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ABSTRACT 

Background: Squat-lifting postures can induce heavy mechanical loads on the joint, causing the 

articulating surfaces to deform. This can result in changes in the vibration characteristics of the 

joint surfaces. The purpose of this study was to examine the influence of cumulative mechanical 

load on the vibration properties of the knee joint and to gain an understanding of how these 

properties may relate to an increase in cumulative load placed on the joint.  

Methods: In this study, cumulative load was measured as the summation of knee joint torque 

during squat lifting, while a piezoelectric accelerometer was used to capture vibration signals 

from points on the knee during flexion and extension. Twelve university students were recruited 

for a repeated measures study. Each participant attended one session where they had to perform a 

series of six squat-lifting tasks on a force platform. Motion capture equipment was used to obtain 

kinematic data. The cumulative 3-D moment on the joint was calculated using inverse dynamics.  

Results: Statistical analyses by a t-test and ANOVA showed a decreasing trend in the RMS 

power of the signal captured in the 750-Hz-2000Hz range before and after mechanical load was 

induced by squat lifting. A linear regression analysis indicated a significant correlation between 

cumulative 3-D moment on the knee joint and the median frequency of vibration signals from the 

patella during flexion in the 1000 Hz - 2500 Hz range. 

Conclusions: The results of this study indicate the possibility of a relationship between 

mechanical exposure on the knee joint and its vibration properties during joint movement. 

Despite the small sample size, a declining trend was observed in the normalized RMS power of 

signals with increase in loading. However, the quantitative nature of this relationship is not clear 

and the current study points towards a possible multi-variate or a non-linear relationship between 

joint exposure and knee vibrations. Future studies must investigate these possibilities using direct 

measures of joint loading, cartilage deformation and their relation to joint vibrations.
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1. INTRODUCTION 
 

1.1   Rationale 

1.1.1 The problem of occupational knee joint trauma 

The diagnosis of musculoskeletal injuries dates back to the 17
th

 century, when Ramazzini 

attributed chronic joint pain in clerks and scribes to repetitive motions (Kroemer, 1989). During 

the 18
th

 and 19
th 

centuries, the industrial revolution witnessed the advent of several 

transformations in work design and material handling (Dempsey and Mathiassen, 2006).Labor 

was divided and hours of work increased as manufacturing processes had to catch up increasing 

demands of goods. Workplace design philosophies were based on overall efficiency of producing 

an output rather than the workers’ individual efficiency of labor. These transformations 

introduced restricted workspaces which placed various physical demands on workers, such as 

joint stresses on the knee due to constrained postures. Even today, BLS (2010) statistics across 

private and public ownerships suggest that musculoskeletal injuries of the knee joints contribute 

to a median of 15 days away from work, second only to shoulder injuries. In an analysis of 

mining injury claims spanning an average of 7.8 years, Gallagher and Moore et al.(2009) ranked 

knee injuries in the mining industry to be the costliest and most frequent of all body parts, with a 

total cost of $4,172,600 (May 2008) and 318 occurrences. They also estimated the average claim 

for each knee injury to be $13,100 resulting in knee claims contributing to 17.39% of the total 

injury cost in mining.  These numbers highlight the need to address the problem of 

musculoskeletal trauma in the knees due to occupational factors such as repetitive motion and 

constrained spaces.  

 

Furthermore, productivity could become sub-optimal if work related joint injuries were not taken 

into consideration while keeping up with progressive trends such as Just-In-Time manufacturing 

(Kuorinka 1998). Martimo et al. (2009) investigated productivity self-reports of employees with 

upper extremity musculoskeletal disorders in the computer industry and discovered that the 

productivity loss associated with pain and its interference in work was substantial. A recent study 

has attested work productivity itself as an important variable measure in assessing the prevalence 

of musculoskeletal disorders in the workplace (Escorpizo, 2008). 
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Musculoskeletal trauma can be acute or cumulative. Acute trauma is associated with acute 

injuries manifesting as fractures or sharp sudden pain. Cumulative trauma is the result of 

repetitive, sustained or forceful motions exerted over a long period of time and can often 

manifest as chronic joint pain (Kroemer 1989). Exploring and quantifying risk factors associated 

with cumulative trauma on different parts of the body has been an area of growing interest. 

Kumar (1990) and Norman et al. (1996) were among the first to quantify cumulative exposure on 

the low back among industry workers. More recently, Bosch et al. (2007) attempted to quantify 

perceived discomfort and muscle fatigue developed over time while performing low intensity 

repetitive assembly tasks and found a temporal increase in both characteristics. Gregory and 

Callaghan (2008) examined participants’ physiological responses while they performed light 

precision tasks in a prolonged standing posture and concluded that there is a propensity to 

develop discomfort in the low back while standing and working for extended time periods.  

 

Ergonomic technologies developed for counteracting low back pain among miners showed a 

10% drop in cumulative low back pain from 1984 to 2004. However, a corresponding 10% rise 

in the incidence of cumulative knee injury was also reported at the same time (Moore, 2008). 

This implies that injury risk did not decrease per se, but that the physical demands may have 

simply been placed on a new area of the body. Therefore, knee joint trauma cannot be ignored 

today in terms of compensation cost and the number of incidences. Lately, there has been a 

growing interest in quantifying cumulative load on the knee. Studies have used the knee 

adduction moment during walking as a proxy for estimating the total exposure on the knee joint 

(Robbins et al., 2009). However, more research is needed regarding the effects of cumulative 

exposure on the knees due to occupational factors such as static joint stresses due to constrained 

postures, dynamic loading, and frequency of lifting.  

1.1.2 Restricted workspaces and joint deformation. 

Several occupations within the agriculture, forestry, mining, production, and construction 

industries require workers to adopt uncommon postures such as squatting and kneeling. 

Workers’ position and motion has been associated with 13.9% of the total cases of non-fatal 

injuries and illnesses in 2009 (BLS, 2010). Much of the ergonomic risk in these occupations is 

attributed to the nature of the job and the restricted work space. Such jobs can result in high 

mechanical loads on the knee as the worker may have to kneel or squat all day long. Often times 
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heavy lifting and carrying is involved along with squatting.  Researchers have reported that 

occupations involving such postures are associated with an increased risk of knee osteoarthritis. 

A dose-response relationship was reported between the time of exposure in these uncommon 

postures and the risk of disease (Seidler, Bolm-Audorff et al. 2008; Klussmann, Gebhardt et al. 

2010). The association was found to be strongly elevated during combined exposures where 

lifting or carrying of weights was performed in kneeling or squatting postures (Cooper, 

McAlindon et al. 1994; Coggon, Croft et al. 2000; Seidler, Bolm-Audorff et al. 2008). 

Furthermore, knee joint moments reach peak values in deep knee flexion (Nagura, Dyrby et al. 

2002). Squatting and knee bends in normal joints revealed a significant increase in cartilage 

deformation over neutral postures as viewed under MRI scans (Eckstein, Lemberger et al. 2005).  

 

The results of these epidemiological observations question the adequacy of the articular cartilage 

of the knee to support the loads it is subjected to over time in these occupations. The incidence 

rate of knee disorders cannot be expected to decline without efficient exposure assessment tools. 

Previous studies which have attempted to quantify occupational exposure on the knee joint have 

been based on telephonic interviews and self-report questionnaires (Seidler, Bolm-Audorff et al. 

2008; Mannien, Heliovaara et al., 2002). These studies have reported a higher risk of chronic 

arthritis among occupations which require regular squatting and stair climbing over those which 

don’t. The disadvantage with these self-report methods is that the exposure assessment reflects 

the outcome of years of exposure. A more proactive approach would be to directly examine 

cartilage health for lesions or deformation. MRI scans have been used in the past to assess the in 

vivo deformation of the cartilage but these methods require elaborate equipment and cartilage 

health assessments are impractical in field environments (Eckstein, Lemberger et al., 2005). 

Hence, industries such as mining need to focus on improving methods of assessing cumulative 

knee trauma due to uncommon postures. An alternative, less explored non-destructive method 

for assessing cartilage health could involve use of piezoelectric transducers to capture vibrations 

from the viscoelastic cartilage. Use of these transducers for exposure assessments is worth 

exploring owing to the portability and ease of use of these instruments.  
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Vibration emission methods have been used in the past, to determine the functional integrity of 

implants (Georgiou and Cunningham 2001) and to distinguish between normal and pathological 

knees in vivo (Tavathia, Rangayyan et al. 1992; Mascaro, Prior et al. 2009). In these methods, a 

piezoelectric accelerometer attached to bony prominences on the knees was used to capture 

vibrations from a “loose” or diseased knee. These vibration signals were sensitive to local 

vibrations and can detect micro-damage in the cartilage. A deformed cartilage would emit 

viscoelastic vibrations in vivo thereby releasing energy. The advantage these methods hold is that 

the equipment is portable and so, data could be collected on the field without the need for 

laboratory tests. Besides this, there is scope for proactively determining the heath of the 

cartilage. This could enable keeping a check on workers’ joint health while administering 

controls for safe working conditions accordingly.  

