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Abstract

Due to advances in technology and data collection techniques, the number of measurements often

exceeds the number of samples in ecological datasets. As such, standard models that attempt to

assess the relationship between variables and a response are inapplicable and require a reduction

in the number of dimensions to be estimable. Several filtering methods exist to accomplish this,

including Indicator Species Analyses and Sure Information Screening, but these techniques often

have questionable asymptotic properties or are not readily applicable to data with multinomial

responses. As such, we propose and validate a new metric called the Kolmogorov-Smirnov Measure

(KSM) to be used for filtering variables. In the paper, we develop the KSM, investigate its asymp-

totic properties, and compare it to group equalized Indicator Species Values through simulation

studies and application to a well-known biological dataset.
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1 Introduction

New technology has provided opportunities to collect different and more data than ever before. For

example, technological advancements in mircroarrays and spectrometry have enabled the collection

of hundreds or thousands of molecular measurements in a single sample. Alas, developments in

methodology for analyzing large datasets have not kept up with the technology. Many standard

analytical approaches breakdown due to computational or algorithmic constraints. A common

issue is that modern datasets include more dimensions, i.e., variables, than observations. Hence,

models that aim to assess the relationship between the variables and a response are inestimable;

the models are oversaturated and standard estimators of model parameters are not unique. To

reduce dimensionality and enable modeling, we propose and validate a new metric, called the

Kolmogorov-Smirnov Measure (KSM) that may be used for filtering variables.

The KSM is useful when attempting to assess the relationship between P variables and a

multinomial response y. It allows analysts to pre-screen variables individually and select those

that have the most potential of explaining significant variation in y. By pre-screening, analysts

reduce the number of variables and thereby stabilize parameter estimates in subsequent models of

y, e.g., regression models. Broadly, the KSM adjusts the calculation of a common statistic, known

as the Kolmogorov-Smirnov Statistic (Kolmogorov, 1933; Smirnov, 1936), to summarize differences

in empirical distributions. When a response y may take K distinct values, there are K empirical

distributions per variable. The KSM quantifies the degree to which the K empirical distributions

differ. Variables with a high KSM are kept for further analysis, whereas variables with a low KSM

are dropped.

There are several current methods for filtering variables. However, many such methods assume

the variables are Gaussian and rely on K measures of central tendency per variable to assess its

potential importance. By using the KSM, we relax the assumption of normality in that the KSM

accounts simultaneously for distributional shape, outliers, central tendency, and variance. Also,

many filtering methods do not apply easily to multinomial responses, including Sure Information

Screening (Fan and Lv, 2008), and Indicator Species Analysis (De Cáceres et al., 2010). Yet, the

KSM may apply when the response has K ≥ 2 values in its domain.
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The remainder of the paper proceeds as follows. In Section 2, we motivate our research,

briefly describe a common filtering approach called the group-equalized Indicator Species Anal-

ysis (De Cáceres et al., 2012), and develop KSM. Because the group-equalized Indicator Species

Analysis is widely accepted in the ecology community, it provides a natural bench mark to which

we compare asymptotic properties of KSM and the application of KSM in simulation and real-data

scenarios. We present the results of the applications in Section 3. Finally, we conclude with a

discussion of the results and implications of the KSM in Section 4.

2 Methods

Our work was motivated by both a taxonomic application and limitations presented by common

analytical methods for such data. In this section, we use the application to establish some notation

and vocabulary, as well as, provide background information for common filtering methods. In

particular, we explain the group-equalized Indicator Species Values (De Cáceres et al., 2012), a

popular approach in ecological studies (Zhang et al., 2014; Suz et al., 2014, e.g.,), so that we may

ultimately compare the approach to the KSM.

Taxonomic datasets contain measurements for N samples that reflect the abundance of P

operational taxonomic units (OTUs). An OTU is a set of barcoded DNA sequences that are

identical by a user-defined percent or more; e.g., one OTU may include several DNA sequences

that are at least 97% the same. In our work, we use OTU measurements as a reflection of the

microbial communities that live on the skin of amphibians. For a preliminary analysis, we want to

understand differences in communities on frog species.

