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A Hardware Evaluation of a NIST Lightweight Cryptography Can-
didate

Flora A. Coleman

(ABSTRACT)

The continued expansion of the Internet of Things (IoT) in recent years has introduced a

myriad of concerns about its security. There have been numerous examples of IoT devices

being attacked, demonstrating the need for integrated security. The vulnerability of data

transfers in the IoT can be addressed using cryptographic protocols. However, IoT devices

are resource-constrained which makes it difficult for them to support existing standards.

To address the need for new, standardized lightweight cryptographic algorithms, the Na-

tional Institute of Standards and Technology (NIST) began a Lightweight Cryptography

Standardization Process. This work analyzes the Sparkle (Schwaemm and Esch) submis-

sion to the process from a hardware based perspective. Two baseline implementations are

created, along with one implementation designed to be resistant to side channel analysis

and an incremental implementation included for analysis purposes. The implementations

use the Hardware API for Lightweight Cryptography to facilitate an impartial evaluation.

The results indicate that the side channel resistant implementation resists leaking data while

consuming approximately three times the area of the unprotected, incremental implementa-

tion and experiencing a 27% decrease in throughput. This work examines how all of these

implementations perform, and additionally provides analysis of how they compare to other

works of a similar nature.



A Hardware Evaluation of a NIST Lightweight Cryptography Can-
didate

Flora A. Coleman

(GENERAL AUDIENCE ABSTRACT)

In today’s society, interactions with connected, data-sharing devices have become common.

For example, devices like “smart” watches, remote access home security systems, and even

connected vending machines have been adopted into many people’s day to day routines.

The Internet of Things (IoT) is the term used to describe networks of these interconnected

devices. As the number of these connected devices continues to grow, there is an increased

focus on the security of the IoT. Depending on the type of IoT application, a variety of

different types of data can be transmitted. One way in which these data transfers can be

protected is through the use of cryptographic protocols. The use of cryptography can provide

assurances during data transfers. For example, it can prevent an attacker from reading the

contents of a sensitive message. There are several well studied cryptographic protocols in

use today. However, many of these protocols were intended for use in more traditional com-

puting platforms. IoT devices are typically much smaller in size than traditional computing

platforms. This makes it difficult for them to support these well studied protocols. There-

fore, there have been efforts to investigate and standardize new lightweight cryptographic

protocols which are well suited for smaller IoT devices. This work analyzes several hard-

ware implementations of an algorithm which was proposed as a submission to the National

Institute of Standards and Technology (NIST) Lightweight Cryptography Standardization

Process. The analysis focuses on metrics which can be used to evaluate its suitability for

IoT devices.
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Chapter 1

Introduction

As the Internet of Things (IoT) continues to grow, there is a heightened need for integrated

security measures. One aspect of a network of IoT devices which requires attention is the

protection of data transfers. Existing cryptographic standards have been thoroughly studied

and vetted. However, they are not well suited for the IoT as they usually require a level

of resource utilization that is not feasible for smaller devices. Alternatively, lightweight

cryptographic algorithms are designed specifically for resource constrained devices. In an

effort to evaluate and standardize these algorithms, the National Institute of Standards and

Technology (NIST) began the Lightweight Cryptography (LWC) Standardization Process in

2018. In the call for algorithms, NIST specified several evaluation metrics for the candidates

including the suitability of an algorithm for software and hardware, its performance, and its

ability to resist side channel attacks [19]. Of the candidates still in consideration, only two

families use ARX-based primitives. As discussed in Chapter 2, ARX cryptography has some

interesting properties and potential for more exploration. Considering these factors, this

work analyzes an ARX-based candidate from a hardware perspective. The central research

question focuses on how a selected NIST LWC Candidate satisfies the performance and

resistance to side channel attack metrics in hardware.

1



2 Chapter 1. Introduction

The main contributions of this work include:

• Hardware Implementations of a NIST LWC Candidate: Four Register Transfer

Level (RTL) implementations of the selected candidate are detailed. These implemen-

tations include two baseline implementations, one side channel resistant implementa-

tion, and an incremental implementation included for analysis purposes. All imple-

mentations are compliant with the Hardware Application Programming Interface for

Lightweight Cryptography [43]. To the best of my knowledge, this is the first hardware

based side channel resistant implementation of the NIST Candidate Schwaemm.

• Third party analysis in support of the NIST LWC Standardization Process:

The results of the implementations developed and a comparison of these results to

other similar works provide additional data and impartial insight in aid of the ongoing

process.

• Protected extension to the Development Package for the Hardware API for

Lightweight Cryptography: The Python script genShared.py enables the creation

of n-share text vectors which are compatible with the modified test bench used in the

extension to the Development Package.

All necessary background information for an understanding of this work is provided in Chap-

ter 2. Chapter 3 details the methodology used to create the RTL implementations and Chap-

ter 4 will provide an overview of the results. Finally, Chapter 5 will provide a synopsis of

how the results compare to related works and Chapter 6 will supply some closing thoughts.



Chapter 2

Background

2.1 The Internet of Things

The Internet of Things (IoT) encompasses vast networks of interconnected devices which

share data. It has continued to expand in recent years, with the number of IoT devices con-

nected worldwide expected to increase to 43 billion by 2023, roughly three times the number

connected in 2018 [13]. The IoT can be leveraged for a variety of different applications, for

example commercial products like “smart” appliances or even solutions in the healthcare

industry. A 2015 report from the McKinsey Global Institute analyzes the IoT over nine

different application fields [30]. The report indicates that the IoT will have anywhere from

a $3.9 trillion to $11.1 trillion impact on the worldwide economy in 2025. With the prolif-

eration of IoT devices being introduced, the security of the IoT is increasingly called into

question.

