
A Genetic Algorithm-Based Place-and-Route Compiler For A

Run-time Reconfigurable Computing System

By

Brian C. Kahne

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

APPROVED:

Peter M. Athanas, Chairman

James R. Armstrong

Charles E. Nunnally

May, 1997

Blacksburg, Virginia

Keywords: Genetic Algorithm, Configurable Computing Wormhole, Run-time Reconfiguration, Routing,

Placement

Copyright 1997, Brian C. Kahne

 A Genetic Algorithm-Based Place-and-Route Compiler For A

Run-time Reconfigurable Computing System

By

Brian C. Kahne

Committee Chairman:

Peter M. Athanas

Bradley Department of Electrical Engineering

(Abstract)

Configurable Computing is a technology which attempts to increase computational power by
customizing the computational platform to the specific problem at hand. An experimental
computing model known as wormhole run-time reconfiguration allows for partial reconfiguration
and is highly scalable. In this approach, configuration information and data are grouped together
in a computing unit called a stream, which can tunnel through the chip creating a series of
interconnected pipelines.

The Colt/Stallion project at Virginia Tech implements this computing model into integrated
circuits. In order to create applications for this platform, a compiler is needed which can convert
a human readable description of an algorithm into the sequences of configuration information
understood by the chip itself. This thesis covers two compilers which perform this task.

The first compiler, Tier1, requires a programmer to explicitly describe placement and routing
inside of the chip. This could be considered equivalent to an assembler for a traditional
microprocessor. The second compiler, Tier2, allows the user to express a problem as a dataflow
graph. Actual placing and routing of this graph onto the physical hardware is taken care of
through the use of a genetic algorithm.

A description of the two languages is presented, followed by example applications. In addition,
experimental results are included which examine the behavior of the genetic algorithm and how
alterations to various genetic operator probabilities affects performance.

iii

Table of Contents

Chapter 1: Introduction ...1

Chapter 2: An Overview of the Colt Architecture..4
2.1 Wormhole Run-time Reconfiguration...4

Chapter 3: A Tiered Approach Towards Stream Synthesis...............................9
3.1 Underlying Programming Structure .. 10
3.2 Tier1 Language ... 11

3.1.1 Tier1 Syntax .. 11
3.1.2 Example Tier1 Program ... 16
3.1.3 Software Design... 17
3.1.4 Tier1 Summary .. 18

Chapter 4: Genetic Algorithms For Placement ..20
4.1 The placement problem ... 20
4.2 Deterministic Searches... 21
4.3 Non-Deterministic Searches... 22
4.4 Genetic Algorithms For The Placement Problem ... 25

4.4.1 Encoding and Genetic Operators .. 25
4.4.2 The Fitness Function .. 27
4.4.3 Stopping Criteria.. 27
4.4.4 Routing.. 28
4.4.5 Analysis of the Fitness Function ... 30

Chapter 5: Tier2 Language Overview and Compiler Design32
5.1 Syntax Overview .. 32
5.2 Genetic Algorithm Code .. 33
5.3 Software Design ... 33

5.3.1 Place-and-Route Class Hierarchy ... 33

Chapter 6: An Example Application ...38

Chapter 7: Experimental Results ..46

Chapter 8: Future Work..51
8.1 Compiler Modifications ... 51
8.2 Language Modifications .. 51
8.3 Place-And-Route Experimentation ... 52

Chapter 9: Conclusions ..54

References ...55

iv

Appendix A: Tier1 and Tier2 Language Reference ..57
A.1 Grammar conventions .. 57
A.2 Program Structure .. 57
A.3 Program Comments (Tier1 and Tier2) .. 57
A.4 Port Declaration Construct (Tier1 and Tier2).. 57
A.5 Stream Definitions (Tier1) .. 58
A.6 Stream Definitions (Tier2) .. 58
A.7 Crossbar Statements (Tier1)... 58
A.8 Crossbar Statements (Tier2) ... 58
A.9 Block Definitions (Tier1) ... 59
A.10 Block Definitions (Tier2) ... 59
A.11 Component/Macro Calls Within Block Constructs (Tier1 and Tier2)....................... 59
A.12 ALU Assignment Statement (Tier1 and Tier2)... 60
A.13 Flag Bit Assignment Statements (Tier1 and Tier2) .. 61
A.14 Skip Bus Construct (Tier1) ... 64
A.15 Macro Definitions (Tier1 and Tier2) ... 65
A.16 Component Definitions (Tier1 and Tier) .. 67
A.17 Include Statements and Constant Definitions (Tier1 and Tier2) 68
A.18 The Standard Library (Tier1 and Tier2) .. 68

Appendix B: Compiler Usage ..70
B.1 The Tier1 Compiler (Tier1)... 70
B.2 The Tier2 Compiler (Tier2)... 70
B.3 Files Required/Produced (Tier1)... 71
B.4 Files Required/Produced (Tier2)... 72
B.5 The Resource File (Tier1 and Tier2) ... 72
B.6 The Address Map File (Tier1 and Tier2) .. 73
B.7 The Exclusion File (Tier2) ... 74

Appendix C: Grammar Reference ..76
C.1 Tier1 Grammar Reference .. 76
C.2 Tier2 Grammar Reference .. 80

v

List of Figures

Figure 1: An illustration of the stream format. A stream is composed of a header segment
(expanded on the right) and a data segment...4

Figure 2: Graphical depiction of the Colt architecture [Bit97a]. ..5

Figure 3: An illustration of a stream tunneling its way through the Colt chip.6

Figure 4: Simplified functional unit (FU) schematic [Bit96]. ...7

Figure 5: An example configuration register word containing two multiplexer fields and one data
register field.. 10

Figure 6: Skeleton of a Tier1 program.. 12

Figure 7: General structure of the Tier1 compiler. .. 18

Figure 8: A sample of a data flow graph for a computation. For simplicity, no loops or
conditional execution paths are shown. ... 20

Figure 9: An illustration of the weighted selection process. ... 23

Figure 10: An example of single-point crossover. ... 24

Figure 11: An example of partially mapped crossover (PMX). .. 26

Figure 12: An illustration of the maze-router attempting to avoid obstacles. An attempt to reach
the destination through the shortest possible path failed, so the router tried the only other
available path, then tried again to reach the destination.. 28

Figure 13: Implementation of a left-turn on the Colt skip bus. Data comes from the west and is
routed to the north.. 29

Figure 14: Format of a Tier2 program. ... 33

Figure 15: The Tier2 place-and-route class hierarchy. ... 34

Figure 16: General structure of the Tier2 compiler. .. 35

Figure 17: Depiction of the synthesized programming stream for the sample data flow graph in
Figure 8. The left-hand side depicts the stream pathway through the configurable resources,
while the right-hand side shows the actual stream structure for this example. Note that in this
example, the stream must split at Vertex (1,1)... 36

Figure 18: Data flow graph for the floating point multiplier. Names of vertices are the same as
those used in the floating point multiplier program. ... 43

Figure 19: A sample placement for the floating point multiplier (score is 21). The routing
resources are shown for the data bus. Shift and conditional bit paths have been excluded for
clarity. Left and Right refer to the left operand and right operand data registers, respectively.44

Figure 20: Programming streams for the placement shown in Figure 19. 45

vi

List of Charts

Chart 1: Floating point multiplier placement results for fifty attempts.. 47

Chart 2: Average and minimum score (cumulative) for five hundred placement attempts........... 48

Chart 3: Run times for placing and routing the floating point multiplier for fifty attempts. 49

Chart 4: Mutation experiment results.. 50

Chart 5: Convergence experiment results.. 50

Chapter 1: Introduction

Reconfigurable computing systems have been the subject of intense research as a means of solving
numerically intensive computations in hardware without sacrificing applicability to a wide variety
of problems [Bit97a]. The traditional design approach has been to use RAM-based FPGAs as the
basic building block. Such architectures allow for extremely flexible systems which have been
shown to be able to operate at high clock speeds [Her96] and to solve problems with inherently
high bandwidths [Her97]. However, these devices were not designed for computation. These
devices were primarily designed for glue-logic applications and were optimized for slowly
reconfiguring bit-level operations. Thus for economic reasons, there are some significant costs:
either the device must be placed into a programming mode and completely reconfigured, or else
selective reprogramming is allowed and random access to configuration cells uses up a large
amount of silicon routing resources. The switching of these signals can create a heavy power
demand. In addition, Most FPGAs are reconfigurable at the level of a one-bit data path. Since
many algorithms require a much larger word size in order to store numerical information, this
results in a significant redundancy of configuration logic.

An experimental computing model offers an alternative called wormhole run-time reconfiguration
(RTR) [Bit97a]. In this model, configuration data and information to be processed are grouped
together into what are called streams- sequences of words which enter the chip through multiple,
parallel data ports. At the start of the stream is the configuration information which is grouped
into a series of packets. Each packet configures a single hardware resource within the chip and is
simply a collection of words. Following this are the data words which are then operated upon.
This information is not divided into packets and can be as long as desired.

All of the hardware resources within the reconfigurable computing platform form a pool of
configurable units which can be operated upon by these streams. The streams are injected into
this pool, one word per clock cycle, steering themselves and configuring various elements as they
are encountered. Thus, it may take multiple clock cycles to program a hardware resource which
is configured using a multi-word packet. However, there is never any delay in the system, just the
initial latency required to move the configuration header through the chip. After words, the data
will stream through continuously. Streams can split and broadcast their information to multiple
targets, or join together. Therefore, traditional pipelines, that of a series of linearly connected
stages, are only a small subset of the possible configurations which can be present within the
system.

The configuration information essentially constructs a deep computational pipelines which then
operates upon the data. This concept of programmable systolic arrays corresponds to that of
pipenets as discussed in Hwang et al. [Hwa93].

One of the main advantages of this system is that it is efficient in terms of power and space. The
only shared resource amongst the pool of resources is the clock line. Configuration cells are
physically located close to the structures that they control, so routing overhead is kept to a

2

minimum. In addition, multiple streams can tunnel their way through the chip simultaneously,
allowing for the use of multiple algorithms computing simultaneously with no overhead. There is
no explicit programming mode, versus a data processing mode. Instead, any subset of the
resources may be programmed by any number of streams while the remaining resources may be
processing data. A disadvantage, though, is a loss of flexibility. Since wormhole routing is
designed to handle data of a certain word size, a problem which requires some other word size
may map poorly.

The Colt/Stallion architecture, developed at Virginia Tech, is an experimental embodiment of this
concept. A first generation concept version, called the Colt chip, has been successfully designed
and fabricated. It is now being used for the development of digital signal processing algorithms
using a run-time reconfigurable paradigm.

In general, a program for the Colt/Stallion architecture corresponds to a dataflow graph. Each
vertex in the graph represents a computational resource and edges correspond to routing
resources. In order to convert an abstract algorithm into a set of streams suitable for configuring
the chip, some way must be found in which to map this graph onto the physical resources
contained within the device.

The purpose of this thesis is to present a programming approach for wormhole RTR which can
transform an abstract dataflow graph into a set of streams capable of programming a Colt/Stallion
chip. The Tier1 compiler presented here transforms an input structural specification of an
application into one or more streams which can be used to completely or partially configure the
distributed resources in a wormhole RTR platform. Tier2 uses much of the same syntax as the
Tier1 compiler and adds automatic place-and-route capability. The streams synthesized by these
compilers can be used for computing on a platform consisting of Colt/Stallion configurable
computing integrated circuits [Bit97a].

The contributions made by this project include:

• The development of a textual language which natively supports the stream concepts
inherent to wormhole run-time reconfiguration.

• The development of an assembler which allows a programmer explicit control over
all aspects of the Colt chip.

• The automation of the place-and-route process, which allows a programmer to
describe an algorithm in the form of an abstract dataflow graph. The compiler takes
care of mapping this graph to hardware resources and generating the necessary
programming streams.

This thesis begins with a brief introduction to stream-based configurable computing in Chapter 2.
The formation of the stream headers is performed by the structural synthesis “compilers” called
Tier1 and Tier2. Chapter 3 covers the compiling process, an overview of the Tier1 language, and
a discussion of the underlying C++ class structure. Chapter 4 discusses genetic algorithms and
how one can be applied to solve the problem of placing and routing an algorithm in the
Colt/Stallion architecture. Chapter 5 provides an overview of the Tier2 compiler, including

3

syntax and a discussion of the class hierarchy. An example application is presented in Chapter 6,
illustrating these concepts. Chapter 7 provides experimental results of the Tier2 compiler. Future
directions for research are discussed in Chapter 8 and conclusions can be found in Chapter 9.
Finally, the appendices offer a reference guide to the use of the compilers, including a language
reference and usage guide.

4

Chapter 2: An Overview of the Colt Architecture

In order to place the theme of this thesis into proper context, this section provides a brief
overview of the stream processing paradigm and how wormhole RTR is used. The purpose of this
chapter is to introduce the basic architecture of the Colt chip. This is necessary because many of
the design decisions made in the development of the Colt chip greatly affected the development of
the Tier compilers. A more detailed account can be found in Ray Bittner’s dissertation [Bit97a].

2.1 Wormhole Run-time Reconfiguration

Wormhole run-time reconfiguration provides a framework for implementing large-scale rapid run-
time reconfigurable CCM platforms. It is intended as a method for rapidly creating and modifying
custom computational pathways using a distributed control scheme (data-driven partial run-time
reconfiguration) [Bit96]. The basic element is the stream, a concatenation of programming
header and operand data (refer to Figure 1). The programming header is used to configure a

computational pathway through the
system, including both the functional
units which perform the
computations and the routing
resources. The stream is self-
steering and, as it propagates
through the system, configuration
information is stripped from the front
of the header and is used to program
the unit at the head of the stream;
thus, the size of the header
diminishes as the stream propagates
through the system. The stream
header is composed of an arbitrary
number of packets of programming
information. Each packet contains
all of the information needed to
configure a designated unit in the
system. The composition and length
of the packets are variable so that
different packet types may coexist
within the same stream header and
hence heterogeneous unit types may
be traversed by a given stream.

The stream data section can contain zero to an infinite number of data words for subsequent
processing. Internally, the data words carry with themselves a one-bit tag which identifies the

Data
Section

To Colt Chip To Colt Chip

Colt Port 1 Config.

Colt Crossbar Config.

Colt FU #1 Config.

Colt FU #2 Config.

Colt FU #3 Config.

Colt FU 41 Config.

Colt Crossbar Config.

Colt Port 2 Config.

Path/Configuration

Header

Figure 1: An illustration of the stream format. A stream is composed of a
header segment (expanded on the right) and a data segment.

http://scholar.lib.vt.edu/theses/materials/public/etd-38419290973280/etd-title.html

5

data as valid or invalid. This tag is generated by each of the functional units as the streams of data
wind through the chip. For instance, if two streams are to enter a functional unit and the result is
to be a pair-wise summation of the values, the output valid bit can be set to be a logical-AND of
the two input valid bits. In this way, valid data is produced only if both of the input words are
valid.

In addition to the data flowing through the chip, three other bit-wide signals can be configured.
These are discussed in depth in [Bit97a]. The conditional bit, cond, can be generated from a
variety of sources within each functional unit (FU) and can be used to modify the behavior of
various FU operations. The carry bit is generated as a result of ALU operations and the shift bit
is generated as a result of barrel-shifting operations. The architecture of each FU is discussed
later in this section.

Example stream sources are video cameras, A/D converters, and antennas. Intermediate streams
may contain, for example, filter weight updates, partial computational results, or new computing

contexts. Details on how wormhole RTR and streams are supported at the physical level can be
found in [Bit97a].

Figure 2 gives a graphical depiction of the underlying structure of the Colt chip, the first
generation device of this architecture. As can be seen, it consists of essentially four parts: the
data ports, the crossbar network, the integer multiplier, and the IFU mesh.

MULT

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

IFU

DP

CROSSBAR

20 PINS

20 PINS

20 PINS

20 PINS

20 PINS

20 PINS

DP

DP

DP

DP

DP

Figure 2: Graphical depiction of the Colt architecture [Bit97a].

6

Streams, sixteen bits in width, enter the chip through the six data ports; each is bi-directional and
can thus either accept a stream or output a stream. Once the stream has passed through a port, it
enters the crossbar. This device allows for almost complete connectivity between any attached
element and any other element, although data ports are not allowed to communicate directly with
other data ports.. A stream programs a pathway through the network; the pathway will persist
until another stream changes it. An example of a stream tunneling through the chip is shown in
Figure 3. The stream shown is based upon that shown in Figure 1.

The integer multiplier passes all programming information. Data words are multiplied together
and produce two output streams: a high byte and a low byte. More complex processing is
handled within the mesh. This consists of sixteen interconnected functional units (IFU) which
each contain routing resources and a functional unit (FU). The functional unit, diagrammed in
Figure 4, can accept two operands, a left word and a right word, and perform various operations
on them. The device contains a propagate-generate-result ALU, a barrel shifter, and some simple
conditional logic. The four flag bit signals, discussed earlier, are generated by and affect the
operation of, the functional unit; they cannot travel outside of the mesh. Inside of the mesh, the
bit-wide signals’ routing resources are equivalent to that of the data path.

Each IFU contains two sets of routing resources: local connections and the skip bus. The local
connections allow an IFU to communicate with the four closest neighbors, i.e. to the top, bottom,
left, and right. Generally, they are referred to by ordinal direction, where north points towards the
entrance of the data, from the crossbar, into the mesh. Each of the operands and data bits can

accept data from any of the four
directions without interfering
with the operation of any other
IFU. The local connections are
connected together at the east
and west extremes. From the
north, local connections direct
data into the mesh from the
crossbar; the south connects the
mesh back to the crossbar.

The skip bus, on the other hand,
utilizes shared resources. It
consists of two paths: a north-
south bus and an east-west bus,
each of which passes directly
over an IFU. Thus, data can be
routed over a device without
affecting its operation. An IFU
can place data onto the bus, or
direct data from one of the buses
into the functional unit. ThisFigure 3: An illustration of a stream tunneling its way through the Colt chip.

 Data
Port 1

 Data
Port 2

Crossbar Network

FU 1

FU 2

FU 3

FU 4

Data enters
and leaves
the chip
through the
data ports.

Data tunnels its
way through the
crossbar and FU
mesh.

7

connectivity is not limited to only the data path: A skip bus set exists for each of the bit flags as
well.

The skip buses, as mentioned above, can route data over an IFU. They can also accept data from
their compass right. Thus, data can travel north, having its source come from the east. Since
there are only two buses, data cannot travel north and south simultaneously. In addition, if an
operand requires data from the north over the skip bus, for example, this uses up the north/south
skip bus resource for that IFU.

The skip bus wraps from east to west in a similar fashion to the local connections. The crossbar
can direct data directly to the skip bus from the north, but the skip bus does not connect to the
crossbar in the south. Finally, only data may traverse the skip bus. Programming of the
interconnections occurs within each IFU and this information may traverse local connections only.

Thus, in the current design iteration, data streams do not precisely mirror the flow of
programming information through the chip. This is likely to be rectified in future versions of the
architecture.

In general, the Colt architecture demonstrates the potential use of RTR concepts. As it is a
prototype chip, many limitations are present in its design which will be eliminated in future

L e f t I n p u t R e g i s t e r R i g h t I n p u t R e g i s t e r

L e f t O p e r a n d R igh t O p e r a n d

B ar r e l Sh i f t e r

A L U

C o n d i t i o n a l U ni t

O p t iona l D e l a y

B u s O u t p u t A u x i l i a r y O u t p u t

O p t iona l D e l a y

Figure 4: Simplified functional unit (FU) schematic [Bit96].

8

generations. Some of the changes, as detailed in Bittner’s dissertation, may include such items as
increasing the orthogonality between data stream and programming stream handling, increasing
the number of functional units within the mesh, and making several improvements to the crossbar
and data ports. However, the basic concepts and general architecture will remain the same.
Thus, the work presented herein is applicable to future chip versions and thus has been designed
in a fairly scalable manner.

http://scholar.lib.vt.edu/theses/materials/public/etd-38419290973280/etd-title.html

9

Chapter 3: A Tiered Approach Towards Stream Synthesis

This chapter introduces the design philosophy behind the multi-tiered approach of this compiler
effort. It discusses the Tier1 language, a custom syntax which natively supports the stream
concept. The language grammar is detailed and an example application is presented.