 

As discussed earlier, compensation costs due to workplace musculoskeletal injury can be 

extremely expensive for companies. In order to avoid such costs and to ensure safe working 

conditions, the industry is interested in determining exposure limits and measuring joint 

exposure so that pain reports can be proactively predicted. Research directed towards quantifying 

lumbar mechanical exposure has emphasized on the value of cumulative joint load as an 

important risk factor in epidemiologically distinguishing cases from controls (Kumar, 2000; 

Norman et al., 1998).  Maly (2008) asserted the need for an integrated loading estimate for the 

knees as the long term effects of repetitive stress on joint tissues cannot be ignored when 

accounting for joint pathologies. She also suggested the use of the knee adduction moment as a 

suitable proxy for estimating joint load. Cumulative daily exposure on the knees has been 

quantified in terms of the knee adduction moment and tested for its reliability (Robbins et al., 

2009). However, this moment was specific to walking only. In the current study, participants 

performed several squat-lifting tasks. The kinetics of squat lifting can be complex when 

compared to walking as it may not be restricted to the sagittal plane. Therefore in this study, the 

3-D joint moment at the knee, integrated over the task duration is used as a measure of exposure.  
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1.2 Specific aims and hypotheses 

The overarching goal of this study was to test the use of a vibration emission technique for 

investigating the effect of squat-lifting on vibrations from the articulating surfaces of the knee. 

Since viscoelastic deformation of the articular cartilage is influenced by its mechanical loading 

environment, the vibration signal of the knee under load might differ from its resting condition. 

Therefore, our first specific aim and corresponding hypotheses were as follows: 

 

SPECIFIC AIM 1: To test if there are significant differences in vibration characteristics of the 

articular cartilage before and after loading the knee joint.  

The characteristics considered for investigation in the present study included Root Mean Square 

power (RMS) of the vibration signal in time domain and the median frequency of the signal in 

frequency domain. The average power of this vibration signal was found to increase with rising 

levels of pathology in the frequency bandwidth of 100-500Hz (Reddy, Rothschild et al., 1995). 

As cartilage deformation in normal joints increases with mechanical loading, it is expected that 

energy dissipation will also increase. So, the first hypothesis is: 

 

Hypothesis 1a:  

H0: There is no difference in the RMS of the signal before and after loading the knee.  

Ha1: Power of the acoustic signal from the knee joint, expressed as the RMS of the signal, is 

expected to increase with increase in mechanical loading at the knee. 

  

The frequency range in which these signals were emitted was found to decline as the pathologies 

worsened (McCoy, Mollan et al., 1987). Therefore, normal joints exhibited vibrations in higher 

frequencies compared to pathological joints. Thus, the severity of cartilage deformation is greater 

as the signal frequency declines and this is the basis of our next hypothesis. 

 

Hypothesis 1b:  

H0: There is no effect of loading on the median frequency of the signal.  

Hb1:  The median frequency of the vibration signal is expected to decrease with increase in 

mechanical loading at the knee. 
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If these differences exist across loading conditions, it may be possible to quantify cumulative 

load on the joint in terms of the vibration properties measured. To this end, our second aim and 

hypothesis were as follows. 

 

SPECIFIC AIM 2: To build a model of cumulative load versus vibration emission characteristics 

for the sake of quantifying the former in terms of the latter.  

The characteristic could be RMS power of the signal or the median frequency, based whether or 

not significant differences exist in vibration signal characteristics across loading conditions.  As 

a first step towards discovering a relationship between mechanical load and the vibration signal, 

we hypothesize that: 

 

Hypothesis 2a:  

H0: There is no relationship between the 3-D cumulative moment at the knee and the RMS of the 

knee vibration signal after loading the joint.  

Hb2: The 3-D cumulative moment on the knee joint varies linearly with the median frequency of 

the vibration signal recorded from the joint.  

 

Hypothesis 2b:  

H0: There is no relationship between the 3-D cumulative moment on the knee joint and the 

median frequency of the vibration signal.  

Ha2: The 3-D cumulative moment on the knee varies linearly with the RMS of the vibration 

signal recorded from the knee.   

 

1.3 Implications 

 The piezoelectric transducer is an easy to use and portable device. Data collection using 

these devices can be performed in–vivo and on-site. This could potentially enable new, 

field environments for conducting experiments with direct measurement equipment.  

Experiments conducted in laboratories come with limitations such as a requirement of 

elaborate equipment, smaller sampler sizes, and generalizability of results to wider 

populations.      
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 Use of vibration emission proactively to assess cartilage health could act as a preventive 

measure for administering controls to improve workplace mechanical environment. 

 

 Expression of vibrations in terms of mechanical load and frequency can help establish 

guidelines for safe limits of loading and frequency of lifting, based on cartilage health 

assessments.  
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2.0 LITERATURE REVIEW 
  

2.1 Anatomy of the knee  

The knee joint is the largest joint that performs functions of movement, such as weight bearing 

and smooth articulation of joints. Such joints are called synovial joints. The knee is built around 

two articulations. The first is the articulation between the femur and the tibia; the other is 

between the patella and the femur. The following topics extracted from Gray’s Anatomy for 

Students (Richard L. Drake, Wayne Vogl et al., 2005), are a brief review on the anatomy and 

important functions of the knee.  

 

2.1.1 Parts of the knee joint 

Ligaments: The major ligaments in the knee are the patellar ligament, the medial and lateral 

collateral ligaments and the anterior and posterior cruciate ligaments.  The collateral ligaments 

are located approximately parallel to each other on either side of the knee joint. They provide 

reinforcement and play a major role in stabilizing the hinge-like movement of the joint. The 

cruciate ligaments cross each other in the sagittal plane between the femoral and tibial surfaces 

through the intercondylar space. These ligaments are essential for supporting joint movements 

and preventing displacement of the articulating parts over each other. Rupture or injury in the 

cruciate ligaments can result in abnormal loads on the articulations. The cruciate ligaments are 

located outside the articular cavity, but are enclosed within the fibrous membrane of the knee 

joint. The patellar ligament connects the apex of the patella to the tibial tuberosity.  

Articular surfaces: These form the surfaces of the bones at which the joint meets. They are 

covered by the hyaline cartilage and participate in movement. The most important surfaces 

include the two femoral condyles and the adjacent surfaces of the superior aspect of the tibial 

condyles. The femoral condyles are round in shape during full flexion of the knee and are flat 

during full extension. All joint surfaces are enclosed within a single articular cavity.  

Menisci: The knee joint contains two C-shaped fibro cartilaginous menisci, on the medial and 

lateral side. The menisci function as a cushion to the articulating condyles, such that the 

congruency of the joint is protected during movement.  

Synovial membrane: This membrane is found at the margins of the articular surfaces and extends 

into a recess and a bursa. Its function is to provide low friction surfaces for tendon movement 

associated with the joint. It is separated from the patellar tendon by a layer of infrapatellar fat. 
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Fibrous membrane: This is an extensive membrane enclosing the articular cavity and the 

intercondylar region. It is largely made up of reinforcements and extensions of surrounding 

muscles and tendons.  

Vascular supply: Blood vessels from the superior and inferior parts relative to the knee joint 

combine to form an anastomotic network around the joint. The joint is innervated by branches 

from the obturator, femoral, tibial and fibular nerves.  

 

2.1.2 Locking mechanism 

The amount of work required by the joint to maintain posture is optimized. The locking 

mechanism contributes to this function in two ways. Firstly, the shape and size of the femoral 

condyles changes with flexion and extension. In flexion, the surfaces are rounded in the posterior 

aspects of the femoral condyles. As the knee extends, the surfaces move to the broad and flat 

region on the inferior part of the condyles. Thus, the joint surfaces become larger and more 

stable in extension. Secondly, medial rotation of the femur on the tibia during complete 

extension tightens all the associated ligaments and consequently reduces load bearing on the 

articular surfaces. Finally, the body’s center of gravity is along a vertical line passing anterior to 

the knee joint. All these factors amount to optimizing the physiological work required by the 

joint in maintaining an erect posture. This is how all the soft tissues including ligaments, menisci 

and cartilage are involved in the locking function.  

 

2.1.3 Diseases of the knee 

Cartilage degeneration 

The knee is among the most common sites of osteoarthritis, which is the degeneration of the 

articular cartilage. Degeneration occurs if there is abnormal force acting on a normal, healthy 

joint or a normal force on an abnormal cartilage.  Although the etiology of the osteoarthritis 

disease is not clear, common associations include age related cartilage changes, overuse or 

underuse of joints, pre-existing articular deformity, joint trauma and genetic factors. 

 

Soft tissue injury  

Any sort of tissue disruption around the knee can affect the stability of the joint. It can also mark 

the start of a degenerative disease. Soft tissue injury can also affect the neurovascular bundle and 
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subsequently influence proprioception. Since the knee is composed of a bundle of soft tissues, it 

is easily susceptible to any extreme forces around the area which might result in a ligament or 

meniscal tear.  

 

2.2 Etiology and mechanics of cartilage degeneration  

Osteoarthritis is one of the most common diseases associated with the articular cartilage of the 

knee. Cartilage degeneration has been attributed to various reasons such as age, overuse, 

occupations, ligament tears, and strenuous activities of daily living. In general, the mechanical 

environment has an influence on the state of the cartilage (Felson, Lawrence et al. 2000; Brandt, 

Radin et al. 2006). The etiology of cumulative trauma may be attributed to the viscoelastic nature 

of joint tissues (Kumar 1990) . Articular cartilage of the knee is viscoelastic (Hayes and Mockros 

1971) and mechanical loading on the knee influences the degeneration of the cartilage in vivo. 

