Table 1. CERES launch dates and spacecraft information.

Spacecraft	TRMM	EOS-AM	EOS-PM
Instruments	Proto-Flight Model	Flight Models 1 and 2	Flight Models 3 and 4
Launch Date	1 November 1997	June 1998	December 2000
Inclination	35 deg	81 deg	81 deg
Altitude	350 km	705 km	705 km
Local Observation Time	precessing	10:30 AM	1:30 PM

Tables

 Table 2.
 Spectral bands of interest for the study of Earth/atmosphere energetics.

Passband	Scientific Perspective
(µm)	
0.3 - 0.4	Sensitive to changing O ₃ abundances
0.4 - 0.7	Drives biological systems; foliage amounts
0.7 - 1.6	Sensitive to changing H ₂ O abundances
1.6 - 4.5	Near IR, Far Solar effects
4.5 - 8.0	$6.3 \mu m$ band of H ₂ O; upper tropospheric H ₂ O
8.0 - 12.0	CERES channel
12.0 - 17.0	Sensitive to changing CO ₂ abundances
17.0 - 100	Sensitive to changing H ₂ O abundances
0.3 - 5.0	CERES channel
0.3 - 100	CERES channel
5.0 - 100	Continuity check for total - shortwave
8.0 - 9.1	Surface emissivity
9.1 - 10.2	Sensitive to changing O ₃ abundances
10.2 - 12.0	Sensitive to cirrus clouds

Table 3	Nominal component values for th	CERES PEM total channel	nre-amplifier circuit
1 4010 5.	i tommu component varaes for an		pre umphiller encure.

Component	Nominal Value	Units
R_1	140.0	kΩ
\mathbf{R}_2	140.0	kΩ
R_3	140.0	kΩ
\mathbb{R}_4	140.0	kΩ
R_5	2.22	kΩ
R_6	10.0	kΩ
\mathbf{R}_7	10.0	kΩ
R_8	10.0	kΩ
\mathbf{R}_9	10.0	kΩ
R ₁₀	10.0	kΩ
R ₁₁	10.0	kΩ
R ₁₂	2.843	kΩ
R ₁₃	2.843	kΩ
R ₁₄	500	kΩ
R ₁₅	10.0	kΩ
R ₁₆	10.0	kΩ
C_1	0.001	μf

Table 4	Nominal com	nonent values for	the CERES	PFM total	channel B	lessel filter	circuit
1 auto 4.	Nominal Com	policilit values for	IIIC CERES	I I WI total	channel D		circuit.

Component	Nominal Value	Units
R_1	20.0	kΩ
\mathbf{R}_2	10.0	kΩ
R_3	20.0	kΩ
\mathbf{R}_4	10.0	kΩ
R_5	108.43	kΩ
R_6	100.02	kΩ
\mathbf{R}_7	1.29	MΩ
R_8	100.02	kΩ
R ₉	8.4074	kΩ
R ₁₀	156.9	kΩ
R ₁₁	89.219	kΩ
R ₁₂	206.83	kΩ
R ₁₃	89.219	kΩ
R ₁₄	67.680	kΩ
C_1	0.05	μf
C_2	0.05	μf
C ₃	0.05	μf
C_4	0.05	μf

 Table 5.
 Nominal and modeled specifications for the detector module assembly.

Layer	Thermal Conductivity	Volumetric Mass	Specific Heat	Nominal Thickness	Modeled Thickness
	W/MK	kg/m	J/KgK	μm	μm
Absorber	0.209	1400	668.8	10.6	10.0
Epoxy/Varnish	0.1	1150	1000.0	7.5	4.90
Gold Pads	292.9	19320	129.6	0.5	0.5
Thermistor	8.36	5000	752.4	15.0	15.0
Upper Epoxy	0.1254	1200	1045.0	1.0	0.75
Kapton	0.1200	1420	1091.0	7.62	7.62
Lower Epoxy	0.1254	1200	1045.0	1.0	0.25
Aluminum	237.0	2700	903.0	3668.0	3668
Indium	80.84	11480	240.3	2.54	2.54

Table 6. Predicted time constant and responsivity sensitivities, $\partial A/\partial B$, where A equals either time constant, τ , or Responsivity, R, and B equals layer thickness, δ , of the CERES detector module assembly.

Detector Layer	Predicted Time Constant Sensitivity, $\frac{\partial \tau}{\partial \delta}$ (ms/μm)	Predicted Responsivity Sensitivity, ∂R ∂δ (V/W/μm)
Absorber	0.24	0.01
Epoxy/Varnish	0.35	0.04
Thermistor	0.39	0.13
Upper Epoxy	1.35	7.35
Kapton	1.43	10.87
Bottom Epoxy	1.37	10.38

Table 7.Narrow Field Black body (NFBB) temperatures, unfiltered and filtered radiances
from the CERES ground calibration.

NFBB Temperature K	Unfiltered Radiances W/m ² sr	Filtered Radiances W/m ² sr
206.40	32.864	28.314
216.03	39.443	34.027
230.37	51.007	44.082
246.06	66.385	57.476
253.04	74.243	64.329
264.98	89.277	77.452
278.04	108.221	94.009
284.86	119.236	103.646
290.74	129.391	112.536
297.61	142.063	123.637
304.95	156.609	136.388
311.84	171.255	149.236

Table 8.Comparison of gains determined during the CERES ground calibration to the
predicted values determined with the end-to-end model.