In order for an applications programmer to map an algorithm to the Colt/Stallion architecture,
some method must exist by which he or she can describe the flow of data through the chip, and
from that, generate the streams which will then be used to program the device. Two compilers
have been developed, and a third one is planned, to handle this task. Each level of compiler
development, or tier, adds a level of abstraction to the process of mapping an algorithm to the
final platform.

The decision to create a custom language, rather than use a standard language, such as C or
VHDL, or use standard FPGA tools, revolved around several issues. First, the architecture of this
chip is very different from traditional FPGAs: rather than being bit-oriented, it is word-oriented.
Therefore, traditional FPGA design tools are really not suitable for the task of programming this
chip. Second, the current Colt chip is resource limited, having only sixteen functional units and
one hardware multiplier. Although this will increase in the future, it was decided that it was
unacceptable for a compiler to potentially waste resources when mapping an algorithm.
Therefore, both of the compilers require explicit control of the functional units; only routing and
placement are automated within the Tier2 compiler. Finally, it was decided that it was better to
proceed in smaller steps in order to create tools which could be completed in a timely fashion. A
custom syntax, while requiring a steeper learning curve, allowed for more rapid compiler
development. In the future, a standard language might be mapped to this custom syntax, as
described below.

In the first case, the Tier1 “compiler” acts as an assembler, allowing the user to have explicit
control over all aspects of Colt. Certain feature are automated in order to make the overall design
process easier. For instance, the compiler makes assumptions about the usage of data within an
FU and modifies the handling of the valid bit tag accordingly. As an example, suppose that the
user programmed an FU to store a value originating from the north into the left register, and a
value from the south into the right register. The result is to be added together and sent to the
east. Normally, the valid bit would have to be explicitly set to be the logical-AND of the valid
bits from the left and right registers. However, the compiler assumes that since both registers
have had assignments made to them, they will form the basis for what data is considered to be
valid, and so the valid bit is automatically set to be the logical-AND of the left and right valid bits.

The Tier2 compiler only requires the user to construct a data-flow graph of the algorithm, where
each vertex represents a functional unit in the Colt chip. The compiler then finds a valid
placement for the algorithm and routes each of the data flow edges. In general, the syntax for the
two tier languages are almost identical: explicit control of the internal workings of the FU is still
required. The main difference is that the Tier2 language adds a level of abstraction. Rather than

10

requiring the user to specify specific directions that data should travel in (north, south, etc.), the
program simply describes the source of the data, i.e. which functional unit produces a result. The
place-and-route capability of the compiler performs the task of routing these data streams inside
of the chip.

When using the final compiler, Tier3, it is foreseen that the user will write in a higher level
language which is not constrained to dealing with individual resources on the chip. This is where
a language such as C may be used. The compiler might convert C into an abstract dataflow
graph, described using the Tier2 language, by partitioning the program into tasks to be performed
by individual functional units. The Tier2 compiler would then perform the task of placing and
routing the resulting graph. This would allow for a tremendous amount of code-reuse, and would
tend to isolate the top compiler level from the physical hardware of the chip. Thus, architecture
changes would not require changes to the Tier3 compiler, only to the Tier2 compiler. Neither the
Tier3 compiler nor the language has yet been designed, and is a topic for future research.

3.1 Underlying Programming Structure

A programming stream for the Colt/Stallion architecture consists of a sequence of packets, where
each packet programs an entity on the chip. These devices include crossbar connections, data
ports, and functional units. Each packet is made up of a series of words. These words themselves
may be further subdivided into various bit fields which are used store values in registers or to
program multiplexers for steering data. Figure 5 shows an example of such a multi-field word.

The final result of both the Tier1 and Tier2 compilers is a list of these fields, divided up into
packets. For instance, the following is a sample description of a packet for programming a
dataport.

DataPort // Declaration describes type of packet
DPRWBIT = 0 // Read/write field
DPSYNCBIT = 1 // Selects synchronous mode- described later
DPLOOPBIT = 0 // Selects loop mode
DPSYNCMP1 = 1 // One field in the synchronization mask
DPSYNCMP2 = 1

Figure 5: An example configuration register word containing two multiplexer fields and one
data register field.

Bits 0 to 4 Bits 5 to 7 Bits 8 to 15

4 Bit
Multiplexer
Field

4-Bit
Multiplexer
Field

8-Bit Register
Value

11

DPSYNCMP3 = 1
DPSYNCMP4 = 1
DPSYNCMP5 = 1
DPSYNCMP6 = 1
DPADDRESS = 24 // Hardware resource address

EndDataPort

As can be seen, a total of ten fields exist. In this case, all of these fields are packed into a single
configuration word. This syntax for describing configuration registers is called dfc and is further
described in [Bit97a]. The dfc code completely describes the values of configuration registers
needed to program elements of the Colt/Stallion chip, and software exists to transform this format
into a sequence of sixteen bit words which can be supplied to the chip or to a simulator.

3.2 Tier1 Language

The Tier1 compiler uses a custom syntax for describing the functionality of each of the FUs within
the Colt chip. In order to support the data-flow oriented nature of the Colt/Stallion architecture,
the focus of the language is on the stream, as defined in the prior chapter. Each stream defines a
pathway that data will take as it moves through the chip. This may include traveling from an
input data port, through the crossbar, to either the hardware multiplier or to functional units in the
mesh. The language itself does not describe any of the data, but rather the manner in which the
data will be handled. Once this programming stream has been fed through the Colt chip, data may
follow.

3.1.1 Tier1 Syntax

Contained within each program are a variety of constructs, such as port definitions, which map
physical data ports to logical names, components, which allows for the easy reuse of commonly
used tasks, and macros, which are used to directly modify the behavior of dfc fields. Refer to
Figure 6 for the general structure of a Tier1 program. The program is first fed through the C
preprocessor before it is parsed. This allows for the use of include statements and constants. In
addition, a standard library is parsed before the program is processed, which contains commonly
used macros and components.

The port definition maps data port numbers (currently one through six) to symbolic names which
are then used throughout the stream definitions. For example, the following port definition
statement specifies that physical Data Port One will be mapped to the name of “indata” and that
physical data port two will be mapped to “outdata”.

ports
 indata = 1;
 outdata = 2;
end ports;

In addition, one other important task is taken care of through this construct: all of the ports listed
in this construct are used to form the port synchronization map. In order to understand what this
is, it is first necessary to understand the various modes that the data ports may assume. Three
modes are supported: raw mode, synchronous mode, and loop mode. The first is not supported
by either of the compilers. Synchronous mode provides for a means of flow-control between

12

various ports. Each port contains a
synchronization mask, where each of six
fields corresponds to a data port on the
chip. If the field is set for a particular
port, then that port is able to influence
the behavior of the other ports specified
in the mask. This allows any port in the
mask to cause all other ports to either
cease sending data into the chip or cease
receiving data from the chip. However,
the effects are not immediate: the chip
will continue to output data until its
internal pipelines are empty.

The final data port mode, loop mode,
provides for the ability to process a
single set of operands at a time. Data
ports will submit a single set of data to
the chip and will not provide any more
until the data has been fully processed
and has exited the chip. This mode is
rarely used, since it is extremely
wasteful of clock-cycles, but if the user
wishes to force the chip into this mode,
then he or she can do so by inserting the
keyword loop after the keyword port
in the port definition construct. For an
in depth discussion of the data ports,
refer to [Bit97a].

Macros allow the user to directly
manipulate configuration fields of
functional units. They are used in
various assignment statements, such as
to configure the ALU, to modify valid-

bit handling, etc. A macro is evaluated at compile time and allows for basic parameter passing,
limited flow control, and simple bit-oriented operations.

Another feature of the macros is that of namespaces. A namespace designates all of the macros
which can be called in a particular assignment statement within an FU definition, which are
discussed later in this section. This allows the user to group together macros of similar function
and prevents macros from being called in situations where their functionality would make no
sense. It also allows for name overloading: macros of similar function, but which act upon
different elements of a functional unit, can share the same name. Namespaces exist for defining

Figure 6: Skeleton of a Tier1 program.

Port
Definitions
(required)

Macro
Definitions
(optional)

Macro
Definitions
(optional)

Component
Definitions
(optional)

Stream
Definition
(At least one
required)

Further Stream
Definitions

Tier1 Program
(plain text
file)

13

ALU operations, modifying the functionality of the shift bit, carry bit, valid bit, conditional bit,
and changing the behavior of the left register.

Macros can take an arbitrary number of numerical parameters which can be used within
assignment statements or within flow control statements. Assignment statements have three
forms:

<field> = <parameter or constant>
<field> != <parameter or constant>
<field> &= <parameter or constant>

The first form simply assigns the right hand side to the field on the left. The second form
performs a logical-OR of the right hand side with the left hand side and stores the result in the
field designated by the left hand side. Finally, the third form performs a logical-AND.

Flow control can take two forms: the first is the assert statement which is used to check the
validity of parameter data. If the parameter does not fit within the prescribed bounds, compilation
of the program stops and an error message is reported. For example, the following statement
checks to make sure that the parameter called “bits” falls within the range of 0 to 4. If not, then
the error message is reported.

assert (bits = [0,4]) "Invalid right operand bit specified!";

Case statements make up the other kind of flow control. They allow a macro to conditionally
execute statements based upon the values of a parameter. The following is an example case
statement which examines the value of “bits” and conditionally executes statements based upon
that value.

case bits is
when 0: FNOutSel = 2;
when 1: FNOutSel = 3;
default: FNOutSel = 0;

end case;

The statements after the default keyword are executed if the value of the parameter does not
equal any of the values listed in the case statement.

All of the statements within a macro can be nested to an arbitrary depth within case statements.
This provides for an extremely flexible method of modifying dfc fields.

This example macro, called donothing takes one parameter, named bits, and checks to make
sure that its value lies between 0 and 4 inclusive. If not, then the error message is displayed and
execution of the macro stops. If it is a valid value, then the configuration field FNOutSel
receives the value of “bits”.

macro cond donothing (bits)
assert (bits = [0,4]) "Invalid value for bits specified!";
FNOutSel = bits;

end macro;

Stream definitions describe the flow of information through the computing platform. The outer
definition defines what data port is to be used for input and what data ports are for output. Only

14

one port can be an input port, but the stream can be split within the stream body and can flow to
multiple output ports. An example stream definition is:

stream MULT (in hibyte, out multdata)

<stream body statements>

end stream;

Within the body of the statement lie crossbar routing instructions and declarations for functional-
unit behavior. The crossbar statements are used to route data from an IFU at the bottom of the
mesh, a data port, or a multiplier output port, to any one of the following: an IFU at the top of
the mesh, a data port, or a multiplier input port. The only restriction is that data ports cannot
route directly to other data ports, nor can multiplier ports route directly to other multiplier ports.

The functional unit definitions constitute the bulk of the code within a Tier1 program. The
construct is called a block and each has a unique name within the stream. In addition, the outer
block construct contains programming routing information at its end. This programming
information directs the flow of the stream to one or more directions (north, south, east, west) or
to the crossbar, if the functional unit is at the bottom of the mesh. The following is an example
block definition.

block RENORMALIZE
<assignment statements>
<macro calls>
.
.
.

end, go south to DELAY, go east to PROPAGATE;

This definition defines a functional unit called renormalize which contains within it a series of
statements. Once this functional unit has been programmed, further programming stream packets
will flow south to the functional unit delay and east to the functional unit propagate.

Within the block definition are a series of statements: General assignment statements, ALU
specific assignment statements, macro statements, component statements, and skip bus
programming statements. The ALU specific statement is rather complex, owing to the fact that a
variety of options exist for the flow of data through this portion of the functional unit. An
operation can be specified which can take as operands either the left, right or both of the input
registers. A shift can be performed, conditionally if desired, upon the data stored in the left
register, a constant can be specified for the left register, an optional delay can be designated, and
finally, the actual output value can be made conditional. Depending upon the conditional bit,
either the ALU result or the value of the right register can propagate to the output.

An example statement is as follows:
out = delay ifcond

left << 2, add
else right;

15

This takes the value of the left register, shifts it left twice, and adds it to the right register. If the
conditional bit is true, then this value propagates to the output, otherwise the right register
propagates. In either case, a one clock cycle delay is added in.

The addition operator, called add, is actually a macro declared elsewhere in the program. This
macro has a namespace of operator and is thus allowed to be called within this statement. The
body of this macro configures the multiplexers within the ALU itself to perform the addition
operation. Refer to [Bit97a] for more information on the structure of the ALU.

General assignment statements are used to adjust the behavior of the left operand register, right
operand register, valid bit, conditional bit, conditional output bit, shift bit, and carry bit.
Depending upon the source, an optional inversion can be specified. Also, a macro for that
namespace can be called, and a source can be specified. For instance, the following statement
modifies the behavior of the conditional bit:

cond != condout from local north;

This implements the optional inversion and uses the conditional bit produced by the functional
unit directly to the north of the functional unit containing this statement. The condout identifier
is a call to a macro named condout with a namespace of cond. Macros can also be called
directly within the body of the block statement, provided that the called macro has a blank
namespace.

Since it is likely that a series of functional units within a program might perform identical
functions, except for the routing of information to and from the unit, a method exists for defining
a template which can be used over and over again. These are called components. Their syntax is
identical to that of the block statement, except that the keyword component is used instead of
the keyword block. Within the body of a block, a component can be called. This causes the
compiler to copy all of the dfc fields modified by the component over to the block being parsed.
For instance, the statement

use adder;

causes the compiler to search for the component named adder and copy over all of its modified
dfc fields. The rest of the block body would probably consist of routing statements designed to
get data from the appropriate source and deliver it to the correct destination.

The final type of construct within the block body is the skip bus statement. This specifies how the
skip bus is to route information over a functional unit. A skip bus block can be defined for each
of the four types of skip buses: data, conditional bit, shift bit, and carry bit. The syntax simply
describes a direction in which the data is to flow and from where the data is to come. This
example routes data to the north from the opposite direction (the south) and routes data to the
east from the data output of this functional unit..

skip data
north from opposite;
east from out;

end skip;

16

This constitutes all of the grammar constructs of the Tier1 language. For general grammar forms
and a complete listing of pre-written macros, refer to Appendix A.

3.1.2 Example Tier1 Program

A small example program is presented here. Its purpose is to take a value from an input register,
have two constants added to it, and pass the data to an output register.

Ports // Port definition construct
 indata = 1;
 outdata = 2;
end ports;

#define ADDVAL 3 // conditional compilation
#if !defined(COL) // through the use of the C
preprocessor
#define COL 1
#endif

// This is the stream which defines all of the actions
stream COLUMN (in indata, out outdata)

 // crossbar connection to skip bus, column 1
port indata => ifu ifu1 at COL;

 // First ifu in the column
 block ifu1

rightreg = from local north; // Accept data from the north
out = ADDVAL,add; // Program the ALU to add a constant
skip data // Send the data out onto the skip

bus
south from out;

end skip;
end, go south to ifu2;

 // Second ifu in the column - program skip bus to go south
block ifu2

skip data
south from opposite;

end skip;
end, go south to ifu3;

 // Third ifu in the column - program skip bus to go south
block ifu3

skip data
south from opposite;

end skip;
end, go south to ifu4;

 // Fourth ifu in the column
block ifu4

rightreg = from skip north; // Right operand takes from local north
 out = ADDVAL, add; // left operand set to ADDVAL, ALU set

// to add operator
 // add operator is specified in std.tlb
end, go to crossbar;

ifu ifu4 => port outdata; // direct data out of mesh to the
//output data port

17

end stream;

The program begins with a port definition section which defines an input port called indata and
an output port called outdata. Following that are some C preprocessor statements which
illustrate the use of conditional compilation and constant definitions. Next comes the actual
stream definition. It defines an input port and output port in its header and a series of crossbar
statements and functional unit definitions within its body.

The first crossbar statement directs data from the input port to the first functional unit, called
ifu1 in the mesh column specified by the constant COL. When data enters this FU, it travels to
the right register, through the ALU where a value of ADDVAL is added on, then out through the
skip bus. The data is processed again by ifu4, where another constant is added on to it. The
final result is passed to the output data port. Definitions for ifu2 and ifu3 exist because
programming data cannot presently be passed through the skip bus.

3.1.3 Software Design

The Tier1 language can be divided into two main parts: the parser which converts the text-file
program into a set of dfc field data structures, and the listing phase which takes these data
structures of dfc fields and creates the final output streams. The first part of the process, the
parser, was constructed using the tool Visual Parse++ by Sandstone Technologies [San94]. It
takes as input a grammar description of the language, in the form of modified BNF. The output is
a set of class libraries which can be modified to perform the desired actions. In essence, this tool
combines the functionality of the traditional tools lex and yacc into a single object oriented
system. Visual Parse++ can handle a subset of the LR-Regular languages, which includes all
LALR(k) languages. The design time for this compiler was greatly reduced by using this tool and
the ability to modify the language without a great deal of effort was greatly increased.

The first step in the design was to create the grammar rules and verify that they worked using
Visual Parse++. The result can be found in Appendix C. Once these had been created, the
actual software design began. The code was developed in C++ using Visual C++ by Microsoft.
Refer to Figure 7 for a graphical view of the class structure of the compiler.

As can be seen by the diagram, the main program instantiates a compiler class, which then
performs the bulk of the work. The main program simply deals with opening up required files,
reading in command-line parameters, etc.

18

The compiler class
parses the program file
and performs
appropriate actions.
Each time that it
encounters a stream
definition, it creates a
new CStream class.
The definitions within
the stream are then
stored within this class.
At the end of the
compiling phase, the
CStream object
contains a hash table,
indexed by name, of
functional unit
definitions, and a list of
crossbar statements.
At this point, the listing
phase commences.

Since each stream can
have only one input
port, but multiple

output ports, the programming stream can be viewed as a tree structure. The listing routine
recursively evaluates this tree, writing the dfc blocks to an output file. Currently, this output file
is named “portN.dfc”, where N represents the number of the input port.

The process of listing continues for each stream until all streams have been evaluated. During the
listing phase, the compiler checks to make sure that all output ports listed in the stream header
have been reached in the stream traversal, and that the tree can map to the topology of the Colt
chip. For instance, functional units can only reach the crossbar if they are on the bottom row of
the mesh. The compiler checks for this and will issue an error message if it detects a violation.

3.1.4 Tier1 Summary

The Tier1 compiler represents a step forward in ease of programming over the initial tools
described in [Bit97a]. It provides a straight-forward method for creating programming streams
and also automates certain aspects of the configuration process, thereby simplifying the overall
task. The result is that development time is much shorter using this method versus the first
generation of tools; however, the problem still exists that the user must explicitly map an
algorithm onto the Colt chip. This is a tedious process, but is sometimes necessary for when the
user wants to do something unconventional.

Figure 7: General structure of the Tier1 compiler.

Main
Program

Compiler class:
AYaccClass

AYaccStackElement

Compiler
stack.

Stream class:
CStream

Hash table
of FU’s

List of
crossbar
stmts.

More stream classes instantiated
(one per port).

19

The main purpose of this compiler, however, was to act as a stepping stone. Once this compiler
had been developed, the road to the Tier2 compiler involved developing the place-and-route
algorithms and then modifying the compiler grammar, rather than completely writing the compiler
from scratch. Only the data routing aspects of the Tier2 compiler had to be verified; the
programming of the functional units was never modified. Thus, a great deal of code-reuse was
made possible and development time was greatly reduced.