Activities such as kneeling and squatting have shown a greater propensity for cartilage 

degeneration than daily activities like walking and standing (Eckstein, Lemberger et al. 2005; 

Hosseini, Van de Velde et al. 2010). However, to date there has been no evidence of a functional 

relationship between mechanical loading on the knee and in vivo cartilage degeneration. Such a 

functional relationship could help determine at what stage of loading the cartilage would be 

susceptible to damage. Knowledge of the functional integrity of the joint in vivo may help to 

determine how the cartilage reacts to loading over time. Previous studies have demonstrated the 

use of MRI scans for assessing cartilage deformation in vivo. These methods however are 

restricted to laboratory environments and constrained by the need for expensive equipment. 

Alternate non-destructive testing methods such as vibration emission may be a worthwhile 

option to explore for in vivo joint integrity assessments.  

MRI scans and X-rays are used to clinically assess the state of cartilage degeneration but these 

are expensive methods that require elaborate equipment, and cannot be used in vivo. They do not 

indicate the in vivo behavior of the joint while it degenerates. Such functional integrity of a joint 

in vivo is useful to know, in order to gather time-dependent data. 

 

Cartilage degeneration 

An integrated perspective of the structural, biochemical and biomechanical pathways involved in 

degeneration is essential for understanding the in vivo response of the cartilage to its mechanical 
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environments (Andriacchi et.al.,2004). Cartilage degeneration can result in a change of soft 

tissue properties and this can distort joint congruency and affect tolerance of tissues. In order to 

maintain a healthy cartilage, there must be equilibrium between the degeneration and synthesis 

of cartilage constituents. The cells of the cartilage, called chondrocytes participate in retaining 

this equilibrium by synthesizing collagen and proteoglycans which are essential components of 

the cartilage cellular matrix. According to Andriacchi (year), degeneration can happen in two 

stages – initiation and progression. Cartilage adapts to mechanical stimuli and initiation of 

cartilage degeneration can occur due to abnormal loading on the joint. For instance, due to a soft 

tissue injury such as ACL tear, load bearing may shift to a part of the cartilage which is not 

adapted to normal day to day loading. The load threshold of the unadapted cartilage may not be 

as high as the other parts and can be susceptible to further degeneration. The frequency of load 

bearing in an area determines variations in cartilage morphology. Initiation can also happen 

without an obvious or acute mechanical trauma. It could be due to a chronic shift in load bearing 

to a region which is not well adapted to normal daily loads. Occupational activities which are 

strenuous and performed in awkward postures, could thus lead to such a chronic shift in load 

bearing. Progression can be result of cumulative loading over those parts which have already 

started to degenerate. Degeneration of the cartilage results in loss of proteoglycans and 

disruption of the cartilage cellular matrix. This increases friction between the cartilage surfaces 

and subsequently, the tangential shear force increases, causing fibrillation of tissues. This leads 

to increased compressive forces on decreased tissue tolerances (Andriacchi, Mündermann et al. 

2004). As a result any small discrepancy in the cartilage tissues might negatively affect the 

health of the joint unless protective measures are followed.  

One of the reasons for loss of cartilage health could be insufficient rest for the tissues between 

tasks. Prolonged static loads can lead to accumulated damage without appropriate rest to release 

the stress in the passive tissues which are posture dependent (Callaghan and McGill 2001). 

Passive tissues or tissues which do not voluntarily activate such as cartilage, tendons and 

ligaments make up a considerable part of load-bearing in the knee. Prolonged squatting without 

appropriate rest can cause accumulated damage to these tissues. Furthermore, a lack of low load 

bearing rest could ultimately affect the synthesis of proteoglycans, ultimately disturbing the 

equilibrium between degeneration and repair.  
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Degeneration in deep flexion 

Many studies have found that deep knee flexion bears an association with cartilage degeneration. 

Researchers have used magnetic resonance imaging (MRI) to examine cartilage morphology 

following a deep knee flexion task. However, MRI scans have limitations. They are not always 

accurate representations of in vivo deformation and they do not give early information on the 

onset of disease.  

Eckstein and group used MRI images to examine in vivo patellofemoral as well as tibiofemoral 

cartilage deformation in activities involving deep flexion such as squatting, walking, running and 

exercise (Eckstein, Lemberger et al. 2005). They found a dose-response relationship for patellar 

cartilage deformation. The area of patellar degeneration was larger for higher ranges of flexion. 

However, the tibiofemoral deformation was found to be significantly less than the patellar 

cartilage deformation. This could probably be attributed to the adaptation of the tibiofemoral area 

to activities of daily living. Stress on the patellar area was found to act especially during deep 

flexion which is not as common as daily activity. As a consequence, this part of the cartilage 

may be abnormally loaded during deep flexion (Andriacchi, Mündermann et al. 2004). However, 

Eckstein et al. also report that no significant difference was observed in cartilage deformation 

properties between physically fit athletes and non-athletes.  

Joint moments have been observed to peak during deep knee flexion activities and pathological 

changes to the cartilage have been attributed to such physical demands (Nagura, Dyrby et al. 

2002). The tibiofemoral contact area is reduced by 55% when the knee is flexed to 90 degrees. 

This could explain the high magnitude of loading pressure on the patella-femoral area and joint 

pathology as a consequence. The loads during deep flexion are therefore important 

considerations in the pathogenesis of the knees. Seedhom et al (2006) propose that sudden bursts 

of high stress activity can be very damaging because it would apply pressure on an 

unconditioned cartilage.   Secondary movements of the knee such as medial or lateral rotation 

depend on the angle of flexion, muscle activity and task being performed (Dyrby and Andriacchi 

2004). Thus, the state of the cartilage during weight bearing depends on its kinematic and kinetic 

environment. Cases of knee pain had greater radiographic scores than controls, implying poorer 

cartilage health; quadriceps strength influences the causation of pain in the knees (O’Reilly, 

Jones et al. 1998). This could mean that if the load bearing function of the cartilage is affected 

due to occupational exposures, some of the load could be transferred to the quadriceps resulting 
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in their fatigue. The more the active muscle tissue fatigues, the more is the amount of load which 

the soft tissues of the knee would have to withstand.  

 

2.3 Cumulative exposure and cartilage degeneration  

2.3.1 Cumulative exposure  

Cumulative loading on the knee in kneeling/squatting has been quantified by various methods in 

the past. Questionnaires and interviews have been used to record task details including frequency 

of lifts, weight of lifted/carried objects and duration of lift (Seidler, Bolm-Audorff et al. 2008; 

Klussmann, Gebhardt et al. 2010). A cumulative exposure estimate is made using these details. 

However, these are self-reported data and have some limitations. The accuracy and applicability 

of such data have been questioned for various reasons such as questionnaire reliability (Van der 

Beek and Frings-Dresen, 1998).  The cases might overestimate their exposure because of 

increased psychophysical or physiological demands. Controls might underestimate details such 

as duration of work. This is called recall bias. Questionnaires and interviews also depend upon 

human memory and therefore, variations are bound to occur within a homogeneous population 

group. Videotaping has been used to elicit details for computing cumulative exposure. Although 

such a method eliminates recall bias and provides relatively objective data, the exposure 

measurement obtained might be just sufficient to establish an association with disease. The 

measure would not be suitable for accurately assessing the degree of exposure to which the joint 

has been subject to. This is because the actual measure of exposure can depend upon 

biomechanical factors such as joint angles and external joint moments induced by the specific 

task. The knee adduction moment has been used as a proxy for estimating cumulative load on the 

knee while walking (Robbins, Birmingham et al. 2009). However, an equivalent proxy moment 

can be hard to find in case of uncommon postures owing to the numerous muscle groups 

involved in creating the posture.  

 

In order to estimate the compressive or shear stress on joint tissues such as the low back, 

biomechanical models have been developed in the past. Although there have been models 

developed to predict both acute as well as cumulative loading on joints, not much is known yet 

about the mechanical tolerance of tissues under repeated loading (Chaffin 2006). 
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Biological tissues are viscoelastic in nature (Kumar 1990). This means that when the body’s soft 

tissues are subjected to any kind of load repetitively or for a prolonged period of time, the time 

history of the stresses results in some residual deformation in the tissues. Ligaments can slacken 

and hydration of tissues can get affected because of prolonged loads (Kumar 1990). This 

decreases the mechanical threshold of tissue failure. In this way, even moderate stresses when 

exerted over a long period of time can decrease the threshold of tissue failure. This is called 

cumulative loading and it can explain why a routine activity may suddenly cause pain or injury 

after several years of doing it (Kumar, 1990). 

Cumulative trauma is cased due to forceful, repetitive or prolonged motions. Repetitive exposure 

would lead to micro trauma whereas prolonged exposure is associated with excess strain and 

creep of tissues (Norman, Wells et al. 1998).  It is more often a result of combined loading 

(Kroemer 1989). Studies have found epidemiological evidence which shows that combined 

lifting and squatting results in reduced strength and psychophysical lifting capacity as compared 

to lifting or squatting alone (Gallagher 2005). Cumulative trauma can result in compression of 

nerves and impede blood vessels. It can manifest as joint inflammation, joint pain and muscle 

pain. As a result, a person with such trauma has difficulty performing even simple day-to-day 

activities. 

