achr10G13520_001],1,228,29,230,2.00E-

52,48.07,98,175,S1A_50513589,SSQM,1388,3' proximal intergenic 

TRIAE_CS42_1AS_TGACv1_019020_AA0058200.3,GSMUA_Achr10P13520_001,Myb-related 

protein MYBAS1 

[Source:GMGC_GENE;Acc:GSMUA_Achr10G13520_001],15,258,14,230,6.00E-

74,52.46,93,231,S1A_50513589,SSQM,1388,3' proximal intergenic 

TRIAE_CS42_1AS_TGACv1_019544_AA0067890.1,EMT24409,SKP1-like protein 4  

[Source:UniProtKB/TrEMBL;Acc:M8BQZ8],225,276,265,314,0.001,42.31,15,43.9,S1A_

22935081,TKW,-6153,intergenic 
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TRIAE_CS42_1AS_TGACv1_019544_AA0067890.2,EMT24409,SKP1-like protein 4  

[Source:UniProtKB/TrEMBL;Acc:M8BQZ8],225,282,265,322,7.00E-

04,40,20,43.9,S1A_22935081,TKW,-6153,intergenic 

TRIAE_CS42_1AS_TGACv1_019544_AA0067900.1,EMT00716,Protein FAR-RED ELONGATED 

HYPOCOTYL 3  [Source:UniProtKB/TrEMBL;Acc:N1QTR2],1,154,149,289,2.00E-

58,65.58,67,196,S1A_22935081,TKW,-10316,intergenic 

TRIAE_CS42_1BL_TGACv1_031997_AA0124020.1,EMT02554,LRR receptor-like 

serine/threonine-protein kinase FLS2  

[Source:UniProtKB/TrEMBL;Acc:N1QRD0],1,542,1,600,1.00E-

147,49.67,100,469,S1B_659857468,STARCH,756,5' proximal intergenic 

TRIAE_CS42_1BL_TGACv1_031997_AA0124030.1,TRIUR3_09155-P1,Ankyrin-3  

[Source:UniProtKB/TrEMBL;Acc:M8A2S2],23,463,476,887,2.00E-

109,48.46,95,350,S1B_659857468,STARCH,-2636,5' proximal intergenic 

TRIAE_CS42_1BL_TGACv1_031997_AA0124050.1,TRIUR3_09155-P1,Ankyrin-3  

[Source:UniProtKB/TrEMBL;Acc:M8A2S2],30,497,480,890,7.00E-

91,42.8,94,302,S1B_659857468,STARCH,-8385,5' proximal intergenic 

TRIAE_CS42_1BL_TGACv1_031997_AA0124050.2,TRIUR3_09155-P1,Ankyrin-3  

[Source:UniProtKB/TrEMBL;Acc:M8A2S2],41,471,492,890,6.00E-

100,45.91,91,325,S1B_659857468,STARCH,-8385,5' proximal intergenic 

TRIAE_CS42_1BS_TGACv1_049505_AA0155330.1,TRIUR3_09155-P1,Ankyrin-3  

[Source:UniProtKB/TrEMBL;Acc:M8A2S2],38,457,477,861,1.00E-

71,39.49,79,250,S1B_39294256,STARCH,10824,intronic 

TRIAE_CS42_1BS_TGACv1_049505_AA0155330.2,TRIUR3_09155-P1,Ankyrin-3  

[Source:UniProtKB/TrEMBL;Acc:M8A2S2],38,494,477,886,3.00E-

72,37.85,92,251,S1B_39294256,STARCH,10824,intronic 

TRIAE_CS42_1BS_TGACv1_049505_AA0155350.1,TRIUR3_22088-P1,5'-

methylthioadenosine/S-adenosylhomocysteine nucleosidase  

[Source:UniProtKB/TrEMBL;Acc:M7YX26],13,54,298,339,6.00E-

07,59.52,60,48.5,S1B_39294256,STARCH,5346,intronic 

TRIAE_CS42_1BS_TGACv1_049505_AA0155360.1,EMT23143,Protein STIP1-like protein  

[Source:UniProtKB/TrEMBL;Acc:M8BMT1],31,338,9,344,0,89.88,91,602,S1B_39294256

,STARCH,0,intronic 

TRIAE_CS42_1BS_TGACv1_049505_AA0155360.2,EMT23143,Protein STIP1-like protein  

[Source:UniProtKB/TrEMBL;Acc:M8BMT1],31,338,9,344,0,89.88,91,602,S1B_39294256

,STARCH,0,intronic 

TRIAE_CS42_1BS_TGACv1_049505_AA0155370.1,BGIOSGA008089-PA,Protein FON2 SPARE1 

[Source:UniProtKB/Swiss-Prot;Acc:A2X462],21,136,20,131,3.00E-

15,52.5,85,71.6,S1B_39294256,STARCH,-67150,intronic 

TRIAE_CS42_1BS_TGACv1_049567_AA0157010.1,TRIUR3_05946-P1,"Calcium-

transporting ATPase 4, endoplasmic reticulum-type  

[Source:UniProtKB/TrEMBL;Acc:M8AS38]",184,1057,1,848,0,96.68,83,1682,S1B_4401

0984,MAT,-26087,intergenic 

TRIAE_CS42_1BS_TGACv1_049567_AA0157020.1,EMJ09213,Cam-binding protein 60-like 

G [Source:Projected from Arabidopsis thaliana (AT5G26920) 
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TAIR;Acc:AT5G26920],55,279,83,309,7.00E-41,37.44,39,159,S1B_44010984,MAT,-

83305,intergenic 

TRIAE_CS42_1BS_TGACv1_050247_AA0169620.1,EMT23334,Tropinone reductase 1  

[Source:UniProtKB/TrEMBL;Acc:M8BN31],526,574,260,317,0.015,50,8,41.2,S1B_5085

0397,HD,7789,3' proximal intergenic 

TRIAE_CS42_1BS_TGACv1_050247_AA0169640.1,TRIUR3_05731-P1,Tetratricopeptide 

repeat (TPR)-like superfamily protein [Source:Projected from Arabidopsis 

thaliana (AT5G03560) TAIR;Acc:AT5G03560],1,269,1,269,9.00E-

171,91.45,100,479,S1B_50850397,HD,-1230,3' proximal intergenic 

TRIAE_CS42_1DS_TGACv1_080394_AA0247270.1,TRIUR3_35063-P1,Fatty acyl-CoA 

reductase 2  

[Source:UniProtKB/TrEMBL;Acc:M7YFR6],1,568,1,580,0,90.34,100,1083,S1D_6674498

,STARCH,74998,3' UTR 

TRIAE_CS42_1DS_TGACv1_080394_AA0247280.1,OS06T0520600-01,Zinc finger CCCH 

domain-containing protein 43 

[Source:Uniprot/SWISSPROT;Acc:Q5Z5Q3],514,693,534,711,9.00E-

41,50.28,77,162,S1D_6674498,STARCH,0,3' UTR 

TRIAE_CS42_2AL_TGACv1_093694_AA0285290.1,TRIUR3_25882-P1,Werner Syndrome-like 

exonuclease  [Source:UniProtKB/TrEMBL;Acc:M8B238],1,231,1,232,4.00E-

148,96.55,99,419,S2A_764941637,HT,-26304,intergenic 

TRIAE_CS42_2AL_TGACv1_093694_AA0285310.1,EMT15100,Heat shock cognate 70 kDa 

protein 1  

[Source:UniProtKB/TrEMBL;Acc:N1R361],12,625,780,1417,0,52.04,96,597,S2A_76494

1637,HT,-39816,intergenic 

TRIAE_CS42_2AL_TGACv1_093694_AA0285330.1,EMT28374,Speckle-type POZ protein-

like protein  

[Source:UniProtKB/TrEMBL;Acc:M8C2B6],1,301,1,300,0,90.7,85,571,S2A_764941637,

HT,-77147,intergenic 

TRIAE_CS42_2BS_TGACv1_145905_AA0448870.1,TRIUR3_31175-P1,UDP-

glycosyltransferase 74F2  

[Source:UniProtKB/TrEMBL;Acc:M7ZVE2],14,158,10,158,2.00E-

36,52,86,137,S2B_35041282,GSQM,-27333,intergenic 

TRIAE_CS42_2BS_TGACv1_145905_AA0448900.1,TRIUR3_31175-P1,UDP-

glycosyltransferase 74F2  

[Source:UniProtKB/TrEMBL;Acc:M7ZVE2],212,392,3,186,7.00E-

35,43.48,38,140,S2B_35041282,GSQM,-177178,intergenic 

TRIAE_CS42_2BS_TGACv1_145905_AA0448930.1,EMT07704,Lectin-domain containing 

receptor kinase A4.2  

[Source:UniProtKB/TrEMBL;Acc:M8BLR0],271,596,331,656,0,93.56,98,635,S2B_35041

282,GSQM,-275503,intergenic 

TRIAE_CS42_2BS_TGACv1_146004_AA0452740.1,OS07T0691800-01,26S protease 

regulatory subunit 4 homolog 

[Source:Uniprot/SWISSPROT;Acc:P46466],1,449,1,448,0,98,100,882,S2B_66522933,H

P,-18071,intergenic 
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TRIAE_CS42_2BS_TGACv1_146004_AA0452740.2,OS07T0691800-01,26S protease 

regulatory subunit 4 homolog 

[Source:Uniprot/SWISSPROT;Acc:P46466],1,423,1,422,0,97.87,94,830,S2B_66522933

,HP,-18071,intergenic 

TRIAE_CS42_2BS_TGACv1_146004_AA0452750.1,TRIUR3_09269-P1,Leucine-rich repeat 

receptor-like protein kinase PEPR2  

[Source:UniProtKB/TrEMBL;Acc:M7Z8I6],1,576,212,787,0,94.79,100,1123,S2B_66522

933,HP,-33616,intergenic 

TRIAE_CS42_2DS_TGACv1_177832_AA0585380.1,POPTR_0008s07580.1,Dicer-like 

protein 

[source:UniProtKB/TrEMBL;Acc:B9HHX6_POPTR],28,76,656,712,1.2,29.82,60,30,S2D_

35084672,HD; MAT,-2957,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177832_AA0585400.1,MLOC_36445.2,plasmodesmata-located 

protein 8 [Source:Projected from Arabidopsis thaliana (AT3G60720) 

TAIR;Acc:AT3G60720],31,68,74,107,5.9,44.74,55,27.3,S2D_35084672,HD; MAT,-

29907,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177832_AA0585410.1,scaffold_501429.1,Transducin family 

protein  

[Source:UniProtKB/TrEMBL;Acc:D7LMP6],46,107,389,449,2.9,27.42,48,30.4,S2D_350

84672,HD; MAT,-51428,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177832_AA0585420.1,MLOC_69399.1,MLO-like protein  

[Source:UniProtKB/TrEMBL;Acc:M0YHK1],1,487,1,487,0,95.07,100,935,S2D_35084672

,HD; MAT,-60367,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177916_AA0587120.1,OB04G11740.1,Serine/threonine-

protein kinase  

[Source:UniProtKB/TrEMBL;Acc:J3LVJ9],3,813,4,808,0,67.81,99,1136,S2D_9872868,

HD,13537,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177916_AA0587140.1,MLOC_55457.3,Haloacid dehalogenase-

like hydrolase (HAD) superfamily protein [Source:Projected from Arabidopsis 

thaliana (AT1G79790) 

TAIR;Acc:AT1G79790],66,141,5,75,0.074,31.58,33,36.2,S2D_9872868,HD,2253,5' 

proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177916_AA0587150.1,EMT11322,Anthocyanin 3'-O-beta-

glucosyltransferase  

[Source:UniProtKB/TrEMBL;Acc:M8B3M4],5,493,1,489,0,99.59,99,1003,S2D_9872868,

HD,-255,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177916_AA0587160.1,EMT20319,Disease resistance protein 

RGA2  [Source:UniProtKB/TrEMBL;Acc:N1R0R0],97,405,180,495,3.00E-

109,55.14,99,336,S2D_9872868,HD,-5249,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177916_AA0587170.1,EMT05736,Cytochrome P450 71D7  

[Source:UniProtKB/TrEMBL;Acc:M8AMJ6],14,522,1,502,0,68.33,97,677,S2D_9872868,

HD,-9759,5' proximal intergenic 

TRIAE_CS42_2DS_TGACv1_177916_AA0587180.1,EMT11319,Obtusifoliol 14-alpha 

demethylase  
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[Source:UniProtKB/TrEMBL;Acc:M8BWY3],5,511,1,507,0,99.8,98,1056,S2D_9872868,H

D,-26448,5' proximal intergenic 

TRIAE_CS42_3AS_TGACv1_211731_AA0693510.1,TRIUR3_10402-P1,Deoxyhypusine 

synthase  

[Source:UniProtKB/TrEMBL;Acc:M7ZR55],193,590,1,403,0,97.77,84,757,S3A_2023250

0,GSQM,2932,5' proximal intergenic 

TRIAE_CS42_3AS_TGACv1_211731_AA0693510.2,TRIUR3_10402-P1,Deoxyhypusine 

synthase  

[Source:UniProtKB/TrEMBL;Acc:M7ZR55],203,641,1,403,0,88.74,84,735,S3A_2023250

0,GSQM,2932,5' proximal intergenic 

TRIAE_CS42_3AS_TGACv1_213057_AA0705060.1,EMT17330,LRR receptor-like 

serine/threonine-protein kinase EFR  

[Source:UniProtKB/TrEMBL;Acc:N1R1Y3],21,637,1,610,0,83.63,84,1016,S3A_2493807

,SSQM,12251,intergenic 

TRIAE_CS42_3AS_TGACv1_213057_AA0705060.2,EMT17330,LRR receptor-like 

serine/threonine-protein kinase EFR  

[Source:UniProtKB/TrEMBL;Acc:N1R1Y3],21,637,1,610,0,83.63,81,1013,S3A_2493807

,SSQM,12251,intergenic 

TRIAE_CS42_3AS_TGACv1_213057_AA0705070.1,TRIUR3_05393-P1,60S ribosomal 

protein L9  [Source:UniProtKB/TrEMBL;Acc:M7YJ37],1,185,1,185,4.00E-

132,98.92,84,376,S3A_2493807,SSQM,9411,intergenic 

TRIAE_CS42_3AS_TGACv1_213057_AA0705070.2,TRIUR3_05393-P1,60S ribosomal 

protein L9  [Source:UniProtKB/TrEMBL;Acc:M7YJ37],1,189,1,189,7.00E-

137,100,100,387,S3A_2493807,SSQM,9411,intergenic 

TRIAE_CS42_3B_TGACv1_223320_AA0780170.1,EMT30985,Serine/threonine-protein 

kinase CTR1  

[Source:UniProtKB/TrEMBL;Acc:M8C131],1,437,1,409,0,66,100,533,S3B_695966897,T

WT,5276,missense 

TRIAE_CS42_3B_TGACv1_223320_AA0780190.1,EMT32145,Signal peptide peptidase-

like 2B  

[Source:UniProtKB/TrEMBL;Acc:M8C4C0],222,594,1,376,0,96.54,63,738,S3B_6959668

97,TWT,0,missense 

TRIAE_CS42_3B_TGACv1_223320_AA0780190.2,EMT32145,Signal peptide peptidase-

like 2B  

[Source:UniProtKB/TrEMBL;Acc:M8C4C0],192,564,1,376,0,96.54,66,734,S3B_6959668

97,TWT,0,missense 

TRIAE_CS42_4AL_TGACv1_288585_AA0952930.1,Bra036804.1-P,AT4G23160 (E=9e-043) | 

protein kinase family protein ,15,259,3,248,5.00E-

69,45.93,94,219,S4A_739598141,GSQM,85897,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0952930.2,Bra036804.1-P,AT4G23160 (E=9e-043) | 

protein kinase family protein ,15,259,3,248,5.00E-

69,45.93,94,219,S4A_739598141,GSQM,85897,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0952940.1,EMT33735,LRR receptor-like 

serine/threonine-protein kinase FLS2  
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[Source:UniProtKB/TrEMBL;Acc:N1R5T1],1,550,1,557,0,77.24,100,759,S4A_73959814

1,GSQM,75055,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0952940.2,EMT33735,LRR receptor-like 

serine/threonine-protein kinase FLS2  

[Source:UniProtKB/TrEMBL;Acc:N1R5T1],1,550,1,557,0,77.24,100,759,S4A_73959814

1,GSQM,75055,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0952960.1,TRIUR3_09775-P1,F-box/kelch-repeat 

protein SKIP11  

[Source:UniProtKB/TrEMBL;Acc:M7ZHU0],1,1172,1,1146,0,80.75,99,1825,S4A_739598

141,GSQM,45095,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0952970.1,EMT15955,Disease resistance protein 

RPP13  

[Source:UniProtKB/TrEMBL;Acc:N1R150],546,984,423,935,0,70.82,82,666,S4A_73959

8141,GSQM,29009,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0952990.1,EMT24075,Disease resistance protein 

RPP13  

[Source:UniProtKB/TrEMBL;Acc:M8BGH7],1,905,1,900,0,82.84,97,1421,S4A_73959814

1,GSQM,5795,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0953000.1,GSMUA_Achr10P08010_001,expressed 

protein 

[Source:GMGC_GENE;Acc:GSMUA_Achr10G08010_001],27,740,22,725,0,53.81,96,743,S4

A_739598141,GSQM,0,synonymous 

TRIAE_CS42_4AL_TGACv1_288585_AA0953010.1,MLOC_53088.1,Terpenoid synthases 

superfamily protein [Source:Projected from Arabidopsis thaliana (AT1G62730) 

TAIR;Acc:AT1G62730],14,315,1,302,0,94.7,96,564,S4A_739598141,GSQM,0,synonymou

s 

TRIAE_CS42_4AL_TGACv1_288585_AA0953020.1,TRIUR3_08851-P1,NAC domain-

containing protein 7  

[Source:UniProtKB/TrEMBL;Acc:M8ALU3],1,336,1,341,0,96.77,100,666,S4A_73959814

1,GSQM,-8862,synonymous 

TRIAE_CS42_4AL_TGACv1_288738_AA0956940.1,EMT29067,Disease resistance protein 

RPS2  

[Source:UniProtKB/TrEMBL;Acc:M8CNJ7],5,629,55,682,0,75.48,98,958,S4A_72671631

8,YLD,43929,intronic 

TRIAE_CS42_4AL_TGACv1_288738_AA0956970.1,EMT29067,Disease resistance protein 

RPS2  

[Source:UniProtKB/TrEMBL;Acc:M8CNJ7],1,634,463,1066,0,63.79,100,774,S4A_72671

6318,YLD,0,intronic 

TRIAE_CS42_4AL_TGACv1_288738_AA0956970.2,EMT29067,Disease resistance protein 

RPS2  

[Source:UniProtKB/TrEMBL;Acc:M8CNJ7],20,699,417,1066,0,64.62,97,848,S4A_72671

6318,YLD,0,intronic 

TRIAE_CS42_4BL_TGACv1_320403_AA1037940.1,AET01348,pathogenic type III 

effector avirulence factor Avr AvrRpt-cleavage: cleavage site 
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protein,11,169,12,146,0.97,23.49,94,32,S4B_626390000,HI; STARCH,-

19266,intergenic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269750.1,PGSC0003DMT400062565,Ripening 

regulated protein 

[Source:PGSC_GENE;Acc:PGSC0003DMG400024346],11,343,6,328,3.00E-

142,63.17,96,412,S5A_9462259,STARCH,16024,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269750.2,PGSC0003DMT400062565,Ripening 

regulated protein 

[Source:PGSC_GENE;Acc:PGSC0003DMG400024346],11,295,6,328,7.00E-

115,57.41,96,341,S5A_9462259,STARCH,16024,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269760.1,EOY19851,"Zinc finger, CCHC-type-

like protein",92,267,50,221,2.00E-

15,28.25,28,79.7,S5A_9462259,STARCH,12920,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269770.1,KEH29019,endonuclease/exonuclease/ph

osphatase family protein,2,407,40,430,3.00E-

58,29.31,97,204,S5A_9462259,STARCH,11429,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269790.1,OS01T0624000-01,Neutral ceramidase 

[Source:Uniprot/SWISSPROT;Acc:Q0JL46],1,781,1,781,0,83.97,97,1335,S5A_9462259

,STARCH,0,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269790.2,OS01T0624000-01,Neutral ceramidase 

[Source:Uniprot/SWISSPROT;Acc:Q0JL46],1,783,1,785,0,84.52,100,1352,S5A_946225

9,STARCH,0,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269790.3,OS01T0624000-01,Neutral ceramidase 

[Source:Uniprot/SWISSPROT;Acc:Q0JL46],1,783,1,785,0,84.52,100,1352,S5A_946225

9,STARCH,0,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269790.4,OS01T0624000-01,Neutral ceramidase 