20

Chapter 4: Genetic Algorithms For Placement

The purpose of this chapter is to describe the method by which an abstract dataflow graph can be
mapped to the physical hardware of the Colt/Stallion architecture. The problem of placement, the
mapping of the graph vertices to resources on the chip, is a difficult one. Various algorithms for
performing this task are discussed, with the final solution being described in detail. The task of
mapping dataflow graph edges to routing resources is also discussed. In addition, an analysis of

the final approach is included in order to show that the
solution chosen is in fact a scalable method for solving the
placement problem.

4.1 The placement problem

The problem of mapping an algorithm to the Colt chip is a
difficult one. It is assumed that a program can be represented
as a dataflow graph, where vertices represent functional units,
data ports, or multiplier ports and edges represent physical
connections between these resources (Figure 8). The Tier2
language fits this description. In fact, a Tier2 program
actually contains four dataflow graphs: one for the data, one
for carry bits, one for shift bits, and one for conditional bits.

The task then becomes that of mapping the vertices of the
graph to physical units in the Colt chip. Many factors come
into play at this point: due to limited routing resources, some
configurations may not allow all edges to be mapped to
physical connections. Even if all edges can be connected,
some placements will obviously be superior to others. For
example, a potential solution in which all edges are
implemented as local connections will provide far lower
propagation times than one in which the edges are
implemented as long skip-bus routes.

Another difficulty is the shear magnitude of the problem.
Suppose that a particular program utilizes all sixteen of a Colt
chip’s functional units. Then an exhaustive placement
program has sixteen choices when selecting a vertex to occupy
the first functional unit. The second FU has fifteen choices,
etc. The end result is a total of 16 factorial combinations, or
2.092x1013 possible solutions to check. Thus, the order of the
problem, using an exhaustive search, is O(n!), where n
represents the number of functional units within the chip. Of

Port 1

Vertex 7

Vertex 5

Vertex 2 Vertex 6

Vertex 3

Vertex 1

Vertex 8Vertex 4

Port 5 Port 6

Figure 8: A sample of a data flow graph
for a computation. For simplicity, no
loops or conditional execution paths are
shown.

21

course, this is something of a simplification, since some solutions will obviously be invalid; a
functional unit which accepts data from the crossbar must be on the top row. However, the
possible number of solutions is still extremely large even discounting obviously incorrect ones.

Except for very simple cases, the layout problem will be NP-Hard [Sar96]. This means that it is
probably only solvable in exponential time, as described above. The alternative is to use a sub-
optimal algorithm which will produce a solution of good quality.

4.2 Deterministic Searches

In order to solve this problem in a practical amount of time, an algorithm must be developed
which can search through the solution space without trying all possible solutions and produce a
good result. In order to determine how good a solution is, it is necessary to have a cost function,
or metric, which produces a larger value for worse solutions and a smaller value for better
solutions, or vice versa. In this case, the number of skip-bus routing resources required to
implement a particular placement was chosen as a cost function. Local bus connections count as
a value of zero, since in most instances they represent the shortest possible propagation delay.

Two important categories for such search algorithms are deterministic and non-deterministic. The
first class searches for a solution using a fixed set of rules; the search will always be the same,
given an identical set of starting conditions. Such traditional techniques as gradient hill climbing
fall into this category [Gold89]. This algorithm attempts to find a minimum by always moving in
the steepest permissible direction. There are two main problems with this method: First, a
differentiable cost function is required. In many algorithms, such as the placement problem being
examined, the function is not differentiable. Second of all, this method can easily become trapped
within local minima. The algorithm follows a slope, so once any minimum has been reached, no
matter how poor, the algorithm cannot find another.

A greedy search method is similar to the hill climbing algorithm, except that it does not require a
differentiable cost function. Instead, it works by successively laying down vertices which
contribute the smallest amount towards the total cost. Greedy searches suffer from the same
problem as hill climbers in that they can easily get stuck in local minima [Sar96]. In addition, a
poor initial choice for placement is not correctable; the algorithm generally can only progress
forward, attempting to minimize the cost as it proceeds. However, greedy algorithms are
frequently very fast and are generally simple to implement [Sar96].

For the placement problem at hand, exhaustive searches are too slow due to the large number of
possible solutions, and deterministic solutions are extremely limiting, frequently becoming caught
in local minima. What is needed is a way by which the solution space can be searched quickly and
without becoming entangled by solutions which appear to be good, but are in fact far short of the
global minimum. Deterministic algorithms can be very useful, especially when the solution space
is well understood and contains underlying structures which can be exploited by special purpose
algorithms [For93]. This is not the case, though, for the placement problem.

22

4.3 Non-Deterministic Searches

If one randomly searches the possible list of solutions, then it is possible that the global minimum
could be discovered eventually. However, a completely random search is no better than an
exhaustive search. However, one can search in a directed manner: jump around within the
possible solutions until a relatively good placement has been found. At this point, search in the
vicinity in the hopes that a good solution is nearby. In case there is not one, always provide for
the possibility of performing another wild jump into a far-removed portion of the potential
solutions. Such non-deterministic, or stochastic, searches can frequently outperform classical
methods in real-word problems [Fog94].

In general then, an initial starting point, or group of starting points, is randomly chosen. The
algorithm generally chooses the better ones, but maintains a few poor ones as a means of breaking
out of local minima. The solutions are then randomly modified in order to hopefully produce
better ones; the magnitude of the alterations decreases as time progresses, or as the overall quality
of the solutions increase. Although there is no guarantee of finding the absolute best solution, a
good one is generally found in a relatively short amount of time.

Two commonly used non-deterministic search algorithms are simulated annealing and genetic
algorithms. The first type was developed in 1953 by Nicholas Metroplis and mimics the process
by which the crystal lattices of a glass or metal relax when heated, or similarly, to the behavior of
crystal growth [Car97]. Initially, molecules wander around randomly, but as a solution cools,
they become immobilized. If the cooling is slow enough, then the molecules settle into a crystal
structure in which each molecule is at its lowest energy level. During the cooling, many
molecules become trapped in states where their energy level is not at the minimum. However, a
few remaining higher energy, still mobile, molecules can bump into the immobilized ones,
knocking them into lower energy states. Solving a problem using this technique is analogous to
minimizing the energy level of these molecules.

The process works by calculating the energy level, or fitness, of each new solution. If the fitness
is better, then the solution is taken. If worse, then it is not immediately rejected; there is a
probability that it will be accepted, just as in a crystal, higher energy molecules exist while many
others have been immobilized. The probability function used has an exponential decay which
mimics the cooling of a crystal solution. As time advances, the solution cools further, and there is
less of a chance that higher energy molecules exist. Likewise, as time progresses, there is less of a
chance that worse solutions will be chosen.

Genetic algorithms, on the other hand, mimic populations of living creatures. Just as evolution
adapts living organisms to deal with the environment, so to do genetic algorithms adapt solutions
to best solve a problem, based upon the values of a cost function. Evolutionary strategies have
proven to be an extremely robust method for optimization [Fog94]. Considering how well
organisms in the real-world have adapted themselves to harsh landscapes, this does not seem so
surprising. In fact, genetic algorithms are being recognized as extremely good problem solvers in
a diverse set of applications [Gold95].

23

It is first necessary to be
able to represent a
potential solution to the
problem at hand as an
ordered list of a finite set
of symbols. The set of
symbols is known as the
allele set and the ordered
list is known as a gene.
Typically, both the
position of the alleles,
and their values
contribute towards
expressing a potential
solution [Fog94]. The
genetic algorithm
constantly modifies a
population of genes,

testing them for their fitness, until an acceptable one has been found.

The initial population of genes is randomly chosen. For a population of size P, each gene xi , i =
1, . . . P, is assigned a fitness score, f(xi), according to the fitness function. Each gene is then
assigned a probability of reproduction, pi, i = 1 . . . P, where the probability is proportional to the
gene’s fitness relative to all of the other genes in the population.

Selection of the new generation of genes is done in a directed random fashion: in general, the
better solutions survive. However, there is always a chance that poor solutions can propagate to
the next generation. This provides a means for breaking out of local minima. In the case of the
placement problem, a solution in which none of the functional units which communicate with the
crossbar are able to do so would yield an extremely poor cost value. However, other aspects of
the placement may be superior to all other members of the current generation. Thus, it is kept
around in the hope that its positive attributes may be spread to other solutions.

One example of selection is the roulette wheel approached: the new set of genes is chosen
randomly, but the selection is weighted towards the better solutions. Refer to Figure 9 for a
graphical depiction of this. Once this has been performed, a new set of offspring are generated by
two main operators [Fog94]: mutation and crossover. Mutation modifies an existing gene by
swapping items, flipping bits, or making some other sort of random change. Crossover chooses
two genes (parents), then splices portions of the parents in order to create two children. The
result, ideally, are new population elements with higher fitness values. An example of the simplest
type of crossover, single-point crossover, is shown Figure 10.

The crossover operator, a distinguishing feature of genetic algorithms, serves as the primary
means for searching through the solution space [Fog94]. The presence of this operator is what
distinguishes genetic algorithms from all other types of optimization algorithms [Dav91]. The

Most Fit Gene-
Large Weighting

Least
Fit
Gene

Complete
Population

of
Placements

Simulated
Roulette Wheel

Figure 9: An illustration of the weighted selection process.

24

primary purpose of mutation is to act as a background operator to ensure that all possible alleles
can enter a population. In other words, the crossover operator seeks to optimize, while the
mutation operator acts as a safety mechanism to escape from local minima.

The type of selection mentioned above, generally termed proportional selection, is well matched
with a weaker mutation operator. Proportional selection enforces a relatively low amount of
selective pressure upon the population, i.e. the degree to which undesirable elements of the
population are excluded, compared with other popular types of selection mechanisms [Bac94].
This means that there is a stronger degree of genetic diversity, and thus the algorithm should
theoretically explore the solution space more thoroughly. If the selection operator were stronger,
then a much stronger mutation operator would be required.

The general steps for a genetic algorithm are [Rao94], [Dav91]:
Generate an initial population of size PSIZE;
while the stopping criteria has not been met do

Calculate fitness statistics for each individual in the population;
Select PSIZE parents probabilistically, based upon fitness;
for I = 1 to PSIZE/2 do

Pair two parents randomly without replacement;
Crossover two parents, based on crossover probability, produce two
offspring;
Mutate each offspring based upon mutation rate;

endfor
endwhile

Although the genetic operators are rather simply defined, their effects are subtly powerful. Rather
than moving through the solution space randomly, the various population elements store a large
amount of information about prior fitness values. This is exploited by the operators in order to
converge on a satisfactory solution [Hol92].

One of the advantages of these non-deterministic
search algorithms is that the general approach
works for any kind of problem whose solutions
can be represented as a gene. Lots of analysis of
the problem, in the hopes of finding a solution
algorithm, need not be done. Instead, all that is
required is a good fitness function which can
evaluate how good a particular gene is.

This fact is both a strength and a weakness. On
the one hand, genetic algorithms can be easily
adapted to a problem; all that is needed is an
encoding scheme and a fitness function.

However, it is difficult to study a GA rigorously, so when such an algorithm fails to perform well,
it is frequently difficult to understand why that is the case [For93]. Fortunately, as will be shown
in this thesis, a GA performed quite well for this particular problem. In order to significantly
improve performance, though, it may be necessary to perform a more rigorous study of the
behavior of the operators and fitness function used.

P1: 0 1 1 0 1 1 0 0 0 C1: 1 0 1 0 1 1 0 0 0

P2: 1 0 1 1 1 0 0 1 1 C2: 0 1 1 1 1 0 0 1 1

Figure 10: An example of single-point crossover.

Crossover
Point

25

4.4 Genetic Algorithms For The Placement Problem

A genetic algorithm was chosen over simulated annealing to solve the placement problem because
of two main advantages: the crossover operation and implicit parallelism. The implicit parallelism
allows a genetic algorithm to explore the solution space from numerous starting points. Since
parents are able to combine to form new offspring, crossover theoretically allows two placements
which have certain positive aspects to share them in order to produce an extremely good
offspring. Although simulated annealing would have been a valid choice for dealing with this
problem, in practice genetic algorithms have been shown to outperform simulated annealing in
some applications [Kwo94], [Rao94]. Future work might involve comparing the results of a
simulated annealing approach with the results of this genetic algorithm compiler

4.4.1 Encoding and Genetic Operators

Originally, genetic algorithms were designed with the idea of using binary strings as a means of
encoding [Fog94]. However, in a combinatorial problem such as this, binary encoding is not a
natural means for representing the problem. Instead, what is desired is an encoding based upon
ordinal values, where each value is unique in a particular population element.

For the Tier2 compiler, the allele set is a range of integers from one to the maximum number of
functional units on the chip -- currently sixteen. Each item in the allele set corresponds to a
vertex in the dataflow graph representing the algorithm. The gene is an ordered list of the items
in the allele set. Each item is unique and its position within the gene represents its position in the
actual Colt chip. Mapping the gene to the functional unit mesh is very simple: starting from the
upper-left corner, place the dataflow node (allele set element) into the mesh from left to right, top
to bottom. If the algorithm does not require all of the available FUs, the gene still contains values
representing them; they are simply empty placeholders.

For instance, the gene,

1 5 9 10 2 6 11 12 3 7 13 14 4 8 15 16

describes the data flow graph in Figure 8 as having Vertex 1 placed in the Colt FU at row 1,
column 1. Vertex 5 is located in row 1, column 3, and Vertex 3 is located at row 3, column 1.

A problem arises with this implementation: using traditional genetic operators, illegal values
would appear. For instance, the single-point crossover operator, as described above, would
produce children which had multiple instances of ordinal values. A great deal of research has
gone into solving this problem [Poon95], and some of the results have been used in this project.

The genetic operators are implemented in the following way: mutation is performed by randomly
swapping elements. Selection is done using the roulette wheel approach. Finally, crossover is
performed using the partial matching, or partially mapped (PMX) technique [Gold89], and
maintains the uniqueness of the elements for the children. The result is that given a population of
valid placements, i.e. one in which every data flow vertex is represented exactly once, these
operators produce a new population of valid placements.

26

The PMX crossover operator has been shown to work well with various types of permutation
problems [Cro95], [Poon95], [Wil95]. It attempts to preserve the absolute position in ordering in
the offspring [Pos93]. Since the genes convey information through the ordering of the alleles set
members, this is critical to the performance of the operator. Although this technique is very
disruptive to the genes, it does manage to exchange useful information between the two parents
[Wil95], and performs fairly well when compared against other permutation based operators
[Poon94], [Oliv87]. In addition, it was a built-in operator with the genetic algorithm library used
in this project, thereby reducing the overall implementation time.

An example of PMX is shown in Figure 11.
The algorithm works by copying one of the
parents to each of the genes. The two
points, a and b, are chosen at random.
Then, elements lying between points a and
b are swapped, based upon the location of
that item in the parent gene that the child
was not copied from. For instance, C2 is
copied from P2. Next, the swaps are
made. On the second swap, P1[4] = 4, so
the value of 4 will be swapped into C2[4].

C2[9] = 4, so a swap is made between C2[4] and C2[9], resulting in the values shown in Figure
11. The swapping continues until the second crossover point is reached.

In order to support run-time reconfiguration, the compiler has the ability to exclude particular
function units from being used for both placement and routing. The exact method by which
exclusion is performed is discussed in more detail in Appendix B. In terms of gene expression,
the method is very simple: the gene is simply shortened to the number of functional units
available. Thus, if four units were excluded from placement, the allele set would contain only
twelve items and the gene would consist of twelve unique items from the allele set. The fitness
function, when it tiles the data flow vertices onto the physical graph just prior to routing, takes
care of ensuring that the proper functional units are skipped. In the future, the exclusion
capability will allow designers to create a library of pre-compiled algorithm modules which can be
moved into the mesh as necessary.

These pre-compiled modules mesh well with the concept of run-time reconfigurability. As
discussed in [Bit97c], an external device, known as an stream controller, might hold all of the
aforementioned modules within its own memory. Input streams to this device would contain
simple op-codes describing functions to be implemented, rather than the actual configuration
words required to configure the array of Colt/Stallion chips. As each op-code is encountered, the
stream controller would find the corresponding pre-compiled module, search for an empty space
within the processing array, and configure the necessary functional units. A user wishing to create
this library of modules would use the exclusion features of the Tier2 compiler to restrict the place-
and-route options when compiling each of the individual components. The modules would then
be grouped together within the stream controller device for later use.

 P1: 1 2 3 4 5 6 7 8 9 10 C1: 1 3 5 6 2 4 7 8 9 10

P2: 10 8 5 6 2 3 7 1 4 9 C2: 10 8 3 4 5 2 7 1 6 9

Figure 11: An example of partially mapped crossover (PMX).

Crossover
Points

a b

27

4.4.2 The Fitness Function

The fitness calculation, as mentioned earlier, is a measure of how good a particular solution to the
problem is. Since local connections between functional units are short in length and thus
extremely fast, they are assigned a score of zero. Thus, a placement which contains only local
connections would yield a score of zero- the best possible score.

Long skip bus connections are slow, since they involve passing electrical signals across long wires
and through transmission gates. In this particular cost metric, each link in an edge implemented
through the skip bus adds one to the score. The total score is a sum of the length of all of the
edges in all four of the dataflow graphs associated with the algorithm.

As mentioned earlier, invalid placements generate a numerical score just as valid ones do. In
order to differentiate between invalid and valid, an invalid score is equal to the total number of
unroutable edges multiplied by a threshold value of 1000, which is far greater than the total
number of routing resources within the chip. Thus, any score greater than 1000 represents an
invalid placement.

A count of connections which are not adjacent to the crossbar, but need to be, is multiplied by a
bias value of two, then added to the count of unroutable edges. This total is then multiplied by
the threshold value. Functional units which must be adjacent to the crossbar are ones which must
output data to multiplier ports or data ports. Even though the crossbar is capable of directly
communicating with the skip bus, at least one data port must connect to a functional unit locally,
or through a multiplier port. This is due to the fact that the skip bus cannot carry programming
information. Thus, if all streams entered the Colt chip and were directed towards the crossbar,
then the programming would stop and the chip would never be fully configured. Therefore, a
value of at least 1000 will be produced if no functional unit communicates with a data port
through a local connection.

4.4.3 Stopping Criteria

Every genetic algorithm must have some sort of stopping criteria which indicates when a good
solution has been reached. This implementation uses three: if a score of 0 is found, then the GA
stops immediately, since the score represents a solution using local connections exclusively. This
is the best possible solution in terms of propagation delays.

The second criteria is convergence; it determines when a “good” solution has been reached. The
best (minimum) score is divided by the average score of the entire current generation. If the value
is greater than the convergence percentage, a parameter set by the compiler, then the algorithm
stops. This is used to detect when scores have ceased jumping around wildly and have settled
down to similar values. Although there is no guarantee that this is a particularly good solution, it
generally indicates that the algorithm has found the best solution it will find for this particular
evolution. Of course, the minimum solution must be below the threshold value in order for the
algorithm to stop.

Finally, there always exists the possibility that no valid solution exists, or that the genetic
algorithm is just incapable of finding one. For this reason, an upper bound is placed upon the

28

number of generations that the genetic algorithm will create. If no valid solution has been found
by the time that this bound has been reached, the genetic algorithm stops and the compiler issues a
warning message.

4.4.4 Routing

Since the cost function score represents the number of routing resources used, the fitness function
must actually route a given placement in order to determine the final score. For each gene
generated by the genetic algorithm, the placement is overlaid onto the chip. Each item in the
mesh stores the source of the data it needs to receive (IFU coordinates, data port number, or
multiplier number). Thus, four graphs exist, one for each type of data: bus output data,

conditional bit, shift bit, and carry bit. Once the functional units have been placed, the compiler
attempts to route each of the data edges.

The local connections are attempted first. If two FUs are adjacent, and there is a dataflow edge
between them, the local connection is set, and the data edge is marked has having been
implemented. Next comes the non-local routing. Each FU is checked to see whether it is the
destination of a dataflow edge. If it is, then a maze-router attempts to implement the connection
from the specified source to the destination FU.