Occupational activities such as lifting, stooping, squatting, kneeling, pushing, pulling and 

carrying are biomechanical factors which can increase the propensity of tissue failure in joints 

over time. Therefore, there has been a lot of interest in quantifying cumulative joint exposures in 

occupations.  

The knee is a joint which performs the function of load bearing and is mainly supported by soft 

tissues including cartilage, ligaments, and menisci. All of these are viscoelastic in nature. When 

there is frequent stress over a period of several months or years, as in the case of occupational 

loads, the mechanical tolerance of these tissues is decreased. Lifting activities, squatting and 

kneeling postures activities are known to exert high torques on the knee (Tak, Paquet et al. 

2009). This high external moment on the knee would correspond to high internal compression or 

shear forces on the load bearing surfaces of the knee.  

Several occupations such as agriculture, construction and mining involve prolonged squatting 

activity. These occupations have been associated with a higher risk of osteoarthritis than others. 

Osteoarthritis is a chronic musculoskeletal disease which manifests as wear of the articular 
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cartilage, often resulting in joint pain and is associated with several biomechanical causal factors. 

Moreover, squatting or any sort of deep flexion activity has been associated with increased 

degeneration of the cartilage (Nagura, Dyrby et al. 2002; Bingham, Papannagari et al. 2008). 

Therefore, cumulative loading exposure in such occupations can be of interest for understanding 

the etiology of cartilage degeneration. Loads acting upon the knee could be several times the 

body weight. No action limits have been developed for the knee yet but the importance of doing 

so has been signified (Callaghan, Salewytsch et al. 2001). Action limits should consider 

cumulative load as an integral influential factor in future studies.  

 

2.3.2 Measuring cumulative exposure on joints 

Kumar (1990) pioneered in quantifying cumulative exposure on a joint. He calculated low back 

exposure as a function of compression/shear stress, frequency, weight and time of loading. The 

compression/ shear stress was calculated by a 2-D mathematical model which was formulated 

after making cases and controls recall the type of postures they used in occupations. It was found 

that higher cumulative load ratings correlated with a higher incidence of low back pain among 

the participants. Compression and shear accumulate over time. Following this study, several 

other researchers have conducted studies to quantify cumulative exposure with a goal to relate its 

biomechanical causal factors with epidemiological evidence. Some of these works are discussed 

below. 

 

Norman et al. (1998) quantified various biomechanical variables, including peak spinal loads, 

cumulative spinal loads and kinematic torso variables of exposure, for auto assembly workers. 

They used a time integral of moments for calculating the cumulative load. One of their main 

findings was that cumulative load seemed a distinct measure from the rest in distinguishing cases 

of low back pain from controls. Another important finding was that there is no distinct 

preference in measurement between kinematic variables such as hand force, and internal 

compression or shear forces experienced by the tissue. Both external and internal types of 

measures had their own impact on information about exposure. However, the effects of repetitive 

and prolonged exposures could not be separated. 
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Recently there has been interest in quantifying cumulative loads on the knee. Cumulative 

exposure to daily activity has been quantified in terms of walking time and number of steps per 

day (Robbins, Birmingham et al. 2009). Their estimate, however, was based on the knee 

adduction moment which is not the appropriate proxy for loading under constrained postures. 

Exposure for tasks performed in such postures has been usually classified in terms of job titles or 

self-reports of work requirements. However, these methods do not provide a quantitative 

estimate for exposure-response relationships in terms of loading intensity or duration of 

exposure. Although it is known that biomechanical variables such as the torque on the knee 

increase for manual material handling activities, little is known about their relation to 

epidemiological risk associated with  activities in unusual postures (Tak, Paquet et al. 2009) . In 

other words, nothing is known about the limits of exposure for a particular operation while 

straining the knees. Moreover, obtaining quantitative measures can be time consuming because 

of the laboratory nature of experiments. 

 

Tak et al. (2009) analyzed possible sources of variability in knee pain among construction 

workers. They quantified exposure in terms of the percentage of time spent in 

kneeling/squatting/combined positions with respect to operations, tasks, workers and trade. They 

found that the greatest variance in knee pain existed for the task type and operation performed. 

This is relevant because it informs us that variables like task type are important considerations 

for estimating cumulative exposure as a consequence of their variability properties (Tak, Paquet 

et al. 2009). 

 

Variance exists among methods of estimating cumulative load and these can influence the 

reliability of a dose response relationship between cumulative exposure and trauma. While 

quantifying cumulative loads, possible variance in the methods used should be accounted for. 

Reducing the sampling rate at which data is collected has shown to improve the accuracy of 

exposure measurement. (Callaghan, Salewytsch et al. 2001). Despite all the attempts at 

quantifying cumulative loads on joints, to date no study has successfully developed a functional 

relationship representing the effect of joint loading on internal pathology such as pain or tissue 

tolerance. This is because it has been difficult so far to monitor time sensitive responses of the 

body to joint loading. The subjective nature of data sources such as job titles or self-reports, and 
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the time consuming nature of formal experimentation are contributors to this difficulty (Van der 

Beek and Frings-Dresen, 1998). 

 

2.4 Introduction to non-destructive testing methods and vibration emission  

Non-destructive testing (NDT) methods are scientific methods used to test and evaluate material 

properties without causing any damage to the material. Examples of NDT methods include 

ultrasonic testing, magnetic-particle testing, eddy current testing, liquid penetrant testing and 

radiographic tests.  

 

The non-invasive nature of these tests makes them very useful for detecting damage and wear in 

machines and equipment without causing any damage. Acoustic emission (AE) is one such 

popular method of in vivo monitoring of equipment. It is the emission of elastic stress waves due 

to release of strain energy during deformation, phase change or crack formation (Everson and 

Hoessein Cheraghi 1999).  

 

Vibration emission has been used for assessing degradation in gearboxes (Loutas, Roulias et al. 

2010). The vibration emission parameters included combinations of statistical moments of signal 

series and their Fourier transforms. Features were extracted on the basis of the monotonicity of 

parameters and those parameters which correlated with gear box wear were chosen.  

 

AE is becoming increasingly common in automated tool wear monitoring. In a real time 

precision drilling process (Cheraghi and Everson 1999), the diameter of the hole drilled in steel 

(i.e. quality of hole drilled by the robot) is correlated with an acoustic emission signal parameter. 

Simple parameters such as counts, hits above a threshold, RMS and energy of the wave were 

used for measuring acoustic emission. 

 

In the clinical field, AE can be useful for distinguishing healthy knees from diseased ones. 

(Franke, Dorner et al. 2004; Mascaro, Prior et al. 2009). Franke et al (2004) conducted a series of 

acoustic emission studies upon placing a transducer on the knees for detecting cartilage lesions 

and effect of loading on the knees. Thus, there is some evidence that mechanical activity can 

cause changes in the articular cartilage, which are detectable in a healthy knee. For the purpose 
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of diagnosis, the energy and frequency of the emission spectrum are representative enough of 

cartilage properties (Reddy et al., 1995; McCoy et al., 1987).  

 

2.5 Vibration emission in joints  

2.5.1   Physics behind vibration emissions. 

Vibration emission is a NDT method commonly used for monitoring the health of industrial 

machines which are frequently subject to dynamic loads over long periods of time. It is the 

release of strain energy from a surface which has been subjected to external stress increasing the 

roughness of the surface. Friction between two surfaces produces elastic waves which can 

contain information about the state of wear or cracks present in the surfaces. In the case of the 

knee, the articular cartilage functions as a major component of dynamic load bearing. In a 

diseased knee, the cartilage morphology changes at a microscopic level and the lubrication of 

tissues is affected (Felson, Lawrence et al. 2000). Therefore, the friction between the cartilage 

surfaces increases and so does the progression of cartilage wear. Elastic waves of a wide range of 

frequencies are released due to daily movement of the abnormal friction surfaces. Eventually, the 

thickness of the cartilage decreases (Mascaro, Prior et al. 2009). Vibration emissions contain 

information on the state of lubrication and joint integrity of the cartilage. Moreover, the knee has 

been said to be the most accessible part and most susceptible to joint disease (Blodgett 1902).  

 

2.5.2 History of joint vibration emission 

In condition monitoring of machinery, researchers in the past have used various methods for 

extracting features and parameters of acoustic emission (Carpinteri, Lacidogna et al. 2007; 

Loutas, Roulias et al. 2010). In the clinical field, accurate diagnosis of the knee to classify 

degenerative diseases has required invasive technology such as arthroscopy. MRI, X-Ray and 

radiography, although non-invasive, are expensive and may not give perceivable results until into 

the degenerative stage. Further, none of these methods give early information of a possible loss 

of cartilage health. Early information with regard to knee joint degeneration is becoming 

increasingly important for taking precaution before the stage of degeneration begins. Above all, 

the rising interest in acoustic signals from the knee joint is because it is hoped that this method 

would emerge as a non-invasive, pain free technique to evaluate joint sounds objectively and in 

vivo.  
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Physicians have attempted to classify abnormal knees from healthy ones based on joint sounds 

produced due to degeneration of the cartilage and soft tissue components inside the knee. 