[Source:Uniprot/SWISSPROT;Acc:Q0JL46],1,783,1,785,0,84.52,100,1352,S5A_946225

9,STARCH,0,intronic 

TRIAE_CS42_5AS_TGACv1_393202_AA1269790.5,OS01T0624000-01,Neutral ceramidase 

[Source:Uniprot/SWISSPROT;Acc:Q0JL46],1,544,1,547,0,86.13,89,948,S5A_9462259,

STARCH,0,intronic 

TRIAE_CS42_5BL_TGACv1_404873_AA1313490.1,EOY31522,AP2 domain-containing 

transcription factor,39,396,30,350,2.00E-137,60.34,90,403,S5B_394707451,HI,-

35687,intergenic 

TRIAE_CS42_5BL_TGACv1_404873_AA1313500.1,BRADI4G30610.1,DnaJ/Hsp40 cysteine-

rich domain superfamily protein [Source:Projected from Arabidopsis thaliana 

(AT2G24860) TAIR;Acc:AT2G24860],1,148,1,148,9.00E-

90,87.16,100,264,S5B_394707451,HI,-43858,intergenic 

TRIAE_CS42_5BL_TGACv1_405672_AA1332610.1,EMT22165,Agamous-like MADS-box 

protein AGL61  [Source:UniProtKB/TrEMBL;Acc:M8BBC6],1,173,1,173,2.00E-

116,95.38,100,333,S5B_644947034,HI,3083,5' proximal intergenic 

TRIAE_CS42_5BL_TGACv1_407709_AA1359020.1,AET02817,Myb/SANT-like DNA-binding 

domain protein,4,187,22,215,2.00E-14,29.35,62,73.9,S5B_261134879,HT,1901,3' 

proximal intergenic 
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TRIAE_CS42_5BS_TGACv1_424234_AA1387800.1,TRIUR3_21256-P1,WD repeat-containing 

protein 26  [Source:UniProtKB/TrEMBL;Acc:M7YN51],91,219,555,683,3.00E-

19,37.98,13,97.4,S5B_34721398,STARCH,24703,premature stop 

TRIAE_CS42_5BS_TGACv1_424234_AA1387810.1,EOY24040,RING/U-box superfamily 

protein isoform 1,235,312,74,179,2.00E-

04,27.36,44,46.6,S5B_34721398,STARCH,21313,premature stop 

TRIAE_CS42_5BS_TGACv1_424234_AA1387820.1,EMT17640,Disease resistance protein 

RPM1  

[Source:UniProtKB/TrEMBL;Acc:N1R0E7],1,927,1,926,0,84.57,99,1606,S5B_34721398

,STARCH,0,premature stop 

TRIAE_CS42_5DL_TGACv1_433921_AA1425260.1,KEH32063,transcription factor BIM2-

like protein,2,456,12,524,3.00E-73,34.43,90,248,S5D_365732020,STARCH,34762,3' 

UTR 

TRIAE_CS42_5DL_TGACv1_433921_AA1425270.1,EOY22172,O-fucosyltransferase family 

protein isoform 1,12,495,33,499,0,72.16,96,747,S5D_365732020,STARCH,29557,3' 

UTR 

TRIAE_CS42_5DL_TGACv1_433921_AA1425280.1,EMT16494,Prolyl oligopeptidase 

family protein [Source:Projected from Arabidopsis thaliana (AT1G69020) 

TAIR;Acc:AT1G69020],42,732,108,819,0,92.3,99,1268,S5D_365732020,STARCH,0,3' 

UTR 

TRIAE_CS42_6AL_TGACv1_470886_AA1497500.1,EOX99084,TCP family transcription 

factor,1,187,50,257,2.00E-58,56.48,94,190,S6A_614373502,SSQM,-7719,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497540.1,PGSC0003DMT400002341,Thylakoid-bound 

ascorbate peroxidase 6 

[Source:PGSC_GENE;Acc:PGSC0003DMG400000894],33,431,42,420,0,71.57,93,584,S6A_

614373502,SSQM,-98281,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497540.2,OS04T0434800-01,"Probable L-

ascorbate peroxidase 7, chloroplastic 

[Source:Uniprot/SWISSPROT;Acc:Q7XJ02]",6,340,32,358,5.00E-

179,72.41,86,509,S6A_614373502,SSQM,-98281,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497550.1,EMT14678,Transcriptional corepressor 

LEUNIG  

[Source:UniProtKB/TrEMBL;Acc:N1QVQ4],43,91,977,1016,1.8,40.82,30,32,S6A_61437

3502,SSQM,-103371,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497560.1,OGLUM04G24450.6,DNA ligase IV 

[Source:Projected from Arabidopsis thaliana (AT5G57160) 

TAIR;Acc:AT5G57160],19,87,519,588,0.31,31.43,77,32.3,S6A_614373502,SSQM,-

116361,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497580.1,EOX95444,P-glycoprotein 

21,34,84,783,833,4,31.37,59,28.9,S6A_614373502,SSQM,-147006,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497590.1,EMT27748,"Chloroplastic group IIA 

intron splicing facilitator CRS1, chloroplastic  

[Source:UniProtKB/TrEMBL;Acc:M8C133]",87,143,134,190,0.86,41.38,33,33.1,S6A_6

14373502,SSQM,-161571,intergenic 
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TRIAE_CS42_6AL_TGACv1_470886_AA1497600.1,MLOC_49780.1,GAST1 protein homolog 4 

[Source:Projected from Arabidopsis thaliana (AT5G15230) 

TAIR;Acc:AT5G15230],10,116,7,113,2.00E-16,38.53,92,73.9,S6A_614373502,SSQM,-

175072,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497600.2,MLOC_36360.1,Gibberellin-regulated 

family protein [Source:Projected from Arabidopsis thaliana (AT2G30810) 

TAIR;Acc:AT2G30810],44,143,12,103,1.00E-16,42,70,75.1,S6A_614373502,SSQM,-

175072,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497610.1,BRADI3G60400.1,polyprenyltransferase 

1 [Source:Projected from Arabidopsis thaliana (AT4G23660) 

TAIR;Acc:AT4G23660],17,402,20,408,0,84.91,96,598,S6A_614373502,SSQM,-

177572,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497610.2,BRADI3G60400.1,polyprenyltransferase 

1 [Source:Projected from Arabidopsis thaliana (AT4G23660) 

TAIR;Acc:AT4G23660],17,402,20,408,0,84.91,96,598,S6A_614373502,SSQM,-

177572,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497620.1,EMT08397,Replication protein A 32 

kDa subunit  

[Source:UniProtKB/TrEMBL;Acc:M8AVA3],1,277,1,296,0,86.56,100,519,S6A_61437350

2,SSQM,-237991,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497630.1,PGSC0003DMT400000123,Kiwellin 

[Source:PGSC_GENE;Acc:PGSC0003DMG400000034],9,184,8,189,7.00E-

60,54.1,96,191,S6A_614373502,SSQM,-249701,intergenic 

TRIAE_CS42_6AL_TGACv1_470886_AA1497640.1,EOY26276,"Tyrosyl-tRNA synthetase, 

class Ib, 

bacterial/mitochondrial",17,365,37,385,0,69.17,95,534,S6A_614373502,SSQM,-

254484,intergenic 

TRIAE_CS42_6AL_TGACv1_471361_AA1507650.1,TRIUR3_06763-P1,Disease resistance 

RPP13-like protein 4  

[Source:UniProtKB/TrEMBL;Acc:M7YKV0],1,540,1,539,0,79.07,98,871,S6A_614660970

,TWT,28584,intronic 

TRIAE_CS42_6AL_TGACv1_471361_AA1507650.2,TRIUR3_06763-P1,Disease resistance 

RPP13-like protein 4  

[Source:UniProtKB/TrEMBL;Acc:M7YKV0],1,495,1,494,0,78.79,98,798,S6A_614660970

,TWT,28584,intronic 

TRIAE_CS42_6AL_TGACv1_471361_AA1507650.3,TRIUR3_06763-P1,Disease resistance 

RPP13-like protein 4  

[Source:UniProtKB/TrEMBL;Acc:M7YKV0],1,495,1,494,0,78.79,98,798,S6A_614660970

,TWT,28584,intronic 

TRIAE_CS42_6AL_TGACv1_471361_AA1507660.1,EMT31140,F-box protein  

[Source:UniProtKB/TrEMBL;Acc:M8C1J6],18,363,82,422,1.00E-

52,35.47,94,185,S6A_614660970,TWT,6387,intronic 

TRIAE_CS42_6AL_TGACv1_471361_AA1507660.2,EMT31140,F-box protein  

[Source:UniProtKB/TrEMBL;Acc:M8C1J6],18,363,82,422,1.00E-

52,35.47,94,185,S6A_614660970,TWT,6387,intronic 
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TRIAE_CS42_6AL_TGACv1_471361_AA1507660.3,EMT31140,F-box protein  

[Source:UniProtKB/TrEMBL;Acc:M8C1J6],18,298,82,363,2.00E-

45,36.18,92,164,S6A_614660970,TWT,6387,intronic 

TRIAE_CS42_6AL_TGACv1_471361_AA1507690.1,POPTR_0010s17740.1,Integral membrane 

single C2 domain protein 

[source:UniProtKB/TrEMBL;Acc:B9HY18_POPTR],94,675,111,669,0,64.77,86,715,S6A_

614660970,TWT,-10174,intronic 

TRIAE_CS42_6BL_TGACv1_499780_AA1591540.1,EMT03461,Glutamate receptor 2.7  

[Source:UniProtKB/TrEMBL;Acc:N1QUK2],1,1014,1,992,0,80.75,100,1540,S6B_656279

771,YLD,275,3' UTR 

TRIAE_CS42_6BL_TGACv1_499780_AA1591550.1,Bo1g014280.1,"diacylglycerol kinase 

7 [Source:TAIR;Acc:AT4G30340](projected from 

arabidopsis_thaliana,AT4G30340)",28,501,21,490,0,62.42,94,632,S6B_656279771,Y

LD,0,3' UTR 

TRIAE_CS42_6BL_TGACv1_499780_AA1591550.2,Bo1g014280.1,"diacylglycerol kinase 

7 [Source:TAIR;Acc:AT4G30340](projected from 

arabidopsis_thaliana,AT4G30340)",28,501,21,490,0,62.42,94,632,S6B_656279771,Y

LD,0,3' UTR 

TRIAE_CS42_6BL_TGACv1_500675_AA1608280.1,TRIUR3_33630-P1,Cysteine-rich 

receptor-like protein kinase 19  

[Source:UniProtKB/TrEMBL;Acc:M7YHJ8],1,315,1,332,8.00E-

133,58.56,61,396,S6B_706326554,HT,0,intronic 

TRIAE_CS42_6BL_TGACv1_500675_AA1608280.2,TRIUR3_33630-P1,Cysteine-rich 

receptor-like protein kinase 19  

[Source:UniProtKB/TrEMBL;Acc:M7YHJ8],1,315,1,332,8.00E-

133,58.56,61,396,S6B_706326554,HT,0,intronic 

TRIAE_CS42_6BL_TGACv1_500675_AA1608290.1,EMT29395,Disease resistance protein 

RGA2  

[Source:UniProtKB/TrEMBL;Acc:M8BWJ8],18,768,145,899,0,81.85,97,1244,S6B_70632

6554,HT,-7221,intronic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686500.1,EMT22911,Wall-associated receptor 

kinase 2  

[Source:UniProtKB/TrEMBL;Acc:M8CI25],8,641,2,636,0,84.41,84,1112,S6D_46811395

9,TKW,51870,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686500.2,EMT22915,Wall-associated receptor 

kinase 1  

[Source:UniProtKB/TrEMBL;Acc:M8BDC6],8,702,2,741,0,72.74,98,1052,S6D_46811395

9,TKW,51870,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686510.1,TRIUR3_12904-P1,Alpha-

latroinsectotoxin-Lt1a  

[Source:UniProtKB/TrEMBL;Acc:M7YXF1],25,499,26,456,2.00E-

111,44.87,66,352,S6D_468113959,TKW,21580,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686510.2,TRIUR3_12904-P1,Alpha-

latroinsectotoxin-Lt1a  
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[Source:UniProtKB/TrEMBL;Acc:M7YXF1],25,471,26,456,2.00E-

117,47.55,65,367,S6D_468113959,TKW,21580,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686520.1,EMT22911,Wall-associated receptor 

kinase 2  

[Source:UniProtKB/TrEMBL;Acc:M8CI25],1,635,1,636,0,98.9,85,1289,S6D_468113959

,TKW,13781,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686560.1,EMT22915,Wall-associated receptor 

kinase 1  

[Source:UniProtKB/TrEMBL;Acc:M8BDC6],1,743,1,741,0,72.55,99,1075,S6D_46811395

9,TKW,-30214,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686570.1,EMT22911,Wall-associated receptor 

kinase 2  [Source:UniProtKB/TrEMBL;Acc:M8CI25],1,247,390,636,2.00E-

160,91.9,98,466,S6D_468113959,TKW,-51314,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686580.1,EMT22911,Wall-associated receptor 

kinase 2  [Source:UniProtKB/TrEMBL;Acc:M8CI25],118,419,1,304,2.00E-

156,75,69,463,S6D_468113959,TKW,-53992,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686590.1,EMT22915,Wall-associated receptor 

kinase 1  

[Source:UniProtKB/TrEMBL;Acc:M8BDC6],1,721,1,741,0,96.09,100,1429,S6D_4681139

59,TKW,-64138,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686590.2,EMT22915,Wall-associated receptor 

kinase 1  

[Source:UniProtKB/TrEMBL;Acc:M8BDC6],1,741,1,741,0,98.79,100,1520,S6D_4681139

59,TKW,-64138,intergenic 

TRIAE_CS42_6DL_TGACv1_526541_AA1686590.3,EMT22915,Wall-associated receptor 

kinase 1  

[Source:UniProtKB/TrEMBL;Acc:M8BDC6],1,569,173,741,0,98.59,100,1158,S6D_46811

3959,TKW,-64138,intergenic 

TRIAE_CS42_6DS_TGACv1_543118_AA1735680.1,EMT26516,Fumarylacetoacetase  

[Source:UniProtKB/TrEMBL;Acc:M8CS44],1,427,1,427,0,100,100,883,S6D_127384672,

HD,5621,missense 

TRIAE_CS42_6DS_TGACv1_543118_AA1735680.2,EMT26516,Fumarylacetoacetase  

[Source:UniProtKB/TrEMBL;Acc:M8CS44],1,348,80,427,0,100,100,724,S6D_127384672

,HD,5621,missense 

TRIAE_CS42_6DS_TGACv1_543118_AA1735690.1,TRIUR3_12627-P1,Exopolygalacturonase  

[Source:UniProtKB/TrEMBL;Acc:M7Y8Y4],52,416,1,365,0,98.36,88,736,S6D_12738467

2,HD,3960,missense 

TRIAE_CS42_6DS_TGACv1_543118_AA1735700.1,POPTR_0001s05650.1,Heavy metal 

ATPase 

[Source:UniProtKB/TrEMBL;Acc:B9GM73],1,672,300,971,0,75.15,98,1047,S6D_127384

672,HD,0,missense 

TRIAE_CS42_6DS_TGACv1_543118_AA1735700.2,POPTR_0001s05650.1,Heavy metal 

ATPase 

[Source:UniProtKB/TrEMBL;Acc:B9GM73],1,672,300,971,0,75.15,98,1047,S6D_127384

672,HD,0,missense 
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TRIAE_CS42_7DS_TGACv1_622088_AA2032510.1,EMT22045,"Cysteine synthase, 

chloroplastic/chromoplastic  

[Source:UniProtKB/TrEMBL;Acc:M8BB06]",1,386,1,439,0,87.24,97,726,S7D_58589271

,HD; MAT,5823,intronic 

TRIAE_CS42_7DS_TGACv1_622088_AA2032510.2,EMT22045,"Cysteine synthase, 

chloroplastic/chromoplastic  

[Source:UniProtKB/TrEMBL;Acc:M8BB06]",13,273,179,439,0,99.23,92,528,S7D_58589

271,HD; MAT,5823,intronic 

TRIAE_CS42_7DS_TGACv1_622088_AA2032510.3,TRIUR3_02991-P1,"Cysteine synthase, 

chloroplastic/chromoplastic  

[Source:UniProtKB/TrEMBL;Acc:M7YWM0]",1,258,97,354,0,99.22,96,520,S7D_5858927

1,HD; MAT,5823,intronic 

TRIAE_CS42_7DS_TGACv1_622088_AA2032520.1,BRADI3G36140.1,3-methylcrotonyl-CoA 

carboxylase [Source:Projected from Arabidopsis thaliana (AT4G34030) 

TAIR;Acc:AT4G34030],64,628,1,581,0,90.53,90,1072,S7D_58589271,HD; 

MAT,0,intronic 

TRIAE_CS42_7DS_TGACv1_622088_AA2032520.2,BRADI3G36140.1,3-methylcrotonyl-CoA 

carboxylase [Source:Projected from Arabidopsis thaliana (AT4G34030) 

TAIR;Acc:AT4G34030],64,422,1,375,0,85.87,80,647,S7D_58589271,HD; 

MAT,0,intronic 

TRIAE_CS42_7DS_TGACv1_622088_AA2032530.1,Si036043m,catalytics;transferases;[a

cyl-carrier-protein] S-malonyltransferases;binding [Source:Projected from 

Arabidopsis thaliana (AT2G30200) 

TAIR;Acc:AT2G30200],1,76,156,237,2.2,36.59,64,30.4,S7D_58589271,HD; MAT,-

9314,intronic 

TRIAE_CS42_7DS_TGACv1_623041_AA2048930.1,TRIUR3_05385-P1,Nucleosome assembly 

protein 1-like 1-A  

[Source:UniProtKB/TrEMBL;Acc:M7ZTA3],38,382,132,476,0,97.1,90,558,S7D_5844929

4,FLS,7085,missense 

TRIAE_CS42_7DS_TGACv1_623041_AA2048930.2,TRIUR3_05385-P1,Nucleosome assembly 

protein 1-like 1-A  

[Source:UniProtKB/TrEMBL;Acc:M7ZTA3],38,362,132,456,2.00E-

180,97.23,89,516,S7D_58449294,FLS,7085,missense 

TRIAE_CS42_7DS_TGACv1_623041_AA2048940.1,EDO97709,3-ketoacyl-CoA-synthase  

[Source:UniProtKB/TrEMBL;Acc:A8JEF7],9,49,469,509,3.8,41.46,63,28.1,S7D_58449

294,FLS,2534,missense 

TRIAE_CS42_7DS_TGACv1_623041_AA2048950.1,KEH23680,PPR containing plant-like 

protein,4,636,14,659,0,46.19,99,603,S7D_58449294,FLS,0,missense 

TRIAE_CS42_7DS_TGACv1_623041_AA2048960.1,TRIUR3_06168-P1,Disease resistance 

protein RPM1  

[Source:UniProtKB/TrEMBL;Acc:M7YDZ0],1,1277,1,1276,0,78.4,100,2022,S7D_584492

94,FLS,-1094,missense 

TRIAE_CS42_7DS_TGACv1_623041_AA2048970.1,GSMUA_Achr11P19570_001,Probable 

inactive purple acid phosphatase 27 
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[Source:GMGC_GENE;Acc:GSMUA_Achr11G19570_001],26,621,34,622,0,69.01,96,885,S7

D_58449294,FLS,-9177,missense 

TRIAE_CS42_7DS_TGACv1_623041_AA2048970.2,GSMUA_Achr11P19570_001,Probable 

inactive purple acid phosphatase 27 

[Source:GMGC_GENE;Acc:GSMUA_Achr11G19570_001],26,613,34,622,0,68.01,96,866,S7

D_58449294,FLS,-9177,missense 

TRIAE_CS42_U_TGACv1_641320_AA2091830.1,EMT17640,Disease resistance protein 

RPM1  

[Source:UniProtKB/TrEMBL;Acc:N1R0E7],36,98,642,707,0.31,31.82,64,32.3,S5B_396

479359,GSQM,9205,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091850.1,EMT30163,Callose synthase 4  

[Source:UniProtKB/TrEMBL;Acc:M8C7W7],13,421,41,456,0,78.95,83,685,S5B_3964793

59,GSQM,-27515,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091850.2,EMT30163,Callose synthase 4  

[Source:UniProtKB/TrEMBL;Acc:M8C7W7],9,355,106,456,0,78.37,82,573,S5B_3964793

59,GSQM,-27515,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091850.3,EMT30163,Callose synthase 4  

[Source:UniProtKB/TrEMBL;Acc:M8C7W7],9,354,106,456,0,78.31,82,576,S5B_3964793

59,GSQM,-27515,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091860.1,BGIOSGA005297-PA,"Outer envelope pore 

protein 21, chloroplastic [Source:UniProtKB/Swiss-

Prot;Acc:B8AFI8]",60,232,1,185,3.00E-71,61.62,75,221,S5B_396479359,GSQM,-

34236,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091870.1,EMT28537,Callose synthase 3  

[Source:UniProtKB/TrEMBL;Acc:M8CM74],49,1973,1,1859,0,79.54,97,3112,S5B_39647

9359,GSQM,-38175,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091900.1,PGSC0003DMT400033774,F-box family 

protein 

[Source:PGSC_GENE;Acc:PGSC0003DMG400012976],10,110,8,107,0.08,32.11,28,37.4,S

5B_396479359,GSQM,-77429,intergenic 

TRIAE_CS42_U_TGACv1_641320_AA2091910.1,TRIUR3_15204-P1,RING-H2 finger protein 

ATL44  [Source:UniProtKB/TrEMBL;Acc:M7ZBG6],1,174,34,204,7.00E-

90,93.1,100,267,S5B_396479359,GSQM,-88485,intergenic 
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APPENDIX E: Within-environment mean GEBV-phenotype correlations across 500 Monte 

Carlo replications for univariate and multi-environment models used in chapter II 

 

The table below presents the within-environment mean GEBV-phenotype correlations (Mean r), 

their standard deviations (SD), standard errors (SE) and 95% confidence intervals (CI) calculated 

across 500 Monte Carlo replications for various traits, ratios of validation population 

size:training population size (Prop_Miss) and models. 