To date, there have been numerous examples of IoT products falling victim to attacks. In

a 2016 study on the security of four different IoT connected surveillance systems, authors

discovered serious vulnerabilities in the cameras [37]. Of interest was a security risk asso-

ciated with the encryption scheme used by one of the cameras. The manufacturers of the

camera had used a proprietary encryption algorithm that the authors of the study were able

to analyze and break. They also explained that it was possible for an attacker to watch users’

video streams [37]. Even when considering non-critical IoT applications, it is important to

3



4 Chapter 2. Background

ensure the privacy of messages being transmitted.

Encrypting data transmissions can provide security for IoT devices. However, the use of

established cryptographic standards is not an ideal solution for IoT devices. Existing stan-

dards, such as AES or DES, were designed with target devices like desktop computers in

mind [31]. These standards can quickly consume platform resources like memory and power.

Small IoT devices do not offer these resources on the same scale, making it impractical for

them to support these existing standards. Consequently, there is a need for cryptographic

algorithms that require fewer resources while still offering communication security.

2.2 Lightweight Cryptography

Lightweight cryptography (LWC) can be distinguished from traditional cryptographic al-

gorithms by its comparatively small resource footprint. LWC algorithms are specifically

designed to consume fewer device resources, offering an appealing security solution that

can reasonably be integrated into the IoT. Several examples of lightweight cryptographic

algorithms which have been examined in research include PRESENT, SIMON, and SPECK

[28]. Lightweight cryptography continues to evolve alongside the growth of the IoT. In 2017,

NIST released their Report on Lightweight Cryptography [31]. The report identifies a need

for LWC standards and cites the rapid evolution of lightweight cryptography as the reason

for compiling a portfolio of new lightweight solutions.

2.2.1 NIST Lightweight Cryptography Standardization Process

In August of 2018, the National Institute of Standards and Technology (NIST) began the

Lightweight Cryptography Standardization Process to collect and evaluate lightweight cryp-
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tographic algorithm submissions [19]. All submissions were required to provide an authenti-

cated encryption with associated data (AEAD) scheme. The inclusion of a hashing scheme

was optional. The advantage of AEAD [40] is that it effectively ties associated data to

the encrypted message while providing confidentiality, authenticity, and integrity. In other

words, an AEAD scheme can hide the contents of a message from unauthorized parties,

verify the identity of the transmitting party, and ensure that no part of the message has

been modified in transit. The NIST LWC call for algorithms specified several criteria for

evaluation including but not limited to performance, cost, resistance to side channel analysis

and fault attacks, and “suitability for hardware and software implementations” [19]. NIST

tasked a group of their own researchers with evaluating these submissions, but public third

party analysis was also “strongly encourage[d]” [19]. The first round of evaluation began

in April 2019 with 56 candidates. In October 2019, the Status Report on the First Round

of the NIST Lightweight Cryptography Standardization Process was released [45]. Of the

original submissions, 32 advanced to the second round of evaluation. Many of the algorithms

which did not advance to the second round were shown to be vulnerable to practical attacks.

It is important to note that side-channel resistance was not discussed as a major factor in

the first round results, suggesting that it will play a larger role in ongoing rounds. The

report also made it clear that the performance criterion will be heavily emphasized during

the second round of evaluation. As the second round is currently ongoing, the content of this

work will examine the cost and trade-offs associated with creating a side-channel resistant

implementation of a NIST LWC Round 2 candidate.

2.2.2 The Hardware API for Lightweight Cryptography

The Hardware Application Programming Interface for Lightweight Cryptography (LWC

API), first released in October 2019, facilitates the impartial evaluation and comparison



6 Chapter 2. Background

of hardware implementations of candidates in the NIST LWC Standardization Process [24].

The corresponding Hardware Development Package (LWC HW DP), available at [43] and

detailed in [44], aids in the creation of LWC API compliant implementations. The LWC

HP DP has a few central components. Figure 2.1 provides a visual representation of the

structure of these components.

Figure 2.1: Development Package for Hardware Implementations, compliant with the LWC
API. Some details are omitted for ease of understanding. 1

A set of generic VHDL modules establishes a hardware interface for cipher implementations.

The LWC top module consists of a PreProcessor, CryptoCore, and PostProcessor. The

PreProcessor and PostProcessor handle the processing of test vector inputs and CryptoCore

outputs respectively. Cipher implementations are contained within the CryptoCore module.

Additionally, the LWC HW DP provides a method for creating test vectors, and a test

bench which verifies that CryptoCore outputs match the expected results. The test vector

generation process uses the Python module cryptotvgen to generate test bench compatible

test vectors using the C reference implementations of LWC Candidates. Design using the

LWC API will be discussed in more detail later.
1Figure 2.1 is an adaptation of a figure from [44]
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2.3 Sparkle (Schwaemm and Esch)

One of the candidates which advanced to the second round of the NIST Lightweight Cryp-

tography Standardization Process was Sparkle (Schwaemm and Esch), submitted by Beierle

et al. [4]. Both the AEAD and hashing families rely upon the underlying Sparkle family of

permutations. A total of two hashing instances and four AEAD instances were proposed,

each using one of the three instances of the permutation. The instances analyzed in this work

are the primary recommended instances, Schwaemm256-128 and Esch256. These instances

both employ the Sparkle384 permutation.

2.3.1 An Overview

The Sparkle permutation is based upon its predecessor Sparx [16], with the main difference

being the use of a fixed key and a larger block size in Sparkle. The general structure of

Sparkle is a Substitution-Permutation Network (SPN) which uses an Addition-Rotation-

XOR (ARX) primitive to achieve the substitution layer. The internal state is processed in

64-bit branches, with one branch consisting of two consecutive words of the state. Each

branch experiences a non-linear transformation through the application of the four round

ARX-box Alzette. Each of the four rounds uses a 32-bit round constant specific to the

branch and the rotation amounts used per round vary. After the completion of the four

ARX rounds, the state is processed through a linear layer. The linear layer applies a Feistel

structure, with a rotation of the rightmost branches of the state left by one branch before

swapping the leftmost branches of the state with the rightmost branches. The design of this

linear layer leaves half of the branches of the state unmodified [4].

