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Abstract 

 

This research focuses on developing a cognitive radio that could operate reliably in 

unforeseen communications environments like those faced by the disaster and emergency 

response communities. Cognitive radios may also offer the potential to open up 

secondary or complimentary spectrum markets, effectively easing the perceived spectrum 

crunch while providing new competitive wireless services to the consumer. A structure 

and process for embedding cognition in a radio is presented, including discussion of how 

the mechanism was derived from the human learning process and mapped to a 

mathematical formalism called the BioCR. Results from the implementation and testing 

of the model in a hardware test bed and simulation test bench are presented, with a focus 

on rapidly deployable disaster communications. Research contributions include 

developing a biologically inspired model of cognition in a radio architecture, proposing 

that genetic algorithm operations could be used to realize this model, developing an 

algorithmic framework to realize the cognition mechanism, developing a cognitive radio 

simulation toolset for evaluating the behavior the cognitive engine, and using this toolset 

to analyze the cognitive engine’s performance in different operational scenarios. 

Specifically, this research proposes and details how the chaotic meta-knowledge search, 

optimization, and machine learning properties of distributed genetic algorithm operations 

could be used to map this model to a computable mathematical framework in conjunction 

with dynamic multi-stage distributed memories. The system formalism is contrasted with 

existing cognitive radio approaches, including traditionally brittle artificial intelligence 

approaches. The cognitive engine architecture and algorithmic framework is developed 

and introduced, including the Wireless Channel Genetic Algorithm (WCGA), Wireless 
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System Genetic Algorithm (WSGA), and Cognitive System Monitor (CSM). 

Experimental results show that the cognitive engine finds the best tradeoff between a host 

radio's operational parameters in changing wireless conditions, while the baseline 

adaptive controller only increases or decreases its data rate based on a threshold, often 

wasting usable bandwidth or excess power when it is not needed due its inability to learn. 

Limitations of this approach include some situations where the engine did not respond 

properly due to sensitivity in algorithm parameters, exhibiting ghosting of answers, 

bouncing back and forth between solutions. Future research could be pursued to probe the 

limits of the engine’s operation and investigate opportunities for improvement, including 

how best to configure the genetic algorithms and engine mathematics to avoid engine 

solution errors. Future research also could include extending the cognitive engine to a 

cognitive radio network and investigating implications for secure communications. 

 



 viii

Table of Contents 
 

Chapter 1: Introduction ....................................................................................................... 1 

1.1 Summary of the Evolution of Cognitive Radios....................................................... 2 

1.2 Problem Statement, History, and Contributions ....................................................... 5 

1.3 Organization.............................................................................................................. 9 

1.4 Details of Research Contributions and Resulting Publications .............................. 10 

1.5 Summary ................................................................................................................. 15 

Chapter 2: History of Cognitive Radio - System and Mathematical Foundations ........... 16 

2.1 Mitola’s Cognitive Radio (CR) Concept ................................................................ 17 

2.2 Biologically Inspired (Bio) versus Artifical Intelligence (AI) Cognitive Models.. 19 

2.3 Evolvable Hardware for Programmable Wireless .................................................. 21 

2.4 Virginia Tech Broadband Wireless Channel Sounder ............................................ 22 

2.5 Compact Channel Models at the Symbol/Waveform Level ................................... 25 

2.6 Overview of Genetic Algorithms............................................................................ 31 

2.7 Summary ................................................................................................................. 34 

Chapter 3: Bio-formalism as Vehicle for Embodying the CR Concept............................ 35 

3.1 Proposal: Bio-formalism as a Foundation for a Model of the CR Concept............ 35 

3.2 BioCR Model .......................................................................................................... 37 

3.3 BioCR Framework .................................................................................................. 42 

3.4 BioCR Architecture ................................................................................................ 46 

3.5 BioCR Algorithms .................................................................................................. 52 

3.6 Summary ................................................................................................................. 57 

Chapter 4: Methodology for experiments ......................................................................... 58 

4.1 Methodology for Experimental Study .................................................................... 58 

4.2 Modeling of Channel Variations in the Simulator.................................................. 62 

4.3 Summary ................................................................................................................. 63 

Chapter 5:  Results from Virginia Tech CR Simulation Test Bench Experiments........... 64 

5.1 Simulation of CR Engine Model versus Traditional Adaptive Radio Controller... 64 

5.2 CR Engine Performance in an Unknown Channel ................................................. 74 

5.3 CR Engine Performance in a Known Channel ....................................................... 82 



 ix

5.4 Comparison To Traditional Adaptive Controller.................................................... 85 

5.5 Summary ................................................................................................................. 87 

Chapter 6: Results from Virginia Tech CR Hardware Test Bed Experiment................... 89 

6.1 CR Engine Telemedicine Demonstration - Jamming Channel ............................... 89 

6.2 WSGA Experiment for Maintaining QOS in the Presence of a Jammer................ 90 

6.3 Summary ................................................................................................................. 93 

Chapter 7: Conclusions and Recommendations ............................................................... 94 

7.1 Summary of Research Results ................................................................................ 94 

7.2 Summary of Contributions...................................................................................... 95 

7.3 Future Research and Recommendations................................................................. 96 

Bibliography ..................................................................................................................... 98 

Appendix A: Glossary..................................................................................................... 107 

Appendix B: Cognitive Radio Engine Patent Application - VTIP 03.056 ..................... 110 

Appendix C: CR Test bench Simulation Blocks and Source Code ................................ 111 

C.1 Co-Simulation of Adaptive Radio Simulink Model and C++ Cognitive Engine. 111 

C.2 Cognitive Engine Code and Program Output....................................................... 111 

C.3 Reference List of Experimental Code File Names............................................... 112 

C.4 Detail of the Adaptive Radio MATLAB-Simulink Co-simulation...................... 121 

C.5 Detail of the Cognitive Engine Model C++ Co-simulation ................................. 123 

C.6 Detail of the CR Simulation Test Bench Co-simulation ...................................... 123 

Appendix D: BioCR Toolset Simulation Run Data Capture Logs ................................. 125 

D.1 Trend Step 1 – AWGN Channel .......................................................................... 126 

D.2 Trend Step 2 – AWGN Channel .......................................................................... 128 

D.3 Trend Step 3 – AWGN Channel .......................................................................... 129 

D.4 Trend Step 4 – AWGN Channel .......................................................................... 130 

D.5 Trend Step 5 – Flat Fading Channel .................................................................... 131 

D.6 Trend Step 6 – Flat Fading Channel .................................................................... 133 

D.7 Trend Step 7 – Flat Fading Channel .................................................................... 134 

D.8 Trend Step 8 – Dispersive Fading Channel ......................................................... 136 

D.9 Trend Step 9 – Dispersive Fading Channel ......................................................... 137 

D.10 Trend Step 10 – Dispersive Fading Channel ..................................................... 139 



 x

D.11 Trend Step 11 – Dispersive Fading Channel ..................................................... 140 

D.12 Trend Step 12 – Dispersive Fading Channel ..................................................... 142 

D.13 Trend Step 13 – Rician Channel ........................................................................ 143 

D.14 Trend Step 14 – Rician Channel ........................................................................ 145 

D.15 Trend Step 15 – Rician Channel ........................................................................ 147 

D.16 Trend Step 16 – Rician Channel ........................................................................ 149 

D.17 Trend Step 17 – AWGN Channel ...................................................................... 152 

D.18 Trend Step 18 – AWGN Channel ...................................................................... 154 

D.19 Trend Step 19 – AWGN Channel ...................................................................... 156 

D.20 Trend Step 20 – AWGN Channel ...................................................................... 158 

Appendix E: NSF IGERT IREAN Research Interactions .............................................. 160 

2004 - Cognitive Radio as a Multidisciplinary Research Theme ............................... 160 

2004 - Biologically Inspired Cognitive Radio Test bed Based on GAs ..................... 161 

2003 - Biologically Inspired Cognitive Wireless Layer 1 and 2 (L12) Functionality 163 

2002 - Cognitive Radio Models for Wireless Systems............................................... 165 

Vita.................................................................................................................................. 167 



 xi

List of Figures 
 

 

Figure 1.1: Cognitive radio roadmap and functional evolution.......................................... 3 

Figure 2.1: Virginia Tech broadband channel sounder..................................................... 23 

Figure 2.2: Gilbert’s model............................................................................................... 25 

Figure 2.3: Fritchman’s model.......................................................................................... 26 

Figure 2.4: An example HMM.......................................................................................... 27 

Figure 2.5: Example radio chromosome with alleles........................................................ 31 

Figure 2.6: Example radio chromosome crossover and mutation..................................... 32 

Figure 2.7: Example radio chromosome selection............................................................ 33 

Figure 3.1: Concept-level block diagram of cognitive engine.......................................... 42 

Figure 3.2: Biologically inspired cognitive engine framework ........................................ 43 

Figure 3.3: Advantages of using genetic algorithms in a cognitive radio ........................ 44 

Figure 3.4: System-level block diagram of cognitive engine ........................................... 46 

Figure 3.5: Wireless channel genetic algorithm (WCGA) block diagram........................ 47 

Figure 3.6: Wireless system genetic algorithm (WSGA) block diagram ......................... 48 

Figure 3.7: Cognitive system monitor (CSM) block diagram .......................................... 51 

Figure 3.8: Wireless channel genetic algorithm (WCGA) flowchart ............................... 54 

Figure 3.9: Wireless system genetic algorithm (WSGA) flowchart ................................. 55 

Figure 3.10: Cognitive system monitor (CSM) flowchart ................................................ 56 

Figure 4.1: Photo of simulation test bench design............................................................ 60 

Figure 4.2: Photo of hardware test bed design.................................................................. 61 

Figure 5.1: Table of thresholds used by adaptive controller............................................. 65 

Figure 5.2: Basic explanation of cognitive engine operation ........................................... 66 

Figure 5.3: Basic explanation of cognitive engine process............................................... 67 

Figure 5.4: Overview of adaptive radio host simulation in Simulink............................... 69 

Figure 5.5: Adaptive radio host simulation in Simulink................................................... 70 

Figure 5.6: CR toolset trace showing cognitive engine reacting to unknown channel..... 74 

Figure 5.7: Summary of cognitive engine behavior in AWGN channel........................... 76 

Figure 5.8: Summary of cognitive engine behavior in flat fading channel ...................... 79 



 xii

Figure 5.9: Summary of cognitive engine behavior in dispersive fading channel............ 80 

Figure 5.10: Summary of cognitive engine behavior in Rician channel........................... 81 

Figure 5.11: CR toolset trace showing cognitive engine reacting to known channel....... 83 

Figure 5.12: Summary of cognitive engine behavior in known AWGN channel............. 84 

Figure 5.13: Comparison of adaptive controller behavior to cognitive engine behavior . 86 

Figure 5.14: Summary of cognitive engine behavior in AWGN channel......................... 86 

Figure 6.1:  Winter 2004 cognitive engine test setup ....................................................... 91 

Figure 6.2: Photographs of cognitive engine control of adaptive radio network.............. 92 

Figure C.1: Research process, cognitive radio (CR) system, and early CR test bench .. 111 

Figure C.2: Early cognitive engine code and output....................................................... 112 

Figure D.1: CR toolset trace showing cognitive engine reacting to unknown channel.. 125 

Figure D.2: Trend step 1 host radio data......................................................................... 126 

Figure D.3: Trend step 1 engine data.............................................................................. 127 

Figure D.4: Trend step 2 host radio data......................................................................... 128 

Figure D.5: Trend step 2 engine data.............................................................................. 128 

Figure D.6: Trend step 3 host radio data......................................................................... 129 

Figure D.7: Trend step 3 engine data.............................................................................. 129 

Figure D.8: Trend step 4 host radio data......................................................................... 130 

Figure D.9: Trend step 4 engine data.............................................................................. 130 

Figure D.10: Trend step 5 host radio data....................................................................... 131 

Figure D.11: Trend step 5 engine data............................................................................ 132 

Figure D.12: Trend step 6 host radio data....................................................................... 133 

Figure D.13: Trend step 6 engine data............................................................................ 133 

Figure D.14: Trend step 7 host radio data....................................................................... 134 

Figure D.15: Trend step 7 engine data............................................................................ 135 

Figure D.16: Trend step 8 host radio data....................................................................... 136 

Figure D.17: Trend step 8 engine data............................................................................ 136 

Figure D.18: Trend step 9 host radio data....................................................................... 137 

Figure D.19: Trend step 9 engine data............................................................................ 138 

Figure D.20: Trend step 10 host radio data..................................................................... 139 

Figure D.21: Trend step 10 engine data.......................................................................... 139 



 xiii

Figure D.22: Trend step 11 host radio data..................................................................... 140 

Figure D.23: Trend step 11 engine data.......................................................................... 141 

Figure D.24: Trend step 12 host radio data..................................................................... 142 

Figure D.25: Trend step 12 engine data.......................................................................... 142 

Figure D.26: Trend step 13 host radio data..................................................................... 143 

Figure D.27: Trend step 13 engine data.......................................................................... 144 

Figure D.28: Trend step 14 host radio data..................................................................... 145 

Figure D.29: Trend step 14 engine data.......................................................................... 146 

Figure D.30: Trend step 15 host radio data..................................................................... 147 

Figure D.31: Trend step 15 engine data.......................................................................... 148 

Figure D.32: Trend step 16 host radio data..................................................................... 149 

Figure D.33: Trend step 16 engine data.......................................................................... 150 

Figure D.34: CR toolset trace showing cognitive engine reacting to known channel.... 151 

Figure D.35: Trend step 17 host radio data..................................................................... 152 

Figure D.36: Trend step 17 engine data.......................................................................... 153 

Figure D.37: Trend step 18 host radio data..................................................................... 154 

Figure D.38: Trend step 18 engine data.......................................................................... 155 

Figure D.39: Trend step 19 host radio data..................................................................... 156 

Figure D.40: Trend step 19 engine data.......................................................................... 157 

Figure D.41: Trend step 20 host radio data..................................................................... 158 

Figure D.42: Trend step 20 engine data.......................................................................... 159 



 xiv

List of Tables 
 

Table 1.1: My Research Contributions ............................................................................. 10 

Table 1.2: Related Research Publications......................................................................... 12 

Table 1.3: Related Research Presentations and Reports................................................... 14 

Table 3.1: WSGA Chromosome Parameters .................................................................... 49 

Table 5.1: WSGA Fitness Functions Used in Simulation................................................. 75 

Table B.1: VTIP Disclosure No. 03-056 ........................................................................ 110 

Table D.1: WSGA Fitness Functions Used in Simulation.............................................. 126 

 

 

 

 



 1

 

 

 

 

 

Chapter 1: Introduction 
 

The need for secure and robust communications is becoming more apparent every day. 

Wireless services are becoming largely ubiquitous throughout the nation, although still 

expensive. The explosion of IEEE 802.11 B/G/A wireless data and voice over IP 

networks, often called Wi-Fi for “Wireless Fidelity,” has shown that for the “last mile” 

connection to a consumer, affordable broadband wireless is the preferred method of 

delivering bits from a fiber, cable, or satellite to your favorite digital computing pod, 

whether those bits represent voice, video, or data. The dependence on digital wireless 

communications technology has led to two major results: forecasts that the nation’s 

wireless spectrum is dwindling and concerns that the wireless systems of today are not 

adequately robust and secure when emergency events like the September 11, 2001 attacks 

occur. 

 

Virginia Tech has been pursing research and development of rapidly deployable 

broadband wireless systems for disaster response communications the past half a decade 

[1]. Following September 11, 2001 it became evident that there was a need for self 

healing wireless networks and radios that could autonomously and legally evolve in time 

to meet the needs of the nation’s communications. At that time wireless technologies 

were emerging that allowed radios to adapt their behavior based on pre-calculated 

algorithms, a significant advance beyond the fixed radios of the past which had their 

operational parameters set at the time of manufacture [2]. Unfortunately when faced with 

unanticipated scenarios and electromagnetic environments, these adaptive radios often 

failed to function properly or experienced severe performance degradation [3]. As work 

progressed on highly flexible programmable radios based on software defined radio 
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technology, the idea of a radio that could evolve its capabilities in time and space began 

to appear as a plausible concept [4]. A radio that would operate reliably in unforeseen 

communications environments and potentially open up secondary or complimentary 

spectrum markets could effectively ease the perceived spectrum crunch while providing 

new competitive wireless services to the consumer [5]. 

 

Such cognitive radios, a term first coined by Joseph Mitola III [5][6], have become a 

topic of great research interest in the past few years. Many cognitive radio researchers in 

government and industry have adopted the Oxford English Dictionary (OED) definition 

of “cognitive” as “pertaining to cognition, or to the action or process of knowing,” and 

“cognition” is defined as “the action or faculty of knowing taken in its widest sense, 

including sensation, perception, conception, etc., as distinguished from feeling and 

volition”. Given this definition, the process of sensing an existing wireless channel, 

evolving a radio’s operation to accommodate the perceived wireless channel, and 

evaluating what happens is appropriately described as a cognitive process. This approach 

includes both awareness of the wireless channel and judgment of the best possible action 

to take given this knowledge. The convergence of research sponsored through the 

Defense Advanced Research Projects Agency (DARPA) NeXt Generation (XG) wireless 

program [7], governmental support of cognitive radio through the Federal 

Communications Commission’s (FCC) Notice of Proposed Rulemaking (ET Docket No. 

03-108) [8], and the upcoming National Science Foundation (NSF) Research in 

Networking Technology and Systems (NetS) programmable wireless networking 

program [9] point to an exciting next few years for cognitive radio researchers. This 

dissertation discusses these and other advances, including a vision for cognitive radio 

moving forward. 

 

1.1 Summary of the Evolution of Cognitive Radios  

 

It has been said that a picture is worth a thousand words. Figure 1.1 provides a brief 

timeline of advances in cognitive radio research and serves as a functional description of 

the enabling technology transitions that have occurred since Mitola introduced the term 
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cognitive radio in 1999. Mitola’s CR-1 cognitive radio prototype [10][11] modeled a 

context and location based cognition cycle at an application layer. His research pointed to 

the potential use of cognitive radio technology to enable spectrum rental applications and 

create secondary wireless access markets [12].  

 

 

 

Figure 1.1: Cognitive radio roadmap and functional evolution 

 

Recognizing that wireless systems underutilize spectrum, in 2002 DARPA funded the 

XG program [13] to create adaptive radios that sense and share use of the spectrum, with 

a focus on policy-based negotiation and radio etiquettes which leverage spectrum “holes” 

that open in space and time. These XG radios did not have cognitive learning and 

evolvable operation capabilities like those proposed by Mitola but could serve as 

potential hosts for cognitive wireless functions.  The excitement around the XG program 

reinforced momentum building at the FCC, whose policy makers were completing a 

study that they felt showed the nation’s wireless spectrum was underutilized in time and 

space [14].  

 

The summer of 2003 proved to be a turning point for the cognitive radio concept. After 

the FCC’s Spectrum Policy Task Force (SPTF) issued their fall 2002 report [15] and the 

FCC Office of Engineering Technology hosted a cognitive radio day, what followed sent 

shockwaves through the wireless industry. The FCC issued NPRM 03-108 on cognitive 

[5] 

 

 

[7] 

 

[18]
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radio [16] that opened up a broad dialogue on what cognitive radio is and what, if any, 

rules the FCC should impose on the fledgling technology. The FCC’s stated aim of the 

cognitive radio dialogue was to explore whether cognitive radio could open up 

competitive new wireless services through secondary or cooperative spectrum markets.  

 

The FCC spoke of “low hanging fruit,” or spectrum that could be re-assigned in time and 

space to open up new competitive wireless service offerings [17]. The FCC was 

particularly focused on providing broadband wireless to underserved markets. 

Interestingly, the FCC’s definition of an underserved communications market was based 

on the observed spectrum utilization, not whether the region was urban or rural. This 

definition was clearly aimed at encouraging innovative use of spectrum that they felt lay 

fallow and underutilized. 

 

I traveled to Washington, DC and attended numerous FCC hearings on cognitive radio as 

part of my research efforts. I heard definitions of cognitive radio that ranged from 

wireless systems that could switch between wireless profiles stored in a central database 

to talk of scanning receivers that interacted with elements of an artificial intelligence 

based expert system. These definitions mostly assumed a state of the art software defined 

radio as a host, implying that legacy data and voice broadband wireless systems used by 

the disaster communications community could not be made cognitive without expensive 

upgrades to infrastructure. My research the past five years has focused on rapidly 

deployable broadband wireless communications for disaster response, so with the 

encouragement and direction of my advisors, I focused my research interest in cognitive 

radio on creating a cognitive radio model and proof of concept for disaster 

communications systems. 

 

In 2004 our cognitive radio research team at Virginia Tech demonstrated a biologically 

inspired cognitive engine based on genetic algorithms (GAs) that is capable of learning 

and intelligently evolving a radio’s PHY and MAC behavior in the face of unanticipated 

wireless and network situations [18][19]. Our cognitive engine can be embedded in the 

XG agent and radio technology, with the policy and etiquette aware agents serving as 
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wrappers that enable communication between cognitive radio communities and the 

adaptive and spectrum aware radios serving as host platforms. 

 

1.2 Problem Statement, History, and Contributions 

 

This dissertation summarizes the doctoral research I pursued that led to a cognitive radio 

engine model and implementation in a hardware test bed and simulation test bench, with 

a focus on rapidly deployable disaster communications. My specific research 

contributions included developing a biologically inspired model of cognition in a radio 

and proposing that the chaotic meta-knowledge processing and optimization properties of 

distributed genetic algorithms could be used to map this model to a computable 

mathematical framework which included multi-stage distributed memories. This 

dissertation presents that work and describes my contribution to the implementation of 

that formalism in the cognitive radio research toolset developed in conjunction with our 

research team. 

 

A key research question that I set out to answer in my Ph.D. research was how to develop 

an appropriate structure and process for embedding cognition in a radio. What cognitive 

model should be used? Which host radio architecture? Which radio layer? The resulting 

architecture and algorithmic framework serve as the cornerstone of what I have labeled 

the “BioCR” formalism, with “Bio” standing for “biologically inspired” and “CR” 

standing for “cognitive radio.”  

 

My research included work developing and testing this formalism using a cognitive radio 

toolset. The toolset included a software simulation test bench and hardware test bed, both 

which could host the software implementation of the cognitive engine developed by our 

cognitive radio team that included myself, Dr. Charles Bostian, and graduate student 

colleagues Tim Gallagher and Tom Rondeau. Realizing these ideas in a real world test 

would not have been possible without each of their contributions.  
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Dr. Bostian encouraged our team to proceed with orthogonal, but interrelated problems. 

Tim Gallagher and my Ph.D. research were two sides of the same coin. Tim Gallagher’s 

research focused on quantifying wireless “paths of opportunity” for emergency 

communication, in which he developed an algorithm that could convert an impulse 

response to a bit error rate (BER) curve. My research focused using such channel metrics 

to control and evolve a radio in unknown wireless channels, in which I developed the 

BioCR formalism which included an algorithmic framework and model architecture. 

Tom Rondeau’s research focuses on extending the BioCR formalism to a cognitive 

wireless network, with results still to come.  

