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Abstract

With the rapid migration of physical layer design of radio towards software, it becomes nec-

essary to select or develop the platform and tools that help in achieving rapid design and de-

velopment along with flexibility and reconfigurability. The availability of field programmable

gate arrays (FPGAs) has promoted the concept of reconfigurable hardware for software de-

fined radio (SDR). It enables the designer to create high speed radios with flexibility, low

latency and high throughput. Generally, the traditional method of designing FPGA based

radios limits productivity. Productivity can be improved using Model based design (MBD)

tools. These tools encourage a modular way of developing waveforms for radios. The tools

based on MBD have been the focus of recent research exploring the concept of the platform

independent model (PIM) and portability across platforms by the platform specific model

(PSM). The thesis presented here explores the tools based on MBD to achieve prototyping

for wireless standards like IEEE 802.11a and IEEE 802.16e on reconfigurable hardware. It

also describes the interfacing of the universal software radio peripheral (USRP2), acting as

a radio frequency (RF) front end, with an additional FPGA board for baseband processing.
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Chapter 1

Introduction

1.1 Goals

The primary goals of this work are to implement the signal processing blocks required for

building a transceiver chain for MIMO-OFDM on reconfigurable hardware and to explore

the use of model based design in implementing these blocks. The model based design flow

is an alternative to traditional design flow. The efficiency of employing model based design

flow over the traditional design flow for wireless communication system design is addressed

in this work.

The signal processing blocks created for MIMO-OFDM are targeted for the SDR platform

whose baseband processing element is FPGA. USRP2 will serve as the RF front end required

for the MIMO-OFDM based SDR radio. The FPGA present in the USRP2 has limited space

for additional signal processing algorithms. Therefore, USRP2 acting as a RF front end is

interfaced with the auxiliary FPGA board that performs baseband processing.

The key issue of interfacing the USRP2 directly with the auxiliary FPGA board has not been

addressed in any of the existing works. But, the framework required for implementing the

same is available in the GNURadio community. The work presented here uses this framework

1



Chapter 1. Introduction 2

to achieve the interfacing between a USRP2 and the auxiliary FPGA board. This interfacing

is necessary to transfer the data samples between the USRP2 and the FPGA board.

This work employs Alamouti STBC as a MIMO technique in its physical layer imple-

mentation. The reference wireless standards for the implementation is taken from IEEE

802.11a(WiFi/WLAN) and IEEE 802.16e(WiMAX). These standards specify orthogonal fre-

quency division multiplexing (OFDM) as one of its air-interface techniques. Therefore, a

MIMO-OFDM physical layer chain is realized in this work. In this work, there is a signif-

icant change in the manner these standards are implemented. None of the standards are

implemented completely. Only the physical layer concepts of these standards are used for

the prototyping of the work. The outcome of this work will act as a solid backbone for

making the complete standard to work on the FPGA.

1.2 Background Information

The methodology used in this work is based on the rapidly growing field of high-level synthesis

tools for the abstraction of architecture of the lower level platforms[1]. One such technique

in which most of the high-level synthesis tools are based is model based design (MBD). Tools

based on this technique are targeted for embedded systems development, signal processing

algorithm development, rapid system integration and analyzing the behavior of complex

mechanical systems for a wide variety of use cases. This has resulted in a considerable

reduction in the development of lead time and time to market for a wide variety of systems.

This has been proven from the case studies of Rockwell Collins, Lockheed Martin, The

Mathworks, etc. With the concept of software defined radio (SDR) making a significant

impact in the military and civilian communities, there is a need to identify the tools and

processes that will reduce the development time for these products. The greater part of this

work involves using some of the tools based on MBD techniques to design, implement and

validate the system based on FPGA for wireless standards like IEEE 802.11a. The system
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prototype developed in this work acts as a proof-of-concept for the rapid development of

future SDR based radios on FPGA platforms. Moreover, the tools used in this work have

been shown to produce a model that will be portable across different FPGA platforms,

thereby providing portability and scalability for the well proven models. The outcome of

this work will also provide a feeder for developing open source intellectual property (IP)

cores for the existing wireless standards independent of the target platform used.

In this work, we completely overhaul the design process. The traditional method focused on

creating a simulation model, writing register transfer logic or a behavioral model in hard-

ware description language (HDL), synthesizing it and creating a bitstream from it. But,

the ramp up period required for this design process is enormous. On top of this, a wireless

communication engineer should focus only on developing signal processing algorithms rather

than thinking about their portability to platforms like FPGAs. Additional disadvantages

include reworking the whole traditional design process when there is a change in the under-

lying hardware platform. In order to counter this, a high level MBD based architecture was

considered for rapid prototyping of SDR for FPGA. The primary examples of MBD tools for

FPGA include the Xilinx system generator for DSPTM , Simulink HDL coderTM and Synplify

DSPTM . In this work, Simulink HDL coderTM and System generator for DSPTM were used

extensively to explore the concept of MBD design flow for SDR.

The MBD design flow gave rise to the idea of creating a high level model based wrapper for

integrating the waveform components deployed on the FPGA with SCA based SDR archi-

tectures. The methodology for integrating this wrapper onto MBD tools like SimulinkTM is

presented as future work. The workflow required for this integration is taken from the work

done by Carrick [2]. This integration will provide a path for realizing Distributed Wireless

computing in SCA based architecture like OSSIE with FPGA as a platform for deploying

computation intensive signal processing algorithms.
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1.3 Accomplishments

The accomplishments of this thesis are:

• Application of MBD design flow for SDR applications on FPGA.

• High level model designs for various blocks of the transceiver chain for MIMO-OFDM

applications.

• Methodology for integrating these blocks to implement a physical layer chain for wire-

less standards like IEEE 802.11a or IEEE 802.16e on the FPGA.

• A simplified method for interfacing the USRP2 with FPGA development boards.

1.4 Organization

The work presented in this thesis is organized as follows:

• Chapter 2 describes the basics of software defined radio and model based design. It

briefly introduces the mathematical model behind the mapping of these tools for FPGA

based systems. A later section provides an overview of the implications of these tools

for SDR based radios.

• Chapter 3 talks about the different design flows available for performing the task of

implementing DSP algorithms on FPGA. It provides a detailed description of the MBD

design flow used in this work and a brief description of the tools used in this work.

• Chapter 4 gives a detailed description of the individual modules required for design

for an MIMO-OFDM based system using IEEE 802.11a and IEEE 802.16e standards.

It will provide detailed implementation issues along with potential drawbacks in each

module. There is a results section associated with each module giving detailed infor-

mation about the logic resource used in the FPGA.
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• Chapter 5 provides the framework details for implementing these baseband signal pro-

cessing modules for MIMO-OFDM system in conjunction with USRP2 as a RF front

end. It describes the methodology for interfacing the USRP2 with auxiliary FPGA

board with PowerPC R© processor.

• Chapter 6 presents the conclusion of this work. It provides remarks about this work

and gives directions for further research.



Chapter 2

Software Defined Radios and Model

Based Design

2.1 Software Defined Radio

The term software defined radio (SDR) is used to describe radios whose components have

been defined with the emphasis on software. The interest in these radios has been driven by

technical feasibility, flexibility and commercial advantages.

In general, SDR is a wireless communication system in which the particular communication

and transmission characteristics are realized through specialized software running on flexible

signal processing hardware. This characteristic is in complete contrast to conventional radio

that relies on specific hardware components for realizing the goal of communication. The use

of SDR provides flexibility in terms of reuse of components on multiple platforms and using

same platform for multiple SDR based communication systems. Other advantages include

instant re-configurability in the field and ease of maintenance within the physical limits of

underlying hardware.

SDR radios cannot be built in the same manner as conventional radios. They must be built

6
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to support a variety of functions like multiple waveforms in the same hardware, instant

re-configurability, digitized IP-based data transmission and support for security. The incor-

poration of these functions creates a model that separates the waveform providers from the

platform suppliers. This kind of SDR platform has a lot of relevance in the military, public

safety and civilian radio markets.

The volatility of the market for radios and availability of innumerable standards has forced

radio manufacturers to think about a cost-effective methodology for the adoption of new

wireless standards onto radios. This is crucial from the perspective of the customer who can

avoid the exploding costs associated with the upgrading of radios.

The SDR concept has been applied to the military market, in United States of America,

through the Joint Tactical Radio System (JTRS) specification that provides inter-operability

among radios, used by warfighters and supports multiple waveforms from the multiple defense

contractors. In the same manner, there has to be support for the civilian radio market that

has seen an influx of radio technologies like GSM, GPRS, CDMA, UMTS, WiMAX, LTE,

WLAN, and Bluetooth. A single radio has to support these diverse wireless technologies

concurrently that have different requirements for throughput and bandwidth.

SDR radios allow the over-the-air re-configuration of software that will ease the manner in

which technology upgrades and bug-fixes can be applied to radio. Moreover, there is an

apparent shift in the radio technologies required to support digitized IP based transmission.

This makes the shift from point to point links to networking among different radios with

diverse radio technologies. Because of SDR flexibility, security functions can be continuously

improved to counter new and evolving threats and keep the radio functionality safe. There is

cost-effectiveness, when the waveform developer provides flexible waveform application that

will run on a wide variety of platforms.
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2.2 Model Based Design

The motivation for the model based design for FPGAs rose from the necessity of design-

ing complex DSP systems that require dedicated multipliers, compute units for specialized

operations like Galois field arithmetic, and Add compare select unit for Viterbi decoding,

etc. These dedicated and complex computing units obviated the requirement for finer level

optimizations of the FPGA design circuit. This level of optimization is generally associated

with traditional digital design for communication systems. MBDs are used to express the

typical characteristic of the communication system called timeliness that describes the way

a system is going to handle the “concurrency, liveliness, heterogeneity, interfacing and reac-

tivity” [1]. The MBD design is basically an attempt to describe the way a system is going

to interact with the real time analog world.

The aim of MBD system design is to convert the system model from its mathematical

specification to an executable specification. This executable specification helps in realizing a

platform independent model (PIM). The PIM is then used to create an elaborate hardware

and software specific model for the completion of the system design using a automation code

generation tool. Thus, the platform independent model (PIM) is converted into a platform

specific model (PSM).

MBD provides a common framework for the integration of different phases of the development

process. This reduces the lead time to create a self-sufficient model. The design phases

associated with the MBD allow the designer to locate and correct errors prior to system

prototyping. Thus, MBD effectively serves as a tool for rapid prototyping, system validation

and testing. Moreover, the ability to create hardware-in-the-loop testing during the design

development phase enables testing for dynamic effects on the system that is not possible

with the traditional design methodology.
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Figure 2.1: Flowgraph for Generic DSP System Design [1]

2.2.1 Dataflow Heterogeneous System Prototyping

Dataflow heterogeneous system prototyping specifies the dataflow modeling required for sys-

tem design on FGPA or system-on-chip (SOC). The data flow associated with this kind of

modeling closely reflects the rapid system design model required for SDR. The motivation

behind this modeling is that by closely matching the behavioral semantics of the implemen-

tation to the semantics of the high-level specification, a direct translation from the functional

domain to the implementation domain can be achieved. This technique can be viewed as

the rapid system development and integration technique. The emphasis of the current work

will based on this model. MATLABTM , Simulink R©, Xilinx ISETM , Xilinx System generator

for DSPTM , and Simulink R© HDL coder TM are some of the tools that accurately match

this design flow. Thus, these tools are used for the rapid integration of baseband algorithms
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required for SDR. The general requirements for this approach are:

• Modeling domain for the specification.

• A tool for rapid integration.

• Capability for analysis and high-level optimization for the implementation.

The flow of this model is represented in the Figure 2.1. The model relies on high-level

algorithm specification that has to be accurate mathematically. In general, one has to take

care of floating-point, fixed-point and integer arithmetic operations in the system at the

time of modeling itself. After algorithm verification and numerical modeling, the system

can be accurately represented by model based design tools like Simulink R© HDL coderTM

or System Generator for DSPTM . The usage of Simulink R© HDL coderTM provides us the

ability to create a PIM model like Veriolog/ VHDL code for FPGA. The PIM model can

be adapted as a PSM model after further verification for word length effects, and precise

numerical modeling required for the target platform. Similarly, for generating a embedded

processor code, there is a real time workshop tool (RTW) in Simulink R© Simulink R© HDL

coderTM that assists in generating a PSM.



Chapter 2. Software Defined Radios and Model Based Design 11

Figure 2.2: Flowgraph for DSP System Design with Heterogeneous Platform [1]

2.2.2 Partitioned Algorithm Implementation

The partitioned algorithm implementation pools the specific tasks that have to be imple-

mented in embedded microprocessors and FPGA. It is also responsible for inter-communication

among different hardware components. You can view this as a complete embedded system

from a functional point of view. The computational units are pooled according to three

major classifications. They are:

• Software synthesis for Embedded DSP/Microprocessors

• Hardware synthesis for FPGA

• Inter-processor communication required for creating a complete fabric
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This work focuses on synthesizing a hardware circuit to be built on FPGA. But in a real

time scenario a hardware platform is made up of multiple hardware components. The MBD

model comes in handy in those situations. Thus, a set of pre-compiled libraries or primitive

building blocks can be used to create a system model that should be realizable in hardware

or software. The next stage is to create a software and hardware code that can be ported

into any platform. In the case of the hardware, the aim is to create a Verilog/VHDL code

while in the case of the later the aim is to obtain fixed point C model or floating point model

depending upon the target platform. At this stage, the PIM model is readily available for

various components. The PIM model is then converted to a PSM model based on design

considerations, hardware platform characteristics, and code portability. Finally, we obtain a

complete executable code that will be able to run on target hardware platforms.