Another feature which the AEAD family and hashing family share is their adoption of a

sponge-based mode of operation. The basic sponge mode of operation processes a state of
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r rate bits and c capacity bits [6]. The initial state is zero filled and input blocks of length

r are processed during the absorption phase. The squeezing phase starts after all input

blocks have been processed. The output of the sponge process is released during this phase.

A duplexed sponge construction can be used for AEAD schemes. It uses the basics of the

sponge mode of operation while allowing output blocks to be released as each input block is

finished processing [6].

The Schwaemm AEAD family employs a modified version of Beetle [10] as its mode of

operation. Beetle, which is based on a duplexed sponge approach, leverages the use of

combined feedback to provide a difference between the input to the permutation calls and the

ciphertext output. As explored in [10], this provides some additional security. The specific

mode of operation used in Schwaemm makes several modifications to the scheme used in

Beetle. One major difference is the use of rate whitening which XORs the capacity to the

rate prior to the start of the permutation. As mentioned above, the linear layer allows half

of the branches of the state to remain unmodified after the completion of Alzette. Without

rate whitening, attackers could potentially use this characteristic to gain partial information

about the permutation [4]. Rate whitening prevents this from happening by making it so

that the attacker would need knowledge of the capacity. Additional modifications to Beetle

include making the key used the same size as the capacity, altering the way the tag is handled,

and changing the constants used for domain separation to encode the capacity size [4].

The Esch hashing family employs a modified version of the sponge mode of operation [6].

Specifically, minimum-size padding is supported and the message blocks are processed using

“indirect injection” [4]. The indirect injection is a departure from the normal sponge mode

because rather than simply XORing the message blocks into the rate, first the Feistel function

used in the linear layer of the Sparkle permutation is applied. This modification is used to

improve upon the security properties of Esch [4].
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2.3.2 ARX Cryptography

A key feature of the Sparkle family of permutations is that it relies upon an ARX primitive

for its source of non-linearity. ARX primitives supply fast performance in software, but do

not necessarily provide the best trade-off in hardware [33]. Specifically, software implemen-

tations of ARX primitives offer better performance than traditional SPN-based ciphers [34].

One example of an ARX-based cipher in use today is the ChaCha family of ciphers [5]. The

ChaCha20_Poly1305 AEAD combination [36] is one of the three currently supported options

in the Transport Layer Security (TLS) Protocol Version 1.3 [2, 39]. The wide acceptance

of TLS demonstrates the relevance of ARX-based cryptography. Several works investigate

ARX-based ciphers in software, including an investigation of SPARX and CHAM (another

ARX-based primitive which is used by a NIST LWC Round 2 Candidate) in [42]. How-

ever, in the literature reviewed there were fewer works available that considered ARX-based

implementations on hardware, especially implementations resistant to side-channel attacks.

This lack of assessment contributed to the motivation for this work.

2.4 Side Channel Analysis

Two methods which can be used to consider the security of a cryptographic algorithm include

cryptanalysis and side channel analysis. Cryptanalysis focuses on identifying weaknesses in

the mathematical properties of an algorithm. Even when a cryptographic algorithm is se-

cure against methods of cryptanalysis, unintentional leakage of sensitive material is possible

through side channels. Side channel analysis (SCA) takes advantage of the physical charac-

teristics of an algorithm during run time. For example, an algorithm’s power consumption,

timing characteristics or electromagnetic transmissions can be used to extract pertinent in-

formation [32].
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2.4.1 Attacks

There are several SCA attacks which use power consumption data as the basis for their

technique. Simple Power Analysis (SPA) and Differential Power Analysis (DPA) were first

introduced by Kocher et al. in 1999 [25]. The SPA technique collects the power consumption

data of an algorithm during runtime. It then uses visual patterns present in the traces to

form conclusions about the cryptographic operations taking place. This method benefits

from conditional statements yielding noticeable differences in power consumption [25]. DPA

identifies correlations between power consumption data subsets. The technique uses a “se-

lection function” to separate power data into different subsets and then finds correlations

by identifying significant differences between the subset averages [26]. DPA can be used

to recover the key used. Another example is Correlation Power Analysis (CPA) [9]. CPA

can be used to predict the value of some intermediate state of an algorithm. To do this,

it uses a Hamming weight or distance model to determine the leakage and then calculates

correlation using different values for the intermediate state. A correct value for the interme-

diate state will return higher correlation. This same idea can be applied to electromagnetic

transmissions [2]. In [2], authors apply Correlation ElectroMagnetic Analysis (CEMA) to

the ChaCha cipher. They perform side channel analysis on software based implementations

of ChaCha and focus on the leakage associated with memory access.

2.4.2 Countermeasures

Several methods have been proposed to combat side channel leakage in cryptographic al-

gorithms. At the core of some of these methods is the concept of secret sharing. Secret

sharing provides additional security by splitting an algorithm’s sensitive data into multiple

shares. In order to recreate the sensitive data, a threshold number of shares is required.
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Any collection of shares less than the number of threshold shares cannot be used to dis-

cern the value of the key [8]. One of the first proposed methods for preventing DPA was

suggested by Goubin and Patarin [21]. The authors demonstrated a protection technique

on the DES algorithm. Rather than performing cryptographic operations on intermediate

values directly, the operations were applied to shares of the intermediate values. Shares can

be created in a couple of different ways. Boolean masked shares must be XORed together

to recreate the original value. Boolean masking can easily be applied to linear operations.

Arithmetic masked shares must be added together to recreate the original value [11]. These

different forms of masking are important to consider for the non-linear addition operation of

an ARX-based cipher. Conversion techniques between Boolean and Arithmetic masks have

been explored in other works [11, 12].