Listening to the sounds produced by the knee is called joint auscultation and Blodgett was 

among the first to study knee noises using a stethoscope. Various other researchers in the earlier 

half of the 20
th

 century examined the same. However, stethoscope technology was not enough to 

filter out noises from skin friction, snapping tendons, muscle vibrations and hand tremors 

(McCoy, McCrea et al. 1987). 

 

Chu et al. (1978) were probably the first group who attempted to quantify cartilage roughness in 

the form of electric signals. This was a more objective technique to quantify the sounds than the 

use of stethoscopes. They used microphones in the audible frequency range upon the patient’s 

patellar region to detect knee sounds. By using the audible frequency range, the noise of 

snapping tendons which is said to be of low frequency was avoided. Degenerative knees showed 

a higher power than rheumatoid and normal knees.  

 

Accelerometers have been used in the past to capture knee sounds  since these instruments were 

capable of capturing  low frequency vibrations which are an integral component of knee joint 

sounds (McCoy, McCrea et al. 1987; Kernohan, Barr et al. 1991). The results of McCoy et al. 

(1987) showed that the nature of these knee signals matched with the corresponding 

physiological conditions of normal and pathological knees. They concluded that the 

“patellofemoral crepitus” is an important signal which contains information on the state of 

degeneration of the cartilage and that its quality, amplitude and distribution reflect cartilage 

integrity. With deterioration, the amplitude and frequency of the crepitus was found to decrease.  

Some studies have assessed the integrity of joint implants. Keeping track of the health of the 

implant is analogous to condition monitoring of industrial bearings and machine structures. A 

vibrating probe with certain input frequencies was used in combination with an accelerometer for 

output, to assess joint integrity of implants (Georgiou and Cunningham 2001). Intact implants 

showed just a fundamental frequency while loosening implants resulted in more than one 

harmonic. Another group (Glaser, Komistek et al. 2010) evaluated hip joint conditions using 
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accelerometers on bony prominences. They also collected gait data and found matches between 

extreme instances during the gait cycle and high frequency vibration signals.  

 

In the last two decades, researchers have explored and evolved possibilities of quantifying low 

frequency vibration signals from the knee (Tavathia, Rangayyan et al. 1992; Zhang, Frank et al. 

1992; Grodzinsky, Levenston et al. 2000; Rangayyan and Wu 2008). These methods have used 

accelerometers to quantify knee joint vibrations.  
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3.0 METHODS 
 

3.1 Participants 

The study protocols were approved by the Institutional Review Board, Virginia Tech (Appendix 

B). Two volunteers were recruited for the pilot study. Although the pilot participants were 

assigned with eight tasks, one of the participants quit after 4 tasks and another after 6 tasks. After 

the pilot study, flyers were posted around the Virginia Tech campus and a call for participants 

was sent via the graduate school list-serve. There was no constraint on gender, as long as the 

participant was deemed physically and mentally fit for performing the repetitive squatting tasks. 

Twelve college males were recruited for the final study, based on the results of a demographic 

questionnaire (Appendix A) answered by interested individuals. To isolate the effect of loading 

on the joint from any other pathological conditions, the inclusion criteria was to recruit only 

those individuals aged 18-30  years, who exercised regularly for at least 2-3 times a week, and 

did not have any reported history of musculoskeletal trauma. Participants were reportedly free of 

any other medical conditions. Effects of recent exercise and diurnal changes on the knee joint 

condition were not considered in this experiment. Mean (SD) age, height and body mass of 

participants was 24.3 (2.0) years, 175.2 (7.9) cm and 73.4 (6.9) kg. Of the twelve participants in 

the final study, one participant’s data was discarded due to erroneous measurements. Of the 

remaining eleven participants, ten participants performed up to 4 tasks, while eight participants 

performed up to 5 tasks and only three participants performed all the six tasks.  

 

3.2 Instrumentation 

3.2.1 Motion capture system 

Passive Marker System 

Kinematic data from all lifting tasks were captured using a passive marker seven-camera motion 

capture system (Vicon MX-GIGANET, Vicon Motion Systems, Los Angeles, CA, USA). 

Reflective markers were affixed on the following anatomical positions of the right leg as per 

Dumas et al. (2007): Calcaneus, Toe tip, Lateral Malleolus, Sphyrion, Lateral Epicondyle, 

Medial Epicondyle and a cluster of markers as a triangle was used for the shank.  
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Force Plate 

Ground reaction force data were collected while the participant performed the assigned tasks 

standing on two force platforms (AMTI MSA-6, Watertown, MA, USA). Kinetic data sampled at 

a rate of 1000Hz, were collected while the participant performed the task with one foot on each 

plate. Right leg data was used for analysis. The analog signals were converted to digital form by 

a data acquisition card (Vicon Motion Systems, Los Angeles, CA, USA) and the data collection 

was managed by Vicon-Nexus (Version 1.6.1, Vicon Motion Systems, Los Angeles, CA, USA).  

 

3.2.2 Accelerometer  

An ICP or Integrated Circuit Piezoelectric is an accelerometer class wherein the electronic 

amplifier circuitry is built into the accelerometer. ICP accelerometers are unique for their use of 

a single coaxial cable for power input and signal output which returns several advantages such as 

small size, light weight and low cost cabling. The piezoelectric device used (Figure 3.1) was a 

miniature, lightweight (0.8gm) ICP accelerometer. ICP standard sensors come with built-in 

circuitry for amplification or signal conditioning, hence eliminating the need for building an 

external unit. The device (PCB 352-A24, PCB Piezotronics Inc., Depew, NY, USA) had an input 

amplitude range of + 50g and a bandwidth of 1-8000Hz with a sensitivity of 100mV/g. These 

specifications were similar to those devices used previously for differentiating between 

pathological and normal knee joints (Nieminen, Saarakkala et al. 2004). In order to ensure 

participant safety, the accelerometer chosen was case-isolated with a layer of non-conducting 

ceramic.  

                                                

   Figure 3.1: Accelerometer unit used in the study 
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The accelerometer was powered by a 4-channel line power unit (PCB 482-C05, PCB 

Piezotronics, Depew, NY, USA). Joint vibration  signals were collected at a sampling rate of 

5000Hz through a custom-built oscilloscope program in LABVIEW (Version 8.5, National 

Instruments Inc., Austin, TX, USA). The signals were filtered using a 2
nd

 order Butterworth filter 

and subsequently processed in MATLAB (MATLAB R2010a, MathWorks Inc., Natick, MA, 

USA).  

 

3.2.3 Metronome 

Two types of metronomes were used in the study. 

1. A virtual metronome set to 20 lifts/minute and 40lifts/minute was used to train and enable 

participants to perform tasks at high and low lifting frequencies.  

2. A digital metronome set to 60 beats/minute was used to train and enable the participants to 

swing their leg at a consistent speed while recording signals from the accelerometer. 

 

3.3 Pilot study 

3.3.1 Procedure 

Capturing vibration signals 

Two participants were recruited for the pilot study, based on the inclusion criteria discussed 

earlier. After informed consent, the participant was seated on a raised seat such that the feet were 

suspended freely at rest. Baseline joint vibration signals were recorded from the participant’s 

right knee at the mid-patella and medial condyle. All joint vibration signals were recorded in a 

reference movement performed by the participant. This involved swinging the right leg through 

one cycle of knee extension and flexion over a 90
0
 range of motion at a consistent speed of 60 

beats per minute. Three such trials of the vibration signal from the patella and medial condyle 

were recorded after each task was performed, to record the repeatability of measurements.  

 

Inducing cumulative mechanical load 

Each participant performed a series of dynamic squat-lifting tasks with box-weights. Each task 

was a combination of a certain box weight and frequency of lift. Participants were assigned each 

task for a period of eight minutes, after which vibration signals were recorded. Participants were 

instructed to follow the metronome and keep their back as straight as possible; to enable them to 
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use their knees as much as possible during the lift. However, of the eight tasks assigned, one of 

the participants performed only four tasks while the other performed eight tasks.  

Choice of mechanical loading 

There were four box-weights and two lifting frequencies and the eight possible combinations of 

tasks as summarized in Table 3.1. The box weights and lifting frequencies were chosen so as to 

ensure that the product of load and frequency are a spread of values over a wide range rather than 

being concentrated in a narrow band of cumulative exposure. This was performed in an effort to 

ensure multiple levels of cumulative load as defined by Kumar (1990).  

 

Table 3.1: Tasks assigned based on combinations of load and frequency of lifts. 
 Box + No Weight  Box + 1 Weight Box + 2 Weights Box + 3 Weights 

 

Low 

Frequency  

 

1.5kg x 20lifts/min 

 

4.5kg x 20lifts/min  

 

7.5kg x 20lifts/min 

 

10.5kg x 

20lifts/min 

 

 

High 

Frequency 

 

1.5kg x 40lifts/min 

 

4.5kg x 40lifts/min 

 

7.5kg x 40lifts/min 

 

10.5kg x 

40lifts/min 

 

 

3.3.2 Dependent variables and predictor variables 

The dependent variables considered in the pilot study included 1) The relative Root Mean Square 

(relative RMS) power of the signal 2) Relative Median Frequency (RMF) of the power spectrum 

of the signal. These are computed as described below.  