Thus the whole dataflow model helps us to create rapidly [3, 4, 5] deployable code onto the

hardware platform. This allows designers to focus on designing efficient algorithms or an

accurate mathematical model.

2.3 Implications of MBD for Software Defined Radio

In this work, the focus is on performing baseband signal processing on stand alone FPGA.

The FPGA present in the USRP2 deals with the rest of the operations like up/down conver-

sion, up/down sampling, filtering and transmitting/receiving at the carrier frequency. Thus

the USRP2 SDR platform is now leveraged using the additional processing capability of

FPGA.

The developmental approach of SDR for FPGA is driven towards MBD because of the

necessity to support multiple waveforms in a single SDR platform or supporting a single

waveform on multiple hardware platforms. Following a traditional approach for deploying

individual waveforms on FPGA is going to result in a significant cost in terms of money

and time to market. With this approach, the inherent advantages of SDR are lost. A MBD
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design approach will allow designers to carry out the rapid prototyping of waveforms on

FPGA. It provides a viable approach to implementation and reuse of intellectual property.

It allows the designers to reuse the same high level design model for porting to different

FPGA platforms

A typical SDR platform will consist of a combination of a general purpose processor (GPP),

an embedded DSP processor and an FPGA [6]. Generally, the GPP handles the control and

configuration of the software, and the DSP processor handles the low level signal processing

algorithm, while the FPGA handles the computationally intensive signal processing algo-

rithms. In the case of the embedded processor/GPP, the software code running on it has to

be changed while switching to a different waveform, but in the case of FPGA, the circuit

running on it has to be completely reconfigured. Thus the circuit on FPGA provides a co-

processor capability that can work in tandem with the GPP and embedded DSP processor.

In the heterogeneous SDR platform, there are plenty of options available to distribute the

processing across different platforms based on necessity.

The use of MBD design flow allows the designer to focus on algorithm development and

optimization rather than concentrating on platform implementation issues.

2.4 Tools for MBD Design

There are a number of tools available for designing MBD-based FPGA systems. A key

aspect in these tools is the application of a well-defined MoC language. Most of these

tools take advantage of the standardized unified modeling language (UML). Since UML

differs in the way it defines a system across different domains, these tools differ in the way

they explore system characteristics and describe a system. Some implementations may be

less efficient than hand-coded ones, but they provides the rapid prototyping of the system,

resulting in efficiency in terms of time. This section will describe some of the model based

design tools that will help in creating a platform independent code. The selection of tools is
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dependent on factors such as the level of flexibility, availability of pre-built libraries/blocks,

and comprehensive understanding of these blocks.

Some of the tools based on UML include Real time Studio from Artisan, Rhapsody from

I-logix, MATLAB R© and Simulink R© Realtime workshop. These tools are used for designing

an embedded multiprocessor environment. There are also modeling languages like GRAPE-

II[7], Ptolemy project[6] and GEDAE[8].

The tools available for HDL code generation for the FPGA can be classified as block based

and C-based. Block based tools generate HDL code from the block diagram, which is then fed

to the hardware synthesis tool to implement system design in FPGA. Though the approach

provides bit-accurate simulation and timing verification, the designer has to take care of the

control and timing aspects of the core. Most of the block based tools are based on Simulink R©

and MATLAB R© environments. Some examples include Synplify R© DSP, Xilinx’s System

generator for DSP, Altera’s DSP builder and Simulink R© HDL coder. These tools provide a

high-level modeling environment for signal processing algorithms. Simulink R© library blocks

are used along with the IP cores of the FPGA vendors to create a platform specific HDL code.

The core issues of system implementation like latencies and pipelining are not considered in

this model. It is up to the designer to incorporate this into the system model at both the

specification and modeling stages. Tools like Simulink R© HDL coderTM and Synplify R©DSP

give more flexibility to the designer by integrating MATLAB R© functions, m-block files and

state. With these tools, the designer designs the algorithm in the Simulink R© environment

and slowly refines this step to the FPGA environment in a sequence of steps. An example

of this sequence of steps is shown in further chapters.

C-based MBD tools are dependent upon the C programming language to create an ab-

straction for FPGA design. Some of the tools include Mentor Graphics R© Catapult C and

Celoxica’s Handel-C. The major motivation behind these tools is that the C language being

used commonly for DSP algorithm implementation gives a productivity gain compared to

Verilog/VHDL code.
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Other design tools include Synopsys Behavioral compilerTM , MMAlpha and JHDL. These

tools achieve the goal of MBD design flow at different levels. For example, the tool from

Synopsys is a behavior synthesis tool that allows designers to quickly evaluate alternate ar-

chitecture with gate-level optimization and create designs consisting of datapath, memory,

and finite state machines. On the other hand, MMAlpha created using C and Mathematica

is a programming language to translate the ALPHA programming language. It converts

a high-level specification into synthesizable VHDL code. It is programmed using the AL-

PHA programming language whose syntax allows programming for pipelining, timing, and

scheduling. ALPHA programming also allows for defining systolic arrays and can generate

HDL code at the RTL level. Contrary to these tools, there is a just-another hardware de-

scription language (JHDL) based on Java HDL. It was originally developed by Birmingham

Young University. Its motivation is to describe a circuit based on a structural design environ-

ment that can be dynamically configured over time. Its major drawback is that it assumes

globally synchronous design and does not support multi-clock system designs. Moreover, it

does not support behavioral synthesis.

Apart from these tools, there are certain top-level system design tools for FPGA. These

include Compaan, ESPAM, Daedalus and Koski [1]. Compaan and ESPAM tools follow

the same design principles and help to convert a sequential programming language like

MATLAB R© and C/C++ to a parallel process network model by automated code gener-

ation tool [1]. The difference between the Compaan and ESPAM tool is that the former

is targeted towards a specific platform design while the later can be targeted for a hetero-

geneous platform. Both these tools are system level synthesis tools which are useful for

rapid system prototyping. The addition of a system level simulation environment on top of

an ESPAM tool gave rise to a tool called Daedalus [1]. Basically, this tool automatically

performs mapping from the platform specifications of the ESPAM synthesis tool. Koski is

a another programming language based on a unified-UML modeling infrastructure for the

automatic design exploration and synthesis that is targeted towards wireless sensor network

applications. The tool performs synthesis for prototyping the final application onto FPGA
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[1].

In this work, extensively used tools were the Simulink R© HDL coderTM and the Xilinx System

Generator for DSPTM . These two tools played a major role in supporting the architecture

design, simulation and synthesis for the target architecture. The key features of these tools

are described in the sections below.

2.4.1 Simulink R© HDL coderTM

Simulink R© is a MBD tool used for modeling, analyzing and simulating dynamically varying

systems. It provides a well-defined graphic environment for the designer to create a high-level

design of a complex system using the commonly used blocks from Simulink R©. Moreover, this

tool allows the user to create flexible user-defined blocks from the well-defined MATLAB R©

functions.

The Simulink R© HDL coderTM feature of Simulink R© allows the designer to create bit-

accurate and synthesizable HDL code from the Simulink R© models. These models can include

Simulink R© models, Stateflow models and Embedded MATLABTM code. The generated

HDL code can be verified using tools such as Cadence R© Incisive R©, Mentor Graphics R©

ModelSim R©, and Synopsys R© VCS R©. The HDL code can also be synthesized and mapped

onto target the FPGA using tools such as Altera Quartus R© II, Cadence Encounter R©

RTL Compiler, Mentor Graphics R© Precision R©, Synopsys Design Compiler R©, Synplicity R©

Synplify R©, and Xilinx R© ISETM . The Simulink R© HDL coderTM also generates a testbench

for the purpose of verification and validation with the HDL simulation tools.

The Simulink R© HDL coderTM has primitive libraries built for HDL code generation. Some of

the pre-built libraries include adder, multiplier, accumulator, integrator, multi-port switch,

rate transition block, delays, matrix operation blocks, lookup tables, etc. Most of these li-

braries acts as building blocks for implementing the higher level signal processing blocks. The

application of these libraries for building models will be explained in subsequent chapters.
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2.4.2 Xilinx System Generator for DSPTM

The Xilinx System generator for DSPTM is a system level modeling tool targeted towards

Xilinx FPGA architectures. It extends the capabilities of the Simulink R© environment. As

with Simulink R© it provides higher level abstractions of the system. This tool can automat-

ically create a low level FPGA code, for Xilinx platforms, at the click of a button. The

tool uses in-built DSP IP cores of Xilinx, Inc along with blocks for common functionalities.

Its major contrast from the Simulink R© HDL coderTM tool is the generation of low-level

code targeted towards Xilinx platforms (e.g. VirtexTM). This tool also allows for hardware

co-simulation. Hardware co-simulation is used for testing the cores created by the user onto

the hardware, in tandem with the model present in the Simulink R© environment.



Chapter 3

Design Flow for FPGA Based System

Design

The previous chapter described model based design and the tools available for using the same.

In this chapter, the focus will be on designing a FPGA based system, primarily for signal

processing applications, using the concept of model based system design. This work uses the

Simulink R© HDL CoderTM and Xilinx System Generator for DSPTM as the primary tools

for MBD based design. The motivation for the FPGA based system-on-chip (SoC) design

for wireless applications arises from the expansion of FPGA capabilities of Xilinx and Altera

FPGA families. As the silicon density in these FPGA families increases, the complexity

of the system design also increases, resulting in the convergence of multiple disciplines and

technologies. For example, the work presented here requires expertise in the following areas:

• Signal processing

• Wireless communication theory

• FPGA architecture

• HDL

18
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• Software engineering

Thus, a system designer has to focus on integrating all these components onto a single chip

with less flexibility for delving further into system design for functionality and performance.

Therefore, a good system design should involve abstraction mechanisms for designing and

integrating various components. The designer should focus on the parameters of the com-

ponents affecting the system performance.

System modeling 

using Simulation 

tools like 

MATLAB, 

Simulink, etc.

Develop high 

level Register 

transfer the 

circuit in HDL 

(e.g. Verilog/

VHDL)

HDL design 

simulation using 

tools like 

Modelsim.

Synthesize the HDL 

design for target FPGA 

platform using tools like 

Xilinx ISE, Altera 

Quartus, etc.

Generate bitstream and 

download to target 

platform and test the 

circuit.

Figure 3.1: Traditional Design Flow

3.1 Traditional Design Flow

As shown in Figure 3.1, the traditional method of designing a system based on FPGA starts

with the design specification and simulating/modeling the system based on the specification.

The system specification/simulated system design is abstracted into a higher level hardware
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description by means of Verilog/VHDL. This step is crucial in describing the behavior of

the system in the real world but it is time consuming. Finally, the HDL code describing

the system, is synthesized, implemented, validated and tested. Though the last few steps

are common with any kind of FPGA based system design, the lack of validation of the

system at the simulation/modeling level is a major hindrance to a shorter development

time. The determination of errors, in terms of timing and functionality during or after the

implementation stage, results in a tremendous effort to re-iterate the whole design process.

An example design flow is shown in Figure 3.1.

In order to counter the disadvantages of traditional design flow, the MBD design flow that

integrates system simulation/modeling and validation in a single step is increasingly adopted.

It is described in detail in the next section.

3.2 Design Flow for MBD Based Design

In this work, the MBD design methodology is used to make an open source generic IP

core for the common blocks of WiFi/WiMax standards. A typical MBD design flow for

the implementation of the transceiver chain on the FPGA is explained in this section. It is

represented in Figure 3.2.
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Figure 3.2: Model Based Design Flow for FPGA

3.2.1 Design Specification

The initial step involved in the design of any DSP block is the design specification and its

implication for the rest of the system. This is an abstract way of describing the operation

of the block. The parameters obtained from this step includes the type of input or out-

put and identification of the core mathematical functionality of the block. Optionally, the

opportunity for reuse of the design of the block can be identified.

As an example, consider the development of the convolutional encoder block based on the
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IEEE 802.11a standard [9]. In this step, the parameters are the number of inputs, the

number of outputs, puncturing, and constraint length, and its operation on a sample based

signal or frame based signal. The parameters are shown in Table 3.2.1.

Table 3.1: Design Parameters for Convolutional Encoder

Number of inputs 1
Number of outputs 2
Input type Boolean
Output type Boolean
Code rate 1/2 or 2/3 or 3/4
Constraint length 7
Puncturing Yes/No
Frame/Sample based signal Sample based signal

Similarly, the design parameters for the fast Fourier transform (FFT) are described in Ta-

ble 3.2.1.