The maze-router starts at the source FU. Based upon the location of the destination, relative to
the current location, the maze-router computes a direction in which to go (north, south, east,
west) and then moves to that new FU. However, before the move is made, the router makes sure

Figure 12: An illustration of the maze-router attempting to avoid obstacles. An attempt to reach the destination
through the shortest possible path failed, so the router tried the only other available path, then tried again to reach the
destination.

Destination

Source

Failed attempt
at reaching
destination.

Depicts skip
bus resources
already
utilized.

29

that it is possible to implement a skip bus connection between the current functional unit that it is
at and the new functional unit that it wishes to move to. It may be impossible to make the
connection due to the fact that the skip bus resource might already have been used to implement
another edge.

If the router is unable to travel in another direction, then it tries all other directions, then backs up
to the previous functional unit in the path that it has traced out, and attempts to go in a different
direction. Refer to Figure 12 for an graphical depiction of this process. In the worst case, all
possible routes to the destination are tried. Generally, though, the algorithm quickly finds a
solution.

Due to the fact that the routing problem has been shown to be NP-Complete [Rao94], an

exhaustive approach is not a practical solution. Instead, the router does not attempt to actually
solve the routing problem, but rather attempts to find a relatively good solution. Since the router
attempts to minimize resource usage each step of the way, it is a greedy algorithm. Therefore, it
suffers from the ability to fall into local minima. However, for this problem it performed well, as
can be seen in the Experimental Results section. It also benefits from the fact that if it fails to
obtain an acceptable routing solution, the genetic algorithm operating above it will discard that
particular placement. Thus, the GA can help out the router by breeding solutions which the
router is better able to handle.

Certain complications to the basic routing system arose due to the nature of the skip bus. As
described earlier, two pathways exist: An east-west bus and a north-south bus. For a given

Figure 13: Implementation of a left-turn on the Colt skip bus. Data comes from the west and is routed to
the north.

A functional
unit within the
Colt chip.

Data is routed
across the bus
from West to
East.

The data is
then routed
North, from
compass-right
(East).

30

direction, north for example, the signal source can come from the opposite direction, south, or
from the compass-right direction, east. However, it is not possible to directly route data from the
compass-left. In order to do so, it is necessary to use one bus to route data across a bus, then use
the other bus to route from compass-right. Refer to Figure 13 for an illustration of this process.
The end result is that left turns are costly and should be avoided. The maze-router takes this into
account by attempting to perform right-turns whenever possible. Note that the fitness calculation
takes this bias against left-hand turns into account by adding a value of two to the total score for
each left turn, versus a value of one for a right turn.

The main disadvantage of this algorithm is that it is greedy in nature. Therefore, a poor initial
choice will rarely be corrected, but will instead force the router to use up extra resources towards
the end of the path. Only if all subsequent paths fail will the early paths be modified. The
advantage of this algorithm, though, is that it is very quick. Only one path is routed, and the
router attempts to go to the destination using as few skip bus resources as possible. In addition,
its recursive nature allows the maze-router to cover all possible paths, so it is a very complete
search method. Further research might be performed on finding better ways to route signals, but
for this first attempt at a compiler, the performance was quite satisfactory.

4.4.5 Analysis of the Fitness Function

By using a count of the number of routing resources for a fitness function, the genetic algorithm is
able to accurately determine how good a particular placement is. This also eliminates the need for
a later attempt at routing, since the job has already been performed. For a relatively small number
of functional units, as in the Colt chip, performance is quite satisfactory. Please refer to the
Experimental Results chapter for further analysis. The main question that arises is whether or not
this method is scalable to larger architectures, such as the future Stallion chip. Since a genetic
algorithm must try many potential placements, and evaluate the fitness of all of them, it is crucial
that the routing algorithm be able to quickly implement all of the dataflow graph edges. Thus, an
analysis of the routing algorithm is necessary.

Of the two routing phases, implementing local connections and implementing non-local
connections, the prior can be neglected as contributing very little towards the overall
computational time. It requires searching through each of the functional units, so it is an O(n)
algorithm, where n represents the number of functional units, but it can be done very quickly. The
bulk of the processing time is spent routing non-local connections.

If every functional unit were to have a data edge which could not be implemented through a local
connection, then there would be a total of n edges. In the absolute worst case, each functional
unit would have edges for each type of data, for a total of 4n edges. This represents an upper
bound and is extremely unlikely to ever actually occur. The maze-router must traverse through
nodes from source to destination. The mesh wraps around from east to west, but not from north
to south, so the worst-case path length is equal to one length of the mesh vertically, plus half of
the mesh horizontally. Since the mesh is a square, one length is equal to √n. Thus, the worst case
path length is:

31

()
n

n n
+ =

2

3

2

Since each edge must be traversed by the maze-router, the total effort required has an upper
bound of:

() ()4
3

2
6

3

2n
n

n n O n n O n








 = = =









 Therefore the algorithm scales fairly well. For instance, if a particular placing effort for the Colt
chip, with n=16, requires a total of sixty seconds, then a Stallion chip with n=100 would require a
total of 15 minutes and 37 seconds. While not exactly fast, it is still within acceptable limits.

For future versions of this architecture, it is reasonable to assume that the number of functional
units will stay within one order of magnitude of the current Colt chip. Therefore, the prior
example is close to an upper bound on the limit to which the algorithm might have to scale.
However, propagation delays for routing a signal from one end of a Stallion chip to another might
be prohibitively high. As a consequence, not every functional unit will be able to reach every
other functional unit within one clock cycle. Instead, each FU will have a radius of contact; a
maximum path length that a signal may propagate within one clock cycle.

This fact improves the performance of the router in several ways. First of all, a pre-screening trial
will be able to eliminate placements which violate the radii requirements. Such a process would
require scanning through all of the functional units once- an O(n) algorithm. After that, the
normal routing process would take place. However, each functional unit would now have a
neighborhood within which signals could be routed to. Therefore, rather than the maze-router
being an O(√n) algorithm, it becomes an O(r) algorithm, where r equals the radius of connectivity.
Thus, as the number of functional units scales up, the radius will stay constant, and the algorithm
begins to approximate an O(n) algorithm, rather than an O(n3/2).

The importance of having a computationally efficient cost function cannot be overstated. Since
every population element requires a cost value in order for the genetic algorithm to operate, this
function is executed numerous times. The bulk of the processing time is in fact spent evaluating
this function. As a consequence, any increases in efficiency result in a large performance gain.

Although the results of the algorithmic analysis are encouraging, in the end optimizations will
most likely be required in order to boost up the performance of the router in a larger chip. This
analysis does show, though, that physical constraints on propagation delays place sufficient
restrictions upon routing solutions so as to make this algorithm fairly scalable to larger
architectures.

32

Chapter 5: Tier2 Language Overview and Compiler Design

5.1 Syntax Overview

As previously discussed, the advantage of the Tier2 language over the Tier1 language is to
remove the need for the programmer to explicitly map an algorithm onto the Colt chip. Whereas
the Tier1 language requires the user to manually implement data routing and program stream
creation, the Tier2 language has the programmer create an abstract dataflow graph, as in Figure 8.
Gone is the need for explicit skip bus programming, explicit directions for data directions within
assignment statements, and explicit directions for the flow of programming streams.

The overall syntax is very similar to the Tier1 language. The only difference is that the skip bus
programming constructs have been removed, crossbar statements have been modified,
programming flow information is no longer specified at the end of a block definition, assignment
statements have been modified, and stream definitions have changed.

A Tier2 program now contains only a single stream definition. No port headers are required; any
port described in the port definition section can be used within the stream body. If ports are used
for both input and output, a compiler error will be issued. The general format for a Tier2
program is shown in Figure 14.

Crossbar statements have been modified slightly: the source for a crossbar statement can be
either a functional unit, a multiplier port, or a data port. This remains the same as in Tier1.
However, the allowed destinations have changed: only data ports and multiplier ports are valid.
This is due to the fact that assignment statements within a functional unit definition will specify
data sources. Thus, it is unnecessary to use a crossbar statement to perform the same task.

The basic block definition remains largely the same, except that the construct terminates with
simply an end, rather than any sort of programming direction data. The general structure looks
as follows:

block IFU_NAME
<assignment statements>
<macro calls>
<component definitions>

end;

The ALU assignment statement remains identical, but the other assignment statements have been
modified slightly: The from <direction> portion has been replaced with syntax identical to
the source portion of a crossbar statement. For instance, a valid assignment statement is now:

rightreg = ifu propsouth;

In this case, the right register is set to receive data from a functional unit named propsouth.
The compiler performs the task of making sure that the routing resources within the chip direct
the data properly. Please refer to Appendix A for a more complete syntax reference.

33

5.2 Genetic Algorithm Code

The purpose of this project was to create a compiler, not to engineer a genetic algorithm class
library. Therefore, a public domain class library was used in order to reduce the overall
development time. The system chosen was the GAlib 2.4.2 genetic algorithm package, written by
Matthew Wall at the Massachusetts Institute of Technology [Wall97]. It is a very extensible, easy
to use class library, and worked without requiring any modifications. Use of this tool greatly
reduced the effort in bringing this compiler to fruition.

One of the main features of this package which made it perfect for the place-and-route application
was its inclusion of operators designed to work with genes in which allele set members had to
remain unique and all members had to be present in a gene. The genetic operators described

earlier in this work were included in GAlib
and therefore did not have to be separately
designed and tested.

5.3 Software Design

In keeping with the idea of using the Tier1
compiler as a stepping stone, the overall
shell of the first project was used almost
completely intact. The grammar was
modified using Visual Parse++ and new
C++ code was created. However, Visual
Parse++ is able to modify existing project
files without destroying existing code. This
feature is one of the greatest assets of the
tool. Once the compiler had been modified
to use only a single CStream class, and
the tree-traversal listing system had been
removed, the new class hierarchy for
solving the place-and-route problem was
moved in, and a new listing mechanism was
added.

5.3.1 Place-and-Route Class
Hierarchy

A great emphasis was placed on creating a
class hierarchy which would be extendible
to future Stallion architectures. Since the
design of the future chips has not yet been
set, it was decided to hard-code the routing
abilities of the Colt chip, but in such as way
as to make it easy for future softwareFigure 14: Format of a Tier2 program.

Port definition
(required)

Macro
definitions
(optional)

Component
definitions
(optional)

Stream body (one only)

stream <name>

<crossbar statements>

<block definitions>

end stream;

http://lancet.mit.edu/ga/
http://lancet.mit.edu/ga/

34

designers to modify the classes to work with the Stallion chip.

This was done by layering the various aspects of the place-and-route algorithm. At the base layer
is the CGraph class. Its function is to specify the mesh topology, such as the number of rows
and columns, and to store dataflow edge information for a specific placement. As an example, it
stores the fact that a functional unit at Row 2, Column 2 requires data from a functional unit at

Row 1, Column 4. This class
is capable of storing two
source requirements per
functional unit. This allows it
to work with the fact that
each FU can accept data into
a left and right operand. The
same class is used to work
with the bit flags; only the left
side is used in such a case.
Assuming that a future
Stallion architecture contains
a mesh of functional units,
and that each functional unit
can receive data from at most
two sources, then this class
will require few, if any,
changes.

The CRoute class is derived
from the CGraph class. It
uses the underlying edge
information to perform the
routing task. It contains a list
of routing resources available
to the chip. This is used by
the maze-router, a method
within this class, to route all
of the edges. In addition, it
performs the important task
of creating programming
streams. These streams are
simply ordered lists of
resource names, such as “data
port six”, “functional unit at
row two and column 1”, etc.
The task of converting a tag

Figure 15: The Tier2 place-and-route class hierarchy.

 Data

Carry

CGraph

Src.

 Dest.

CRoute

Src.

 Dest.

 Shift
Cond

CPlace

 Dest.

 Dest.

 CGenetic

Placement
specific edge
information.

Placement
specific routing
information.

Dataflow graph.
Not placement
specific.

Inheritance

Instantiation

 GAlib 2.4.2

Genetic Algorithm
for finding a good
solution.

35

to actual dfc code is
handled at a higher
level.

This class is tied
specifically to the Colt
architecture, in that
the list of routing
resources available
matches the chip’s
capabilities. Future
architecture changes
will require
modification of some
of the data structures
and changes to
decisions that the
maze-router makes. It
is difficult to predict
how severe the
changes will be, but
the general structure
and architecture of the
maze-router will

probably not change by much.

The prior classes worked with a specific placement and a single data type. The CPlace class
instantiates four CRoute classes to handle the four types of data: bus output, carry bit, shift bit,
and conditional bit. The class itself stores the abstract dataflow graph generated by parsing the
Tier2 program file. It is able to accept a placement description, i.e. a gene from the genetic
algorithm, map the dataflow graph onto a specific placement using the gene, then call the routing
routines in order to generate a fitness score. If the Stallion architecture adds future data types,
little will need to be changed in this class. More CRoute class will have to be instantiated, but
the dataflow graph has been designed to handle an arbitrary number of edges between vertices, so
expansion of this data structure will be relatively easy.

Figure 16: General structure of the Tier2 compiler.

Main
Program

Compiler class:
AYaccClass

AYaccStackElement

Compiler
stack.

Stream class:
CStream

Place-and-route
class hierarchy.

Map of FU’s

List of
crossbar
stmts.

36

Finally, there is the CGenetic class. It is derived from the CPlace class and instantiates the
GAlib genetic algorithm class. The underlying CPlace class is transparent so that classes which
instantiate the CGenetic class can directly communicate with the CPlace class in order to add
edges and vertices to the dataflow graph. Once the graph has been specified by the compiler by
parsing the Tier2 code, a method is called which instantiates a genetic algorithm and attempts to
evolve a solution. During the evolutionary process, the routing functions within the CRoute
classes are called by the fitness function contained within the CPlace class. The result is that the
best score and best placement are stored for later use. Programming streams based upon this
placement can then be generated by the CRoute class and accessed by helper methods.

Port 1

Vertex 1
at (1,1)

Vertex 6
at (2,3)

Routing
at (1,2)

Vertex 2
at (2,1)

Vertex 3
at (3,1)

Vertex 4
at (4,1)

Vertex 5
at (1,3)

Vertex 7
at (3,3)

Vertex 8
at (4,3)

Port 5 Port 6

Vertex 1

Vertex 2

Vertex 3

Vertex 4

DATA
PORTION

of the
STREAM

Left
Side
of

Fork
at

v(1,1)

Right
Side
of

Fork
at

v(1,1)

S
T
R
E
A
M

H
E
A
D
E
R

Port 1

CrossBar

CrossBar

Port 6

Vertex 8

Vertex 7

Routing(1,2)

Vertex 6

Vertex 5

Port 5

CrossBar

Figure 17: Depiction of the synthesized programming stream for the sample data flow graph in Figure 8. The left-hand side
depicts the stream pathway through the configurable resources, while the right-hand side shows the actual stream structure
for this example. Note that in this example, the stream must split at Vertex (1,1).

http://lancet.mit.edu/ga/

37

Architectural changes to the hardware will necessitate few changes to this class.

The main compiler class, AYaccClass converts the programming list into actual dfc code by
accessing its stored database of functional units and crossbar statements. The process is simple:
once the lists have been generated by CRoute, the list for each data port is retrieved. The list is
traversed in order and each item in the list is searched for in the hash tables stored within the
AYaccClass. The item’s routing resources for each type of data are then configured, as
specified by the various CRoute classes, and the object is written to the correct output port file.
Please refer to Figure 15 for a graphical description of the place-and-route class hierarchy. Figure
16 shows the place-and-route hierarchy in relationship to the entire project.

The listing phase for Tier2 is similar to that in Tier1 in that streams may split within the chip. In
some cases, the programming stream barely follows the path of actual data. This is caused when
data streams from ports enter the crossbar and then enter the mesh through the skip bus. In such
as instance, programming data from that stream can proceed no further. Instead, a programming
stream from some other local connection must configure these functional units. Figure 17
demonstrates the programming sequence for the dataflow graph shown in Figure 8 and the
placement described in the following gene:

1 9 5 10 2 11 6 12 3 13 7 14 4 15 8 16

Notice that the functional unit at Row 1, Column 2, identified as Vertex 9 in the gene, is not really
used within the actual dataflow graph. It is simply used to route information, through the skip
bus, from Vertex 1 to Vertex 5. Note also that the stream splits at Vertex 1. The programming
stream is routed both south and east by this functional unit. However, the information for the
southern route is ignored by the eastern route because none of the packets match the address for
the FU at (1,2). When that packet does arrive, the data proceeds east, then south. Following
that, the data streams through the chip and the actual processing commences.

38

Chapter 6: An Example Application

In this chapter, a relatively complex example algorithm is mapped to the Colt chip using the Tier2
language and compiler. The algorithm itself is first introduced, then the abstract dataflow graph is
presented. Next, a potential mapping is shown, which was produced by the Tier2 compiler.
Finally, the streams required to configure the chip are graphically depicted.

The application which was used throughout the development process of this compiler was the
floating point multiplier developed in [Bit97b]. This program uses all of the IFUs within the Colt
chip and requires a large number of connections, including the use of flag bits. The multiplier is
discussed in-depth in [Bit97b], but a brief overview of its operation will be discussed here.

Two 32-bit floating point numbers are multiplied together to produce a 32-bit result. The format
of the data is as follows:

The exponents of the two operands enter the chip through data ports one and three. The
mantissas enter through data ports two and four. The mantissas are multiplied together using the
hardware multiplier. The high word is kept as the result, but is conditionally shifted to the left if
normalization is required. In such a case, the high bit of the low word of the multiplication result
is shifted into the low bit of the high word. If normalization takes place, then the exponent of the
result is decremented by one.

The exponents are handled by first shifting out the sign bits using a left shift. These sign bits are
XOR’d together and shifted back in at a later time. Addition of the exponents occurs next,
followed by a check for overflow. If overflow occurred, the smallest possible exponent is loaded
in. Next, the exponent is decremented if the mantissa was normalized. A final check for overflow
occurs, and finally, the sign bit is shifted into the exponent word using a right shift. For a more
detailed explanation, please refer to [Bit97b].

The initial placement by the original creator, Ray Bittner, required approximately two weeks and
resulted in a score of 20. As will be shown, the Tier2 compiler is able to accomplish the same
task in far less time, generally around one minute, and is able to obtain a score roughly as good,
and frequently better.

The following is the Tier2 version of the floating point multiplier.
//
// tier2 implementation of the floating point multiplier.
//

 0 1:15 16:31

1-bit sign bit.