For typical datasets, when the number of variables P is less than the number of observations N ,

we could fit a generalized linear model to quantity the relationship between OTUs and species. That

is, if we let yi represent the species of frog i and xi represent an OTU vector of measurements,

(i ∈ {1, 2, ..., N = 137}), we might fit a multinomial probit model to assess which OTUs are

significant, e.g.,
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yi ∼ Multinomial(ρ1, ρ2, ..., ρK) (1)

Φ−1(pk) = β0 + xiβ,

where, Φ−1() represents a standardized Normal inverse cumulative distribution function; pk (k ∈

{1, , , ,K}) represents the probability yi = k; β0 presents an intercept term; and β represents an

P × 1 vector of variable coefficients. Estimates of the coefficients reflect the relationships between

each variable and y. Unfortunately, in many taxonomic datasets, the number of variables exceeds

the number of observations by several orders of magnitude; P >> N . For such datasets, Model 1

is oversaturated and parameter estimates are not unique. To resolve the problem, we may either

constrain model parameters in the estimation process or apply a filtering method to reduce the

number of variables to consider. Both options have pros and cons. In this paper, we opt to develop

KSM: an easy-to-implement, easy-to-interpret, and effective means to filter variables. For a means

of comparison, we first summarize group-equalized Indicator Species Analyses (geISA).

2.1 Group-Equalized Indicator Species Analysis

Group-equalized Indicator Species Analyses (geISA) De Cáceres et al. (2012) is a common method

for filtering variables that emerged from previous versions (Dufrêsne and Legendre, 1997; De Cáceres

et al., 2010). The name stems from its motivating application to identify species that appear

consistently in one of any number of response groups, but the approach may apply in a variety of

settings and is available in the statistical software R, via the indicspecies package (De Cáceres and

Legendre, 2009). Similar to KSM, geISA relies on measuring the association of each variable with

the response and selecting those with the largest association. The measure is called the Indicator

Species Value (ISV) and, in the context of taxonomic data, it is calculated as follows.

Let Y represent an N × 1 vector of responses such that each yi ∈ {1, ...,K} (i ∈ {1, , , .N}) and

let X represent a community data matrix X with N observations and P variables, i.e., OTUs. The

ISV of a variable j (j ∈ {1, ..., P}) at a response level k is the product of a positive predictive value
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A and measure of sensitivity B,

ISVj,k = Aj,kBj,k.

The positive predictive value Aj,k reflects the proportion of OTU abundance measured per response

level and variable. It is calculated by dividing the average abundance for variable j at response

level k, x̄j,k , by the sum of average abundances in all groups,

Aj,k =
x̄j,k∑K
l=1 x̄j,l

. (2)

Note, this positive predictive value deviates slightly from previous, nonequalized ISV versions

(Dufrêsne and Legendre, 1997; De Cáceres et al., 2010) in that it uses group averages rather

than groups sums. Also, Aj,k can be calculated for presence-absence or abundance data, although

the abundance data holds more information and is recommended when possible. The sensitivity

measure Bj,k, is the proportion of non-zero abundance values at response level k for variable j,

Bj,k =
nj,k
Nk

, (3)

where nj,k is the number of non-zero abundance values of variable j for response level k and Nk

the number of observations for response level k.

To filter the variables based on ISV calculations, there are two primary options. The first uses

simulation to develop an ISV distribution for each variable and calculate a p-value for the observed

ISV. Those deemed significant (e.g., those variables with a p-value less than 0.05) are kept for

further analysis. However, such an approach is computationally intensive and may result in too

many or too few variables from the dataset. The second method is based of user-defined thresholds

for both quantities Aj,k and Bj,k. If either quantity falls above the assigned thresholds, the variable

is kept for further analysis. Otherwise, the variables removed. The specification for thresholds may

rely on expert judgement, computational constraints, and/or sensitivity analyses.

In standard cases, the ISV has shown effective, but it has peculiar asymptotic properties that
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can be misleading. In practice, the ISV has a continuous interpretation in that large ISVs suggest

large differences in variable distributions across response levels, relative to variables with small

ISVs. However, there is a constraint on this interpretation of the ISV. When distributions are

equal, the ISV approaches 1/K, not zero, as the number of observations in each response level, Nk,

increases. Namely, as each Nk goes to infinity, the ISV becomes a function of expectations and

probabilities, whereby

lim
N1,...,NK→∞

ISVj,k =
E(xj |yk)∑K

i=1E(xj |y = i)
× P (xj 6= 0|y = k) (4)

(Supplemental Information S1). Under the assumption that a variable is sufficiently bounded away

from 0, P (Xj 6= 0|y = k) → 1 and, when the variable is independent of response level we have

E(xj |y = k) = E(xj |y = k′) ∀ k 6= k′.