Table 3.2: Design Parameters for Fast Fourier Transform

Number of inputs 64
Number of outputs 64
Input type Complex
Output type Complex
Memory requirement Dual port memory
Butterfly arithmetic type Table lookup or CORDIC
Frame/Sample based signal Frame based signal

3.2.2 Design Requirement Analysis

The core functionality of the block is identified in the preceding step. The next step in the

design process is to determine the most suitable algorithm required for implementation. The

algorithm should be chosen based on measurable parameters like complexity, computational
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latency, and logic resource occupancy. The chosen algorithm is then broken down into smaller

mathematical functionalities. This plays a critical role in the performance of FPGA in terms

of its circuit area and power dissipation.

The core functionalities that have to be implemented as IP cores have to be decided here.

This core functionality will vary from application to application, and possible additional

blocks will need to be added, taking into account future changes in the applications. Ex-

amples include constraint length of the convolutional code, number of outputs based on the

code rate chosen, number of inputs to FFT, implementation of table lookup and CORDIC

based butterfly arithmetic processing, higher throughput and lower memory requirements.

This step is necessary to provide generic IP core design.

Once the algorithms for the core functionalities are determined, the effect of fixed-point

operations on the chosen algorithm need to be determined. This analysis is performed in

this step. The analysis will help in the determination of the optimal wordlength, optimal

fixed point format, and scaling required at the various steps of the algorithm computation.

At the end of this step, the input/output format, rounding modes like saturation or overflow,

implementation constraints in the form of DSP48 blocks for certain Xilinx devices, scaling

factors, number of sub-blocks required for the computation, memory requirement, and FIFO

buffer blocks for multi-rate circuit. The latency of each block results from the combination

of the above factors.

3.2.3 Simulation and Modeling

The design specification and its implementation specific details now have to be converted

into a high level model using MBD design tools. In this work, the majority of the blocks

were created using the Simulink R© HDL CoderTM and System generator for the DSPTM from

Xilinx, Inc. The present step realizes the mathematical equations in the form of mathematical

models. The libraries/blocks present in the tool facilitate this representation. The model
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chosen in this step serves as a platform independent model (PIM) because the model can be

targeted for wide variety of platforms. For example, the models shown in Figures B.1, B.2

and B.3 can be targeted for both the embedded DSP platform and FPGA platform using

Simulink R© Real Time WorkshopTM and Simulink R© HDL coderTM respectively.

Then the model is tested for functionality using the environment that will best help in vali-

dating the model. Generally, observing the output for different input test vectors will suffice.

Though Simulink R© offers signal processing and communications blocks with a wide variety

of functionalities, only certain blocks are supported by its HDL conversion environment.

This means that all the blocks that cannot be converted to HDL by the code generation

tool need to be removed from the model; it has to be replaced or built using the primitive

libraries from the HDL coder tool.
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Figure 3.3: Model Based Design Flow for Platform Implementation
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3.2.4 System Implementation

System implementation is the last and most important step. This step involves the con-

version of the PIM model into a platform specific code (PSM), resulting in an executable

implementation of the model. It requires the use of an automatic code generation mechanism

provided by the MBD design tools. In the case of the Simulink R© HDL coderTM , the flow

advisor tool helps in checking the compatibility of the models for code generation, conversion

of floating-point model into a fixed-point model, potential issues in terms of feedback loops

and clock settings, input/output data types in the fixed point model, data scaling, options

for generating HDL/Embedded C code, and generating test benches.

During the check for each of the tasks mentioned above, the failure points are identified

by the Simulink R© tool. The feedback coming from the tool at the failure points helps the

designer reiterate the design process for reaching compatibility to generate platform specific

code. Furthermore, the Simulink R© HDL coderTM helps in performing hardware in-the-

loop testing for performing circuit level simulation using blocks like the EDA Simulator

LinkTM . Once the HDL code has been generated, it can be synthesized in the Simulink R©

HDL coderTM tool. The Simulink R© HDL coderTM supports simulator tools like the Mentor

Graphics R© Modelsim R©, Cadence Incisive, and Synposys Discovery. It also supports the

synthesis tools of Xilinx R©, Altera R©, Mentor Graphics R©, Synplicity R©, and Synopsys R©.

The vendor specific tools are used for synthesizing, mapping and placing/routing the IP core

on the target FPGA. The tool then displays the logic resources used in the target FPGA

platform. The complete flow from the model conversion to the code generation using the

Simulink R© is shown in Figures 3.4, 3.5 and 3.6.
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Figure 3.4: Capture of Fixed Point Advisor Tool from Simulink R©

Figure 3.5: Capture of Fixed Point Tool from Simulink R©
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Figure 3.6: Capture of HDL Workflow Advisor Tool from Simulink R©

As mentioned in the previous section, this work also utilizes the other tool called Xilinx

System generator for DSPTM . This tool generates IP cores specifically targeted for Xilinx

FPGA devices. It uses high level Simulink R© models along with Xilinx blocksets for widely

used signal processing functions, memories, error correction, and digital logic. Additionally,

it supports Ethernet and JTAG communication between the hardware development board

and Simulinks R©. This provides the necessary communication link for real-time hardware

verification and testing. The data type required for the model has to be predetermined while

using the Xilinx System generator for DSPTM . The major advantage of using this tool is

the availability of IP cores developed by Xilinx, Inc. For example, some of the cores like the

first in first out (FIFO) generator and FFT/IFFT are modeled and tested using this tool. In

addition, the core for Ethernet communication called the tri-mode Ethernet medium access

control (TEMAC) wrapper is used from the Core GeneratorTM tool to make an Ethernet

link between a RF front end and FPGA development board. By using the in-built IP core,

the tool can take advantage of the hardware characteristics of the target FPGA device.
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The target hardware platform used for testing and validation is the Xilinx ML403 develop-

ment board. It uses the VirtexTM -4 FPGA device with a PowerPC R© hard core running on

it. Its operational clock speed should meet the demand for baseband processing required for

the IEEE802.11a/IEEE802.16e standard.



Chapter 4

Space Time Block Coding and OFDM

System Design

4.1 MIMO

The rapid growth of mobile communication along with scarce availability of radio spectrum,

has forced wireless communication engineers to come up with a technique that will provide

high data rate services, measured in bits per second (bps), along with high spectrum ef-

ficiency, measured in bps/Hz. Multiple input multiple output(MIMO) antenna techniques

help in achieving the high data rate needed for mobile services in a capacity constrained

environment [5]. It also provides effective tolerance against fading and multipath by means

of transmit and receiver diversity. The theoretical background for the MIMO technique was

developed by Teletar [3] and Foschini [4]. Further work from Tarokh et al [10] and Alamouti

[11] opened up new avenues of research in this area. The high point of MIMO technology

was the demonstration of Bell laboratories that introduced Bell laboratories layered space

time code (BLAST) coding technique [12], achieving spectral efficiency as high as 42 bps/Hz.

This chapter will describe, in brief, the MIMO technique. The chapter also covers the imple-

29
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mentation details of the various components involved in designing a system with the Alamouti

STBC MIMO technique. Current work uses the IEEE 802.11a and IEEE 802.16e standards

as the reference transceiver chain. Some of the blocks implemented based on these standards

are the convolutional encoder, Viterbi decoder, Alamouti encoder and decoder, modulation

schemes, and fast Fourier transform/inverse fast Fourier transform. Apart from these blocks

a few other blocks were used for completing this system. This includes the CORDIC al-

gorithm IP core for performing trigonometric operations, FIFO buffers for interleaving and

multi-clock systems, and digital clock managers (DCM) blocks for managing systems with

multiple clocks. All the individual blocks required for the transceiver chain have been de-

signed using MBD design methodology. Therefore, the MIMO system implemented in this

work can be ported to a multitude of platforms. Some Xilinx proprietary IP cores that were

used in this work are the DCM manager and FIFO blocks. The induction of proprietary

cores along with the MBD design created by the user indicates that the conversion of PIM

to PSM has to satisfy certain characteristics of the target platform.

Before describing the components designed in this work, the basic technology behind a MIMO

system is explained in the next few sections. They are described in order to appreciate the

effectiveness of the MIMO system.

4.1.1 Diversity Gain

Diversity techniques are generally employed to combat multipath fading. Diversity tech-

niques involve transmitting replicas of the signal over frequency, time or space. In MIMO

systems only spatial diversity is achieved. The combination of the Alamouti STBC with

OFDM results in diversity gain over both frequency and space. The three different types of

diversity schemes are explained below.
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4.1.1.1 Temporal Diversity

Temporal diversity involves the transmission of replicas of the signal over time. Primary

examples include channel coding and interleaving. Temporal diversity can be applied in those

cases where the coherence time of the channel is much smaller than the symbol duration.

The above criteria makes the symbols transmitted across time independent of each other.

4.1.1.2 Frequency Diversity

In the case of frequency diversity, the replicas of the signal are transmitted across different

frequencies. This is applicable in those cases in which the coherence bandwidth of the channel

is much smaller than the bandwidth of the signal. This condition is necessary to make sure

that the signal transmitted across different frequency bands suffers independent fades.

4.1.1.3 Spatial Diversity

Spatial diversity refers to the use of multiple transmit or receive antennas. The multiple

copies of the signal are transmitted from different antennas. This technique allows for the

exploitation of the signal in space and time. The only condition required for this case is that

the spacing between antenna elements is larger than the coherent distance, so the signal from

different antennas undergoes independent fades.

The spatial diversity can be categorized based on the technique applied at the transmitter or

receiver. The transmitter diversity can be taken advantage of by advanced signal processing

algorithms at the receiver. The addition of controlled redundancies at the transmitter can

be exploited at the receiver. This technique relies on complete channel information at the

transmitter. The use of space-time block coding techniques like Alamouti [11] made it

possible to implement transmit diversity without any knowledge of channel information [5].

In the case of receiver spatial diversity, well known algorithms like Maximal ratio combining,
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selection combining and equal gain combining are used. It is not practically feasible to

implement these techniques at thes mobile receiver. Thus transmit diversity techniques

became popular due to their ease of implementation at the base station.

Figure 4.1: MIMO System Model [5]

4.2 MIMO-OFDM

As mentioned before, the signal processing blocks required for constructing a transceiver

chain based on MIMO-OFDM are implemented in this work. The primary reason for choosing

OFDM, as an air interface, is due to its simplicity of implementation. Additionally, current

wireless standards for WLAN/WiMAX/LTE specify OFDM as its primary or as one of its

air interface technique. The MIMO block implemented in this work is Alamouti STBC [11].
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4.2.1 OFDM

OFDM is a multi-carrier modulation technique that employs narrow band wireless channels

for combating communication impairments. The spacing between the sub-carriers is required

to maintain orthogonality that allows for overlap of the sub-carrier frequencies. This results

in high spectral efficiency. The efficiency in spectrum utilization made OFDM as preferred

air-interface technique in most of the current wireless standards. Additionally, the ease of

implementation of the OFDM modulator using fast Fourier transform techniques is one of

the major strengths of the OFDM technique. The addition of cyclic-prefix plays a major

role in reducing the effects of multipath fading. The sub-carrier spacing is chosen in rela-

tion to the coherence bandwidth of the channel. OFDM converts the wide-band frequency

selective channel into narrow band flat fading channel. This obviates the necessity for com-

plex equalization techniques at the receiver. For example, in the IEEE802.11a standard, the

sub-carrier frequency spacing is fixed at 0.3125MHz. .

A simplified diagram of the OFDM modulator is shown in Figure 4.2. The modulator

consists of an IFFT that takes N complex data symbols coming out of a phase shift keying

(PSK)/ quadrature amplitude modulator (QAM) and converts it into an equivalent N-point

time domain signal. The generated OFDM symbol can be written as,

Xk =
N−1∑

n=0

xnexp
j2πkn

N k = 0, 1, 2, ........N − 1 (4.1)

where xn is the PSK/QAM modulated symbol, Xk are the time-domain coefficients, and N

is the number of data symbols per OFDM symbol.

The cyclic prefix (CP) is added to the front of each OFDM symbol as shown in Figure 4.2

to mitigate inter-symbol interference (ISI). The length of the CP is directly related to the

length of the channel. Since the cyclic prefix is a repetition of the last few samples of the

data part of OFDM symbol, there is an integer number of cycles inside each OFDM symbol.

This repetition allows the FFT operation to start at any point inside the cyclic prefix at the
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Figure 4.2: Block Diagram for OFDM Symbol Generation

receiver. By keeping the length of the cyclic prefix larger than the length of the channel,

the linear convolution of the transmitted sequence with discrete-time channel has now been

converted into a circular convolution.

At the receiver, the symbols are demodulated after the FFT operation. Then the symbol

de-mapper is used to detect the transmitted data bits. The receiver part also has com-

plex synchronization mechanisms (both time and frequency), channel estimation, and phase

correction mechanisms. The blocks that make up a transceiver chain for MIMO-OFDM is

shown in Figure 4.3 and Figure 4.4.
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Figure 4.3: Trasmitter for MIMO-OFDM
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Figure 4.4: Receiver for MIMO-OFDM

4.3 System Overview

This section describes the overall system design employed in this work. This system design

forms as an implementation platform for various blocks described in the previous section.