 

My specific research contributions included proposal and development of the BioCR 

behavioral model, process framework, input/output architecture, procedural algorithmic 

framework, and experimental application simulator which served as the baseline my 

comparative experiments between the cognitive engine and traditional adaptive 

controller. Gallagher’s specific contributions to this research included measurements of 

28 GHz diffuse scattering, developing an algorithm that mapped a channel response to a 

BER curve, applying this technique to set equalizer taps, and participation in a research 

dialogue while I was developing the BioCR formalism. Rondeau’s specific contributions 

to this research included implementation of the cognitive engine code and hardware test 

bed, design and implementation of the WSGA algorithm code, joint design and 

implementation of the WCGA algorithm code, implementation of the CSM algorithm 

code, and participation in a research dialogue while I was developing the BioCR 

formalism.  

 

My thanks extend to each of them for their contributions to this research and to Dr. 

Bostian for his steady guidance and input – our research team made amazing process the 

past year or so. 

 

Current wireless communication systems can be described as either fixed where the 

radio’s technical characteristics are set at the time of manufacture, or adaptive, where the 

radio can respond to channel conditions that represent one of a finite set of anticipated 
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events. Researchers like Mitola have postulated that cognitive radios could be used to 

enable intelligent wireless networks that evolve in time, but very few cognitive radios 

have been implemented. Due to my focus on disaster communications technology during 

my graduate research, I decided to concentrate my cognitive radio research on how to 

create a cognitive radio model and framework that could respond intelligently to an 

unanticipated series of events; i.e. learning to configure itself to optimize its operation in 

wireless channels that it has never encountered before. 

 

My research addressed a number of specific problems. When I began this research back 

in 2001, very little information existed about actual real world cognitive radio 

architectures or host radio platforms. Mitola’s work assumed a software radio platform, 

technology that was not yet available or affordable to the disaster communications 

community who were still using legacy radios with minimal programmability. 

 

One key research question that I explored was whether a legacy radio could host a 

cognitive engine, and how the engine would interact with the system. I adopted the idea 

of treating the radio as a vector of parameters, with inputs labeled as “knobs” and outputs 

labeled as “meters.” This concept was also emerging in the software radio community, 

championed by Friedrich K. Jondral of Universität Karlsruhe (TH) Germany in his talk 

describing “parameterized software radio.” 

 

A second major research question I explored was on which communications layer should 

I focus my cognitive radio engine model research? Existing software defined radio (SDR) 

research focused on the application (APP) layer, but I sensed that a new frontier lay 

ahead with agile radios which would require development of a cognitive radio engine that 

was focused on the physical (PHY) and medium access control (MAC) layers. Many 

researchers discussing cognitive radio had assumed a cognitive model based on an expert 

system accessing a database of radio profiles, a pure case-based system without learning 

capability. I decided that this central database concept would not be practical for disaster 

response applications, which inherently required a cognitive model that could 

autonomously learn without expert input or maintenance, since most of the cases that 



 8

exist in a disaster event would be new and therefore may not be present in the existing 

memory of the expert system. Other researchers like Mitola viewed the cognitive engine 

as a mechanism that operated at the radio’s application layer, serving as a task manager 

that could learn the users computing needs and then respond with the appropriate radio 

profile. Again, I felt that the disaster communications community needed cognitive radio 

communication links that could support such applications, but really the need was to 

develop broadband wireless links that were self-healing in the changing environments 

often observed in catastrophic situations.  

 

A third major research question I explored was what model of cognition should be used 

and how could it be implemented in a computing environment. What systems in the 

world today are good examples of self-healing learning systems? What algorithms serve 

as the foundation for these systems? I was struck by how fragile computing systems were 

and how robust biologically systems were, including insects, animals, and humans. These 

organisms were capable of evolving to meet new challenges. After some interesting 

discussions with cognitive development researchers Dr. Cosby Rogers and Dr. Janet 

Sawyers, I discovered that the cognitive development process of children through 

creative play mimicked the self-healing learning behavior I wanted to embed in my 

cognitive radio model for disaster communications. Most of these mathematical models 

of play utilized neural networks as their basis, but these lacked evolutionary capabilities 

to learn to adapt to unforeseen scenarios. 

 

I chose to focus my research on mapping this creative and chaotic learning mechanism to 

some form of mathematics. I discovered in the fall of 2002 through a dialogue with Dr. 

David De Wolf and Dr. Rogers that the properties of genetic algorithms and distributed 

multistage memories might serve as this mathematical glue. At the start of 2003, CWT 

spoke with DARPA about our interest in writing a research funding proposal for their 

cognitive systems research area. DARPA encouraged us to dig deeper and develop the 

mechanism that would be used to drive our proposed cognitive radio engine research. 

Tasked with developing this idea and with the encouragement of my advisors, I registered 

for and took a course on genetic algorithms taught by Dr. Walling Cyre. The first week in 
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class Dr. Cyre introduced me to the concept of distributed meta-genetic algorithms in a 

theoretical paper that he and his students wrote about adaptive GAs. I decided to focus 

my Ph.D. research on extending this theoretical meta-learning algorithm to my 

biologically inspired cognitive radio model, proposing to pursue this work for my 

semester class project. I proceeded with this research.  

 

About a month into the spring 2003 semester Dr. Bostian suggested that I chat with then 

senior undergraduate student Tom Rondeau, as Tom was auditing the genetic algorithm 

class. Tom expressed interested in the cognitive radio Ph.D. research I was pursuing and 

in joining our research team, so I briefed him on my research and current direction. With 

the encouragement of Dr. Bostian, Tom and I teamed up to further develop my proposal 

of applying meta-genetic algorithms to cognitive radio. Tom and I drafted a white paper 

that served as the basis for a patent disclosure requested by Virginia Tech. Due to time 

constraints, Tom and I decided to explore the possibility of applying a genetic algorithm 

to train a hidden Markov model of a wireless channels as the class semester project. This 

first proof of concept algorithm served as a starting point for our team’s effort to 

implement distributed meta-genetic learning and radio adaptation algorithms. Tom 

decided to stay to pursue his M.S.E.E. at Virginia Tech and continue as part of the 

research team, and is now a direct-Ph.D. student leading a team of students building on 

this research. 

 

The research collaboration between Dr. Bostian, Dr. Cyre, Tom, and Tim over the past 

year or so has been quite productive. This dissertation details the results of my 

contributions to that three year research effort. 

 

1.3 Organization 

 

This dissertation is organized into seven chapters and four appendixes. Chapter 1 

introduces and motivates the cognitive radio research presented in this dissertation. 

Chapter 2 discusses the history of cognitive radio (CR) and provides system and 

mathematical foundations for cognitive radio. Chapter 3 introduces the bio-formalism as 
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a vehicle for embodying the CR concept into a model, framework, architecture, and 

algorithms. Chapter 4 discusses the methodology used in the experimental study of the 

proposed BioCR model and framework. Chapter 5 presents and analyzes results from the 

CR simulation test bench experiments. Chapter 6 presents and analyzes results from the 

CR hardware test bed experiment. Chapter 7 summarizes the research and provides 

recommendations for future research.  

 

Appendix A references the patent application Virginia Tech Intellectual Properties 

(VTIP) submitted covering the cognitive engine model presented in this dissertation. 

Appendix B is a glossary. Appendix C includes documentation of simulation test bench 

blocks and code used to test the BioCR engine. Appendix D includes detailed data dumps 

from the BioCR toolset simulation run. Appendix E documents my research progress 

made as part of the National Science Foundation (NSF) Integrative Graduate Education 

and Research Traineeship (IGERT) Integrated Research and Education in Advanced 

Networking (IREAN) research community. A bibliography and my vita are included at 

the conclusion of the dissertation. 

 

1.4 Details of Research Contributions and Resulting Publications 

 

My research contributions include creation of a biologically inspired model, framework, 

architecture, algorithms, and simulation application that realize a cognitive radio (CR). 

Table 1.1 below provides additional details about each contribution.  

 

Table 1.1: My Research Contributions 

 

MODEL  

(describes behavior) 

Created Biologically-Inspired CR Engine Model based on 

Mitola’s CR concept and cognitive development theories 

 

FRAMEWORK  

(describes process) 

Developed framework for CR Engine Model using cognitive 

development process and genetic algorithms 
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ARCHITECTURE  

(describes components) 

Developed architecture for CR Engine Model, including 

structure and choice of components 

 

ALGORITHM  

(describes procedure) 

Developed the Cognitive System Monitor (CSM) algorithm for 

CR Engine Model cognitive process 

 

SIMULATION  

(describes applications) 

Designed and implemented CR simulation test bench using 

MATLAB-Simulink to test CR Engine Model. Presented method 

for creating HMMs representing wireless channel models using 

genetic algorithms instead of traditional expectation 

maximization (EM) techniques.  

 

CR ANALYSIS Interpreted CR Engine Model test results to provide 

recommendations for next generation of CR Engine Models 

 

DISTRIBUTED CR Proposed distributed CR Engine Model for CR Network 

 

WSGA INPUT Contributed to design and implementation of Wireless System 

Genetic Algorithm (WSGA) algorithm 

 

WCGA DESIGN Jointly designed and implemented Wireless Channel Genetic 

Algorithm (WCGA) algorithm 

 

IMPLEMENTATION Throughout the research process I helped researchers implement 

parts of CR Engine Model into CR engine and hardware test bed 

 

 

Tables 1.2 and 1.3 list papers and conference presentations that I have made or 

contributed to about this research, including a patent application that Virginia Tech filed 

in June 2004 based on this dissertation. In addition to these publications, I helped a 

graduate student project team complete a report describing a cognitive wireless network 
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inspired by my research, the CRANIAsim (Cognitive Radio for Adapative Networking 

and Integrated Access Simulation). This project was done as part of the NSF IGERT 

sponsored Integrated Research and Education in Advanced Networking (IREAN) 

Simulation and Optimization course taught by Dr. Patrick Koelling. This research also 

served as the cornerstone for a grant proposal submitted to the NSF NetS program to 

build a cognitive wireless network utilizing the cognitive engine model presented in this 

dissertation. 

 

Table 1.2: Related Research Publications 

 

C. J. Rieser, T. W. Rondeau, C. W. Bostian, and T. M. Gallagher. “Cognitive Radio Test 

bed: Further Details and Testing of a Distributed Genetic Algorithm Based Cognitive 

Engine For Programmable Radios.” IEEE MILCOM, to appear October 2004. 

 

C. J. Rieser. “Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed 

Genetic Algorithms for Secure and Robust Wireless Communications and Networking.” 

Ph.D. Dissertation, Virginia Tech, August 2004. 

 

C. J. Rieser, T. W. Rondeau, C. W. Bostian, W. Cyre, and T. M. Gallagher. “Cognitive 

Radio Engine Based on Genetic Algorithms In A Network.” VTIP Reference Number 

03.056 -  Patent Application Filed by Virginia Tech, June 2004. 

 

T. W. Rondeau, C. J. Rieser, and C. W. Bostian. “Cognitive Radios With Genetic 

Algorithms: Intelligent Control of Software Defined Radios.” SDR Forum, to appear 

November 2004. 

 

T. W. Rondeau, C. J. Rieser, T. M. Gallagher, and C. W. Bostian, "Online Modeling of 

Wireless Channels with Hidden Markov Models and Channel Impulse Responses for 

Cognitive Radios, " IEEE International Microwave Symposium, June 2004. 
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C. W. Bostian, S. Midkiff, T. Gallagher, C. Rieser, T. Rondeau, M. Kurgan,  L. 

Carstensen, G. Morgan, D. Sweeney, and J. Hood, “Test bed for High-Speed 'End-to-End' 

Communications in Support of Comprehensive Emergency Management,” National 

Conference on Digital Government Research (dgo2004) Seattle, WA, May 24-26, 2004. 

 

Center for Wireless Telecommunications at Virginia Tech, “CANSAS (Cognition Across 

Networks for Sharing Access to Spectrum),” NSF NetS grant proposal, April 2004. 

 

C. W. Bostian, S. F. Midkiff, T. M. Gallagher, C. J. Rieser, and T. W. Rondeau, "Rapidly 

Deployable Broadband Communications for Disaster Response, " Proceedings of the 

International Symposium on Advanced Radio Technologies (ISART), invited paper in 

Department of Homeland Security (DHS) SAFECOM session, Boulder, CO, March 2-4, 

2004, NTIA Special Publication SP-04- 409, pp. 87-92. 

 

C.W. Bostian, T.M. Gallagher, C. J. Rieser, T.W. Rondeau. “Cognitive Radio – A View 

from Virginia Tech,” Software Defined Radio Forum, invited paper in Cognitive Radio 

session, Orlando, FL, Nov. 17-19, 2003. 

 

C. J. Rieser, T. W. Rondeau, and C. W. Bostian. “Cognitive Radio Architecture Based on 

Genetic Algorithms: A Proposed Architecture and Some Initial Results.” Draft journal 

paper, September 2003. 

 

C. J. Rieser. “Design and Implementation of Sampling Swept Time Delay Short Pulse 

(SSTDSP) Channel Sounder for LMDS.” M.S. Thesis, July 2001. 

 

J. H. Reed and C. J. Rieser. “Software Radio: Technical, Business, and Market 

Implications. “World Markets Series Business Briefing: Wireless Technology 2001, 

World Market Research Centre, October 2000, pp. 146-150. 
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Table 1.3: Related Research Presentations and Reports 

 

C. J. Rieser. “Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed 

Genetic Algorithms for Secure and Robust Wireless Communications and Networking.” 

Ph.D. Final Defense, Virginia Tech, August 2004. 

 

C. J. Rieser, T. W. Rondeau, and C. W. Bostian. Cognitive Radio Research, Briefing to 

CWT NSF NetS research team, April 27, 2004. 

 

C. J. Rieser, T. W. Rondeau, and C. W. Bostian. Genetic Algorithms and Cognitive 

Radio Research, Presentation to graduate class, ISE 5984: Optimization and Simulation 

in Networks and Telecommunications NSF IGERT IREAN class taught by Dr. Patrick 

Koelling, April 14, 2004. 

 

C. J. Rieser, T. W. Rondeau, and C. W. Bostian. Genetic Algorithms and Cognitive 

Radio Research, Presentation to undergraduate class, ECE 4510: Genetic Algorithms 

and Evolutionary Computing class taught by Dr. Walling Cyre, April 8, 2004. 

 

T. W. Rondeau, C. J. Rieser, C. W. Bostian, T. M. Gallagher. Cognitive Radios: An 

Overview Of A Cognitive Radio Engine and Channel Modeling Techniques, Spring 2004 

Virginia Tech ECE Communications Seminar, March 19, 2004. 

 

C.W. Bostian and C. J. Rieser. Rapidly Deployable Broadband Communications for 

Disaster Response, invited ISART Department of Homeland Security SAFECOM panel 

speakers, March 2004. 

 

C. J. Rieser, T. W. Rondeau, C. W. Bostian, and T. M. Gallagher. Biologically Inspired 

Cognitive Radio Test bed Based on Genetic Algorithms, NSF IREAN Research 

Workshop, February 2004. 
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C. J. Rieser, T. W. Rondeau, and C. W. Bostian. Cognitive Radios Based on Biologically 

Inspired Techniques, NSF Networking Technology and Systems (NetS) Forum, February 

2004. 

 

C. J. Rieser. Biologically Inspired Cognitive Radio Architecture based on Genetic 

Algorithms. NSF IREAN site visit, January 2004. 

 

C. W. Bostian, T. M. Gallagher, C. J. Rieser, and T. W. Rondeau. Invited Panel: 

Cognitive Radio – A View from Virginia Tech, Software Defined Radio (SDR) Forum, 

November 2003. 

 

C. J. Rieser. Invited Panel: A Research Perspective on Cognitive Radio Technology. 

CWT Wireless Opportunities Workshop (WOW), September 2003. 

 

C. J. Rieser, T. W. Rondeau, C.W. Bostian, T. M Gallagher, and W. Cyre. Biologically 

Inspired Cognitive Wireless L12 Functionality. NSF IREAN Research Workshop, April 

2003. 

 

C. J. Rieser and C.W. Bostian. Cognitive Radio Models for Wireless Systems. NSF 

IGERT IREAN Research Workshop, May 2002. 

 

C. J. Rieser. “Design and Implementation of Sampling Swept Time Delay Short Pulse 

(SSTDSP) Channel Sounder for LMDS.” M.S. Final Defense, July 2001. 

 

 

1.5 Summary 

 

Chapter one presented a summary of the evolution of cognitive radios as well as the 

research problem statement, historical perspective, and a summary of individual 

contributions. The organization of the dissertation was documented along with additional 

details of my research contributions and resulting publications, presentations, and reports. 
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Chapter 2: History of Cognitive Radio - System and Mathematical 

Foundations 

 

Cognitive Radio (CR) has received significant attention recently as a potentially 

disruptive technology. This section discusses the history and mathematical foundations of 

cognitive radio and mathematical foundations for biologically inspired models of 

cognition. 

 

Emerging programmable radio technology like the frequency and waveform agile radios 

available as part of the Joint Tactical Radio System (JTRS) program [20] promise to open 

up new opportunities for robust and secure military communications. These software 

defined radios (SDR) will become even more powerful with the addition of 

electromagnetic environment sensing technologies that are being developed through the 

Defense Advanced Research Projects Agency (DARPA) NeXt Generation (XG) 

Communications research program. DARPA is developing the XG technology to allow 

multiple users to share use of the spectrum through adaptive mechanisms that distinguish 

users in terms of time, frequency, code, and other signal characteristics. DARPA's goals 

are to enable an increase of a factor of twenty in the usage of typical spectrum [21]. 

 

In [5], Mitola proposed that a cognitive radio could serve this purpose, allowing an 

adaptive radio to adjust its operation based on information captured from the environment 

as well as measurements of its own performance. Various “meters” that describe the 

current radio performance can capture information provided by the radio about its 

operation in a given wireless channel. Mitola’s cognitive cycle appears as a directed 

graph that includes various states such as Observe, Orient, Learn, Plan, Decide, and Act. 
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Most information processing research to date would interpret that cycle as a candidate for 

the “if-then-else” paradigm commonly found in artificial intelligence literature. The 

Mitola cognition cycle then translates the resulting decision logic output to settings for 

the various radio “knobs” that control the wireless system’s behavior in a given wireless 

channel.  

 

This approach requires extensive, branching logic and requires recalculation when the 

decision space changes in response to environmental shifts or changes in system 

capability. These changes may be either complementary in which new function or 

waveforms become available or catastrophic in the case that part of wireless network is 

destroyed. 

 

This dissertation presents a biologically inspired model of cognition which is flexible and 

self evolving in the face of chaotic and fluctuating decision spaces, unlike the brittle 

nature of traditional artificial intelligence (AI) expert systems of the past. 

 

2.1 Mitola’s Cognitive Radio (CR) Concept 

 

Joseph Mitola’s cognitive radio concept sprung from his pioneering work on software 

radio. Mitola postulated about a decade ago that a major shift was occurring from 

hardware centric radio design and implementation to software centric design and 

implementation [22]. Mitola proposed that taken to the limit over time, traditional radio 

design would change from a mix of most radio functions being performed in fixed 

hardware subsystems with only some radio functions performed through software 

execution to the majority of radio functions performed through software execution with a 

minimum set of radio functions being performed in fixed hardware subsystems [23]. The 

evolution of analog cellular radio in the 1980’s to the emergence of digital cellular 

systems and commercial Software Defined Radios (SDRs) post 2000 has shown Mitola’s 

vision is becoming a reality.  
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SDRs are viewed as an interim step towards a full software radio architecture, in which 

certain reprogrammable radio functions are realized in software on a general purpose 

processor, but some functions like radio frequency (RF) mixing and filtering may still 

occur in hardware. Mainstream acceptance of software radio requires affordable 

wideband high speed analog to digital converters (ADC) and digital to analog converters 

(DAC). 

 

Mitola created some of the first SDRs for the military in the early 1990s, serving as a 

consulting scientist with MITRE since 1993. Then he created a software radio 

architecture course in 1995 which he taught for four years [24]. The course material was 

turned into a book, Software Radio Architecture: Object Oriented Approaches to 

Wireless Systems Engineering [2]. Near the end of the decade Mitola’s interests shifted 

from fundamental software radio architectural issues to researching hurdles to affordable 

software radio. 

 

Mitola’s Ph.D. dissertation [11] focused on how these next generation programmable 

software radio systems could be used. He surmised that given the flexibility inherent in 

software radios, a new “smart” radio could be developed that was capable of sensing the 

surrounding wireless environment and user communications and computing needs and 

acting to meet those needs. Mitola proposed an emerging topic within software radio, 

cognitive radio. By Mitola’s definition a cognitive radio was a class of software radio that 

employed model-based reasoning and at least a chess-like level of sophistication in using, 

planning, and creating radio etiquettes. As such Mitola felt that a realization of a 

cognitive radio was easily five to ten years in the future. 

 

This dissertation assumes a different definition for cognitive radio than Mitola. Rather 

than requiring a software radio as a baseline for cognitive radio functions, this research 

assumes that the cognitive functions that make a radio cognitive are hosted by any agile 

radio including either legacy radios or software defined radios. Software defined radios 

are treated as a radio with more “knobs” to turn and “meters” to observe than legacy 

radios. The more flexible the host radio, the more powerful the cognitive capabilities. 
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This position was assumed so that the cognitive engine presented in this dissertation 

could be used to enable cognitive radio functions on existing legacy disaster 

communications equipment, while allowing growth for up and coming programmable 

SDR technology. 

 

Mitola’s dissertation discusses the various operational levels of a software radio, but the 

cognitive radio formalism presented in his dissertation focuses almost solely on the 

application layer and higher. This research instead treats cognitive radio functions as 

inherent to physical (PHY) and medium access control (MAC) layer operations. The 

resulting “embedded cognition” requires a robust model and framework which is 

capability of operating within the computing constraints available in current wireless 

hardware platforms. In addition, traditional machine learning techniques require 

significant computational resources, which could limit the utility of a cognitive radio – 

who would want a smart radio which can intelligently learn but drains a battery and 

memory ten times faster than older technology without intelligence? 

 

To synthesize a cognitive radio model suitable for a PHY and MAC layer, I pursued 

research that started with efficient biologically inspired models of cognition instead of 

existing computational focused cognition models that are widely known in the artificial 

intelligence community. 

 

2.2 Biologically Inspired (Bio) versus Artifical Intelligence (AI) Cognitive Models 

 

The limitations to current cognitive modeling are well known and documented [25]. 

Chess class supercomputers are regularly pitted against world class human subjects to see 

which can “outsmart” the other. Such AI approaches rely on pure computational 

horsepower and complexity to “outwit” the competition. Very little research has been 

pursued on the opposite extreme – what is the minimum amount of “intelligence” needed 

to make a computationally lightweight and self evolving cognitive model that can evolve 

its behavior with changing environmental inputs?  
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Examples of traditional cognitive approaches derived from AI computational techniques 

include rule based systems, expert systems, fuzzy logic, and neural networks [26][27]. 

Each of these approaches has severe limitations that diminish their operational value for 

on-line cognitive radio functions, especially in changing wireless environments. Rule 

based systems are limited to fixed capabilities designed into their rule set. Expert systems 

are notoriously brittle and dependent on an external expert that must be present when the 

view of the environmental system response changes. While fuzzy logic permits 

approximate solutions to be found in the face of uncertain inputs, the logic used to find 

the approximations does not have an inherent evolutionary ability that allows the logic to 

change in time as capabilities are required and environments are encountered. The most 

recognized AI technique for cognitive modeling, neural networks, is typically 

uncontrollable in that it may or may not play within a set of operational constraints, given 

the inherent “black-box” nature of its operation. Most neural networks require extensive 

training to replicate observed behaviors and usually behave in unexpected ways when 

presented with a totally new problem to solve. 

