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Abhishek Damle 

 
ABSTRACT 

 
 

Edge intelligence can reduce power dissipation to enable power-hungry long-

range wireless applications. This work applies edge intelligence to quantify the reduction 

in power dissipation. We designed a wireless sensor node with a LoRa radio and 

implemented a decision tree classifier, in situ, to classify behaviors of cattle. We estimate 

that employing edge intelligence on our wireless sensor node reduces its average power 

dissipation by up to a factor of 50, from 20.10 mW to 0.41 mW. We also observe that 

edge intelligence increases the link budget without significantly affecting average power 

dissipation. 
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Abhishek Damle 

 
GENERAL AUDIENCE ABSTRACT 

 
 

Battery powered sensor nodes have access to a limited amount of energy. 

However, many applications of sensor nodes such as animal monitoring require energy 

intensive, long range data transmissions. In this work, we used machine learning to 

process motion data within our sensor node to classify cattle behaviors. We estimate that 

transmitting processed data dissipates up to 50 times less power when compared to 

transmitting raw data. Due to the properties of our transmission protocol, we also observe 

that transmitting processed data increases the range of transmissions without impacting 

power dissipation.  
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Chapter 1: Introduction 

Traditional IoT networks collect data on edge nodes and wirelessly transmit it to 

central cloud servers for processing. However, transmitting raw data significantly strains 

wireless networks and cloud servers, as they must deal with vast quantities of data. Edge 

intelligence reduces the burden by processing data on edge nodes using machine learning 

[1-3]. This technique is valuable for low-power wide-area networks (LPWANs), which 

have relatively small bandwidths and data rates. LPWANs can be applied to smart 

agriculture and livestock raising, where battery-powered end nodes transmit data over 

several kilometers [4-7]. The radios on LPWAN nodes dissipate significant power since 

they must transmit data over long ranges. Reducing the amount of wirelessly transmitted 

data through machine learning would reduce power dissipation. 

A specific application of LPWANs is the welfare assessment of livestock. Over 

the past decades, animals have been managed in larger groups as animal agriculture has 

intensified [8]. Group-based management increases animal productivity, but monitoring 

of individual animals is labor-intensive [9]. Wireless sensor nodes (WSNs), integrated 

with LPWANs, can continuously monitor individual animals effectively [10-12] to 

reduce production losses through early detection of diseases [13, 14]. However, the 

significant energy required for long range data transmission is a major challenge for 

smart agriculture [15]. 

This work aims to reduce power dissipation of a WSN through edge intelligence. 

We designed a WSN to monitor the activities of cattle by sensing acceleration data. The 

data were processed with a machine learning algorithm on the WSN to classify cattle 



 

2 
 

behaviors. We measured the classification performance of the machine learning model 

and the power dissipated by our WSN while collecting, processing, and transmitting data. 

This thesis is organized as follows. Chapter 2 provides background on LoRa and a 

decision tree classifier. Chapter 3 overviews the proposed WSN and processing of 

machine learning algorithm on the WSN. Chapter 4 presents and discusses the results, 

while Chapter 5 concludes the thesis. 
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Chapter 2: Background 

2.1 LoRa and LoRaWAN 

LoRa uses chirps as carrier signals, whose frequency oscillates between a 

minimum and maximum value [16]. The spreading factor determines the speed of a chirp. 

LoRa wide area network (LoRaWAN) uses LoRa modulation to create LPWANs in a star 

topology comprising end nodes, gateways, network servers, and application servers. It 

adds a minimum of 13 bytes to each payload transmitted from an end node to the 

gateways [17]. LoRa's bit rate, range, and time on air rely on the spreading factor. Chirps 

are faster for lower spreading factors, which increase the bit rates and reduce the time on-

air. The reduced time on-air decreases the power dissipation during data transmission 

[18]. However, a lower spreading factor has a lower processing gain, which decreases the 

transmission range [18]. Therefore, the trade-off between power dissipation and range 

needs to be balanced when selecting the appropriate spreading factor. 
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Figure 1. Energy per byte of data transmitted as a maximum and fractional payload at 

varying data rates. 

The time on-air has several constraints. The biggest one is the energy required for 

data transmission. Additionally, there are country-specific caps on dwell time [19]. 