The Threshold Implementation (TI) method [35] for guarding against side channel attacks

employs the concept of secret sharing. TI is well suited for hardware based implementations

because it considers glitches. When a glitch occurs in hardware, the power consumption

associated with the glitch is comparatively large. As a glitch propagates through gates, this

can be exploited to deduce internal values. In order to provide security, TI relies upon the

three properties of non-completeness, correctness, and uniformity [35]. Non-completeness

ensures that at least one share is omitted from each function calculation. Correctness is

achieved when the summation of the output shares provides an accurate result. Uniformity

guarantees that the input probability distribution of a function matches its output probability

distribution. Finally, it is important to note that the minimum number of shares needed to

uphold these properties for a given function is one more than the degree of the function [35].



Chapter 3

Methods

3.1 Baseline Implementations

The following section will detail the steps taken to create LWC API compliant baseline imple-

mentations of Schwaemm and Esch. These implementations were built using the LWC API

Development Package for Hardware Implementations [43], which was described in Subsec-

tion 2.2.2 and depicted in Figure 2.1. As recommended in the Hardware API for Lightweight

Cryptography documentation [24], a standalone implementation was created for the AEAD

scheme and a combined implementation was created to provide both AEAD and hashing

functionality. The Schwaemm256-128 and Esch256 implementations both used the same

Sparkle384 implementation. All code was developed in VHDL using Register Transfer

Level (RTL) design. The Xilinx Vivado 2019.1 design suite was used for the development

and functional verification of these implementations.

3.1.1 The Sparkle Permutation

To process the 384-bit state, this Sparkle implementation uses six separate instances of one

round of the ARX-box Alzette which run in parallel. Each ARX round processes one 64-bit

branch which encompasses two consecutive words of the state. The leftmost word is referred

to as the “x” word input and the rightmost word is referred to as the “y” word input. One

12
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clock cycle is allocated per round of the ARX-box Alzette, resulting in four clock cycles being

used for each step of the permutation. One round of the ARX box is depicted in Figure 3.1

below. As discussed above, the rotation amounts “x_rot” and “y_rot” change with each

ARX round. A different round constant is used for each branch of the state. The constants

used per branch are fixed throughout the four rounds of Alzette, and update with each step

of the permutation [4].

Figure 3.1: One round of the ARX-box Alzette. All bus widths are 32 bits. 2

After all four rounds of Alzette complete, the linear layer is applied. As mentioned in Section

2.3, the linear layer employs a Feistel structure using the function “M3” as shown in Figure

3.2. The rightmost branches of the state are rotated to the left by one branch before being

swapped with the leftmost branches.

Figure 3.2: The Linear Layer. All bus widths are 32 bits. 2

The general structure of this Sparkle384 implementation can be seen in Figure 3.3. Each of

the ARX box instances shown in the figure represent one round of Alzette. Prior to the start

of each step, the “y” input words of the 2 leftmost branches are XORed with a round constant
2Figures 3.1 and 3.2 are close adaptations of figures from [4].
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and the step counter respectively. In this implementation, these updates are applied after

the registering of the state to allow for the correct step index to be used. The Sparkle384

permutation takes either 7 or 11 steps to complete depending upon the stage of the AEAD

or hashing process. For example, 11 steps (steps_big) are used during hashing for separation

at the end of absorption, while all other calls to the permutation use 7 steps (steps_slim)

[4]. This implementation takes 4×11 = 44 clock cycles for an 11 step permutation call, and

4×7 = 28 clock cycles for a 7 step permutation call. An additional clock cycle at the start

and the end of the permutation calls is used for registering the state.

Figure 3.3: Sparkle384 Implementation. All bus widths are 384 bits except those which are
inputs and outputs to the ARX rounds which are 32 bits.

3.1.2 Schwaemm

Figure 3.4 depicts an LWC API compliant implementation of Schwaemm256-128. Com-

ponents of Schwaemm which can be seen in the datapath include the combined feedback

function ρ, the rate whitening shown as W3, and the constant injection. Other signals to

note in Figure 3.4 include bdi, key, bdo and msg_auth. These signals all pertain to the LWC
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HW DP modules, as documented in [44]. Test vector data including the nonce, plaintext,

ciphertext and tag arrive on the bdo bus from the PreProcessor. Key data arrives on the key

bus. All output is transferred to the PostProcessor using the bdo data bus. The msg_auth

signal indicates whether a calculated tag matches the input tag during a decryption process.

Other control signals not pictured in Figure 3.4 exist to aid in loading and processing of the

data. These signals and the general control architecture of the implementation can be better

understood by examining the algorithmic state machine in Appendix Figure A.1.

Figure 3.4: Schwaemm256-128 Implementation, compliant with the LWC API. All bus
widths are 384 bits unless otherwise indicated.

3.1.3 Schwaemm and Esch

Figure 3.5 depicts an LWC API compliant implementation of Schwaemm256-128 and Esch256.

The datapath largely reflects the one used for the Schwaemm256-128 only implementation,

with a few additions. When the input data on the bdo data bus is a message input for
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hashing, the data will be routed through an instance of the same Feistel Function, “M3”,

used by the linear layer of Sparkle384. Different constants are injected to indicate if the last

block of the hash is padded or not padded. Additionally, to achieve the squeezing portion of

the hash functionality, after the last block of data has been processed, the leftmost 128 bits

of the state will be registered and the unmodified output of the state will be fed back into

the state input. A seven step permutation is run, and the leftmost 128 bits of the output

state will be concatenated to the previously stored 128 bit state output to form the 256 bit

message digest.

Figure 3.5: Schwaemm256-128 and Esch256 Implementation, compliant with the LWC API.
All bus widths are 384 bits unless otherwise indicated. The dashed lines indicate buses
used for hash operations, the dotted lines indicate buses used for AEAD operations, and the
dash-dot lines indicate the buses used in both.
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3.1.4 Functional Verification

To verify the correct functionality of each of the baseline implementations above, multiple

sets of test vectors were generated using the Python cryptotvgen module and used as input

to the LWC TB [43]. As shown in Figure 2.1, each run of cryptotvgen produces a PDI,

SDI and DO test vector file. Different modes of cryptotvgen were used, creating routine

AEAD only test vectors, hash only test vectors, combined AEAD and hash test vectors, and

finally randomly generated AEAD test vectors. Passing these test vectors in the LWC TB

provided assurance that the implementations were behaving correctly.

