FIGURES

Figure 1. Sketch showing the nomenclature and coordinate system used to integrate the Poisson differential equation that relates pressure fluctuations to velocity fluctuations.

Figure 2. Oil flow visualization of the flow near the test wall. The nominal free stream velocity is 27.5 m/s (Re_{θ} = 5940). The white dots on the right of the wing show measurement locations 0-7 (starting from the top of the figure). Figure 2 of Ölçmen and Simpson (1995a).

Figure 3. Wing shape and measurement stations. Full arrows show the wall-shear-stress direction in the $Re_{\theta} = 5940$ flow (β_{W} in table 4). The empty arrows show the free-stream direction in the $Re_{\theta} = 5940$ flow (β_{FS} in table 4). The *y* coordinate is normal to the paper, pointing out, forming a right-handed coordinate system.

FIGURES

Figure 4. Mean secondary flow about a 6:1 prolate spheroid at $\alpha = 20^\circ$, x/L = 0.600 and x/L = 0.772. Solid lines on the model surface denote separation lines as indicated by oil-flow visualization. Dashed lines denote the locus of minima in skin friction magnitude. Figure 1 of Wetzel *et al.* (1998).

FIGURES

6.3 mm step (boundary layer trip)

Figure 5. Sketch of the Virginia Tech Boundary Layer Wind Tunnel. The wing position shown here corresponds to the $Re_{\theta} = 5940$ flow.

Figure 6. Schematic of the Virginia Tech Stability Wind Tunnel.