15-bit exponent
(2’s complement)

16-bit mantissa
(2’s complement)

39

// Floating point multiplier, as described in Ray Bittner's
// dissertation. This is the "improved" implementation-
// the mantissa and exponent outputs are synchronized.
//

ports
exp1 = 1; // Exponent 1
man1 = 2; // Mantissa 1
exp2 = 3; // Exponent 2
man2 = 4; // Mantissa 2
eout = 5; // Exponent output
mout = 6; // Mantissa output

end ports;

stream FPMULT

// First mantissa just goes through the multiplier
// and ends at the skip bus entrance to the rightmost
// column of IFUs
port man1 => mult at 1;

// Second mantissa goes through the multiplier,
// then programs the rightmost columns of IFUs to
// perform the renormalization task.
port man2 => mult at 2;

// shifts the low word to the left by one,
// passes the highword of the multiplier through
// the skip bus.
block shiftlow

leftreg = mult at 2;
out = left << 1; // bus output is actually ignored

// Take cond from left, pass it thru ALU, then send it south
// so that it can be used to check for overflow from the
// exponent addition
cond = ifu addexp;
carry != cond;
out = grabcarry;
// We've moved the carry into the data word. Now we'll pass it south
// and extract it from the data word.

end;

// passes shift and bus output south
block pass_shift_and_out

// Now we have to extract the carry bit from above
// First, load in the data word
rightreg = ifu shiftlow;
// Extract it to cond
condout = rightop(0);

end;

// Here's where the renormalization is done.
// The highorder word is latched into both operands, and
// the highorder bit determines whether a shifted or
// non-shifted version should be used.
block renormalize

// clock in the highorder bit
leftreg = mult at 1;
rightreg = mult at 1;
shift != ifu shiftlow;

40

condout = rightsign; // conditional bit = bit 16
// of right operand

cond != condout;

// If the conditional bit is true, then we take
// the left-shifted-by-one version, else just
// take the unshifted version
out = left << 1 ifcond, passleft;

end;

// Double delay of the bus output
block delay2

rightreg = ifu renormalize;

cond = zero;
// activate the delay- force the ALU to be bypassed
out = delay ifcond 0 else right;

end;

ifu delay2 => port mout;

// Left exponent stream (goes straight down column 1)

// This block extracts the sign bit from the first exponent word
block sign1

// Left word comes from crossbar
leftreg = port exp1;
rightreg = port exp1; // simulator fix only
// Shift once to the left
out = left << 1, passleft;

end;

// Shifts in the sign bit for the right exponent
block insertsign1

shift != ifu sign2;
out = delay 0 << 1, passleft;

end;

// Computes the new sign bit
block signcalc

rightreg = ifu insertsign1;
leftreg = ifu insertsign2;
out = delay add;

end;

// Shifts in the sign bit for the left exponent
block insertsign2

shift != ifu sign1;
out = delay 0 << 1, passleft;

end;

// Right exponent (goes down column 2, then down column 3)

// Shifts to the left once to remove sign bit
block sign2

leftreg = port exp2;
rightreg = port exp2;
out = left << 1, passleft;

end;

// Southern stream (column 2)

41

// Decrementing the exponent is required due to a mantissa change
block decrexp

rightreg = ifu checkoverflow;
cond = ifu renormalize;
out = ifcond

65534, add // Add -2
else right;

// Save the overflow result
condout = aluoverflow;

end;

// Propagate data south, add on a delay to the cond bit
block propsouth

// The cond bit from above (alu overflow) propagates south and
// is moved into the ALU

 cond = ifu decrexp;
carry = cond;
out = grabcarry;

end;

// checks overflow from decrement operation
block checkovr2

rightreg = ifu decrexp;
cond = ifu prop2;
out = ifcond

32768, passleft
else right;

end;

// Eastern stream (column 3)

// This adds the exponents together
block addexp

rightreg = ifu sign2;
leftreg = ifu sign1;

out = add;
// send condout to the east in order to put in a delay
condout = aluoverflow;

end;

// check for overflow. If it has occurred, then we set the value to
// the smallest possible exponent.
block checkoverflow

rightreg = ifu addexp;
cond = ifu pass_shift_and_out;
out = ifcond

32768, passleft
else right;

end;

// The left register extracts the carry bit (which is actually the
// overflow bit from the decrexp ifu)
// This also adds a one clock-cycle delay to the sign bit data
block prop2

// Get the lowest bit from the register and put it onto the skip bus
rightreg = ifu propsouth;
condout = rightop(0);

// The sign bit has to be converted into data here
leftreg = ifu signcalc;

42

out = passleft;

// We're not really using data from the right side,
// so the valid bit should only be tied to the data
// on the left.
validleftonly;

end;

// Combines the sign bit and exponent data together
block prop3

// Exponent data
leftreg = ifu checkovr2;
// Sign data
rightreg = ifu prop2;

// Grab the low-bit from the right register
condout = rightop(0);
// Move it over to the shift bit
shift = condout;

// Shift in sign bit, then pass straight thru ALU
out = left >> 1,passleft;

end;

ifu prop3 => port eout; // direct the exponent to the output port.

end stream;

After this file is parsed by the compiler, the CPlace class contains a dataflow graph of this
algorithm. This graph is presented in Figure 18. Inside of the compiler, the data flow for the four
different data types are stored separately. In this graph, however, they have been included in one
figure for clarity’s sake.

The names of the block definitions in the floating point multiplier program are identical to those in
the illustration. The overall functionality of the algorithm has already been explained, but a few
additional notes are needed to explain some peculiarities of the Colt architecture. First, the signs
bits are shifted out of the exponent words in vertices Sign1 and Sign2. The sign bits are then
shifting into the low bits of data path in vertices InsertSign1 and InsertSign2, then
XOR’d together in vertex SignCalc using the ALU. The result is shifted into the final
exponent in vertex Prop3. The Prop2 block serves two purposes: it acts as a one-clock cycle
delay for path equalization purposes, and it acts to delay by one clock cycle the conditional bit
produced by the vertex DecrExp. Pass_Shift_And_Out serves the same purpose for the
conditional bit produced by AddExp. These conditional bits are high if the ALU detects an
overflow. However, this bit is produced immediately even though it is actually needed one clock
cycle later. In order to delay the signal, it is shifted into a functional unit, passed to another
functional unit, and shifted out again. This is a significant waste of resources and will be removed
in the next version of the Colt/Stallion architecture.

43

The rest of the dataflow graph is fairly straightforward: the exponents are passed from Sign1
and Sign2 to AddExp, where they are added, then passed to CheckOverflow to check for
an overflow condition. After that, the exponent is decremented if Renormalize signals that it

Figure 18: Data flow graph for the floating point multiplier. Names of vertices are the same as those used in the
floating point multiplier program.

Data
Port 1

Data
Port 3

Data
Port 2

Data
Port 4

Sign 1
(extract
sign bit)

Sign2
(extract
sign bit)

AddExp
(add
exponents)

 CheckOverflow

DecrExp
(decrement
exponent)

Prop3
(shift in
sign bit)

Data
Port 5

Mult
.

Mult
.

Shiftlow
 (shift out
high bit of low
word)

Pass_Shift_And_
Out

Renormalize
(Perform left
shift if
necessary)

Delay2
(double delay
for path
equalization)

Data
Port 6

PropSouth

Prop2

SignCalc
(XOR sign
bits)

InsertSign2 InsertSign1

 CheckOvr2

Cond Bit Paths
Shift Bit Paths
Data Paths

44

performed a shift operation. Overflow is checked for once again in CheckOvr2, then the sign
bit is shifted back in in Prop3. The mantissa side is equally straightforward: the two mantissas
are multiplied together and the high word is passed to Renormalize. The low word’s high bit
is shifted out in Shiftlow. Renormalize performs a shift if necessary, then passes the result
to Delay2 for a two clock cycle delay. Finally, the resulting values are passed through the
crossbar to the output data ports.

Once this dataflow graph has been extracted from the program file, and the all of the various
constructs within the file have been parsed correctly and stored within the compiler’s internal data
structures, the genetic algorithm attempts to find a suitable placement. One such result is the
placement shown in Figure 19. The particular solution had a score of 21 and had an execution

Figure 19: A sample placement for the floating point multiplier (score is 21). The routing resources are shown for
the data bus. Shift and conditional bit paths have been excluded for clarity. Left and Right refer to the left
operand and right operand data registers, respectively.

Arrows emanating from the top of the mesh are data paths from the crossbar. Likewise, arrows pointing
out of the mesh from the bottom are data paths going into the crossbar. The east and west sides of the
mesh are connected together, so arrows extending off of the right-hand side connect directly to the arrows
entering from the left side.

AddExp ShiftLow Sign1 Sign2

PropSout
h

Pass_Shift_And_Out

Prop2

Prop3

CheckOverflow

CheckOvr2

Renormalize

DecrExp

Delay2

InsertSign1

SignCalc

InsertSign2

Right

Left

Right

Right

Left

Right
Left

Left Left

Left and Right

Right

Left

Right

Right

Right

45

time of 19 seconds. Thus, the result required one more skip bus resource than the original,
manually laid-out attempt, but required far less time to complete. Other solutions have been
found which required even fewer resources.

The routing resources required to implement the data bus connections for this particular
placement are also shown in Figure 19. Multiplier and data ports are not shown, only the
functional unit mesh. The programming streams are shown in Figure 20. As can be seen, the
flow of programming information does not exactly match the flow of data through the chip due to
the restriction on programming data being carried over the skip bus.

The next section, Experimental Results, discusses the overall performance of this compiler in
more depth. However, this example illustrates how effectively a genetic algorithm can solve a
difficult problem without actually knowing anything about the problem itself.

Figure 20: Programming streams for the placement shown in Figure 19.

Data
 Port 1

Data
 Port 2

Data
 Port 3

 Sign1
 (1,3)

 Renormalize
(2,3)

DecrExp
(3,3)

Delay2
(4,3)

Data
 Port 6

 Skip Bus
at Column

3

Sign2
(1,4)

InsertSign1
(2,4)

SignCalc
(3,4)

InsertSign2
(4,4)

Multiplier
Port 1

Data
 Port 4

Multiplier
Port 2

Shiftlow
(1,2)

Pass_Shift_
And_Out

(2,2)

CheckOverflow
(3,2)

CheckOvr2
(4,2)

AddExp
(1,1)

PropSouth
(1,2)

Prop2
(1,3)

Prop3
(1,4)

Data
Port 5

46

Chapter 7: Experimental Results

In order to judge the efficacy of the compiler, two programs were selected for study: the floating
point multiplier and a simple two-column summation program. The dataflow graph for the
column program is shown in Figure 8, where every vertex in the graph adds a constant value to
the input data. The reason for choosing the floating point multiplier was to rigorously test the
compiler using a complex algorithm, while the columns program was chosen because it possesses
an obviously optimal placement solution: every edge can be implemented using only local
connections.

Both Tier2 programs were run with a repetition value of five hundred, i.e. five hundred
independent placement trials. Unless noted otherwise, the percentage chance of crossover was set
at 75%, mutation was set at 30%, convergence was set at 70%, and the population size was set at
twenty. A Pentium Pro 180 with 96 MB of memory running Windows 95 was used as the
computing platform.

The results show that on average, performance of the compiler is not as good as a human
manually performing placement. However, the minimum score is equal to, in the case of the
columns program, or superior to, in the case of the floating point multiplier program, the manual
placement score. For example, in Chart 1, the results of fifty trials are shown. As can be seen,
the minimum score is 19, one routing resource less than the manual score. However, for the full
five hundred trials, the minimum score was a low of 14, which is 30% lower than the best manual
placement of 20. The cumulative average and minimum, after every fifty attempts, is shown in
Chart 2. Since the lowest score produced is the solution used for the final placement, this means
that the compiler ends up outperforming manual placement.

These results suggest that the more trials are made, the more likely an extremely low score will be
discovered. This makes sense, considering as how the search is non-deterministic. It would be
optimal if the compiler could find the best solution every time, but it appears that the genetic
algorithm can become trapped in local minima. On average, the local minima is slightly worse
than what a manual placement could produce. However, over enough trials, the minimum score is
much better.

The problem of premature convergence, before the optimal solution has been found, is frequently
observed in genetic algorithms due to the exponential reproduction of the best chromosomes
combined with the functioning of the crossover operator. Once a population has converged to the
point that crossover operations simply cycle through a reoccurring set of genes, and a very large
mutation would be required to break out of this predicament, some literature recommends that the
run be stopped [Fog94]. This is the technique used with Tier2: convergence is detected and the
algorithm stops. Another run is begun in the hopes that it will convergence in an even better
solution. Another method for handling this is to use a hill-climbing method, or greedy method, to
search for a minima which lies in close proximity [Fog94]. This might be a promising area of
research for future compiler versions.

47

Chart 3 shows the execution times required for each placement attempt. As the arrows show, the
best placement time took the longest, while the worst placement time took the shortest amount of
time. Since the stopping criteria for the genetic algorithm, in this case, is convergence, the results
indicate that the best placement occurs when the algorithm wanders around within the solution
space for the longest time, avoiding relatively poor minima. When a minima is encountered, the
scores of the population drift towards a common value and eventually converge.

Since mutation seems to be the primary means for keeping a population from easily slipping into a
local minima, an experiment was run to see what the effects are of changing the mutation chance.
The columns program was used for this experiment in order to keep the runtimes low and also to
allow for the possibility of placement even for situations in which the genetic operator
probabilities made it unlikely for a good placement to take place. At first, the experiment was run
using the floating point multiplier, but it was soon discovered that for certain combinations of
probabilities, no solutions were found. The columns program is much less restrictive in its
placement requirements, and so contains many more potential solutions than does the floating

Floating Point Multiplier Placement Scores

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Attempt Number

Score

Mean Score = 24.4

Minimum Score = 19
Manual Score = 20

Chart 1: Floating point multiplier placement results for fifty attempts.

48

point multiplier. For this test, the crossover percentage was kept at 75% and convergence was
set at 70%. Each mutation value was run for fifty independent placement attempts.

Chart 4 shows the average placement score and runtime for the mutation experiment. Notice how
zero mutation produces extremely poor results: not all populations converged, even for such a
simple case as the columns test. This is because the genetic algorithm’s ability to jump out of
local minima was effectively shut off. The optimal mutation rate was 10%; subsequently, the
average score rose and the average execution time also rose dramatically. This demonstrates that
mutation is really not the primary operator involved with finding good solutions. Rather, it is
simply a safety mechanism which allows for escaping from local minima. If the mutation rate is
too high, then the algorithm degenerates from a directed search into an inefficient random search.

Chart 5 is a similar experiment, except that the convergence criteria was changed, while the
mutation probability was held to a constant value of 30% and the crossover probability was held
at 75%. As can be seen, the higher the convergence requirement, the better the score. However,
the higher the placement time. This is a fairly obvious finding: a stricter convergence requirement
means that more generations will be required in order for the scores of the genes within the
populations to approach a common value. For more complex problems, the convergence value
will probably have to be kept low, at least at first, in order to find out whether a solution actually
exists. Later, once this has been ascertained, a large value can be used in order to attempt to find

Average and Minimum Versus Number of Placement
Attempts

10

12

14

16

18

20

22

24

26

50 100 150 200 250 300 350 400 450 500

Number of Attempts

P
la

ce
m

en
t

S
co

re

Chart 2: Average and minimum score (cumulative) for five hundred placement attempts.

Average Score

Minimum Score

49

the best possible placement.

Of course, many other possible experiments could be run, including modifying the crossover
probability, the method for selecting new population elements, etc. The ones illustrated here
simply demonstrate a few of the important aspects of the genetic algorithm.

Run Times For Floating Point Multiplier Placement

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Attempt Number

Execution
Time
(sec.)

Best Placement Score

Worst Placement Score

Average Time = 17.7 sec.

Chart 3: Run times for placing and routing the floating point multiplier for fifty attempts.

50

Average Placement Score and Average Time to Place vs.
Mutation Probability

5.24

2.58

4.16
3.62

4.5

5.58 5.86
6.42

5.94 5.88

6.62

0

1

2

3

4

5

6

7

8

9

10
0

0.
01 0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Mutation Probability

S
co

re
:

 P
la

ce
m

en
t

S
co

re
T

im
e:

 S
ec

o
n

d
s

to
 P

la
ce

Score

Time

Chart 4: Mutation experiment results.

Average Score and Placement Time vs. Convergence
Percentage

0

1

2

3

4

5

6

7

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
99

Convergence Percentage

S
co

re
:

 P
la

ce
m

en
t

S
co

re
T

im
e:

 S
ec

o
n

d
s

to
 P

la
ce

Score

Time

Chart 5: Convergence experiment results.

Not all placements
successful.

51

Chapter 8: Future Work

While the Tier2 compilers has accomplished its goal of being able to efficiently place and route an
algorithm within the Colt chip, much work remains for increasing the ease with which applications
can be developed. In addition, there are many aspects of the Tier2 place-and-route algorithm
which could be experimented with in the hopes of optimizing the system.

8.1 Compiler Modifications

The Tier2 language would lend itself nicely to being created via a graphical shell. In the simplest
case, a directed graph could be drawn in a graphical window. The vertices of the graph would
correspond to hardware resources such as data ports and functional units; the user would double-
click on a node and would then be able to enter Tier2 code directly or make selections from a
menu. The main advantage of such a system would be to give the user a better feel for how
information is flowing through the chip. This shell would then list out a Tier2 file which would
then be parsed by the compiler.

Such a shell would be simple to write, and if done in a language such as Java, would be cross-
platform compatible. This raises another point: the current Tier2 compiler uses data structures
from the Microsoft Foundation Class Library. Therefore, it will currently only compile under
Visual C++. This situation could be rectified by removing the MFC data structures from the
code and replacing them with Standard Template Library constructs.

This would be fairly simple to accomplish because the items used from MFC are all present in
STL: Lists, arrays, and unique-key hash tables. Unfortunately, STL does not yet contain a string
library. Since MFC string classes are used extensively throughout the project, a non-standard
string library would have to be used. Other than that, though, the process of conversion would be
very straight forward: change the variable declarations from MFC to STL throughout the
program, then modify the methods called within the bodies of the functions.

8.2 Language Modifications

Currently, the programmer must ensure that pathways through the Colt chip are properly
synchronized. For instance, in the floating point multiplier example, the purpose of the functional
unit named Delay2 is to provide a two clock cycle delay for the mantissa so that it is
synchronized with the exponent data.

A language construct could be added to the system which would instruct the compiler to
synchronize two or more data streams. The compiler would then add in optional delays, and
potentially extra functional units, in order to implement the requisite path lengthening. One of the
main reasons for not doing this for the current Tier2 version was that bit flag delays are extremely
difficult to implement; the use of multiple functional units is required, as in the floating point
multiplier. However, this will change with the next architectural version of the chip, so it will
soon be easy for a compiler to insert delays, where needed, for all four data types.

52

A feature which will be absolutely vital for practical applications is the expansion of the Tier2
system to work with multiple Colt/Stallion chips. Currently, if a Tier2 program requires more
than the maximum number of functional units present on a single chip, the compiler issues a
warning message. Modifications could be made to the system which would act to partition a large
algorithm into dataflow sub-graphs, each of which could fit on a single chip. The sub-graphs
would be placed and routed using the current system.

One of the main issues involved in such a change would be ensuring that all of the Colt/Stallion
chips were correctly configured- modifications to the listing phase would be required. Second of
all, whenever a partition took place, several clock cycles of delay would necessarily be inserted
into a data pathway due to the need for the pathway to pass through two data ports. Finally, flag
bit signals cannot propagate between chips, so the compiler would have to take that into account
when attempting to partition the design. The delay problem could be handled by using the
synchronization constructs discussed earlier in this section. The partitioning issue would be a
more difficult problem. However, language constructs to aid the compiler in making a good
decision could be added. For instance, it might be wise to add some sort of a blocking construct
which would surround a series of functional units which the programmer desired to have
contained within one chip.

Finally, the Tier3 language and compiler have yet to be designed. Whether it is worth undergoing
the effort of development is somewhat in debate: the Colt/Stallion chips have a limited number of
hardware resources available to them. Wasting them due to inefficiencies in compiling would be a
poor decision. It might be determined that a graphical shell surrounding an enhanced Tier2
compiler provides sufficient usability for the application programmers. On the other hand, certain
aspects of the chip are fairly difficult to implement; looping is one example [Bit97a]. A higher-
level language could make the implementation of this much easier. Overall, it seems that the
utility of a Tier3 compiler is somewhat limited. Development efforts would be better spent upon
making the suggested changes as described in the previous sections, and enhancing the place-and-
route abilities, as will be discussed in the next section.

8.3 Place-And-Route Experimentation

The focus of the development effort for this project was on creating a usable piece of software
which would greatly ease Colt/Stallion programming efforts. Therefore, little attempt was made
at trying multiple approaches in order to discover an optimal one. Many aspects of the place-and-
route system could be examined in order to find potentially better solutions.

For instance, the choice between using genetic algorithms and simulated annealing was fairly
arbitrary. As previously mentioned, the ability of genetic algorithms to combine solutions to
produce a potentially better solution is very useful. However, simulated annealing is a powerful
tool and might work well for this problem. Future research might involve substituting a simulated
annealing package for GAlib and exploring the tradeoffs.

The router is perhaps one of the most critical areas of the entire class hierarchy: it is called
repeatedly by the fitness function for the genetic algorithm. Thus, its efficiency greatly affects the

http://lancet.mit.edu/ga/

53

execution speed of the compiler. better heuristics might decrease the number of routing resources
required for the implementation of an average path, thus allowing more connections on a chip.
Future researchers might also attempt to create a more efficient system, perhaps by using multiple
steps, as in gate array routing. Recent work has shown that a two-step routing system which
utilized a separate global router and detailed router produced competitive results with traditional
combined routers, but required less computing time [Lem97].