3.2 Side-Channel Resistant Schwaemm Implementation

In [41], Schneider et al. propose a method for carrying out arithmetic operations over

Boolean masked shares. They suggest the use of either a Ripple Carry Adder (RCA) or a

Kogge Stone Adder (KSA) [27] and their approach aligns with the principles of TI. The KSA

option completes the addition in fewer clock cycles therefore it is the method adopted here.

An advantage of the use of this 3-TI KSA method is that it eliminates the need to convert

between Boolean and Arithmetic masks, which was discussed in Subsection 2.4.2.

To transition towards side channel resistance, first an implementation with a 32-bit registered

KSA was created. This implementation is used as a point of comparison in the results as it

uses the same number of clock cycles for the ARX primitive as the final protected version.

Figure 3.6 depicts the 32-bit registered KSA and shows its six levels of registers.

Once the ARX primitive was operational using the KSA, the 3-TI KSA scheme explored in

[41] was applied. All sensitive data used was partitioned into three Boolean masked shares.

The basic steps for the 3-TI KSA scheme include replacing all AND gates within the Kogge
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Figure 3.6: 32-bit Registered Kogge Stone Adder. Bus widths are 1 bit unless otherwise
indicated. The “m” input alludes to the randomness needed for a protected KSA. 3

Stone Adder with 3-TI AND gates and registering the output at each stage of the adder.

Each TI-AND gate takes in two 32-bit values and a 32-bit random value. The random data

input used for these implementations is 64 bits in length so that a unique 32 bit random value

can be applied to each TI-AND gate at each stage of the KSA. This method of refreshing

the randomness is used to uphold the uniformity property of the TI method. The value

“m” in Figure 3.6 indicates which stages of the KSA would use the random data input

in the protected 3-TI implementation. At the conclusion of each stage of the adder, the

output is registered before starting the next stage. This prevents the propagation of glitches

through the design [41]. What is important to note about these changes to the Kogge Stone

Adder is that they require 6 additional clock cycles in order to register the output values at

each stage. After the conclusion of the addition operation, the remaining rotate and XOR

transformations are applied and then registered prior to the start of the next round. This

impacts the throughput of the implementations. The number of clock cycles used is now

4×11×7 = 308 clock cycles for an 11 step permutation call and 4×7×7 = 196 clock cycles

for a 7 step permutation call.

To handle the protected implementation of Schwaemm, an extension to the LWC Hardware

Development Package, available at [29], was used. The extension to the LWC HW DP

3Figure 3.6 is an adaptation of a figure from [41].
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uses an external pseudo random number generator based on the Trivium stream cipher [14].

The LWC top module uses an additional input bus, rdi, to take in the random data. The

random data refreshes with each clock cycle, which upholds the principles of the TI method.

Additionally, the extension to the LWC HW DP ensures that the shares are not XORed

together anywhere in the LWC module.

3.2.1 Functional Verification

To verify the correct functionality of the protected implementation, modifications of the test

vectors were required. To handle this a new Python script, genShared.py, was developed to

produce a modified set of text vectors that were compatible with the extension to the LWC

HW DP. To generate these test vectors, first one must run the original cryptotvgen Python

module on a reference implementation of a NIST LWC candidate. This yields two input

data sets (PDI and SDI) and one output data set (DO) [44]. The genShared.py parses the

PDI and SDI input test vectors to create n-share Boolean masked versions of the input data

streams. This results in the test vector set {sharedPDI.txt, sharedSDI.txt, do.txt}. While

the number of shares used in this work was three, this parameterized script supports the

creation of anywhere from two to four shares. The format of the files created used the same

headers as the original test vectors to minimize the changes needed to the original LWC test

bench parser. A screenshot of the help menu for genShared.py can be seen in Figure 3.7.
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Figure 3.7: genShared.py. This figure depicts a screenshot of the help menu for the Python
script.
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Results

A few different techniques were used to evaluate the implementations presented in this work.

In Section 4.1, synthesis results will be presented. Metrics including maximum frequency,

throughput, area, throughput to area ratio, and power consumption data are provided. The

iterative versions of Schwaemm are referred to as unprotected (UnPr), unprotected using

the Kogge Stone Adder (UnPr KSA) and protected (Pr). In Section 4.2, results collected on

actual hardware will be presented, detailing statistical tests performed on the unprotected

and protected Schwaemm implementations.

4.1 Implementation Results

To establish an understanding of how the performance results were calculated, Table 4.1

provides the total clock cycles used per operation for each of the implementations. These

formulas capture the clock cycles used from the start of the respective operation to its

completion. This includes clock cycles for interacting with the Pre and Post Processor

modules as well as the cycles needed for state initialization and other permutation calls.

For a further breakdown of the clock cycles used, please see Appendix Section A.1. Table

4.1 also provides the formula used for throughput calculations. To calculate throughput,

an assumption is made that a large number of plaintext, ciphertext, or hash input blocks

are being processed. With a large number of input blocks, the constant number of clock

21
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cycles needed for processes like state initialization become negligible in these calculations.

As a result, throughput is calculated as the maximum achievable frequency multiplied by

the number of bits per block divided by the cycles needed for one block of input.

Table 4.1: Clock Cycles. An overview of the clock cycles used in each implementation.
Na denotes the number of blocks of associated data. Nm denotes the number of blocks of
plaintext or ciphertext. Nh denotes the number of message blocks for hash input.