The MIMO-OFDM system model is realized using the USPR2’s and the Xilinx ML403
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development board. The USRP2 is acting as an RF front end and is connected via Gigabit

Ethernet cable to the Xilinx ML403 development board. The FPGA present on the ML403

development board is used for baseband processing. On the current system model, there

are two USRP2s on the transmit side and one USRP2 on the receive side. In the transmit

side, the synchronization of USRP2’s is done using a MIMO connector cable. The MIMO

connector cable is an auxiliary cable provided by Ettus Research to synchronize multiple

USRP2s with a common reference clock. This synchronization can also be achieved by an

externally generated clock.

On the receiver side, the USRP2 down converts the RF signal into the baseband signal. The

data type of the baseband signal that is buffered to the host machine is configurable using

the FPGA of the USRP2. The current work uses 16-bit I and Q data as baseband samples.

The ML403 board acts as a proper embedded device with the PowerPCTM processor and

various peripherals attached to it. Further details about the ML403 board is given in the

next chapter. Details about the interfacing between the ML403 board and USRP2 are also

given in the next chapter.

The subsequent sections will describe the baseband elements required for implementing the

complete transceiver chain. The wireless standards IEEE 802.11a and the OFDM mode of

IEEE 802.16e have identical baseband processing elements. They differ in certain implemen-

tation parameters. Some of these include the number of data points for FFT/IFFT operation,

the type of channel coding techniques, and the occupying bandwidth. In this work, most of

the elements are initially targeted for the IEEE 802.11a standard with scalability options for

the IEEE 802.16e standard.

At the end of this chapter, the advantages of using MBD design tools like the Simulink R©

HDL coderTM and the Xilinx System Generator for DSPTM for designing a complex DSP

system will be clearly demonstrated.
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4.4 Alamouti STBC

In this work, the Alamouti STBC scheme is incorporated into the physical layer design.

Alamouti STBC is a simple transmit diversity technique with two antennas at the trans-

mitter and one or more antennas at the receiver. Advantages include absence of feedback

information from the receiver to transmitter, no bandwidth expansion, and attainment of

full rate encoding. It provides identical performance as the maximal ratio combining (MRC)

scheme provided that the total radiated power from both the antennas is double that of

the MRC scheme [11]. The performance curves are shown in Figure 4.6(a) and 4.6(b).

The Alamouti decoder at the receiver employs a simple maximum likelihood (ML) decoding

scheme. The Alamouti scheme provides the diversity gain of 2 × MR without the channel

information at the transmitter. The Alamouti model used in the current work is shown in

Figure 4.5.
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Figure 4.5: Alamouti Encoding Scheme with One Receiver

[11]

In Alamouti encoding, 2 symbols are transmitted over 2 symbol periods. Thus the rate of

the code of the Alamouti scheme is 1. The symbols transmitted from 2 antennas in two

consecutive symbol durations is shown in Table 4.1.

Because of the above arrangement of symbols over two consecutive symbol durations, the

symbols are orthogonal to each other. This orthogonality principle helps in decoding at

the receiver. From Figure 4.5, the channel between the transmitter and the receiver can be

defined as in Table 4.2.

The terms h0 and h1 represent complex multiplicative distortion for the symbols received at

the receiver antenna Rx from the transmit antenna Tx1 and Tx2, respectively. The basic
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Table 4.1: Alamouti Encoding at the Transmitter

Symbols transmitted
from Antenna 1

Symbols transmitted
from Antenna 2

Transmitted symbol
at time t

x0 x1

Transmitted symbol
at time t+T

-x∗
1 x∗

0

Table 4.2: Definition of Channel Between the Transmitter and Receiver

Receive antenna
Transmit antenna 1 h0

Transmit antenna 2 h1

assumption is that the channel remains constant over two consecutive symbol durations and

it can be modeled as follows [11]:

h0(t) = h0(t + T ) = h0 = α0e
jθ0

h1(t) = h1(t + T ) = h1 = α1e
jθ1 (4.2)

Then the received signal at the receiver at time t and (t + T ) can be expressed as [11]:

r0 = h0x0 + h1x1 + n0

r1 = −h0x
∗
1 + h1x

∗
0 + n1 (4.3)

where n0 and n1 are random variables representing noise and/or interference.

As shown in Figure 4.5, the combiner combines the received signal in the following manner,

x̂0 = h∗
0r0 + h1r

∗
1

x̂1 = h∗
1r0 − h0r

∗
1 (4.4)
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The resulting combined signal is then sent to the ML detector for making decisions about the

symbol. The decision rule for the ML detector is based on the modulation scheme employed.

The performance curves shown in Figure 4.6(a) show that the diversity order obtained from

the two-branch Alamouti encoding scheme is the same as the two-branch MRC combining

scheme.
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Figure 4.6: Simulated and Theoretical Performance of Alamouti Transmit Diversity Scheme

The same scheme can be extended for two or more antennas with considerable increase in

performance when compared to the MRC combining scheme [11]. The performance curves

for the configuration of two transmit antennas and two receiver antennas is shown in Fig-

ure 4.6(b). The block diagram for the Alamouti scheme with two transmit antennas and two

receive antennas is shown in Figure 4.7.
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Figure 4.7: Alamouti Encoding with Two Receiver Antennas

4.4.1 Implementation

In this work, the high level modeling for the Alamouti encoder was realized using Simulink R©

which is then converted into the HDL code. After synthesizing the HDL code, the bitstream

is obtained using the vendor specific tool. The bitstream was flashed onto the FPGA of the
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Xilinx ML403 development platform and tested.

The implementation of Alamouti encoding at the transmitter is shown in Figure B.1. It uses

the multi-port switch blocks to switch the symbols to be transmitted across the antennas.

The whole design has been split to handle I and Q samples individually. There is a Dual

port random access memory (RAM) that stores the incoming elements. The Dual port

RAM helps in reading and accessing the memory elements at the same time. Generally, the

depth of the RAM is chosen based on the specific application. In this case, the depth is

chosen to accommodate 64 incoming samples corresponding to the FFT/IFFT depth. There

is a subsytem block that controls the operation of the whole Alamouti system block. The

subsystem block controls the timing and the read/write addresses.

The block diagram built out of the Simulink R© is shown in Appendix B. The sub-blocks shown

in Figure B.1 are pre-built libraries from Simulink R© that produce synthesizable HDL code

using the HDL code generation tool. It uses the dual-port RAM to store the incoming data

streams as well as the outgoing data streams to the IFFT block. The generated HDL code

is tested for functionality and timing using the ModelSim R© simulation tool. The results are

shown in Figure D.2. After this step in the validation process, the HDL code is synthesized

and the bitstream is generated for downloading onto a target FPGA. The logic resources

consumed in the target platform are shown in the following section.

4.4.2 Results

The sample output waveform from the SimulinkTM and Modelsim R© is shown in Figure C.2

and Figure D.2 respectively. The logic resource consumed by this module along with its

timing constraints are shown in Table 4.3 and Table 4.4 respectively. The target of this

module is to produce 2 outputs per clock cycle corresponding to two antennas. But in

this case, the samples are I and Q samples. Therefore, a Dual port RAM is used to hold

the incoming samples until the processing of the previously arrived I and Q samples. The

buffering and concurrent processing at the different switching elements helps in achieving
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the target of two outputs (I and Q samples dealt separately) per clock cycle.

Table 4.3: Logic Resources Consumed by Alamouti Encoder in XCV4FX12
Logic utilization Used Available Utilization
Number of Slice
Flip flops

148 10944 1%

Number of 4-
input LUTs

253 10944 2%

Number of occu-
pied slices

172 5472 3%

Table 4.4: Timing Summary for Alamouti Encoder in XCV4FX12
Minimum period 2.888ns
Maximum frequency 346.278 MHz
Maxim delay 6.554ns

4.5 Fast Fourier Transform

In any OFDM system, IFFT/FFT plays an important role in modulating/demodulating the

multiple sub-carriers onto/from a single OFDM symbol. It takes up a major chunk of the

circuit as well as power consumption. FFT/IFFT can be viewed as a mathematical operation

to perform discrete Fourier transform (DFT). Then the N-point DFT can be represented as:

Xk =
N−1∑

n=0

xne
j2πn

N k = 0, 1, 2, ....N − 1 (4.5)

Implementing this formula directly requires complexity to the order of ON 2 . Therefore,

Cooley-Turkey proposed the algorithm that decomposes the whole DFT operation into a

number of smaller operations that can be computed recursively. An example of this algorithm

is the computation of a 2-point DFT recursively. This operation is referred to as radix-2 FFT.

There are two types of FFT: Decimation-in-time (DIT) FFT and Decimation-in-frequency
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(DIF) FFT. In the case of DIT FFT, the input sequences are not read in sequential order,

while in the case of DIF FFT the output sequences are not read in sequential order.

Both DIT and DIF reduces to a primitive arithmetic operation called “butterfly” arithmetic.

This involves additions, subtractions and a complex multiplication. For computing a N-point

DFT through FFT there will be log2 N stages with each stage involving N
2

butterflies.

In this work, memory based architecture is employed for performing the IFFT/FFT opera-

tions. There is an input memory, a computational unit, and an output memory for storing

re-ordered bits. The basis of this work is the model provided by SimulinkTM . A 64-point

FFT model is constructed based on this reference model.

4.5.1 Implementation

Figure 4.8: Block Diagram of FFT/IFFT Design

The FFT/IFFT can be implemented through streaming mode, serial mode, or burst mode.

In the case of the streaming mode, the data to be transformed is received at the rate of one

data per cycle and then de-serialized (converting serial data to parallel data). Dual port

RAM is used to perform the de-serialization operation that helps store the previous data

values and read the currently written values. The writing/reading to/from the same memory
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location behaves differently in different target FPGA devices. Therefore, the model created

as PIM should reflect the target architecture before converting to PSM. For example, in

VirtexTM devices, reading and writing at the current location will result in reading the old

value while writing the new value. The author would like to acknowledge the work of The

MathworksTM Inc. The basic model created for this work is based on the sample provided

by the company.

Implementation of this FFT is divided into stages. The number of stages is dependent upon

the number of points of FFT. It is possible to implement a single stage to do all the butterfly

arithmetic. The FPGA circuit created for the single stage is then used for the rest of the

stages with iterations running over it. This implementation mechanism will result in less

FPGA area but increased latency in the output. But in the MIMO-OFDM system, latency is

of primary concern because the latency of the FFT/IFFT operation determines the OFDM

symbol duration. Therefore, each individual stage is implemented separately in this work.

Though it increases the chip area and power consumption, it produces the cycle count or

latency that corresponds to the OFDM symbol duration of the IEEE 802.11a standard. The

author of this work has written the controller for the data manipulation across stages. The

Simulink R© fixed point tool is used for the analysis of the blocks for fixed point operation.

The Fixed Point Tools advisorTM is helpful for performing this operation. A screen shot of

this tool is shown in Figure 3.5. The HDL coder tool is then used for generating the HDL

(Verilog/VHDL) code. The Modelsim R© is then used to check the functionality and timing

of the model. Once the timing and functional verification are done using Modelsim R©, the

HDL code is synthesized and implemented onto the target platform.

4.5.2 Results

A screen shot of the timing diagram is shown in Figure D.3. Figure D.3 validates the

expected output. As determined from the Modelsim R© output and by testing the actual

FPGA circuit, the delay/latency experienced by the FFT module is around 188-192 clock
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cycles for a 64-point 16-bit input/output. The maximum rate at which the OFDM mod-

ulator/demodulator can run is determined from this clock cycle count. While the OFDM

symbol duration is expected to be around 3.2 µs, the clock cycle required for the operation

of the transmitter/receiver circuit is expected to be around 58-60 MHz. To demonstrate

the portability of the models across different platforms, the FFT module results are shown

from its implementation on the Pico computing FX60 board that has VirtexTM -4 devices,

XCV4FX60, with larger area and resource than the ML403 XCV4FX12. The logic re-

source consumed by the FFT module along with its other important timing constraints are

shown in Table 4.5 and Table 4.6.

Table 4.5: Logic Resources Consumed by FFT in XCV4FX60
Logic utilization Used Available Utilization
Number of Slices 2862 25280 1%
Number of 4-
input LUTs

4266 50560 8%

Number of occu-
pied slices

172 5472 3%

Number of
FIFO/RAMs

4 232 37%

Number of
DSP48’s

80 128 62%

Table 4.6: Timing Summary for FFT in XCV4FX60
Minimum period 10.700ns
Maximum frequency 93.458 MHz
Maximum delay 6.976ns

The number of cycles taken by the FFT is key in the OFDM system design since it creates

the OFDM symbol required for transmission. In this work, the delay of the FFT operation is

188-192 cycles for the 64-point operation. Thus, for creating an OFDM symbol of duration

3.2 µs, the clock rate of the system should be around 58.75 MHz to 60 MHz. Assuming the

lower end of the operation, the OFDM circuit should run at a 60 MHz clock cycle.
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4.6 Synchronization

In any digital communication system synchronization is a major task. Though most of the

data in the system are digital in nature, the transmission over physical media are continuous

in nature. Therefore, there is a conversion of the baseband digital signal to a higher-frequency

carrier signal. This necessitates tuning the receiver to the same local oscillator frequency

and phase to perform coherent demodulation. In most cases, the receiver is not synchronized

with the transmitter and does not have accurate reference for the carrier signal and sampling

clock. Any offset in the local oscillator frequency and sampling time will result in distortion,

and in the case of OFDM, it shows up in the form of inter-carrier interference (ICI) and inter-

symbol interference (ISI), resulting in the loss of orthogonality. Additionally, the unknown

propagation delay between the transmitter and receiver results in phase offset. Doppler

shift imposes further frequency shift on the received signal. As described before, OFDM

that relies on the orthogonality of sub-carrier signals is more vulnerable to synchronization

errors.