The actual cost value returned by the fitness function is currently a count of the number of routing
resources used. While this is an indication of the quality of a particular placement, it does allow
for placements with long skip bus routes to potentially score better than placements with many
small skip bus routes. This might be a problem if the chip is intended to run at a very high clock
speed. The solution is fairly trivial, but indicates a path for new research. Currently, the router
calculates the length of each path as it implements them; all path lengths are summed to produce a
final score. Thus, to minimize path lengths, the cost function could simply return the maximum
value returned by the router. The genetic algorithm would naturally attempt to minimize this
score, thus producing a final solution with short skip bus path lengths. More research could be
done on developing various cost metrics. Ultimately, it may be desirable to be able to select a
particular cost metric based upon the problem at hand.

Finally, work could be spent on optimizing the genetic algorithm itself. The GAlib library allows
for a great deal of configuring, including convergence percentages, upper bounds on the number
of generations allowed, etc. Modifications of these parameters might yield better results overall.
In addition, different initial populations or genetic operators might also improve performance.

Overall, there is a great deal more work to be done on this project before it could ever be deemed
complete. In terms of priorities, it is probably best to expand the Tier2 language to add
synchronization features, then multi-chip capabilities. Experimenting with the place-and-route
system might yield some useful insights, but it would probably be more useful to add a graphical
shell in order to aid visualization of the flow of data through the chip.

http://lancet.mit.edu/ga/

54

Chapter 9: Conclusions

The results of the Tier1 and Tier2 development process are highly encouraging. Using modern
software tools, Visual C++ and Visual Parse++, a custom language and supporting compiler
were rapidly developed and implemented. In addition, a difficult problem, that of placing and
routing a data flow graph within the Colt/Stallion architecture, was efficiently solved through the
use of a genetic algorithm.

Due to the nature of genetic algorithms, their generality across a broad array of problems, it was
relatively simple to use an existing package towards solving the problems presented herein. The
tool used to do so was GAlib by Mathew Wall of the Massachusetts Institute of Technology, a
freely distributed class library of genetic algorithms [Wall97]. Although the compiler is rarely able
to obtain an optimal solution, it is able to obtain a relatively good solution, such as one which
requires only a few additional hardware resources. In terms of the time saved by the placing of a
Colt/Stallion program automatically, versus manually, the tradeoff is fully justified.

Although the Tier2 compiler represents a fully usable program, there remain many features which
should be added. One of the most important of these is the ability to automatically work with
multiple chips, rather than issuing an error if a program requires more hardware resources than a
single chip possesses.

As the Colt/Stallion architecture matures, the complexity of these chips will increase dramatically,
as will the algorithms intended for use. The Tier2 approach, that of using a custom language
combined with a genetic algorithm for placement purposes, represents a scalable solution for the
programming of run-time reconfigurable software.

http://lancet.mit.edu/ga/

55

References

[Bac94] T. Back, “Selective Pressure in Evolutionary Algorithms: A Characterization of Selection
Mechanisms”, Proceedings, IEEE Conference on Evolutionary Computation Proceedings,
vol. 2, pp. 57-62, June, 1994.

[Bit96] R. Bittner, M. Musgrove, P. Athanas, “Colt: An Experiment in Wormhole Run-Time
Reconfiguration,” High-Speed Computing, Digital Signal Processing, and Filtering Using
Reconfigurable Logic, (SPIE), pp. 187-194, November, 1996.

 [Bit97a] R. Bittner, “Wormhole Run-time Reconfiguration: Conceptualization and VLSI Design of a
High Performance Computing System,” Ph.D. Dissertation, Bradley Department of Electrical
and Computer Engineering, Virginia Tech, January, 1997.

[Bit97b] R. Bittner, P. Athanas, “Computing Kernels Implemented With A Wormhole RTR CCM,”
Field-Programmable Custom Computing Machines, pp. 120-129, April, 1997.

[Bit97-3] R. Bittner, P. Athanas, “Wormhole Run-time Reconfiguration,” ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 79-85, February, 1997.

[Car97] S. Carlson, “Algorithm of the Gods,” in Scientific American, pp. 121-123, March 1997.

[Cro95] F. D. Croce, R. Tadei, G. Volta, “A Genetic Algorithm For The Job Shop Problem,”
Computers Operational Research, vol. 22, no. 1, pp. 15-24, 1995.

[Dav91] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.

 [Fog94] D. Fogel, “An Introduction to Simulated Evolutionary Optimization”, IEEE Transactions on
Neural Networks, vol. 5, no. 1, pp. 3-8, January, 1994.

[For93] S. Forrest and M. Mitchell, “What Makes a Problem hard for a Genetic Algorithm? Some
Anomalous Results and Their Explanation”, Machine Learning, vol. 13, no.2-3, pp. 129-161,
November-December, 1993.

[Gold89] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, 1989.

[Gold95] D. Goldberg, “The Existential Pleasures of Genetic Algorithms,” Genetic Algorithms in
Engineering and Computer Science, Wiley, 1995.

[Her96] B. Von Herzen, “250 MHz Correlation Using High-Performance Reconfigurable Computing
Engines,” High-Speed Computing, Digital Signal Processing, and Filtering Using
Reconfigurable Logic, (SPIE), pp. 187-194, November, 1996.

[Her97] J. Woodfill, B. Von Herzen, “Real-Time Stereo Vision on the PARTS Reconfigurable
Computer,” Field-Programmable Custom Computing Machines, pp. 34-43, April, 1997.

[Hol92] J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, 1992.

[Hwa93] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability,
McGraw-Hill, 1993.

http://scholar.lib.vt.edu/theses/materials/public/etd-38419290973280/etd-title.html

56

[Kwo94] D. P. Kwok, F. Sheng, “Genetic Algorithm and Simulated Annealing for Optimal Robot Arm
PID Control,” Proceedings, IEEE Conference on Evolutionary Computation, vol. 2, pp. 707-
712, June, 1994.

[Lem97] G. G. Lemieux, S. D. Brown, D. Vranesic, “On Two-Step Routing For FPGAs,”
International symposium on Physical Design, (ACM), pp. 60-66, April, 1997.

[Oliv87] I. M. Oliver, D. J. Smith, J. R. Holland, “A Study of Permutation Crossover Operators on the
Traveling Salesman Problem,” Genetic Algorithms and Their Applications: Proceedings of
the Second International Conference on Genetic Algorithms, July, 1987.

[Poon95] P. W. Poon, J. N. Carter, “Genetic Algorithm Crossover Operators For Ordering
Applications,” Computers Operational Research, vol. 22, no 1., pp. 135-147, 1995.

[Pos93] P. Poshyanonda, C. H. Dagli, “Genetic Neuro-Nester for Irregular Patterns,” Intelligent
Engineering Systems Through Artificial Neural Networks, ASME Press, vol. 3, pp. 825-830,
1993.

[Rao94] B. B. Rao, L. M. Patnaik, R. C. Hansdah, “A Genetic Algorithm for Channel Routing using
Inter-Cluster Mutation,” Proceedings, IEEE Conference on Evolutionary Computations, vol
1, pp. 97-103, June, 1994.

[San94] Sandstone Technology, Inc., Visual Parse++ Version 2.0 Guide and Reference, Carlsbad,
CA, Sandstone Technology, 1994.

[Sar96] M. Sarrafzadeh, C. K. Wong, An Introduction to VLSI Physical Design, pp. 21-24, McGraw-
Hill, 1996.

[Wal97] M. Wall, Matthew’s GAlib: A C++ Library of Genetic Algorithm Components,
http://lancet.mit.edu/ga/.

[Wil95] A. G. Williamson, K. Watson, “Optimizing Flexible Manufacturing System Layout With
Genetic Algorithms,” Fourth Annual Conference on Factor 2000, (IEE), pp. 12-18, October,
1994.

http://lancet.mit.edu/ga/

57

Appendix A: Tier1 and Tier2 Language Reference

A.1 Grammar conventions

When describing the language grammar, the following syntax is used:
<token> Represents a token that is required in the construct
[token] An optional token in a construct
<token1 | token2> Either token1 or token2 may be chosen
<token1 || token2> Either token1 or token2 or both may be chosen
[…] Optional repeat of prior definition

Neither language is case-sensitive. Identifiers (stream names, block names, etc.) may be any
alphanumeric string, starting with an alphabetical character. However, reserve words, i.e. those
used to form a construct, cannot be used as identifiers.

A.2 Program Structure

The Tier1 and Tier2 languages are divided up into several top-level constructs which can occur in
any order, but are not allowed to be nested. These are: stream declarations, port binding
declarations, macro definitions, and component definitions. Each of these will be discussed within
this document.

A.3 Program Comments (Tier1 and Tier2)

Two types of comments are provided for:
Multiple-line comments: /* …. */
Single-line comments: // ….

A.4 Port Declaration Construct (Tier1 and Tier2)

The port declaration section is used to bind physical port addresses to logical names. By default,
all ports listed in a port declaration section will be bound together in synchronous mode, unless
the loop mode keyword is specified. In this mode, data items are processed individually by the
chip. This is a required construct and must precede any stream declarations. Only one of these
constructs is allowed per program file. Currently, the range of data ports is one through six.

 /* Port binding section */
ports [loop]
<name> = <port number>;

.

.

.
end ports;

58

A.5 Stream Definitions (Tier1)

The basic construct which defines a programming stream is the stream block.. It declares the
input and output ports used by the stream. The number of allowed input ports is currently limited
to one. However, the stream can have zero or more output ports. Multiple stream constructs are
allowed, one for each input port, up to the maximum number of ports for the chip.

IFU programming information is placed within the begin-end statements. If data ports are
referenced, only the ports listed in the stream header may be used.

/* The stream declaration */
stream <name> (<in> <port name>, [<out> <port name> [, …]])
<cross bar routing statements>
<block definitions>

end stream;

A.6 Stream Definitions (Tier2)

The basic construct of the Tier2 language is also the stream block, but it takes a slightly
different form. One stream construct is allowed and the header does not list input or output ports.
Within the main body, any data port listed in the port construct section may be referenced.

/* The stream declaration */
stream <name>
<cross bar routing statements>
<block definitions>

end stream;

A.7 Crossbar Statements (Tier1)

The crossbar routing statements provide a means for programming the flow of data through the
crossbar. They take the following form:

< port <port name> | ifu <FU name> | mult at <port number>> =>
<ifu <FU name> at <column> | skip at <column> | mult at <port number> | port
<port name>>;

The mult keyword specifies the hardware multiplier within the Colt chip. The range of port
numbers is currently 1 to 2. The column required for specifying an FU destination or skip bus
destination ranges in value from 1 to 4, which is the maximum number of columns in the Colt
mesh. Port refers to data ports; the <port name> for a destination may be any output port
listed in the stream header and for a source, may be any input port listed in the stream header.
<FU name> may be the name of any block construct within the stream, including those
occurring after the occurrence of the crossbar statement.

A.8 Crossbar Statements (Tier2)

The Tier2 version is almost identical to the Tier1 version, except for one significant change: no
FU or skip bus may be specified as a destination. This is due to the fact that the Tier2 language
operates on the idea of an abstract dataflow graph, rather than a fixed placement within a Colt
chip. Therefore, column numbers have not yet been set.

59

< port <port name> | ifu <FU name> | mult at <port number>> => mult at <port
number> | port <port name>>;

A.9 Block Definitions (Tier1)

Each stream contains a series of block constructs which specify the functionality of the individual
functional units inside of the Colt chip. The block contains a name so that it can be referenced by
other blocks, and a series of assignment statements. At the end of the block, in the Tier1
language, is where the programmer specifies the direction of the programming stream.

From zero to four directions can be specified; each direction and destination block name given
must be unique. If the block is empty and only programming direction information is specified,
then by default, the single-word-programming flag is set. This allows a programmer to create a
stream solely designed to pipe configuration information through a functional unit.

To connect to the crossbar, the statement go to crossbar is used. The compiler will issue
an error if the ifu cannot be physically connected to the crossbar.

/* Defines the functioning of a single FU */
block <name>
[assignment statements]
[macro statements]
[component statements]
[skip bus blocks]

/* End the block, specify where programming information is to go next */
end [[go <direction> to <name>] | [go to crossbar]][,…]];

The statements within the block can be placed in any order and may be repeated. In such a case,
the latter statements may override the effects of earlier statements.

A.10 Block Definitions (Tier2)

Tier2 block definitions are almost identical to Tier1 versions, except for the fact that no
programming direction information is specified at the end of the block. In addition, no skip bus
constructs are allowed within the block.

/* Defines the functioning of a single FU */
block <name>
[assignment statements]
[macro statements]
[component statements]

/* End the block, specify where programming information is to go next */
end;

A.11 Component/Macro Calls Within Block Constructs (Tier1 and Tier2)

Both languages allow macros to be called directly and for components to be instantiated directly
within a block construct. Macro calls can be used to make modifications to general aspects of the
functional unit and component calls allow a functional unit to be configured using a predefined
template.

The macro call takes the form of:

60

macro [(<integer> [,<integer>. . .])];

If a macro requires parameters, then the exact number must be supplied as a comma-delimited list
within parentheses. If no parameters are required, then the macro is called using simply its name
with no parentheses. In addition, the macro must be defined before it can be called.

The component instantiation statement is simply:
use <component name>;

As with the macro call, the component must already have been defined. When a component is
used, the dfc fields modified by the component overwrite the values in the block making the call.
Any subsequent writes to dfc fields within the block (macro calls, assignment statements, etc.)
overwrite the values specified by the component.

A.12 ALU Assignment Statement (Tier1 and Tier2)

To control the data bus output, the following syntax is used:
out = [delay] [ifcond] <[<left | integer> << | >> <integer>[!][ifcond] <,>]
|| <op> > [else right];

The delay keyword specifies that the optional delay register is to be used. The first ifcond
keyword is paired with the trailing else right keywords; they denote the fact that the
conditional unit is being used to select between the ALU output and the right operand register.
The next set of tokens controls the barrel shifter. The operator << denotes a left shift and >>
denotes a right shift. If the reserved word left is included, then the left operand register is used
as-is. If an integer is specified, then the left operand register is programmed to use a constant
value and the integer specified is used as the constant. The ifcond token indicates a conditional
shift. Inclusion of the exclamation point negates the condition- the shifting occurs if the
conditional bit is false. The <integer> represents an integer which specifies the number of
shifts to perform. Finally, <op> specifies an operator for the ALU to use. The operators are
defined outside of the stream as macros; they will be discussed later in the document.

If no operator is included, then the ALU is programmed to pass the left operand straight through.
This means that if only a shift is included, the shifted data will be passed without problem. If no
shifting information is given, then the IFU’s shift control bit is disabled and data passes through
the barrel shifter without modification.

An example bus output control statement might be:

out = ifcond
left << 2 ifcond,
add

else right;

61

This statement performs a conditional left shift of two bits, then adds that value to the right
register using the operator add. Finally, depending upon the conditional bit, the FU selects
between the ALU output and the right operand.

In order to simplify the handling of the valid bit tag, the compiler makes several assumptions when
processing the out assignment statement. If there has been an explicit assignment statement to
leftreg or the out statement contains a constant or left keyword, then the left register is
considered to have been “used”. If there is an explicit assignment statement to the rightreg,
then the right register is considered to have been “used”. If both registers have been used, then
the valid bit is set to be the logical-AND of the valid bits from the left and right registers. If only
the left register has been used, then the valid bit is set to be the logical-AND of the left register’s
valid bit and the conditional bit, which is set to a constant value of one. In other words, the left
register’s valid bit becomes the output valid bit. The same holds true if only the right register has
been used. This was done in order to make life easier for the programmer. However, it will be
overridden should the user make any explicit assignment statements to cond or to valid, either
before or after the out assignment statement.

This is an example of how this rule simplifies programming. If the programmer wants to add the
right register, directed from local north, to a constant and send the result to the bus output, then
the following code would suffice:

// Tier1 code, but the out assignment statement is valid for Tier2 also
block ifu1
rightreg = from local north; // Right operand takes from local north
out = ADDVAL, add; // left operand set to ADDVAL,

// ALU set to add operator
end, go south to ifu2;

If the special rules did not exist, then an extra statement specifying the valid bit control would
have to be included:

valid = leftandright16;

A.13 Flag Bit Assignment Statements (Tier1 and Tier2)

Both languages use assignment statements to alter the functionality of the three bit flags,
conditional, shift, and carry, and the two operand registers. The Tier1 language requires the user
to explicitly control the source direction of data, should bit information from other functional
units be specified. The Tier2 language, on the other hand, has the user specify only the source
functional unit; the compiler performs the routing itself. In the Tier2 language format given
below, the term <xbar source> refers to any valid crossbar statement source: a functional
unit, a data port, or a multiplier port. Of course, for the three bit flags, only FU sources may be
specified.

The conditional bit is set in the following way:
Tier1:
cond [!]= < <macro> || from <local|skip> <direction> >;

Tier2:

62

cond [!]= < <macro> || <xbar source>;

Macro operations:

zero
Conditional bit will be a constant zero (before inversion operator).

condin
Conditional bit will come from an external source. This is not really
ever needed, since specifying an external direction/source (internally
known as condin) automatically specifies this value.

shiftout
Conditional bit will come from the output of the barrel shifter.

condout
Conditional bit will be the value set by the condout statement.

Either or both portions may be placed in the statement. The first part, a macro name, is used to
specify the value that the conditional bit will take. The second part specifies what external source
the conditional input bit is taken from. Finally, the exclamation point signifies that the optional
inversion is to be used.

The conditional output bit has a similar format:
Tier1:
condout = < <macro> || from <local|skip> <direction>>;

Tier2:
condout = < <macro> || <xbar source>;

Macro operations:

rightop (<integer>)
Conditional output will be the specified bit of the right operand.
Range <integer> is 0 through 4, inclusive.

ALUsign
Conditional output will be the sign bit from the ALU output.

carryout
Conditional output will be the carry bit.

rightnor (<integer>)
Conditional output will be the logical-NOR of the right operand, from
the specified bit through bit 15. Range of <integer> is 12 through
14, inclusive.

rightsign
Conditional output will be the sign bit of the right operand.

rightvalid
Conditional output will be the valid bit tag for the right operand.

ALUoverflow
Conditional output will indicate whether an overflow occurred with the
ALU.

The direction specification portion is included in case the programmer wishes to have condout
use the value of condin, but the cond statement does not specify a from direction for condin.

63

The shift bit is controlled in the following way:
Tier1:
shift [!]= < <macro> || from <local|skip> <direction> >;

Tier2:
shift [!]= < <macro> || <xbar source>;

Macro operations:

zero
Shift bit will be a constant zero (before inversion operator)

condsign
Shift bit will be the sign bit from the conditional output.

condout
Shift bit will be the value set by the condout statement.

If a source specification is used, then the compiler directs the shift-in bit to the shift flag.
Otherwise, the specified macro is executed.

The carry bit is controlled by:
Tier1:
carry [!]= < <macro> || from <local|skip> <direction> >;

Tier2:
carry [!]= < <macro> || <xbar source>;

Macro operations:
zero

Carry bit will be a constant zero (before inversion operator)

shiftout
Carry bit will be the output of the barrel shifter.

cond
Carry bit will be the conditional bit.

As with shift and cond, the use of the source specification means that the user wishes the value to
come from an external source. Otherwise, the value specified by the macro is used.

The valid bit is controlled by:
Tier1 and Tier2:
valid = < <macro> >;

Macro operations:
cond

Valid bit will be the conditional bit

condandleft16
Valid bit will be the conditional bit logical-ANDed with the valid bit
of the left operand.

condandright16
Valid bit will be the conditional bit logical-ANDed with the valid bit
of the right operand.

leftandright16

64

Valid bit will be the logical-AND of the valid bits for the left and
right operands.