 

The biologically inspired cognitive radio model presented in this dissertation was 

developed to address the traditional short comings of AI systems that lacked distributed 

self evolution and learning capabilities often observed in models of the human cognitive 

development process. 

 

Traditional AI research has focused software implementations of cognition at the 

application (APP) layer. Current software radio approaches to cognition have been 

notably layer three or application (APP) centric due to the AI legacy. Unfortunately, 

assuming the presence of a workstation class application computational host can result in 

the acceptance of levels of complexity not accepted in PHY and MAC layer cognitive 

functions. These layers may be limited in power consumption, size, or digital architecture 

and processing complexity. This research assumes that the cognitive functions operating 

to control an agile radio may be resource or time limited. Such functions should be 

designed not search for “the solution” but instead “a solution” that meets the balance of 
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needs as best as possible within the Quality of Service (QOS) and legal requirements 

presented to the cognitive engine. 

 

This dissertation provides contributions that address the current lack of research focused 

on adding intelligence and evolution to physical “PHY” and medium access control 

“MAC” layers of a radio system. 

 

2.3 Evolvable Hardware for Programmable Wireless 

 

One of the requirements of a cognitive radio is the ability to evolve a host radio’s 

operation when faced with a changing environment. As such, at a minimum a radio must 

be programmable in its “knob” values and at best must be able to add new “knobs” when 

needed. In the same way, a cognitive radio requires that cognitive functions can read 

existing radio “meters” and potentially request new “meters” or metrics from the host 

radio. Creating a “self aware” programmable wireless platform is the subject of current 

research. 

 

I worked with the cognitive radio research team at the Center for Wireless 

Telecommunications (CWT) at Virginia Tech including Dr. Charles Bostian, Tim 

Gallagher, and Tom Rondeau to implement the cognitive engine model described in this 

dissertation in a hardware test bed. The test bed includes a software system, which, 

together with its associated hardware, is capable of modifying its behavior in response to 

conditions that change quickly and in unexpected ways.  I also built a flexible software 

simulation test bench in MATLAB-Simulink that models an adaptive radio link capable 

of hosting the cognitive engine software as a co-simulation. 

 

The cognitive engine can turn any radio transceiver with “meters” (outputs like data rate 

that indicate current performance) and “knobs” (inputs like channel frequency) into a 

cognitive radio (a radio that behaves like an intelligent being, sensing its environment and 

modifying its behavior to meet its goals).  If multiple cognitive radios are combined in a 

network, the software allows them to share information and work cooperatively, creating 
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a network which is itself cognitive and can organize its members to meet specified goals 

like minimizing the amount of radio spectrum occupied or maximizing the amount of 

information transmitted.  Built in rules ensure that actions taken by the network are 

equitable and legal.   

 

The  National Science Foundation (NSF) recently announced a new program called NSF 

NetS program solicitation NSF 04-540 [9] that seeks to exploit the capabilities of 

programmable radios to make more effective use of the frequency spectrum and to 

improve wireless network connectivity. The cognitive engine model described in this 

dissertation served as the cornerstone for a proposal Virginia Tech submitted to NSF 

NetS describing a project called CANSAS (Cognition Across Networks for Sharing 

Access to Spectrum) whose objective is to build a cognitive network and study its 

behavior and the implications of that behavior for radio resource allocation and wireless 

system operation. The proposed network will consist of 10-30 cognitive transceivers 

operating in the 2 MHz – 2 GHz radio spectrum.  The radios and the network will solve 

multidimensional problems of spectrum access and transmission efficiency - for example, 

how a wireless local area network can share an FM broadcast channel by hiding below 

the noise level of the FM receivers, modifying its behavior as needed to remain hidden.  

In networking terms, the radios will think across the PHY (physical) layer (the physical 

characteristics of the radios, like their transmitter power), the MAC (medium access 

control) layer (how the individual transceivers share the radio channel), and beyond.   

 

2.4 Virginia Tech Broadband Wireless Channel Sounder 

 

The cognitive engine model presented here relies on snapshots of the current wireless 

channel to evolve its behavior. In the future the task of sensing a wireless channel may be 

realized by fast spectrum sampling chipsets, like those being developed in the DARPA 

XG program. Scanning receivers that use high resolution and high speed spectrum 

sampling chipsets can provide channelized views of the wireless environment and permit 

cognitive functions to solve multimodal access optimization problems. 
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The current cognitive radio hardware test bed has been designed to use channel 

performance data from a wireless channel sounder shown in Figure 2.1. Virginia Tech 

created such a sounder for use in rapidly deployable wireless disaster response 

communications [28].  

 

  

Figure 2.1: Virginia Tech broadband channel sounder 

 

 

The Virginia Tech Sampling Swept Time Delay Short Pulse (SSTDSP) Broadband 

Wireless Vector Channel Sounder uses alternative processing methods to reduce the 

complexity and cost of implementing a wideband digital channel measurement system. 

The SSTDSP sounder transmits an impulse-like signal, or Ultra Wide Band (UWB) pulse 

shape, over the wireless channel of interest and uses the SSTDSP method to 

economically and efficiently digitize the received channel impulse response in the time 

domain.  The SSTDSP sounder has been used by [29][30][31] to identify “paths of 

opportunity” for rapidly deployable broadband wireless disaster response 

communications. These paths may be non line of sight or reflected single "bounce paths" 

that extend the effective coverage of a wireless communications network.  
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The digital impulse response is used to assemble the power delay profile and calculate a 

number of key metrics that allow researchers to determine the sustainable bandwidth over 

that link. The sustainable bandwidth of a wireless link is a tradeoff between data rate, bit 

error rate, and throughput. By providing this information to Geographic Information 

Systems (GIS) applications operating in the field, an optimum network topology can be 

calculated. In addition, the status of the channel can be monitored and radio 

characteristics optimized to provide control of error correction coding, modulation, and 

power levels. 

 

Recent research by Gallagher showed that wireless link performance can be directly 

estimated from a channel impulse response taken from the channel sounder [31]. 

Gallagher’s algorithm calculates bit error rate (BER) performance of unanticipated fixed 

disaster response communications channels that may contain specular reflections and/or 

diffuse scattering. These observed channel statistics can then serve as inputs to the 

cognitive model proposed in this dissertation, allowing classification of the channel and 

resulting control of the agile radio platform to ensure robust and secure communications. 

Gallagher’s research contributions serve as the front end to a cognitive radio, providing 

efficient channel performance characterization, while my research focused on what the 

radio would do with this online channel description.  

 

When the sounder is used for fixed broadband wireless systems it must periodically pass 

its channel measurements much less frequently than mobile devices would require. While 

the Virginia Tech sounder provides a current snapshot of the electromagnetic 

environment to the cognitive radio, since the cognitive engine is fully distributed not 

every cognitive radio requires a sounder. The sounder can characterize the channel and 

then pass those channel statistics to other neighboring cognitive radios, in a scanning 

receiver mode.  

 

The sounder was designed for high speed wireless backbone applications and therefore is 

too large and expensive for small mobile radio applications. New high speed spectrum 
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sampling application specific integrated circuits (ASIC) are being developed by vendors 

that may some day be transitioned to mobile devices. 

 

2.5 Compact Channel Models at the Symbol/Waveform Level 

 

This research was conducted prior to Gallagher developing his algorithm, so the 

algorithm was not available to quickly characterize the waveform level wireless channel 

and map channel changes to bit error behavior. A method of rapidly and compactly 

capturing and storing the symbol level error behavior of the channel was needed. Given 

that Hidden Markov Models (HMMs) have been used to generate error patterns in 

communications system simulation, they were chosen as a candidate for compactly 

describing the symbol level bit error behavior of a channel. I investigated the use of 

genetic algorithms to train HMMs, which served as a proof of concept exercise for the 

use of GAs in cognitive radio. A brief discussion of HMM channel modeling is provided 

in this section. 

 

Gilbert first proposed a method for modeling burst error digital channels [32]. In his 

model shown in Figure 2.2, the channel has two states, a good state and a bad state. The 

transitions between these states are governed by a transition probability matrix A, where 

the variables c,d,C, and D are probabilities [33]. Rows of the matrix A must sum to one. 

Good
Sym

Bad 
Sym

C

c

D

d

 

A =  [D C] 

 [c d ] 

Figure 2.2: Gilbert’s model 
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One of the primary limitations of Gilbert’s model is that it lacks the ability to describe 

more complex bit error state transitions due to its simple geometric distribution. 

 

Fritchman improved on Gilbert’s model by proposing a state partitioned model in which 

there is more than one good state and errors occur only in one bad state with probability 

of one [35]. The burst length distribution is therefore polygeometric which is more 

realistic than Gilbert’s model, but the Fritchman model assumes that the intervals 

between consecutive errors are independent and identically distributed, which is not 

always true of experimental data.  

 

Fritchman’s model is illustrated in Figure 2.3 [35]. 

 

 

 

 

Good 
State  

1 

Good 
State 
N-1

Bad 
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Figure 2.3: Fritchman’s model 

 f(Good state 1) = 0 

 f(Good state 2) = 0  f(Bad state) = 1 

 … 
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The limitations of Gilbert and Fritchman’s models led some researchers to propose multi-

state Markov models like HMMs. Since HMMs have more than one good state and bad 

state, they are able to characterize the dependence between successive error and error-

free runs [36].  

 

Per Rabiner’s tutorial [37], Hidden Markov Models are described by the set λ = (A, B, π), 

where A is a transition probability matrix, B is an observation probability matrix, and π is 

the initial state matrix. The transition matrix A governs what state the wireless channel 

switches to, while the B observation matrix determines which error symbol will be 

displayed for a given radio channel state. The initial state matrix π controls the initial 

state of the wireless channel modeled by the HMM. 

 

The HMM of Figure 2.4 has N = 3 states and M = 2 possible outputs from any state. 

 

A    B   π   

A11 A12 A13  B11 B12  π 1 π 2 π 3 

A21 A22 A23  B21 B22     

A31 A32 A33  B31 B32     

 

Figure 2.4: An example HMM 

 

Typically, there are three problems of interest when applying HMMs to real world 

models: 

 

1. EVALUATE: Given an observed sequence O and model λ, efficiently compute 

P(O| λ) the probability of the observed sequence given the model 

2. DECODE: Given an observed sequence O and model λ, choose the optimal state 

sequence Q that best explains the observed sequence 

3. TRAIN: How can the HMM parameters λ = (A, B, π) be adjusted to maximize 

P(O| λ) the probability of the observed sequence given the model ? 
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Problem 1 “Evaluate” can be thought of as a scoring of how well an HMM model λ 

matches a given observation sequence, which allows us to pick among competing HMM 

models the model that “best fits” the observations. The observed sequence can then be 

processed to formulate statistical metrics like a probability density function (pdf) that can 

be compared to the pdf of the original data that was used to derive the HMM model λ. 

 

Problem 2 “Decode” can be thought of as an attempt to find the “correct” state sequence 

that generated the observed sequence. Researchers note that except for degenerate models 

no “correct” state sequence can be found due to the statistical nature of the model 

because several reasonable optimality criteria can be imposed to determine the “correct” 

state sequence. Each time the model is run, a different state sequence can be found that 

matches the given model. Therefore, use of the state sequence is primarily to learn more 

about the structure of the model by observing average statistics of individual states. For 

the application of communications system error generation modeling, one is less 

concerned with the exact state sequence and more concerned with the statistics of the 

observed sequence produced by a given HMM. 

 

Problem 3 “Train” is perhaps the most important problem as it allows us to optimally 

adapt HMM model parameters to observed training data thereby producing the most 

accurate models for real world signals. 

 

Typically, iterative solutions are used instead of analytic methods because of the 

complexity of the problem. The Baum-Welch Algorithm (BWA) is the classical iterative 

method used to estimate and train an HMM model λ = (A, B, π) to maximize P(O|λ). 

Most of the complexity of the BWA resides in the second step of the iteration, which is 

based on expectation maximization (EM) techniques. 

 

1. Let the initial model be λ0 

2. Compute the new λ based on λ0 and observation O 
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3. If the log P(O| λ) – log P(O| λ0) < DELTA stop, where DELTA is some small 

difference 

4. Else set λo = λ and go to step 2 

 

The GA approach to training an HMM is also an iterative method but instead uses the 

GA’s ability to achieve global optimization in a parallel manner to rapidly find the best 

HMM model for a channel. 

 

HMMs have some similarities to neural nets. Just as the transitions between states in an 

HMM are hidden, neural nets have a hidden layer that converts input layer stimulus to 

output layer response. These hidden layers allow the computational graph to model 

complex error symbol behavior. The neurons in neural nets are weighted nodes with 

activation functions that operate on input layers to detect features hidden in the input 

layer. The detected features are then used by the output layer to present a network 

response. HMMs use the hidden statistical transitions between internal states in concert 

with output observation probability vector to model complex observed responses 

generated by the interaction between an input stimulus and the environment.  

 

HMM characterizations of wireless channels have many applications. Researchers have 

shown that the performance of various decoding techniques depends on the bursty nature 

of the errors in the received data packet [38].  Since the specific nature of a mobile 

wireless channel often results in bursty received errors, the physical layer radio 

performance must be characterized by both the bit error rate (BER) and a mechanism to 

emulate the burst nature of error streams [39].  HMMs are well suited to this task and can 

be trained via statistically accurate data obtained from off-line simulations.  

 

As an example, a simulation model implements every transmission element and can be 

used to derive the wireless channel behavior in terms of error distribution. The emulation 

model considers the system as a black box, which implies a loss of accuracy with respect 

to simulation models but is adequate to operate in real time.  The results from using 

HMM models to emulate wireless channels indicate that the loss of accuracy using 



 30

HMMs is negligible, while providing significant reduction in time and resources when 

compared to real simulation of the system.  

 

HMM characterizations may be validated by a two step process [40]:  

 

(1) Validation of errors introduced by the channel 

(2) Validation of the soft decision information associated with each bit.  

 

The validation of errors introduced by the channel consists of analyzing the errors within 

the frame and comparing them with those of the real channel simulation. The analysis is 

done by means of the metric generated by the channel and the simulation metric.  

 

Specifically, the following statistics may be computed: 

 

(1) Histogram of number of errors per block or frame 

(2) Histogram of the length of error bursts 

(3) Histogram of free error intervals 

 

The validation of the soft decision information associated to every bit requires computing 

the following statistics and comparing them to the simulations of the real channel: 

 

(1) Histogram of block soft decision mean 

(2) Histogram of dispersions around means with non-zero probability 

(3) Histogram of soft decision levels for every non-zero mean 

 

By using a known HMM of the wireless channel to generate the bit error behavior of 

wireless channels, a typical simulation time savings of two or more orders of magnitude 

can be observed when compared to traditional Monte Carlo simulations [36]. Libraries of 

HMM characterizations can be used to emulate and classify observed channels. 
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While they are compact and fast representations of symbol level error channels, HMMs  

of wireless channels do have limitations. If a wireless channel or radio under test 

changes, a new HMM must be created. This dissertation presents a method for creating 

HMMs using genetic algorithms instead of traditional Baum-Welch expectation-

maximization (EM) techniques. 

 

Because of these limitations, the current instantiation of the cognitive engine uses 

statistics from symbol level error streams and sounder waveforms to classify wireless 

channels. These compact channel models permit the cognitive engine to operate both at 

the symbol level and waveform level. 

 

2.6 Overview of Genetic Algorithms 

 

Genetic algorithms (GAs) are algorithms rooted in biological functions like reproduction 

and evolution, capable of rapidly searching a solution space. David Goldberg provides an 

excellent discussion of genetic algorithms for optimization and machine learning in his 

1989 book “Genetic Algorithms: In search, Optimization, and Machine Learning” 

available through Addison-Wesley [65]. Goldberg’s book provided the foundation from 

which the GAs developed in this dissertation evolved. These algorithms operate on 

chromosomes, which may be representations of a multi-dimensional solution search 

space. Chromosomes are comprised of numerous individual “genes” which represent 

problem variables, each of which may take on different “allele” values which represent 

the variable scope. Figure 2.5 shows an example radio chromosome with individual genes 

and alleles: 

 

Genes                Æ Power Frequency Code Rate Modulation 

Chromosome 1  Æ 0 dBm 2 GHz 1/2 QPSK 

Chromosome 2  Æ 6 dBm 3 GHz 3/4 BPSK 

Figure 2.5: Example radio chromosome with alleles 
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Genetic algorithms take a population of chromosomes using a genetic operation called 

“selection” and mix the genes of its members through a genetic operation called 

“crossover” to produce offspring. These offspring solutions may be further randomly 

altered using a genetic operation called “mutation”. Figure 2.6 shows an example of 

crossover and mutation. 

 

 

Figure 2.6: Example radio chromosome crossover and mutation 

 

Each member of the entire population is then evaluated using a “fitness function” which 

represents how closely that chromosome solution solves the problem at hand; the most fit 

chromosomes survive and are “reproduced” and the rest are discarded. Figure 2.7 shows 

the final output of the GA, a radio with 0 dBm output power, 4 GHz center frequency, ½ 

code rate, and QPSK modulation. This information may then be passed to the radio 

through an operation called “expression” using an application programming interface 

(API) that translates the chromosome to operational radio commands. 

 

 

 

 

Step 1: selection of chromosome 1 and 3 based on minimum power fitness function 

Genes Power Frequency Code Rate Modulation Fitness (min power) 

Chromosome 1 0 dBm 2 GHz ½ QPSK QPSK 

Chromosome 2 9 dBm 4 GHz 2/3 64-QAM 64-QAM 

Chromosome 3 6 dBm 3 GHz ¾ BPSK BPSK 

…      

 

Step 2: crossover at power gene, see light and dark interchange 

Genes Power Frequency Code Rate Modulation 

Chromosome 1 6 dBm 2 GHz 1/2 QPSK 

Chromosome 3 0 dBm 3 GHz 3/4 BPSK 
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Step 4: selection of chromosome 1, minimum power 

Genes Power Frequency Code Rate Modulation 

Chromosome 1 0 dBm 4 GHz 1/2 QPSK 

Figure 2.7: Example radio chromosome selection 

 

By keeping the most fit chromosomes, the population converges on an optimal solution 

by exploiting best practices among the population members. When a population member 

achieves the optimal solution, it is chosen as the solution. GAs are particularly well suited 

for applications like cognitive radio where the search space can be time varying and 

require constant evolution, because 

 

1. GAs work with a representation of the parameter set, not the parameters 

themselves 

2. GAs search from a population of points, not a single point 

3. GAs use payoff (objective function) information, not derivatives or other 

auxiliary knowledge 

4. GAs use probabilistic rules, not deterministic rules 

 

In a simple GA like that above, several major steps occur: 

1. Reproduction 

2. Selection 

3. Crossover 

4. Mutation 

5. Expression 

 

In a cognitive radio framework based on GAs, crossover is viewed as a synthesis of best 

practices and mutation is viewed as a method for spontaneous inspiration and creativity. 

Since GAs operate on a coding of a parameter set and not the actual parameter set, they 

can be used in a number of applications and are well suited to evolving radios that have 

any number of knobs that can be turned. The flexible coding of chromosomes in GAs 
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also allows both the addition and evolution of knobs to a radio. Chromosome structure 

can simultaneously embody the current radio parameter set, channel behavior, and 

evaluation function used to evolve the radio. 

 

2.7 Summary 

 

Chapter 2 discussed the foundations of cognitive radio, including exploration of the 

concept, model, key mathematical techniques, and supporting hardware platforms. These 

foundations serve as the ingredients for the cognitive radio recipe proposed and detailed 

in Chapter 3. 
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Chapter 3: Bio-formalism as Vehicle for Embodying the CR Concept 

 
The previous two chapters provided an introduction, motivation, and history of cognitive 

radio research. Chapter 3 details my Ph.D. research proposal, including model, 

framework, architecture, and algorithms. In brief review, current wireless communication 

systems can be described as either fixed where the radio’s technical characteristics are set 

at the time of manufacture, or adaptive, where the radio can respond to channel 

conditions that represent one of a finite set of anticipated events. Researchers have 

postulated that cognitive radios could be used to enable intelligent wireless networks that 

evolve in time, but very few cognitive radios have been implemented. Due to my focus 

on disaster communications technology during my graduate research, I decided to 

concentrate my cognitive radio research on how to create a cognitive radio model and 

framework that could respond intelligently to an unanticipated event; i.e. a channel that it 

has never encountered before. 

 

3.1 Proposal: Bio-formalism as a Foundation for a Model of the CR Concept 

 

As discussed in Chapter 2, Mitola’s cognitive cycle appears as a directed graph that 

includes various states like Observe, Orient, Learn, Plan, Decide, and Act [5]. Most 

information processing research to date would interpret that cycle as a candidate for the 

“if-then-else” paradigm commonly found in the artificial intelligence literature. This 

approach requires extensive, branching logic and requires recalculation when the decision 

space changes in response to environmental shifts or changes in system capability. These 

changes may be either complementary in which new function or waveforms become 

available or catastrophic in the case that part of wireless network is destroyed. 
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I interpreted the cognitive cycle differently from a traditional branched logic or 

interconnected graph representation like a neural net. While most models of cognition 

based in artificial intelligence attempt to start with a computational model and then use 

that to model cognition, I chose instead to start with a biological framework of cognition 

based on the human cognitive development process, then mapped this framework to a 

computable model of the brain that was able to learn and evolve its operation using 

mathematical operators used by real biological systems to evolve their characteristics.  

 

This distinction is important. 

 

I have labeled the cognitive engine model proposed in this dissertation as biologically-

inspired because it uses genetic operator-based computational techniques observed in real 

biological systems to model the ongoing parallel cognitive development process. This 

approach is contrasted with historical efforts to map generic mathematical operations to a 

multitude of activation functions that AI researchers use to represent the neurons in a 

physical brain [41]. Such brain emulations have difficulty scaling to large systems due to 

the memory and nodal communications requirements – neurons require rapid 

interconnection communications that can be created or destroyed at a moment’s notice 

[42]. These nodal messaging requirements tax even the most powerful parallel computing 

architectures [43][44][45]. A fundamental feature of biological systems is their ability to 

evolve in response to external influences. Traditional AI approaches are unable to evolve 

their mathematical and functional structure to accommodate or assimilate new 

environments and tasks. This can be seen in the inability of one family of neural network 

activation functions to model all operations by the brain, further limiting a neuron’s 

inherent ability to evolve without external influence. In fact, biological neurons do not 

work backward to adjust the strengths of their interconnections called synapses, so the 

“back propagation” process used to train neural networks most widely used to in neural 

network models is a biologically inaccurate process model [46].  
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The abstraction proposed in this dissertation was created to reduce the computational load 

of the model – radio operation is not modeled by thousands of neurons but instead by 

dynamic flows of operational commands that are contextual in nature and specify any 

information that is available about the electromagnetic environment and the adaptive 

radio system. Only information that needs to be dealt with or an abstract knowledge-base 

representation of past choices is maintained, along with the option of creating entirely 

new radio configuration solutions based on programmable choices available to the user.  

 

I propose assuming a biologically inspired model of cognition derived from a model of 

the human cognitive development process which is fostered through creative play and 

interaction with the surrounding environment. Such a cognitive engine could avoid the 

many problems that plague brittle expert systems and other AI technologies. These rule 

based systems do not perform well in the face of unknown situations and often suffer 

from lack of scalability due their inability to efficiently learn new knowledge [26]. This 

performance degradation occurs because conventional artificial intelligence attempts to 

express human knowledge in symbolic terms, which requires rigid symbol manipulation 

and exact reasoning mechanisms, including forward and backward chaining. Follow on 

AI research has expanded to include artificial neural networks, genetic algorithms, and 

fuzzy set theory. These mechanisms are intentionally vague in their operation.  