Network servers also impose similar restrictions on time on-air to ensure that LoRaWAN 

can serve many devices [20]. The restriction on time on-air limits the payload size for the 

various spreading factors. Due to the overhead of the LoRaWAN protocol, far less energy 

per byte is used to transmit a maximum payload than its fractional portion, as shown in 

Fig. 1. Table 1 shows the relationship between spreading factor, bit rate, range, receiver 

sensitivity, and maximum payload size [18, 21]. 
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Table 1. Relationship between the data rate, spreading factor, bit rate, maximum payload, 

receiver sensitivity, and range [18, 21]. 

Data 
Rate 

Spreading 
Factor 

Bit rate 
(bits/s) 

Maximum 
Payload (B) 

Receiver 
Sensitivity (dBm) 

Range 
(km) 

0 10 980 11 -132 8  
1 9 1,760 53 -129 6  
2 8 3,125 125 -126 4  
3 7 5,470 242 -123 2  

 

2.2 Decision Tree Classifier 

A decision tree classifier is a supervised machine learning algorithm used for 

regression and classification [22, 23]. It starts at the root node and sorts data based on 

criteria determined by the decision nodes, until it reaches a terminal node. The criteria 

used by the decision nodes are selected as part of the training process, which attempts to 

divide the dataset into increasingly homogeneous subsets. Decision trees have a distinct 

advantage because they can be efficiently implemented. The decision nodes are 

implemented through conditional statements. Thus, a series of conditional statements 

creates a decision tree classifier. Compilers recognize and optimize these conditional 

statements in efficient forms, such as jump tables. 
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Chapter 3: Proposed WSN and 

Implementation of Machine Learning 

3.1 Wireless Sensor Node (WSN) 
The proposed WSN collects 3-axis acceleration data from cattle and transmits it 

through LoRa. It consists of a Bosch BMA 400 ultra-low power 3-axis accelerometer 

[24] to collect motion data, and a Microchip WLR089U0 module [25] to process and 

transmit it. Fig. 2(a) shows a high-level block diagram of the WSN. The WLR089U0 

module combines an ATSAMR34J18B SiP and external components. The SiP contains 

an ARM Cortex M0+ processor with 256 KiB of flash storage, 32 KiB of SRAM, and 8 

KiB of low-power SRAM. It also contains a LoRa transceiver with 863 MHz to 928 MHz 

dual-band coverage, and maximum transmission power of 18.59 dBm. 

A 12-bit accelerometer with the range of ± 2g samples acceleration on the x-, y-, 

and z- axes with a sample rate of 50 Hz. It uses a low-pass filter with a cutoff frequency 

of 24 Hz to reduce aliasing and a 1 KiB FIFO buffer to store up to 146 readings. Once the 

FIFO becomes full, the data are transferred to the micro-controller unit (MCU) for 

processing. We prototyped the WSN with a custom PCB, as shown in Fig. 2(b), with 

dimensions 54 mm × 38 mm. 
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a) b) 

Figure 2. a) Block diagram of the WSN b) prototype. 

Fig. 3 shows the flowchart of the MCU operation. The primary activities of the 

MCU are data collection and processing, data transmission, and sleeping, while feature 

extraction and classification are minor in terms of the processing time. 
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Figure 3. Flowchart of the WSN’s operation. 

3.2 Dataset, Feature Extraction, and Feature Selection 

We mounted WSNs on the halters of five different cows and recorded their 

activities. After cleaning and labeling the collected data, the dataset consists of 31 hours 

in total for five activities including grazing (11.86 h), ruminating (8.86 h), lying (6.44 h), 

standing (2.95 h), and walking (0.89 h). We divided the labelled data into 2.92 second 

long segments since our accelerometer records data in sets of 146 readings at a sampling 

rate of 50 Hz. This resulted in a total of 38233 segments for the five activities that 

included grazing (n=14623), ruminating (n=-10929), lying (n=7940), standing (n=3642), 

and walking (n=1099).  
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We extracted time and frequency domain features from the segmented dataset. All 

features were calculated using a C program to ensure the feature extraction is identical 

during training and on the MCU. The frequency domain features were calculated with 

help of the KISS FFT library [26]. We calculated the features as 32-bit signed integers 

and standardized them such that the mean was 216/2, while the standard deviation was 

216/4. Data greater than or less than two standard deviations were clipped to 0 and 216-1, 

respectively. Resultantly, the standardized features were stored as 16-bit unsigned 

integers with the range of [0, 216-1]. We selected the ten best features using recursive 

feature elimination (RFE) to train our decision tree model and avoid saturation of the 

classification performance. These features are the sum of absolute values of x-axis, sum 

of absolute values of y-axis, median of x-axis, median of y-axis, average intensity, 

entropy of x-axis, entropy of z-axis, power spectral density (PSD) between 0-8 Hz of y-

axis, PSD between 8-25 Hz of y-axis, and PSD between 8-25 Hz of z-axis. 