 

Relative Root Mean Square (RMS) power 

The instantaneous power of the vibration signal is the square of its amplitude after filtering the 

signal. The mean power of the signal was calculated as the average of the instantaneous powers 

in time series. The RMS power for each trial was computed as the square root of the mean power 

of the signal. The average RMS power of the three trials captured after each task was recorded 

for analysis.  
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Relative Median Frequency 

The Fast Fourier Transform of the joint vibration signal in time series returns the frequency 

spectrum of the signal. The median frequency of the signal is defined as that frequency which 

separates the total power of this frequency spectrum into half. The relative median frequency of 

the ‘n’th task was defined as the ratio of the median frequency after ‘n’ tasks and the initial 

median frequency at the beginning before performing any of the tasks.  

 

 

The predictor variable set for the study was the 3-D cumulative moment on the knee which was 

computed as the integral of the 3-D instantaneous moment time series.   

 

3.3.3 Data analyses 

Joint Vibrations 

The vibration signal captured was filtered with a 2
nd

 order Butterworth band pass filter in the 

range 20Hz to 1000Hz. The RMS power was computed for the entire trial of the signal in time 

series and the median frequency was obtained from the power spectrum. 

 

3.3.4 Pilot results 

In the time domain of the signal, the power of each trial (one complete extension and flexion) 

was computed in terms of RMS and the in the frequency domain, median frequency of each trial 

was calculated. The means and standard deviations of the Relative Median Frequency (RMF) for 

all subjects are plotted against the corresponding loading levels. The RMS and RMF plots can be 

observed in figures 4.1 (a) and (b).  There is a decline in the RMF with progressing levels of 

loading, whereas the RMS does not display any such trend in data. Therefore, the RMS was 

discarded and only the RMF was used for further investigation.  
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    Table 3.2 (a): Sample RMS values obtained for the patella. 

 

 

 

 

 

 

 

   Table 3.2 (b): Sample Median Frequency values obtained for the patella. 

 

 

 

 

 

 

 

 

Figure 3.2 (a):  Relative root mean square (RMS) power of the signals from the patella measured 

after each task. The RMS power here is normalized to its initial value computed from the signals 

which were recorded at the start of the experiment, before the participant performed any tasks. 

 

 

Task 0 (6 min) 1 (12 min) 2 (18 min) 3 (24 min) 4 (30 min) 

Trial 1 0.15 V 0.22 V 0.25 V 0.26 V 0.23 V 

Trial 2 0.13 V 0.17 V 0.22 V 0.24 V 0.25 V 

Trial 3 0.12 V 0.18 V 0.33 V 0.31 V 0.34 V 

Average 0.13 V 0.19 V 0.27 V 0.27 V 0.28 V 

Std. Dev 0.01 V 0.02 V 0.04 V 0.03 V 0.05 V 

Task 0 (6 min) 1 (12 min) 2 (18 min) 3 (24 min) 4 (30 min) 

Trial 1 89.1696 49.1683 49.5017 52.0017 70.3357 

Trial 2 136.3379 61.5021 47.1682 40.3347 83.8361 

Trial 3 95.5032 53.6685 42.3347 40.8347 91.5031 

Average 107.0036 54.77963 46.33487 44.39037 81.89163 

Std. Dev 25.6009 6.241524 3.655449 6.596347 10.71683 
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Figure 3.2 (b): Relative root mean square RMS power of the signals from the medial condyle 

measured after each task. The RMS power here is normalized to its initial value computed from 

the signals which were recorded at the start of the experiment, before the participant performed 

any tasks.  

 

 

 

 

 

Figure 3.2(c): Relative Median Frequency (RMF) of signals measured from the medial condyle 

after each task. The median frequency is normalized with respect to its initial value which is 

computed from the signals recorded at the start of the experiment, before the participant 

performs any tasks.  
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Figure 3.2(d): Relative Median Frequency (RMF) of signals measured from the patella after each 

task. The median frequency is normalized with respect to its initial value which is computed 

from the signals recorded at the start of the experiment, before the participant performs any 

tasks.  

 

3.3.5 Issues with pilot and revisions made 

First, the box-weights were replaced with free weights since lifting the boxes became unwieldy 

and participants tended to deep squat with their thighs impinging upon their legs.  

Secondly, the task duration was reduced to six minutes from eight since the participants found it 

inconvenient to perform a stretch of eight straight minutes.  

Thirdly, only the Median Frequency was considered for further investigation since the RMS 

values did not show a consistent trend across signals captured from the patella and medial 

condyle.  

 

3.4 Final experimental procedure 

Briefly speaking, each participant had to perform a series of squat-lifting tasks on a force 

platform; kinematic and kinetic data were collected continuously throughout the task. Vibration 

signals were then recorded immediately following each task. 
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Calibration 

To maximize the accuracy of data collection, the laboratory space used for the lifting tasks was 

calibrated before the participant arrived. This included static and dynamic calibration using the 5 

marker wand system, and software calibration algorithms provided by the manufacturer. 

 

Marker Placement  

After informed consent was obtained from the participants, reflective markers were placed on 

anatomical positions of the foot and shank for each leg (as recommended in Dumas et al., 2007) 

 

Placement of accelerometers 

The accelerometer was affixed to the mid-patella and medial condyle positions as shown in 

Figures 3.2 (a) and (b) using double sided tape. Petro wax was used to mount the accelerometer 

firmly onto the tape.  The positions were marked before start of the experiment so as to maintain 

consistency in collecting data from the same position after every task.  

 

                                       

   (a)     (b) 

Figure 3.3: (a) Accelerometer positioned on the mid-patella. (b) Accelerometer positioned on the 

medial condyle. 

 

The accelerometer positions were chosen such that there was a bony prominence with little 

underlying fat in the area. Since vibrations from various parts of the joint ultimately transmit to 

the patella, (Rangayyan et al., 1992) the mid patella was marked and utilized for measurements.  

 



  

30 
 

Reference movement 

All acoustic signals were collected while the participant performed a reference movement. Each 

participant was instructed to swing the right leg for one movement cycle with a constant speed of 

60beats/min, following the cadence given by a metronome. One movement cycle included one 

flexion-extension movement through an approximately 90
0
 range of motion. Each cycle lasted 

for about six seconds (i.e., 3 metronome beats up, 3 metronome beats down). Participants were 

instructed to keep the movement as smooth as possible without any jerking motion. Every 

participant was allowed to practice the movement several times until they were able to swing 

their leg smoothly and with a consistent speed. A consistent speed was ensured by the 

investigator reinforcing the cadence count verbally when required.  

 

Task Specifications 

In order to induce cumulative loading on the joint, task combinations of different loading and 

lifting speeds were used. The weight of the most commonly lifted cinderblock in US 

underground coal mines is about 11.3 kg (Gallagher, Pollard et al. 2011). Therefore, the 

experiment used three comparable weights of 4lbs, 10lbs and 20lbs. A lifting frequency of 20 

lifts/min has been used for assessing thigh and trunk range of motion while squatting (Hagen, 

Sørhagen et al. 1995). Since the experiment attempted to simulate similar restrictive postures, 

comparable frequency levels of 20 lifts/min and 40 lifts/min were chosen. The frequencies were 

adjusted in such a way that lifting and lowering could be performed at a comfortable pace. 

Secondly, the lower frequency of 20 lifts/min attempted to induce static endurance loading on 

the joint in the squat position while the higher frequency was more dynamic. Both the loads 

however were cyclic, since they involved lifting and lowering.  

The six combinations of dynamic lifts and their cumulative exposure values are represented in 

the Table 3.1. Cumulative values, representative of external physical exposure were calculated 

by multiplying the load with the frequency of lift.  

 

Thus, there are in total six loading conditions – combination of three weights and two lifting 

speeds. The total duration of tasks was therefore effectively around 36 minutes. The duration was 

set in accordance with literature which suggested that the minimum time required for 
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viscoelasticity of the human cartilage to stabilize was around 30 minutes (Hayes and Mockros, 

1971).  

 

Task Procedure 

After recording baseline vibration signals, the participant was taken to the experimental set-up 

area for squat-lifting exercises as shown in figures 3.3 (a) and (b). The squat lifting procedure 

was demonstrated to the participants by the investigator with the metronome turned on. 

Participants were instructed to place one foot on each force plate while lifting and lowering the 

free weight pairs of 2lb, 5lb and 10 lb. placed on the table.  The position of feet on the force plate 

was fixed and marked by tape so that all participants would maintain a controlled posture. The 

table was adjusted to the participant’s waist height and boxes positioned below the table fixed 

the squat height in such a manner that the participants could only perform half-squat. In order to 

avoid impingement of the thighs on the shank, the squat height was fixed by positioning boxes 

below the table. Participants were instructed not to bend their back while squat-lifting, so as to 

allow the knees to bear all the physical demands while minimizing load on the lower back. 

             

(a)           (b) 

Figure 3.4:  Experimental set-up for performing squat-lifting tasks in (a) Resting position and (b) 

Half-Squat position. 
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Participants performed each task for six minutes. However, no participant could perform six 

minutes at a stretch for the 10lb weights and not all could perform 5lbs for six continuous 

minutes. Therefore, those participants were allowed a few seconds of breathing recovery after 

every two minutes of loading for the heavier weights. After every 6 minutes of exercise, joint 

vibration measurements were recorded in the reference movement. Of the total twelve 

participants recruited, two participants performed 4 out of the six tasks. One participant 

performed just two tasks. One participant data was discarded due to incorrect measurements. 