The left operand has a slightly different format:
Tier1:
leftreg = [loop] < <macro> || from <local|skip> <direction> >;

Tier2
leftreg = [loop] < <macro> || <xbar source>;

Macro operations:
all

Left register will accept any data, even invalid words.

validzero
Left register will be set to a constant zero with the valid bit set as
true.

validdata (<integer>)
Left register will accept only valid data. The integer parameter
allows an initial value to be specified. This will be overwritten
whenever new valid data is encountered.

constant(<integer>)
Left register will be set to a valid constant value as specified by
<integer>.

The loop keyword is used to set the loop-back bit for the left operand. This forces the left
register to act as an accumulator by automatically storing the bus output value of the functional
unit.

By default, the constant loaded by the constant macro and the constant loaded by the bus output
assignment statement has its valid bit set. If this is not desired, then a call must be made to the
clearvalid() macro which will turn off the constant’s valid bit.

The right operand has a very simple syntax: only a source can be specified:
Tier1:
rightreg = from <local|skip> <direction>;

Tier2:
rightreg = <xbar source>;

A.14 Skip Bus Construct (Tier1)

The skip bus is programmed using the skip construct. It consists of the following:
skip <data | shift | carry | cond>
<direction blocks>

end skip;

The direction blocks specify the signals that are being directed. The following blocks are allowed:
skip data

[<direction> from <right|opposite|aux|out>;]
.

65

.

.
end skip;

skip shift
[<direction> from <right|opposite|shiftout>;]
.
.
.

end skip;

skip carry
[<direction> from <right|opposite|carryout>;]
.
.
.

end skip;

skip cond
[<direction> from <right|opposite|condout>;]
.
.
.

end skip;

The <direction> from statements control what data may be placed onto the skip bus. The
actual direction of the bus is determined by both these statements and by the assignment
statements within the block definitions. Since each functional unit controls the skip bus on its
eastern and southern side, the compiler is able to ascertain the desired bus direction by examining
both the skip constructs and assignment statements. For instance, an assignment statement which
specifies that the left register should obtain data from the east indicates that the skip bus for the
functional unit lying to the east will pass data in a westerly direction.

The number of direction statements placed within the construct is not limited. However, later
statements will override earlier statements. Thus, it only makes sense to have a maximum of two
statements: one for the east/west skip bus and one for the north/south skip bus.

A.15 Macro Definitions (Tier1 and Tier2)

The next top-level statement to be discussed is the macro language, which is the same for both
Tier1 and Tier2 languages. This provides a direct interface to the dfc level. By providing this
interface, future changes to the architecture of the chip will require fewer changes to the compiler
or language syntax than if everything were hard-coded into the language grammar. Each macro
can be thought of as a subroutine that can be used to directly modify dfc fields. Simple
parameter passing and conditional statement support is also included.

The basic definition is:
macro [LHS operand] <name> ([parm-name [,…]])
[assert statements]
[assignment statements]
[case statements]

end macro;

66

The LHS operand provides for overloading of macros that have the same name, but are used in
different assignment statements. For example, the control bits cond, shift, and carry can all be set
to zero. The overloading feature allows the same name to be used for all three of these macros,
even though the actual macros are different. If it is not used, then the macro may not be used in an
assignment statement, only as a statement in a block construct.

Allowed LHS identifiers:
cond

Macros for the cond assignment statement

condout
Macros for the condout assignment statement

shift
Macros for the shift assignment statement

carry
Macros for the carry assignment statement

valid
Macros for the valid assignment statement

leftreg
Macros for the leftreg assignment statement

operator
Operator macros for the bus output assignment statement.

<none>
Macros to be called directly within a block body.

The name of the macro must be unique within an LHS namespace for the scope of the files visible
to the compiler. The parameter list is optional; it allows a variable number of integer parameters
to be passed into the macro in order to control its functionality.

In a macro definition, parentheses are required after the macro name. In the macro call, however,
no parentheses are required if the macro takes no arguments. It is required, though, that if a
macro accepts arguments, the exact number of arguments must be supplied in a call to that macro.

Since the ALU in each functional unit uses an extremely flexible propagate-generate-result design,
the language has been designed to have no predefined operators. Instead, macro definitions allow
the programmer to define any possible operation by directly controlling the propagate (P),
generate (G) and result (R) dfc fields of the ALU. For common operations such as addition,
predefined operators exist in a standard library (discussed in The Standard Library section). To
define an operator, which is used within an out statement, declare a macro with an LHS value of
operator.

For instance, the add operator is defined as:
macro operator add ()

P = 6;
G = 8;
R = 6;

end macro;

67

So that the macro can verify the correctness of the parameters, a range checking mechanism is
provided. This takes the following form:

assert (<range stmt>) <string>;

<range stmt>: parm = <range>
<range>: ‘[‘ <integer >,<integer >’]’[, …]

An example is:
assert (n = [1,4]) “Bit value out of bounds!”;

The range statement simply allows the programmer to specify a list of valid integer values for a
given parameter. If the parameter does not fall within the specified ranges, the error string is
displayed by the compiler and the compilation process stops. Note that the ranges, specified by
pair of values within brackets, is inclusive.

Assignment statements within macros take the following form:
<dfc field> <’=’ | ‘|=’ | ‘&=’ > <integer | parm>;

<Dfc field> is any valid dfc field. The ‘=’ is an assignment, the ‘|=’ performs a logical-OR
with the field on the left and the value on the right, and the ‘&=’ performs a logical-AND
operation. In order to simplify the compiler, compound expressions are not supported, such as
‘(var1 or var2) or var3’. A possible future enhancement might be to add this functionality.

Finally, the case statement provides the ability to use parameters to modify macro behavior. It
takes the following form:

case <parm> is
when <integer > : <macro statements>;
.
.
.
[default : <macro statements>];

end case;

The parameter specified in the first line is successively compared to integer values specified in the
body of the case construct. If a match is found, then the macro statements associated with that
value are executed and evaluation of the case statement ceases. If the default clause is present,
then that body of statements will execute if no matching value was found. Nesting to an arbitrary
depth is supported, so nested case statements, assert statements, etc. are allowed.

A.16 Component Definitions (Tier1 and Tier)

The component construct provides a simple way to reuse IFU descriptions. The syntax is almost
identical to that of a block statement within a stream definition, except that it provides a template
for an IFU description, rather than actually generating programming stream information. The
component’s name may be placed within a block definition using a use <component name>

68

statement, in which case the IFU is modified to take on the new values specified. Since latter
statements override former statements within a block definition, the information specified by a
component can be easily overridden.

The basic component definition is:
Tier1:
component <name>

<assignment statements>
<macro statements>
<component statements>
<skip bus blocks>

end component;

Tier2:
component <name>

<assignment statements>
<macro statements>
<component statements>

end component;

Note that program flow information cannot be specified, even for Tier1 definitions. However,
everything else about the component definition is identical to that of the block definition.

One of the main uses of the component definition is to create a template for a commonly used
function, such as an FU which adds values from the left and right registers. The actual block
definition is used to provides the information about operand sources.

A.17 Include Statements and Constant Definitions (Tier1 and Tier2)

In order to allow for code reuse and hierarchical design, the C preprocessor is run on every
supplied file before the compiler parses it. This means that include statements, conditional
compilation, and constant definitions are all legal within a Tier1 and Tier2 programs.

For a complete guide to preprocessor syntax, please consult an appropriate C language reference.
Commonly used statements are:

#include “<filename>”;

The preprocessor inserts the specified filename into the original file at the point of the include
statement. Now, all constructs in the included file will be compiled together with the original file.

Constants can be defined with:
#define <token> <replacement>

The preprocessor will scan the program file for occurrences of <token> and substitute in
<replacement>.

A.18 The Standard Library (Tier1 and Tier2)

Any useful program written in these language will require a large number of macros and operators
in order to configure the various bit flags and the ALU. For that reason, an implied include

69

statement at the beginning of each program exists. In other words, the compiler automatically
searches for the standard library file, named std.tlb, parses it first, then proceeds with the
parsing of the original program file. This way, a program will not have to bother including the
same standard library for every single program that contains macro definitions for conditional bit
operations, etc.

Note that currently, the preprocessor is not run on the standard library. This may be changed in
the future, should need arise.

70

Appendix B: Compiler Usage

The purpose of this appendix is to instruct the user on the functioning of the compilers
themselves, such as command-line options, accessory files, etc.

B.1 The Tier1 Compiler (Tier1)

The executable for this compiler is called tier1.exe. The usage format is as follows:
tier1 [<optional parameters>] <input file name> [<optional parameters>]

The input file name specifies a valid Tier1 program file. There is no default extension, though
programs generally use a “.clt” naming convention.

The optional parameters are:

-h
Displays command-line options

-w
Disables warning messages. These are generated whenever a dfc field is
set to a value and then overwritten.

<valid cpp options>
C preprocessor options are passed to the C preprocessor. This allows
for control of conditional compilation by using the define option -D.

The compiler does not actually check to make sure that an option is a valid preprocessor
argument. Instead, anything not recognized as a compiler option is passed to the preprocessor.

B.2 The Tier2 Compiler (Tier2)

The executable for this compiler is called tier2.exe. The usage format is as follows:
tier2 [<optional parameters>] <input file name> [<optional parameters>]

The input file name specifies a valid Tier2 program file. There is no default extension, though
programs generally use a “.clt” naming convention.

The optional parameters are:

-h
Displays command-line options

-w
Disables warning messages. These are generated whenever a dfc field is
set to a value and then overwritten.

-l<filename>
Specify the log file name for routing and placement information. The
default is <input file>.log.

71

-t
Try local routing only. This disables the usage of the skip bus as a
means of routing. Use this option if the program is relatively simple
and a planar solution is obviously possible.

-r<integer>
Specify a repeat count. The compiler will attempt to perform the
place-and-route action for the given number of times, where each trial
is independent of the others.

-g<filename>
Specify a genetic algorithm parameter file. This allows the user to
customize such features as convergence percentage, maximum number of
generations, etc. Please refer to GAlib documentation for a complete
listing of options.

-x<filename>
Specify an exclusion file. This allows the user to preclude the use of
certain functional units from placement. Use this in order to allow
more than one algorithm to coexist on a single chip.

<valid cpp options>
C preprocessor options are passed to the C preprocessor. This allows
for control of conditional compilation by using the define option -D.

The compiler does not actually check to make sure that an option is a valid preprocessor
argument. Instead, anything not recognized as a compiler option is passed to the preprocessor

B.3 Files Required/Produced (Tier1)

The Tier1 compiler requires certain files to operate. These are:

tier1.exe
The compiler executable

tier1.rc
Resource file. Specifies the location of necessary files. Searched
for first in the directory from where the compiler was executed. If
not found there, it is searched for in the directory where the compiler
is located.

address.map
Specifies addresses of hardware resources within the chip.

tier1.llr
Lexing table file.

tier1.dfa
Yaccing table file.

std.tlb
Standard library file.

dfc.exe
Converts .dfc files into .pwl files. Refer to [Bit97a]

cpp.exe
C preprocessor.

fielddef.h
Header file used by the dfc program.

port(n).dfc

http://lancet.mit.edu/ga/

72

Output dfc files produced by the compiler. (n) represents the port
number and ranges from 1 to the maximum port number, currently 6.

port(n).pwl
Converted dfc file- generated by the dfc.exe program. Refer to
[Bit97a].

B.4 Files Required/Produced (Tier2)

The Tier2 compiler requires certain files to operate. These are:

tier2.exe
The compiler executable

tier2.rc
Resource file. Specifies the location of necessary files. Searched
for first in the directory from where the compiler was executed. If
not found there, it is searched for in the directory where the compiler
is located.

address.map
Specifies addresses of hardware resources within the chip.

tier2.llr
Lexing table file.

tier2.dfa
Yaccing table file.

std.tlb
Standard library file.

dfc.exe
Converts .dfc files into .pwl files. Refer to [Bit97a]

cpp.exe
C preprocessor.

fielddef.h
Header file used by the dfc program.

port(n).dfc
Output dfc files produced by the compiler. (n) represents the port
number and ranges from 1 to the maximum port number, currently 6.

port(n).pwl
Converted dfc file- generated by the dfc.exe program. Refer to
[Bit97a].

<input file>.log
The log file produced by the compiler. It contains placement and
routing information. The name may be overridden by a command-line
option.

B.5 The Resource File (Tier1 and Tier2)

The resource file is used to specify the location of key files needed by the compiler in order to
operate. It is searched for first in the directory from which the compiler was executed, and if not
found there, in the directory containing the executable. This allows a user to override the values
of system default settings.

The general format is:

73

; <comment> Comment line
<token> = <pathname> Data line

The file is not case sensitive and comment lines may be interspersed with data lines. The
pathname must be the full pathname of the file, including the filename itself. Allowed tokens are
as follows.

std
Specify the location of the standard library file std.tlb.

dfc
Specify the location of the dfc.exe program.

Fieldheader
Specify the location of the header file fielddef.h.

cpp
Specify the location of the C preprocessor program cpp.exe.

addr
Specify the location of the address file address.map.

dfa
Specify the location of the yaccing table file.

llr
Specify the location of the lexing table file.

B.6 The Address Map File (Tier1 and Tier2)

The address map file, address.map, specifies the address of hardware resources within the
Colt chip. Its location is specified in the resource file.

This file should never have to be modified by the user. The format is as follows:
Comments:
; <comment>

Data port specifications:
p <number of data ports> <beginning address> <beginning crossbar port>

<number of data ports>:
Currently 6. Value range is 1 through 6.

<beginning address>:
Currently 24. Address range is 24 to 29.

<beginning crossbar port>:
Currently 11. Port range is 11 to 16.

Multiplier port specifications:
m <number of ports> <beginning crossbar port>

<number of ports>
Currently 2. Value range is 1 through 2.

<beginning crossbar port>:
Currently 9. Port range is 9 through 11.

FU mesh specifications:

74

f <number of rows> <number of columns> <beginning FU address>

<number of rows>:
Currently 4. Value range is 1 through 4.

<number of columns>:
Currently 4. Value range is 1 through 4.

<beginning FU address>:
Currently 32. Ranges from a value of 32 to 47, starting in the upper
left corner and going horizontally across, to the lower right corner.

Local bus port specifications:
l <first port address> <second port address> . .. <max port address>

<first port address>
Currently 1.

<second port address>
Currently 3.

<third port address>
Currently 5.

<fourth port address>
Currently 7. The total number of ports listed here must be equal to
the number of columns in the FU mesh.

Skip bus port specifications:
s <first port address> <second port address> … <max port address>

<first port address>
Currently 1.

<second port address>
Currently 3.

<third port address>
Currently 5.

<fourth port address>
Currently 7. The total number of ports listed here must be equal to
the number of columns in the FU mesh.

The file is not case sensitive. Since the map file was not intended to be readily modified by the
user, it contains little error checking capabilities. Therefore, be very careful about making
changes to this file.

B.7 The Exclusion File (Tier2)

The exclusion file allows the user to force the compiler to not use certain functional units for
either routing purposes or placement purposes. The main use of this is to allow multiple
algorithms to coexist on a single chip.

The format is very simple. Note that this file is not required for operation.
; <comment> Comment line
<row>,<column> FU to exclude

75

Any functional unit, specified by row and column, listed in this file, will be excluded from
placement or routing.

76

Appendix C: Grammar Reference

C.1 Tier1 Grammar Reference

The following is the language grammar for the Tier1 language, as specified using Visual Parse++.
This is the definitive reference for program structure, since the compiler itself is created using this
file. Refer to [San94] for a complete guide to the format of this file.

// Rule file for the tier-1 compiler
//
%expression Main
'[\n\t\r]+' %ignore;
'[a-zA-Z][a-zA-Z0-9_]*' idstring;
'\".*\"' qstring;
'/*' %ignore, %push MultiLineComment;
'//' %ignore, %push SingleLineComment;
';' Semicolon,';';
':' Colon,':';
'=' Equals,'=';
'!=' InvEquals,'!=';
'=>' Arrow,'=>';
'\(' LeftParen,'(';
'\)' RightParen,')';
',' Comma,',';
'\[' LeftBracket,'[';
'\]' RightBracket,']';
'\|=' OrEqual,'|=';
'\&=' AndEqual,'&=';
'<<' ShiftLeft,'<<';
'>>' ShiftRight,'>>';
'!' Not,'!';
'#[\n\t\r]*[a-zA-Z]+.*\n' HASHIGNORE;
'#[\n\t\r]*[0-9]+' HASHINT;
'[\-+]?[0-9]+' Dec,'dec';
'[0-9A-Fa-f]+[hH]' Hex,'hex';

'[bB][eE][gG][iI][nN]' BEGIN;
'[eE][nN][dD]' END;
'[pP][oO][rR][tT][sS]' PORTS;
'[pP][oO][rR][tT]' PORT;
'[lL][oO][oO][pP]' LOOP;
'[sS][tT][rR][eE][aA][mM]' STREAM;
//'[oO][pP][eE][rR][aA][tT][oO][rR]' OPERATOR;
'[iI][nN]' IN;
'[oO][uU][tT]' OUT;
'[iI][fF][uU]' IFU;
'[aA][tT]' AT;
'[mM][uU][lL][tT]' MULT;
'[lL][oO][cC][aA][lL]' LOCAL;
'[sS][kK][iI][pP]' SKIP;
'[mM][aA][cC][rR][oO]' MACRO;
'[aA][sS][sS][eE][rR][tT]' ASSERT;
'[cC][aA][sS][eE]' CASE;
'[iI][sS]' IS;
'[wW][hH][eE][nN]' WHEN;
'[dD][eE][fF][aA][uU][lL][tT]' DEFAULT;
'[bB][lL][oO][cC][kK]' BLOCK;
'[gG][oO]' GO;
'[tT][oO]' TO;

77

'[fF][rR][oO][mM]' FROM;
'[cC][rR][oO][sS][sS][bB][aA][rR]' CROSSBAR;
'[nN][oO][rR][tT][hH]' NORTH;
'[sS][oO][uU][tT][hH]' SOUTH;
'[eE][aA][sS][tT]' EAST;
'[wW][eE][sS][tT]' WEST;
'[oO][uU][tT]' OUT;
'[dD][eE][lL][aA][yY]' DELAY;
'[iI][fF][cC][oO][nN][dD]' IFCOND;
'[eE][lL][sS][eE]' ELSE;
'[rR][iI][gG][hH][tT]' RIGHT;
'[lL][eE][fF][tT]' LEFT;
'[uU][sS][eE]' USE;
'[cC][oO][mM][pP][oO][nN][eE][nN][tT]' COMPONENT;

%expression MultiLineComment
'.' %ignore;
'\n' %ignore;
'*/' %ignore, %pop;

%expression SingleLineComment
 '.' %ignore;
 '\n' %ignore, %pop;

%prec
1, idstring, %left;

%production start

// The program consists of an arbitrarily long list of constructs
Start start -> constr;
StartList start -> start constr;

// This is the list of constructs
ConstrPort constr -> portspec ';';
ConstrStream constr -> streamspec ';';
ConstrMacro constr -> macrospec ';';
//ConstrOper constr -> operspec ';';
ConstrComp constr -> compspec ';';
ConstrCpp constr -> cppline;
ConstrError constr -> %error ';';

// Lines thrown in by the preprocessor should be parsed so that
// we know what file we're currently in

// This is to ignore any statements which begin with a '#' and then have
// an alphabetical character following it, i.e. any normal preprocessor
// declaration which slips through
CppIgnore cppline -> HASHIGNORE;
// This matches the special preprocessor declarations produced by the
// preprocessor to indicate include files
CppStart cppline -> hashint quotedstring;
CppLine cppline -> hashint quotedstring integer;

// Component definition section
CompSpec compspec -> COMPONENT identifier blockbody END

COMPONENT;

// Macro definition section
MacroSpec macrospec -> MACRO macrostart macroheader

macrobody END MACRO;
// Macro header if an LHS operand is specified for overloading purposes