Generally, in a OFDM based receiver system, synchronization can be applied either in the

time domain or frequency domain. The time or frequency synchronization techniques are

chosen based on the transmission type chosen, latency, and system performance [13]. The

IEEE 802.11a standard operates in burst transmission mode that makes the synchronization

tasks more sensitive and difficult. Moreover, WLAN based on IEEE 802.11a assumes that the

channel response does not change rapidly during the burst duration. Since the transmitted

data packets over the burst are of short duration, in milliseconds, this assumption holds.

Therefore the synchronization, either time or frequency, can be done only at the start of

the preamble. Estimated parameters are not changed during the burst duration. Most

of the synchronization tasks are done in the time domain because of the latency involved

in converting to frequency domain due to FFT. The periodic repetitions in the preamble

produce a good auto-correlation property that makes the time domain synchronization as

the preferred choice [13].
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Appendix A describes the preamble structure of IEEE 802.11a and the subsequent sections

will describe the techniques employed in the synchronization.

4.6.1 Packet Detection

The receiver should detect the start of the OFDM symbol in burst mode transmission like

IEEE 802.11a. As explained in the previous section, the periodic repetition of symbols at

the start of the preamble is exploited to detect the starting of the burst data. This technique

is also referred to as coarse symbol timing synchronization.

Figure 4.9: Packet Detection Block
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Figure 4.10: Packet Detection using the Short Preamble
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Figure 4.11: Packet Detection using the short Preamble

The delay and correlate algorithm [14] is used in this work to perform packet detection. It

searches the start of the symbol by means of the correlator. The time index at which the

packet starts is determined using the maximum searcher [15]. The delay and correlation

algorithm can be viewed as a modified version of Schmidl’s [16] algorithm. The delay and

correlation block is represented in Figure 4.9. There are two sliding windows. One window

cross-correlates the received signal and the delayed version of the received signal. The other

window is used to calculate the received signal energy during the cross-correlation duration.

The second sliding window makes the decision statistic independent on the absolute received

power level. The decision statistic is computed as below [15]:

cn =
L−1∑

k=0

rn+kr
∗
n+k+D (4.6)

pn =
L−1∑

k=0

rn+k+Dr ∗
n+k+D =

L−1∑

k=0

|rn+k+D|
2 (4.7)

In the above equations, the value D represents the separation between two periodic symbol

intervals and L represents the repetition period length. Then the decision metric, mn, is

calculated as follows [15],

mn =
|cn |

2

p2
n

(4.8)
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Figure 4.12: Recursive Procedure Represented in Block Diagram

Example decision statistics are shown in Figures 4.10(a), 4.10(b), 4.11(a) and 4.11(b).

The step is the indication of the start of the packet. The response prior to the start of the

packet consists of only noise resulting in almost zero correlation. Thus the decision statistic

remains at a low level before the start of the packet. Because of the repetition of short

preambles in IEEE 802.11a and IEEE 802.16e, there is a small plateau or width indicating

the ISI free region. The presence of noise components causes distortion in the width of the

plateau. Having a longer correlation length can help to reduce the distortion. Therefore,

longer period length in the preamble and longer correlation length effectively increases the

robustness of the decision metric in terms of SNR and timing detection.
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4.6.1.1 Implementation

The arrangement of the preamble structure and the sliding window mechanism helps to

reduce the number of arithmetic operations per correlation output. A recursive implementa-

tion is exploited for the synchronization algorithms. For example, consider the Equation 4.7.

There are L complex multiplications and L+1 complex additions in each step. In order to

reduce this computation, a recursive method is used as follows:

cn+1 = cn + rn+L × r ∗
n+2×L − rn × r ∗

(n+L) (4.9)

Without the recursive operation the number of operations required for computing one output

is L complex multiplications and L+1 complex additions. This cycle is repeated for the

number of samples buffered. By doing the recursive operation, the correlation computation

following the first output sample point requires 2 complex multiplications and 3 complex

additions. Thus the author of this work found significant improvement in the latency of this

block using the recursive operation.

4.6.1.2 Results

The logic resources consumed by the packet detection block are given in Table 4.7 and the

timing summary in Table 4.8. The packet detection Simulink R© block and output are shown

in Figure B.4 and Figure C.4 respectively. The table values indicate the lower maximum

operational clock frequency. The major consideration of this design block is the logic resource

utilization rather than the latency. The operational frequency determines the samples that

it can consume per cycle. In this case it is necessary to search for the 160 symbols of the

short preambles.
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Table 4.7: Logic Resource Utilization of Packet Detection Algorithm in XCV4FX12
Logic utilization Used Available Utilization
Number of Slices 501 5472 9%
Number of slice
Flip flops

525 10944 4%

Number of 4-
input LUTs

805 10944 7%

Number of
GCLKs

1 32 3%

Number of
DSP48’s

21 32 65%

Table 4.8: Timing Summary of the Packet Detection Algorithm in XCV4FX12
Minimum period 16.446ns
Maximum frequency 60.806 MHz
Maximum delay 6.987ns

4.6.2 Symbol Timing Estimation

The coarse symbol timing estimation/packet detection is followed by the symbol timing

estimation. In the OFDM based system, it becomes necessary to determine the sample

point at which FFT can be effectively taken. Basically, the estimated point is the place at

which the data part of the OFDM symbol starts. This can be viewed as fine symbol timing

synchronization. In the case of packet based systems like IEEE 802.11a, the start of the

exact symbol timing has to be determined as soon as possible in order to perform channel

estimation and packet header determination. The packet header contains information like

code rate, modulation scheme, and data rate.

The symbol timing estimation is determined by cross-correlating the received signal with

the known preamble. Basically, this step helps in determining the channel impulse response.

The starting of the exact symbol is important in demodulating the data on the sub-carriers.

The cross-correlation can be computed by the following function,

p̂rp(k) =
L−1∑

k=0

rn+kpk (4.10)
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where p is the known preamble with L samples and r is the received signal. Then we

determine the position at which maximum magnitude occurs:

φ̂max = arg max
k

|p̂rp(k)| (4.11)
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Figure 4.13: Symbol Timing Detection using the Long Preamble

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sample index, n

|p
r rp

|

(a) with SNR = 10 dB

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sample index, n

|p
r rp

|

(b) with SNR = 20 dB

Figure 4.14: Symbol Timing Detection using the Long Preamble

The ideal point at which the maximum value should occur is at the end of the cyclic prefix

and the start of the data part of OFDM symbol. This is difficult to duplicate in practice.
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4.6.2.1 Implementation

The implementation of symbol timing detection is also done using the recursive procedure

as explained for packet detection. This reduces the latency for the estimation of the symbol

timing. The Simulink R© block for symbol timing estimation is shown in Figure B.5. An

example output of the Simulink R© block for symbol timing estimation is shown in Figure

C.5. The recursive procedure reduces the latency and computational load for the symbol

timing block. This is clearly shown in the following results section.

4.6.2.2 Results

The logic resources consumed by the symbol timing block is shown in Table 4.9 and the

timing summary in Table 4.10. This block mostly works with the streaming symbols. Thus,

the operational frequency of this circuit can be higher than its predecessor.

Table 4.9: Logic Resources Consumed by Symbol Timing Estimation Algorithm in
XCV4FX12

Logic utilization Used Available Utilization
Number of Slices 134 5472 2%
Number of slice
Flip flops

137 10944 1%

Number of 4-
input LUTs

241 10944 2%

Number of
GCLKs

1 32 3%

Table 4.10: Timing Summary of the Symbol Timing Estimation Algorithm in XCV4FX12
Minimum period 6.845ns
Maximum frequency 146.090 MHz
Maximum delay 14.517ns
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4.7 Frequency Offset Estimation

Frequency offset results from the mismatch between the oscillators of the transmitters and

receivers, Doppler shifts, and phase noise in non-linear channels. This results in ICI and

amplitude scaling due to the loss of orthogonality.

The estimation of frequency offset can operate in tandem with coarse symbol timing synchro-

nization/packet detection. It also operates on the periodicity of the short training symbols

present in the preamble of both the IEEE 802.11a and IEEE 802.16e standards. The Maxi-

mum Likelihood Estimation for frequency offset is given by [14]:

θ̂ =
L−1∑

k=0

rnr
∗
n+D (4.12)

Then the expression for frequency offset is given by,

f̂∆ = −
1

2πDTs

6 θ̂ (4.13)

where Ts is the sampling period. In general, the frequency offset is normalized with respect

to sub-carrier spacing fs = 1
NTs

. The normalized estimate consists of two parts. One is the

integer offset and other is the fractional offset. The initial coarse estimation from the above

equations will give only the fractional offset, i.e. within the plus half or minus half of the

sub-carrier spacing. This is because the angle that can be resolved is [−π, π]. The range of

frequency offset that can be resolved is directly related to the length, L, of repeated symbols.

The delay (D) and length of the symbol (L) together determine the range of frequency offset

correction. Basically, the smaller the length of the repeated symbols, the larger the range of

frequency that can be corrected.

For example, consider the short preamble of IEEE 802.11a with the sample time 0.05µs and
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delay 16 samples. The maximum delay that can be estimated is:

̂f∆max =
1

2DTs

=
1

(2 × 0.05 × 10−6 × 16)

= 625KHz (4.14)

This maximum error meets the requirement of the IEEE 802.11a standard specification.

IEEE 802.11a operates at the carrier frequency of around 5.2-5.3GHz with maximum oscilla-

tor error specified as ±20ppm. Thus, with maximum oscillator error at both the transmitter

and receiver, the maximum error amounts to 40 ppm. The frequency error resulting from this

deviation is equivalent to 212 KHz. Thus, maximum frequency error is within the range of

this algorithm. As the repetition length of the training symbol increases, there is a decrease

in the range of the frequency error that can be corrected.

The above step results only in coarse frequency correction by making use of the short train-

ing symbols. In order to deal with integer frequency offsets, the fractional frequency offset

compensated signal is then cross-correlated with long training symbols following the short

training symbols. This can work in tandem with fine symbol timing synchronization. The

output of the correlator will be maximum at the point at which the long preamble is modu-

lated by the signal with correct integer frequency offset. The number of correlators required

is limited by the number of integer offsets that can be corrected. Otherwise, the same

correlator can be matched to a different integer frequency offset.

There is also phase error in the OFDM symbol due to phase noise and phase offset. Therefore

the carrier phase has to be tracked at every OFDM symbol. This results in the rotation of

the constellation resulting in the crossing of decision boundaries. This is corrected in the

frequency domain using the pilot sub-carriers transmitted in each OFDM symbol. The

pilot sub-carriers in the IEEE 802.11a and IEEE 802.16e standards are used for channel

estimation and phase tracking. In both of these standards, the pilots are transmitted with
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higher power. This makes the identification of the pilot sub-carriers easier at the receiver.

Because of the FFT operation at the receiver, the resulting OFDM symbol at the receiver

will be the multiplication of channel frequency response and the transmitted pilot and data

sub-carriers. In the case of residual frequency error, the pilot carrier would have undergone

rotation equivalent to this frequency error as given by the following equation.

Rn,k = Hn,kPn,ke
j2πf∆ (4.15)

where Hk is the channel frequency response. If the channel estimate Ĥk is available, then

the phase estimate is given by [5]:

φ̂n = 6

Np∑

k=1

Rn,k(Ĥn,kPn,k)
∗ (4.16)

where Np is the number of sub-carriers. If the channel estimate is perfect,Hk = Ĥn,k, then

the equation applies:

φ̂n = 6

Np∑

k=1

|Hn,k |
2|Pn,k|

2ej2πf∆ (4.17)

With pilots amplitude equal to unity, the phase estimate is given by [5]:

φ̂n = 6

Np∑

k=1

|Hn,k |
2ej2πf∆ (4.18)

There will be distortion in the phase estimate if the channel estimate is not known.

Frequency offset correction is the next major task. As with estimation, this can be imple-

mented in the time domain or frequency domain. In most of the current digital baseband

processing techniques, changing the local oscillator (LO) frequency based on the frequency

offset estimation is a tedious process. On the other hand, compensating for phase rotation in

the frequency domain can be easily implemented in real time baseband processing systems.
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Figure 4.15: Performance of Frequency Offset Estimation Algorithm
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The phase derotator is required for the correction. It can be implemented using a frequency

domain interpolator. The interpolation will produce a signal at different frequencies. The

interpolated output is then multiplied with the FFT output signal to reduce the ICI [17].