 

An emerging research area called “soft computing” includes mechanisms that leverage 

hybrid combinations of these techniques that can reason and learn in uncertain and 

imprecise environments [47]. My research focused on bringing soft computing 

techniques to cognitive radio by synthesizing a chaotic learning technique based on 

genetic algorithms with an abstracted distributed staged memory derived from case-based 

reasoning techniques to form a chaotic learning optimizer. 

 

3.2 BioCR Model 

 

Mitola’s dissertation provides an extensive discussion of how artificial intelligence 

research might be extended to cognitive radio systems. His dissertation proposes that 
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cognitive radio systems need a mechanism which synthesizes the best aspects of machine 

learning, case-based reasoning, and rule based systems in a radio engineering framework 

[11].  

 

Mitola defines the machine learning process as the extraction of a concept description 

from examples and background knowledge. This process may produce an algorithm that 

can recognize additional instances of the learned concept. In his formalism, machine 

learning techniques may include conceptual clustering which derives predicate-calculus 

expressions given an unstructured database of cases, reinforcement learning which 

extracts rewards from the environment to structure the machine learning, and case based 

reasoning which retrieves and applies cases to new situations.  Case based reasoning 

retains sets of “problems” with associated “solutions.” Such case based systems may be 

data intensive, requiring retention of a large amount of original data points.  

 

Contrasting approaches include statistical techniques that use feature-space information 

like the cluster center or covariance matrix for the data set instead of the original large 

data set. Case based systems that retain the original data attempt to retrieve the most 

relevant case or data point to apply a corresponding prior solution or associated class of 

data point to the current problem. The solution may then be revised to provide a better fit 

for the current situation. Successful solutions are archived with the associated problem, 

completing the “retrieve, reuse, revise, and retain” cycle.  

 

Mitola hints at the use of case based reasoning as a way to include temporal and 

environmental information in the cognitive process. He defines rule based systems as 

using “if-then-else” logic which provides a structured decision making mechanism that 

tends to be “brittle,” providing poor performance when presented with problems that are 

slightly different. Some research has been done to address brittleness of rule based 

systems by tracing rule schema, but this approach is still unable to evolve in completely 

new scenarios. 
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To be clear, my research aims to realize the vision of Mitola’s cognitive radio concept in 

spirit, albeit in different ways. Rather than trying to model the brain with an if-then-else 

state machine operating on a large data base of case based scenarios, I assumed a 

cognitive model based on the chaotic learning process observed in the cognitive 

development process of young minds, extending several theories linking play in children 

to creativity and rapid learning [48].  

 

Many AI methods like expert systems could be described by cognitive development 

researchers as information processing techniques which view human minds as computers 

that act on a flow of information represented by symbols without regard to stages of 

understanding. Information processing techniques do not produce effective cognitive 

models that include imagination and creativity because such techniques assume linear 

processing that is unable to evolve to assimilate or accommodate new solutions [4]. Such 

limitations often lead to poor performance when radios are required to operate in 

unfamiliar and unfavorable electromagnetic environments. 

 

A contrasting model of cognition can be derived from Piaget’s theory of cognitive 

development that postulates cognition in children is developed through active 

manipulation and exploration of the world that takes place in a continuum of stages [49]. 

Creativity researcher Chsikzenthmihalyi defined the concept of creative flow as being a 

balance between boredom and anxiety; people enter a flow state when they are fully 

absorbed in activity during which they lose their sense of time and have feelings of great 

satisfaction [50]. This concept of maintaining flow in a creative cognitive model provides 

motivation and bounds for a bounded chaotic solution exploration mechanism. While 

Piaget observed that children learn through play in new situations, Vygotsky observed 

that children learn through peers and educators, through a process called scaffolding that 

may not always be the same for each child due to differences in environment and 

interactions [51]. This human development research provided insight into how to develop 

the cognitive engine architecture and process flows, especially regarding how to scaffold 

a cognitive radio’s understanding and how to act in an unknown wireless channel. 
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To meet the need of staged creative learning, I proposed a distributed two stage memory 

in the cognitive engine to enable stages of creative learning so that the engine can learn in 

conjunction with peers and as an individual. Short term memory serves as a working 

space that can operate on a larger knowledge base found in long term memory. The short 

term memory allows the cognitive engine to consider possible interactions with the 

environment while not destroying the more stable knowledge base. 

 

Such constructivist theories state that cognitive functions operate to satisfy a dynamic 

equilibrium, with joint focus on function and structure [52][53]. Dynamic equilibria are 

observed and modeled in the world everyday, often using a Nash equilibrium [54]. John 

Nash postulated that if there is a set of strategies for a game with the property that no 

player can benefit by changing his strategy while the other players keep their strategies 

unchanged, then that set of strategies and the corresponding payoffs constitute Nash 

equilibrium [55][56]. In layman’s terms, a system may find an operational point which 

effectively balances the operational parameters of the system to balance user needs.  

 

In this dissertation, the cognitive engine plays chaotic games or “what if” scenarios trying 

to learn how to find the optimal equilibrium of actions that meet the cognitive engine’s 

operational goals for learned environment. The equilibrium may or may not appear to be 

Nash-like. The games the engine plays to balance the operational actions of the system 

are affected by time and relative weights of functions which are device-specific. What is 

interesting is that this model appears to permit multiple game solutions that satisfy a 

desired operational equilibrium, which would not appear to be Nash-like.  Determining 

the best method of analyzing cognitive radio behavior is an active area of research. 

 

Given this model of cognition based on the human learning, I developed a formalism for 

cognitive radio that mapped the rapid cognitive development of children to a functional 

structure and a mathematical architecture that could be implemented by wireless systems. 

A broad survey of potential candidates was investigated and genetic algorithms were 

chosen as a key component to the mathematical architecture of the distributed cognitive 

wireless engine presented in this paper.   



 41

 

Candidates that were rejected included rule based systems, expert systems, fuzzy logic, 

and neural nets. Each of these approaches has severe limitations that diminish their 

operational value for on-line cognitive radio functions, especially in changing wireless 

environments. Rule based systems are limited to fixed capabilities designed into their rule 

set. Expert systems are notoriously brittle and dependent on an external expert that must 

be present when the view of the environmental system response changes. While fuzzy 

logic permits approximate solutions to be found in the face of uncertain inputs, the logic 

used to find the approximations does not have an inherent evolutionary ability that allows 

the logic to change in time as capabilities are required and environments are encountered. 

The most recognized AI technique for cognitive modeling, neural nets, is typically 

uncontrollable in that it may or may not play within a set of operational constraints, given 

the inherent “black-boxed” nature of its operation. Most neural nets require extensive 

training to replicate observed behaviors and usually behave in unexpected ways when 

presented with a totally new problem to solve. 

 

I chose genetic algorithms and operators in concert with a biological abstraction of the 

brain for a number of reasons, including the GA’s ability to implement a number of the 

cognitive development theories simultaneously and in parallel [49][50][57][58][59][60]. 

Specifically I surmised that genetic algorithms and operators could serve as the 

mathematical glue to realize the human-based cognitive development process because 

their crossover operation permits synthesis of best practices, and mutation permits 

spontaneous creativity in the face of unknown scenarios that would break a traditional, 

brittle AI expert. The GA concept of populations of solutions permits data to be 

structured and avoids losing potential non-optimal solutions that could be evolved to 

provide a best fit. The GA fitness function permits rapid adaptive global solution search 

when combined with context and environment-based genetic selection using genetic 

tagging and templates, a mode that embraces both assimilation with a stable fitness 

function and accommodation in which the fitness function changes when a change is the 

environment is sensed.  

 



 42

The concept of generations of solutions and the chaotic nature of GAs lends them to very 

complex multimodal parallel play in search of best-fit solutions for ensuring robust 

transmission and reception of signals in unknown channels in changing environments. 

Such meta-GA functions allow the GA to serve as a smart inter layer and intra layer 

parameter optimizer and learning classifier. The evolving populations of GAs provide a 

mechanism for growth needed to respond to new environments and evolve new cognitive 

radio behaviors out of existing and created responses. 

 

  “Right Brain” = Creative  “Left Brain” = Logical 

resources
Environment

resources
Radio

Adaptation and Processing

    - Learning

Monitor and Control

- Exploit trends

 

Figure 3.1: Concept-level block diagram of cognitive engine 

 

The cognitive engine concept in Figure 3.1 assumes that the biological functions in the 

right brain maintain creative functions while the functions in the left brain maintain 

logical thought. The division of labor between cognitive setting of goals by the creative 

module and real time adaptation by the logical module ensures low overhead 

communications between the modules and scalability to large networks of cognitive 

radios. This delineation also recognizes that the cognitive engine needs to operate 

considering both real world data and simulated solutions. 

 

 

3.3 BioCR Framework 

 

This section describes the CR process. The resulting BioCR framework was inspired by a 

diverse set of research realms. The concept for the Wireless Channel Genetic Algorithm 
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(WCGA) was extended from existing research that used GAs to train HMMs that 

represent speech to HMMs that represent wireless channel [61][62][63]. The concept of 

the Wireless System Genetic Algorithm (WSGA) as a self-evolving genetic algorithm 

was based on a theoretical adaptive GA article written by Dr. Walling Cyre and his 

students [64]. For an excellent reference to the GA concepts presented in this dissertation 

please refer to Goldberg [65]. The concept of the Cognitive System Monitor (CSM) is 

based on learning classifiers and optimizers found in evolutionary computing research 

circles [65][66]. 

 

 

 
     

WCGA: 
  Collect and model channel 

Is channel model 
complete? 

Pass channel 
model to CSM 

CSM:   
-   Determine if new radio configuration is needed. 
-   Build trends from WCGA and radio performance parameters 
-   Develop fitness functions, weights, and template for WSGA 
-   Build database of child chromosomes from WSGA 

Does system need 
new configuration? 
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weights, template, and initial 

chromosomes to WSGA 

WSGA :   
-   Develop system chromosome 
-   Create fitness from mathematical 

idealization of radio performance 
-   Send simulated meters and system 

chromosome back to CSM 

Does system need 
new configuration? 

Initialize radio with 
default settings  

Radio performance  
parameters 

Baseband radio system  
monitors its performance and  
collects statistics(BER, data  

rate, etc.) 

Baseband radio system  
reconfigures itself   
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baseband radio system   

True 

False   

True 

False  

True False   

 
Figure 3.2: Biologically inspired cognitive engine framework 
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I propose that the biologically-inspired framework shown in Figure 3.2 could be used to 

realize cognitive wireless functionality in an adaptive radio using genetic algorithms. 

 

 

Figure 3.3: Advantages of using genetic algorithms in a cognitive radio 

 

Figure 3.3 details the advantages of using genetic algorithms in a cognitive radio. Some 

advantages include their chaotic search capability and flexibility, as well as their ability 

to be implemented on a vector based co-processor. The biologically inspired cognitive 

radio framework includes a wireless channel genetic algorithm (WCGA) that senses the 

wireless environment, a wireless system genetic algorithm (WSGA) that evolves and 

adapts the radio, and a Cognitive System Monitor (CSM) based on a meta-genetic 

algorithm and adaptive control messaging that monitors and changes the behavior of the 

system. The process is cyclical and runs continuously. 

 

The CSM synthesizes knowledge gained from sensing the current state of the wireless 

channel and the current radio parameters to direct the adaptation process. The CSM 
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includes a meta-genetic algorithm (meta-GA) that adapts the WSGA and distributed 

short- and long-term memory. A meta-GA is a genetic algorithm that is used to evolve 

another genetic algorithm. The distributed memory is used to understand and utilize past 

trends of channel/goal pairs that impact radio system behavior. The CSM translates 

machine readable regulations specific to the current geographical location so that it can 

operate within the regulatory and physical environment constraints mandated at that 

locale. The CSM sends tags and templates to the WSGA indicating which parameters 

may legally be altered and what parameters should be left alone, based on knowledge 

gained from the past trends. The CSM is the creative side of the cognitive radio brain. 

 

The WSGA receives operational goals from the CSM that are used to configure a GA 

used to optimize the radio configuration. The WSGA is the logical side of the cognitive 

radio brain. The WSGA tradeoff optimizer discovers the appropriate balance of radio 

parameters like transmitter power, frequency, bandwidth, modulation, and channel 

coding embedded in a chromosome. The WSGA also receives information like fitness 

functions as well as geo-specific tags and templates that impact how the algorithm 

attempts to evolve the radio’s operational parameters. The fitness could be a measure of 

the minimum BER or of the maximum data rate. Depending on what information the 

CSM receives about the radio and environment, the fitness function may change to 

achieve a new goal. The WSGA then uses the CSM goals to synthesize an appropriate 

configuration. This configuration is passed to a programmable radio, which validates the 

veracity of the proposed configuration. The CSM monitors the radio’s new performance 

and recommended a different configuration if the performance is not optimum. 

  

The WCGA characterizes the electromagnetic environment, including relevant waveform 

level multi-path information and symbol level channel statistics. This information is 

passed to the CSM to classify the channel and estimate the performance of the link 

including maximum data rate. Geo-specific information is then used to validate the radio 

system configuration for a given locale and cast the performance results within the 

context of that channel. 
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3.4 BioCR Architecture 

 

This section describes the CR engine component input and output. Figure 3.4 shows the 

data flow between the three cognitive engine modules. The radio hardware interprets 

radio frequency information about the wireless channel using the channel estimation 

process and passes this information on to the WCGA. The radio hardware also interprets 

information about the radio and data using the PHY and MAC layers of the radio 

baseband processor and passes this information on to the CSM. The WCGA takes the 

information about the estimated wireless channel and produces statistics and a compact 

model of the observed channel which is passed on to the CSM. The CSM uses its 

learning classifier functions to translate the observed channel model into appropriate 

goals which are passed to the WSGA in the form of fitness functions, initial 

chromosomes, and appropriate regulatory genetic tags and templates. The WSGA takes 

these goals and generates appropriate actions for the radio to take in the given wireless 

channel. 
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Figure 3.4: System-level block diagram of cognitive engine 
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The following information provides additional detail of the cognitive engine block inputs 

and outputs. 

 

 

Figure 3.5: Wireless channel genetic algorithm (WCGA) block diagram 

 

The Wireless Channel Genetic Algorithm (WCGA) shown in Figure 3.5 uses error stream 

data to train an HMM of the wireless channel and generates symbol level channel 

statistics. Error streams may be derived directly from a training sequence, a captured 

error symbol stream, or symbol level behavior that corresponds to an impulse response of 
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a channel. The error streams are then used to calculate statistics of the channel, including 

burst error characteristics. The error statistics provided by the WCGA are then passed to 

the CSM via a TCP/IP socket to estimate channel performance metrics like minimum bit 

error rate (BER) or maximum data rate for the observed channel. 

 

 

 

 

 

 

Figure 3.6: Wireless system genetic algorithm (WSGA) block diagram 

 

The WSGA receives input from the CSM via a TCP/IP socket. As shown in Figure 3.6, 

information about the WSGA is stored in a structure called WSGAInfo. Member 

chromosomes of the genetic algorithm are stored in Member[]. The member 

chromosomes are then initialized. A genetic algorithm is used to determine the new radio 

system parameters, which links to a dynamic link library (DLL) to retrieve the 

mathematical fitness functions. The final solution from the genetic algorithm is 

transmitted to the radio via a radio-specific application program interface (API). 
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The WSGA chromosome structure is shown in the following table. 

  

Table 3.1: WSGA Chromosome Parameters 

 

Chromosome parameters 

 0 Power 

 1 Carrier Frequency (Fc)  

 2 Bandwidth 

 3 Symbol Rate 

 4 Modulation 

 5 Forward Error Correction (FEC) 

 6 Payload/frame length 

 7 Automatic Repeat Request (ARQ) 

 8 Dynamic Range 

 9 Equalization 

10 Encryption 

11 Antenna Configuration 

12 Voice 

13 Noise Cancellation (limiting) 

14 Interference Temperature 

15 Time Division Duplex (TDD) 

16 User defined host radio parameter 1 

• • 
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Chromosome parameters 

• • 

• • 

31 User defined host radio parameter N 

 

The values of this table correspond to the genes of the chromosome used in the 

WSGA. Each gene is a specific knob, or parameter, of the radio. This table is 

viewed as a vector in the algorithm and operated upon as a chromosome through 

genetic algorithm crossover and mutation procedures. The values of these table 

parameters determine the fitness of the chromosome and the behavior of the radio. 
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Figure 3.7: Cognitive system monitor (CSM) block diagram 
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and the host radio via the WSGA performance API. This information is stored in the 

observed channel and location buffer. The data in this buffer are then supplied to a 

channel statistics processor. The statistics computed by the processor are passed to a 

learning channel classifier which outputs the channel index match to short term memory 

and the channel updater. The channel updater passes a pointer for the channel match to 

the TCP/IP link converter attached to long term memory (LTM) so that LTM can be 

updated. The LTM interfaces with the short term memory (STM) so that the goal evolver 

can operate on the closest channel matches when synthesizing the appropriate goals for 

the observed channel. The goal evolver also receives input from the radio and WSGA 

performance API. This information is used by the goal evolver to provide an output to the 

estimated radio goal and location buffer. The data in this buffer is provided to the 

WSGA. 

 

3.5 BioCR Algorithms 

 

This section describes the various CR procedures, including the WCGA, WSGA, and 

CSM. 

 

WCGA 

 

The WCGA module in Figure 3.8 illustrates a recent implementation of the sensing and 

modeling blocks within the cognitive engine [67]. The WCGA receives channel 

information from the CWT’s Broadband Sounder. The sounder is used to capture the 

channel impulse response. The mathematical representation h(t) of the channel impulse 

response is developed and used to generate an error symbol stream. The channel statistics 

are calculated from this error stream and a histogram is stored describing the symbol 

burst errors. A population of HMM chromosomes is randomly initialized. A genetic 

algorithm loop is then initiated and run until a specified stopping criteria like  reaching a 

maximum number of generations (the currently used method), or a certain minimum 

desired fitness value. Any GA selection process may be used to choose parents for 

mating, including tournament or roulette wheel selection. In a tournament selection, each 
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parent is chosen in sets of N players at random and then the best individual out of that set 

is chosen to be a parent based on their fitness value. In a roulette selection, each 

individual is assigned an area on a wheel corresponding to that individual’s probability. A 

random number is generated and used to select one of regions on the wheel which 

corresponds to the individual. The parents are then genetically manipulated through 

crossover and mutation to create a new set of offspring. The offspring are then evaluated. 

The worst members of the current generation are replaced by more fit offspring, and the 

entire population is evaluated based on their fitness values. The percent of worst 

members replaced may be calculated from values in the GA parameters file (number of 

adults replaced each generation / population_size * 100). The WCGA was configured to 

replace 75 % of its population each generation, 15 out of every 20 population members. 

The best fit member of the population can then be used to determine if the stopping 

criteria are met. If the stopping criteria are met, the GA exits and the best fit member of 

the population is the channel model transmitted to the CSM, which exits the WCGA 

routine. 
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Figure 3.8: Wireless channel genetic algorithm (WCGA) flowchart 

 

WSGA 

 

The WSGA module in Figure 3.9 implements the adaptation block within the cognitive 

engine. The WSGA receives a packet from the CSM containing the WSGA goals which 

is temporarily stored. The population of chromosomes is then initialized. A decision 

block which controls the genetic algorithm loop then checks for stopping criteria and 

exits the loop upon finding one, which could be a certain number of generations or after a 

decrease in performance gain per generation is detected (that is, the fitness of the current 

generation did not differ significantly from the previous generation). While the loop is 
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running, parent chromosomes are selected that will be used to generate offspring 

chromosomes to replace the population the next generation. The WSGA proceeds to 

perform standard genetic algorithm techniques of crossover and mutation in an effort to 

optimize radio parameters for a given set of goals. The fitness values for each 

chromosome are evaluated for both parent and offspring based on a relative fitness 

evaluation method which determines which members of the population to replace. The 

percent of worst members replaced may be calculated from values in the GA parameters 

file (number of adults replaced each generation / population_size * 100). The WSGA was 

configured to replace 85 % of its population each generation, 17 out of every 20 

population members. Once the genetic algorithm loop has exited, the system parameters 

contained within the best fit chromosome of the final generation are transmitted to the 

radio via an API. The best fit chromosome is also transmitted along with the simulated 

fitness values to the CSM so the CSM can compare the simulated fitness values to the 

real fitness values read from the radio after the new radio settings have been set.  
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Figure 3.9: Wireless system genetic algorithm (WSGA) flowchart 
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CSM 

 

The CSM module in Figure 3.10 implements the cognition block within the cognitive 

engine.  The CSM receives a channel model and statistics from the WCGA and stores this 

in the observed channel and location buffer. The channel statistics processor then 

calculates the statistics of the observed channel and passes that information to the 

learning channel classifier which classifies the observed wireless channel by either 

statistics or waveform. The learning classifier then finds the closest match in Long Term 

Memory (LTM) by GA channel index scan or a binary search and updates the LTM, 

letting the Goal Evolver know that a change has been observed in the wireless channel. 

The Short Term Memory (STM) is populated with chromosomes from the LTM 

containing similar channels compared by statistics or waveform. 
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Figure 3.10: Cognitive system monitor (CSM) flowchart 
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The radio performance parameters are read with the existing WSGA simulation fitness 

function, population, tags, and templates into the Goal Evolver. The Goal Evolver then 

uses crossover and mutation of goals in the STM to synthesize the estimated radio goal 

for the observed channel and calculate an estimated goal value based on the estimated 

statistics calculated for the observed channel. The percent of worst members replaced 

may be calculated from values in the GA parameters file (number of adults replaced each 

generation / population_size * 100). The CSM was configured to replace 85 % of its 

population each generation, 17 out of every 20 population members. 

 

The resulting goal vector is stored in a buffer and transmitted to the WSGA for radio 

evolution and optimization to begin until another change in the wireless channel is 

observed. The LTM knowledge base may function as a distributed consciousness, 

providing a flexible structure for developing location and temporal specific data. The 

flexibility of the GA gene functions and chromosome structure allows the formalism to 

adapt to any host radio system, even legacy radios with minimal adaptability. More 

flexible programmable wireless systems like software radios showcase the power of the 

distributed cognitive engine. 

 

3.6 Summary 

 

This chapter presented the details my Ph.D. research proposal, including model, 

framework, architecture, and algorithms. The WCGA, WSGA, and CSM were introduced 

and the system design for the cognitive engine was discussed. Chapter 4 presents the 

methodology I used for my experiments.
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Chapter 4: Methodology for experiments 

 
As an initial proof of concept application, I assumed that the cognitive radio engine 

would be used in a rapidly deployable broadband wireless disaster communications 

environment. This chapter describes the methodology used to set up hardware and 

software simulation experiments which test the cognitive engine in electromagnetic 

environments that might exist during a disaster. This is a brief chapter, serving only to set 

the stage for Chapters 5 and 6 which provide extensive details about the individual 

experiments and how they work. 

 
4.1 Methodology for Experimental Study 

 

My research used simulation as the primary methodology for the experimental study of 

the BioCR engine model. I created a set of experiments that test the behavior of the 

engine in various unanticipated wireless environments created in the CR simulation test 

bench. In addition, some functionality of the BioCR engine model was tested on a radio 

host platform with limited adaptive capabilities. 