Thus, ISVj,k in Equation 4 goes to 1/K as Nk → ∞ ∀ k. Converging to 1/K rather than zero poses

a problem because, for some datasets, the value of 1/K may be large enough to warrant including

in subsequent analyses; methods based on ISVs are vulnerable to high false positive rates.

Further, Equation 4 shows that ISVs depend entirely on measures of central tendency, specifi-

cally the expectation (which is estimated by a sample mean). In many instances, sample means may

not describe differences between two distributions sufficiently. For example, consider a response

variable with two categorical levels, y ∈ {1, 2} and two variables x1 and x2. Let x1 and x2 be inde-

pendent and dependent of y, respectively, so that x1 ∼ Gamma(10, 1), x2|y = 1 ∼ Gamma(100, 10),

and x2|y = 2 ∼ Gamma(1, 0.1). The expectations of each distribution is the same, E(x1|y = 1) =

E(x1|y = 2) = E(x2|y = 1) = E(x2y = 2) = 10, and both variables have the same ISV for each

response level, ISV1,1=ISV1,2=ISV2,1=ISV2,2=0.5. However, clearly, the distributions generating

x2 are vastly different, as shown in Figure 1. Also, if we were to use the ISV to detect x2 as

dependent on y, we would also declare x1 dependent on y.

The intent for the ISV measure is to reflect the degree to which distributions are similar and

different, and it would make sense for the measure to improve as more data are collected. Yet,
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Figure 1: Two different Γ distributions with identical expectations

because of its heavy reliance on measures of central tendency per distribution, the ISV may be

misleading even when sample size increases. In the next subsection we describe our approach in

detail to assesses entire, empirical cumulative distribution functions and measure distributional

differences.

2.2 Kolmogorov-Smirnov Measure (KSM)

Our Kolmogorov-Smirnov Measure (KSM) is an extension of an early test statistic that is used to

compare two distributions, the Kolmogorov-Smirnov (KS) test of Kolmogorov (1933) and Smirnov

(1936). To develop the KSM, we first describe the KS test.

Instead of looking for differences in sample averages or medians, the KS test looks for the largest

difference in the empirical distributions F̂ of two samples. Given one response y ∈ {1, 2} and one
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variable xj the KS test statistic of the KS test is defined as

KSj = max
a
|F̂j,1(a)− F̂j,2(a)| (5)

= max
a

∣∣∣∣∣
N1∑
i=1

1{xj,1,i ≤ a}

N1
−

N2∑
i=1

1{xj,2,i ≤ a}

N2

∣∣∣∣∣
where F̂j,k is the empirical distribution function of xj when y = k, Nk is the number of observations

at response level k, and xj,,k,i is the ith sample of xj when the response level equals k. As the KS

test is often phrased as a typical hypothesis test, significant differences between distributions are

often declared by comparing a p-value to a type I error rate.

In the context of our taxonomic datasets, KS test may only apply when K = 2; i.e., there

are only two distributions to compare. Yet, the response in our datasets includes more levels to

consider, i.e., K > 2, so we cannot use the KS test as it stands to identify important variables in

explaining a multinomial response y . However, there are two features of the KS test that we may

exploit extend it to our applications. One, the KS test statistic conforms to the definition of a

distance metric and, two, because empirical distribution functions are bounded between [0,1], the

KS test statistic is also bounded between [0,1]. Values close to one indicate a more pronounced

difference in distributions between samples than values close to zero. With these features in mind,

we define the KSM to be a weighted sum of all
(
K
2

)
pairwise KS test statistics per variable. The

weights are chosen to be proportional to the total sample size in the comparison, so that the final

KSM for one variable equals

KSMj =
K∑
k=1

∑
k 6=k′

Nk +Nk′

N × (K − 1)
KSj(k, k

′). (6)

where KSj(k, k
′) is the KS test statistic for comparing the distributions of one variable xj when

the response equals k or k′ and N is the total sample size for the study. Because the weights sum

to one, the KSM is also bounded between [0,1] and has the same interpretation as the KS test

statistic; large value close to one, reflect large differences between the distributions of xj when the
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response takes multiple levels.