Gain Term	CERES Ground	Numerical Simulation	Percent Difference	units
	Calibration	Simulation	Difference	
$\mathbf{A}_{\mathbf{V}}$	0.1499	0.1464	2.33	Wm ⁻² sr ⁻¹ /count
$\mathbf{A}_{\mathbf{S}}$	-	0.1464	-	Wm ⁻² sr ⁻¹ /count
$\mathbf{A}_{\mathbf{H}}$	-	1.6174	-	$Wm^{-2}sr^{-1}/K$
$\mathbf{A}_{\mathbf{B}}$	-	0.0	-	$Wm^{-2}sr^{-1}/V$
$\mathbf{A}_{\mathbf{D}}$	-	0.0	-	$Wm^{-2}sr^{-1}/V$

Table 9.Slow-mode numerical algorithm coefficient values in Eqs. 5.14 and 5.15 determined
using the model.

Coefficient	Value	Units
C ₁	0.99	-
C_2	0.01	-
C ₃	0.00726	-
$ au_1$	8.5	ms
$ au_2$	43	ms
$ au_3$	310	ms
\mathbf{p}_0	0.9968	-
\mathbf{p}_1	2.3563 x 10 ⁻⁵	-

Table 10.Results of a study where the thermal impedance between the compensating
thermistor and aluminum substrate was varied.

Epoxy thickness	Responsivity	Time Constant
μΠ	V / VV	1115
0.25	63.97	9.27
0.75	62.34	8.97
1	61.54	8.82
1.25	60.76	8.68
1.5	59.99	8.54
1.75	55.70	8.40

Table 11. Overall number of footprints sorted by cloud categories for two weightings of the point spread function. Row and Column values correspond to the point spread function weightings displayed in Figures 5.33(a) and (b), respectively.

	categories	clear	partly cloudy	mostly cloudy	overcast	total
	clear	5480	121	0	1	5602
	partly cloudy	4862	3066	907	419	9254
16-by-16 bins	mostly cloudy	326	1444	1809	4982	8561
	overcast	275	9	74	8269	8627
	total	10943	4640	2790	13671	32044

|--|

Table 12. Overall number of footprints sorted by surface type for two weightings of the point spread function. Row and Column values correspond to the point spread function weightings displayed in Figures 5.33(a) and (b), respectively.

	categories	ocean	land	snow	desert	coast	total
	ocean	23250	12	0	0	19	23281
	land	4	7229	14	0	13	7260
16-by-16 bins	snow	2	20	734	0	4	760
	desert	0	0	0	22	0	22
	coast	301	260	9	0	151	721
	total	23559	7521	757	22	187	32044

Table 13. Comparison of the recovered **shortwave** TOA flux (Wm⁻²) for the two point spread function weightings displayed in Figure 5.33. The statistical mean difference in Wm⁻² (2-by-2 minus 16-by-16), standard deviation of the differences (std), and number of footprints (count) used in the comparison are presented.

	categories	clear	partly cloudy	mostly cloudy	overcast	
	clear	-0.05	6.49	0.00	0.00	mean
		3.20	15.84	0.00	0.00	std
		4447	92	0	0	count
	partly cloudy	-11.13	-0.22	12.08	20.05	mean
		18.11	3.47	16.29	26.96	std
16-by-16 bins		3124	2010	565	254	count
	mostly cloudy	-34.11	-12.51	-0.04	9.63	mean
		49.95	27.51	1.21	17.15	std
		211	992	1280	3410	count
	overcast	-6.20	-68.48	-20.26	0.00	mean
		20.88	64.3	22.25	0.08	std
		4	6	54	5912	count

2-by-2 bins

Table 14. Comparison of the recovered **longwave** TOA flux (Wm⁻²)for the two point spread function weightings displayed in Figure 5.33. The statistical mean difference in Wm⁻² (2-by-2 minus16-by-16), standard deviation of the differences (std), and number of footprints (count) used in the comparison are presented.

		2-by-2 bins				
	cloudiness	clear	partly cloudy	mostly cloudy	overcast	
	clear	0.00	0.23	0.00	-3.09	mean
		.31	0.63	0.00	0.00	Std
		5480	121	0	1	count
	partly cloudy	-0.28	-0.01	0.15	-0.27	mean
16-by-16 bins		0.78	0.16	1.00	1.25	std
		4862	3066	907	419	count
	mostly cloudy	-0.25	0.26	0.00	-0.43	mean
		1.55	1.13	0.04	0.50	std
		326	1444	1809	4982	count
	overcast	-0.70	0.83	0.51	0.00	mean
		4.60	1.02	0.56	0.01	std
		275	9	74	8269	count

101

Table 15. Autoregression coefficients determined for four combinations of n, N, and frequency content, ω . All units are in Wm⁻²sr⁻¹/count.

	n=4	n=4	n=4	n=4
Coefficient	N=5	N=12	N=12	N=12
	ω=20 Hz	ω=10 Hz	ω=20 Hz	ω=30 Hz
A_1	-2.6855 x 10 ⁻⁶	-5.5767 x 10 ⁻⁶	-4.2493 x 10 ⁻⁶	1.8792 x 10 ⁻⁶
A_2	-5.7803 x 10 ⁻⁶	-5.5923 x 10 ⁻⁶	-4.8840 x 10 ⁻⁶	4.5437 x 10 ⁻⁷
A_3	-7.0164 x 10 ⁻⁶	-9.3568 x 10 ⁻⁷	-4.2011 x 10 ⁻⁶	-1.3222 x 10 ⁻⁵
A_4	-1.9232 x 10 ⁻⁶	1.1504 x 10 ⁻⁶	-4.1307 x 10 ⁻⁶	-2.2797 x 10 ⁻⁵