 

Chapter 5 presents a scenario and simulation platform that shows how the cognitive 

engine could evolve the radio’s operation in the face of unanticipated wireless channels, 

like those found in rapidly deployable emergency communications situations. I 

architected a symbol level simulation test bench shown in Figure 4.1 to emulate an 

adaptive radio that could serve as the host to the cognitive engine.  
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The test bench consists of a co-simulation that enables a C/C++ compiled implementation 

of the BioCR Engine code to run inside of a simulated adaptive radio host implemented 

in MATLAB-Simulink. 

 

The simulation was designed with a set of wireless channels that could be activated 

throughout the simulation to mimic changing wireless channels. The cognitive engine 

used an API to configure the adaptive radio in MATLAB-Simulink and read performance 

metrics from MATLAB-Simulink into the cognitive engine. The API permitted the same 

core cognitive engine code to be embedded in both the simulation and hardware 

platforms. Required software included MATLAB R13 version 6.5.1, Simulink, 

Communications Blockset, Communications Toolbox, DSP Blockset, and DSP Toolbox.  
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Figure 4.1: Photo of simulation test bench design 

 

 

Chapter 6 discusses a test bed developed to explore the behavior of a cognitive engine in 

an actual disaster response communications system. This test bed was developed prior to 

the CSM code base completion, so the experiment served as a test of the WSGA. Our 

cognitive radio team built a cognitive radio hardware test bed shown in Figure 4.2 based 

on legacy broadband wireless communications equipment used by the disaster response 

community. Virginia Tech chose the fixed broadband wireless Proxim Tsunami radio 

[68] as host for the cognitive algorithms because the disaster communications community 
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expressed interest in deploying that vendor hardware solution with our value-add 

research components.  
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Figure 4.2: Photo of hardware test bed design 

 

These radios had limited programmable features and lacked access to key low level 

performance information. Even so, the test was valuable in that allowed us to explore 

how the cognitive engine performed in a legacy system. An experiment was devised by 

our team to test how the cognitive engine reacted on a hardware platform that was subject 

to intense interference and signal jamming. Such a caustic wireless channel could be due 

to the destruction and resulting malfunction of infrastructure that might occur in a natural 

disaster or attack on the homeland. 
 

These radios have a limited number of knobs and meters compared to the simulated CR 

test bench environment, but this demo shows how the cognitive engine behaves in a real 

world system.  
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4.2 Modeling of Channel Variations in the Simulator 

 

My research used two different ways of modeling how wireless channel variations 

resulted in symbol or packet errors: statistic symbol error estimating and hidden Markov 

models (HMMs).  

 

Early in my research I used Hidden Markov Models that modeled wireless channels at the 

symbol level to rapidly simulate how the cognitive engine responded to symbol errors 

introduced by different wireless channels [69]. For more information on symbol error 

channel modeling using HMMs please refer to Chapter 2. Due to MATLAB-Simulink’s 

ability to directly capture and analyze symbol level information from a simulation, I 

chose not to use the HMM modeling technique for my final experiments. 

 

The BioCR Toolset simulation used statistical distributions of Additive White Gaussian 

Noise (AWGN), flat fading, dispersive fading, and Rician channels to reflect the impact 

those wireless channels could have on the decision statistic of a symbol [70][71][72].  

 

AWGN wireless channels are defined as channels that contain noise whose frequency 

spectrum is continuous and uniform over a specified frequency band. A flat fading 

wireless channel may be observed when frequency components of a received radio signal 

vary in the same proportion simultaneously. A dispersive fading wireless channel may be 

observed when transmitted energy arrives at the receiver at different times, superimposed 

on other symbols. Both flat and dispersive fading channels are modeled in this simulation 

using Rayleigh fading channels. Rayleigh fading wireless channels may be observed 

when phase-interference fading occurs caused by multipath. The resulting channel 

behavior may be approximated by the Rayleigh distribution. Rician fading occurs when a 

Rayleigh fading channel exists with a strong line of sight component. The resulting 

channel is said to have a Rician distribution. 
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I decided to use the channel models that shipped with the MATLAB-Simulink 

Communications Blockset. The purpose of the experiment was to test the cognitive 

engine’s performance in changing and unknown channels, so any of the preprogrammed 

channels would be satisfactory. I was able to delineate between channels that were known 

and unknown to the radio by “priming the pump” with several statistical descriptions of 

available wireless channels that were inserted into the engines long term memory (LTM) 

on boot up. To generate a scenario where the engine encountered an unknown channel, I 

simply switched in a wireless channel with statistical properties that were not in LTM. 

This was accomplished by leaving LTM empty on engine initialization. In this case every 

channel was unknown until a channel was encountered for a second time. This 

methodology was used in simulator. The following channels were encountered: AWGN, 

Flat fading, Dispersive fading, Rician. Then the simulation experiment was programmed 

to encounter another known channel, in this case an AWGN channel. 

 

4.3 Summary 

 

This chapter provided a brief overview of the methodology used for the software and 

hardware experiments detailed in the following chapters. A description is provided of 

how the channel variations are generated, including definitions of the various wireless 

channel models. The next two chapters provide detailed analysis of the software 

simulation and hardware experiments. 
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Chapter 5:  Results from Virginia Tech CR Simulation Test Bench 

Experiments 
 

This chapter presents the results of a simulation test bench I created that demonstrates 

how a cognitive engine could evolve a radio’s operation in the face of unanticipated 

wireless channels, like  those found in rapidly deployable emergency communications 

situations. Appendix E contains detailed logs of BioCR toolset simulation runs, including 

captured data from both the host radio and cognitive engine. An explanation of each trend 

step of the simulation run is discussed. A “trend step” is a simulation mechanism which 

freezes time and shows what is going on under the hood of the cognitive engine at that 

instant. The simulation toolset facilitates this analysis through extensive time stamped 

data logging of the simulated adaptive radio and cognitive radio engine output. 

 
5.1 Simulation of CR Engine Model versus Traditional Adaptive Radio Controller 

 

One of the goals of this research was to create a cognitive radio model that could operate 

in unanticipated wireless channels. This chapter presents the results of a simulation I 

created to test the implementation of the cognitive radio engine model presented in this 

dissertation and compare it to a traditional adaptive radio controller available in 

MATLAB-Simulink [73]. 

 

In the case of this experiment, a traditional adaptive controller changes the data rate of 

the system based on the measured signal to noise ratio (SNR) using a delta search 

method.  The traditional adaptive controller uses a state-machine controller by thresholds. 

The controller starts in state one, the lowest data rate and corresponding modulation. If 
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the measured SNR exceeds the SNR needed to support error free data demodulation for 

the given modulation, the adaptive controller increases the data rate by one modulation 

index. Figure 5.1 shows the low SNR thresholds required to support error free 

transmission of data using a given modulation in the simulation. The traditional adaptive 

controller ratchets the data rate up and down with changing channel SNR. Due to the 

adaptive controller’s delta search and slow response time it may not be able to leverage 

available spectrum so as to provide “instantaneous bandwidth” on demand. The cognitive 

engine uses its learning process to deduce from the unknown channel that the radio can 

tap into available wireless spectrum at higher data rates. 

 

 
Figure 5.1: Table of thresholds used by adaptive controller 

 

In contrast, the cognitive engine is capable of evolving the operation of an adaptive radio 

host. Figure 5.2 illustrates this mechanism. A radio transmitter and receiver communicate 

by transmitting and receiving symbols over a wireless channel. The simulation collects 

statistics about the symbol errors that occur in this link and passes those statistics to the 

cognitive engine. The cognitive engine reads the current radio settings called “old knobs” 

along with appropriate radio performance metrics called “old meters.” This information 

used by the cognitive engine to establish operational goals for the radio which are used to 

generate new optimal radio parameters settings, “new knobs.” The radio is configured 

with these new operational parameters and the process begins anew. 
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Figure 5.2: Basic explanation of cognitive engine operation 

 

Figure 5.3 provides a more detailed example of this process. In this fictional example a 

binary symbol error stream is captured by the simulation and passed to the WCGA, 

which generates channel statistics in the form of a burst error histogram, [.7 .2 .05 .05 0]. 

This fictional example histogram may be interpreted that 70% of the time the channel had 

errors of burst length one, 20% of the time the channel had errors of burst length two, 5% 

of the time the channel had errors of burst length three, 5% of the time the channel had 

burst length four, and 0% of the time the channel had errors of burst length five or longer. 

This tells the researcher that most errors are single errors, information that may be useful 

in configuring the radio for reliable performance in this channel. The radio then reports 

current knobs and meters. In this case the radio is currently using 64 QAM modulation 

and a transmit power of 9 dBm with a BER of 10-4. 
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Figure 5.3: Basic explanation of cognitive engine process 

 

The cognitive engine then classifies the observed channel to see if there is a match in the 

long term memory (LTM) which serves as a distributed knowledge base. The LTM in 

this example consists of a pair of channel statistics and WSGA goal entries. The CSM 

also maintains control data not shown in this basic example. In this example, the CSM 

classifier function finds an exact match in LTM index location two. The corresponding 

WSGA goal information is read from memory; in this case the CSM tells the WSGA to 

optimize the radio parameters so that bit error rate (BER) is minimized and data rate is 

maximized. These fitness functions and priorities may change if the CSM decides to 

evolve the recommended goals passed to the WSGA to increase system performance. The 

goal evolver mechanism was proposed to enable the learning optimizer mode of the 

engine. In order to validate the engine’s basic learning capability, the goal evolver 

module was not permitted to autonomously change channel-goals pairs on the fly because 

of issues related to tracking the dynamic changes the experiment made to itself. Future 

dynamic experiments could be architected in a way to observe the goal evolver’s actions 

with the autonomous learning process operational. Note that the engine instructs the 

WSGA to prioritize minimizing BER by assigning that fitness function a larger relation 

weight of 255 compared to the task of maximizing the data rate, which has a relative 

fitness function weight of 200. With these fitness functions and priorities, the WSGA 
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generates a new set of radio knobs, increasing the power to 23 dBm and decreasing the 

modulation index to QPSK. Note that WSGA met the goals given to it by the CSM of 

minimizing BER, its main priority, while attempting to maximize its data rate, its 

secondary priority. The engine performs the tradeoff analysis on it’s own to balance the 

goals of the system. When tasked with top priority of minimizing BER, most adaptive 

radios would reduce the modulation to BPSK as this modulation performs well in 

challenging channels, thereby limiting data throughput in a channel that the cognitive 

engine had learned could support higher data rates. The cognitive engine instead was able 

to learn to generate radio parameters that balanced the needs of the system. What is 

interesting is that this learning mechanism is immediately applicable to changing system 

needs based on changing channels, a key challenge in disaster communications systems.  

 

The cognitive radio operation and process detailed in Figures 5.2 and 5.3 were used to 

design the experimental simulation shown in Figures 5.4 and 5.5, which provide an 

overview and details of the cognitive radio simulation test bench.  
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Figure 5.4: Overview of adaptive radio host simulation in Simulink 
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Figure 5.5: Adaptive radio host simulation in Simulink 

 

Figure 5.5 shows a simulation I created in MATLAB-Simulink of an adaptive radio host 

operating in several different wireless channels [74][75][76]. The adaptive radio host may 

be configured to be controlled by the cognitive engine or a traditional adaptive controller.  

 

The simulation consists of a data source, adaptive radio transmitter, various wireless 

channels, an adaptive radio receiver, and a block that calculates the radio performance 

metrics like symbol error rate and histograms plotting the distribution of burst error 

lengths for an observed wireless channel. The cognitive engine operates inside of the 
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simulation, providing control of the adaptive radio host by automatically configuring the 

radio in response to changing wireless channels. A traditional adaptive controller is 

included in the simulation for reference. MATLAB code is included in the CR Toolset to 

provide post simulation analysis and data archival functions.  

 

The following data are time stamped and recorded in the “berdata” directory of the CR 

toolset directory every time the cognitive engine completes an iteration in the simulation: 

 

(1)   MATLAB workspace .MAT file with simulation variables and values 

(2)   Radio performance plots in .JPG form that show the absolute and relative 

error performance of the cognitive radio. These error histograms show how 

the cognitive radio responds to errors introduced by the wireless channel. 

(3)   Absolute and normalized error distributions in .CSV format that 

correspond to the .JPG plots 

(4)   WCGAinput.csv file produced by the adaptive radio to serve as input to 

cognitive engine 

(5)   Snapshot of the cognitive engine’s current long term memory (LTM), 

ltmstat.csv 

(6)   SystemKnobs.csv file produced by the cognitive engine to control the 

adaptive radio simulation test bench 

(7)   SystemMeters.csv file produced by the adaptive radio to serve as input to 

the cognitive engine 

(8)   WSGAActions.csv file read by the cognitive engine that initializes the 

values of LTM in the cognitive engine with channel/goal pairs, including 

WSGA fitness functions and weights 

(9)   WSGAFinalOutput.csv file produced by the cognitive engine to control 

the adaptive radio hardware test bed 

(10)  Error stream sequence captured by simulation 

(11)  CSM Final Output that shows details of the cognitive engine operation 

(12)  CSM parameters file that controls the CSM operation 

(13)  WSGA parameters file that controls the WSGA operation 
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(14)  WCGA parameters file that controls the WCGA operation 

(15)  System chromosome produced by the cognitive engine. This is 

interpreted by the cognitive engine into radio parameter settings 

 

Numerous demonstrations of the cognitive radio have been conducted that illustrate the 

cognitive radio engine model controlling a simulated adaptive radio host in changing 

wireless channels that are both unknown and known, like  those found in disaster 

communication scenarios (over 500 MB of data and 25,000 archive files). The alpha 

release toolset has been run for long simulations (over 12 hours) to collect data on the 

cognitive engine’s ability to learn and self evolve its behavior in changing wireless 

channels within the legal constraints of which it is aware. 

 

A demonstration was put together to compare the cognitive radio engine model and 

framework I propose to a traditional adaptive controller model and framework. This 

simulation was created to explore how the cognitive engine behaved in known and 

unknown wireless channels, and how this behavior compared to a traditional adaptive 

controller. The adaptive controller was compared to the cognitive radio by observing 

which mechanism allowed the radio to maximize performance in changing wireless 

channels, specifically for a given SNR which mechanism provided a higher throughput 

for the user? How quickly could each mechanism leverage changes in the channel? These 

comparisons were made for each trend step, since each trend step corresponded to a 

potential change in the channel and SNR of the system.  

 

To simulate a dynamic wireless environment, the simulation was designed to have the 

opportunity to switch between AWGN, Flat Fading, Dispersive Fading, and Rician 

channels at the beginning of each trend step. Both the adaptive controller mechanism and 

cognitive engine were subjected to these known and unknown wireless channels that 

switched in time and system performance was logged. 

 

The results of the demonstration show that the cognitive engine finds the best tradeoff 

between a host radio's operational parameters in changing wireless conditions, while the 
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baseline adaptive controller only increases or decreases its data rate based on a threshold, 

often wasting usable bandwidth or excess power when it is not needed due its inability to 

learn.  

 

At this time the demonstration is a point-to-point experiment, however with the baseline 

cognitive radio engine code operational; future research could be pursued to expand the 

toolset to explore the behavior of the engine in a cognitive radio network. This future 

research is the subject of a recent grant proposal by Virginia Tech. Since the engine was 

proposed and implemented as a fully distributed model and algorithmic framework, in the 

future our research team intends to extend the cognitive radio simulation test bench and 

hardware test bed to create and study cognitive wireless networks as follow on work to 

my research. The current implementation of the cognitive engine already has hooks in it 

to allow networked peer to peer communications using the same code framework that the 

different modules currently use to coordinate their operation. 

 

The remainder of this chapter is dedicated to presenting and analyzing that 

demonstration. The reader will have an opportunity to look “under the hood” of the 

cognitive engine and see its learning process in action and how it behaves in 

unanticipated wireless environments. The demonstration is available via website [77] 

with sample data dumps from the toolset and a performance trace showing a behavior 

profile for a variable wireless environment. 
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5.2 CR Engine Performance in an Unknown Channel 

 

This section details how the cognitive engine responds to unknown channels. Figure 5.6 

shows a trace of the cognitive engine operating in four different channels. In this case all 

four channels were unknown to the engine when it began its operation.  

 

 (1) Additive White Gaussian Noise (AWGN) wireless channel 

 (2) Flat Fading Rayleigh wireless channel 

 (3) Dispersive Fading Rayleigh wireless channel 

 (4) Rician wireless channel 

 

 

 

 

Figure 5.6: CR toolset trace showing cognitive engine reacting to unknown channel  

 

Figure 5.6 provides a trace of the simulation demonstration, showing how the cognitive 

engine responded to unknown wireless channels in trend steps one through sixteen. In 

trends 1-4 we see the radios adapting to an AWGN channel. At the end of trend 4 the 

simulation switched to a Flat fading channel and the radios adapted to that channel in 

trends 5-7. At the end of trend step 7, the simulation then switched to a dispersive 

channel and the radios adapted to that channel in trend steps 8-12. At the end of trend 
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step 12, the simulation switched to a Rician channel and the radios adapted to that 

channel. Various performance metrics are listed like data rate for the given SNR and 

respective bit error rate (BER) for the channel. This information can provide insight into 

how well the engine responds to unanticipated wireless channels. Combining with data 

captured from the cognitive engine’s memory, this presents a complete picture of the 

“thought process” of the cognitive engine for analysis. This section provides that 

analysis.  

 

The engine operated in an AWGN channel the first four steps of the demonstration 

(called “trend steps”), then encountered a flat fading channel from trend step five to 

seven. These trend steps can be thought of as snapshots in time and would normally be 

part of a fluid real-world demonstration. However, for simulation purposes, freezing time 

and analyzing the data can be quite helpful. On trend step eight the engine encountered a 

dispersive fading channel. The engine operated in a Rician channel the remaining four 

trend steps. Section 5.4 will compare these results to a traditional adaptive controller. 

 

The meanings of the WSGA fitness function codes are listed in Table 5.1. WSGA fitness 

functions weights may range from 0 to 255. 

 

Table 5.1: WSGA Fitness Functions Used in Simulation 

 
        1 =  Minimize AWGN BER 

        2 =  Minimize Rayleigh BER 

        3 =  Minimize Rician BER 

10000 =  Minimize Power Consumption 

20000 =  Maximize Data Rate 

 

The following section provides step by step analysis of the cognitive engine’s operation 

in various unknown channels. 
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Figure 5.7: Summary of cognitive engine behavior in AWGN channel 

 

Figure 5.7 provides a consolidated view of the first few trend steps while the radio is 

operating in an AWGN channel. Figures are provided later in this section describing the 

engine’s behavior as it transitions from the AWGN channel to a flat fading channel, then 

to a dispersive fading channel, on to a Rician channel, and back to an AWGN channel.  

 

A great deal of information is in Figure 5.7 and the companion figures for the other 

wireless channels the engine encounters. The list of trend steps in the figure documents 

how the engine responded to the channel it encountered, including the mode of operation 

which includes modulation and code rate, the data rate, and the transmit power/SNR. The 

radio’s BER performance for that set of radio parameter values is documented. The 

engine data capture “Trend Number = Fitness : Weight” includes information on how the 

engine made decisions during each trend step. The WSGA goal information, including 

fitness functions and priority weights, are listed for each trend step. The goal information 

is used to provide analysis of the engine’s behavior. The information from inside the 

engine teamed with information about the engine’s performance sheds light on the 

learning process that drives the engine. 

 

As an example of how to go from trend information to conclusions, consider the trend 

steps in the AWGN channel. After the first initialization step, the engine memory 

indicates that the engine initially sought to balance goals of minimizing BER and 

transmit power, while maximizing data rate. Trend step 2 increased power and 

modulation index, thereby decreasing BER and increasing data rate, at the cost of excess 
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power consumption. Based on the engine’s memory, it maintained the goal to balance 

fitness functions, so it decreased the transmit power, and increased the data rate, while 

maintaining low BER. This indicated that the engine had discovered additional capacity 

for the link to increase speed while decreasing power. Trend step three further decreased 

transmit power and increased speed. Since the goals of the engine were equally weighted, 

it is really up to the random decision of the engine as to what priority takes precedence. 

In trend step four the engine decided that since all things were equally it would 

significantly decrease the power, however such a move required lowering the modulation 

index so as to maintain a low BER value. The right portion of figure 5.7 provides a visual 

summary of the results of running the engine in each wireless channel. 

 

As a review, I decided to use the channel models that shipped with the MATLAB-

Simulink Communications Blockset because they were readily available and were 

already tested for simulation purposes. Since the purpose of the experiment was to test 

the cognitive engine’s performance in changing and unknown channels, any of the 

preprogrammed channels would be satisfactory. Channels that were known or unknown 

to the radio were delineated by “priming the pump” with several statistical descriptions of 

available wireless channels that were inserted into the engines long term memory (LTM) 

on boot up. To generate a scenario where the engine encountered an unknown channel, I 

simply switched in a wireless channel with statistical properties that were not in LTM. 

This was accomplished by leaving LTM empty on engine initialization. In this case every 

channel was unknown until a channel was encountered for a second time. This 

methodology was used in simulator. The following channels were encountered: AWGN, 

Flat fading, Dispersive fading, Rician. Then the simulation experiment was programmed 

to encounter another known channel, in this case an AWGN channel. 

 

In trend step 1 shown in Figure 5.7, the engine initialized its operation at data rate 6 

Megabits per second (Mbps), radio mode 1, BPSK ½ rate forward error correction (FEC) 

code with a transmit power of 1 dBm, where dBm is decibel referenced to 1 milliwatt; 0 

dBm equals one milliwatt. Note that to simplify the Simulink simulation the radio 

frequency noise floor was assumed to be 0 dBm, so the transmit power in dBm is also the 
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signal to noise ratio (SNR = Signal Power / Noise Power dB = Signal Power dBm – 

Noise Power dBm). The bit error rate (BER) performance was poor because of this initial 

reset of the radio. At this time no learning had occurred. 

 

In trend step 2 shown in Figure 5.7, the engine increased its data rate to 9 Mbps, changed 

modulation and coding to radio mode 2 QPSK ¾ rate, and increased its power to 22 dB. 

The bit error rate (BER) performance was reduced to zero due to the engine’s changes in 

radio parameters. Note that the CSM instructed the WSGA to balanced fitness functions 

equally, minimize BER, minimize power, and maximize data rate. 

 

In trend step 3 shown in Figure 5.7, the engine increased its data rate to 18 Mbps, 

changed modulation and coding to radio mode 4 16-QAM ¾ rate, and decreased its 

power to 19 dB. The bit error rate (BER) performance was maintained at zero. Note that 

the CSM instructed the WSGA to balanced fitness functions equally, minimize BER, 

minimize power, and maximize data rate. 

 

In trend step 4 shown in Figure 5.7, the engine decreased its data rate to 9 Mbps, changed 

modulation and coding back to radio mode 2 QPSK ¾ rate, and decreased its power to 9 

dB. The bit error rate (BER) performance was maintained at zero. Note that the CSM 

instructed the WSGA to balanced fitness functions equally, minimize BER, minimize 

power, and maximize data rate. In this case it traded off lower data rate for lower power 

since each of its goals was equally weighted. 
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Figure 5.8: Summary of cognitive engine behavior in flat fading channel 

 

 

In trend step 5 shown in Figure 5.8, the engine encountered a flat fading channel, 

increasing its data rate to 56 Mbps, changed modulation and coding to radio mode 8 64-

QAM ¾ rate, and increased its power to 25 dB. The bit error rate (BER) increased to 

1.74x10-4 due the more challenging channel. Note that the CSM instructed the WSGA to 

minimize BER and maximize data rate, in this case ignoring the need to conserve power. 