78

MacroLHS macrospec -> MACRO identifier macrostart
macroheader

macrobody END MACRO;
// Specification for the macro parameter list, etc.
MacroHeader macroheader -> '(' macroparms ')';
MacroStart macrostart -> identifier;
MacroParmNull macroparms -> ;
MacroParmOne macroparms -> identifier;
MacroParmList macroparms -> macroparms ',' identifier;
// Body of the macro- statements allowed within a definition
MacroBodyNull macrobody -> ;
MacroBodyList macrobody -> macrobody macrostmts;
// These are the allowed statements
MacroAssertStmt macrostmts -> assertstmt ';';
MacroAssignStmt macrostmts -> assignstmt ';';
MacroCaseStmt macrostmts -> casestmt ';';
MacroError macrostmts -> %error ';';

// Definition for an assert statement
AssertStmt assertstmt -> ASSERT '(' assertrange ')'

quotedstring;
AssertRange assertrange -> assignsrc '=' rangelist;
RangeListOne rangelist -> rangesingle;
RangeListMany rangelist -> rangesingle ',' rangelist;
RangeSingle rangesingle -> '[' integer ',' integer ']';

// Definition for an assignment statement
AssignStmt assignstmt -> identifier assignop assignsrc;
AssignEqual assignop -> '=';
AssignOr assignop -> '|=';
AssignAnd assignop -> '&=';
AssignSrcParm assignsrc -> identifier;
AssignSrcInt assignsrc -> integer;

// Definition for a case statement
CaseStmt casestmt -> CASE assignsrc IS casebody END CASE;
CaseBodyOne casebody -> ; //casecond;
CaseBodyList casebody -> casebody casecond casedefault;
CaseCond casecond -> casewhen ':' casestmts;
CaseWhen casewhen -> WHEN integer;
CaseDefaultNull casedefault -> ;
CaseDefaultList casedefault -> DEFAULT ':' casestmts;
CaseStmtsNull casestmts -> ;
CaseStmtsList casestmts -> casestmts macrostmts;

// Stream declaration section
StreamSpec streamspec -> STREAM streamheader streambody END

STREAM;
// Specifications for the port list
StreamHeader streamheader -> identifier '(' streamports ')';
StreamPorts streamports -> streaminport streamoutlist;
StreamInPort streaminport -> IN identifier;
StreamOutNull streamoutlist -> ;
StreamOutList streamoutlist -> ',' streamoutport streamoutlist;
StreamOutPort streamoutport -> OUT identifier;
// Specifications for the body of the stream
StreamBodyNull streambody -> ;
StreamBodyList streambody -> streambody streamstmts;

// These are the allowed statements within a stream
StreamXBStmt streamstmts -> xbstmt ';';
BlockStmt streamstmts -> blockdef ';';
StreamError streamstmts -> %error ';';

79

// This is the section for the definition of IFU blocks
BlockDef blockdef -> BLOCK identifier blockbody END

 blockroute;
BlockBodyNull blockbody -> ;
BlockBodyList blockbody -> blockbody blockstmts;
BlockRouteNull blockroute -> ;
// Block program routing info
BlockRouteList blockroute -> blockroute ',' blockdir;
BlockDirIfu blockdir -> GO direction TO identifier;
BlockDirXB blockdir -> GO TO CROSSBAR;
DirectionEast direction -> EAST;
DirectionWest direction -> WEST;
DirectionNorth direction -> NORTH;
DirectionSouth direction -> SOUTH;

// Here's where we define the statements that can go within a block
BlockOut blockstmts -> bassignout ';';
BlockBitOp blockstmts -> bassignbit ';';
BlockMacro blockstmts -> bmacrocall ';';
BlockComp blockstmts -> bcompuse ';';
BlockSkip blockstmts -> bskipblock ';';
BlockError blockstmts -> %error ';';

// Component usage statement
BCompUse bcompuse -> USE identifier;

// Skip bus programmin block
BSkipBlock bskipblock -> SKIP bskiptype bskipbody END SKIP;
BSkipType bskiptype -> identifier;
BSkipBodyNull bskipbody -> ;
BSkipBodyList bskipbody -> bskipbody bskipstmt ';';
BSkipError bskipbody -> %error ';';
BSkipStmtDir bskipstmt -> GO direction;
BSkipStmtSrc bskipstmt -> direction FROM bskipsrc;
BSkipSrcID bskipsrc -> identifier;
BSkipSrcOUT bskipsrc -> OUT;
BSkipSrcRIGHT bskipsrc -> RIGHT;

// macro call within a block (not in an assignment stmt)
BmacroCall bmacrocall -> bitmacname bitparmlist;

// Generalized flag modification statement. Compiler handles special cases
BAssignBit bassignbit -> bittype bitop bitloop bitmacro

bitvalsrc;
BitValSrc bitvalsrc -> FROM bitsrc direction;
BitValSrcNull bitvalsrc -> ;
BitType bittype -> identifier;
BitOpEqual bitop -> '=';
BitOpNotEqual bitop -> '!=';
BitLoopYes bitloop -> LOOP;
BitLoopNo bitloop -> ;
BitMacroNull bitmacro -> ;
BitMacro bitmacro -> bitmacname bitparmlist;
BitMacName bitmacname -> identifier;
BitParmNone bitparmlist -> ;
BitParmList bitparmlist -> '(' bitparms ')';
BitParmsNull bitparms -> ;
BitParmOne bitparms -> integer;
BitParmMany bitparms -> bitparms ',' integer;

BitSrcLocal bitsrc -> LOCAL;
BitSrcSkip bitsrc -> SKIP;

80

// Assignment for the main output
BAssignOut bassignout -> OUT '=' boutdelay;
BOutDelayYes boutdelay -> DELAY bifshiftop;
BOutDelayNo boutdelay -> bifshiftop;
BIfShiftOpCond bifshiftop -> IFCOND bshiftop ELSE RIGHT;
BIfShiftOp bifshiftop -> bshiftop;
BShiftOp bshiftop -> bshift ',' boperator;
BShiftOnly bshiftop -> bshift;
BOpOnly bshiftop -> boperator;
BShift bshift -> bshiftsrc bshiftcomm;
BShiftComm bshiftcomm -> bshiftdir bshiftval bshiftcond;
BShiftCommNull bshiftcomm -> ;
BOperator boperator -> identifier;
BShiftSrcLeft bshiftsrc -> LEFT;
BShiftSrcConst bshiftsrc -> integer;
BShiftDirLeft bshiftdir -> '<<';
BShiftDirRight bshiftdir -> '>>';
BShiftVal bshiftval -> integer;
BShiftCondYes bshiftcond -> IFCOND;
BShiftCondYesN bshiftcond -> '!' IFCOND;
BShiftCondNo bshiftcond -> ;

// Crossbar routing statement
XbStmt xbstmt -> xbsource '=>' xbdest;
// Possible crossbar source statements
XbSourcePort xbsource -> xbportds;
XbSourceIfu xbsource -> xbifusource;
XbSourceMult xbsource -> xbmultds;

// Possible crossbar destination statements
XbDestPort xbdest -> xbportds;
XbDestIfu xbdest -> xbifudest;
XbDestMult xbdest -> xbmultds;
XbDestSkip xbdest -> xbskipds;

// Destination/Source types
XbDSPort xbportds -> PORT identifier;
XbIfuDest xbifudest -> IFU identifier AT integer;
XbIfuSource xbifusource -> IFU identifier;
XbDSMult xbmultds -> MULT AT integer;
XbDSSkip xbskipds -> SKIP AT integer;

// Port declaration section
PortSpec portspec -> PORTS portdecllist END PORTS;
PortSpecLoop portspec -> PORTS LOOP portdecllist END PORTS;
PortDeclListOne portdecllist -> portdecl;
PortDeclList portdecllist -> portdecl portdecllist;
PortDecl portdecl -> identifier '=' integer ';';

IntegerDec integer -> 'dec';
IntegerHex integer -> 'hex';
HashInt hashint -> HASHINT;

Identifier identifier -> idstring;
QuotedString quotedstring -> qstring;

C.2 Tier2 Grammar Reference

The following is the language grammar for the Tier2 language, as specified using Visual Parse++.
This is the definitive reference for program structure, since the compiler itself is created using this
file. Refer to [San94] for a complete guide to the format of this file.

81

//
// Rule file for the tier-2 compiler
// This is essentially identical to the tier1 specification, except
// that now the user does not specify programming directions for individual
//blocks,
// and data sources are specified by name, rather than by direction. The
//place/route
// algorithm takes care of figuring out all of the directions.
//
// Now, only a single stream is allowed, and it takes no port parameters.
This //is simply a means of
// grouping together block defs and crossbar stmts. The stream represents all
//of the programming // information to be created.
%expression Main

'[\n\t\r]+' %ignore;
'[a-zA-Z][a-zA-Z0-9_]*' idstring;
'\".*\"' qstring;
'/*' %ignore, %push MultiLineComment;
'//' %ignore, %push SingleLineComment;
';' Semicolon,';';
':' Colon,':';
'=' Equals,'=';
'!=' InvEquals,'!=';
'=>' Arrow,'=>';
'\(' LeftParen,'(';
'\)' RightParen,')';
',' Comma,',';
'\[' LeftBracket,'[';
'\]' RightBracket,']';
'\|=' OrEqual,'|=';
'\&=' AndEqual,'&=';
'<<' ShiftLeft,'<<';
'>>' ShiftRight,'>>';
'!' Not,'!';
'#[\n\t\r]*[a-zA-Z]+.*\n' HASHIGNORE;
'#[\n\t\r]*[0-9]+' HASHINT;
'[\-+]?[0-9]+' Dec,'dec';
'[0-9A-Fa-f]+[hH]' Hex,'hex';

'[bB][eE][gG][iI][nN]' BEGIN;
'[eE][nN][dD]' END;
'[pP][oO][rR][tT][sS]' PORTS;
'[pP][oO][rR][tT]' PORT;
'[lL][oO][oO][pP]' LOOP;
'[sS][tT][rR][eE][aA][mM]' STREAM;
//'[oO][pP][eE][rR][aA][tT][oO][rR]' OPERATOR;
'[iI][nN]' IN;
'[oO][uU][tT]' OUT;
'[iI][fF][uU]' IFU;
'[aA][tT]' AT;
'[mM][uU][lL][tT]' MULT;
'[lL][oO][cC][aA][lL]' LOCAL;
'[sS][kK][iI][pP]' SKIP;
'[mM][aA][cC][rR][oO]' MACRO;
'[aA][sS][sS][eE][rR][tT]' ASSERT;
'[cC][aA][sS][eE]' CASE;
'[iI][sS]' IS;
'[wW][hH][eE][nN]' WHEN;
'[dD][eE][fF][aA][uU][lL][tT]' DEFAULT;
'[bB][lL][oO][cC][kK]' BLOCK;
'[gG][oO]' GO;
'[tT][oO]' TO;

82

'[fF][rR][oO][mM]' FROM;
'[cC][rR][oO][sS][sS][bB][aA][rR]' CROSSBAR;
'[nN][oO][rR][tT][hH]' NORTH;
'[sS][oO][uU][tT][hH]' SOUTH;
'[eE][aA][sS][tT]' EAST;
'[wW][eE][sS][tT]' WEST;
'[oO][uU][tT]' OUT;
'[dD][eE][lL][aA][yY]' DELAY;
'[iI][fF][cC][oO][nN][dD]' IFCOND;
'[eE][lL][sS][eE]' ELSE;
'[rR][iI][gG][hH][tT]' RIGHT;
'[lL][eE][fF][tT]' LEFT;
'[uU][sS][eE]' USE;
'[cC][oO][mM][pP][oO][nN][eE][nN][tT]' COMPONENT;

%expression MultiLineComment
'.' %ignore;
'\n' %ignore;
'*/' %ignore, %pop;

%expression SingleLineComment
 '.' %ignore;
 '\n' %ignore, %pop;

%prec
1, idstring, %left;

%production start

// The program consists of an arbitrarily long list of constructs
Start start -> constr;
StartList start -> start constr;

// This is the list of constructs
ConstrPort constr -> portspec ';';
ConstrStream constr -> streamspec ';';
ConstrMacro constr -> macrospec ';';
//ConstrOper constr -> operspec ';';
ConstrComp constr -> compspec ';';
ConstrCpp constr -> cppline;
ConstrError constr -> %error ';';

// Lines thrown in by the preprocessor should be parsed so that
// we know what file we're currently in

// This is to ignore any statements which begin with a '#' and then have
// an alphabetical character following it, i.e. any normal preprocessor
// declaration which slips through
CppIgnore cppline -> HASHIGNORE;
// This matches the special preprocessor declarations produced by the
// preprocessor to indicate include files
CppStart cppline -> hashint quotedstring;
CppLine cppline -> hashint quotedstring integer;

// Component definition section
CompSpec compspec -> COMPONENT identifier blockbody END

COMPONENT;

// Macro definition section
MacroSpec macrospec -> MACRO macrostart macroheader

macrobody END MACRO;
// Macro header if an LHS operand is specified for overloading purposes

83

MacroLHS macrospec -> MACRO identifier macrostart
macroheader

macrobody END MACRO;
// Specification for the macro parameter list, etc.
MacroHeader macroheader -> '(' macroparms ')';
MacroStart macrostart -> identifier;
MacroParmNull macroparms -> ;
MacroParmOne macroparms -> identifier;
MacroParmList macroparms -> macroparms ',' identifier;
// Body of the macro- statements allowed within a definition
MacroBodyNull macrobody -> ;
MacroBodyList macrobody -> macrobody macrostmts;
// These are the allowed statements
MacroAssertStmt macrostmts -> assertstmt ';';
MacroAssignStmt macrostmts -> assignstmt ';';
MacroCaseStmt macrostmts -> casestmt ';';
MacroError macrostmts -> %error ';';

// Definition for an assert statement
AssertStmt assertstmt -> ASSERT '(' assertrange ')'

quotedstring;
AssertRange assertrange -> assignsrc '=' rangelist;
RangeListOne rangelist -> rangesingle;
RangeListMany rangelist -> rangesingle ',' rangelist;
RangeSingle rangesingle -> '[' integer ',' integer ']';

// Definition for an assignment statement
AssignStmt assignstmt -> identifier assignop assignsrc;
AssignEqual assignop -> '=';
AssignOr assignop -> '|=';
AssignAnd assignop -> '&=';
AssignSrcParm assignsrc -> identifier;
AssignSrcInt assignsrc -> integer;

// Definition for a case statement
CaseStmt casestmt -> CASE assignsrc IS casebody END CASE;
CaseBodyOne casebody -> ; //casecond;
CaseBodyList casebody -> casebody casecond casedefault;
CaseCond casecond -> casewhen ':' casestmts;
CaseWhen casewhen -> WHEN integer;
CaseDefaultNull casedefault -> ;
CaseDefaultList casedefault -> DEFAULT ':' casestmts;
CaseStmtsNull casestmts -> ;
CaseStmtsList casestmts -> casestmts macrostmts;

// Stream declaration section
StreamSpec streamspec -> STREAM streamheader streambody END

STREAM;
// Specifications for the port list
StreamHeader streamheader -> identifier;
// Specifications for the body of the stream
StreamBodyNull streambody -> ;
StreamBodyList streambody -> streambody streamstmts;

// These are the allowed statements within a stream
StreamXBStmt streamstmts -> xbstmt ';';
BlockStmt streamstmts -> blockdef ';';
StreamError streamstmts -> %error ';';

// This is the section for the definition of IFU blocks
BlockDef blockdef -> BLOCK identifier blockbody END;
BlockBodyNull blockbody -> ;
BlockBodyList blockbody -> blockbody blockstmts;

84

//DirectionEast direction -> EAST;
//DirectionWest direction -> WEST;
//DirectionNorth direction -> NORTH;
//DirectionSouth direction -> SOUTH;
// Here's where we define the statements that can go within a block
BlockOut blockstmts -> bassignout ';';
BlockBitOp blockstmts -> bassignbit ';';
BlockMacro blockstmts -> bmacrocall ';';
BlockComp blockstmts -> bcompuse ';';
BlockError blockstmts -> %error ';';

// Component usage statement
BCompUse bcompuse -> USE identifier;

// macro call within a block (not in an assignment stmt)
BmacroCall bmacrocall -> bitmacname bitparmlist;

// Generalized flag modification statement. Compiler handles special cases
BAssignBit bassignbit -> bittype bitop bitloop bitmacro
bitvalsrc;
BitValSrc bitvalsrc -> xbsource;
BitValSrcNull bitvalsrc -> ;
BitType bittype -> identifier;
BitOpEqual bitop -> '=';
BitOpNotEqual bitop -> '!=';
BitLoopYes bitloop -> LOOP;
BitLoopNo bitloop -> ;
BitMacroNull bitmacro -> ;
BitMacro bitmacro -> bitmacname bitparmlist;
BitMacName bitmacname -> identifier;
BitParmNone bitparmlist -> ;
BitParmList bitparmlist -> '(' bitparms ')';
BitParmsNull bitparms -> ;
BitParmOne bitparms -> integer;
BitParmMany bitparms -> bitparms ',' integer;

// Assignment for the main output
BAssignOut bassignout -> OUT '=' boutdelay;
BOutDelayYes boutdelay -> DELAY bifshiftop;
BOutDelayNo boutdelay -> bifshiftop;
BIfShiftOpCond bifshiftop -> IFCOND bshiftop ELSE RIGHT;
BIfShiftOp bifshiftop -> bshiftop;
BShiftOp bshiftop -> bshift ',' boperator;
BShiftOnly bshiftop -> bshift;
BOpOnly bshiftop -> boperator;
BShift bshift -> bshiftsrc bshiftcomm;
BShiftComm bshiftcomm -> bshiftdir bshiftval bshiftcond;
BShiftCommNull bshiftcomm -> ;
BOperator boperator -> identifier;
BShiftSrcLeft bshiftsrc -> LEFT;
BShiftSrcConst bshiftsrc -> integer;
BShiftDirLeft bshiftdir -> '<<';
BShiftDirRight bshiftdir -> '>>';
BShiftVal bshiftval -> integer;
BShiftCondYes bshiftcond -> IFCOND;
BShiftCondYesN bshiftcond -> '!' IFCOND;
BShiftCondNo bshiftcond -> ;

// Crossbar routing statement
XbStmt xbstmt -> xbsource '=>' xbdest;
// Possible crossbar source statements
XbSourcePort xbsource -> xbportds;

85

XbSourceIfu xbsource -> xbifuds;
XbSourceMult xbsource -> xbmultds;

// Possible crossbar destination statements
XbDestPort xbdest -> xbportds;
XbDestMult xbdest -> xbmultds;

// Destination/Source types
XbDSPort xbportds -> PORT identifier;
XbIfuSource xbifuds -> IFU identifier;
XbDSMult xbmultds -> MULT AT integer;

// Port declaration section
PortSpec portspec -> PORTS portdecllist END PORTS;
PortSpecLoop portspec -> PORTS LOOP portdecllist END PORTS;
PortDeclListOne portdecllist -> portdecl;
PortDeclList portdecllist -> portdecl portdecllist;
PortDecl portdecl -> identifier '=' integer ';';

// Define various constants- numerical values
IntegerDec integer -> 'dec';
IntegerHex integer -> 'hex';
HashInt hashint -> HASHINT;

// Define identifiers and quoted strings.
Identifier identifier -> idstring;
QuotedString quotedstring -> qstring;

86

VITA

Brian Kahne was born a United States citizen on October 11, 1972 in Long Beach California.
He moved to the Washington, D.C. area in 1985 and attended high school at Thomas Jefferson
High School for Science and Technology. Brian graduated summa cum laude with a bachelor’s
degree in Computer Engineering at Virginia Tech in 1995 and his Master of Science in Electrical
Engineering in 1997. His focus has been on microprocessor architecture with a strong leaning
towards computer networking. Brian will be joining Motorola’s PowerPC team in August, 1997,
where he will be working on performance modeling of the PowerPC chip and its front-end chip
set.