 

Table E.1: Within-environment mean GEBV-phenotype correlations across 500 Monte Carlo 

replications for univariate and multi-environment models used in chapter II 

Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

BIOM 0.2 14Bb 0.12 0.1389 0.0062 0.0122 Adj Means 

BIOM 0.2 14War 0.16 0.1486 0.0066 0.0131 Adj Means 

BIOM 0.2 15Bb 0.27 0.1531 0.0068 0.0135 Adj Means 

BIOM 0.2 15War 0.27 0.1483 0.0066 0.0130 Adj Means 

BIOM 0.4 14Bb 0.12 0.0856 0.0038 0.0075 Adj Means 

BIOM 0.4 14War 0.15 0.0886 0.0040 0.0078 Adj Means 

BIOM 0.4 15Bb 0.26 0.0915 0.0041 0.0080 Adj Means 

BIOM 0.4 15War 0.27 0.0914 0.0041 0.0080 Adj Means 

BIOM 0.6 14Bb 0.11 0.0642 0.0029 0.0056 Adj Means 

BIOM 0.6 14War 0.15 0.0659 0.0029 0.0058 Adj Means 

BIOM 0.6 15Bb 0.25 0.0661 0.0030 0.0058 Adj Means 

BIOM 0.6 15War 0.25 0.0714 0.0032 0.0063 Adj Means 

BIOM 0.8 14Bb 0.09 0.0563 0.0025 0.0049 Adj Means 

BIOM 0.8 14War 0.14 0.0557 0.0025 0.0049 Adj Means 

BIOM 0.8 15Bb 0.22 0.0655 0.0029 0.0058 Adj Means 

BIOM 0.8 15War 0.22 0.0696 0.0031 0.0061 Adj Means 

FLSG 0.2 14Bb 0.22 0.1547 0.0069 0.0136 Adj Means 

FLSG 0.2 14War 0.51 0.1137 0.0051 0.0100 Adj Means 

FLSG 0.2 15Bb 0.52 0.1091 0.0049 0.0096 Adj Means 

FLSG 0.2 15War 0.48 0.1167 0.0052 0.0103 Adj Means 

FLSG 0.4 14Bb 0.20 0.1062 0.0047 0.0093 Adj Means 

FLSG 0.4 14War 0.48 0.0713 0.0032 0.0063 Adj Means 

FLSG 0.4 15Bb 0.51 0.0686 0.0031 0.0060 Adj Means 

FLSG 0.4 15War 0.47 0.0740 0.0033 0.0065 Adj Means 

FLSG 0.6 14Bb 0.18 0.0728 0.0033 0.0064 Adj Means 

FLSG 0.6 14War 0.46 0.0597 0.0027 0.0052 Adj Means 

FLSG 0.6 15Bb 0.48 0.0525 0.0023 0.0046 Adj Means 

FLSG 0.6 15War 0.44 0.0524 0.0023 0.0046 Adj Means 

FLSG 0.8 14Bb 0.14 0.0602 0.0027 0.0053 Adj Means 

FLSG 0.8 14War 0.41 0.0667 0.0030 0.0059 Adj Means 

FLSG 0.8 15Bb 0.43 0.0525 0.0023 0.0046 Adj Means 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

FLSG 0.8 15War 0.40 0.0547 0.0024 0.0048 Adj Means 

GSQM 0.2 14Bb 0.46 0.1247 0.0056 0.0110 Adj Means 

GSQM 0.2 14War 0.29 0.1572 0.0070 0.0138 Adj Means 

GSQM 0.2 15Bb 0.15 0.1429 0.0064 0.0126 Adj Means 

GSQM 0.2 15War 0.35 0.1346 0.0060 0.0118 Adj Means 

GSQM 0.4 14Bb 0.42 0.0896 0.0040 0.0079 Adj Means 

GSQM 0.4 14War 0.26 0.0952 0.0043 0.0084 Adj Means 

GSQM 0.4 15Bb 0.11 0.0949 0.0042 0.0083 Adj Means 

GSQM 0.4 15War 0.30 0.0976 0.0044 0.0086 Adj Means 

GSQM 0.6 14Bb 0.36 0.0781 0.0035 0.0069 Adj Means 

GSQM 0.6 14War 0.22 0.0766 0.0034 0.0067 Adj Means 

GSQM 0.6 15Bb 0.07 0.0759 0.0034 0.0067 Adj Means 

GSQM 0.6 15War 0.24 0.0858 0.0038 0.0075 Adj Means 

GSQM 0.8 14Bb 0.24 0.0982 0.0044 0.0086 Adj Means 

GSQM 0.8 14War 0.14 0.0781 0.0035 0.0069 Adj Means 

GSQM 0.8 15Bb 0.02 0.0682 0.0031 0.0060 Adj Means 

GSQM 0.8 15War 0.16 0.0872 0.0039 0.0077 Adj Means 

GW 0.2 14Bb 0.14 0.1393 0.0062 0.0122 Adj Means 

GW 0.2 14War 0.14 0.1466 0.0066 0.0129 Adj Means 

GW 0.2 15Bb 0.34 0.1389 0.0062 0.0122 Adj Means 

GW 0.2 15War 0.31 0.1277 0.0057 0.0112 Adj Means 

GW 0.4 14Bb 0.13 0.0908 0.0041 0.0080 Adj Means 

GW 0.4 14War 0.14 0.0964 0.0043 0.0085 Adj Means 

GW 0.4 15Bb 0.33 0.0886 0.0040 0.0078 Adj Means 

GW 0.4 15War 0.30 0.0851 0.0038 0.0075 Adj Means 

GW 0.6 14Bb 0.12 0.0681 0.0030 0.0060 Adj Means 

GW 0.6 14War 0.13 0.0653 0.0029 0.0057 Adj Means 

GW 0.6 15Bb 0.32 0.0677 0.0030 0.0059 Adj Means 

GW 0.6 15War 0.29 0.0703 0.0031 0.0062 Adj Means 

GW 0.8 14Bb 0.08 0.0675 0.0030 0.0059 Adj Means 

GW 0.8 14War 0.12 0.0589 0.0026 0.0052 Adj Means 

GW 0.8 15Bb 0.29 0.0827 0.0037 0.0073 Adj Means 

GW 0.8 15War 0.26 0.0779 0.0035 0.0068 Adj Means 

HD 0.2 14Bb 0.31 0.1344 0.0060 0.0118 Adj Means 

HD 0.2 14War 0.44 0.1267 0.0057 0.0111 Adj Means 

HD 0.2 15Bb 0.63 0.0884 0.0040 0.0078 Adj Means 

HD 0.2 15War 0.60 0.0928 0.0041 0.0082 Adj Means 

HD 0.4 14Bb 0.30 0.0923 0.0041 0.0081 Adj Means 

HD 0.4 14War 0.42 0.0798 0.0036 0.0070 Adj Means 

HD 0.4 15Bb 0.59 0.0641 0.0029 0.0056 Adj Means 

HD 0.4 15War 0.56 0.0654 0.0029 0.0057 Adj Means 

HD 0.6 14Bb 0.29 0.0691 0.0031 0.0061 Adj Means 

HD 0.6 14War 0.40 0.0645 0.0029 0.0057 Adj Means 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

HD 0.6 15Bb 0.54 0.0551 0.0025 0.0048 Adj Means 

HD 0.6 15War 0.51 0.0566 0.0025 0.0050 Adj Means 

HD 0.8 14Bb 0.26 0.0710 0.0032 0.0062 Adj Means 

HD 0.8 14War 0.35 0.0742 0.0033 0.0065 Adj Means 

HD 0.8 15Bb 0.45 0.0615 0.0028 0.0054 Adj Means 

HD 0.8 15War 0.42 0.0621 0.0028 0.0055 Adj Means 

HI 0.2 14Bb 0.45 0.1515 0.0068 0.0133 Adj Means 

HI 0.2 14War 0.40 0.1452 0.0065 0.0128 Adj Means 

HI 0.2 15Bb 0.38 0.1277 0.0057 0.0112 Adj Means 

HI 0.2 15War 0.20 0.1382 0.0062 0.0121 Adj Means 

HI 0.4 14Bb 0.45 0.0856 0.0038 0.0075 Adj Means 

HI 0.4 14War 0.39 0.0901 0.0040 0.0079 Adj Means 

HI 0.4 15Bb 0.36 0.0924 0.0041 0.0081 Adj Means 

HI 0.4 15War 0.20 0.0877 0.0039 0.0077 Adj Means 

HI 0.6 14Bb 0.43 0.0678 0.0030 0.0060 Adj Means 

HI 0.6 14War 0.36 0.0662 0.0030 0.0058 Adj Means 

HI 0.6 15Bb 0.33 0.0801 0.0036 0.0070 Adj Means 

HI 0.6 15War 0.17 0.0704 0.0031 0.0062 Adj Means 

HI 0.8 14Bb 0.37 0.0785 0.0035 0.0069 Adj Means 

HI 0.8 14War 0.29 0.0707 0.0032 0.0062 Adj Means 

HI 0.8 15Bb 0.28 0.1188 0.0053 0.0104 Adj Means 

HI 0.8 15War 0.15 0.0782 0.0035 0.0069 Adj Means 

HT 0.2 14Bb 0.46 0.1268 0.0057 0.0111 Adj Means 

HT 0.2 14War 0.40 0.1528 0.0068 0.0134 Adj Means 

HT 0.2 15Bb 0.63 0.1095 0.0049 0.0096 Adj Means 

HT 0.2 15War 0.55 0.1259 0.0056 0.0111 Adj Means 

HT 0.4 14Bb 0.44 0.0765 0.0034 0.0067 Adj Means 

HT 0.4 14War 0.38 0.0940 0.0042 0.0083 Adj Means 

HT 0.4 15Bb 0.61 0.0607 0.0027 0.0053 Adj Means 

HT 0.4 15War 0.52 0.0733 0.0033 0.0064 Adj Means 

HT 0.6 14Bb 0.42 0.0599 0.0027 0.0053 Adj Means 

HT 0.6 14War 0.35 0.0716 0.0032 0.0063 Adj Means 

HT 0.6 15Bb 0.57 0.0499 0.0022 0.0044 Adj Means 

HT 0.6 15War 0.49 0.0571 0.0026 0.0050 Adj Means 

HT 0.8 14Bb 0.37 0.0628 0.0028 0.0055 Adj Means 

HT 0.8 14War 0.29 0.0755 0.0034 0.0066 Adj Means 

HT 0.8 15Bb 0.51 0.0641 0.0029 0.0056 Adj Means 

HT 0.8 15War 0.42 0.0616 0.0028 0.0054 Adj Means 

MAT 0.2 14Bb 0.33 0.1393 0.0062 0.0122 Adj Means 

MAT 0.2 14War 0.34 0.1312 0.0059 0.0115 Adj Means 

MAT 0.2 15Bb 0.52 0.1110 0.0050 0.0098 Adj Means 

MAT 0.2 15War 0.50 0.1080 0.0048 0.0095 Adj Means 

MAT 0.4 14Bb 0.29 0.0885 0.0040 0.0078 Adj Means 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

MAT 0.4 14War 0.30 0.0875 0.0039 0.0077 Adj Means 

MAT 0.4 15Bb 0.48 0.0807 0.0036 0.0071 Adj Means 

MAT 0.4 15War 0.46 0.0798 0.0036 0.0070 Adj Means 

MAT 0.6 14Bb 0.26 0.0696 0.0031 0.0061 Adj Means 

MAT 0.6 14War 0.26 0.0680 0.0030 0.0060 Adj Means 

MAT 0.6 15Bb 0.42 0.0722 0.0032 0.0063 Adj Means 

MAT 0.6 15War 0.41 0.0663 0.0030 0.0058 Adj Means 

MAT 0.8 14Bb 0.22 0.0622 0.0028 0.0055 Adj Means 

MAT 0.8 14War 0.21 0.0724 0.0032 0.0064 Adj Means 

MAT 0.8 15Bb 0.35 0.0813 0.0036 0.0071 Adj Means 

MAT 0.8 15War 0.32 0.0727 0.0033 0.0064 Adj Means 

NDVI 0.2 14Bb 0.30 0.1377 0.0062 0.0121 Adj Means 

NDVI 0.2 14War 0.37 0.1193 0.0053 0.0105 Adj Means 

NDVI 0.2 15Bb 0.35 0.1327 0.0059 0.0117 Adj Means 

NDVI 0.2 15War 0.26 0.1516 0.0068 0.0133 Adj Means 

NDVI 0.4 14Bb 0.28 0.0858 0.0038 0.0075 Adj Means 

NDVI 0.4 14War 0.35 0.0822 0.0037 0.0072 Adj Means 

NDVI 0.4 15Bb 0.33 0.0857 0.0038 0.0075 Adj Means 

NDVI 0.4 15War 0.25 0.1026 0.0046 0.0090 Adj Means 

NDVI 0.6 14Bb 0.26 0.0647 0.0029 0.0057 Adj Means 

NDVI 0.6 14War 0.33 0.0650 0.0029 0.0057 Adj Means 

NDVI 0.6 15Bb 0.28 0.0694 0.0031 0.0061 Adj Means 

NDVI 0.6 15War 0.24 0.0752 0.0034 0.0066 Adj Means 

NDVI 0.8 14Bb 0.21 0.0697 0.0031 0.0061 Adj Means 

NDVI 0.8 14War 0.27 0.0747 0.0033 0.0066 Adj Means 

NDVI 0.8 15Bb 0.23 0.0783 0.0035 0.0069 Adj Means 

NDVI 0.8 15War 0.18 0.0762 0.0034 0.0067 Adj Means 

SPH 0.2 14Bb 0.35 0.1361 0.0061 0.0120 Adj Means 

SPH 0.2 14War 0.32 0.1321 0.0059 0.0116 Adj Means 

SPH 0.2 15Bb 0.35 0.1247 0.0056 0.0110 Adj Means 

SPH 0.2 15War 0.36 0.1332 0.0060 0.0117 Adj Means 

SPH 0.4 14Bb 0.27 0.0926 0.0041 0.0081 Adj Means 

SPH 0.4 14War 0.25 0.0890 0.0040 0.0078 Adj Means 

SPH 0.4 15Bb 0.31 0.0941 0.0042 0.0083 Adj Means 

SPH 0.4 15War 0.30 0.0959 0.0043 0.0084 Adj Means 

SPH 0.6 14Bb 0.18 0.0900 0.0040 0.0079 Adj Means 

SPH 0.6 14War 0.18 0.0756 0.0034 0.0066 Adj Means 

SPH 0.6 15Bb 0.26 0.0805 0.0036 0.0071 Adj Means 

SPH 0.6 15War 0.22 0.0798 0.0036 0.0070 Adj Means 

SPH 0.8 14Bb 0.11 0.0860 0.0038 0.0076 Adj Means 

SPH 0.8 14War 0.12 0.0715 0.0032 0.0063 Adj Means 

SPH 0.8 15Bb 0.19 0.0978 0.0044 0.0086 Adj Means 

SPH 0.8 15War 0.14 0.0807 0.0036 0.0071 Adj Means 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

SSQM 0.2 14Bb 0.45 0.1126 0.0050 0.0099 Adj Means 

SSQM 0.2 14War 0.43 0.1329 0.0059 0.0117 Adj Means 

SSQM 0.2 15Bb 0.39 0.1233 0.0055 0.0108 Adj Means 

SSQM 0.2 15War 0.47 0.1204 0.0054 0.0106 Adj Means 

SSQM 0.4 14Bb 0.40 0.0873 0.0039 0.0077 Adj Means 

SSQM 0.4 14War 0.39 0.0891 0.0040 0.0078 Adj Means 

SSQM 0.4 15Bb 0.36 0.0823 0.0037 0.0072 Adj Means 

SSQM 0.4 15War 0.44 0.0826 0.0037 0.0073 Adj Means 

SSQM 0.6 14Bb 0.33 0.0716 0.0032 0.0063 Adj Means 

SSQM 0.6 14War 0.34 0.0721 0.0032 0.0063 Adj Means 

SSQM 0.6 15Bb 0.30 0.0686 0.0031 0.0060 Adj Means 

SSQM 0.6 15War 0.39 0.0666 0.0030 0.0059 Adj Means 

SSQM 0.8 14Bb 0.22 0.0766 0.0034 0.0067 Adj Means 

SSQM 0.8 14War 0.25 0.0710 0.0032 0.0062 Adj Means 

SSQM 0.8 15Bb 0.22 0.0690 0.0031 0.0061 Adj Means 

SSQM 0.8 15War 0.29 0.0797 0.0036 0.0070 Adj Means 

STARCH 0.2 14Bb 0.44 0.1259 0.0056 0.0111 Adj Means 

STARCH 0.2 14War 0.42 0.1169 0.0052 0.0103 Adj Means 

STARCH 0.2 15Bb 0.30 0.1392 0.0062 0.0122 Adj Means 

STARCH 0.2 15War 0.32 0.1362 0.0061 0.0120 Adj Means 

STARCH 0.4 14Bb 0.42 0.0838 0.0037 0.0074 Adj Means 

STARCH 0.4 14War 0.40 0.0802 0.0036 0.0070 Adj Means 

STARCH 0.4 15Bb 0.27 0.1010 0.0045 0.0089 Adj Means 

STARCH 0.4 15War 0.33 0.0919 0.0041 0.0081 Adj Means 

STARCH 0.6 14Bb 0.39 0.0609 0.0027 0.0054 Adj Means 

STARCH 0.6 14War 0.37 0.0662 0.0030 0.0058 Adj Means 

STARCH 0.6 15Bb 0.25 0.0872 0.0039 0.0077 Adj Means 

STARCH 0.6 15War 0.32 0.0814 0.0036 0.0072 Adj Means 

STARCH 0.8 14Bb 0.33 0.0682 0.0031 0.0060 Adj Means 

STARCH 0.8 14War 0.30 0.0760 0.0034 0.0067 Adj Means 

STARCH 0.8 15Bb 0.22 0.1025 0.0046 0.0090 Adj Means 

STARCH 0.8 15War 0.29 0.0838 0.0037 0.0074 Adj Means 

TKW 0.2 14Bb 0.63 0.1103 0.0049 0.0097 Adj Means 

TKW 0.2 14War 0.69 0.0959 0.0043 0.0084 Adj Means 

TKW 0.2 15Bb 0.62 0.1017 0.0045 0.0089 Adj Means 

TKW 0.2 15War 0.65 0.0979 0.0044 0.0086 Adj Means 

TKW 0.4 14Bb 0.60 0.0779 0.0035 0.0068 Adj Means 

TKW 0.4 14War 0.66 0.0686 0.0031 0.0060 Adj Means 

TKW 0.4 15Bb 0.57 0.0680 0.0030 0.0060 Adj Means 

TKW 0.4 15War 0.62 0.0710 0.0032 0.0062 Adj Means 

TKW 0.6 14Bb 0.54 0.0696 0.0031 0.0061 Adj Means 

TKW 0.6 14War 0.60 0.0676 0.0030 0.0059 Adj Means 

TKW 0.6 15Bb 0.53 0.0554 0.0025 0.0049 Adj Means 
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TKW 0.6 15War 0.57 0.0551 0.0025 0.0048 Adj Means 