There are a variety of approaches to filter variables based on KSMs. In general, we recommend

imposing a user-defined threshold so that all variables with a KSM greater than the threshold are

kept for further analysis and those less than the threshold are removed. When possible, we also

recommend sensitivity analyses in the threshold choice. Our preferred approach in selecting the

threshold begins by plotting each KSM in ranked order and identifying drop points in the curve

that suggest a sudden change in the degree to which variables relate to the response. In turn, we

set the threshold for the KSM at the drop point. Refer to Sections 3.2 and 3.3 for an example.

Often, KSM plots will present several drop points (i.e., several suggestions for KSM thresholds).

To decide among them, we recommend sensitivity analyses that are relevant to the subsequent

analyses of the data; e.g., changes or lack there of in data visualizations, model cross-validation

results, and/or measures of model fit, e.g., the Bayesian Information Criterion (Schwartz, 1978)

may assist in the selection of the KSM threshold. Also, it is important to consider computational

constraints when selecting the threshold. Uses could define the threshold to include the maximum

number of variables that will still result in stable parmeters estimates in subsequent analyses. In

turn, subsequent analyses may remove variables; e.g., tests of significance in generalized linear

models.

The KSM is easy interpret and apply for any dataset with multinomial responses. In fact,

we created an R package called KSmeasure that is available for download here: http://www.

apps.stat.vt.edu/house/research.html. Additionally, the KSM has asymptotic properties that

reinforce its utility, even as sample size N increase. Namely, unlike the ISV, when a variable x is

independent of the response y, the KSM goes to zero and nonzero otherwise. To see this, we know

by the Glivenko-Cantelli Theorem (Glivenko, 1933; Cantelli, 1933) that the KS test, KSj(k, k
′) for

one variable xj and two-level response equals

lim
Nk,Nk′→∞

KSj(k, k
′) = max

a
|Fj,k(a)− Fj,k′(a)|. (7)
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Thus, the limit of the KSM equals

lim
N1...NK→∞

KSMj =
1(
K
2

) K∑
k=1

∑
k 6=kprime

max
a
|Fj,k(a)− Fj,kprime(a)|. (8)

Notice that this limit equals zero if and only if f(xj |y = 1) = ... = f(xj |y = K) = f(xj). In other

words, if there are differences in distribution of xj given the response level of y, the KSM will be

asymptotically non-zero, whereas as if the distribution of xj is independent of response level then

KSM → 0 with probability 1. We show this result in practice via simulation studies in the next

section.

3 Results

To demonstrate the use of the KSM and compare it to the ISV, we present analytical results for

both methods in this section. We use simulation studies and real-world applications to highlight

the theoretical and practical differences between the two methods.

3.1 Simulation Studies

Two simulations are designed to illustrate two asymptotic properties of the ISV and KSM. The first

simulation illustrates the constant non-zero value for the Indicator Species analysis for identical

distributions. The second simulation illustrates the reliance of Indicator Species values solely on

measures of central tendency, regardless of the similarity of distributions.

For the first simulation, a response vector with three categorical levels is created; y ∈ {1, 2, 3}.

In this simulation, the distribution of f(xj) is independent of response level so that f(xj) =

Γ(1000, 10). Samples were drawn from this distribution, with N1 = N2 = N3 and ranging in value

from 10 to 10,000. As seen in Figure 2(a), the geISA remains at 1
3 , whereas the KSM goes to zero.

In the second simulation, a two-level categorical response (y ∈ {1, 2}) is created, but the

distribution of xj is dependent on response level. In this case, f(xj |y = 1) = Γ(1000, 10) while

f(xj |y = 1) = Γ(100, 1), so that E(xj |y = 1) = E(xj |y = 2) = 100, but V ar(xj |y = 1) = 10 and

V ar(xj |y = 2) = 100. Then, samples of 100 observations each were drawn from each distribution
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Figure 2: Simulation results. (a) Asymptotic values of ISV and KSM as n→∞. (b) ISV and KSM
values for two different distributions that have identical expectations

(N1 = N2 = 100) 10000 times. Figure 2(b) presents boxplots of the simulated geISA and KSM

estimates. Theoretically, the geISA and KSM should be around 0.5 and 0.2623, which can be

calculated through equation 4 and equation 7. Both geISA and KSM approach these values, as

geISA centers around 1
2 and ranges between [0.48, 0.52] whereas, the KSM centers around 0.28

and ranges between [0.21, 0.39]. This presents a difficulty for geISA as the value for two different

distributions is approximately the value for two differing distributions.