 

In trend step 6 shown in Figure 5.8, the engine decreased its data rate back to 18 Mbps, 

changed modulation and coding to radio mode 4 16-QAM ¾ rate, and increased its power 

to 26 dB. The bit error rate (BER) performance in the flat fading channel was reduced to 

zero. Note that the CSM instructed the WSGA to balanced fitness functions equally, 

minimize BER, minimize power, and maximize data rate. In this case the engine traded 

off lower data rate for better BER performance. 

 

In trend step 7 shown in Figure 5.8, the engine increased its data rate to 25 Mbps, 

changed modulation and coding to radio mode 5 16-QAM ½ rate, and decreased its 

power to 19 dB. The bit error rate (BER) increased to 4.34x10-4. Note that the CSM 

instructed the WSGA to minimize BER and minimize power, ignoring the data rate. 
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Figure 5.9: Summary of cognitive engine behavior in dispersive fading channel 

 

 

In trend step 8 shown in Figure 5.9, the engine encountered a dispersive fading channel, 

decreasing its data rate to 9 Mbps, changed modulation and coding to radio mode 2 

BPSK ¾ rate, and increased its power to 22 dB. The bit error rate (BER) was reduced to 

zero. Note that the CSM instructed the WSGA to balanced fitness functions equally, 

minimize BER, minimize power, and maximize data rate.  

 

Note that a problem occurred when simulating the dispersive channel. No software phase 

lock loop was implemented, so phase angle drift corrections were calculated manually 

and applied to each channel and modulation. This approach did not work when the 

dispersive channel generated inter-symbol interference, so the error rate values for the 

dispersive channels are inaccurate and therefore were disregarded. 

 

In trend step 9 shown in Figure 5.9, the engine increased its data rate to 37 Mbps, 

changed modulation and coding to radio mode 6 16-QAM ¾ rate, and decreased its 

power to 9 dB. The bit error rate (BER) increased to 1x10-1 due to the engine attempting 

to maximize data rate in a very challenging wireless channel. Note that the CSM 

instructed the WSGA to minimize BER and maximize data rate, ignoring power. 

 

In trend step 10 shown in Figure 5.9, the engine decreased its data rate to 18 Mbps, 

changed modulation and coding to radio mode 4 QPSK ¾ rate, and increased its power to 

26 dB. The bit error rate (BER) increased to 1.3x10-1 due to the engine attempting to 
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maximize data rate in a very challenging wireless channel. Note that the CSM recognized 

the channel as a Rayleigh channel and instructed the WSGA to minimize BER using 

fitness function 2, maximize data rate, and ignore power. 

 

In trend step 11 shown in Figure 5.9, the engine maintained its data rate at 18 Mbps, 

modulation and coding to radio mode 4 QPSK ¾ rate, and power at 26 dB. The bit error 

rate (BER) stayed at 1.3x10-1. Note that the CSM instructed the WSGA to minimize 

BER, maximize data rate, and ignore power. 

 

In trend step 12 shown in Figure 5.9,  the engine maintained its data rate at 18 Mbps, 

modulation and coding to radio mode 4 QPSK ¾ rate, and power at 26 dB. The bit error 

rate (BER) stayed at 1.3x10-1. Note that the CSM instructed the WSGA to minimize 

BER, minimize power, and maximize data rate. 

 

 

 

 

Figure 5.10: Summary of cognitive engine behavior in Rician channel 

 

 

In trend step 13 shown in Figure 5.10, the engine maintained its data rate at 18 Mbps, 

modulation and coding to radio mode 4 QPSK ¾ rate, and power at 26 dB. The bit error 

rate (BER) was reduced to zero because the engine encountered a Rician channel. Note 

that the CSM instructed the WSGA to minimize BER and maximize data rate, ignoring 

power. 
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In trend step 14 shown in Figure 5.10, the engine increased its data rate to 54 Mbps, 

changed its modulation and coding to radio mode 8 64-QAM ¾ rate, and decreased its 

power to 23 dB. The bit error rate (BER) remained at zero. Note that the CSM instructed 

the WSGA to balance fitness functions equally, minimize BER, minimize power, and 

maximize data rate.  

 

In trend step 15 shown in Figure 5.10, the engine decreased its data rate to 37 Mbps, 

changed its modulation and coding to radio mode 6 16-QAM ¾ rate, and decreased its 

power to 9 dB. The bit error rate (BER) increased to 6.68x10-3. Note that the CSM 

instructed the WSGA to give highest priority to minimizing power, while equally 

weighting the need to minimize BER and maximize data rate.  

 

In trend step 16 shown in Figure 5.10, the engine decreased its data rate to 18 Mbps, 

changed its modulation and coding to radio mode 4 QPSK ¾ rate, and maintained its 

power at 9 dB. The bit error rate (BER) decreased to 8.68x10-5. Note that the CSM 

achieved this better error rate performance by instructing the WSGA to minimize BER 

and minimize power, ignoring data rate.  

 

This section demonstrated that the cognitive engine is capable of operating in unknown 

wireless channels, balancing radio goals based on its ability to learn about the wireless 

environment it is operating in. 

 

5.3 CR Engine Performance in a Known Channel 

 

The previous section analyzed the cognitive engine’s ability to operate in unanticipated 

and unknown wireless channels. This section analyzes the engine as it encounters a 

wireless channel that it has seen before, in this case an AWGN wireless channel. Figure 

5.11 provides a complete trace of the entire simulation demonstration, showing how the 

cognitive engine responded to unknown wireless channels in trend steps one through 

sixteen and a known wireless channel in trend steps seventeen through twenty. Various 

performance metrics are listed like data rate for the given SNR and respective BER for 
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the channel. This information can provide insight into how well the engine responds to 

unanticipated wireless channels. The trend steps highlighted in grey in Figure 5.11 show 

the AWGN channel that the engine encounters following the channels of the previous 

section. Section 5.4 will compare these results to a traditional adaptive controller. 

 

 

 

Figure 5.11: CR toolset trace showing cognitive engine reacting to known channel 

 

In trend step 17 shown in Figure 5.12, the engine encounters a channel that it has seen 

before, an AWGN channel. It decreased its data rate to 9 Mbps, changed its modulation 

and coding to radio mode 2 BPSK ¾ rate, and increased its power to 22 dB. The bit error 

rate (BER) decreased to zero. Note that the CSM achieved this better error rate 

performance by instructing the WSGA to balance fitness functions equally, minimize 

BER, minimize power, and maximize data rate. 
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Figure 5.12: Summary of cognitive engine behavior in known AWGN channel 

 

In trend step 18 shown in Figure 5.12, the engine increases its data rate to 50 Mbps, 

changed its modulation and coding to radio mode 7 64-QAM ½ rate, and decreased its 

power to 6 dB. The bit error rate (BER) increased to 1.83x10-2. Note that the CSM 

instructed the WSGA to give highest priority to minimizing power, while equally 

weighting the need to minimize BER and maximize data rate.  

 

In trend step 19 shown in Figure 5.12, the engine increases its data rate to 56 Mbps, 

changed its modulation and coding to radio mode 8 64-QAM ¾ rate, and increased its 

power to 19 dB. The bit error rate (BER) decreased to 8.69x10-4. Note that the CSM 

instructed the WSGA equally weighting the need to minimize BER and minimize power, 

ignoring data rate. In this case since engine weighted the goals equally, it traded its goal 

of minimizing power for better BER performance and achieved better data rate in the 

process. Note that since the engine had already learned about the AWGN channel it was 

able to recognize that the observed wireless channel was an AWGN channel and quickly 

achieve higher data rates with decent BER much quicker than in trend steps one through 

four. 

 

In trend step 20 shown in Figure 5.12, the engine decreases its data rate to 9 Mbps, 

changed its modulation and coding to radio mode 2 BPSK ¾ rate, and increased its power 

to 22 dB. The bit error rate (BER) decreased to 0. Note that the CSM achieved this better 

error rate performance by instructing the WSGA to balance fitness functions equally, 

minimize BER, minimize power, and maximize data rate.  
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This section illustrated the cognitive engine’s ability to recognize a known channel and 

quickly find a balance of radio parameters that meet the goals for that channel.  

 

Through the experimental process I did discover some situations where the engine did not 

respond properly, exhibiting ghosting of answers, bouncing back and forth between 

solutions. This phenomenon was observed in trend steps seventeen through twenty. In 

these scenarios the engine was presented with data it had seen before but did not 

immediately settle on a solution due to sensitivity in the algorithm implementations. 

Future research could be pursued to further probe the limits of the engine’s operation and 

investigate opportunities for improvement, including how best to configure the genetic 

algorithms and engine mathematics to avoid engine solution errors. 

 

5.4 Comparison To Traditional Adaptive Controller 

 

This section discusses how the cognitive engine compares to the traditional adaptive 

controller presented earlier in the chapter. Figure 5.13 provides a succinct description of 

how the two different mechanisms faired in the changing known and unknown channels 

and Figure 5.14 provides a visual summary of the results of this investigation. The part of 

the figure titled “Low SNR Thresholds” was repeated here for convenience. 
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Figure 5.13: Comparison of adaptive controller behavior to cognitive engine behavior 

 

 

Figure 5.14: Summary of cognitive engine behavior in AWGN channel 

 
Several columns in Figure 5.13 were created excerpting the information about the 

cognitive engine’s data rate, SNR, and BER for each trend step. The data rate and error 

status achieved by the adaptive controller at each trend step are documented. A “N” in the 

error column means the adaptive controller observed no errors, while a “Y” meant that 

the adaptive controller did not observe enough SNR in the wireless channel for the 

modulation/data rate selected by the adaptive controller and was observing symbol errors. 

This occured when the channel quality suddenly decreased or increased and the adaptive 

controller either was not able to close the link and lost data communications or was 
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wasting bandwidth by running the modulation index and data rate too low. The “<”, “=”, 

or “>” indicates whether the cognitive engine or adaptive controller achieved the highest 

data rate. “56250000 > 3750000” means that the engine performed better in trend step 

nineteen. As noted earlier in the chapter, since a software phase lock loop was not 

included in the simulation, the data from trend steps eight through twelve in the 

dispersive fading channel appeared to be inaccurate due to incorrect manual de-rotation 

of the phase and was ignored in this analysis. The cognitive engine had as good or better 

performance than the adaptive controller for eleven of the fifteen trend steps analyzed. 

 

This analysis showed that the cognitive engine is capable of learning how to operate in 

wireless channels unknown to it and recognizing channels it has seen before. It 

determined the best tradeoff between host radio operational parameters and learns the 

optimal use of wireless access in time, providing “instantaneous” bandwidth. In 

comparison, the baseline adaptive controller model is only capable of increasing or 

decreasing data rate based on a threshold using a delta search method, wasting usable 

bandwidth or excess power. The cognitive controller generally performed comparable or 

better than the adaptive controller, except in dispersive channel and several other 

instances. While the cognitive engine as a mechanism to evolve in time and learn how to 

operate with unknown modulations, the adaptive controller is limited in that it does not 

have thresholds for unknown modulations and therefore may not be well suited for the 

dynamic environment where rapidly deployable communications systems are used which 

often requires interoperating between user communities that have unique radio 

configurations. 

 
5.5 Summary 

 
Chapter 5 that showed how the cognitive engine could evolve the radio’s operation in the 

face of unanticipated wireless channels, like those found in rapidly deployable emergency 

communications situations. The cognitive radio simulation toolset was presented and the 

concept of using trend steps was discussed for freezing simulation time and providing 

analysis of the cognitive learning process. Simulation results were presented that detailed 
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the cognitive engine’s behavior while operating in a set of channels that were both known 

and unknown to it. A traditional adaptive controller was introduced and used as a 

baseline for analyzing the behavior of a cognitive engine in changing electromagnetic 

environments. Limitations of the mechanism were observed and recommendations for 

future improvements were made. The following chapter demonstrates some functionality 

of the cognitive engine operating in a real world adaptive radio hardware test bed. 
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Chapter 6: Results from Virginia Tech CR Hardware Test Bed 

Experiment 

 
This chapter discusses a test bed developed to explore the behavior of a cognitive engine 

in an actual disaster response communications system. The experimental tests reflected 

this environment, including a test of the cognitive engine on a hardware platform that was 

subject to intense interference and signal jamming. Such a caustic wireless channel could 

be due to the destruction and resulting malfunction of infrastructure that might occur in a 

natural disaster or attack on the homeland. 
 
6.1 CR Engine Telemedicine Demonstration - Jamming Channel 

 

Our group implemented a cognitive radio hardware test bed demonstration platform 

shown and presented the results during the Department of Homeland Security (DHS) 

SAFECOM session as a supplement to [5] at the 2004 International Symposium on 

Advanced Radio Technologies (ISART). The WSGA demonstration illustrated adaptive 

radio controller functionality given a set of simulated goals from the CSM, permitting the 

cognitive radio test bed to operate in the presence of an interferer without switching 

frequency. Various radio “knobs” including power, modulation, coding, and TDMA 

schemes were adjusted by the WSGA given the goals simulated from the CSM. 

Simulated CSM action was required for this hardware demonstration because the CSM 

application was not yet implemented. At the time we did the experiment, we were not 

able to test the CSM because the Proxim radios lacked the needed flexibility. Since this 

demonstration, the final cognitive engine code base was completed, including the CSM. 

The resulting cognitive radio engine alpha code release sets the stage for the cognitive 
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engine to operate autonomously once the hardware platform is expanded to a fully 

programmable software radio. 

 

6.2 WSGA Experiment for Maintaining QOS in the Presence of a Jammer 

 

Figure 6.1 shows a network layout used in a winter 2004 test of the WSGA functionality 

in the cognitive radio engine. In this demonstration a single user on either end of a 

broadband wireless radio link established a video conference using Apple iChat AV to 

simulate a telemedicine operation over a cognitive radio link that was under attack.  

 

Proxim Tsunami radios operating in the 5.8 GHz Unlicensed National Information 

Infrastructure (UNII) band were used as the host adaptive radio platform. PC’s at the base 

station and subscriber units were used to execute the WSGA program on the base station 

side and accept the WSGA update parameters for both the base station and subscriber 

units. A third Tsunami base station was used as an interferer/jammer.  

 

The radios were capable of changing the following knobs: 

 

(1) Transmitter power  

(6 – 17 dBm in 1 dBm steps at the base station) 

(2) Modulation  

(QPSK, QAM8, and QAM16) 

(3) FEC  

(only adjustable for QPSK -> 1/2 or 3/4 rate;  

QAM8 always uses 2/3 rate and QAM16 always uses 3/4 rate) 

(4) Uplink/downlink timeslot ratio 

(5) Center frequency (5.740-5.806 GHz) 
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Figure 6.1:  Winter 2004 cognitive engine test setup 

 

To start the demo, the interfering radio was turned off, and the broadband video 

connection was established to show error-free video quality. The network under test 

(NUT) had the initial radio parameters: transmit power = 6 dBm, QAM 16, First Inbound 

Slot = 22 (of 24), 3/4 FEC, Frequency = 5740.40 MHz. 

 

The interferer was then turned on with these parameters: transmit power = 11 dBm, QAM 

16, First Inbound Slot = 12 (of 24), 3/4 FEC, Frequency = 5757.69 MHz. 

 

With the interferer on, the video link quality substantially degraded. The WSGA was run 

with set goals and initial population members as a simulated CSM action. As part of the 

experiment the radios were prevented from switching frequency. This forced the engine 

to evolve the radio’s operation while coexisting with the in band frequency jammer, a 

significant challenge. This scenario simulated a worst case situation in which a cognitive 

radio had to make the best of a bad wireless channel environment and still maintain the 
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quality of service required to support an emergency telemedicine operation. Rather than 

switch frequencies when channel degradation occurs which many carrier sense 

technologies do, the engine learned the best combination of radio parameters to allow it 

to operate in the frequency band being jammed. 

 

As the frequencies indicate, the NUT and interferer operated on slightly different center 

frequencies, but were co-channel interferers due to their overlapping 20.75 MHz 

bandwidths. If both radios were set to the same center frequency, the link quality 

degraded beyond the point that the radios could communicate at all, so a small offset in 

the frequency was used to allow communications that were severely degraded without 

completely interrupting the link. 

 

The WSGA was sent goals to maximize the power and the coding gain, which implied 

reducing the data rate by lowering the modulation index and increasing the redundancy in 

the data encoding. When the WSGA finished, the NUT’s radio parameters were: transmit 

power =16 dBm QPSK, First Inbound Slot 4 (of 8), 1/2 FEC, Frequency = 5740.40 MHz. 

Interferer Broadband Wireless Link 

 

 

Figure 6.2: Photographs of cognitive engine control of adaptive radio network 

Run WSGA 

In-band 

Jammer 

Link  

Recovered In 

Band 
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With the new parameter settings, the video quality improved to that of a near flawless 

signal while the interferer was still on. The progression of the demonstration can be seen 

in Figure 6.2.  The link quality was initially high, degrades significantly before the 

WSGA is run, and is then returns to high quality after the WSGA was run. This 

experiment was a quantitative evaluation of the WSGA because at the time no 

mechanism existed to collect data regarding the percent of packets lost. 

 

6.3 Summary 

 

This chapter discussed a test bed developed to explore the behavior of a cognitive engine 

in disaster response communications system. The experimental tests reflected this 

scenario, including a test of the cognitive engine on a hardware platform that was subject 

to intense interference and signal jamming. Such a caustic wireless channel could be due 

to the destruction and resulting malfunction of infrastructure that might occur in a natural 

disaster or attack on the homeland. In the experiment presented in chapter 6 the link 

quality was initially high until it was attacked by the jammer, at which point the video 

quality degraded significantly before the WSGA was run. Following reconfiguration of 

the radio by the WSGA with fixed goals from the simulated CSM the video link returns 

to high quality. This experiment served as a test of the WSGA’s ability to reconfigure the 

hardware radio test bed platform. Future research may be pursued to test the CSM in the 

hardware test bed. The next chapter provides conclusions and recommendations for 

follow on research. 
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Chapter 7: Conclusions and Recommendations 
 

This chapter provides a summary of the research I present in this dissertation, details my 

research contributions, and provides recommendations for future research directions. 

 

7.1 Summary of Research Results 

 

This research focused on developing a cognitive radio that could operate reliably in 

unforeseen communications environments like those faced by the disaster and emergency 

response communities. Cognitive radios may also offer the potential to open up 

secondary or complimentary spectrum markets, effectively easing the perceived spectrum 

crunch while providing new competitive wireless services to the consumer. A structure 

and process for embedding cognition in a radio was presented, including discussion of 

how the mechanism was derived from the human learning process and mapped to a 

mathematical formalism called the BioCR. Results from the implementation and testing 

of the model in a hardware test bed and simulation test bench were presented, with a 

focus on rapidly deployable disaster communications. 

 

This dissertation presented a number of key results. The simulation in Chapter 5 showed 

that the cognitive engine finds the best tradeoff between a host radio's operational 

parameters in changing wireless conditions, while the baseline adaptive controller only 

increases or decreases its data rate based on a threshold, often wasting usable bandwidth 

or excess power when it is not needed due its inability to learn. The hardware test bed in 

Chapter 6 showed that the cognitive engine can learn how to configure the adaptive host 

radio to operate in the same band as a jammer. Future work needs to be done to 
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investigate the sensitivity of the engine’s algorithms, including how to address conditions 

when the solution does not settle, but bounces back and forth. This is a topic for future 

research, as well as investigating mechanisms for accelerating the engine’s solution settle 

time. A fraction of the approaches explored in this research have been implemented due 

to time and resource constraints. Of particular interest will be how to leverage dynamic 

domain specific genetic tags and templates in a fully distributed system. 

 

7.2 Summary of Contributions 

 

This dissertation made a number of research contributions. I developed a biologically 

inspired model of cognition in a radio architecture. This contribution was important 

because as of the start of this research in late 2001 very little, if any, literature existed 

regarding how to build a “real world” cognitive radio. My research addressed that gap. I 

proposed that genetic algorithm operations could be used to realize the biologically 

inspired cognitive radio model. This contribution was important because when I began 

developing the mathematical formalism for the model in late 2002, most researchers were 

assuming an expert system as the central brain of the cognitive radio. My research set a 

stake in the sand and recommended extending mathematics to the cognitive radio 

research realm that could inherently evolve with changing times and needs. Specifically, 

this research proposes and details how the chaotic meta-knowledge search, optimization, 

and machine learning properties of distributed genetic algorithm operations could be used 

to map this model to a computable mathematical framework in conjunction with dynamic 

multi-stage distributed memories.  

 

I developed an algorithmic framework to realize the cognition mechanism which was 

modeled after the functional operation of the brain, but not the physical design. This 

contribution was significant because most cognitive system designers immediately 

assume a neural network of nodes was needed to learn. The model I proposed shows that 

the system could be abstracted to contextual flows of information corresponding to the 

surrounding environment and current system status. The system formalism was 

contrasted with existing cognitive radio approaches, including traditionally brittle 
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artificial intelligence approaches. The cognitive engine architecture and algorithmic 

framework is developed and introduced, including the Wireless Channel Genetic 

Algorithm (WCGA), Wireless System Genetic Algorithm (WSGA), and Cognitive 

System Monitor (CSM).  

 

I developed a cognitive radio simulation toolset for evaluating the behavior the cognitive 

engine. This contribution was necessary to explore my research proposal. This work 

answered the question, could a cognitive engine using genetic algorithms identify and 

operate in both known and unknown wireless channels? The simulation indicated yes, 

however work was needed to extend the concept to a cognitive radio network. Finally, I 

used the toolset to analyze the cognitive engine’s performance in different operational 

scenarios. This contribution provided the methodology for examining the behavior of the 

engine, including my development of the “trend step” which could freeze time and show 

what was going on under the hood of the cognitive engine at any given time. The toolset I 

developed facilitated this analysis through extensive time stamped data logging of the 

simulated adaptive radio and cognitive radio engine output. 

 

7.3 Future Research and Recommendations 

 

This research lays the foundation for a number of opportunities for future academic 

exploration. I recommend that future researchers implement a fully distributed CR engine 

model simulation. This research advance could be used to explore how to structure future 

field trials of the CR engine model within a network. These field trials could be pursued 

using real world channel measurements and a programmable wireless network platform, 

including an integrated channel sensing capability like the sounder when it becomes 

available. The simulation could then be transitioned to a cognitive wireless network test 

bed.  

 

I think that it would interesting to extend this research and investigate waveform level 

CSM channel classification using the algorithm developed by Tim Gallagher. Gallagher’s 

algorithm converts an impulse response to error statistics, skipping symbol level HMM 
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channel modeling with error statistics. Completing this research would allow the 

cognitive engine to classify channels using statistical features other than symbol error 

behavior, potentially accelerating and refining the cognitive functions in the radio. 

 

I recommend fully implementing the Goal Evolver CSM block with peer to peer 

communications. This advance would allow the cognitive wireless network to operate 

autonomously, which would test the scalability of the engine in a real world setting. 

 

As part of the cognitive network research, I recommend developing a version of the 

cognitive engine for cross-layer co-simulation with the CRANIAsim OPNET project. 