TKW 0.8 14Bb 0.43 0.0773 0.0035 0.0068 Adj Means 

TKW 0.8 14War 0.49 0.0789 0.0035 0.0069 Adj Means 

TKW 0.8 15Bb 0.46 0.0537 0.0024 0.0047 Adj Means 

TKW 0.8 15War 0.49 0.0578 0.0026 0.0051 Adj Means 

TWT 0.2 14Bb 0.55 0.1253 0.0056 0.0110 Adj Means 

TWT 0.2 14War 0.45 0.1439 0.0064 0.0126 Adj Means 

TWT 0.2 15Bb 0.57 0.1041 0.0047 0.0091 Adj Means 

TWT 0.2 15War 0.56 0.0997 0.0045 0.0088 Adj Means 

TWT 0.4 14Bb 0.54 0.0869 0.0039 0.0076 Adj Means 

TWT 0.4 14War 0.45 0.0833 0.0037 0.0073 Adj Means 

TWT 0.4 15Bb 0.53 0.0691 0.0031 0.0061 Adj Means 

TWT 0.4 15War 0.52 0.0684 0.0031 0.0060 Adj Means 

TWT 0.6 14Bb 0.51 0.0669 0.0030 0.0059 Adj Means 

TWT 0.6 14War 0.41 0.0688 0.0031 0.0060 Adj Means 

TWT 0.6 15Bb 0.50 0.0578 0.0026 0.0051 Adj Means 

TWT 0.6 15War 0.47 0.0640 0.0029 0.0056 Adj Means 

TWT 0.8 14Bb 0.45 0.0709 0.0032 0.0062 Adj Means 

TWT 0.8 14War 0.35 0.0769 0.0034 0.0068 Adj Means 

TWT 0.8 15Bb 0.44 0.0660 0.0030 0.0058 Adj Means 

TWT 0.8 15War 0.39 0.0685 0.0031 0.0060 Adj Means 

WCPROT 0.2 14Bb 0.22 0.1559 0.0070 0.0137 Adj Means 

WCPROT 0.2 14War 0.17 0.1406 0.0063 0.0124 Adj Means 

WCPROT 0.2 15Bb 0.29 0.1347 0.0060 0.0118 Adj Means 

WCPROT 0.2 15War 0.34 0.1367 0.0061 0.0120 Adj Means 

WCPROT 0.4 14Bb 0.20 0.1017 0.0045 0.0089 Adj Means 

WCPROT 0.4 14War 0.15 0.0933 0.0042 0.0082 Adj Means 

WCPROT 0.4 15Bb 0.26 0.0923 0.0041 0.0081 Adj Means 

WCPROT 0.4 15War 0.32 0.0917 0.0041 0.0081 Adj Means 

WCPROT 0.6 14Bb 0.17 0.0876 0.0039 0.0077 Adj Means 

WCPROT 0.6 14War 0.13 0.0726 0.0032 0.0064 Adj Means 

WCPROT 0.6 15Bb 0.22 0.0761 0.0034 0.0067 Adj Means 

WCPROT 0.6 15War 0.29 0.0727 0.0033 0.0064 Adj Means 

WCPROT 0.8 14Bb 0.12 0.0965 0.0043 0.0085 Adj Means 

WCPROT 0.8 14War 0.09 0.0710 0.0032 0.0062 Adj Means 

WCPROT 0.8 15Bb 0.17 0.0871 0.0039 0.0077 Adj Means 

WCPROT 0.8 15War 0.23 0.0872 0.0039 0.0077 Adj Means 

YLD 0.2 14Bb 0.26 0.1440 0.0064 0.0127 Adj Means 

YLD 0.2 14War 0.23 0.1450 0.0065 0.0127 Adj Means 

YLD 0.2 15Bb 0.33 0.1244 0.0056 0.0109 Adj Means 

YLD 0.2 15War 0.41 0.1132 0.0051 0.0099 Adj Means 

YLD 0.4 14Bb 0.24 0.0954 0.0043 0.0084 Adj Means 

YLD 0.4 14War 0.20 0.0944 0.0042 0.0083 Adj Means 



200 
 

Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

YLD 0.4 15Bb 0.32 0.0856 0.0038 0.0075 Adj Means 

YLD 0.4 15War 0.39 0.0833 0.0037 0.0073 Adj Means 

YLD 0.6 14Bb 0.20 0.0791 0.0035 0.0070 Adj Means 

YLD 0.6 14War 0.17 0.0779 0.0035 0.0068 Adj Means 

YLD 0.6 15Bb 0.30 0.0716 0.0032 0.0063 Adj Means 

YLD 0.6 15War 0.36 0.0761 0.0034 0.0067 Adj Means 

YLD 0.8 14Bb 0.13 0.0875 0.0039 0.0077 Adj Means 

YLD 0.8 14War 0.13 0.0784 0.0035 0.0069 Adj Means 

YLD 0.8 15Bb 0.26 0.0923 0.0041 0.0081 Adj Means 

YLD 0.8 15War 0.32 0.0988 0.0044 0.0087 Adj Means 

BIOM 0.2 14Bb 0.09 0.1506 0.0067 0.0132 GEI CV1 

BIOM 0.2 14Bb 0.22 0.1465 0.0066 0.0129 GEI CV2 

BIOM 0.4 14Bb 0.07 0.0915 0.0041 0.0080 GEI CV1 

BIOM 0.4 14Bb 0.22 0.0854 0.0038 0.0075 GEI CV2 

BIOM 0.6 14Bb 0.06 0.0738 0.0033 0.0065 GEI CV1 

BIOM 0.6 14Bb 0.15 0.0767 0.0034 0.0067 GEI CV2 

BIOM 0.8 14Bb 0.05 0.0670 0.0030 0.0059 GEI CV1 

BIOM 0.8 14Bb 0.06 0.0696 0.0031 0.0061 GEI CV2 

BIOM 0.2 14War 0.00 0.1564 0.0070 0.0137 GEI CV1 

BIOM 0.2 14War 0.14 0.1515 0.0068 0.0133 GEI CV2 

BIOM 0.4 14War -0.01 0.1091 0.0049 0.0096 GEI CV1 

BIOM 0.4 14War 0.15 0.0969 0.0043 0.0085 GEI CV2 

BIOM 0.6 14War -0.01 0.0978 0.0044 0.0086 GEI CV1 

BIOM 0.6 14War 0.06 0.1007 0.0045 0.0089 GEI CV2 

BIOM 0.8 14War -0.01 0.0940 0.0042 0.0083 GEI CV1 

BIOM 0.8 14War 0.00 0.0931 0.0042 0.0082 GEI CV2 

BIOM 0.2 15Bb 0.25 0.1454 0.0065 0.0128 GEI CV1 

BIOM 0.2 15Bb 0.28 0.1433 0.0064 0.0126 GEI CV2 

BIOM 0.4 15Bb 0.25 0.0812 0.0036 0.0071 GEI CV1 

BIOM 0.4 15Bb 0.26 0.0895 0.0040 0.0079 GEI CV2 

BIOM 0.6 15Bb 0.23 0.0591 0.0026 0.0052 GEI CV1 

BIOM 0.6 15Bb 0.20 0.0946 0.0042 0.0083 GEI CV2 

BIOM 0.8 15Bb 0.18 0.0940 0.0042 0.0083 GEI CV1 

BIOM 0.8 15Bb 0.11 0.1251 0.0056 0.0110 GEI CV2 

BIOM 0.2 15War 0.21 0.1392 0.0062 0.0122 GEI CV1 

BIOM 0.2 15War 0.25 0.1278 0.0057 0.0112 GEI CV2 

BIOM 0.4 15War 0.18 0.1022 0.0046 0.0090 GEI CV1 

BIOM 0.4 15War 0.23 0.1018 0.0046 0.0089 GEI CV2 

BIOM 0.6 15War 0.14 0.1232 0.0055 0.0108 GEI CV1 

BIOM 0.6 15War 0.17 0.1113 0.0050 0.0098 GEI CV2 

BIOM 0.8 15War 0.10 0.1561 0.0070 0.0137 GEI CV1 

BIOM 0.8 15War 0.09 0.1341 0.0060 0.0118 GEI CV2 

FLSG 0.2 14Bb 0.10 0.1539 0.0069 0.0135 GEI CV1 
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FLSG 0.2 14Bb 0.24 0.1561 0.0070 0.0137 GEI CV2 

FLSG 0.4 14Bb 0.08 0.0996 0.0045 0.0088 GEI CV1 

FLSG 0.4 14Bb 0.24 0.1047 0.0047 0.0092 GEI CV2 

FLSG 0.6 14Bb 0.09 0.0749 0.0033 0.0066 GEI CV1 

FLSG 0.6 14Bb 0.19 0.0844 0.0038 0.0074 GEI CV2 

FLSG 0.8 14Bb 0.06 0.0700 0.0031 0.0062 GEI CV1 

FLSG 0.8 14Bb 0.14 0.0738 0.0033 0.0065 GEI CV2 

FLSG 0.2 14War 0.53 0.1153 0.0052 0.0101 GEI CV1 

FLSG 0.2 14War 0.58 0.1078 0.0048 0.0095 GEI CV2 

FLSG 0.4 14War 0.51 0.0659 0.0029 0.0058 GEI CV1 

FLSG 0.4 14War 0.55 0.0733 0.0033 0.0064 GEI CV2 

FLSG 0.6 14War 0.49 0.0535 0.0024 0.0047 GEI CV1 

FLSG 0.6 14War 0.48 0.0718 0.0032 0.0063 GEI CV2 

FLSG 0.8 14War 0.43 0.0636 0.0028 0.0056 GEI CV1 

FLSG 0.8 14War 0.38 0.0869 0.0039 0.0076 GEI CV2 

FLSG 0.2 15Bb 0.53 0.0993 0.0044 0.0087 GEI CV1 

FLSG 0.2 15Bb 0.60 0.0882 0.0039 0.0078 GEI CV2 

FLSG 0.4 15Bb 0.51 0.0637 0.0028 0.0056 GEI CV1 

FLSG 0.4 15Bb 0.59 0.0606 0.0027 0.0053 GEI CV2 

FLSG 0.6 15Bb 0.49 0.0477 0.0021 0.0042 GEI CV1 

FLSG 0.6 15Bb 0.51 0.0554 0.0025 0.0049 GEI CV2 

FLSG 0.8 15Bb 0.43 0.0542 0.0024 0.0048 GEI CV1 

FLSG 0.8 15Bb 0.42 0.0659 0.0029 0.0058 GEI CV2 

FLSG 0.2 15War 0.48 0.1183 0.0053 0.0104 GEI CV1 

FLSG 0.2 15War 0.55 0.1045 0.0047 0.0092 GEI CV2 

FLSG 0.4 15War 0.48 0.0757 0.0034 0.0067 GEI CV1 

FLSG 0.4 15War 0.55 0.0664 0.0030 0.0058 GEI CV2 

FLSG 0.6 15War 0.45 0.0552 0.0025 0.0049 GEI CV1 

FLSG 0.6 15War 0.49 0.0601 0.0027 0.0053 GEI CV2 

FLSG 0.8 15War 0.40 0.0580 0.0026 0.0051 GEI CV1 

FLSG 0.8 15War 0.40 0.0744 0.0033 0.0065 GEI CV2 

GSQM 0.2 14Bb 0.47 0.1330 0.0059 0.0117 GEI CV1 

GSQM 0.2 14Bb 0.68 0.0833 0.0037 0.0073 GEI CV2 

GSQM 0.4 14Bb 0.43 0.0901 0.0040 0.0079 GEI CV1 

GSQM 0.4 14Bb 0.68 0.0525 0.0023 0.0046 GEI CV2 

GSQM 0.6 14Bb 0.35 0.0878 0.0039 0.0077 GEI CV1 

GSQM 0.6 14Bb 0.53 0.0667 0.0030 0.0059 GEI CV2 

GSQM 0.8 14Bb 0.25 0.0959 0.0043 0.0084 GEI CV1 

GSQM 0.8 14Bb 0.33 0.0891 0.0040 0.0078 GEI CV2 

GSQM 0.2 14War 0.29 0.1511 0.0068 0.0133 GEI CV1 

GSQM 0.2 14War 0.55 0.1120 0.0050 0.0098 GEI CV2 

GSQM 0.4 14War 0.26 0.0988 0.0044 0.0087 GEI CV1 

GSQM 0.4 14War 0.56 0.0656 0.0029 0.0058 GEI CV2 
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GSQM 0.6 14War 0.21 0.0815 0.0036 0.0072 GEI CV1 

GSQM 0.6 14War 0.42 0.0696 0.0031 0.0061 GEI CV2 

GSQM 0.8 14War 0.14 0.0806 0.0036 0.0071 GEI CV1 

GSQM 0.8 14War 0.27 0.0758 0.0034 0.0067 GEI CV2 

GSQM 0.2 15Bb 0.17 0.1625 0.0073 0.0143 GEI CV1 

GSQM 0.2 15Bb 0.35 0.1339 0.0060 0.0118 GEI CV2 

GSQM 0.4 15Bb 0.13 0.1034 0.0046 0.0091 GEI CV1 

GSQM 0.4 15Bb 0.35 0.0862 0.0039 0.0076 GEI CV2 

GSQM 0.6 15Bb 0.09 0.0819 0.0037 0.0072 GEI CV1 

GSQM 0.6 15Bb 0.25 0.0778 0.0035 0.0068 GEI CV2 

GSQM 0.8 15Bb 0.04 0.0734 0.0033 0.0064 GEI CV1 

GSQM 0.8 15Bb 0.18 0.0682 0.0031 0.0060 GEI CV2 

GSQM 0.2 15War 0.37 0.1530 0.0068 0.0134 GEI CV1 

GSQM 0.2 15War 0.50 0.1279 0.0057 0.0112 GEI CV2 

GSQM 0.4 15War 0.31 0.1044 0.0047 0.0092 GEI CV1 

GSQM 0.4 15War 0.50 0.0761 0.0034 0.0067 GEI CV2 

GSQM 0.6 15War 0.24 0.0966 0.0043 0.0085 GEI CV1 

GSQM 0.6 15War 0.37 0.0785 0.0035 0.0069 GEI CV2 

GSQM 0.8 15War 0.15 0.0909 0.0041 0.0080 GEI CV1 

GSQM 0.8 15War 0.23 0.0839 0.0038 0.0074 GEI CV2 

GW 0.2 14Bb 0.18 0.1512 0.0068 0.0133 GEI CV1 

GW 0.2 14Bb 0.30 0.1363 0.0061 0.0120 GEI CV2 

GW 0.4 14Bb 0.17 0.0961 0.0043 0.0084 GEI CV1 

GW 0.4 14Bb 0.29 0.0855 0.0038 0.0075 GEI CV2 

GW 0.6 14Bb 0.14 0.0722 0.0032 0.0063 GEI CV1 

GW 0.6 14Bb 0.21 0.0788 0.0035 0.0069 GEI CV2 

GW 0.8 14Bb 0.10 0.0664 0.0030 0.0058 GEI CV1 

GW 0.8 14Bb 0.11 0.0740 0.0033 0.0065 GEI CV2 

GW 0.2 14War 0.15 0.1487 0.0067 0.0131 GEI CV1 

GW 0.2 14War 0.23 0.1419 0.0063 0.0125 GEI CV2 

GW 0.4 14War 0.15 0.0850 0.0038 0.0075 GEI CV1 

GW 0.4 14War 0.23 0.0866 0.0039 0.0076 GEI CV2 

GW 0.6 14War 0.13 0.0662 0.0030 0.0058 GEI CV1 

GW 0.6 14War 0.19 0.0705 0.0032 0.0062 GEI CV2 

GW 0.8 14War 0.11 0.0636 0.0028 0.0056 GEI CV1 

GW 0.8 14War 0.16 0.0529 0.0024 0.0047 GEI CV2 

GW 0.2 15Bb 0.33 0.1373 0.0061 0.0121 GEI CV1 

GW 0.2 15Bb 0.42 0.1262 0.0056 0.0111 GEI CV2 

GW 0.4 15Bb 0.34 0.0824 0.0037 0.0072 GEI CV1 

GW 0.4 15Bb 0.40 0.0790 0.0035 0.0069 GEI CV2 

GW 0.6 15Bb 0.33 0.0573 0.0026 0.0050 GEI CV1 

GW 0.6 15Bb 0.36 0.0636 0.0028 0.0056 GEI CV2 

GW 0.8 15Bb 0.30 0.0693 0.0031 0.0061 GEI CV1 
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GW 0.8 15Bb 0.34 0.0748 0.0033 0.0066 GEI CV2 

GW 0.2 15War 0.30 0.1171 0.0052 0.0103 GEI CV1 

GW 0.2 15War 0.37 0.1159 0.0052 0.0102 GEI CV2 

GW 0.4 15War 0.29 0.0778 0.0035 0.0068 GEI CV1 

GW 0.4 15War 0.36 0.0775 0.0035 0.0068 GEI CV2 

GW 0.6 15War 0.28 0.0725 0.0032 0.0064 GEI CV1 

GW 0.6 15War 0.29 0.0869 0.0039 0.0076 GEI CV2 

GW 0.8 15War 0.26 0.0904 0.0040 0.0079 GEI CV1 

GW 0.8 15War 0.24 0.1028 0.0046 0.0090 GEI CV2 

HD 0.2 14Bb 0.20 0.1431 0.0064 0.0126 GEI CV1 

HD 0.2 14Bb 0.55 0.1013 0.0045 0.0089 GEI CV2 

HD 0.4 14Bb 0.20 0.0984 0.0044 0.0086 GEI CV1 

HD 0.4 14Bb 0.58 0.0605 0.0027 0.0053 GEI CV2 

HD 0.6 14Bb 0.21 0.0713 0.0032 0.0063 GEI CV1 

HD 0.6 14Bb 0.42 0.0711 0.0032 0.0062 GEI CV2 

HD 0.8 14Bb 0.19 0.0712 0.0032 0.0063 GEI CV1 

HD 0.8 14Bb 0.28 0.0823 0.0037 0.0072 GEI CV2 

HD 0.2 14War 0.42 0.1281 0.0057 0.0113 GEI CV1 

HD 0.2 14War 0.58 0.0951 0.0043 0.0084 GEI CV2 

HD 0.4 14War 0.39 0.0803 0.0036 0.0071 GEI CV1 

HD 0.4 14War 0.56 0.0568 0.0025 0.0050 GEI CV2 

HD 0.6 14War 0.35 0.0628 0.0028 0.0055 GEI CV1 

HD 0.6 14War 0.42 0.0621 0.0028 0.0055 GEI CV2 

HD 0.8 14War 0.28 0.0718 0.0032 0.0063 GEI CV1 

HD 0.8 14War 0.35 0.0777 0.0035 0.0068 GEI CV2 

HD 0.2 15Bb 0.52 0.1000 0.0045 0.0088 GEI CV1 

HD 0.2 15Bb 0.75 0.0713 0.0032 0.0063 GEI CV2 

HD 0.4 15Bb 0.48 0.0700 0.0031 0.0062 GEI CV1 

HD 0.4 15Bb 0.76 0.0417 0.0019 0.0037 GEI CV2 

HD 0.6 15Bb 0.42 0.0664 0.0030 0.0058 GEI CV1 

HD 0.6 15Bb 0.62 0.0522 0.0023 0.0046 GEI CV2 

HD 0.8 15Bb 0.31 0.0948 0.0042 0.0083 GEI CV1 

HD 0.8 15Bb 0.44 0.0756 0.0034 0.0066 GEI CV2 

HD 0.2 15War 0.57 0.0947 0.0042 0.0083 GEI CV1 

HD 0.2 15War 0.83 0.0408 0.0018 0.0036 GEI CV2 

HD 0.4 15War 0.53 0.0659 0.0029 0.0058 GEI CV1 

HD 0.4 15War 0.81 0.0275 0.0012 0.0024 GEI CV2 

HD 0.6 15War 0.46 0.0622 0.0028 0.0055 GEI CV1 

HD 0.6 15War 0.66 0.0500 0.0022 0.0044 GEI CV2 

HD 0.8 15War 0.34 0.0870 0.0039 0.0076 GEI CV1 

HD 0.8 15War 0.47 0.0684 0.0031 0.0060 GEI CV2 

HI 0.2 14Bb 0.42 0.1476 0.0066 0.0130 GEI CV1 

HI 0.2 14Bb 0.70 0.1039 0.0046 0.0091 GEI CV2 
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HI 0.4 14Bb 0.42 0.0918 0.0041 0.0081 GEI CV1 

HI 0.4 14Bb 0.70 0.0604 0.0027 0.0053 GEI CV2 

HI 0.6 14Bb 0.41 0.0622 0.0028 0.0055 GEI CV1 

HI 0.6 14Bb 0.58 0.0634 0.0028 0.0056 GEI CV2 

HI 0.8 14Bb 0.35 0.0847 0.0038 0.0074 GEI CV1 

HI 0.8 14Bb 0.38 0.0886 0.0040 0.0078 GEI CV2 

HI 0.2 14War 0.41 0.1274 0.0057 0.0112 GEI CV1 

HI 0.2 14War 0.67 0.1122 0.0050 0.0099 GEI CV2 

HI 0.4 14War 0.40 0.0846 0.0038 0.0074 GEI CV1 

HI 0.4 14War 0.68 0.0631 0.0028 0.0055 GEI CV2 

HI 0.6 14War 0.36 0.0634 0.0028 0.0056 GEI CV1 

HI 0.6 14War 0.56 0.0628 0.0028 0.0055 GEI CV2 

HI 0.8 14War 0.29 0.0746 0.0033 0.0066 GEI CV1 

HI 0.8 14War 0.39 0.0732 0.0033 0.0064 GEI CV2 

HI 0.2 15Bb 0.49 0.1049 0.0047 0.0092 GEI CV1 

HI 0.2 15Bb 0.64 0.0898 0.0040 0.0079 GEI CV2 

HI 0.4 15Bb 0.47 0.0734 0.0033 0.0064 GEI CV1 

HI 0.4 15Bb 0.64 0.0539 0.0024 0.0047 GEI CV2 

HI 0.6 15Bb 0.43 0.0670 0.0030 0.0059 GEI CV1 

HI 0.6 15Bb 0.55 0.0569 0.0025 0.0050 GEI CV2 

HI 0.8 15Bb 0.36 0.0915 0.0041 0.0080 GEI CV1 

HI 0.8 15Bb 0.48 0.0603 0.0027 0.0053 GEI CV2 

HI 0.2 15War 0.24 0.1369 0.0061 0.0120 GEI CV1 

HI 0.2 15War 0.46 0.1134 0.0051 0.0100 GEI CV2 

HI 0.4 15War 0.22 0.0880 0.0039 0.0077 GEI CV1 

HI 0.4 15War 0.44 0.0823 0.0037 0.0072 GEI CV2 

HI 0.6 15War 0.19 0.0750 0.0034 0.0066 GEI CV1 

HI 0.6 15War 0.34 0.0736 0.0033 0.0065 GEI CV2 

HI 0.8 15War 0.15 0.0753 0.0034 0.0066 GEI CV1 

HI 0.8 15War 0.26 0.0699 0.0031 0.0061 GEI CV2 

HT 0.2 14Bb 0.43 0.1228 0.0055 0.0108 GEI CV1 

HT 0.2 14Bb 0.50 0.1143 0.0051 0.0100 GEI CV2 

HT 0.4 14Bb 0.42 0.0765 0.0034 0.0067 GEI CV1 

HT 0.4 14Bb 0.49 0.0784 0.0035 0.0069 GEI CV2 

HT 0.6 14Bb 0.40 0.0619 0.0028 0.0054 GEI CV1 

HT 0.6 14Bb 0.43 0.0682 0.0031 0.0060 GEI CV2 

HT 0.8 14Bb 0.37 0.0569 0.0025 0.0050 GEI CV1 

HT 0.8 14Bb 0.39 0.0692 0.0031 0.0061 GEI CV2 

HT 0.2 14War 0.41 0.1370 0.0061 0.0120 GEI CV1 

HT 0.2 14War 0.56 0.1166 0.0052 0.0102 GEI CV2 

HT 0.4 14War 0.40 0.0854 0.0038 0.0075 GEI CV1 

HT 0.4 14War 0.56 0.0733 0.0033 0.0064 GEI CV2 

HT 0.6 14War 0.37 0.0617 0.0028 0.0054 GEI CV1 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