The KSM has a clear advantages in simulation. Next, we apply the KSM to a common dataset

used to explain the ISV in the literature.

3.2 Oribatid Mite Dataset

Consider a common dataset, know as the Oribatid mite dataset that was collected by Daniel

Borcard in 1989 (Borcard et al., 1992). This dataset is available through the vegan package in R

(Oksanen et al., 2015). In this instance, the community data matrix includes counts on 35 species

(P = 35) of Oribatid mites on 70 observations (N = 70), and a categorical response describing the

microtopography of the observation, either Blanket of Hummock (K = 2). We calculate the ISV
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and KSM for each species and plot them in ranked order in Figure 3.
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Figure 3: Cutoffs for Indicator Values (On Left) and K-S Measure (On Right)

For both methods, we identify a natural drop in the plots to determine thresholds for filtering

variables. For the ISV, we see a drop at the 17th ranked species, thus all species with ISV > 0.62

are kept for further analysis. For the KSM, we see a drop at the 15th ranked species, thus all

species with KSM > 0.35 are kept for further analysis. In the two sets of selected variables, 12

overlap. For each set, we fit a probit model to assess the selected variables further and in relation

to the response. Based on tests of significance with a generous type I error (α = 0.1), three of

the variables selected by the ISV and five of those selected by the KSM are deemed significant.

Additionally, we refit the probit models without 20 observations to assess prediction accuracy. The

variables selected by the ISV predicted 65% (13 out of 20) accurately, while the KSM predicted

85% (17 of 20) accurately.

From both a theoretical and practical perspective, the KSM shows advantages over the ISV.

Thus, in the next subsection, we complete our final application using just the KSM.
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3.3 Panamanian Tree Frog Dataset

In this dataset (Belden et al., 2015)., we have data from, N = 137 Panamanian frogs of three species

that were captured and swabbed within 30 minutes. Of the 137, 62 were Agalychnis callidryas, 22

were Craugastor Fitzingeri, and 53 were Dendropsophus ebraccatus that we reference as AgaCal,

CraFit, and DenEbr, respectively. The frogs were collected from four sites—Parque Nacional Altos

de Campana, Parque Nacional Soberańıa, Mamońı Valley Preserve, and the forest surrounding

Nuevo Viǵıa—with three species represented—Agalychnis callidryas (Also notated AgaCal), Crau-

gastor fitzingeri (CraFit), and Dendropsophus ebraccatus (DenEbr). Although almost all the frogs

had been exposed to Bd at some time, only 36 of the frogs were infected with Bd as indicated by

low measures of Bd zoospores.

The frogs were captured by hand and the swabbed within 30 minutes of capture. Capture

locations were dependent on the species but conformed to certain specifications. For example,

Agalychnia callidryas and Dendropsophus ebraccatus are both pond breeders, and these species

were sampled from a single pond at all four sites. Craugastor fitzingeri individuals were sampled

on the margins of a single stream at the two sites where the species was encountered.

Prior to swabbing, the frogs were rinsed with sterile deionized water. Each swab consisted of

40 strokes over various, pre-set locations on the frog. Upon returning to the United States, the

swabs were analyzed by the program Quantitative Insights Into Microbial Ecology (QIIME) and

rarified to a depth of 7,000 total reads Heck et al. (1975). In turn, DNA sequences that were at

least 97% the same were grouped, summed, and scaled between zero and one. The end result was

a dataset containing 3,490 distinct OTU measurements per frog that were transformed to a [0,1]

scale by calculating relative abundance measurements.

The KSM was calculated for each of the 3,490 OTUs and plotted in ranked order in Figure 4.

We see a natural cutoff at the 42nd ranked OTU (threshold=0.41). Although, we see potential

thresholds at the 23rd and 27th ranked OTUs, we opt to apply multinomial logistic regression to

filter variables further from a set of 42. Using t-tests of significance for model coefficients with

α = 0.05, 35 OTUs see important in explaining species. To assess the predictive ability of the 35

OTUs, a holdout sample of 37 frogs was selected, and a multinomial training model was fit for the
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Figure 4: Top KSMs for the Panamanian Tree Frog Dataset. A “natural cutoff” is plotted by the
vertical line.

remaining 100 frogs. The species holdout sample was predicted based on the coefficients of the

training model, and the prediction accuracy was calculated. The 35 OTUs had a 89.2% prediction

accuracy, with the specific prediction results given in Table 1. We miss classify one AgaCal and

three DenEbr.