3.3 Implementation of Machine Learning on MCU 

We developed an initial decision tree using Gini impurity to measure the quality 

of decisions, and a set of ten standardized features stored as 16-bit fixed point values. We 

used cost complexity pruning [27] to limit the complexity of our decision trees and avoid 

overfitting training data. Through tenfold cross-validation, we determined pruning trees 

using a pruning parameter of 1.062 x 10-4, resulted in 353 nodes and the best 

classification performance. We trained the decision tree model using the scikit-learn 

library [28] in python and ported it to C using the emlearn library [29]. The decision tree 

model in C was paired with the feature extraction and standardization programs to 

classify cattle behaviors using raw accelerometer data as the input. Fig. 4 outlines the 
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three processing stages to classify cattle behaviors based on accelerometer data. The first 

stage decodes 1 KiB of encoded accelerometer data to 876 B. The next stage performs 

feature extraction on the decoded accelerometer data and outputs 20 B of features. The 

final stage uses the features as inputs for a decision tree model and outputs a behavior 

stored as 1 B. 

 

 

Figure 4. Pipeline to process the accelerometer data. 
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Chapter 4: Measurement Results and 

Discussion 

4.1 Classification Performance 

We evaluated the performance of our decision tree model using stratified tenfold 

cross-validation. First, we partitioned the dataset into ten pairs of training and test sets. 

Next, we used the training sets to train the decision tree and the corresponding test sets to 

measure classification performance. Fig. 5 shows the combined confusion matrix of the 

model when evaluated using all ten test sets. The head posture of cattle during lying and 

standing is similar, causing the decision tree to confuse the two behaviors. The cattle also 

tend to walk slowly while grazing, leading to confusion between walking and grazing 

activities. Table 2 shows the classification report. Our model classifies grazing, lying, and 

ruminating behaviors well, while standing and walking behaviors have the lowest F1-

scores. Our model has higher F1-scores than a support vector classifier [30] and 

comparable performance to a decision tree classifier [31] and multilayer perceptron 

classifier [32]. 
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Figure 5. Confusion matrix of the decision tree model. 

Table 2. Classification report of the decision tree model. 

 Precision Recall F1-Score Support 
Standing 0.7625 0.7350 0.7485 3642 
Grazing 0.9894 0.9915 0.9904 14623 
Walking 0.8196 0.8308 0.8251 1099 

Lying 0.8922 0.9020 0.8971 7940 
Ruminating 0.9822 0.9821 0.9822 10929 

Accuracy 0.9412 
 

4.2 Power Dissipation 

We measured the power dissipation of the WSN using an INA280 current 

amplifier and a shunt resistor. Fig. 6 shows the instantaneous power dissipation of the 

WSN. The power dissipated while collecting and processing accelerometer data is shown 



 

13 
 

in Fig. 6(a), while Fig. 6(b) shows the power dissipated during data transmission, and 

Fig. 6(c) shows the power dissipated when the WSN is asleep. All three activities are 

shown in Fig. 6(d) and correspond to the labeled sections of the flowchart in Fig. 3. The 

WSN’s peak power dissipation is 276.40 mW during data transmission whereas all other 

activities dissipate less than 5 mW. 

 

Figure 6. Instantaneous power dissipation a) for data collection and processing b) for data 

transmission c) during sleep d) total power dissipation of the WSN. 

The energy consumed by each major activity of the WSN is displayed in Fig. 7. 

Data collection and processing is divided into the baseline, feature extraction, and 

classification stages. The baseline stage consists of collecting and decoding 

accelerometer data. The decoded accelerometer data is then processed further in the 
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feature extraction and classification stages as shown in Fig. 4. Data transmission 

consumes 133.32 mJ, by far the most energy on the WSN. The WSN also consumes 

108.36 mJ during its sleep period, primarily because this period lasts for five minutes, 

whereas the other tasks only last for several seconds. Compared to the energy used during 

data transmission, the baseline, feature extraction, and classification tasks consume only a 

total of 4.23 mJ of energy. Thus, the key to reducing the average power dissipation of the 

WSN is to limit the wirelessly transmitted data by processing it in situ. 