HT 0.6 14War 0.48 0.0626 0.0028 0.0055 GEI CV2 

HT 0.8 14War 0.31 0.0665 0.0030 0.0058 GEI CV1 

HT 0.8 14War 0.41 0.0655 0.0029 0.0058 GEI CV2 

HT 0.2 15Bb 0.52 0.1069 0.0048 0.0094 GEI CV1 

HT 0.2 15Bb 0.71 0.0838 0.0037 0.0074 GEI CV2 

HT 0.4 15Bb 0.50 0.0625 0.0028 0.0055 GEI CV1 

HT 0.4 15Bb 0.71 0.0549 0.0025 0.0048 GEI CV2 

HT 0.6 15Bb 0.48 0.0565 0.0025 0.0050 GEI CV1 

HT 0.6 15Bb 0.60 0.0571 0.0026 0.0050 GEI CV2 

HT 0.8 15Bb 0.43 0.0742 0.0033 0.0065 GEI CV1 

HT 0.8 15Bb 0.50 0.0665 0.0030 0.0058 GEI CV2 

HT 0.2 15War 0.42 0.1290 0.0058 0.0113 GEI CV1 

HT 0.2 15War 0.60 0.0993 0.0044 0.0087 GEI CV2 

HT 0.4 15War 0.40 0.0792 0.0035 0.0070 GEI CV1 

HT 0.4 15War 0.61 0.0607 0.0027 0.0053 GEI CV2 

HT 0.6 15War 0.37 0.0588 0.0026 0.0052 GEI CV1 

HT 0.6 15War 0.51 0.0543 0.0024 0.0048 GEI CV2 

HT 0.8 15War 0.32 0.0632 0.0028 0.0056 GEI CV1 

HT 0.8 15War 0.43 0.0549 0.0025 0.0048 GEI CV2 

MAT 0.2 14Bb 0.13 0.1466 0.0066 0.0129 GEI CV1 

MAT 0.2 14Bb 0.32 0.1313 0.0059 0.0115 GEI CV2 

MAT 0.4 14Bb 0.12 0.0896 0.0040 0.0079 GEI CV1 

MAT 0.4 14Bb 0.36 0.0763 0.0034 0.0067 GEI CV2 

MAT 0.6 14Bb 0.12 0.0697 0.0031 0.0061 GEI CV1 

MAT 0.6 14Bb 0.25 0.0645 0.0029 0.0057 GEI CV2 

MAT 0.8 14Bb 0.11 0.0668 0.0030 0.0059 GEI CV1 

MAT 0.8 14Bb 0.17 0.0770 0.0034 0.0068 GEI CV2 

MAT 0.2 14War 0.14 0.1451 0.0065 0.0127 GEI CV1 

MAT 0.2 14War 0.33 0.1228 0.0055 0.0108 GEI CV2 

MAT 0.4 14War 0.13 0.0913 0.0041 0.0080 GEI CV1 

MAT 0.4 14War 0.33 0.0867 0.0039 0.0076 GEI CV2 

MAT 0.6 14War 0.12 0.0711 0.0032 0.0062 GEI CV1 

MAT 0.6 14War 0.23 0.0825 0.0037 0.0072 GEI CV2 

MAT 0.8 14War 0.11 0.0664 0.0030 0.0058 GEI CV1 

MAT 0.8 14War 0.20 0.0806 0.0036 0.0071 GEI CV2 

MAT 0.2 15Bb 0.39 0.1264 0.0057 0.0111 GEI CV1 

MAT 0.2 15Bb 0.52 0.1093 0.0049 0.0096 GEI CV2 

MAT 0.4 15Bb 0.36 0.0762 0.0034 0.0067 GEI CV1 

MAT 0.4 15Bb 0.53 0.0750 0.0034 0.0066 GEI CV2 

MAT 0.6 15Bb 0.34 0.0744 0.0033 0.0065 GEI CV1 

MAT 0.6 15Bb 0.44 0.0795 0.0036 0.0070 GEI CV2 

MAT 0.8 15Bb 0.28 0.1028 0.0046 0.0090 GEI CV1 

MAT 0.8 15Bb 0.31 0.1177 0.0053 0.0103 GEI CV2 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

MAT 0.2 15War 0.36 0.1414 0.0063 0.0124 GEI CV1 

MAT 0.2 15War 0.54 0.1094 0.0049 0.0096 GEI CV2 

MAT 0.4 15War 0.33 0.0849 0.0038 0.0075 GEI CV1 

MAT 0.4 15War 0.56 0.0700 0.0031 0.0061 GEI CV2 

MAT 0.6 15War 0.29 0.0743 0.0033 0.0065 GEI CV1 

MAT 0.6 15War 0.43 0.0739 0.0033 0.0065 GEI CV2 

MAT 0.8 15War 0.21 0.0817 0.0037 0.0072 GEI CV1 

MAT 0.8 15War 0.26 0.0906 0.0041 0.0080 GEI CV2 

NDVI 0.2 14Bb 0.25 0.1388 0.0062 0.0122 GEI CV1 

NDVI 0.2 14Bb 0.31 0.1243 0.0056 0.0109 GEI CV2 

NDVI 0.4 14Bb 0.23 0.0866 0.0039 0.0076 GEI CV1 

NDVI 0.4 14Bb 0.27 0.0870 0.0039 0.0076 GEI CV2 

NDVI 0.6 14Bb 0.21 0.0642 0.0029 0.0056 GEI CV1 

NDVI 0.6 14Bb 0.20 0.0875 0.0039 0.0077 GEI CV2 

NDVI 0.8 14Bb 0.17 0.0690 0.0031 0.0061 GEI CV1 

NDVI 0.8 14Bb 0.15 0.0801 0.0036 0.0070 GEI CV2 

NDVI 0.2 14War 0.38 0.1408 0.0063 0.0124 GEI CV1 

NDVI 0.2 14War 0.41 0.1265 0.0057 0.0111 GEI CV2 

NDVI 0.4 14War 0.34 0.0959 0.0043 0.0084 GEI CV1 

NDVI 0.4 14War 0.38 0.0863 0.0039 0.0076 GEI CV2 

NDVI 0.6 14War 0.29 0.0796 0.0036 0.0070 GEI CV1 

NDVI 0.6 14War 0.33 0.0767 0.0034 0.0067 GEI CV2 

NDVI 0.8 14War 0.23 0.0867 0.0039 0.0076 GEI CV1 

NDVI 0.8 14War 0.27 0.0667 0.0030 0.0059 GEI CV2 

NDVI 0.2 15Bb 0.11 0.1551 0.0069 0.0136 GEI CV1 

NDVI 0.2 15Bb 0.17 0.1615 0.0072 0.0142 GEI CV2 

NDVI 0.4 15Bb 0.14 0.0940 0.0042 0.0083 GEI CV1 

NDVI 0.4 15Bb 0.14 0.1096 0.0049 0.0096 GEI CV2 

NDVI 0.6 15Bb 0.14 0.0799 0.0036 0.0070 GEI CV1 

NDVI 0.6 15Bb 0.09 0.1022 0.0046 0.0090 GEI CV2 

NDVI 0.8 15Bb 0.13 0.0885 0.0040 0.0078 GEI CV1 

NDVI 0.8 15Bb 0.00 0.1104 0.0049 0.0097 GEI CV2 

NDVI 0.2 15War 0.23 0.1453 0.0065 0.0128 GEI CV1 

NDVI 0.2 15War 0.27 0.1376 0.0062 0.0121 GEI CV2 

NDVI 0.4 15War 0.20 0.0936 0.0042 0.0082 GEI CV1 

NDVI 0.4 15War 0.25 0.0920 0.0041 0.0081 GEI CV2 

NDVI 0.6 15War 0.18 0.0736 0.0033 0.0065 GEI CV1 

NDVI 0.6 15War 0.18 0.0855 0.0038 0.0075 GEI CV2 

NDVI 0.8 15War 0.14 0.0812 0.0036 0.0071 GEI CV1 

NDVI 0.8 15War 0.14 0.0896 0.0040 0.0079 GEI CV2 

SPH 0.2 14Bb 0.45 0.1330 0.0059 0.0117 GEI CV1 

SPH 0.2 14Bb 0.81 0.0796 0.0036 0.0070 GEI CV2 

SPH 0.4 14Bb 0.39 0.0907 0.0041 0.0080 GEI CV1 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

SPH 0.4 14Bb 0.80 0.0472 0.0021 0.0041 GEI CV2 

SPH 0.6 14Bb 0.31 0.0813 0.0036 0.0071 GEI CV1 

SPH 0.6 14Bb 0.62 0.0621 0.0028 0.0055 GEI CV2 

SPH 0.8 14Bb 0.20 0.0850 0.0038 0.0075 GEI CV1 

SPH 0.8 14Bb 0.43 0.0650 0.0029 0.0057 GEI CV2 

SPH 0.2 14War 0.35 0.1342 0.0060 0.0118 GEI CV1 

SPH 0.2 14War 0.77 0.0845 0.0038 0.0074 GEI CV2 

SPH 0.4 14War 0.29 0.0979 0.0044 0.0086 GEI CV1 

SPH 0.4 14War 0.75 0.0539 0.0024 0.0047 GEI CV2 

SPH 0.6 14War 0.22 0.0866 0.0039 0.0076 GEI CV1 

SPH 0.6 14War 0.56 0.0803 0.0036 0.0071 GEI CV2 

SPH 0.8 14War 0.13 0.0760 0.0034 0.0067 GEI CV1 

SPH 0.8 14War 0.39 0.0647 0.0029 0.0057 GEI CV2 

SPH 0.2 15Bb 0.35 0.1288 0.0058 0.0113 GEI CV1 

SPH 0.2 15Bb 0.67 0.0743 0.0033 0.0065 GEI CV2 

SPH 0.4 15Bb 0.32 0.0838 0.0037 0.0074 GEI CV1 

SPH 0.4 15Bb 0.66 0.0490 0.0022 0.0043 GEI CV2 

SPH 0.6 15Bb 0.27 0.0721 0.0032 0.0063 GEI CV1 

SPH 0.6 15Bb 0.52 0.0545 0.0024 0.0048 GEI CV2 

SPH 0.8 15Bb 0.20 0.0815 0.0036 0.0072 GEI CV1 

SPH 0.8 15Bb 0.39 0.0557 0.0025 0.0049 GEI CV2 

SPH 0.2 15War 0.39 0.1491 0.0067 0.0131 GEI CV1 

SPH 0.2 15War 0.71 0.0726 0.0032 0.0064 GEI CV2 

SPH 0.4 15War 0.32 0.0920 0.0041 0.0081 GEI CV1 

SPH 0.4 15War 0.68 0.0521 0.0023 0.0046 GEI CV2 

SPH 0.6 15War 0.25 0.0816 0.0036 0.0072 GEI CV1 

SPH 0.6 15War 0.53 0.0621 0.0028 0.0055 GEI CV2 

SPH 0.8 15War 0.16 0.0855 0.0038 0.0075 GEI CV1 

SPH 0.8 15War 0.36 0.0664 0.0030 0.0058 GEI CV2 

SSQM 0.2 14Bb 0.38 0.1317 0.0059 0.0116 GEI CV1 

SSQM 0.2 14Bb 0.58 0.1075 0.0048 0.0094 GEI CV2 

SSQM 0.4 14Bb 0.34 0.0864 0.0039 0.0076 GEI CV1 

SSQM 0.4 14Bb 0.59 0.0663 0.0030 0.0058 GEI CV2 

SSQM 0.6 14Bb 0.28 0.0720 0.0032 0.0063 GEI CV1 

SSQM 0.6 14Bb 0.45 0.0727 0.0032 0.0064 GEI CV2 

SSQM 0.8 14Bb 0.20 0.0681 0.0030 0.0060 GEI CV1 

SSQM 0.8 14Bb 0.34 0.0640 0.0029 0.0056 GEI CV2 

SSQM 0.2 14War 0.40 0.1293 0.0058 0.0114 GEI CV1 

SSQM 0.2 14War 0.57 0.1055 0.0047 0.0093 GEI CV2 

SSQM 0.4 14War 0.36 0.0878 0.0039 0.0077 GEI CV1 

SSQM 0.4 14War 0.59 0.0629 0.0028 0.0055 GEI CV2 

SSQM 0.6 14War 0.31 0.0676 0.0030 0.0059 GEI CV1 

SSQM 0.6 14War 0.45 0.0724 0.0032 0.0064 GEI CV2 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

SSQM 0.8 14War 0.24 0.0661 0.0030 0.0058 GEI CV1 

SSQM 0.8 14War 0.34 0.0678 0.0030 0.0060 GEI CV2 

SSQM 0.2 15Bb 0.33 0.1244 0.0056 0.0109 GEI CV1 

SSQM 0.2 15Bb 0.47 0.1202 0.0054 0.0106 GEI CV2 

SSQM 0.4 15Bb 0.30 0.0846 0.0038 0.0074 GEI CV1 

SSQM 0.4 15Bb 0.49 0.0724 0.0032 0.0064 GEI CV2 

SSQM 0.6 15Bb 0.25 0.0720 0.0032 0.0063 GEI CV1 

SSQM 0.6 15Bb 0.41 0.0643 0.0029 0.0057 GEI CV2 

SSQM 0.8 15Bb 0.18 0.0626 0.0028 0.0055 GEI CV1 

SSQM 0.8 15Bb 0.30 0.0576 0.0026 0.0051 GEI CV2 

SSQM 0.2 15War 0.42 0.1276 0.0057 0.0112 GEI CV1 

SSQM 0.2 15War 0.56 0.0977 0.0044 0.0086 GEI CV2 

SSQM 0.4 15War 0.37 0.0851 0.0038 0.0075 GEI CV1 

SSQM 0.4 15War 0.57 0.0605 0.0027 0.0053 GEI CV2 

SSQM 0.6 15War 0.31 0.0750 0.0034 0.0066 GEI CV1 

SSQM 0.6 15War 0.46 0.0649 0.0029 0.0057 GEI CV2 

SSQM 0.8 15War 0.24 0.0734 0.0033 0.0064 GEI CV1 

SSQM 0.8 15War 0.31 0.0668 0.0030 0.0059 GEI CV2 

STARCH 0.2 14Bb 0.42 0.1421 0.0064 0.0125 GEI CV1 

STARCH 0.2 14Bb 0.59 0.1227 0.0055 0.0108 GEI CV2 

STARCH 0.4 14Bb 0.38 0.0898 0.0040 0.0079 GEI CV1 

STARCH 0.4 14Bb 0.60 0.0683 0.0031 0.0060 GEI CV2 

STARCH 0.6 14Bb 0.33 0.0805 0.0036 0.0071 GEI CV1 

STARCH 0.6 14Bb 0.46 0.0776 0.0035 0.0068 GEI CV2 

STARCH 0.8 14Bb 0.24 0.1161 0.0052 0.0102 GEI CV1 

STARCH 0.8 14Bb 0.23 0.1170 0.0052 0.0103 GEI CV2 

STARCH 0.2 14War 0.42 0.1128 0.0050 0.0099 GEI CV1 

STARCH 0.2 14War 0.63 0.0980 0.0044 0.0086 GEI CV2 

STARCH 0.4 14War 0.40 0.0730 0.0033 0.0064 GEI CV1 

STARCH 0.4 14War 0.62 0.0618 0.0028 0.0054 GEI CV2 

STARCH 0.6 14War 0.35 0.0781 0.0035 0.0069 GEI CV1 

STARCH 0.6 14War 0.49 0.0612 0.0027 0.0054 GEI CV2 

STARCH 0.8 14War 0.26 0.0892 0.0040 0.0078 GEI CV1 

STARCH 0.8 14War 0.29 0.0971 0.0043 0.0085 GEI CV2 

STARCH 0.2 15Bb 0.15 0.1538 0.0069 0.0135 GEI CV1 

STARCH 0.2 15Bb 0.27 0.1534 0.0069 0.0135 GEI CV2 

STARCH 0.4 15Bb 0.15 0.1098 0.0049 0.0096 GEI CV1 

STARCH 0.4 15Bb 0.26 0.1169 0.0052 0.0103 GEI CV2 

STARCH 0.6 15Bb 0.13 0.1130 0.0051 0.0099 GEI CV1 

STARCH 0.6 15Bb 0.25 0.1147 0.0051 0.0101 GEI CV2 

STARCH 0.8 15Bb 0.11 0.1454 0.0065 0.0128 GEI CV1 

STARCH 0.8 15Bb 0.27 0.1320 0.0059 0.0116 GEI CV2 

STARCH 0.2 15War 0.37 0.1183 0.0053 0.0104 GEI CV1 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

STARCH 0.2 15War 0.35 0.1398 0.0063 0.0123 GEI CV2 

STARCH 0.4 15War 0.34 0.0949 0.0042 0.0083 GEI CV1 

STARCH 0.4 15War 0.32 0.0948 0.0042 0.0083 GEI CV2 

STARCH 0.6 15War 0.30 0.0897 0.0040 0.0079 GEI CV1 

STARCH 0.6 15War 0.27 0.0973 0.0044 0.0086 GEI CV2 

STARCH 0.8 15War 0.24 0.1067 0.0048 0.0094 GEI CV1 

STARCH 0.8 15War 0.23 0.1079 0.0048 0.0095 GEI CV2 

TKW 0.2 14Bb 0.63 0.1144 0.0051 0.0101 GEI CV1 

TKW 0.2 14Bb 0.89 0.0408 0.0018 0.0036 GEI CV2 

TKW 0.4 14Bb 0.60 0.0788 0.0035 0.0069 GEI CV1 

TKW 0.4 14Bb 0.89 0.0242 0.0011 0.0021 GEI CV2 

TKW 0.6 14Bb 0.54 0.0669 0.0030 0.0059 GEI CV1 

TKW 0.6 14Bb 0.75 0.0462 0.0021 0.0041 GEI CV2 

TKW 0.8 14Bb 0.42 0.0749 0.0033 0.0066 GEI CV1 

TKW 0.8 14Bb 0.58 0.0592 0.0026 0.0052 GEI CV2 

TKW 0.2 14War 0.68 0.1004 0.0045 0.0088 GEI CV1 

TKW 0.2 14War 0.93 0.0244 0.0011 0.0021 GEI CV2 

TKW 0.4 14War 0.65 0.0732 0.0033 0.0064 GEI CV1 

TKW 0.4 14War 0.94 0.0140 0.0006 0.0012 GEI CV2 

TKW 0.6 14War 0.59 0.0644 0.0029 0.0057 GEI CV1 

TKW 0.6 14War 0.80 0.0378 0.0017 0.0033 GEI CV2 

TKW 0.8 14War 0.48 0.0752 0.0034 0.0066 GEI CV1 

TKW 0.8 14War 0.62 0.0616 0.0028 0.0054 GEI CV2 

TKW 0.2 15Bb 0.61 0.1067 0.0048 0.0094 GEI CV1 

TKW 0.2 15Bb 0.78 0.1066 0.0048 0.0094 GEI CV2 

TKW 0.4 15Bb 0.56 0.0737 0.0033 0.0065 GEI CV1 

TKW 0.4 15Bb 0.76 0.0848 0.0038 0.0075 GEI CV2 

TKW 0.6 15Bb 0.53 0.0566 0.0025 0.0050 GEI CV1 

TKW 0.6 15Bb 0.64 0.0582 0.0026 0.0051 GEI CV2 

TKW 0.8 15Bb 0.46 0.0580 0.0026 0.0051 GEI CV1 

TKW 0.8 15Bb 0.50 0.0568 0.0025 0.0050 GEI CV2 

TKW 0.2 15War 0.66 0.1029 0.0046 0.0090 GEI CV1 

TKW 0.2 15War 0.80 0.0876 0.0039 0.0077 GEI CV2 

TKW 0.4 15War 0.63 0.0666 0.0030 0.0059 GEI CV1 

TKW 0.4 15War 0.80 0.0603 0.0027 0.0053 GEI CV2 

TKW 0.6 15War 0.58 0.0554 0.0025 0.0049 GEI CV1 

TKW 0.6 15War 0.70 0.0492 0.0022 0.0043 GEI CV2 

TKW 0.8 15War 0.49 0.0598 0.0027 0.0053 GEI CV1 

TKW 0.8 15War 0.58 0.0510 0.0023 0.0045 GEI CV2 

TWT 0.2 14Bb 0.55 0.1309 0.0059 0.0115 GEI CV1 

TWT 0.2 14Bb 0.76 0.0731 0.0033 0.0064 GEI CV2 

TWT 0.4 14Bb 0.52 0.0905 0.0040 0.0080 GEI CV1 

TWT 0.4 14Bb 0.75 0.0456 0.0020 0.0040 GEI CV2 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