 

Table 3.3: Counterbalancing scheme and description of tasks assigned to each individual. 

 

3.5 Data analysis 

3.5.1 Joint moment calculation (mechanical loading) 

The 3-D net external moment at the knee joint was obtained by inverse dynamics using the link 

segment model (Winter, 2005). The kinematic and kinetic data were sampled by the Vicon-

Nexus system software at sampling rates of 100Hz and 1000Hz respectively. Data were filtered 

with a 2
nd

 order forward and backward Butterworth filter. The kinematic data were low pass 

filtered with a cut-off frequency of 6Hz while kinetic data were low pass filtered with a cut off 

frequency of 10Hz.The cut-off frequencies were concurrent with the kinematic and force plate 

calculations made from similar instrumentation by Preuss and Fung (2004). The kinetic data 

were then down sampled to 100Hz for ease of matrix computations in MATLAB.  

 

 

Tasks 
 

Participant 

 

1 

 

2 

 

3 

 

 

4 

 

5 

 

6 

 

Description of task 

 

 

A: 4lbx20lifts/min 

B:10lbx20lifts/min 

C: 20lbx20lifts/min 

D: 4lbx40lifts/min 

E: 10lbx 40lifts/min 

F: 20lbx 40lifts/min 

p1, p7 A B C D E F 

p2,p8 B F D C A E 

p3,p9 C D E F B A 

p4,p10 D A F E C B 

p5,p11 E C A B F D 

p6,p12 F E B A D C 
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Inverse Dynamics Computations 

The filtered kinematic and kinetic data were used as inputs for inverse dynamics computations 

performed in MATLAB. The sequence of steps for calculating the cumulative 3-D joint moment 

is described below. The segment masses, segment moment of inertia, and the position of the 

segment center of mass were determined from scaling equations as per Dumas et al (2007). 

 

Step 1: Calibration and rotation matrices.  

Since the passive markers were often blocked from the cameras by the set-up, markers on the 

medial side of the knee were barely visible in the trajectory. To overcome this issue, a triangle 

cluster of markers was placed on the shank segment. A single frame from the static trial, when 

the participant was absolutely steady, was chosen to calibrate the reference matrix. This matrix 

was used to calibrate the position of knee in space during the dynamic trials. 

All the segment lengths and center of mass positions were first determined in the local co-

ordinate system as described by Dumas et al (2007). A rotation matrix was computed and applied 

to obtain these co-ordinates in the global co-ordinate system. 

 

Step 2: Centre of Pressure (COP) 

Filtered force data was down-sampled to 100Hz. The center of pressure co-ordinates (x,y,z)  in 

the global co-ordinate system were calculated using the following formulas as prescribed by the 

AMTI  instruction manual for the force plate. 

 

 

The thickness of the force plate was assumed to be zero and therefore,  

 

 

Step 4:  Linear and angular accelerations 

The angular motion of the lower extremity was resolved into three planes – transverse, sagittal 

and coronal corresponding to x-y, y-z and z-x planes. Finite difference equations were applied on 

the position (kinematic) data to obtain the corresponding instantaneous velocities and 
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accelerations (Winter, 2005). Linear velocities and accelerations of the rigid body segment were 

computed in the three anatomical planes and used in the final force and moment equations to 

compute the knee joint moment. 

 

Step 5: Free Body Diagrams 

Free body diagrams were drawn in the three anatomical planes to define the forces and moments 

directly acting upon the foot and the shank. The free body diagrams in the sagittal plane are 

shown in Figure 3.5. 

 

Figure 3.5: Free body diagram showing forces and moments acting on the (a) Foot segment and 

(b) Shank segment 

 

Step 6: Moment and Force Equations 

Based on the free body diagrams, the segment equations are described below.  

 

Foot Segment 

Horizontal force equations: 

 -------------------------------------------------------------------- (1) 

 -------------------------------------------------------------------- (2)   

Vertical Force equations: 

 ------------------------------------------------------------- (3) 

where mf  is the mass of the foot segment, 
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afx, afy and afz are the accelerations of the centre of mass of the foot segment in the x, y and z 

directions respectively. 

 Rax, Ray, and Raz are the reaction forces at the ankle in the x, y and z direction respectively. 

 Fx, Fy, Fz are the ground reaction forces acting on the foot in the x, y and z direction      

respectively.  

Wf is the weight of the foot segment. 

 

Shank Segment 

Horizontal force equations: 

 ----------------------------------------------------------------- (4) 

 ----------------------------------------------------------------- (5) 

Vertical force equations: 

 ----------------------------------------------------------- (6) 

where ms  is the mass of the shank segment, asx, asy and asz are the accelerations of the centre of 

mass of the shank segment in the x, y and z directions respectively. 

Rkx, Rky, and Rkz are the reaction forces at the knee in the x, y and z direction respectively. 

Rax, Ray, and Raz are the reaction forces at the ankle in the x, y and z direction respectively. 

Ws is the weight of the shank segment. 

 

Step 7: Moment Equations 

The moment equations are represented in their 3-D vector form, as cross products shown below.  

 ------------------------------------------- (7) 

 

 --------------------------------- (8) 

 

where: 

Ma and Mk are the 3-D moment vectors at the ankle joint and the knee joint respectively, and 

these are required unknowns computed using the equations above.   
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Ra is the vector containing the x, y and z components of the reaction force on the ankle joint. 

. 

Similarly, ,  

If and Ik are the inertia tensors about the center of mass of the foot and shank segments 

respectively. They were obtained from scaling parameters recommended by Dumas et al. (2007). 

αf and αk are the vectors for segment angular accelerations for the foot and shank respectively.  

r1 and r2 are position vectors denoting the distance of the point of application of Ra and F 

relative to the center of mass of the foot segment. Similarly, s1 and s2 are the position vectors for 

the distances of Ra and Rk relative to the center of mass of the shank segment.  

 

Step 7: 3-D joint moment and cumulative moment 

The instantaneous 3-D moment was calculated as the root mean square (RMS) of the moments in 

each anatomical plane for every sample in the trial.  

Thus, 

Instantaneous RMS of ankle moments   ------------------------ (9) 

Instantaneous RMS of knee moments    ------------------------- (10) 

The cumulative moment was the integral of all the instantaneous RMS moments over the time ‘t’ 

taken to complete the tasks.  

Cumulative moment of ankle =   

Cumulative moment of knee =  

 

3.5.2 Joint vibration signal processing 

Data Collection 

Before and after the completion of each task, each participant performed the reference movement 

continuously, following the beat of the metronome. Once the participant attained consistency in 
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speed and movement, three trials were collected for each signal from the patella and medial 

condyle during each recording session.   

 

Data Clipping 

Each signal was partitioned by visual inspection into extension or flexion, based on ascent or 

descent of the accelerometer output. Standing parts at the start and end of the signal which did 

not have a slope were clipped from the trial. These stationary parts of the signal were from 

instances during measurement while the leg was resting before changing direction.   

 

Vibration Signal Processing – Based on Ensemble Average 

After clipping each signal into flexion and extension parts, the Fast Fourier transform (FFT) 

between 25 Hz and 2500Hz of each signal was taken. An ensemble average of the FFT at each 

frequency was computed across ten of the twelve participants for: 

a) Signals recorded at the start of the experiment before any form of loading. 

b) Signals recorded after the participant accomplished 2 tasks. 

b) Signals recorded after the participant accomplished 4 tasks.  

For the aforementioned loading conditions, the ensemble average was constructed for signals 

from the patella, during flexion and extension as well as for signals from the medial condyle 

during flexion and extension. The purpose of graphing out the ensembles was to identify trends 

in data across the different loading conditions. Based on the results of the ensemble average, a 

pre-post t-test and an analysis of variance (ANOVA) of vibration parameters were subsequently 

performed across the three loading conditions considered for signals from the patella during 

flexion. The vibration parameters considered for the t-test included the absolute RMS and 

Median Frequency. 

 

Vibration Signal Processing – Based on different bandwidths 

Further, data processing was performed across three bandwidths.  First, our pilot results indicated 

that the median frequencies for readings taken from the patella and medial condyle to be below 

100Hz. Since muscle, skin and motion artifacts were to be filtered out, the first bandwidth under 

consideration was 20-100Hz. Secondly, it has been reported that significant differences between 

normal and pathological knees occur in the frequency range of 100-500Hz (Reddy et al., 1995). 
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Therefore the second bandwidth under consideration was 100-500Hz, to test if similar 

differences could be seen across loading conditions. Thirdly, in an intuitive sense, normal joints 

would vibrate at higher frequencies than pathological joints. This idea is partially supported by 

literature which points out that the frequency range of vibrations decreases as the severity of 

joint pathology increases. Therefore, the third bandwidth under consideration was kept at higher 

frequencies of 1000-2500Hz.  

Similar methods as Reddy et al. (1995) have been used here for processing participant data 

across three bandwidths. After clipping, data trials comprised of extension and flexion trials. 