The CRANIAsim OPNET project was an effort to model cognitive radios in a network, 

but lacked physical and MAC layer resolution. By “black-boxing” the cognitive engine 

and providing an “BioCR engine-to-OPNET” translation API which translates symbol 

level statistics to packet level statistics and makes relevant cognitive engine control data 

available to the researcher, networking researchers could interact with the cognitive 

engine and recommend MAC and network layer engine processing additions. This cross 

layer experiment could investigate appropriate interlayer communications in the 

cognitive engine. 

 

Finally, I recommend extending the focus of this research from robust disaster 

communications and networking to secure military communications and networking. This 

research advance would allow researchers to extend the creative learning BioCR 

mechanism to a number of unique applications which could be used to safeguard our 

nation.
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Appendix A: Glossary 
 

1. Accommodation: To change one’s understanding to include a new concept  

2. Adaptive controller: Mechanism for changing the radio data rate based on 

changing SNR 

3. Adaptive radio: A radio that may switch between preprogrammed radio profiles 

4. Adaptation: Adapting to the world through assimilation and accommodation 

5. Assimilation: To include directly into one’s understanding a new concept  

6. AWGN: Additive White Gaussian Noise, also called white noise due to its 

spectral flatness 

7. BER/SER: Bit or symbol error rate, a measure of the number of errors in a 

channel 

8. Biologically inspired: Derived from a biological system 

9. BioCR engine: Shorthand for biologically inspired cognitive radio engine 

10. Channel: Shorthand for wireless channel, or communications medium 

11. Classifier: A mathematical mechanism that can categorize inputs based on a 

database 

12. Cognition:  The action or faculty of knowing taken in its widest sense, including 

sensation, perception, conception, etc., as distinguished from feeling and volition 

13. Cognitive:  Pertaining to cognition, or to the action or process of knowing 

14. Cognitive Radio: A radio that can learn how to operate in unanticipated channels  

15. CSM: Cognitive System Monitor, learns how to synthesize channel information 

to develop operational goals for WSGA radio evolver 

16. Dispersive fading wireless channel: Transmitted energy arrives at the receiver at 

different times, superimposed on other symbols 

17. Distributed algorithms: Mathematical processes that may be located in different 

logical or physical memory spaces 

18. Distributed model: System design that may be used by many host platforms at 

once 

19. Evolution: To change in time 

20. Fixed radio: A radio which has its parameters set at the time of manufacture 
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21. Flat fading wireless channel: Frequency components of a received radio signal 

vary in the same proportion simultaneously 

22. Genetic algorithm: GA, An algorithm based on biological mechanisms of 

evolution 

23. Goal evolver: Mechanism in BioCR engine used to evolve LTM content through 

STM workspace 

24. Learning classifier: A mathematical mechanism that is capable of learning how 

to categorize an input that is not in a classifier database 

25. Learning optimizer: A mathematical mechanism that is capable of learning how 

to optimize a system 

26. LTM: Long term memory, distributed memory space that contains channel 

statistics, WSGA goals, and other engine control data 

27. Meta-GA functions: GAs that are able to learn to control and monitor other GAs 

28. Modulation: Method to transmit a signal using properties of electromagnetic, 

optical, or sound waves including amplitude, frequency, phase, spatial orientation, 

or code 

29. Neural network: A mathematical model of the biological brain approximating 

neural interconnection, communication, and processing functions. 

30. Optimizer: A mathematical mechanism that can be used to change system 

configuration to provide optimal performance for a given set of constraints in time 

31. PER: Packet error rate, a measure of the number of packet errors in a channel  

32. Power level: Mean power of a radio transmitter 

33. Programmable radios: Radios that may be changed to add or remove 

capabilities 

34. Radios: Telecommunication by modulation and radiation of electromagnetic 

waves 

35. Radio profile: The collection of radio parameters that define the radios operation  

36. Rayleigh fading: In electromagnetic wave propagation, phase-interference fading 

caused by multipath, and which may be approximated by the Rayleigh 

distribution 
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37. Rician: Rayleigh fading with a strong line of sight content is said to have a Rician 

distribution, or to be Rician fading 

38. Robust: Highly reliably 

39. Scaffolding learning: To increase understanding from one stage to another  

40. SNR: Signal to noise ratio 

41. STM: Short term memory, workspace used by the BioCR engine to generate 

goals for the WSGA 

42. Symbol: Mapping of values to modulation characteristics like  amplitude, 

frequency, or phase 

43. WCGA: Wireless Channel Genetic Algorithm, quantifies and models channel 

44. White noise: Noise having a frequency spectrum that is continuous and uniform 

over a specified frequency band. Has equal power per hertz over the specified 

frequency band 

45. WSGA: Wireless System Genetic Algorithm, evolves radio based on CSM goals  
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Appendix B: Cognitive Radio Engine Patent Application - VTIP 03.056  
 

In June 2004 Virginia Tech Intellectual Properties (VTIP) submitted a patent application 

titled “Cognitive Radio Engine Based On Genetic Algorithms in A Network” covering 

the cognitive radio engine model presented in this dissertation, including the proof of 

concept software realization of that model in a cognitive engine that is capable of 

controlling both a simulated adaptive radio host and an agile hardware radio host. 

 

The interested reader may contact VTIP to request further information about the patent 

application and licensing the cognitive radio engine (VTIP # 03.056). The patent 

application was about 70 pages. Table B.1 summarizes the original disclosure that was 

submitted to VTIP. 

 

Table B.1: VTIP Disclosure No. 03-056 
Title: Biologically Inspired Cognitive Wireless L12 Technology: Genetic Algorithms 
Applied to Cognitive Radio 

Inventor: Christian J Rieser, Tom Rondeau, Charles W Bostian, Walling Cyre, and Tim 
Gallagher 

Description: Wireless communications systems (radios) can be described as fixed,
adaptive, or cognitive. The technical characteristics of fixed radios are set at the time of 
manufacture. An adaptive radio can respond to channel conditions that represent one of a 
finite set of anticipated events. Adaptive radios use artificial intelligence (AI) algorithms 
that are basically a series of "if, then, else" algorithms. A cognitive radio can respond 
intelligently to an unanticipated event - i.e., a channel that it has never encountered 
before. Our disclosure describes a novel and computationally efficient method to realize a 
truly cognitive radio based n genetic algorithms. An immediate market for this 
technology is in military and disaster communications, where radio systems must work 
under changing and unanticipated circumstances and in the presence of hostile jammers 
and interferers. The long-term market is in civilian radio communications systems like 
cellular telephones where spectrum and battery power are at a premium and in which the 
radio sets must continuously adapt to conserve these resources. 

Patent Status: Patent Application Filed 

Licensing Status: 
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Appendix C: CR Test bench Simulation Blocks and Source Code 
 

This appendix presents documentation of the cognitive radio simulation test bench that I 

created using MATLAB-Simulink, including screenshots of the research process, code 

and program output, and file name listing with references. An explanation of each section 

of the simulation code base is provided. Full code for the cognitive radio toolset may be 

requested by contacting Virginia Tech Intellectual Properties, Inc. 

 

C.1 Co-Simulation of Adaptive Radio Simulink Model and C++ Cognitive Engine 

 

 

Figure C.1: Research process, cognitive radio (CR) system, and early CR test bench 

 

C.2 Cognitive Engine Code and Program Output 
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Figure C.2: Early cognitive engine code and output 

 

 

C.3 Reference List of Experimental Code File Names 

 

NOTE: Requests for full text of experimental code should be directed to VTIP 

(http://www.vtip.org), Reference VTIP#: 03.056 

 

BioCR Toolset Code – Adaptive Radio Host Simulation Implementation 

 

MATLAB-Simulink 6.5.1 

 

By Christian Rieser of Virginia Tech 
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Summer 2004 

 

Adaptive Radio model implementation based on freely available Modified Wi-Fi and 

HiperLAN2 models  

 

with modules derived from MATLAB Central models: 

  IEEE 802.11a WLAN PHY by Martin Clark of The MathWorks  

      and  

  HIPERLAN/2 by Chris Thorpe of The MathWorks 

 

Sample list of editable text files 

 

CRModel/ 

 crsim12.mdl 

 Rchanneldist.csv 

 Nchanneldist.csv 

 ltmerrordist.csv 

 CRtest benchBERanalysisplot.csv 

 crwcgainputsave.m 

 crtrenddump.m 

 crtoolset.m 

 crtest benchdemo.m 

 crtest benchdemo3.m 

 crtest benchdemo2.m 

 crtest bench.m 

 crsimfadingmodenamelist.m 

 crsimchannelangles.m 

 crsimanalysis5.m 

 crresetltmstat.m 

 crresetltm.m 

 crresetknobs.m 
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 crcsmgoalevolver.m 

 crconfiguresim5.m 

 crbertest bench.m 

 crberresetknobs.m 

 crbermodesave.m 

 crberenginestatus.m 

 crberdatasave.m 

 crberanalysis.m 

 crber.m 

 cr3.m 

 cr2.m 

 cr1.m 

 c15_seglength.m 

 c15_intervals1.m 

 IEEE80211a_graphics.fig 

 IEEE80211a_init.mat 

 IEEE80211a_sfun.dll 

 Crberdata/ 

 wsgaref.txt 

 

*** 

 

BioCR Toolset Code - 80211 Reference 

 

MATLAB-Simulink 6.5.1 

 

By Martin Clark and Chris Thorpe of The MathWorks 

 

Reference modules from MATLAB Central: 

  IEEE 802.11a WLAN PHY by Martin Clark of The MathWorks  

      and  
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  HIPERLAN/2 by Chris Thorpe of The MathWorks 

 

Sample list of editable text files 

 

IEEE80211a and HIPERLAN/ 

 IEEE80211a_lib.mdl 

 IEEE80211a.mdl 

 IEEE80211a_udg.m 

 IEEE80211a_settings.m 

 IEEE80211a_open_graphics.m 

 IEEE80211a_graphics.m 

 hiperlan2.mdl 

 

**** 

 

BioCR Toolset Code – Cognitive Radio Engine Implementation 

 

C/C++ Microsoft Visual Studio 6.0 

 

By Tom Rondeau of Virginia Tech, based on model/framework/algorithms created by 

Christian Rieser and genetic algorithm (GA) base code from Dr. Walling Cyre (WCGA 

code was written by Christian Rieser and Tom Rondeau as a class project in Dr. Cyre’s 

GA class) 

Summer 2004 

 

Sample list of editable text files 

 

Cognitive Radios/ 

Channel Data/ 

errorchannel_init0000.seq 

Executables/ 
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parameters_WCGA.txt 

parameters_CSM.txt 

parameters_WSGA.txt 

Libraries/ 

Classifier.h 

CRMathInterp.h 

csm.h 

ExtendedMath.h 

HMM.h 

HMMSeqGen.h 

HMMSeqStatGen.h 

HMMStatGen.h 

HMMStatGenFile.h 

LTM.h 

ProximAPI.h 

RadioData.h 

SimulinkAPI.h 

STM.h 

TCPIP.h 

WSGA.h 

WSGAFitFunc.h 

Output/ 

ltmstat.csv 

ltmstatReset.csv 

SystemChromosome.txt 

SystemKnobs.csv 

SystemKnobsBERanalysis.csv 

SystemKnobsReset.csv 

SystemMeters.csv 

wcgainput.csv 

WSGAActions.csv 



 

 117

WSGAFinalOutput.csv 

CRCode/ 

CognitiveRadio/ 

CognitiveRadio.dsp 

CognitiveRadio.dsw 

CSM/ 

Classifier.cpp 

CSM.dep 

CSM.dsp 

CSM.dsw 

CSM.mak 

Individual.cpp 

Individual.h 

LTM.cpp 

ltmstat_current.csv 

main.cpp 

Population.cpp 

Population.h 

STM.cpp 

WCGAFinalOutput0000.txt 

WSGAActions.csv 

WCGA/ 

Definitions.h 

Include.h 

Individual.cpp 

Individual.h 

Main.cpp 

Population.cpp 

Population.h 

WCGA.dep 

WCGA.dsp 
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WCGA.dsw 

WCGA.mak 

wcgainput.csv 

WSGA/ 

Definitions.h 

Individual.cpp 

Individual.h 

Main.cpp 

Population.cpp 

Population.h 

Setup Environment for WSGA.doc 

WSGA.dep 

WSGA.dsp 

WSGA.dsw 

WSGA.mak 

WSGAOutput.txt 

ExtendedMath/ 

BER.cpp 

ExtendedMath.cpp 

ExtendedMath.dsp 

ExtendedMath.dsw 

ReadMe.txt 

StdAfx.h 

Vector.cpp 

HMM/ 

HMM.cpp 

HMM.dep 

HMM.dsp 

HMM.dsw 

HMM.mak 

ReadMe.txt 
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StdAfx.cpp 

StdAfx.h 

HMMSeqGen/ 

HMMSeqGen.cpp 

HMMSeqGen.dep 

HMMSeqGen.dsp 

HMMSeqGen.dsw 

HMMSeqGen.mak 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

HMMSeqGenFile/ 

HMMSeqGen.cpp 

HMMSeqGen.dep 

HMMSeqGen.dsp 

HMMSeqGen.dsw 

HMMSeqGen.mak 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

HMMSeqStatGen/ 

HMMSeqStatGen.cpp 

HMMSeqStatGen.dep 

HMMSeqStatGen.dsp 

HMMSeqStatGen.dsw 

HMMSeqStatGen.mak 

HMMSeqStatGenTemp.cpp 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

HMMStatGen/ 
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HMMStatGen.cpp 

HMMStatGen.dep 

HMMStatGen.dsp 

HMMStatGen.dsw 

HMMStatGen.mak 

HMMStatGen-back01.cpp 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

HMMStatGenFile/ 

HMMStatGenFile.cpp 

HMMStatGenFile.dep 

HMMStatGenFile.dsp 

HMMStatGenFile.dsw 

HMMStatGenFile.mak 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

ProximAPI/ 

BSU_SUCmds.cpp 

BSUCmds.cpp 

ProximAPI.cpp 

ProximAPI.dep 

ProximAPI.dsp 

ProximAPI.dsw 

ProximAPI.mak 

Readme.txt 

StdAfx.cpp 

StdAfx.h 

SUCmds.cpp 

WSGA.h 
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SimulinkAPI/ 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

SimulinkAPI.cpp 

SimulinkAPI.dsp 

SimulinkAPI.dsw 

TCPIP/ 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

TCPIP.cpp 

TCPIP.dep 

TCPIP.dsp 

TCPIP.dsw 

TCPIP.mak 

WSGAFitFunc/ 

ReadMe.txt 

StdAfx.cpp 

StdAfx.h 

WSGAFitFunc.cpp 

WSGAFitFunc.dep 

WSGAFitFunc.dsp 

WSGAFitFunc.dsw 

WSGAFitFunc.mak 

 

C.4 Detail of the Adaptive Radio MATLAB-Simulink Co-simulation 

 

File: crsim12.mdl 

 

Adaptive Radio Host Simulink Model  
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By Christian Rieser of Virginia Tech 

Summer 2004 

 

with modules from MATLAB Central model: 

  IEEE 802.11a WLAN PHY by Martin Clark of The MathWorks  

      and  

  HIPERLAN/2 by Chris Thorpe of The MathWorks 

 

SUMMARY OF MODEL 

* End-to-end 802.11a physical layer  

* All mandatory and optional data rates: 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s 

* BPSK, QPSK, 16-QAM, 64-QAM modulations 

* Forward error correction coding (convolutional; code rates 1/2, 2/3, 3/4) 

* Viterbi decoding 

* Data interleaving 

* Data rates selectable on-the-fly 

* Adaptive modulation demo over changing wireless channel  

+THE ADAPTIVE RADIO BLOCK HAS BEEN REPLACED BY THE COGNITIVE 

ENGINE I/O+++ 

 

SUMMARY OF DISABLED FUNCTIONS 

* OFDM transmission: 52 subcarriers, 4 pilots, 64-pt FFTs, circular prefix 

* PLCP preamble (modeled as 2x2 long training sequences; see below) 

* Receiver equalization 

 

MODEL SIMPLIFICATIONS/ASSUMPTIONS 

* Baseband-equivalent model (no up/down RF conversion) 

* Random data transmision (no data scrambling used) 

* Fixed number of data symbols per packet (no pad bits used) 

* Continuous frame-to-frame operation (no coder state resetting via tail bits) 

* Fixed transmit power level; link-SNR specified (on-the-fly) 
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* Idealized timing/frequency acquisition 

* Not modeled:  

    - MAC/PHY interface and PLCP header (TXVECTOR/RXVECTOR) 

    - Short training sequences (for AGC, diversity, timing/frequency acq.) 

    - Time windowing of OFDM symbols 

 

C.5 Detail of the Cognitive Engine Model C++ Co-simulation 

 

File: CSM.exe 

 

Windows Visual C++ 6.0 Co-simulation Cognitive Engine formalism, framework, 

design, and implementation 

By Christian Rieser and Tom Rondeau, Virginia Tech, Blacksburg, VA 

Summer 2004 

 

Controls Adaptive/Agile Radio simulation 

 

(a) WCGA (Wireless Channel Genetic Algorithm)  

- models channel and performance statistics based on channel measurements (sounder or 

simulation) 

(b) WSGA (Wireless System Genetic Algorithm)  

- evolves radio behavior for optimal response to unknown and known channels (changes 

radio knobs based on CSM goals) 

(c) CSM (Cognitive System Monitor)  

- uses knowledge of WCGA channel statistics and WSGA radio performance to 

synthesize goals for WSGA 

- fully distributed learning optimizer/classifier and knowledge base     

 

C.6 Detail of the CR Simulation Test Bench Co-simulation 

 

File: crtoolset.m 
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Tests cognitive engine performance control of a simulated adaptive radio link in changing 

and unanticipated wireless channel conditions 

 

By Christian Rieser, Virginia Tech, Blacksburg, VA 

Summer 2004 

 

NOTE: c15_seglength.m code from Dr. William Tranter’s CAD for Communications 

book draft, Fall 2002, Virginia Tech, Blacksburg, VA, btranter@vt.edu 

Produces a two-row matrix of error intervals and error-free 

intervals. Row 1 specifies the interval length and row 2  

specifies the interval class (error(1) or no error(0)). 

 

NOTE: c15_intervals.m code from Dr. William Tranter's CAD for Communications book 

draft, Fall 2002, Virginia Tech, Blacksburg, VA, btranter@vt.edu 

Calculates and plots error intervals from a run-length error vector. 

 

 

For an excellent text on simulation of communications systems, please see Dr. William 

Tranter’s book “W. Tranter et al. Principles of communication systems simulation with 

wireless applications. Upper Saddle River, NJ: Prentice Hall, 2004.” I would like to 

extend my thanks to Dr. Tranter for offering me the opportunity to read and provide 

feedback on his book before it was available at the bookstore. Dr. Tranter is both an 

outstanding author and an excellent teacher – my many thanks to him for taking time 

to chat with me over the years about communications and wireless system modeling. 

His MATLAB expertise and methodologies encouraged me to use that tool to architect 

and generate the final experimental research results I present in this dissertation.  
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Appendix D: BioCR Toolset Simulation Run Data Capture Logs 
 

This appendix includes detailed BioCR toolset simulation run data capture logs from both 

the host radio and cognitive engine. An explanation of each trend step of the simulation 

run is provided.  

 

CR Engine versus Traditional Adaptive Radio Controller – Unknown Channel 

 

This section details how the cognitive engine responds to unknown channels. Figure D.1 

shows a trace of the cognitive engine operating in four different channels. In this case all 

four channels were unknown to the engine when it began its operation.  

 

 (1) Additive White Gaussian Noise (AWGN) wireless channel 

 (2) Flat Fading Rayleigh wireless channel 

 (3) Dispersive Fading Rayleigh wireless channel 

 (4) Rician wireless channel 

 

 

Figure D.1: CR toolset trace showing cognitive engine reacting to unknown channel 
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The engine operated in an AWGN channel the first four steps of the demonstration 

(called “trend steps”), then encountered a flat fading channel from trend step five to 

seven. On trend step eight the engine encountered a dispersive fading channel. The 

engine operated in a Rician channel the remaining four trend steps. 

 

The meanings of the WSGA fitness function codes are listed in Table D.1. WSGA fitness 

functions weights may range from 0 to 255. 

 

Table D.1: WSGA Fitness Functions Used in Simulation 

 
        1 =  Minimize AWGN BER 

        2 =  Minimize Rayleigh BER 

        3 =  Minimize Rician BER 

10000 =  Minimize Power Consumption 

20000 =  Maximize Data Rate 

 

 

The following section provides step by step analysis of the cognitive engine’s operation 

in various unknown channels. 

 

D.1 Trend Step 1 – AWGN Channel 

 
Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

  

Figure D.2: Trend step 1 host radio data 

 

 

 



 

 127

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 1.05236 
BER             = 0.057202 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32784.2         
1   1.05236             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32784.2         
1   1.05236             32767           
 
 
STM Winner 
STM Index       = 1 
Ranking Metric  = 1.05236 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     10000          128              

 

Figure D.3: Trend step 1 engine data 

 

In trend step 1 shown in Figures D.2 and D.3 the engine initialized its operation at data 

rate 6 Megabits per second (Mbps), radio mode 1, BPSK ½ rate forward error correction 

(FEC) code with a transmit power of 1 dBm, where dBm is decibel referenced to 1 

milliwatt; 0 dBm equals one milliwatt. Note that to simplify the Simulink simulation the 

radio frequency noise floor was assumed to be 0 dBm, so the transmit power in dBm is 

also the signal to noise ratio (SNR = Signal Power / Noise Power dB = Signal Power 

dBm – Noise Power dBm). The bit error rate (BER) performance was poor because of 

this initial reset of the radio. At this time no learning had occurred. 
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D.2 Trend Step 2 – AWGN Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

  

Figure D.4: Trend step 2 host radio data 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits       
0   0                   32767           
1   1.05236             32784.2         
 
 
STM Members 
    Ranking Metric      Credits        
0   0                   32767           
1   1.05236             32784.2         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128              

 

Figure D.5: Trend step 2 engine data 

 

In trend step 2 shown in Figures D.4 and D.5 the engine increased its data rate to 9 Mbps, 

changed modulation and coding to radio mode 2 QPSK ¾ rate, and increased its power to 

22 dB. The bit error rate (BER) performance was reduced to zero due to the engines 
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changes in radio parameters. Note that the CSM instructed the WSGA to balanced fitness 

functions equally, minimize BER, minimize power, and maximize data rate. 

 

D.3 Trend Step 3 – AWGN Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

  

Figure D.6: Trend step 3 host radio data 

 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1.05236             32784.2         
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1.05236             32784.2         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128              

 

Figure D.7: Trend step 3 engine data 

 

In trend step 3 shown in Figures D.6 and D.7 the engine increased its data rate to 18 

Mbps, changed modulation and coding to radio mode 4 16-QAM ¾ rate, and decreased 
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its power to 19 dB. The bit error rate (BER) performance was maintained at zero. Note 

that the CSM instructed the WSGA to balanced fitness functions equally, minimize BER, 

minimize power, and maximize data rate. 