4.7.1 Implementation

The performance of the frequency offset estimation algorithm is shown in Figure 4.15.

It indicates that after the first 16 samples, the estimated value for the frequency offset

converges to the actual offset value. Basically, it takes 16 samples, equal to the period

of short training sequence, to converge. The blocks necessary for the implementation of

frequency offset estimation are derived from the Xilinx System generator for DSPTM . Though

the Simulink R© HDL coderTM has a block for computing trigonometric functions, it is not

currently working/supported by The Mathworks, Inc. So the CORDIC IP core from Xilinx,

Inc. is used in this work. The basis of the frequency offset correction is the numerically

controlled oscillator (NCO) working in the time domain. The NCO operating in the time

domain acts as a time-domain de-rotator. It is basically a lookup table with entries from

the sinusoidal wave over the quarter of the period. The outputs from the NCO are complex

multiplied with the incoming received signal. This work attempts to correct only fractional

frequency offset.

4.7.2 Results

The logic resources consumed by the CORDIC IP core provided by Xilinx, Inc. are shown

in Table 4.11. The timing summary is tabulated in the Table 4.12. From the experience of

building models from Simulink R© HDL coderTM , it is clear that the resources consumed by

this particular core are high.
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Table 4.11: Logic Resources Consumed by CORDIC IP in XCV4FX12
Logic utilization Used Available Utilization
Number of slices 608 5472 11%
Number of slice
flip flops

1018 10944 9%

Number of 4-
input LUTs

1042 10944 9%

Number of
GCLKs

1 322 3%

Table 4.12: Timing Summary for CORDIC IP in XCV4FX12
Minimum period 4.554 ns
Maximum frequency 219.569 MHz
Maximum delay Not applicable

4.8 Channel Estimation

Channel estimation is necessary for the decoding of Alamouti encoded symbols. Inaccurate

estimation of the channel will result in considerable degradation of the performance of the

OFDM based wireless system. In particular, Alamouti encoded symbols rely on accurate

channel estimation for decoding at the receiver.

There is an apparent problem in the implementation of channel estimation techniques em-

ployed in the generic OFDM scheme for the MIMO-OFDM case. In MIMO systems, it is

clearly known that the received signal is the combination of signals transmitted from multi-

ple antennas at the receiver. In order to separate the pilot symbols at the receiver a pseudo

random generator is specified in the IEEE 802.16e standard. This makes the pilot sym-

bols transmitted from multiple antennas orthogonal to each other. This makes the symbols

placed in a two dimensional time frequency grid orthogonal to each other in time.

Once the pilots position has been defined, it can be taken advantage of by using well-known

channel estimation algorithms. This is referred to as pilot-aided channel estimation. However

this kind of estimation cannot be applied directly in this work because of the diversity

technique employed at the transmitter. Therefore, several channel estimation techniques
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by Li et al [18],[19] dedicated for MIMO-OFDM systems were considered. The techniques

employed in the literature require intense computational complexity. So, we decide to employ

a modified estimation mechanism for the MIMO-OFDM case using the techniques mentioned

by Coleri et al [20].

In this case, the pilot symbols are arranged in the OFDM symbol based on the IEEE 802.16e

specification [21]. The polarity of the pilot symbol transmitted from each antenna is deter-

mined by the linear feedback shift register that makes the pilot symbols transmitted in each

OFDM symbol orthogonal to each other.

(a) Block type (b) Comb type

Figure 4.16: Pilot Arrangement for Channel Estimation

Generically, the pilot symbols can be arranged in block-type or comb-type. Examples of this

arrangement are shown in Figure 4.16. In the block-type arrangement, all the sub-carrier

frequencies in the ODFM symbol are used as pilots, whereas in the comb-type arrangement

only certain frequencies are used as pilot frequencies. In both the block-type and comb-type

arrangement the estimation at pilot frequencies can be done either by the least squares (LS)

estimation technique or minimum mean square error (MMSE) estimation technique. In this

work, only the LS estimation technique is employed because of its reduced complexity. In

the case of the comb-type arrangement the pilot frequencies are repeated periodically in

each OFDM symbol and the estimates obtained at pilot frequencies are used to compute
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the estimates at non-pilot frequencies. Some of the interpolation techniques used are linear,

low-pass, and spline cubic. The mathematics behind each of the techniques is explained in

Appendix E.

The performance of comb-type estimation under various channel conditions is shown in

Figure 4.17, Figure 4.18, and Figure 4.19.
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Figure 4.17: Performance of Channel Estima-
tion Algorithm in Slow Fading Channel
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Figure 4.18: Performance of Channel Estima-
tion Algorithm in Fast Fading Channel
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Figure 4.19: Performance of Channel Estimation Algorithm in AWGN channel

4.8.1 Implementation

Based on the performance analysis of various channel estimation techniques it is clear that the



Chapter 4. Space Time Block Coding and OFDM System Design 64

linear interpolation technique is an optimal channel estimation mechanism for the Alamouti

encoded OFDM system. While working in this module, the author realized that it takes

less time to directly code in HDL for certain simple modules like these. The primary reason

being that the MBD tools used in this work do not have the necessary blocks to implement

the channel estimation mechanism. The linear interpolation technique is implemented by

behavioral modeling or direct HDL coding.

4.9 Convolutional Encoder

Both the IEEE 802.11a and IEEE 802.16e standard use a convolutional encoder as a channel

coding technique. Its implementation is very straight forward. In general, a convolutional

encoder generates its coded information by convolving the input message sequence with a

set of coefficients. This set of coefficients depends on the code rate employed. For the IEEE

802.11a standard, a generic rate 1
2

convolutional encoder has been defined. The other code

rates like 2
3

and 3
4

are realized using a separate puncturing block. This puncturing block also

performs an interleaving operation.

Figure 4.20: Block Diagram of Convolutional Encoder used in the IEEE 802.11a Standard

A generic (n, k) convolutional encoder takes k input message bits at each clock cycle and

produces n coded bits as output. One can view each coded bit as the sum of k convolution

outputs. The convolutional encoder is defined by the parameter k called the constraint length
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of the code. It defines the number of coded bits that depends on the current input bits.

A 1
2

convolutional encoder is shown in Figure 4.20. The constraint length determines the

memory depth of the encoder. This has direct effect on the complexity of the Viterbi Decoding

mechanism. The shift registers shown in Figure 4.20 are initialized to zero before the start

of the message sequence and it has to be returned to an all-zero state after the encoding of

all message bits. The output sequence is obtained by convolving the input bit sequence with

the impulse response of the convolutional encoder. In this case, the convolutional sum is

operated through the Galois field operation. It reduces to a bit XOR operation in this case.

In the case of IEEE 802.11a, the rate of the code is 1
2

with the constraint length k = 7 and

the generator polynomials/impulse response specified as g0 = 1338 and g1 = 1718. These

generator polynomial sequences specify the tapping points in the encoder. Implementation

is detailed in the subsequent section.

4.9.1 Implementation

Implementation of the Convolutional encoder is very straight forward. Generally, a convo-

lutional encoder can be implemented by either the lookup table method or the encoder is

represented using shift registers. The shift register method is employed in the work because

of the circuit’s ability to operate at a faster clock rate. The logic resource occupancy of the

lookup table resulted in resource crunch during the mapping process of the circuit imple-

mentation. In most of the cases here, the focus is on using continuous streaming operations

rather than using a complex sequential logic to implement the circuit. Implementation in-

volves the use of delay elements as the elements of the shift register and the Galois field

addition operation that reduces to XOR. A snapshot of the model created using SimulinkTM

is shown in Figure B.3. The corresponding output is shown in Figure C.1. The model is then

converted to HDL code using the automatic code generation tool. The options going into

this code generation play a key role in creating a synthesizable HDL code. The generated

HDL code is simulated using ModelSim R©. A screen snapshot is shown in Figure D.1. The
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logic resources consumed, and other details that affect the performance of this circuit in the

overall system are shown in the results section.

4.9.2 Results

As shown in Figure 4.20, the convolutional encoder can be viewed as a shift register with

outputs of registers at various locations being tapped to produce the output. Since the

circuit is mostly sequential, comprised only of delay elements, the circuit is expected to be

able to operate at a high frequency.

Table 4.13: Logic Resources Consumed by Convolutional Encoder in XCV4FX12
Logic utilization Used Available Utilization
Number of slices 27 5472 0%
Number of slice
flip flops

48 10944 0%

Number of 4-
input LUTs

24 10944 0%

Number of occu-
pied slices

172 5472 3%

Table 4.14: Timing Summary for Convolutional Encoder in XCV4FX12
Minimum period 0.759ns
Maximum frequency 1317.176 MHz
Maxim delay 6.814ns

4.10 Scrambler/De-scrambler

A scrambler is used in the IEEE 802.11a standard for the DATA, SERVICE, pad, and tail

parts using a length-127 frame-synchronous scrambler. The purpose of the scrambler in most

cases is to provide an extra level of encryption. But in this case, it is used to scramble the

data so that the probability of transmission of data bit sequence that resembles the short



Chapter 4. Space Time Block Coding and OFDM System Design 67

Figure 4.21: Block Diagram of Scrambler/De-scrambler used in the IEEE 802.11a Standard

training and long training sequences is very small. This helps to avoid the false alarm of

packet detection. The IEEE 802.11a standard specifies the scrambler to be initialized with

any non-zero pseudo-random sequence. The same scrambler structure, as shown in Figure

4.21, is used for descrambling at the receiver. The generator polynomial for this scrambler

is given as,

S (x ) = x 7 + x 4 + 1 (4.19)

The initial state of the scrambler gets added to the preamble that helps the descrambler

in estimating its initial state. As with the convolutional encoder, the mathematical opera-

tion behind this scrambler is based on Galois field arithmetic, which essentially reduces the

operations to shifting and XORing. The type of scrambler used here can be referred to as

additive scrambler. The two things that define the scrambler are the generator polynomial

and initial state. IEEE 802.11a specifies the initial state to be either all-ones or 1011101.

This initial state determines the 127-bit sequence generated by the scrambler. As mentioned

before, the initial state has to be known at the receiver to correctly de-scramble the data.

4.10.1 Implementation

The mathematics behind the scrambler/descrambler is similar to the convolutional encoder.

The snapshot of the Simulink R© is shown in Figure B.2. The corresponding Simulink R© and
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Modelsim R© is shown in Figure C.3 and Figure D.4 respectively. The results sections will

show the logic resources consumed in the target FPGA platform. The numbers present in

the table are of significance while doing overall system integration.

4.10.2 Results

The logic resources consumed by the scrambler module along with its timing specification

are shown in the following tables.

Table 4.15: Logic Resources Consumed by Scrambler/De-scrambler in XCV4FX12
Logic utilization Used Available Utilization
Number of slices 4 5472 0%
Number of slice
Flip flops

7 10944 0%

Number of 4-
input LUTs

2 10944 2%

Table 4.16: Timing Summary for Scrambler/De-scrambler in XCV4FX12
Minimum period 1.179ns
Maximum frequency 848.033 MHz
Maximum delay 6.165ns

4.11 Other Modules

In the course of making an OFDM based radio, there were a few other modules that were

created in addition to the modules mentioned above. Some of the blocks include BPSK,

QPSK, and Viterbi decoding. Among these, the implementation of Viterbi decoding is the

most complex. Its logic resource occupancy and timing summary are given in Tables 4.17

and 4.18. Its significance is manifested from its resource occupancy in the FPGA chip.

Moreover, its maximum operational frequency is the lowest.
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Table 4.17: Logic Resources Consumed by Viterbi Decoder in XCV4FX12
Logic utilization Used Available Utilization
Number of slices 3469 5472 64%
Number of slice
Flip flops

3411 10944 30%

Number of 4-
input LUTs

4374 10944 41%

Number of
GCLKs

1 32 3%

Table 4.18: Timing Summary for Viterbi Decoder in XCV4FX12
Minimum period 14.943 ns
Maximum frequency 60.656 MHz
Maximum delay 6.156 ns

For implementing the system in real-time, there are other modules that are required. This

includes CORDIC and FIFO buffers. Both these modules were implemented using Xilinx

IP cores. The author attempted to implement the CORDIC algorithm using Simulink R©

blocks but the results were not satisfactory. The CORDIC module played a key role in

the demodulation block. The FIFO buffers along with the DCM clock manager are very

specific to the Xilinx FPGA implementation. These are necessary for operating the blocks

in multiple clock domains.

4.12 Implementation Issues

4.12.1 Validation and Testing

The author tested the individual modules using the stimuli generated from the Simulink R©

tool and MATLABTM simulations. Initially the model is validated for output using the

Simulink R© tool. Then the module is tested using the pre-synthesis ModelsimTM tool. The

output obtained from the simulation tool is used for the verification of the circuit. In order to

verify the testing, the HDL code generated by the Simulink R© HDL coder TM is synthesized,
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mapped, placed, and routed using Xilinx ISETM tools. There are certain issues associated

with this kind of testing. There are cases where the circuit synthesized using the Xilinx

ISETM tool will not work on the target FPGA platform. The bitstream generated from

the Xilinx ISETM tool is then used with the EDK environment of the ML403 development

board for testing. The circuit generated by the author was added as a peripheral using the

Peripheral Local Bus (PLB) of the PowerPCTM 405. While creating this bus there are a

number of options available to configure the peripheral. One such option is to configure the

input and output FIFO’s required for sending and receiving the data from the peripheral.