Implementation Operation Clock Cycles Bits/Block TP Formula

Schwaemm UnPr Encryption 38×Na + 47×Nm + 97

256

fclk× 256/47Decryption 38×Na + 47×Nm + 98

Schwaemm UnPr KSA Encryption 206×Na + 215×Nm + 553
fclk× 256/215Decryption 206×Na + 215×Nm + 554

Schwaemm Pr Encryption 227×Na + 257×Nm + 598
fclk× 256/257Decryption 227×Na + 257×Nm + 605

Schwaemm & Esch
Encryption 38×Na + 47×Nm + 97

fclk× 256/47Decryption 38×Na + 47×Nm + 98
Hashing 34×Nh + 53 128 fclk× 128/34

Table 4.2 provides several cost and performance metrics for each implementation. To develop

a better understanding of the resources used by each implementation, this work uses the Min-

erva automated tool for hardware optimization [18]. Minerva applies static timing analysis

to post-synthesis results to achieve optimal throughput to area (TPA) ratio. All results

listed with the Artix-7 (xc7a100tcsg324-3) FPGA were collected using Minerva. Addition-

ally, synthesis results were collected for the Cyclone V DE1-SoC board (5CSEMA5F31C6)

using Quartus Prime Lite 19.1. Area and throughput to area results in Table 4.2 use look

up tables (LUTs) and adaptive logic modules (ALMs) for the Artix-7 and the Cyclone-5

respectively. TPA is not calculated for Schwaemm & Esch as the combined implementations

area should not logically be applied to different hash or AEAD only throughput formulas.

Additionally, power consumption data was collected for the Artix-7 (xc7a100tftg256-3) using

the Xilinx Vivado power reporting feature. The top level clocks were constrained with clock

periods which yielded frequencies of 10MHz, 25MHz, and 50MHz. The power and energy

data for each implementation running at 50MHz is shown in Table 4.3 with the exception
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Table 4.2: Implementation Results. For area and throughput to area results, LUTs is the
unit for the Artix-7 and ALMs is the unit for the Cyclone-5

Implementation FPGA Freq. Reg. Area Area TP TP TPA TPA
(MHz) (FFs) (LUTs) Ratio (Mbps) Ratio (Mbps/LUT) Ratio

(ALMs) (Mbps/ALM)

Schwaemm UnPr Artix-7 141.00 1396 3107 0.62 768.00 3.96 0.2472 6.43
Cyclone V 104.48 1431 2276 0.73 569.08 3.83 0.2500 5.28

Schwaemm UnPr KSA Artix-7 163.00 3295 5045 1.00 194.08 1.00 0.0385 1.00
Cyclone V 124.63 3298 3131 1.00 148.40 1.00 0.0474 1.00

Schwaemm Pr Artix-7 142.00 10480 14573 2.89 141.45 0.73 0.0097 0.25
Cyclone V 106.87 10518 10327 3.30 106.45 0.72 0.0103 0.22

Schwaemm & Esch Artix-7 140.00 1032 3757 1.00 527.06 1.00 N/A N/A
Cyclone V 100.24 1566 2855 1.00 377.37 1.00 N/A N/A

of the gradient, which is computed as the slope of the average power consumption over data

collected at 10MHz, 25MHz, and 50MHz. The energy is computed as the average power at

50MHz divided by the throughput at 50MHz.

Table 4.3: Power and Energy Results, on the Artix-7

Implementation Avg. Power Gradient Energy
(mW) (mW/MHz) (nJ/Bit)

Schwaemm UnPr 32.00 0.6265 0.118
Schwaemm UnPr KSA 30.00 0.6000 0.504

Schwaemm Pr 119.00 2.373 2.398
Schwaemm & Esch 40.00 0.8000 0.213

4.2 Hardware Testing

Along with synthesis results, select implementations were also verified on an Artix-7 FPGA

(xc7a100tftg256-3). To determine whether the protected implementation Schwaemm256-128

would resist side channel attacks, a series of tests were run using the Test Vector Leakage

Assessment (TVLA) method [3]. As discussed in Subsection 2.4.1, DPA exploits significant

differences in subsets of data. The TVLA method uses statistical analysis (t-tests) to de-

termine whether significant differences occur “with high confidence” [20]. A t-value of less
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than −4.5 or greater than 4.5 constitutes a failure of the test and indicates that leakage

has occurred. The Flexible Open-source workBench fOr Side-channel analysis (FOBOS) [1]

environment has integrated support for TVLA. Using FOBOS, four t-tests were executed on

the implementations of Schwaemm256-128. Tests were run at 1MHz and 10MHz on both

the unprotected, baseline implementation and the protected implementation. The results

can be seen in Figure 4.1, with the unprotected results labeled with A and the protected

results labeled with B.

Figure 4.1: Collection of Schwaemm t-tests. Charts labeled A denote the results of the
unprotected implementation while charts labeled B denote the results of the protected im-
plementation. Tests labeled 1 and 2 were run at 1MHz and 10MHz respectively. 4

4.3 Discussion

The results collected display some interesting properties of these implementations. One key

takeaway from the hardware testing is that the protected implementation of Schwaemm256-

128 passes the t-tests at both 1MHz and 10MHz frequencies. As shown in Figure 4.1, the

red traces of the B tests stay within the blue t-value bounds. This suggests the successful

application of the side channel resistant methodology discussed in Section 2.4. The unpro-

tected tests show several instances of leakage in tests 1A and 2A. This indicates that the
4Please note that the protected implementation run in all t-tests labeled B was implemented within the

CAESAR Hardware API [23]
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changes made did have a significant impact on the physical runtime characteristics of these

implementations.

Figure 4.2: Artix-7 TPA Results. Throughput to area results on the Artix-7 FPGA.