 

D.4 Trend Step 4 – AWGN Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

  

Figure D.8: Trend step 4 host radio data 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits      
0   0                   32767           
1   1.05236             32784.2        
 
 
STM Members 
    Ranking Metric      Credits      
0   0                   32767           
1   1.05236             32784.2        
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128              

 

Figure D.9: Trend step 4 engine data 
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In trend step 4 shown in Figures D.8 and D.9 the engine decreased its data rate to 9 

Mbps, changed modulation and coding back to radio mode 2 QPSK ¾ rate, and decreased 

its power to 9 dB. The bit error rate (BER) performance was maintained at zero. Note that 

the CSM instructed the WSGA to balanced fitness functions equally, minimize BER, 

minimize power, and maximize data rate. In this case it traded off lower data rate for 

lower power since each of its goals was equally weighted. 

 

D.5 Trend Step 5 – Flat Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

  

Figure D.10: Trend step 5 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 1 
BER             = 0.00017378 
 
 
LTM Members 
    Ranking Metric      Credits        
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
 
 
STM Members 
    Ranking Metric      Credits        
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
 
 
STM Winner 
STM Index       = 1 
Ranking Metric  = 1 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     20000          128              

 

Figure D.11: Trend step 5 engine data 

 

In trend step 5 shown in Figures D.10 and D.11 the engine encountered a flat fading 

channel, increasing its data rate to 56 Mbps, changed modulation and coding to radio 

mode 8 64-QAM ¾ rate, and increased its power to 25 dB. The bit error rate (BER) 

increased to 1.74x10-4 due the more challenging channel. Note that the CSM instructed 

the WSGA to minimize BER and maximize data rate, in this case ignoring the need to 

conserve power. 
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D.6 Trend Step 6 – Flat Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

  

Figure D.12: Trend step 6 host radio data 

 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128              

 

Figure D.13: Trend step 6 engine data 

 

In trend step 6 shown in Figures D.12 and D.13 the engine decreased its data rate back to 

18 Mbps, changed modulation and coding to radio mode 4 16-QAM ¾ rate, and 
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increased its power to 26 dB. The bit error rate (BER) performance in the flat fading 

channel was reduced to zero. Note that the CSM instructed the WSGA to balanced fitness 

functions equally, minimize BER, minimize power, and maximize data rate. In this case 

the engine traded off lower data rate for better BER performance. 

 

D.7 Trend Step 7 – Flat Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

  

Figure D.14: Trend step 7 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 1 
BER             = 0.00043429 
 
 
LTM Members 
    Ranking Metric      Credits        
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
 
 
STM Members 
    Ranking Metric      Credits        
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
 
 
STM Winner 
STM Index       = 1 
Ranking Metric  = 1 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     10000          128              

 

Figure D.15: Trend step 7 engine data 

 

In trend step 7 shown in Figures D.14 and D.15 the engine increased its data rate to 25 

Mbps, changed modulation and coding to radio mode 5 16-QAM ½ rate, and decreased 

its power to 19 dB. The bit error rate (BER) increased to 4.34x10-4. Note that the CSM 

instructed the WSGA to minimize BER and minimize power, ignoring the data rate. 
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D.8 Trend Step 8 – Dispersive Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

  

Figure D.16: Trend step 8 host radio data 

 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128              

 

Figure D.17: Trend step 8 engine data 
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In trend step 8 shown in Figures D.16 and D.17 the engine encountered a dispersive 

fading channel, decreasing its data rate to 9 Mbps, changed modulation and coding to 

radio mode 2 BPSK ¾ rate, and increased its power to 22 dB. The bit error rate (BER) 

was reduced to zero. Note that the CSM instructed the WSGA to balanced fitness 

functions equally, minimize BER, minimize power, and maximize data rate.  

 

Note that a problem occurred when simulating the dispersive channel. No software phase 

lock loop was implemented, so phase angle drift corrections were calculated manually 

and applied to each channel and modulation. This approach did not work when the 

dispersive channel generated inter-symbol interference, so the error rate values for the 

dispersive channels are inaccurate and therefore were disregarded. 

 

D.9 Trend Step 9 – Dispersive Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

  

Figure D.18: Trend step 9 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 7.78949 
BER             = 0.10041 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   34991.7         
1   1                   34664           
2   1.05236             34646.9         
3   7.78949             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   34991.7         
1   1                   34664           
2   1.05236             34646.9         
3   7.78949             32767           
 
 
STM Winner 
STM Index       = 3 
Ranking Metric  = 7.78949 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     20000          128              

 

Figure D.19: Trend step 9 engine data 

 

In trend step 9 shown in Figures D.18 and D.19 the engine increased its data rate to 37 

Mbps, changed modulation and coding to radio mode 6 16-QAM ¾ rate, and decreased 

its power to 9 dB. The bit error rate (BER) increased to 1x10-1 due to the engine 

attempting to maximize data rate in a very challenging wireless channel. Note that the 

CSM instructed the WSGA to minimize BER and maximize data rate, ignoring power. 
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D.10 Trend Step 10 – Dispersive Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

  

Figure D.20: Trend step 10 host radio data 

 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 6.1726 
BER             = 0.13042 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   34134.2         
2   1.05236             34117.1         
3   6.1726              32767           
4   7.78949             32969.1         
 
 
STM Members 
    Ranking Metric      Credits         
0   1                   34134.2         
1   1.05236             34117.1         
2   6.1726              32767           
3   7.78949             32969.1         
 
 
STM Winner 
STM Index       = 2 
Ranking Metric  = 6.1726 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     2              128             
     20000          128              

Figure D.21: Trend step 10 engine data 
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In trend step 10 shown in Figures D.20 and D.21 the engine decreased its data rate to 18 

Mbps, changed modulation and coding to radio mode 4 QPSK ¾ rate, and increased its 

power to 26 dB. The bit error rate (BER) increased to 1.3x10-1 due to the engine 

attempting to maximize data rate in a very challenging wireless channel. Note that the 

CSM recognized the channel as a Rayleigh channel and instructed the WSGA to 

minimize BER using fitness function 2, maximize data rate, and ignore power. 

 

D.11 Trend Step 11 – Dispersive Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

  

Figure D.22: Trend step 11 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 6.1726 
BER             = 0.13042 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   34134.2         
2   1.05236             34117.1         
3   6.1726              32767           
4   7.78949             32969.1         
 
 
STM Members 
    Ranking Metric      Credits         
0   1                   34134.2         
1   1.05236             34117.1         
2   6.1726              32767           
3   7.78949             32969.1         
 
 
STM Winner 
STM Index       = 2 
Ranking Metric  = 6.1726 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     20000          128              

 

Figure D.23: Trend step 11 engine data 

 

In trend step 11 shown in Figures D.22 and D.23 the engine maintained its data rate at 18 

Mbps, modulation and coding to radio mode 4 QPSK ¾ rate, and power at 26 dB. The bit 

error rate (BER) stayed at 1.3x10-1. Note that the CSM instructed the WSGA to minimize 

BER, maximize data rate, and ignore power. 
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D.12 Trend Step 12 – Dispersive Fading Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

  

Figure D.24: Trend step 12 host radio data 

 

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 6.1726 
BER             = 0.13042 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   34134.2         
2   1.05236             34117.1         
3   6.1726              32767           
4   7.78949             32969.1         
 
 
STM Members 
    Ranking Metric      Credits         
0   1                   34134.2         
1   1.05236             34117.1         
2   6.1726              32767           
3   7.78949             32969.1         
 
 
STM Winner 
STM Index       = 2 
Ranking Metric  = 6.1726 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     20000          128  

 

Figure D.25: Trend step 12 engine data 
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In trend step 12 shown in Figures D.24 and D.25  the engine maintained its data rate at 18 

Mbps, modulation and coding to radio mode 4 QPSK ¾ rate, and power at 26 dB. The bit 

error rate (BER) stayed at 1.3x10-1. Note that the CSM instructed the WSGA to minimize 

BER, minimize power, and maximize data rate. 

 

D.13 Trend Step 13 – Rician Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

  

Figure D.26: Trend step 13 host radio data 

 



 

 144

CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
4   7.78949             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128  

 

Figure D.27: Trend step 13 engine data 

 

In trend step 13 shown in Figures D.26 and D.27 the engine maintained its data rate at 18 

Mbps, modulation and coding to radio mode 4 QPSK ¾ rate, and power at 26 dB. The bit 

error rate (BER) was reduced to zero because the engine encountered a Rician channel. 

Note that the CSM instructed the WSGA to minimize BER and maximize data rate, 

ignoring power. 
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D.14 Trend Step 14 – Rician Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

14 4 8 56250000 23 0 

  

Figure D.28: Trend step 14 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
4   7.78949             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128              

 

Figure D.29: Trend step 14 engine data 

 

In trend step 14 shown in Figures D.28 and D.29 the engine increased its data rate to 54 

Mbps, changed its modulation and coding to radio mode 8 64-QAM ¾ rate, and 

decreased its power to 23 dB. The bit error rate (BER) remained at zero. Note that the 

CSM instructed the WSGA to balance fitness functions equally, minimize BER, 

minimize power, and maximize data rate.  
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D.15 Trend Step 15 – Rician Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

14 4 8 56250000 23 0 

15 4 6 37500000 9 0.006688 

  

Figure D.30: Trend step 15 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 14.5263 
BER             = 0.0066881 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             36854.4         
3   6.1726              35176.6         
4   7.78949             34646.8         
5   14.5263             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   1.05236             36854.4         
1   6.1726              35176.6         
2   7.78949             34646.8         
3   14.5263             32767           
 
 
STM Winner 
STM Index       = 3 
Ranking Metric  = 14.5263 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     2              128             
     10000          255             
     20000          128  

 

Figure D.31: Trend step 15 engine data 

 

In trend step 15 shown in Figures D.30 and D.31 the engine decreased its data rate to 37 

Mbps, changed its modulation and coding to radio mode 6 16-QAM ¾ rate, and 

decreased its power to 9 dB. The bit error rate (BER) increased to 6.68x10-3. Note that 

the CSM instructed the WSGA to give highest priority to minimizing power, while 

equally weighting the need to minimize BER and maximize data rate.  
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D.16 Trend Step 16 – Rician Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

14 4 8 56250000 23 0 

15 4 6 37500000 9 0.006688 

16 4 4 18750000 9 8.68E-05 

  

Figure D.32: Trend step 16 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 1 
BER             = 8.6828e-005 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
3   6.1726              34134.2         
4   7.78949             32767           
5   14.5263             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
3   6.1726              34134.2         
 
 
STM Winner 
STM Index       = 1 
Ranking Metric  = 1 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     10000          128  

 

Figure D.33: Trend step 16 engine data 

 

In trend step 16 shown in Figures D.32 and D.33 the engine decreased its data rate to 18 

Mbps, changed its modulation and coding to radio mode 4 QPSK ¾ rate, and maintained 

its power at 9 dB. The bit error rate (BER) decreased to 8.68x10-5. Note that the CSM 

achieved this better error rate performance by instructing the WSGA to minimize BER 

and minimize power, ignoring data rate.  
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This section demonstrated that the cognitive engine is capable of operating in unknown 

wireless channels, balancing radio goals based on its ability to learn about the wireless 

environment it is operating in. 

 

CR Engine versus Traditional Adaptive Radio Controller – Known Channel 

 

The previous section analyzed the cognitive engine’s ability to operate in unanticipated 

and unknown wireless channels. This section analyzes the engine as it encounters a 

wireless channel that it has seen before, in this case an AWGN wireless channel. 

 

The trend steps highlighted in grey in Figure D.34 show the AWGN channel that the 

engine encounters following the channels of the previous section. 

 

 

 

Figure D.34: CR toolset trace showing cognitive engine reacting to known channel 
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D.17 Trend Step 17 – AWGN Channel 

 
Trend 
Number 

Channel Type Radio Mode Data Rate SNR BER

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

14 4 8 56250000 23 0 

15 4 6 37500000 9 0.006688 

16 4 4 18750000 9 8.68E-05 

17 1 2 9375000 22 0 

  

Figure D.35: Trend step 17 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
4   7.78949             32767           
5   14.5263             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128  

 

Figure D.36: Trend step 17 engine data 

 

In trend step 17 shown in Figures D.35 and D.36 the engine encounters a channel that it 

has seen before, an AWGN channel. It decreased its data rate to 9 Mbps, changed its 

modulation and coding to radio mode 2 BPSK ¾ rate, and increased its power to 22 dB. 

The bit error rate (BER) decreased to zero. Note that the CSM achieved this better error 

rate performance by instructing the WSGA to balance fitness functions equally, minimize 

BER, minimize power, and maximize data rate. 
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D.18 Trend Step 18 – AWGN Channel 

 

Trend Number Channel Type Radio Mode Data Rate SNR BER 

1 1 1 6250000 1 0.057202

2 1 2 9375000 22 0

3 1 4 18750000 19 0

4 1 2 9375000 9 0

5 2 8 56250000 25 0.000174

6 2 4 18750000 26 0

7 2 5 25000000 19 0.000434

8 3 2 9375000 22 0

9 3 6 37500000 9 0.10041

10 3 4 18750000 26 0.13042

11 3 4 18750000 26 0.13042

12 3 4 18750000 26 0.13042

13 4 4 18750000 26 0

14 4 8 56250000 23 0

15 4 6 37500000 9 0.006688

16 4 4 18750000 9 8.68E-05

17 1 2 9375000 22 0

18 1 7 50000000 6 0.018333

  

Figure D.37: Trend step 18 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 13.8095 
BER             = 0.018333 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32767           
3   6.1726              34941.7         
4   7.78949             34411.9         
5   13.8095             32767           
6   14.5263             32674.2         
 
 
STM Members 
    Ranking Metric      Credits         
0   6.1726              34941.7         
1   7.78949             34411.9         
2   13.8095             32767           
3   14.5263             32674.2         
 
 
STM Winner 
STM Index       = 2 
Ranking Metric  = 13.8095 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     2              128             
     10000          255             
     20000          128  

 

Figure D.38: Trend step 18 engine data 

 

In trend step 18 shown in Figures D.37 and D.38 the engine increases its data rate to 50 

Mbps, changed its modulation and coding to radio mode 7 64-QAM ½ rate, and 

decreased its power to 6 dB. The bit error rate (BER) increased to 1.83x10-2. Note that 

the CSM instructed the WSGA to give highest priority to minimizing power, while 

equally weighting the need to minimize BER and maximize data rate.  
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D.19 Trend Step 19 – AWGN Channel 

 
Trend 
Number 

Channel Type Radio Mode Data Rate SNR BER

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

14 4 8 56250000 23 0 

15 4 6 37500000 9 0.006688 

16 4 4 18750000 9 8.68E-05 

17 1 2 9375000 22 0 

18 1 7 50000000 6 0.018333 

19 1 8 56250000 19 0.000869 

  

Figure D.39: Trend step 19 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 1 
BER             = 0.00086889 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
3   6.1726              34134.2         
4   7.78949             32767           
5   13.8095             32767           
6   14.5263             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32456.5         
3   6.1726              34134.2         
 
 
STM Winner 
STM Index       = 1 
Ranking Metric  = 1 
Credits         = 32767 
bid             = 327.67 
Goals (2): 
     Fitness        Weight          
     1              128             
     10000          128  

 

Figure D.40: Trend step 19 engine data 

 

In trend step 19 shown in Figures D.39 and D.40 the engine increases its data rate to 56 

Mbps, changed its modulation and coding to radio mode 8 64-QAM ¾ rate, and increased 

its power to 19 dB. The bit error rate (BER) decreased to 8.69x10-4. Note that the CSM 

instructed the WSGA equally weighting the need to minimize BER and minimize power, 

ignoring data rate. In this case since engine weighted the goals equally, it traded its goal 

of minimizing power for better BER performance and achieved better data rate in the 

process. Note that since the engine had already learned about the AWGN channel it was 

able to recognize that the observed wireless channel was an AWGN channel and quickly 

achieve higher data rates with decent BER much quicker than in trend steps one through 

four. 
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D.20 Trend Step 20 – AWGN Channel 

 
Trend 
Number 

Channel Type Radio Mode Data Rate SNR BER

1 1 1 6250000 1 0.057202 

2 1 2 9375000 22 0 

3 1 4 18750000 19 0 

4 1 2 9375000 9 0 

5 2 8 56250000 25 0.000174 

6 2 4 18750000 26 0 

7 2 5 25000000 19 0.000434 

8 3 2 9375000 22 0 

9 3 6 37500000 9 0.10041 

10 3 4 18750000 26 0.13042 

11 3 4 18750000 26 0.13042 

12 3 4 18750000 26 0.13042 

13 4 4 18750000 26 0 

14 4 8 56250000 23 0 

15 4 6 37500000 9 0.006688 

16 4 4 18750000 9 8.68E-05 

17 1 2 9375000 22 0 

18 1 7 50000000 6 0.018333 

19 1 8 56250000 19 0.000869 

20 1 2 9375000 22 0 

  

Figure D.41: Trend step 20 host radio data 
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CSM Final Output
 
Observed Channel: 
Ranking Metric  = 0 
BER             = 0 
 
 
LTM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
4   7.78949             32767           
5   13.8095             32767           
6   14.5263             32767           
 
 
STM Members 
    Ranking Metric      Credits         
0   0                   32767           
1   1                   32767           
2   1.05236             32784.2         
3   6.1726              34461.9         
 
 
STM Winner 
STM Index       = 0 
Ranking Metric  = 0 
Credits         = 32767 
bid             = 327.67 
Goals (3): 
     Fitness        Weight          
     1              128             
     10000          128             
     20000          128  

 

Figure D.42: Trend step 20 engine data 

 

In trend step 20 shown in Figure D.41 and D.42 the engine decreases its data rate to 9 

Mbps, changed its modulation and coding to radio mode 2 BPSK ¾ rate, and increased its 

power to 22 dB. The bit error rate (BER) decreased to 0. Note that the CSM achieved this 

better error rate performance by instructing the WSGA to balance fitness functions 

equally, minimize BER, minimize power, and maximize data rate.  

 

This section illustrated the cognitive engine’s ability to recognize a known channel and 

quickly find a balance of radio parameters that meet the goals for that channel. 
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Appendix E: NSF IGERT IREAN Research Interactions 
 

 

2004 - Cognitive Radio as a Multidisciplinary Research Theme 

 

Dr. Charles W. Bostian 

Electrical Engineering 

 

With NSF support VT has developed a cognitive engine (a software system, which, 

together with its associated hardware, is capable of modifying its behavior in response to 

conditions that change quickly and in unexpected ways).  Our cognitive engine can turn 

any radio transceiver with “meters” (outputs like data rate that indicate current 

performance) and “knobs” (inputs like channel frequency) into a cognitive radio (a radio 

that behaves like an intelligent being, sensing its environment and modifying its behavior 

to meet its goals).  Our work in cognitive radio started with a single IGERT fellow 

(Rieser) who soon began a close collaboration with a (then) undergraduate classmate 

(Rondeau) and subsequently expanded to a team of five ECE Ph.D. students co-led by 

Rieser and Rondeau and including IGERT fellow Maldonado.  Cognitive radio became 

the basis of a project called CRANIA (Cognitive Radio for Advanced Networking and 

Integrated Access) for the IREAN simulation and optimization course (taught by 

Koelling) and of a large NSF NetS proposal involving 10 faculty in 5 departments (ECE, 

FIN, BIT, ECON, GEOG).  Rondeau and Rieser are offering an informal seminar for 

interested faculty and students covering: 1. Our concept of machine learning. 2. Genetic 

Algorithms and how they can realize an intelligent machine by being able to leverage 

sensing data, user input, and legal/regulatory requirements. 3. Distributed cognition -- 

learning and optimization augmented by intelligence throughout the network. 
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Appendix E: NSF IGERT IREAN Research Interactions 
 

This appendix documents the various research summaries that I wrote describing the 

posters and presentations I presented at the IREAN research workshops. 

 

2004 - Biologically Inspired Cognitive Radio Test bed Based on GAs 

 

Christian James Rieser 

Electrical Engineering 

(Advisor:  Dr. Charles W. Bostian) 

 

Emerging cognitive radio technology may revolutionize wireless spectrum access 

technology, policy, and business. This presentation details a biologically inspired 

cognitive radio formalism based on genetic algorithms. A cognitive radio test bed 

utilizing the formalism is presented along with experimental results from the 

demonstration system, including evolution of an adaptive host radio to avoid an 

interfering radio system.  

 

By our definition, the technical characteristics of fixed radios are set at the time of 

manufacture. An adaptive radio can respond to channel conditions that represent one of a 

finite set of anticipated events.  Adaptive radios use artificial intelligence (AI) algorithms 

that are basically a series of “if,then,else” algorithms. A cognitive radio can respond 

intelligently to an unanticipated event – i.e., a channel that it has never encountered 

before. 

 

The proposed cognitive radio formalism consists of a multi-tiered genetic algorithm 

architecture that allows sensing of a wireless channel at the waveform or symbol level 

using a broadband channel sounder and Wireless Channel Genetic Algorithm (WCGA), 

on the fly evolution of the radio’s operational parameters using a Wireless System 

Genetic Algorithm (WSGA), and cognitive functions through use of a learning classifier, 
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meta-genetic algorithms, short and long term memory and control embodied in the 

Cognitive System Monitor (CSM).  

 

Experimental results from the cognitive radio test bed demonstrate that the genetic 

algorithm (GA) based cognitive radio formalism provides significant flexibility in the 

face of unknown or changing wireless channels that are prevalent in disaster response and 

emergency communications scenarios. Research is being pursued to extend the formalism 

to enable a cognitive medium access control (MAC) data link layer based on genetic 

algorithms that would provide dynamic quality of service (QOS) functions based on 

available wireless spectrum resources and paths of opportunity. 

 

This work is inherently interdisciplinary, influenced by engineering implementation, 

business, and policy issues. As such I maintain a research dialogue with several 

disciplines including Electrical Engineering, Genetics and Bioinformatics, Cognitive 

Development, Physics and Mathematics, Industrial Systems Engineering, Business and 

Policy. 
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Appendix E: NSF IGERT IREAN Research Interactions 
 

 

2003 - Biologically Inspired Cognitive Wireless Layer 1 and 2 (L12) Functionality 

 

Christian Rieser 

Electrical Engineering 

(Advisor:  Dr. Charles Bostian) 

 

Wireless communications systems (‘radios”) can be described as fixed, adaptive, or 

cognitive.  The technical characteristics of fixed radios are set at the time of manufacture. 

An adaptive radio can respond to channel conditions that represent one of a finite set of 

anticipated events.  Adaptive radios use artificial intelligence (AI) algorithms that are 

basically a series of “if,then,else” algorithms. A cognitive radio can respond intelligently 

to an unanticipated event – i.e., a channel that it has never encountered before.  This 

presentation describes a novel and computationally efficient method to realize a truly 

cognitive radio based on genetic algorithms.   

 

An immediate market for this technology is in military and disaster communications, 

where radio systems must work under changing and unanticipated circumstances and in 

the presence of hostile jammers and interferers.  The long-term market is in civilian radio 

communications systems like cellular telephones where spectrum and battery power are 

at a premium and in which the radio sets must continuously adapt to conserve these 

resources. 

 

This research has been pursued from the start with input from a number of disciplines, 

since the formulation of constraints and requirements for a computationally efficient 

method to realize a truly cognitive radio based on genetic algorithms requires synthesis of 

system issues that span across several disciplines. My PhD multidisciplinary research 

activities include dialogue and interaction in Electrical Engineering, Genetics and 
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Bioinformatics, Cognitive Development, Physics and Mathematics, and Business and 

Policy. 

 

The presentation includes information on my background, the motivation for the 

research, a definition of the research problem, the research methodology including 

concept and framework, research timeline, research personnel, and a summary of the 

research. 

 