TWT 0.6 14Bb 0.49 0.0703 0.0031 0.0062 GEI CV1 

TWT 0.6 14Bb 0.63 0.0520 0.0023 0.0046 GEI CV2 

TWT 0.8 14Bb 0.42 0.0774 0.0035 0.0068 GEI CV1 

TWT 0.8 14Bb 0.54 0.0630 0.0028 0.0055 GEI CV2 

TWT 0.2 14War 0.55 0.1179 0.0053 0.0104 GEI CV1 

TWT 0.2 14War 0.78 0.0631 0.0028 0.0055 GEI CV2 

TWT 0.4 14War 0.52 0.0785 0.0035 0.0069 GEI CV1 

TWT 0.4 14War 0.74 0.0500 0.0022 0.0044 GEI CV2 

TWT 0.6 14War 0.46 0.0608 0.0027 0.0053 GEI CV1 

TWT 0.6 14War 0.59 0.0573 0.0026 0.0050 GEI CV2 

TWT 0.8 14War 0.37 0.0711 0.0032 0.0062 GEI CV1 

TWT 0.8 14War 0.48 0.0599 0.0027 0.0053 GEI CV2 

TWT 0.2 15Bb 0.51 0.1213 0.0054 0.0107 GEI CV1 

TWT 0.2 15Bb 0.73 0.0693 0.0031 0.0061 GEI CV2 

TWT 0.4 15Bb 0.50 0.0742 0.0033 0.0065 GEI CV1 

TWT 0.4 15Bb 0.74 0.0431 0.0019 0.0038 GEI CV2 

TWT 0.6 15Bb 0.48 0.0582 0.0026 0.0051 GEI CV1 

TWT 0.6 15Bb 0.63 0.0472 0.0021 0.0041 GEI CV2 

TWT 0.8 15Bb 0.42 0.0689 0.0031 0.0061 GEI CV1 

TWT 0.8 15Bb 0.51 0.0653 0.0029 0.0057 GEI CV2 

TWT 0.2 15War 0.56 0.0951 0.0043 0.0084 GEI CV1 

TWT 0.2 15War 0.77 0.0621 0.0028 0.0055 GEI CV2 

TWT 0.4 15War 0.52 0.0669 0.0030 0.0059 GEI CV1 

TWT 0.4 15War 0.75 0.0407 0.0018 0.0036 GEI CV2 

TWT 0.6 15War 0.47 0.0603 0.0027 0.0053 GEI CV1 

TWT 0.6 15War 0.61 0.0609 0.0027 0.0054 GEI CV2 

TWT 0.8 15War 0.39 0.0642 0.0029 0.0056 GEI CV1 

TWT 0.8 15War 0.44 0.0818 0.0037 0.0072 GEI CV2 

WCPROT 0.2 14Bb -0.01 0.1512 0.0068 0.0133 GEI CV1 

WCPROT 0.2 14Bb 0.24 0.1427 0.0064 0.0125 GEI CV2 

WCPROT 0.4 14Bb -0.04 0.0978 0.0044 0.0086 GEI CV1 

WCPROT 0.4 14Bb 0.23 0.0936 0.0042 0.0082 GEI CV2 

WCPROT 0.6 14Bb -0.05 0.0856 0.0038 0.0075 GEI CV1 

WCPROT 0.6 14Bb 0.12 0.0906 0.0041 0.0080 GEI CV2 

WCPROT 0.8 14Bb -0.08 0.0919 0.0041 0.0081 GEI CV1 

WCPROT 0.8 14Bb 0.02 0.1002 0.0045 0.0088 GEI CV2 

WCPROT 0.2 14War 0.00 0.1485 0.0066 0.0130 GEI CV1 

WCPROT 0.2 14War 0.30 0.1456 0.0065 0.0128 GEI CV2 

WCPROT 0.4 14War -0.01 0.0942 0.0042 0.0083 GEI CV1 

WCPROT 0.4 14War 0.30 0.0814 0.0036 0.0071 GEI CV2 

WCPROT 0.6 14War -0.01 0.0740 0.0033 0.0065 GEI CV1 

WCPROT 0.6 14War 0.16 0.0808 0.0036 0.0071 GEI CV2 

WCPROT 0.8 14War -0.03 0.0716 0.0032 0.0063 GEI CV1 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

WCPROT 0.8 14War 0.02 0.0686 0.0031 0.0060 GEI CV2 

WCPROT 0.2 15Bb 0.38 0.1339 0.0060 0.0118 GEI CV1 

WCPROT 0.2 15Bb 0.49 0.1136 0.0051 0.0100 GEI CV2 

WCPROT 0.4 15Bb 0.33 0.0977 0.0044 0.0086 GEI CV1 

WCPROT 0.4 15Bb 0.48 0.0690 0.0031 0.0061 GEI CV2 

WCPROT 0.6 15Bb 0.27 0.0883 0.0040 0.0078 GEI CV1 

WCPROT 0.6 15Bb 0.39 0.0702 0.0031 0.0062 GEI CV2 

WCPROT 0.8 15Bb 0.17 0.0916 0.0041 0.0081 GEI CV1 

WCPROT 0.8 15Bb 0.26 0.0978 0.0044 0.0086 GEI CV2 

WCPROT 0.2 15War 0.23 0.1315 0.0059 0.0116 GEI CV1 

WCPROT 0.2 15War 0.32 0.1260 0.0056 0.0111 GEI CV2 

WCPROT 0.4 15War 0.21 0.0993 0.0044 0.0087 GEI CV1 

WCPROT 0.4 15War 0.31 0.0777 0.0035 0.0068 GEI CV2 

WCPROT 0.6 15War 0.15 0.0949 0.0042 0.0083 GEI CV1 

WCPROT 0.6 15War 0.24 0.0810 0.0036 0.0071 GEI CV2 

WCPROT 0.8 15War 0.08 0.1243 0.0056 0.0109 GEI CV1 

WCPROT 0.8 15War 0.16 0.1159 0.0052 0.0102 GEI CV2 

YLD 0.2 14Bb -0.01 0.1542 0.0069 0.0135 GEI CV1 

YLD 0.2 14Bb 0.19 0.1680 0.0075 0.0148 GEI CV2 

YLD 0.4 14Bb -0.01 0.1053 0.0047 0.0093 GEI CV1 

YLD 0.4 14Bb 0.19 0.1077 0.0048 0.0095 GEI CV2 

YLD 0.6 14Bb 0.00 0.0915 0.0041 0.0080 GEI CV1 

YLD 0.6 14Bb 0.12 0.1015 0.0045 0.0089 GEI CV2 

YLD 0.8 14Bb -0.01 0.0797 0.0036 0.0070 GEI CV1 

YLD 0.8 14Bb 0.03 0.0798 0.0036 0.0070 GEI CV2 

YLD 0.2 14War 0.33 0.1341 0.0060 0.0118 GEI CV1 

YLD 0.2 14War 0.33 0.1446 0.0065 0.0127 GEI CV2 

YLD 0.4 14War 0.32 0.0773 0.0035 0.0068 GEI CV1 

YLD 0.4 14War 0.34 0.0948 0.0042 0.0083 GEI CV2 

YLD 0.6 14War 0.29 0.0634 0.0028 0.0056 GEI CV1 

YLD 0.6 14War 0.28 0.0809 0.0036 0.0071 GEI CV2 

YLD 0.8 14War 0.22 0.0706 0.0032 0.0062 GEI CV1 

YLD 0.8 14War 0.23 0.0733 0.0033 0.0064 GEI CV2 

YLD 0.2 15Bb 0.32 0.1382 0.0062 0.0121 GEI CV1 

YLD 0.2 15Bb 0.44 0.1318 0.0059 0.0116 GEI CV2 

YLD 0.4 15Bb 0.31 0.0806 0.0036 0.0071 GEI CV1 

YLD 0.4 15Bb 0.45 0.0808 0.0036 0.0071 GEI CV2 

YLD 0.6 15Bb 0.31 0.0617 0.0028 0.0054 GEI CV1 

YLD 0.6 15Bb 0.34 0.0779 0.0035 0.0068 GEI CV2 

YLD 0.8 15Bb 0.31 0.0629 0.0028 0.0055 GEI CV1 

YLD 0.8 15Bb 0.29 0.0893 0.0040 0.0078 GEI CV2 

YLD 0.2 15War 0.39 0.1271 0.0057 0.0112 GEI CV1 

YLD 0.2 15War 0.49 0.1086 0.0049 0.0095 GEI CV2 
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Trait † Prop_Miss Env ‡ Mean r SD SE CI Model § 

YLD 0.4 15War 0.38 0.0769 0.0034 0.0068 GEI CV1 

YLD 0.4 15War 0.49 0.0757 0.0034 0.0067 GEI CV2 

YLD 0.6 15War 0.36 0.0692 0.0031 0.0061 GEI CV1 

YLD 0.6 15War 0.42 0.0765 0.0034 0.0067 GEI CV2 

YLD 0.8 15War 0.34 0.0994 0.0044 0.0087 GEI CV1 

YLD 0.8 15War 0.34 0.1037 0.0046 0.0091 GEI CV2 

 

† BIOM above-ground biomass; FLS flag leaf senescence; FLSG flag leaf stay green; GSQM grains per square meter; 

GW grain weight; HD heading date; HI harvest index; HP maturity date minus heading date; HT plant height; MAT 

physiological maturity date; NDVI normalized-difference vegetation index at Zadok’s GS25; SPH seeds per head; 

SSQM spikes per square meter; STARCH whole-grain starch content; TKW thousand kernel weight; TWT test 

weight; WCPROT wet chemistry-validated whole-grain protein content; YLD grain yield 

‡ 14Bb Blacksburg, VA 2014; 14War Warsaw, VA 2014; 15Bb Blacksburg, VA 2015; 15War Warsaw, VA 2015 

§ Adj Means univariate model using adjusted across-environment means as the phenotypic response variable; GEI 

CV1 multi-environment model using genotype/environment combinations as the phenotypic response variable 

with the CV1 cross-validation scheme; GEI CV2 multi-environment model using genotype/environment 

combinations as the phenotypic response variable with the CV2 cross-validation scheme 
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APPENDIX F: List of genotypes included in the elite panel (EP) of chapter III 

 

The table below lists all genotypes included in the elite panel (EP) tested in chapter III, with their 

state of origin and pedigree (if known). 

 

Table F.1: List of genotypes included in the elite panel (EP) of chapter III 

GENOTYPE ORIGIN PEDIGREE 

011007A1-14-16-50 Purdue 981477A1-10-2-1/981312A1-6-2-1//INW0316 

0175A1-37-4-1 Purdue 981419/97397 

02444A1-23-1-3 Purdue 981129A1-45-3/99793RE2-3//INW0301/92145E8-7-7-3-57 

03207A1-7-3-1 Purdue 97395C1-1-4/RSI5//97395B1-4-3-8-1/3/981281A1-4-3-
7/4/INW0315/99794RA4-14-1 

03549A1-18-25 Purdue 981358/97462/3/92145/981004X48//INW0301 

03633A1-69-2-5 Purdue 992059/INW0316//981358/97462 

04606RA1-1-7-1 Purdue Truman/INW0316 

04606RA1-1-7-1-6 Purdue TRUMAN/961341A3-1-4-6(INW0316) 

04620A1-1-7-4 Purdue TRUMAN/9017C1//92823A1/9218B4/3/P107/4/PATT/5/INW9811/
GLD//96204A1 

04702A1-18 Purdue INW0316*2/INW0301 

04719A1-16-1-1-7 Purdue 99840C4-8-3-6-
1/5/INW0315/3/INW0301/MADSEN//INW0315/97395B1-8-
4/6/99840C4-8-3-6-1 

0513A1-1-3 Purdue 04607/04697 

05219A1-8-21-2-4 Purdue unknown 

05222A1-1-2-1 Purdue 99840C4/5/99593RA1/6/97395C1/RSI5//INW0304/3/981281A1/4
/981517A1/7/INW0316/8/99794RA4-14-1-5 

05247A1-7-3-120 Purdue 98840*2/03726//99794 

05247A1-7-3-27 Purdue 98840*2/03726//99794 

05247A1-7-7-3-1 Purdue 99840C4/5/INW0315/3/INW0301MADSEN//INW0315/4/97395B1/
6/99840C4//99794RA1 

05251A1-1-136-9-5 Purdue INW0412*2/03705//981312 

05264A1-1-3-2 Purdue INW0304*2/03727/5/96169/3/Tadinia/BH1146//Geneva/4/INW0
316 

05287A1-1-13 Purdue 99840*2/03726//INW0412*2/03705 

0537A1-12 Purdue 97397/3/2754//INW0412/98134W 

0537A1-3-12 Purdue INW0411/2754//INW0412/98134 

0566A1-3-1-65 Purdue INW0412/992060 

0566A1-3-1-67 Purdue INW0412/992060 

0570A1-2-39-5 Purdue INW0412/3/9017/92823//201R/97462 

06403A1-4 Purdue INW0411/992059/3/96169//981129/981312 

0722A1-1-7 Purdue INW0731/3/981129/99793//INW0301/92145 

07287RA1-14 Purdue INW0304/INW0316//97462/3/Truman 

07290A1-12 Purdue 992060G1-1-5-71/5/92829A1-1-5-1-4-2/A94-
1048/4/GOLDFIELD/X117/3/ROANE//92145A2-4-6/6/TRUMAN 
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GENOTYPE ORIGIN PEDIGREE 

0762A1-2-8 Purdue 981129A1-45-3/99793RE2-3//INW0301/92145E8-7-7-3-
57/3/981477A1/981312A1//INW0316 

91193D1 Purdue Benhur//Arthur/Knox62/3/Arthur/NY5715AB/4/Hart/Beau//Arthu
r/Abe/5/Auburn/Coker 8427/3/OH256/Scotty//jClark 

92201D5 Purdue Tyler//Caldwell*2/Pioneer 
S76/3/Clark/CI5549/4/Roazon/Caldwell/5/Glory 

9346A1-2-5-5-2-1 Purdue 83146C1-9-6-3-75//831800A1-7-2-5-2/861A1-8-X-38 

ALLEGIANCE Kentucky Pioneer2548/FFR555 

BECKER Ohio Hart/VA-66-54-10 

BESS Virginia MO11769/Madison 

BROMFIELD Ohio FOSTER/HOPEWELL//OH581/OH569 

CALEDONIA Cornell Off type selection out of Geneva 

CATOCTIN Maryland EarlyHolley/Pb67137B12-3/2/VA70-52-22 

CAYUGA Cornell Geneva/Clark’sCream//Geneva 

CHOPTANK Maryland Coker9803/Freedom 

CLARK Purdue Beau/2/Pd65256A1-8-1/Pd67137B5-
16/4/Sullivan/3/Beau/2/Pd5517B8-5-3-3/Logan 

CRYSTAL Michigan Pioneer 2737W/MSU Line D1148 

D6234 Michigan MSUX1291/MSUC5107 

D8006 Michigan PIONEER2555/LOWELL 

E2041 Michigan PioneerBrand2552/PioneerBrand2737W 

E5011 Michigan PioneerBrand2555/LOWELL 

E5024 Michigan MSUD6234/P25W33 

E6012 Michigan Caledonia/PioneerBrand25W33 

ERNIE Missouri Pike/MO9965(Stoddard/Blueboy//Stoddard/D1707) 

FOSTER Kentucky Coker6520/Tyler 

HOPKINS Cornell NY87048W-7387(84074(Ho/SuMei)/Caledonia//Caledonia-
2///Caledonia9BC2S1 

IL00-8109 Illinois P81-1615-50/Foster//IL93-2489 

IL00-8530 Illinois IL89-1687/IL90-6364//IL93-2489 

IL00-8633 Illinois IL89-1687/IL90-6364//IL93-2489 

IL01-11934 Illinois IL90-6364/IL94-1909 

IL02-18228 Illinois Pio25R26/IL9634-24437//IL95-4162 

IL02-19483B Illinois Patton/Cardinal//IL96-2550 

IL04-24668 Illinois IL98-13404/IL97-3578 

IL04-9942 Illinois IL95-2516/IL97-3578 

IL05-4236 Illinois Truman/KY93C-1238-17-1 

IL06-13072 Illinois IL00-8109/IL97-3632 

IL06-13708 Illinois IL00-8530/IL97-3632 

IL06-13721 Illinois IL00-8530/IL97-3632 

IL06-14262 Illinois IL00-8530/IL97-1828 

IL06-14303 Illinois IL00-8530/IL97-1828 

IL06-14325 Illinois IL00-8530/IL97-1828 

IL06-23571 Illinois IL96-6472/Pio25W33//IL94-1653 

IL06-31053 Illinois IL94-1909/IL97-3578//P93149A1-5-4-2-6 
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GENOTYPE ORIGIN PEDIGREE 

IL06-7550 Illinois IL97-3632/IL98-4632 

IL06-7653 Illinois IL97-3632/IL99-8879 

IL07-12948 Illinois IL00-8530/IL99-27048 

IL07-16075 Illinois IL01-13830/IL99-27048 

IL07-19334 Illinois IL01-36115/IL79-008T-B-B 

IL07-20728 Illinois McCormick/IL97-1828//IL00-8061 

IL07-20743 Illinois McCormick/IL97-1828//IL00-8061 

IL07-21847 Illinois IL99-2536/IL97-3632//IL00-8061 

IL07-23420 Illinois IL99-15867/IL96-6472//IL00-8530 

IL07-24841 Illinois IL00-8530/IL94-1653//IL01-5642 

IL07-4415 Illinois P96169RE2-3-6-4/IL01-34159 

IL07-6861 Illinois IL97-1828/BW402 

IL08-12174 Illinois IL01-36115/IL02-5030 

IL08-12206 Illinois IL01-36115/IL02-9074 

IL08-22075 Illinois IL00-8530/VA01-476//IL79-002DH 

IL08-31639 Illinois IL01-13830/IL00-1665 

IL08-33373 Illinois IL79-005T-B-B/IL00-8530 

IL08-33951 Illinois IL01-36115/IL79-008T 

IL08-34020 Illinois IL01-36115/IL79-008T 

IL08-9266 Illinois IL00-8530/IL02-5675 

IL99-26442 Illinois IL87-2894/Pion2571 

INW0411 Purdue 96204A1-12//Goldfield/INW9824(=92823A1-11) 

INW0412 Purdue Huapei57-2(Acc3130)/Patterson 

INW1021 Purdue 981129A1/99793RE2//INW0301/92145E8 

JAMESTOWN Virginia ROANE/PIONEER2691 

JAYPEE Arkansas Arthur 6/AR39-3 (Doublecrop//Forlani/Garibaldo) 

KY02C-1058-03 Kentucky 25R37//Tribute/2552 

KY02C-1076-07 Kentucky 25R44//VA97W-24/2552 

KY02C-1121-11 Kentucky Declaration/Tribute 

KY02C-1121-75 Kentucky Declaration/Tribute 

KY02C-1122-06 Kentucky Declaration/25R44 

KY02C-2215-02 Kentucky Tribute/25W33 

KY02C-3004-07 Kentucky 25R18/Tribute 

KY02C-3005-25 Kentucky 25R18/MCCORMICK 

KY03C-1002-02 Kentucky 25W33/25W60//25W33/KY90C-042-37-1 

KY03C-1192-37 Kentucky KY93C-0876-66//KY96C-0059-21 

KY03C-1195-10-1-5 Kentucky KY92C-0010-17//25R18/KY92C-0017-17 

KY03C-1221-01 Kentucky 25R18/McCormick//KY96C-0059-21 

KY03C-1221-06 Kentucky 25R18/McCormick//KY96C-0059-21 

KY03C-1221-22 Kentucky 25R18/McCormick//KY96C-0059-21 

KY03C-1237-01 Kentucky 25R18/92C-0010-17//KY96C-0767-1 

KY03C-1237-15 Kentucky 25R18/92C-0010-17//KY96C-0767-1 

KY03C-1237-32 Kentucky 25R18/92C-0010-17//KY96C-0767-1 

KY03C-2047-02 Kentucky Roane/McCormick 
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GENOTYPE ORIGIN PEDIGREE 

KY03C-2047-06 Kentucky Roane/McCormick 

KY03C-2049-02 Kentucky Roane/VA97W-375ws 

KY03C-2314-08 Kentucky KY93C-1238-17-1/KY94C-0325-40-2 

KY03C-2399-02 Kentucky KY93C-1238-17-6/KY94C-0285-55-3 

KY04C-1128-38-1-5 Kentucky SX1411/NC98-26192//25R78 

KY04C-2006-41-1-1 Kentucky Roane/KY93C-1238-17-1 

KY04C-2151-40 Kentucky 25R18/VA01W-476 

KY04C-2151-41 Kentucky 25R18/VA01W-476 

KY04C-3006-33-14-3 Kentucky KY93C-0004-22-1/Tribute 

KY05C-1007-2-12-5 Kentucky IL96-24851-1/KY93C-1238-17-1 

KY05C-1105-42-20-1 Kentucky Roane/Truman//KY98C-1440-01 

KY05C-1381-77-7-5 Kentucky KY93C-1238-17-5/CG514W//KY96C-0769-7-1 

KY05C-1617-17-17-3 Kentucky KY94C-0094-11-2/26R15//KY98C-1169-06 

KY06C-1003-139-8-3 Kentucky Truman/McCormick//25R37 

KY93C-1238-17-1 Kentucky VA87-54-558/KY83C-004//2510 

MALABAR Ohio P92118B4-2/OH561 

MASSEY Virginia BLUEBOY/KNOX62 

MD01W270-10-3 Maryland VA98W769/USG3209 

MD03W104-10-2 Maryland KY96C-0768-2/MCCORMICK 

MD03W151-10-12 Maryland KY96C-0768-1/MCCORMICK 

MD03W485-10-10 Maryland USG3209/TRIBUTE//MD71-5(USG3342"S") 