While the protected implementation passes the leakage detection test, it is important to

consider the cost of achieving this additional security. Table 4.2 provides cost and perfor-

mance metrics of each implementation and Figure 4.2 provides a visual representation of

the Artix-7 TPA results. The protected Schwaemm implementation consumes the largest

area of any of the implementations, using 14573 look up tables on the Artix-7. This is

2.89× greater than the area of the unprotected Schwaemm implementation which uses the

Kogge Stone Adder. When compared to the baseline implementation, the Schwaemm Pr

implementation consumes 4.69× the area. These results closely reflect expected increases

in resources. For protection, resources are expected to increase quadratically depending on

the order of protection required. For example, protection against first order DPA, (d = 1),

requires approximately (d + 1)2 = 4 times the amount of resources required for non-linear

operations [15]. For protecting linear operations, the increase in resources is expected to

scale linearly, suggesting a 3× increase for three shares. Therefore, resource utilization can

be expected to increase anywhere between 3× and 4×. The scaling factors of 2.89× and
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4.69× are representative of this range. Additionally, the extension to the LWC HW DP

accounts for some additional resource utilization in the protected implementation. This may

contribute to the scaling factor falling slightly above the expected range. Another aspect to

consider is that the throughput achieved is only 72.88% and 18.42% of the throughput of

the Schwaemm UnPr KSA and Schwaemm UnPr implementations respectively.

The Schwaemm & Esch implementation incurs a 1.21× increase in area when compared to

the Schwaemm only implementation. Also, its throughput is only 68.63% of the previous

throughput. The increase in area is due to some additional hardware used to support the

hashing mode. The decrease in throughput is affected by Esch only processing 128 bit blocks

as opposed to 256 bit blocks.

Figure 4.3: Artix-7 Power Results. A graphical representation of the power consumption
data on the Artix-7 FPGA.

Another interesting trend which appears in Table 4.3 is the use of less power in the Schwaemm

UnPr KSA implementation when compared to the Schwaemm UnPr implementation, even

though it consumes larger area. This trend can be seen in Figure 4.3. Not only is less

power used at 50MHz, the Schwaemm UnPr KSA gradient of 0.6000 mW/MHz is smaller



4.3. Discussion 27

than the Schwaemm UnPr gradient, which shows that the power usage for Schwaemm UnPr

KSA grows at a smaller rate. This can be attributed to the change in the addition operation

of the ARX boxes. The Schwaemm UnPr KSA implementation distributes the addition

operation over six clock cycles as opposed to completing it in one, which effectively reduces

the power consumption associated with the ARX boxes. However, the energy per bit used

by the Schwaemm UnPr KSA implementation is 4.27× larger than the energy used by the

Schwaemm UnPr implementation. This is due to the reduction in the throughput achieved

by the Schwaemm UnPr KSA implementation.

Another important takeaway from the power consumption data is the significantly larger

gradient of 2.373 mW/MHz associated with Schwaemm Pr. This is a 3.96× increase from

the gradient of the Schwaemm UnPr KSA implementation. As discussed above, the gradi-

ent increase aligns with the quadratic increase in the resource utilization associated with

protection.
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Related Work

Table 5.1: Data from Related Works

Cipher Implementation FPGA Freq. Area TP TPA Ref.
(MHz) (LUTs) (Mbps) (Mbps/LUT)

(GEs) (Mbps/GE)

Ascon Unprotected - - 7950 5524 0.694 [22]Protected - 30420 3774 0.124

PRINCE Unprotected - 393 3589 - - [7]Protected 376 11596 - -

Ascon Unprotected Spartan-6 195.5 2048 255.4 0.125

[15]

Protected 103.1 6364 134.6 0.021

Acorn Unprotected Spartan-6 226.6 549 906.2 1.651
Protected 142.7 2732 570.6 0.209

JAMBU-AES Unprotected Spartan-6 163.1 1073 50.9 0.048
Protected 122.4 2869 38.2 0.013

JAMBU-SIMON Unprotected Spartan-6 137.9 1105 509.3 0.461
Protected 58.7 3140 216.7 0.069

SPARX Unprotected Spartan-3 173 114 10.81 0.095 [38]Protected 144 231 9 0.039

Previous investigations into hardware implementations of lightweight cryptographic algo-

rithms have employed the TI method for providing side channel resistance. A selection of

these works and their results is compiled in Table 5.1. Ciphers which do not have an FPGA

listed are ASIC based implementations. In [22], the authors produced a protected version of

Ascon [17], another NIST LWC Round 2 Candidate, using TI. Similarly, this study compared

the trade offs of protected versus unprotected implementations. A threshold implementa-

tion of PRINCE was presented in [7]. This specific implementation focuses on optimizing

TI to improve upon the latency of the results. A threshold implementation of SPARX was

presented in [38]. This is of interest as the Sparkle permutation is based off of SPARX [4].

28
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A collection of AEAD algorithms with both unprotected and TI protected implementations

were analyzed in [15]. These implementations used the CAESAR Hardware API [23], which

is a similar interface to the LWC API. Due to the similar interface which these implemen-

tations use, it is reasonable to directly compare the results of this work with those found

by the authors of [15]. A visual representation of the throughput versus area data, and the

impact of applying a SCA protection scheme to these works can be seen in Figure 5.1.

Figure 5.1: Impact of Protection Schemes. The throughput versus area affect of applying
side channel resistance protection schemes. All data not generated by this work was from
[15] in which authors used the Spartan-6 FPGA to collect their results.

When examining how the Schwaemm implementations perform in comparison to all other

implementations shown in Figure 5.1, there are several key trends. Regardless of the algo-

rithm, there is the clear reduction in throughput and increase in area that can be expected

to achieve SCA resistance. Of the unprotected implementations, the 768 Mbps throughput

on the Artix-7 which the Schwaemm implementation offers is very competitive. It exceeds

all other unprotected throughput with the exception of ACORN. It also offers a TPA ratio
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that is 5.15× greater than unprotected JAMBU-AES, which had the smallest reported TPA

ratio for an unprotected implementation in Table 5.1. When considering area, both the un-

protected and protected implementations of Schwaemm consume the largest number of look

up tables. Different architectures could be used to further reduce the area of an unprotected

and protected Schwaemm implementation. This could potentially change the impact of the

application of the protection scheme to be more similar to the trends shown by the other

implementations, but an investigation into this was outside the scope of this work.