The author of this work created the file with input stimuli from MATLABTM and then send

it to the input FIFO buffer of the peripheral and read the output created by the peripheral

from the output FIFO. This is one of the basic ways to test the circuit. In order to test

the multiple sub-parts of the system, the results created by each individual module are used

as the input to the next subsequent module of the system. A typical block diagram for

performing this operation is shown in Figure 4.22.

Figure 4.22: Interfacing Between PowerPC R© and FPGA Circuit
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4.12.2 Timing Constraints

The major part of the FPGA system design process is the verification of the timing con-

straints. This is very important from the system perspective. There are two important

times that determines the validity of the signal in the sequential circuit. They are setup

time and hold time. The setup time determine the amount of time the input signal should

arrive before the arrival of the clock. Similarly, the hold time determines the amount of time

the input should be held high in order for it to be realized as valid input and propagated

to the next flip-flop or memory. Any jitters in these times or clock will cause the flip flops

to go in a metastable state, resulting in erroneous output propagating to the entire circuit.

Most of these verification and validation mechanisms cannot be automated. The user who is

designing the system should work in conjunction with the person who is doing verification to

make sure that the timing requirements required for his/her system are met. Additionally,

there is a propagation delay associated with the combinational logic between the flip-flop

elements. This determines the amount of delay that is going to be experienced by the user

defined circuit while propagating the signal from the input to the output. This determines

the minimum delay and the maximum frequency at which this circuit can operate.

4.12.3 Training Sequences

The author of this work realized that designing a complex system like a MIMO-OFDM based

radio requires lot of understanding of the real time scenarios that will affect the performance.

For example, transmitting a training sequence simultaneously over multiple antennas will

make the synchronization process very difficult at the receive antenna. The basic assumption

made in this design is that the training sequences are transmitted orthogonally in time.

The design of this sequence is shown in Figure 4.23. This is important for estimating the

channel across multiple transmit antennas and receive antennas. This does not avoid the

problem of overlapping pilot symbols transmitted from multiple antennas at the same sub-

carrier location. For this case, the pilot symbols have to be orthogonal to each other in the
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Figure 4.23: Arrangement of Training Sequences in the Preamble

frequency domain. The pilot arrangement to deal with this situation was explained in the

channel estimation section.



Chapter 5

System Configuration for FPGA

Board with USRP2 as RF Front End

As mentioned in Chapter 1, the intention of this work is to perform baseband processing for

a MIMO system in the USRP2 SDR platform. Because of implementation constraints, the

goal of this work was modified towards USRP2 acting as an RF front end with an auxiliary

FPGA board performing the baseband processing.

The overall system consists of a USRP2 and Xilinx ML403 development board with VirtexTM -

4 on it. The PowerPC R©-405 core present in the FPGA of the development board is helpful

for controlling the configuration of the USRP2. Thus the overall setup is shown in the

following Figure 5.1.

5.1 ML403 Development Board and Its Interfaces

The ML403 development board is powered by a Virtex R©-4FX12 FPGA and is used for

embedded system development. Its base clock runs at the speed of 100MHz. It has a

PowerPC R©-405 core on it that can run at the speed of 300MHz. It is a simple embedded
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platform for testing and prototyping. It does not have an analog-to-digital(ADC) converter

or a digital-to-analog (DAC) converter. It has peripherals like Ethernet, USB, UART, etc.

The major emphasis in this work is to interface the PowerPC R©-405 core with the Ethernet

core present in the ML403 system and to make this interface take critical control of the Eth-

ernet core present in the USRP2. Its major connection bus includes CoreConnectTM archi-

tecture that is helpful in making different types of bus connections between the PowerPC R©

and peripherals. For example, the buses include a processor local bus (PLB), on-chip pe-

ripheral bus (OPB), and device control register (DCR) bus. The PLB bus has an intellectual

property interface (IPIF) that provides a connection to user-created peripherals. This in-

terface can be viewed as a memory-mapped I/O that aids in accessing the peripherals, like

addressing the register for reading and writing.

The peripherals can interface with a PowerPC R© through an intellectual property interface

(IPIF). The user can also write his/her own driver for the interface. The circuit performing

baseband processing is interfaced with the PowerPC R© using the IPIF. The IPIF is respon-

sible for simplifying the CoreConnectTM bus system by representing it as simple control

registers. It helps in maintaining the modularity of the custom IP block created by making

its IPIF interface independent of the bus. All the features, like interrupts, DMA, and status

registers, necessary for the operation of the custom IP or existing peripheral in the ML403

board are provided by IPIF. The IPIF drives the IP block with the same clock that its bus

is connected to.

Then comes the protocol required for talking to the UDP packets sent externally from the

USRP2. The advantage of using the ML403 board is the ready availability of a Linux operat-

ing system to be run on the PowerPC R© and drivers required for interfacing the peripherals.

The procedure for installing Linux on the PowerPC R© is based on references [22] and [23].

The clocks required for the operation of both the PowerPC R© processor and bus are driven

by the single system clock source running at 100Mhz. The VirtexTM -4 uses digital clock

manager (DCM) to generate multiple frequency clocks.
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5.1.1 Device Interfacing

Once the Linux operating system is installed on the PowerPC R©, it is ready to access the

peripherals present in the board. The devices present in the board are accessed as the

memory-mapped I/O. On top of it, the Linux kernel has pre-built drivers for accessing Eth-

ernet MAC and various other devices. The lightweight Internet protocol (LwIP) is required

for accessing the UDP packets. LwIP requires Xilkernel to manage the threads, semaphores,

etc. The Linux operating system controls the memory management unit (MMU) that takes

the address of the register representing the device and converts it into a physical address for

accessing the device. The significance of this approach is that the user can provide the user

level code to access these devices rather than writing drivers at the kernel level.

The addressing mechanism for accessing the devices is very straight forward. It takes the

base address of the peripheral or device and uses the offset to read and write from it.

For a developer, this is just like referencing and de-referencing the pointer, as used in C

programming language.

5.1.2 Lightweight Internet Protocol

LwIP is a networking stack developed for low memory footprint embedded applications. The

Xilinx EDK environment has customized this protocol to run on the ML40x development

boards using a PowerPC R© processor. The EDK user manual from Xilinx, Inc. helps us

understand this integration. It uses Ethernet MAC to send and receive packets. EDK uses

two types of Ethernet IP’s: xps ethernetlite and xps ll temac. The former is used for low

bandwidth applications while the later is used for high bandwidth applications. It requires

a periodic interrupt controller to look for the packets in the buffer. These interrupts inform

the software for packet reception and transmission.

The Linux present on the PowerPC R© acts as a controlling point. It reads at the speed of

300MHz, and the system has an Ethernet core interfaced with a FIFO buffer. The block
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diagram is shown in Figure 5.1. Thus the PowerPC R© is responsible for all the data transfers

happening between the baseband processing core and the Ethernet MAC core. This implies

that data transfer is very slow with around 50 cycles required for accessing the memory

mapped I/O peripherals. This forced the processor to be clocked at higher speed of 300

MHz for working with other peripherals running at 100 MHz or lesser speed.

5.2 USRP2 and Its Drivers

The USRP2 is an SDR platform useful for building radios with a wide range of applications.

There are different kinds of daughter boards available to target different kinds of applications.

The USRP2 is a successor to the USRP, with added capabilities in terms of FPGA and

Gigabit Ethernet connection. It uses a Xilinx Spartan-3 FPGA with its ADC producing

14-bit samples at the rate of 100 MS/s and its DAC capable of producing 16-bit 400 MS/s.

The interpolation and decimation factors determine the final data rate delivered to the host

machines. There is a separate channel that operates between the USRP2 and hosts that

control the various configuration parameters of the FPGA present in the USRP2.

5.2.1 UHD Driver

The interfacing of the USRP2 with the host happens through two kinds of drivers. They are

raw Ethernet sockets and universal data protocol (UDP) packets. In this work, interfacing

with the FPGA is attempted through UDP packets. The primary reason being that the

“Universal Hardware Driver” released recently by the GNURadio community can be used to

interface USRP2 with all types of operating systems. It uses the UDP packet protocol. It

also makes deterministic handling of data packets at the FPGA board possible. It operates

independent of the GNURadio framework and only requires application interfaces (API) to

interact with the core of the driver.



Chapter 5. System configuration for FPGA board with USRP2 front end 77

Figure 5.1: Interfacing Between USRP2 and PowerPC R©

The testing of the peripherals and bus signals during interfacing is done through the Chip-

Scope ProTM tool of Xilinx, Inc. An interesting observation was that the FPGA present on

the USRP2 is not configured to send the data packets without the configuration of its FPGA

using the control channel. This control channel is responsible for indicating to the USRP2

for starting/stopping the transmission/reception.

5.2.2 Channels

The design of the USRP2 indicates that the data to be received from the USRP2 can be

in the form of a complex short or int. The chosen data type and decimation factor are

indicated to the USRP2 by using the control channel. Once the control signal is received



Chapter 5. System configuration for FPGA board with USRP2 front end 78

by the USRP2, the data are formatted to send to the host. The size of the receiving buffer

dictates the number of samples that can be processed by the receiver or transmitter. There

is a challenge in making the USRP2 transmit samples to reach the host at a data rate that

can be handled by the FPGA of the developmental board. The amount of buffer given by

the PowerPC R© for each of the peripherals in the board varies from 2k to 32K bytes of

memory. This limited memory acts as FIFO that can be configured for transmission and

reception of samples on the developmental board. Each time the PowerPC R© accesses the

peripheral there is a 50 cycles cost for it. Though the processor is running at a speed of

300 MHz, it is not sufficient to achieve the processing speed required for high end wireless

applications. However the work presented here acts as a prototype for offloading the signal

processing applications onto the FPGA. There is a high speed connectivity option available

to connect the USRP2 with the FPGA board. It is explained in the conclusion section. The

USRP2 with its own firmware is capable of achieving the MIMO system configuration. But

the GNURadio community does not yet support a MIMO configuration of the USRP2 using

the current drivers.

While transferring data using the LwIP protocol, the RAW API mode is used. Instead if

the socket mode is used with the LwIP protocol, then system cannot operate at 1000 Mbps.

The present USRP2 configuration supports only 1000 Mbps operation. The RAW API

model requires the OS to take care of the processing of the headers. This gives the flexibility

for handling the header format required for transmitting and receiving data specific to the

transport protocol of the USRP2. The channels shown in Figure 5.1 operate over the same

physical channel i.e. Ethernet cable.



Chapter 6

Conclusions and Future Work

This chapter presents the concluding remarks and directions for future work that can be

based on this work.

6.1 Concluding Remarks

The work presented here acts as a proof-of-concept for the model based design and the

deployment of signal processing algorithms required for SDR on an FPGA. Over the years,

the development of SDR has required rapid re-configurability and wide bandwidth processing

capability. The majority of the current wireless standards like WLAN, WiMAX, digital video

broadcast for terrestrial (DVB-T), long term evolution (LTE), etc. offer a data rate in the

range of 10 to 100 Mb/s and require a higher processing capability than that of GPPs or

DSPs. At the same time, the level of re-configurability has to excess that of applications

written on ASICs. Incorporating these diverse standards on the FPGA of SDR platform

satisfies the need for re-configurability and latency sensitive processing requirements.

With establishment of the interfacing, as described in the Chapter 5, this work promotes

the idea of design and development of SDR on the lines of GNURadio with an FPGA
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acting as an underlying processing platform. There is a large number of open source signal

processing blocks being developed for the GNURadio framework. Converting these signal

processing blocks into a FPGA specific code is going to take tremendous effort and time.

In order to reduce the development time for the applications targeting SDR applications, a

MBD based design flow is explained in Chapter 3. The work presented in Chapter 4 shows

the effectiveness in the application of MBD design flow for developing wireless baseband

algorithms on the FPGA. From Chapter 4, it is clear that the user with his/her capability

can create an IP core rather than relying on the third party IP core for development. These

tools helps in reducing the development time and cost. The sections presented in the Chapter

4 prove that the individual signal processing block can be developed on the lines of the

GNURadio framework using MBD based design flow. Thus the design flow presented in

Chapter 3 is an efficient and robust means of developing a FPGA based SDR system.

With the rapid advancement of communication technologies, there are continuous changes

in the underlying hardware platform, characteristics of the hardware, and the operating

conditions of the system. The use of tools and design flow as mentioned in Chapter 3, avoids

the need for a complete re-design of the system. The use of these tools promotes the idea of

adaptability, portability, and scalability. The designs created as examples in Chapter 4 can

be used for porting to different platforms from multiple vendors. The effect of change in the

operating conditions of the system design can be easily tested by the tools used in this work.