MD03W485-10-12 Maryland USG3209/TRIBUTE//MD71-5(USG3342"S") 

MD03W485-10-2 Maryland USG3209/TRIBUTE//MD71-5(USG3342"S") 

MD03W485-10-8 Maryland USG3209/TRIBUTE//MD71-5(USG3342"S") 

MD03W61-11-2 Maryland 25R42/Chesapeake 

MD03W61-11-3 Maryland 25R42/Chesapeake 

MD03W64-10-3 Maryland 26R61/CHESAPEAKE 

MD03W665-10-3 Maryland USG3209/TRIBUTE//CHESAPEAKE 

MD03W665-10-5 Maryland USG3209/TRIBUTE//CHESAPEAKE 

MD04W1197-11-13 Maryland KY96C-0768-2/PI612546//Sx1411/McCormick 

MD04W249-11-12 Maryland MV8-29/25R42 

MD04W249-11-13 Maryland MV8-29/25R42 

MD04W249-11-5 Maryland MV8-29/25R42 

MD04W249-11-7 Maryland MV8-29/25R42 

MD04W359-11-10 Maryland SX1411/25R49//MD71-5(USG3342"S") 

MD04W8-11-4 Maryland Chesapeake/25R42 

MD05W10208-11-13 Maryland Tribute/25R42//Chesapeake 

MD05W10208-11-14 Maryland Tribute/25R42//Chesapeake 

MD05W10208-11-3 Maryland Tribute/25R42//Chesapeake 

MD05W10208-11-6 Maryland Tribute/25R42//Chesapeake 

MD05W10208-11-7 Maryland Tribute/25R42//Chesapeake 

MD05W10208-11-8 Maryland Tribute/25R42//Chesapeake 

MD05W1292-11-1 Maryland Neuse/25R42//Dominion 

MD05W1292-11-4 Maryland Neuse/25R42//Dominion 

MD05W1317-11-4 Maryland Choptank/25R42//Dominion 
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GENOTYPE ORIGIN PEDIGREE 

MD05W479-B-11-3 Maryland 26R61/25R42//Chesapeake 

MD07W272-11-5 Maryland VA02W713//USG3555/25R42 

MD07W419UM5-11-11 Maryland USG3209//SS8641/25R42 

MD07W419UM5-11-12 Maryland USG3209//SS8641/25R42 

MD665-09-6 Maryland USG3209/TRIBUTE//CHESAPEAKE 

MEDINA Cornell MD286-21/Harus 

MERL Virginia ROANE/PIONEER2643//SS520 

MILTON Missouri MO94-103/PL2552 

MO050921 Missouri 980521/ERNIE 

MO080103 Missouri L910097(releasedasCOKER9704)/MO92-599 

MO080104 Missouri L910097(releasedasCOKER9704)/MO92-599 

MO080584 Missouri 980525//APPATTON/980525 

MO080589 Missouri KY90C-383-18-1/IL94-1653 

MO080864 Missouri 981020//P92201D5-2/98072 

MO081163 Missouri 980429/980525 

MO081280 Missouri 980829//980725/IL95-4162 

MO081537 Missouri KY90C-383-18-1/IL94-1653 

MO081559 Missouri 980725/Sumai3 

MO081652 Missouri L910097(releasedasCOKER9704)/MO92-599 

MO081699 Missouri Pioneer2552/980829 

MO090574 Missouri L910097(releasedasCOKER9704)/MO92-599 

MO090581 Missouri 980521/950016 

MO090821 Missouri 980829//980725/IL95-4162 

MO091011 Missouri 980927/980525 

MO091159 Missouri PL25R49/000822 

MO100172 Missouri 960304/960815 

MO100231 Missouri 981020/IL96-346 

MO100265 Missouri 980725/SUMAI3 

MO100519 Missouri 001567/000442 

MO100535 Missouri 980525//980725/ROANE 

MO100539 Missouri 980525//980525/ROANE 

MO100647 Missouri ROANE/980525//980525/451-1-2 

MO100745 Missouri 980725/SUMAI3 

MO101142 Missouri 001567/000442 

MO101202 Missouri 981020/IL96-346 

MO101207 Missouri 000311/011174 

MO101278 Missouri 002246/980829 

MO101329 Missouri 980525//980725/ROANE 

MO101358 Missouri PATTON/000926 

MO101361 Missouri 002762/001839 

MO101571 Missouri 001655/981020 

NY103-208-7263 Cornell Cayuga/Caledonia 

NY91017-8080 Cornell U1266-4-11-6/Harus 

NY96009-3037 Cornell NYBatavia/GenevaResel 

NY99066-3444 Cornell NY87048W-7387(84074(Ho/SuMei)/Harus)/Mendon 
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GENOTYPE ORIGIN PEDIGREE 

OH05-200-74 Ohio OH629/HOPEWELL 

OH06-150-57 Ohio P.92201D5-2-29/OH708 

OH06-180-57 Ohio KY90C-042-37-1/OH687 

OH07-166-41 Ohio OH708/OH684 

OH07-166-49 Ohio OH708/OH684 

OH07-174-11 Ohio OH708/P.92145E8-7-7-1-9 

OH07-238-15 Ohio P.92145E8-7-7-1-9/TRIBUTE 

OH07-254-11 Ohio OH728/VA97W-361WS 

OH07-263-3 Ohio OH748/BRAVO 

OH07-94-70 Ohio ROANE/PATTON 

OH07-95-7 Ohio ROANE/PATTON 

OH07-98-21 Ohio FOSTER/IL95-947 

OH08-101-57 Ohio TRUMAN/IL96-6472 

OH08-101-72 Ohio TRUMAN/IL96-6472 

OH08-107-16 Ohio TRUMAN/OH751 

OH08-133-25 Ohio HONEY/COKER9663 

OH08-141-6 Ohio HONEY/ROANE 

OH08-149-11 Ohio SISSON/HOPEWELL 

OH08-161-4 Ohio OH751/OH738 

OH08-161-78 Ohio OH751/OH738 

OH08-170-66 Ohio DOUGLAS/IL97-3632 

OH08-172-42 Ohio DOUGLAS/JEKYL 

OH08-178-52 Ohio DOUGLAS/P.92226E2-5-3 

OH08-180-48 Ohio DOUGLAS/MCCORMICK 

OH08-182-4 Ohio DOUGLAS/OH708 

OH08-199-1 Ohio VA98W-706/IL96-6472 

OH08-206-19 Ohio P.92226E2-5-3/OH751 

OH08-207-33 Ohio P.92226E2-5-3/OH751 

OH08-234-4 Ohio OH738/OH740 

OH08-235-33 Ohio OH738/OH740 

OH08-246-15 Ohio P.961341A3-2-2/OH740 

OH08-254-22 Ohio TRIBUTE/P.92226E2-5-3 

OH08-256-47 Ohio TRIBUTE/P.92226E2-5-3 

OH08-265-37 Ohio DOUGLAS/P.92226E2-5-3 

OH08-269-58 Ohio P.92226E2-5-3/OH708 

OH08-98-13 Ohio TRUMAN/IL97-3632 

PEMBROKE Kentucky VA94-52-25/KY87C-42-8-5//2552 

PIONEER25R26 Pioneer Hi-Bred PIONEER-2548(SIB)/W-9057-C//W-9018-A/(SIB)PIONEER-2555 

REDRUBY Michigan PioneerBrand2552/PioneerBrand27W37 

ROANE Virginia VA71-54-147/COKER68-15//IN65309C1-18-2-3-2 

SHIRLEY Virginia VA94-52-25/COKER9835//SISSON"S"(VA96-54-234) 

SISSON Virginia COKER9803/FREEDOM 

SS520 Virginia FFR555W/GA-GORE 

SS5205 Virginia PIONEER2684/VA93-54-185//POCAHONTAS 

SSMPV57 Virginia FFR555W/VA89-22-52 
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GENOTYPE ORIGIN PEDIGREE 

TRIBUTE Virginia VA92-51-39/AL870365 

TRUMAN Missouri MO11769/Madison 

USG3209 Virginia SALUDA/4/MASSEY*2/3/MASSEY*3/BALKAN//SALUDA 

USG3315 Virginia SS520/PIONEER2552//ROANE 

USG3555 Virginia VA94-52-60/PIONEER2643//USG3209 

VA05W-151 Virginia PIONEER26R24/McCORMICK 

VA05W-251 Virginia VA98W-130//VA88-54-328//VA96W-348/PIONEER26R61 

VA06W-412 Virginia TRIBUTE/AGS2000//VAN99W-20 

VA07W-415 Virginia VA98W-895/GA881130LE5//VA98W-627RS 

VA08MAS-369 Virginia McCORMICK/GA881130LE5 

VA08W-176 Virginia KY96C-0079-5/McCORMICK 

VA08W-294 Virginia SS520/VA99W-188//TRIBUTE 

VA08W-613 Virginia FREEDOM/NEUSE"S"//VA98W-688 

VA09W-110 Virginia USG3592(GA931241E16)/VA01W-303 

VA09W-112 Virginia USG3592(GA931241E16)/VA01W-303 

VA09W-114 Virginia USG3592(GA931241E16)/VA01W-303 

VA09W-188WS Virginia PIONEER25W60//PIONEER25W33/VAN98W-170WS 

VA09W-46 Virginia GF921221E16/McCORMICK"S"(VA98W-590)//VA99W-200 

VA09W-52 Virginia GF921221E16/McCORMICK"S"(VA98W-590)//VA99W-200 

VA09W-69 Virginia SS520(VA96W-158)/VA99W-188//TRIBUTE 

VA09W-73 Virginia SS520/VA99W-188//TRIBUTE 

VA09W-75 Virginia SS520/VA99W-188//TRIBUTE 

VA10W-119 Virginia KY97C-0540-04/GF951079-2E31 

VA10W-123 Virginia PIONEER26R47/GF951079-2E31 

VA10W-125 Virginia PIONEER26R47/JAMESTOWN 

VA10W-140 Virginia VA01W-210/SS520(VA96W-158)//TRIBUTE 

VA10W-21 Virginia Z00-5018/VA01W-158 

VA10W-28 Virginia SSMPV57(VA97W-24)/M99*3098 

VA10W-663 Virginia P97397B1-4-5/MCCORMICK//COKER9511 

VA96W-247 Virginia Coker9803/Freedom 
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APPENDIX G: List of genotypes included in the yield validation panel (YVP) of chapter 

III 

 

The table below lists all genotypes included in the yield validation panel (YVP) tested in chapter 

III, with their state of origin and pedigree (if known). 

 

Table G.1: List of genotypes included in the yield validation panel (YVP) of chapter III 

GENOTYPE ORIGIN PEDIGREE 

04606RA1-1-7-1-6-3 Purdue TRUMAN/961341A3-1-4-6 

04606RA1-7-1 Purdue TRUMAN/961341A3-1-4-6 

04620A1-1-7-4-10 Purdue TRUMAN/9017C1//92823A1/9218B4/3/P107/4/PATT/5/INW981
1/GLD//96204A1 

04620A1-1-7-4-17 Purdue TRUMAN/9017C1//92823A1/9218B4/3/P107/4/PATT/5/INW981
1/GLD//96204A1 

05247A1-7-3-120 Purdue 99840C4/5/INW0315/3/INW0301MADSEN//INW0315/4/97395B
1/6/99840C4//99794RA1 

05247A1-7-3-54 Purdue 99840C4/5/INW0315/3/INW0301MADSEN//INW0315/4/97395B
1/6/99840C4//99794RA1 

05269A1-4-9-8 Purdue 03718A1=981542A1/5/INW0301/INW0315/6/97395C1/7/RSI5//I
NW0304/3/981281/4/INW0301 

05269A1-4-9-83 Purdue 03718A1=981542A1/5/INW0301/INW0315/6/97395C1/7/RSI5//I
NW0304/3/981281/4/INW0301 

0566A1-3-1-3 Purdue INW0412/6/9017C1//92823A1/9218B4/3/P107/4/PATT/5/ACC31
30/PATT/7/992060G1-1 

0566A1-3-1-52 Purdue INW0412/6/9017C1//92823A1/9218B4/3/P107/4/PATT/5/ACC31
30/PATT/7/992060G1-1 

081B1-12-4 Purdue INW0411/92226E2-5-3-17-7 

081B1-8-3 Purdue INW0411/92226E2-5-3-17-7 

082A1-3-1 Purdue INW0411/961341A3-1-4-6 

082A1-55-4 Purdue INW0411/961341A3-1-4-6 

BRANSON Ohio PIONEER-2737-W//(891-4584-A)PIKE/FL-302 
IL11-12356 Illinois IL02-23168/IL05-10461 

IL11-12437 Illinois IL02-23168/IL05-10461 

IL11-12443 Illinois IL02-23168/IL05-10461 

IL11-15073 Illinois IL05-10454/IL02-18228 

IL11-15146 Illinois IL05-10454/IL02-18228 

IL11-15603 Illinois IL05-10461/IL02-18228 

IL11-15604 Illinois IL05-10461/IL02-18228 

IL11-15624 Illinois IL05-10461/IL02-18228 

IL11-15671 Illinois IL05-10461/IL02-18228 

IL11-15674 Illinois IL05-10461/IL02-18228 

IL11-19878 Illinois PIO25R47/IL02-18228/IL/IL00-8530 

IL11-19911 Illinois PIO25R47/IL02-18228/IL/IL00-8530 

IL11-19942 Illinois PIO25R47/IL02-18228/IL/IL00-8530 

IL11-19945 Illinois PIO25R47/IL02-18228/IL/IL00-8530 
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IL11-20960 Illinois Pembroke/IL00-8530//OH02-12686 

IL11-20964 Illinois Pembroke/IL00-8530//OH02-12686 

IL11-21016 Illinois Pembroke/IL00-8530//OH02-12686 

IL11-21037 Illinois Pembroke/IL00-8530//OH02-12686 

IL11-21046 Illinois Pembroke/IL00-8530//OH02-12686 

IL11-23417 Illinois IL79-002T-B-B/IL00-8530/IL/IL00-8530 

IL11-23452 Illinois IL79-002T-B-B/IL00-8530/IL/IL00-8530 

IL11-25566 Illinois IL00-8530/IL00-8061/IL/IL79-002T-B-B/IL00-8530 

IL11-25567 Illinois IL00-8530/IL00-8061/IL/IL79-002T-B-B/IL00-8530 

IL11-28576 Illinois IL02-19463/IL00-8061/IL/IL00-8109 

IL11-28619 Illinois IL02-19463/IL00-8061/IL/IL00-8109 

IL11-32306 Illinois IL04-10721/IL00-8530/IL/IL00-8641/IL00-8530 

IL11-32335 Illinois IL04-10721/IL00-8530/IL/IL00-8641/IL00-8530 

IL11-33027 Illinois IL00-8530/IL97-1828 

IL11-33060 Illinois IL00-8530/IL97-1828 

IL11-33105 Illinois IL00-8530/IL97-1828 

IL11-3407 Illinois MO050699/IL02-19463 

IL11-3411 Illinois MO050699/IL02-19463 

IL11-3433 Illinois MO050699/IL02-19463 

IL11-3437 Illinois MO050699/IL02-19463 

IL11-3466 Illinois MO050699/IL05-10454 

IL11-3517 Illinois MO050699/IL05-10454 

IL11-3531 Illinois MO050699/IL05-10454 

IL11-3538 Illinois MO050699/IL05-10454 

IL11-4147 Illinois P0179A1-17/IL02-23168 

IL11-4148 Illinois P0179A1-17/IL02-23168 

IL11-4166 Illinois P0179A1-17/IL02-23168 

IL11-4619 Illinois P03207A1-7/IL02-23168 

IL11-4620 Illinois P03207A1-7/IL02-23168 

IL11-4659 Illinois P03207A1-7/IL02-23168 

IL11-4663 Illinois P03207A1-7/IL02-23168 

IL11-4734 Illinois P03207A1-7/IL05-14521 

IL11-4768 Illinois P03207A1-7/IL05-14521 

IL11-6175 Illinois IL97-1828/IL79-002T-B-B 

IL11-6215 Illinois IL97-1828/IL79-002T-B-B 

IL11-6216 Illinois IL97-1828/IL79-002T-B-B 

IL11-8112 Illinois IL00-8061/IL02-7735 

IL11-8122 Illinois IL00-8061/IL02-7735 

IL11-8136 Illinois IL00-8061/IL02-7735 

IL11-8139 Illinois IL00-8061/IL02-7735 

IL11-8160 Illinois IL00-8061/IL02-7735 

KY07C-1214-160-2-3 Kentucky 25R37/Truman//Cooper 

KY07C-1214-160-3-3 Kentucky 25R37/Truman//Cooper 

KY07C-1214-160-8-1 Kentucky 25R37/Truman//Cooper 

KY07C-1249-147-13-3 Kentucky KY97C-0574-01-04/25R37//Pembroke 
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KY07C-1249-147-19-3 Kentucky KY97C-0574-01-04/25R37//Pembroke 

KY07C-1249-148-3-1 Kentucky KY97C-0574-01-04/25R37//Pembroke 

KY07C-1252-150-17-3 Kentucky KY97C-0574-01-04/25R37//Coker9511 

KY07C-1252-151-1-1 Kentucky KY97C-0574-01-04/25R37//Coker9511 

KY07C-1261-151-19-1 Kentucky KY97C-0546-17-01/Cooper//SSMPV-57 

KY07C-1261-151-19-3 Kentucky KY97C-0546-17-01/Cooper//SSMPV-57 

KY07C-1261-152-16-5 Kentucky KY97C-0546-17-01/Cooper//SSMPV-57 

KY07C-1261-152-6-3 Kentucky KY97C-0546-17-01/Cooper//SSMPV-57 

KY07C-1261-152-8-1 Kentucky KY97C-0546-17-01/Cooper//SSMPV-57 

KY07C-1272-162-2-1 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//Pembroke 

KY07C-1272-163-7-3 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//Pembroke 

KY07C-1272-166-10-5 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//Pembroke 

KY07C-1272-166-8-1 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//Pembroke 

KY07C-1278-169-11-3 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//KY97C-0540-01-03 

KY07C-1278-169-12-3 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//KY97C-0540-01-03 

KY07C-1278-169-14-1 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//KY97C-0540-01-03 

KY07C-1278-169-17-3 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//KY97C-0540-01-03 

KY07C-1281-168-14-1 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//NC03-11465 

KY07C-1281-168-15-1 Kentucky KY97C-0519-04-05/KY93C-1238-17-1//NC03-11465 

KY07C-1287-171-16-1 Kentucky KY97C-0519-04-05/IL96-3073//KY97C-0540-01-03 

KY07C-1287-171-6-3 Kentucky KY97C-0519-04-05/IL96-3073//KY97C-0540-01-03 

KY07C-1308-176-11-5 Kentucky KY97C-0277-01-06/25R37//SSMPV-57 

KY07C-1308-176-1-5 Kentucky KY97C-0277-01-06/25R37//SSMPV-57 

KY07C-1308-176-2-3 Kentucky KY97C-0277-01-06/25R37//SSMPV-57 

KY07C-1308-176-6-3 Kentucky KY97C-0277-01-06/25R37//SSMPV-57 

KY07C-1309-177-10-3 Kentucky KY97C-0277-01-06/25R37//KY96C-0786-3-2 

KY07C-1309-177-9-3 Kentucky KY97C-0277-01-06/25R37//KY96C-0786-3-2 

KY07C-1326-179-20-3 Kentucky KY97C-0299-13-01/25R37//SSMPV-57 

KY07C-1326-180-3-3 Kentucky KY97C-0299-13-01/25R37//SSMPV-57 

KY07C-1332-183-15-5 Kentucky KY97C-0299-13-01/KY96C-0770-3//SSMPV-57 

KY07C-1332-184-12-5 Kentucky KY97C-0299-13-01/KY96C-0770-3//SSMPV-57 

MD05W10208-12-12 Maryland unknown 

MD05W10208-12-14 Maryland unknown 

MD05W10208-12-16 Maryland unknown 

MD05W10208-12-6 Maryland unknown 

MD05W10208-12-7 Maryland unknown 

MILTON Missouri HART/W-8376//PIONEER-2555/3/PIONEER-2552 
MO080864 Missouri 981020//P92201D5-2-80/980725 

MO120104 Missouri 080864SPRS(Bess//P92201D5-2-80/MO980725) 

MO120114 Missouri 080864SPRS(Bess//P92201D5-2-80/MO980725) 

MO120331 Missouri 419-2-4/980829//980725/Roane 

MO120487 Missouri 980525*2/IL95-4162 

MO120655 Missouri 980725//980725/IL95-4162 

MO120666 Missouri 980525*2/IL95-4162 

MO120723 Missouri 980725//980725/IL95-4162 
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GENOTYPE ORIGIN PEDIGREE 

MO120777 Missouri 980525*2/IL95-4162 

MO120875 Missouri 080864SPRS(Bess//P92201D5-2-80/MO980725) 