When comparing this effort to the other works in Table 5.1, a direct comparison is less ap-

propriate. The SPARX implementation discussed in [38] was a block cipher implementation

of SPARX-64/128 [16]. The state size of SPARX-64/128 is 64 bits as opposed to 384 bits

and the implementation was not created using either of the Hardware APIs discussed in this

work. Due to the disparity in these works, a direct comparison is not considered here. Ad-

ditionally, the ASIC based implementations are valuable points of reference for the impact

of TI protection schemes, but are not directly comparable.

Overall, the data discussed in this section is important for framing the performance of the

Schwaemm implementations presented. This understanding aids in the overall evaluation of

the candidate.
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Conclusions

6.1 Summary

Lightweight cryptography is a promising field for the security of the Internet of Things. This

work presented hardware implementations of an ARX-based NIST Lightweight Cryptography

candidate. A baseline implementation of both Schwaemm, and Schwaemm & Esch was

provided. An implementation of Schwaemm which integrates a registered Kogge Stone Adder

is detailed, which aids in the analysis presented in Section 4.3. Finally, a side-channel

resistant implementation of Schwaemm was evaluated. All implementations were compatible

with the LWC API to enable impartial comparisons of the work.

The side-channel resistant implementation was shown to be resistant to leakage when ap-

plying the TVLA method. However, this resistance came at an incurred cost. When con-

trasting the protected implementation of Schwaemm to the unprotected implementation of

Schwaemm which integrates a KSA, the area of implementation was 2.89× greater and the

throughput to area ratio reflects a 27% decrease. These results show that it is feasible to

create side channel resistant implementations of Schwaemm and suggest how the implemen-

tation metrics of other members of the AEAD family may scale when applying SCA resistant

methods in hardware.

Additionally, a comparison to other lightweight ciphers was included in Chapter 5. The

31
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Schwaemm and Esch implementations displayed competitive throughput and throughput to

area ratio results against the subgroup of ciphers included. However, the area of both the

unprotected and protected implementations was larger than most other areas reported. The

discussion in Chapter 5 enables an understanding of the relative characteristics of this work.

As discussed in Subsection 2.3.2, ARX cryptography has been studied in software. The

results presented in this work add to the data available about ARX-based ciphers when im-

plemented in hardware, especially when considering side channel resistant implementations.

6.2 Future Work

There are certain aspects of this work which provide gateways for future research. One main

focus of future efforts would be further optimizations of the implementations. When review-

ing the baseline implementations, there are features which can still be simplified to consume

less area while maintaining the structure of the algorithms. Additionally, there are different

types of architectures which can be explored for different use cases. For example, further

serialized implementations could reduce the hardware area. Regardless of the architecture

used, there will be trade offs between different metrics. The decision in this work to process

all 384 bits of the state per clock cycle of the permutation results in a higher area cost but

a more favorable throughput. When transitioning to a protected implementation, starting

with a lower area implementation may help to scale down the relative cost of protection.

There are many different approaches to this process and a large number of opportunities for

continuing research.

Another avenue which could be explored is in software. In the specification for Sparkle

(Schwaemm and Esch) [4], the authors focus a larger portion of their design discussion on a

software perspective. Other works which consider ARX-based primitives also devote a great



6.2. Future Work 33

deal of attention to how these algorithms are realized in software. To further expand upon

the understanding of SCA resistance for ARX primitives, it would be interesting to evaluate

software and hardware implementations together. There are several schemes for side channel

resistance in software which would support this pursuit.

Though there are many possibilities for future work, this project remained focused on a small

subset of hardware evaluation metrics. This facilitated an understanding of the material and

a well defined research scope.
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Appendix A

Supplemental Material

A.1 Formulas

Sparkle -- Schwaemm256128 : Clock Cycles in LWC API

Na = # blocks associated data ( |block| = 256 bits )
Nm = # blocks pt/ct data ( |block| = 256 bits )
Nh = # blocks hash data ( |block| = 128 bits )
LbWords = # words in last data block

Encryption:

Load key: 4
Wait npub: 3
Load npub: 8
Initialize state: 46
Load ad: 8*Na
Process ad: 30*(Na - 1) + 46
Load dat: 8*Nm
Process dat: 30*(Nm - 1) + 46
Output dat: 9*Nm
Output tag: 4

Total: 38*Na + 47*Nm + 97
No AD: 47*Nm + 81
No DAT: 38*Na + 81
No AD & No DAT: 65
No new key: {All formulas above, subtract 7 clock cycles}

**Note, for a data input in which the last block is not a full block
(Length is less than 256 bits) the total number of clock cycles will
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decrease because fewer clock cycles are required for the output of
the last block.

Revised Total Formula: 38*Na + 47*Nm + 89 + LbWords
No AD: 47*Nm + 73 + LbWords

Decryption:

Load key: 4
Wait npub: 3
Load npub: 8
Initialize state: 46
Load ad: 8*Na
Process ad: 30*(Na - 1) + 46
Load dat: 8*Nm
Process dat: 30*(Nm - 1) + 46
Output dat: 9*Nm
Load tag: 4
Output tag valid: 1

Total: 38*Na + 47*Nm + 98
No AD: 47*Nm + 82
No DAT: 38*Na + 82
No AD & No DAT: 66
No new key: {All formulas above, subtract 7 clock cycles}

**Note, for a data input in which the last block is not a full block
(Length is less than 256 bits) the total number of clock cycles will
decrease because fewer clock cycles are required for the output of
the last block.

Revised Total: 38*Na + 47*Nm + 90 + LbWords
Revised No AD: 47*Nm + 74 + LbWords
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A.2 Figures

Figure A.1: Control Logic State Machine, Schwaemm256-128 Implementation. This is based
off of the suggested control flow detailed in [44]. State names are displayed within the boxes.
“wc” refers to the word counter used and “lw” refers to the last word. A similar state machine
was used for the combined Schwaemm256-128 and Esch256 Implementation, with additional
states included to handle hashing.
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