For further validation we visualize the initial and reduced datasets nonmetric multidimensional

scaling (NMDS) (Kruskal, 1964a,b). NMDS with a Bray-Curtis dissimilarity measure has shown

useful for datasets with properties presented by Panamanian Tree Frog Dataset (Minchin, 1987).

To create the NMDS plots, we apply the metaMDS function from the vegan package in R. The

initial dataset resulted in Figure 5(a) with a final stress of 0.1159, while the cut dataset resulted

in Figure 5(b) with a final stress of 0.0587. The structure seen in the initial NMDS is retained in

the cut dataset. AgaCal overlaps with both CraFit and DenEbr, although mostly with DenEbr,

while CraFit and DenEbr do not overlap whatsoever. This implies that the cut dataset retains a

majority of the information found in the complete dataset; the KSM is able to accurately select

the variables important for modeling a response.
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Table 1: Cross-Validation of Taxonomic Data Model

True Species
AgaCal CraFit DenEbr

Predicted Species
AgaCal 13 0 1
CraFit 0 5 0
DenEbr 3 0 15
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Figure 5: NMDS results for the initial Panamanian tree frog dataset (On the left) and the cut
dataset (On the right)

4 Discussion

In this paper, we introduced the Kolmogorov-Smirnov Measure (KSM) as a means to filter variables

in large datasets for further investigation of a multinomial response. The KSM is easy to apply and

interpret and is available in an R package (Loftus, 2015). We justify the use of the KSM from both

theoretical and practical perspectives, as well as compare it to a common filtering approach in the

Ecology applications called group-equalized Indicator Species Analyses (geISA). For brevity, we did

not discuss other filtering and dimension reduction techniques in detail, including multiple t-testing,

Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996), Sure Information
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Screening (Fan and Lv, 2008), and principal component analysis (Pearson, 1901; Hotelling, 1933) .

Such methods require distributional assumptions of the variables, fail to apply well in multinomial

settings, and/or can be hard to interpret.

In geISAs, a metric known as an Indicator Species Value (ISV) is used in a similar way as

the KSM to filter variables. Variables with a high ISV or KSM are considered strongly associated

with a response and kept for further analysis. However, we showed that properties of the ISV

may lead to higher false positive rates than the KSM and, in some applications, the KSM may

result in higher predictive rates than the ISV. Our primary application for the KSM was to analyze

the Panamanian tree frog dataset, with the goal of attempting to discern OTUs that distinguish

between three species of tree frogs. After cutting the dataset down from nearly 3,500 OTUs to a

subset of 35, the resulting OTUs accurately predicted 89.2% of a holdout sample of 37 frogs. This

finding was further supported by nonmetallic multidimensional scaling (NMDS) plots for both the

full and cut Panamanian tree frog datasets. Effectively, little information was lost in reducing the

datasets by the KSM.

In our applications, we were interested in variables that associated strongly with a response;

i.e., variables that presented high KSMs. However, the KSM can also be used to identify variables

that are highly similar across response levels. For example, in the Panamanian tree frog dataset, it

may be worth investigating similarities and differences in the OTUs that did not explain variation

in species.

To conclude, we admit that the KSM suffers from one drawback that is shared by many filtering

methods. The KSM investigates variables individually, rather than jointly. Thus, ideal conditions

for the KSM is that all variables are independent and the variables work independently to explain

variation in a response. Yet, such conditions are rarely met in modern high-dimensional datasets.

The implication of the drawback is that the KSM can be inefficient in selecting a parsimonious set

of variables to explain variation in a response; any variable associated with a response, regardless

of its association with others, will have a high KSM. A worst case scenario is that the KSM keeps

two or more identical variables for further analysis because they each associate strongly with the

response. This may or may not pose a problem in subsequent analyses and practitioners should be
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aware. There are some ways to weaken the implications, such as create interaction variables and

apply the KSM on them. We leave such developments for further research. The simplicity and

effectiveness of the KSM still support its use in exploratory or pre-screening analyses.
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De Cáceres, M., Legendre, P., and Moretti, M. (2010), “Improving indicator species analysis by

combining groups of sites,” Oikos, 119, 1674–1684.
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