The work flow presented in this work can be used for the rapid prototyping and development

of the FPGA based SDR system. The models created for constructing a MIMO-OFDM

transceiver prove the ability to convert a mathematical model into an executable specification

that represents a PIM. A PIM model is used for converting to PSM after considering the

hardware characteristics.
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6.1.1 Hardware Platform

The hardware platform used in this work has a lot of limitations. It is limited by the logic

resources available in it. Putting a large receiver like an OFDM radio on the FPGA of

ML403 is a challenging task. The PowerPCTM along with its peripherals takes up more than

60-70% of the logic resources available on the FPGA with very few slices remaining for the

user generated IP circuit. In the future, FPGA platforms like higher versions of VirtexTM -

4, and VirtexTM -5 devices can be used. Moreover, the transmission of data packets over

the Ethernet cable from the USRP2 is the bottleneck for latency sensitive applications like

OFDM. A development board that has a serial connector and communicates with the USRP2

using the MIMO connector port on it is the better choice. This connection is very much

necessary for high bandwidth applications like WiMAX,WiFi, etc.

6.1.2 Implementation Issues

There are certain basic assumptions made in this work. Some of them may result in the per-

formance degradation of the system. This includes the assumption that the OFDM symbols

transmitted from both the antennas overlap with each other without lag. This will not be

the case when there is an issue of multipath fading affecting each antenna independently.

There are some issues with the MATLABTM and Simulink R© HDL coder tools used for HDL

code generation. This can be seen in its Fixed Point advisor toolTM of Simulink R© that

proposes some of the fixed point format for the model. The acceptance of the proposed fixed

point format creates unexpected behavior in the operation of the system. Though the Fixed

point advisor toolTM is necessary for converting the floating point model to a fixed point

model suitable for code generation, the user has to take care of his/her fixed point conversion

guidelines for the expected output of the circuit.

There is an issue with USRP2 MIMO configuration. Presently, the firmware present on the

USRP2 does not allow the clocks of multiple USRP2’s to synchronize with each other. For



Chapter 6. Conclusions and Future Work 82

the synchronized transmission of the signal from the slave USRP2 to the master USRP2 a

MIMO connector cable is supplied by Ettus Research. But the current firmware present on

it is not helping USRP2s sync with each other. The GNURadio community released the

firmware for synchronizing USRP2 using the UHD driver a week before the defense of this

work, this issue could not be resolved on time. The author of this work is currently looking

into it, and the work will be completed in the next few weeks. Addressing this issue will

make a significant impact on the open source community, providing an additional platform

for the user to put his/her work on the FPGA.

There are some issues with mapping the HDL generated code in the real platform. The user

is expected to have some knowledge of the FPGA architecture in terms of its blocks, clocking

capability, timing constraints, etc. The HDL code running on one particular platform will

not run on another platform because the basic architecture may be completely different.

6.2 Directions for Future Work

The present work deals with developing a prototype for SDR with active baseband processing

provided by FPGA. This is accomplished using USRP2 as a front end and the ML403 as the

baseband processing element. There are certain directions in which the present work can be

extended.

6.2.1 Hardware/Software Co-design

The present work mostly explores baseband processing on the hardware. It is very much

possible in the embedded environment to offload the less computational signal processing

components on the less power intensive, slower processing elements like the GPP/Embedded

processor. The models created using model based design will work for both embedded

development and FPGA based hardware development. Thus, the given work can be extended
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to identifying the blocks that can go in embedded processors and blocks that can be offloaded

for FPGA processing.

6.2.2 USRP2 Firmware

As mentioned in the previous chapters, the firmware currently provided for the USRP2 is

highly unstable for MIMO applications. At start of this work it was widely assumed that the

firmware along with the MIMO connector cable is enough to support MIMO configurations

using the USRP2. But, over the course of the work it was realized that the connector cable

did not serve any purpose until there is a firmware change. The author of this work is not

able to identify the issue related to this firmware bug. Moreover, future work should look

into the possibility of using the MIMO connector cable for transferring the data from/to

USRP2 to/from FPGA evaluation board. There is a huge bottleneck in terms of the data

rate if the Ethernet cable connector is used along with the PowerPC R©. Future work should

incorporate both the issues of the firmware and data transfer.

6.2.3 IEEE Standards Compliance

The present work does not cover all options of puncturing mechanisms as mentioned in the

standards of IEEE 802.11a. This work can be extended to include these options in order to

make a complete IEEE 802.11a transceiver chain. Moreover, the given system is not tested

for power spillage outside the spectral band that may affect the operation as mentioned by

the regulatory bodies.

6.2.4 MAC Layer Protocol

The present work mainly concerns the physical layer part of the baseband processing elements

and there is no active support for the medium access control (MAC) layer protocol. This
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means that there is no mechanism for informing the transmitter about an erroneous packet

being transmitted and also to perform carrier sensing before transmission. Thus, the work

can be extended to accommodate different MAC protocol mechanisms like carrier sensing

and acknowledgments.

6.2.5 Physical Layer Design

The work presented here can be extended to include other OFDM wireless standards like

LTE, and DVB-T/H. Since most of the processing blocks implemented here are common to

most OFDM based standards, this work can be extended to include changing the parameters

of some of the blocks. The most challenging the blocks will be channel coding blocks like the

Reed Solomon encoder/Decoder, Block Turbo coding and low density parity codes (LDPC)

are becoming common in most of the current wireless standards. The implementation of

these standards will make the user appreciate the usefulness of FPGA.
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Appendix A

IEEE 802.11a Packet Structure

This section provides the description of IEEE 802.11a packet structure ans some of its phys-

ical layer parameters. The understanding of the packet structure is necessary to appreciate

its influence on the algorithms for packet detection, symbol timing estimation, and frequency

offset estimation.

The PHY layer of IEEE 802.11a is divided into three entities based on functionality. They

are physical management dependent(PMD) function, PHY convergence layer and layer man-

agement entity function.

The PMD layer is responsible for sending and receiving data between stations. This layer

is responsible for physical layer functions like modulation, scrambling, channel coding ,

etc. The PHY convergence layer is necessary to make IEEE 802.11 MAC layer to work

with minimum dependency on PMD layer. The layer management entity is responsible for

management functions of the physical layer. In some configurations of IEEE 802.11, the state

machines operating in the MAC layer requires input from the PHY layer. This exchange is

controlled by between management entity functions of the MAC layer and PHY layer.

The procedure involved in the convergence function is called physical layer convergence

procedure (PLCP). It defines a method for mapping PHY sublayer service data units (PSDU)
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Figure A.1: Preamble Structure of IEEE 802.11a [9]

coming from the MAC layer into the frame format suitable for transmission and reception

between two stations. During the transmission, the PSDU data are converted into physical

layer protocol data units (PPDU). This includes PSDU data long with preamble, header,

tail bits and pad bits. The PLCP frame format is shown in the following Figure A.1.

It is made up of OFDM PLCP preamble, OFDM PLCP header, PSDU, tail bits and pad

bits. The PCLP header consists of modulation and data rate specific parameters. The header

constitutes a separate OFDM symbol which is BPSK modulated and coded with the coder

rate 1
2
. The PCLP preamble field consists of repetitions of short sequence and 2 repetitions

of long sequence. According to the specification, the short sequence are used for automatic

gain control (AGC) convergence, timing acquisition and coarse frequency synchronization

while the long sequence aids in channel estimation and fine frequency synchronization.

A short OFDM symbol consists of 12 carriers modulated by the sequence S given by,

S−26,26 =

√
13

6
{0, 0, 1 + j, 0, 0, 0,−1 − j, 0, 0, 0, 1 + j, 0, 0, 0,−1 − j, 0, 0, 0,−1 − j, 0, 0, 0,

1 + j, 0, 0, 0, 0, 0, 0, 0,−1 − j, 0, 0, 0,−1 − j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0,

0, 0, 1 + j, 0, 0} (A.1)

The normalization factor
√

13
6

is used to average power of the resulting OFDM symbol that
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uses only 12 out of the 52 sub-carriers. Since S−26,26 produces spectral lines at multiples of

4 it produces periodicity of TFFT

4
= 0.8µs. Thus the short preamble, with 10 repetitions,

(TShort) has the duration of 8µs

The long OFDM symbol is given as,

L−26,26 = {1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,−1,

−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1} (A.2)

The long duration(TLong) has the duration of 1.6 + 2 × 3.2 = 8µs. Thus, the total length of

the training symbols are 16µs.

There are other fields in the header. They are the SIGNAL field with LENGTH, RATE

and tail bits. The LENGTH field indicates the number of octets transferred between MAC

and physical layer in single time unit. The RATE field helps to identify the data rate of the

transmission and the tail bits are used to return the convolutional encoder state back to zero

in order to improve error performance.

Some of the timing related parameters for OFDM PLCP are shown in following table.
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Table A.1: Physical Layer Parameters

Parameter Value

Number of data sub-carriers 48

Number of pilot sub-carriers 4

Total number of sub-carriers 52

Total number of sub-carriers 64

Sub-carrier spacing 0.3125MHz

FFT duration 3.25µs

Preamble duration 16µs

Guard interval duration 0.8µs

OFDM symbol duration 4µs

According to the specification, 12 out of the 64 sub-carriers present in the fringes of the

OFDM symbol are not used for transmission in order to act as a smoothing function. This

will reduce the sidelobes in the spectral function. In this work, all the 60 data sub-carriers

are used for transmitting data. The performance degradation due to side lobes is not taken

into account here.



Appendix B

Simulink R© HDL coder compliant

block diagrams

B.1 Alamouti Encoder

Figure B.1: Simulink R© Block for Alamouti Encoder
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B.2 Scrambler/De-Scrambler

Figure B.2: Simulink R© Block for Scrambling/De-scrambler

B.3 Convolutional Encoder

Figure B.3: Simulink R© Block for Convolutional Encoder
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B.4 Packet Detection

Figure B.4: Simulink R© Block for Packet Detection Algorithm
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B.5 Symbol Timing Estimation

Figure B.5: Simulink R© Block of Symbol Timing Estimation Algorithm



Appendix C

Simulink R© Output Examples

C.1 Convolutional Encoder

Figure C.1: Simulink R© Output of Convolutional Encoder
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C.2 Alamouti Encoder

Figure C.2: Simulink R© Output of Alamouti Encoder

C.3 Scrambler

Figure C.3: Simulink R© Output of Scrambler/De-scrambler
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C.4 Packet Detection

Figure C.4: Simulink R© Output of Packet Detection Algorithm
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C.5 Symbol Timing Estimation

Figure C.5: Simulink R© Output of Symbol Timing Estimation Algorithm
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Modelsim R© Output Examples

D.1 Convolutional Encoder

Figure D.1: Modelsim R© Output of Convolutional Encoder
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D.2 Alamouti Encoder

Figure D.2: Modelsim R© Output of Alamouti Encoder

D.3 FFT

Figure D.3: Modelsim R© Output of FFT
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D.4 Scrambler/De-Scrambler

Figure D.4: Modelsim R© Output of Scrambler/De-scrambler



Appendix E

Comb-type Channel Estimation

Technique

The comb-type channel estimation is performed for the channels that varies over every OFDM

symbol duration. The estimation of the channel over every symbol is possible because of the

insertion pilot carriers at equal interval inside the OFDM symbol. The pilot based estimation

is recommended for both IEEE 802.11a and IEEE 802.16e standard. In the case of former,

4 pilot carriers are recommended over 64 carriers per OFDM symbol while in the case of the

latter 8 to 64 is recommended. As the number of pilot sub-carrier increases, the performance

of the estimator increases.

If O is the OFDM symbol, then N pilot carriers are inserted into the symbol according to

the follwing formula:[20]

O(k) = O(mL + 1 ) (E.1)

At the pilot sub-carrier frequencies, the least squares estimation technique was used whose

output is interpolated to other sub-carrier frequencies. It is given by : [20]

Hpilot =
Ypilot

Xpilot

(E.2)
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where Ypilot and Xpilot are outputs and inputs at pilot frequencies.

E.1 Interpolation Techniques

An efficient interpolation techniques are required for the correct operation of the multi

antenna systems. In this work, three channel estimation techniques were considered based

on the computation complexity and latency. They are linear interpolation, spline cubic

interpolation and second order interpolation. The estimation of the channel at the non-pilot

frequencies using the linear interpolation technique[20] is given by,

Hnp(k) = Hpilot(mL + 1 )0 ≤ l < L

= Hpilot(m + 1 ) − Hpilot(m) ×
l

L
+ Hpilot(m) (E.3)

In the case of second order interpolation, the estimated channel is given by,

Hnp(k) = Hpilot(mL + 1 )0 ≤ l < L

= c1 × Hpilot(m − 1 ) + c0 × Hpilot(m) + c−1 × Hpilot(m + 1 )

(E.4)

where

c1 =
α

2
,

c0 = −(α − 1)(α + 1)

c−1 =
α(α + 1)

2
(E.5)

(E.6)

Here α = l
L
.
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In the case of the low-pass filtering approach, the pilot symbols has to converted again to

time domain and the interpolated with the low pass filter with inserted between the pilot

location. By this manner, the minimum mean square between the interpolated symbols are

reduced. The cost of conversion to time domain itself makes this approach infeasible.

In spline-cubic interpolation, the pilot symbols are interpolated along the spline function to

produce the smooth polynomial.