Fig. 8(a) shows the energy used to transmit a batch of data processed to varying 

degrees. The baseline level of processing represents the decoding stage shown in Fig. 4. 

Feature extraction reduces the size of a batch of data to 20 B, while classification reduces 

it further to only 1 B. Through feature extraction and classification, more batches of data 

can be transmitted in a single payload, reducing the energy used to transmit the batch of 

data. Per Table 1, as LoRaWAN’s data rate increases from 0 to 3, the maximum payload 

size increases from 11 B to 242 B. Thus, payloads transmitted at higher data rates can 

store more batches of data per payload. This also leads to a decrease in the energy used to 

transmit a batch of data. 
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Figure 7. Energy consumed by the WSN performing various activities. 
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Figure 8. a) Energy used to transmit a batch of data processed to varying degrees. b) 

average power dissipation of the WSN. 

 

Using the logic from Fig. 3, we estimated the average power dissipation of the 

WSN while it processed data to varying degrees and transmitted it at various data rates. 

Fig. 8(b) shows the average power dissipated by our WSN under these conditions. The 

power dissipation of the WSN increases as the data rate decreases. This is because 

smaller data rates support smaller payloads. Therefore, the WSN can accumulate fewer 

batches of data in a payload and transmits more frequently. However, if only 

classification results are transmitted, the average power dissipation of the WSN is not 
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significantly affected by the data rate of transmission. For transmitting data using data 

rates 0 and 3, we only observe a difference of 36.09 μW. This is because data are 

transmitted infrequently compared to if the features or raw data are transmitted. For 

instance, the WSN transmits raw data every 2.96 s (for all data rates), features between 

3.43 s (for data rate 0) and 3644.67 s (for data rate 3), and classifications between 

3037.95 s (for data rate 0) and 73134.92 s (for data rate 3). Due to infrequent 

transmissions, the power dissipation of the other processes dominates the average power 

dissipation, and the data rate does not significantly impact it. Since lower data rates have 

greater processing gain, the link budget of our WSNs can be increased by using data rate 

0 without significantly increasing power dissipation. This allows other aspects, such as 

transmission range, transmission power, and antenna design, to be optimized to best use 

the additional link budget. 

The combination of the decreased energy per batch of data transmitted and the 

decreased frequency of transmissions, significantly lowers the average power dissipation 

per data rate and level of processing. The impact of processing data to higher degrees on 

the average power dissipation of the WSN is most significant when data are transmitted 

with a data rate of 0 and least when they are transmitted with a data rate of 3. Compared 

to the baseline, computing and transmitting features results in a maximum power 

reduction of 18.91 mW (from 20.10 mW to 1.19 mW) and a minimum power reduction 

of 1.65 mW (from 2.08 mW to 0.44 mW). Meanwhile, computing and transmitting 

classifications results in a maximum power reduction of 19.69 mW (from 20.10 mW to 

0.41 mW) and a minimum power reduction of 1.71 mW (from 2.08 mW to 0.37 mW). 
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Chapter 5: Conclusion 

This work highlights that edge intelligence significantly reduces power 

dissipation of WSNs. We quantified the reduction of power dissipation using an example 

of cattle behavior monitoring and observed that the power dissipated by our WSN was up 

to 50 times smaller when we applied machine learning in situ instead of transmitting raw 

data. For LPWANs, we also observed that using edge intelligence confers a consequential 

advantage, as it increases the link budget without significantly affecting the average 

power dissipation of the WSN. The increased link budget can be used to increase 

transmission range, decrease transmission power, or reduce the antenna size of the WSN. 

The decrease in power dissipation is achieved through increasing the amount of 

behavioral data in a transmission and reducing the frequency of transmissions. In the 

future, the WSN could mitigate the tradeoff between power dissipation and latency by 

intelligently deciding when to transmit data. The WSN could store statistical models of 

an individual cow’s behaviors based on historic data. A set of newly classified behavior 

data could then be compared to this model and anomalous trends reported in real time. 
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