MO121058 Missouri 011126*2/PL25R47(011126=Milton) 

MO121175 Missouri 980725//980725/IL95-4162 

MO121207 Missouri 981020//P92001D5-2-80/980525 

MO121271 Missouri 981020/002001 

MO121396 Missouri 002946//980829/Ernie 

MO121442 Missouri 980725//980725/IL95-4162 

MO121457 Missouri 981020/002001 

MO121539 Missouri 981020//981020/IL95-4162 

MO121559 Missouri 981020//981020/IL95-4162 

MO121624 Missouri 980525//981020/APPatton 

MO121658 Missouri Roane/000917 

MO121681 Missouri 002946//980829/Ernie 

MO121695 Missouri 980525//981020/APPatton 

MO121947 Missouri 011126*2/PL25R47 

MO121983 Missouri Roane/000917 

MO122003 Missouri 980525//981020/APPatton 

MO122240 Missouri 080864SPRS(Bess//P92201D5-2-80/MO980725) 

MO122312 Missouri 011126*2/PL25R47 

MO122352 Missouri 419-2-4/980829//980725/Roane 

OH09-204-52 Ohio M99*3098/OH708 

OH09-204-54 Ohio M99*3098/OH708 

OH09-204-66 Ohio M99*3098/OH708 

OH09-205-35 Ohio M99*3098/OH708 

OH09-207-68 Ohio M99*3098/OH743 

OH09-207-8 Ohio M99*3098/OH743 

OH09-208-47 Ohio OH751/M99*3098 

OH09-208-50 Ohio OH751/M99*3098 

OH09-208-58 Ohio OH751/M99*3098 

OH09-215-36 Ohio P.984RE1-57-5/M99*3098 

OH09-216-31 Ohio P.984RE1-57-5/M99*3098 

OH09-217-15 Ohio P.99608C1-1-3/M99*3098 

OH09-218-1 Ohio P.99608C1-1-3/M99*3098 

OH09-218-27 Ohio P.99608C1-1-3/M99*3098 

OH09-223-29 Ohio M99*3098/VA98W-706 

OH09-223-48 Ohio M99*3098/VA98W-706 

OH09-233-41 Ohio VA97W-375WS/OH708 

OH09-233-57 Ohio VA97W-375WS/OH708 

OH09-241-50 Ohio OH743/P.984RE1-57-5 

OH09-241-62 Ohio OH743/P.984RE1-57-5 

OH09-243-15 Ohio OH743/P.99608C1-1-3 

OH09-244-27 Ohio OH743/P.99608C1-1-3 

OH09-250-5 Ohio OH751/P.984RE1-57-5 

OH09-253-56 Ohio OH751/VA97W-375WS 
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OH09-259-57 Ohio P.984RE1-57-5/VA97W-375WS 

OH09-260-75 Ohio P.984RE1-57-5/VA97W-375WS 

OH09-261-47 Ohio P.984RE1-57-5/VA97W-375WS 

OH09-261-76 Ohio P.984RE1-57-5/VA97W-375WS 

OH09-282-59 Ohio OH751/P.984RE1-57-5 

OH09-283-23 Ohio OH751/VA97W-375WS 

OH09-283-78 Ohio P.99608C1-1-3/P.984RE1-57-5 

OH09-285-10 Ohio P.99608C1-1-3/P.984RE1-57-5 

OH09-285-15 Ohio P.99608C1-1-3/P.984RE1-57-5 

OH11-139-63 Ohio OH02-12686/(5x695=IL96-24851/B980582) 

OH11-139-75 Ohio OH02-12686/(5x695=IL96-24851/B980582) 

OH11-140-17 Ohio OH02-12686/(5x695=IL96-24851/B980582) 

OH11-140-74 Ohio OH02-12686/(5x695=IL96-24851/B980582) 

OH11-147-72 Ohio P.99840C4-8-3-6/(5x699=IL00-8061/IL96-24851-1) 

OH11-147-77 Ohio P.99840C4-8-3-6/(5x699=IL00-8061/IL96-24851-1) 

OH11-150-17 Ohio OH02-13567/(5x699=IL00-8061/IL96-24851-1) 

OH11-150-76 Ohio OH02-13567/(5x699=IL00-8061/IL96-24851-1) 

OH11-151-30 Ohio KY97C-0067-2/M01-4377 

OH11-152-38 Ohio KY97C-0067-2/M01-4377 

OH11-176-21 Ohio M01-4377/OH01-7664 

OH11-176-68 Ohio M01-4377/OH01-7664 

OH11-179-6 Ohio M01-4377/OH02-13567 

OH11-179-74 Ohio M01-4377/OH02-13567 

OH11-179-77 Ohio M01-4377/OH02-13567 

OH11-204-61 Ohio MO030118/P.992178A3-1-1 

OH11-205-18 Ohio MO030118/P.992178A3-1-1 

OH11-226-2 Ohio P.99608C1-1-3-4/OH02-12686 

OH11-227-5 Ohio P.99608C1-1-3-4/OH02-12686 

OH11-228-69 Ohio P.99608C1-1-3-4/OH02-12686 

OH11-241-55 Ohio OH02-12686/(6x016=OH02-12686/PIO25R47) 

OH11-242-70 Ohio OH02-12686/(6x016=OH02-12686/PIO25R47) 

OH11-250-44 Ohio OH02-12686/(6x029=OH02-13567/PIO25R47) 

OH11-251-37 Ohio P.992178A3-1-1/(6x135=PIO25R47/IL99-12976) 

OH11-252-27 Ohio P.992178A3-1-1/(6x135=PIO25R47/IL99-12976) 

OH11-253-13 Ohio P.992178A3-1-1/(6x135=PIO25R47/IL99-12976) 

OH11-257-41 Ohio VA03W-409/(6x137=PIO25R47/IL99-15867) 

OH11-258-53 Ohio P.992178A3-1-1/(6x138=PIO25R47/P.99608C1-1-3-4) 

OH11-259-41 Ohio P.992178A3-1-1/(6x138=PIO25R47/P.99608C1-1-3-4) 

OH11-268-42 Ohio OH02-15978/OH02-12686 

OH11-269-50 Ohio OH02-15978/OH02-12686 

OH11-270-9 Ohio OH02-15978/OH02-12686 

OH11-274-1 Ohio VA03W-409/OH02-13567 

OH11-278-31 Ohio VA03W-409/P.992178A3-1-1 

OH11-278-35 Ohio VA03W-409/P.992178A3-1-1 

OH11-279-32 Ohio VA03W-409/P.992178A3-1-1 
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OH11-279-76 Ohio VA03W-409/P.992178A3-1-1 

OH11-280-38 Ohio COOPER/VA03W-409 

OH11-280-73 Ohio COOPER/VA03W-409 

OH11-288-58 Ohio VA03W-409/OH02-13567 

OH11-289-44 Ohio P.99608C1-1-3-4/OH02-12686 

OH11-290-62 Ohio VA03W-409/(6x137=PIO25R47/IL99-15867) 

OH11-290-70 Ohio VA03W-409/(6x137=PIO25R47/IL99-15867) 

OH11-293-53 Ohio COOPER/VA03W-409 

OH11-293-70 Ohio COOPER/VA03W-409 

OH11-81-12 Ohio OH02-12686/P.99840C4-8-3-6 

OH11-81-3 Ohio OH02-12686/P.99840C4-8-3-6 

OH11-82-8 Ohio OH02-12686/P.99840C4-8-3-6 

PIONEER 25R47 Pioneer Hi-Bred FRANKENMUTH/(SIB)PIONEER-2555//(SIB)PIONEER-
2551(WBE-2190-B-1)/3/(WBA-416-H-2)HOUSER/MO-
9545//W-4034-D/AUGUSTA/4/PIONEER-2552 

SHIRLEY Virginia VA-94-52-25/COKER-9835//VA-96-54-234 
VA07MAS10-8328-7-2-2 Virginia VA04W-227/M01*1019//SS5205 

VA07MAS10-8328-7-3-3 Virginia VA04W-227/M01*1019//SS5205 

VA07MAS12-8752-1-3-1 Virginia U3960-3R-3-11-6/VA02W-398//GA-96693-4E16 

VA07MAS12-8752-4-1-4 Virginia U3960-3R-3-11-6/VA02W-398//GA-96693-4E16 

VA07MAS13-8825-6-3-3 Virginia NC03-11458/TRIBUTE//SS5205 

VA07MAS13-8825-6-4-4 Virginia NC03-11458/TRIBUTE//SS5205 

VA07MAS1-7031-7-1-4 Virginia McCORMICK/GA951231-4E26//SS5205 

VA07MAS1-7054-2-2-4 Virginia McCORMICK/GA951231-4E26//SS5205 

VA07MAS1-7054-3-3-2 Virginia McCORMICK/GA951231-4E26//SS5205 

VA07MAS1-7151-1-2-4 Virginia McCORMICK/GA951231-4E26//SS5205 

VA07MAS2-7199-2-3-1 Virginia Jamestown/GA951231-4E26//P992060G1-1-5 

VA07MAS2-7263-1-2-2 Virginia Jamestown/GA951231-4E26//P992060G1-1-5 

VA07MAS3-7304-3-2-4 Virginia Shirley/GA951231-4E26//SS8404 

VA07MAS3-7313-7-1-2 Virginia Shirley/GA951231-4E26//SS8404 

VA07MAS4-7463-6-4-3 Virginia GA951231-4E25/SS8404//Shirley 

VA07MAS4-7520-2-3-2 Virginia GA951231-4E25/SS8404//Shirley 

VA08MAS2-18-3-3 Virginia VA05W-693/VA04W-259//SS5205 

VA08MAS2-187-7-1 Virginia VA05W-693/VA04W-259//SS5205 

VA11MAS-7313-3-2-162 Virginia Shirley/AGS2060//SS8404 

VA11MAS-7383-6-3-155 Virginia Shirley/AGS2060//SS8404 

VA12FHB-37 Virginia VA04W-433/SS8404 

VA12FHB-50 Virginia VA04W-433/SS8404 

VA12FHB-75 Virginia IL99-15867/VA04W-433//SS8404 

VA12FHB-77 Virginia IL99-15867/VA04W-433//SS8404 

VA12W-150 Virginia IL99-15867/JAMESTOWN 

VA12W-283 Virginia CHESAPEAKE"S"/SS8641//VA04W-439 

VA12W-284 Virginia CHESAPEAKE"S"/SS8641//VA04W-439 

VA12W-51 Virginia NC00-15389/G/F951079-2E31//USG3555 

VA12W-54 Virginia NC00-15389/G/F951079-2E31//USG3555 

VA12W-72 Virginia PIONEER25R47/G/F951079-2E31//USG3555 
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VA12W-74WS Virginia PIONEER25R47/G/F951079-2E31//USG3555 

VA12W-95 Virginia MERL/AGS2026 

VA12W-97 Virginia MERL/AGS2026 

VA13FHB-11 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-14 Virginia IL99-15867/VA04W-433//SS8404 

VA13FHB-22 Virginia VA05W-436/VA05W-641 

VA13FHB-24 Virginia VA05W-436/VA05W-641 

VA13FHB-31 Virginia VA05W-641/AGS2020 

VA13FHB-33 Virginia VA05W-641/AGS2020 

VA13W-106 Virginia SHIRLEY/GA98249G1-G1-2 

VA13W-121 Virginia VA05W-251/AGS2026 

VA13W-124 Virginia VA05W-251/AGS2026 

VA13W-130 Virginia VA05W-363/VA03W-310 

VA13W-132 Virginia VA05W-363/VA03W-310 

VA13W-136 Virginia VA05W-363/VA03W-310 

VA13W-138 Virginia VA05W-363/VA03W-310 

VA13W-141 Virginia JAMESTOWN/SS8404//VA04W-259/NC95-11612 

VA13W-144 Virginia JAMESTOWN/SS8404//VA04W-259/NC95-11612 

VA13W-146 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-148 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-150 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-155 Virginia JAMESTOWN/SS8404//AGS2020 

VA13W-16 Virginia SS520/GF951208-2E35//JAMESTOWN 

VA13W-176 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-180 Virginia SHIRLEY/BRANSON//JAMESTOWN 

VA13W-20 Virginia SS520/GF951208-2E35//JAMESTOWN 

VA13W-207 Virginia SS8404/VA02W-398//AGS2026 

VA13W-209 Virginia SS8404/VA02W-398//AGS2026 

VA13W-217 Virginia M01*1019/VA03W-203//AGS2020 

VA13W-219 Virginia M01*1019/VA03W-203//AGS2020 

VA13W-25 Virginia JAMESTOWN/AGS2020 

VA13W-28 Virginia JAMESTOWN/AGS2020 

VA13W-29 Virginia JAMESTOWN/AGS2020 

VA13W-30 Virginia JAMESTOWN/AGS2020 

VA13W-36 Virginia IL99-15867/JAMESTOWN 

VA13W-4 Virginia FG95195/VA02W-370 

VA13W-42 Virginia IL99-15867/JAMESTOWN 

VA13W-53 Virginia USG3555"S"/SHIRLEY//JAMESTOWN 

VA13W-54 Virginia USG3555"S"/SHIRLEY//JAMESTOWN 

VA13W-56 Virginia USG3555"S"/SHIRLEY//JAMESTOWN 

VA13W-57 Virginia USG3555"S"/SHIRLEY//JAMESTOWN 

VA13W-74 Virginia Tribute/GA961176-3A48//USG3315 

VA13W-75 Virginia Tribute/GA961176-3A48//USG3315 

VA13W-8 Virginia FG95195/VA02W-370 

VA13W-83 Virginia JAMESTOWN/AGS2060//NC02-1957 
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GENOTYPE ORIGIN PEDIGREE 

VA13W-84 Virginia JAMESTOWN/AGS2060//NC02-1957 

VA13W-91 Virginia JAMESTOWN/AGS2020 

VA13W-92 Virginia JAMESTOWN/AGS2020 

VA13W-99 Virginia SHIRLEY/GA98249G1-G1-2 
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APPENDIX H: Summary of trial environments included in chapter III 

 

The table below lists all environments included in both the elite panel (EP) and yield validation 

panel (YVP) trials described in chapter III, along with their abbreviation, testing year, testing 

location, number of replications, nitrogen application rate, and the traits assessed. 

 

Table H.1: Summary of trial environments included in chapter III 

Panel † Abbv ‡ Year Location nReps N rate Traits Assessed § 

EP 

12KYM 2012 Lexington, KY 1 Moderate 

HD, HGT, TW, YLD 

12MDM 2012 Clarkston, MD 1 Moderate 

12MOM 2012 Columbia, MO 1 Moderate 

12OWL 2012 Wooster, OH 2 Low 

12OWM 2012 Wooster, OH 1 Moderate 

12VAL 2012 Warsaw, VA 2 Low 

12VAM 2012 Warsaw, VA 1 Moderate 

13MOM 2013 Columbia, MO 1 Moderate 

13ONM 2013 Custar, OH 1 Moderate 
HD 

13OVM 2013 Fremont, OH 1 Moderate 

13OWL 2013 Wooster, OH 2 Low 

HD, HGT, TW, YLD 
13OWM 2013 Wooster, OH 1 Moderate 

13VAL 2013 Warsaw, VA 2 Low 

13VAM 2013 Warsaw, VA 1 Moderate 

YVP 

14KYM 2014 Woodford, KY 1 Moderate HD, HGT, TW 

14MOL 2014 Columbia, MO 2 Low 
HGT, YLD 

14MOM 2014 Columbia, MO 2 Moderate 

14OWL 2014 Wooster, OH 2 Low HD, HGT, TW, YLD 

14OWM 2014 Wooster, OH 1 Moderate HD, HGT, YLD 

14VAM 2014 Warsaw, VA 1 Moderate HD, HGT, TW, YLD 

15MOL 2015 Columbia, MO 2 Low 
HD, HGT, YLD 

15MOM 2015 Columbia, MO 2 Moderate 

15ONM 2015 Custar, OH 1 Moderate 
TW, YLD 

15OVM 2015 Fremont, OH 1 Moderate 

15OWL 2015 Wooster, OH 2 Low 

HD, HGT, TW, YLD 15OWM 2015 Wooster, OH 1 Moderate 

15VAM 2015 Warsaw, VA 1 Moderate 

† EP elite panel; YVP yield validation panel 

‡ Abbreviation is a combination of year, location, and rate of nitrogen treatment 

§ HD heading date; HGT plant height; TW test weight; YLD grain yield 
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APPENDIX I: Genotype + genotype-environment (GGE) biplots for the elite panel (EP) 

tested in chapter III 

 

Description 

The package 'gge' (Wright and Laffont 2016) running in R (R Core Team 2016) was used to 

generate genotype + genotype-by-environment interaction plots (Yan et al. 2000, Yan (2001), 

Yan and Kang (2003)) for all traits for which data was collected in the Elite Panel during the 

2011-2012 and 2012-2013 winter wheat growing seasons. Within-environment arithmetic means 

were used for the analysis. Genotype IDs have been suppressed for the sake of clarity. 

 

Environment Legend 

Environments were assigned a code consisting of the testing year, a two-letter abbreviation of the 

location, and the nitrogen treatment level. The table below gives the abbreviation for each 

environment, along with its year, location, number of replications, nitrogen application rate, and 

traits assessed 

 

Table I.1: Environment codes for elite panel (EP) GGE biplots 

Abbreviation Year Location nReps N rate Traits Assessed 
12KYM 2012 Lexington, KY 1 Moderate HD; HGT; TW; YLD 

12MDM 2012 Clarkston, MD 1 Moderate HD; HGT; TW; YLD 
12MOM 2012 Columbia, MO 1 Moderate HD; HGT; TW; YLD 
12OWL 2012 Wooster, OH 2 Low HD; HGT; TW; YLD 
12OWM 2012 Wooster, OH 1 Moderate HD; HGT; TW; YLD 
12VAL 2012 Warsaw, VA 2 Low HD; HGT; TW; YLD 
12VAM 2012 Warsaw, VA 1 Moderate HD; HGT; TW; YLD 
13MOM 2013 Columbia, MO 1 Moderate HD; HGT; TW; YLD 
13ONM 2013 Custar, OH 1 Moderate HD 
13OVM 2013 Fremont, OH 1 Moderate HD 
13OWL 2013 Wooster, OH 2 Low HD; HGT; TW; YLD 
13OWM 2013 Wooster, OH 1 Moderate HD; HGT; TW; YLD 
13VAL 2013 Warsaw, VA 2 Low HD; HGT; TW; YLD 
13VAM 2013 Warsaw, VA 1 Moderate HD; HGT; TW; YLD 
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Biplot Generation 

GGE biplots for each trait are shown below 

 

Figure I.1: GGE biplot for heading date (HD) in the elite panel 
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Figure I.2: GGE biplot for plant height (HGT) in the elite panel 
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Figure I.3: GGE biplot for test weight (TW) in the elite panel 
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Figure I.4: GGE biplot for grain yield (YLD) in the elite panel 
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APPENDIX J: Genotype + genotype-environment (GGE) biplots for the yield validation 

panel (YVP) tested in chapter III 

 

Description 

The package 'gge' (Wright and Laffont 2016) running in R (R Core Team 2016) was used to 

generate genotype + genotype-by-environment interaction plots (Yan et al. 2000, Yan (2001), 

Yan and Kang (2003)) for all traits for which data was collected in the Yield Validation Panel 

during the 2013-2014 and 2014-2015 winter wheat growing seasons. Within-environment 

arithmetic means were used for the analysis. Genotype IDs have been suppressed for the sake of 

clarity. 

 

Environment Legend 

Environments were assigned a code consisting of the testing year, a two-letter abbreviation of the 

location, and the nitrogen treatment level. The table below gives the abbreviation for each 

environment, along with its year, location, number of replications, nitrogen application rate, and 

traits assessed: 

 

Table J.1: Environment codes for yield validation panel (YVP) GGE biplots 

Abbreviation Year Location nReps N rate Traits Assessed 
14KYM 2014 Woodford, KY 1 Moderate HD; HGT; TW 
14MOL 2014 Columbia, MO 2 Low HGT; YLD 
14MOM 2014 Columbia, MO 2 Moderate HGT; YLD 
14OWL 2014 Wooster, OH 2 Low HD; HGT; TW; YLD 
14OWM 2014 Wooster, OH 1 Moderate HD; HGT; YLD 
14VAM 2014 Warsaw, VA 1 Moderate HD; HGT; TW; YLD 
15MOL 2015 Columbia, MO 2 Low HD; HGT; YLD 
15MOM 2015 Columbia, MO 2 Moderate HD; HGT; YLD 
15ONM 2015 Custar, OH 1 Moderate TW; YLD 
15OVM 2015 Fremont, OH 1 Moderate TW; YLD 
15OWL 2015 Wooster, OH 2 Low HD; HGT; TW; YLD 
15OWM 2015 Wooster, OH 1 Moderate HD; HGT; TW; YLD 
15VAM 2015 Warsaw, VA 1 Moderate HD; HGT; TW; YLD 
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Biplot Generation 

GGE biplots for each trait are shown below 

 

Figure J.1: GGE biplot for heading date (HD) in the yield validation panel 
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Figure J.2: GGE biplot for plant height (HGT) in the yield validation panel 
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Figure J.3: GGE biplot for test weight (TW) in the yield validation panel 
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Figure J.4: GGE biplot for grain yield (YLD) in the yield validation panel 
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