Each raw signal was normalized with respect to its peak amplitude. The normalized signals were 

filtered in two steps. Firstly, a 4th order Butterworth filter was used to process each data trial of 

extension and flexion. Data were filtered across three different bandwidths of 20-100Hz, 100-

500Hz and 1000-2500Hz. Secondly, a notch filter was designed to eliminate AC power 

contamination at 60Hz, and harmonics at 120Hz and 180 Hz. After filtering, the frequency 

spectrum of each trial was obtained by means of the Fourier transform and the median frequency 

of each signal was recorded. Mean power of each signal was computed as the sum of power 

spectrum values over each frequency band divided by the total number of frequency components. 

All these steps are outlined in figure 3.5.  Data were processed by a custom program written in 

MATLAB. 

The three bandwidths chosen for this experiment were based on literature and empirical 

concepts. Chu et al. (1978) used microphones to capture vibrations from the pre-patellar region 

in one cycle of flexion and extension and suggested that knee joint vibrations exist throughout 

the audible frequency range of 20-20000Hz and that below 20Hz; the vibrations were primarily 

due to snapping of tendons during articular movements. Analyses conducted across a wide 

bandwidth of 20-2500Hz during the pilot and the final study showed median frequencies to exist 

below 100Hz. Therefore a window of 20-100Hz was used. McCoy et al. (1987) indicated that 

most pathological vibrations existed below 1000Hz. Reddy at al. (1995) used miniature 

accelerometers and found significant differences between normal and pathological knee 

vibrations between 100-500Hz through a simple power spectral analysis. Therefore, this window 

was chosen to examine if any differences existed across loading conditions. 
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Figure 3.6: Flowchart depicting steps involved in processing vibration data. 
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3.6 Statistical analysis  

The dependent variables under consideration in this study included: 

a) RMS of the vibration signals 

b) Median Frequency of the vibration signals 

c) RMS of the signals normalized to their initial RMS before start of the experiment 

(Relative RMS) 

d) Median Frequency of the signals normalized to their initial value before start of the 

experiment (Relative Median Frequency, RMF) 

 

Statistical tests were performed to investigate relationships between cumulative moment and the 

aforementioned joint vibration parameters. Using data from the ensemble average curves, a two 

tailed paired t-test was performed comparing the cumulative moment (Nm.s) and variables (a) 

and (b) before start of the experiment and after 4 tasks for signals recorded during flexion, from 

the patella in the 750Hz-2000Hz bandwidth. Following this, a one way ANOVA was performed 

for the variable which showed a significant difference in the t-test. If the ANOVA did not show 

any differences across means for the non-normalized variables, (a) or (b), the normalized 

variables were tested by ANOVA. Normalizing the variables with respect to their initial values 

was an attempt to minimize any carry-over effects of joint deformation.  

 

In order to investigate the possibility of a quantitative relationship between induced moment and 

vibration parameters, several regression analyses were performed. Linear regressions were 

performed between the cumulative moment and the relative median frequency (RMF) of joint 

vibrations across  twelve combinations - three bandwidths (20-100Hz, 100-500Hz, 1000-

2500Hz), two locations (Patella and Medial Condyle) and two movement types (Extension and 

Flexion). The regression parameter β was tested for significance in each regression. Coefficients 

of determination (R
2
), root mean square error and standard error of regression were also 

examined. Residual plots were examined for regression models which exhibited significant 

associations in order to check for normality in the model. The effect of cumulative load on the 

vibration parameter, RMF, without the influence of body mass was investigated. In order to do 
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this, the RMF set of values for each of the regressions which were found significant, were 

regressed over the cumulative 3-D moment normalized with respect to body mass (Nm.s/kg). 

Subsequently, a two-factor regression model was performed using the data from the two 

associations which were found significant. Multicollinearity among the predictor variables was 

examined for this two factor model.  
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4.0 RESULTS 

4.1 Analysis from ensemble averages 

As a part of preliminary investigation of vibration signals, ensemble average of participants’ 

frequency spectra across ten participants for various conditions were computed. The graphs 

obtained are displayed in Figures 4.1 (a), (b), (c), and (d).  The ensemble average plots for 

signals from the patella, during flexion (Figure 4.1.d.) showed some visually distinguishable 

differences in magnitude in the 750Hz – 2000Hz range. As a result, signals in this range were 

extracted and their RMS and median frequency were computed for further analysis.  

 

 

Figure 4.1(a): Ensemble average of the Fourier transforms for signals from the medial condyle  

            during extension. 
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 Figure 4.1(b): Ensemble average of the Fourier transforms for signals from the medial condyle       

            during flexion.  

 

 

 

Figure 4.1(c): Ensemble average of the Fourier transforms for signals from the patella during  

             extension.  

 



  

44 
 

 

 

Figure 4.1(d): Ensemble average of the Fourier transforms for signals from the patella during  

            flexion. 

 

 

Results from t-tests 

As it is clear from Figure 4.1 (d), there exists a visually distinguishable difference in the Fourier 

transforms of the signals in the 750Hz-2000Hz range, across the three different loading 

conditions. The RMS and median frequency of the signals were computed in this range. A 

paired, two-tailed t-test did not reveal any significant results in the median frequency whereas 

the mean RMS power of the signals showed a 40% decrement from pre-test, before loading (M = 

0.70g, S.D = 0.40g) to post-test, after 4 tasks (M = 0.42g, S.D = 0.16g) at t(9) = 2.57, p = 0.03. 

Specifically, there was a cumulative or time-dependent effect of joint loading on the RMS power 

of knee vibrations. Table 4.1 (a) and (b) list the values computed for RMS and median frequency 

of the vibration signal between 750Hz and 2000Hz from the patella, during flexion. 
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Table 4.1(a): RMS values for vibration signals in the range 750Hz-2000Hz, from the patella 

during flexion. 

 

 

 

Table 4.1(b): Median Frequency values for vibration signals in the range 750Hz-2000Hz, from 

the patella during flexion. 

 

Analysis of Variance 

An analysis of variance (ANOVA) performed across the three loading conditions to investigate 

effects of cumulative load on the RMS of the signal did not reveal any significant results. 

Therefore, the relative RMS, i.e. RMS of the signal normalized to its initial value (as defined in 

chapter 3) was considered. A one way within subjects ANOVA  conducted to compare the 

temporal effect of  load on the relative RMS of signals before the tasks, after 2 tasks and after 4 

tasks resulted in an overall 28% decline in the relative RMS after 4 tasks at F(2,27) =3.14 at 

 p = 0.06. From this result we observe that there are no main effects of loading duration on the 

power of joint vibrations. However, a p-value of 0.06 is very close to the a priori α-value of 

0.05. This implies that although there are no main effects of load, the data certainly shows a 

declining trend in the power of vibrations with increase in cumulative load. The significant pre to 

post decline in absolute power as noted earlier by a t-test, adds value to the observation of such a 

trend in the power of vibration signals. Figure 4.2 is a graphical representation of the decline in 

relative RMS power of vibrations with increasing number of tasks performed.  

 

 

 

     Before Loading 

Trial 1    Trial 2    Trial 3 

After 2 tasks 

  Trial 1    Trial 2    Trial 3 

After 4 tasks 

    Trial 1    Trial 2    Trial 3 

 

RMS  

     

 

1.59g 

 

1.60g 

 

1.50g 

              

0.79g 

   

0.79g 

 

0.64g 

               

0.71g 

      

0.49g 

 

0.45g 

 

Mean (SD) 

 

1.57g  (0.041) 

 

0.745 g (0.086) 

 

0.549g  (0.139) 

 Before Loading 

 Trial 1        Trial 2        Trial3 

     After 2 tasks 

  Trial 1     Trial 2     Trial3 

After 4 tasks 

 Trial 1     Trial 2     Trial3 

Median 

Frequency 

 

 

1349Hz 

 

1380Hz 

 

1379Hz 

 

   

1187Hz 

 

1138Hz 

 

 

1156Hz 

     

1348Hz 

 

1136Hz 

 

1242Hz 

 

Mean (SD) 

 

1369Hz  (17) 

 

1161Hz (24) 

 

1242Hz (106) 
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Figure 4.2: Graph displaying the mean and standard deviation of the relative RMS power across 

all participants, at different points in time based on the number of tasks accomplished. The 

decrease in the mean relative RMS power is apparent after the participants accomplish two tasks 

and all four tasks. 

 

4.2 Regression analyses   

The results of linear regressions performed between the 3-D cumulative moment and the 

corresponding relative median frequency (RMF) defined previously, are presented in Table 4.2 

below. The results revealed significant correlations (assuming a 95% confidence level), between 

the induced cumulative load and corresponding RMF for the following cases: 

 

 1000-2500Hz Patella Flexion: A t-test performed for RMF before loading and after 4 tasks 

showed a significant difference with p < 0.0001*.  

 20-100Hz Patella Flexion: A t-test performed for RMF before loading and after 4 tasks 

showed a significant difference with p =0.02*. 

 

Regression analyses performed between the same variables in the 500Hz-100Hz range did not 

find any consequential results. Likewise, the RMS analysis did not show any correlations in all 

the bandwidths considered.  
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Table 4.2: Results of all regressions performed for Cumulative Load (Nm.s) versus RMF.                                          

* indicates statistical significance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample means and standard deviations gathered for RMS and median frequency in the 1000-

2500Hz range for signals from the patella during knee flexion of one participant are presented in 

Tables 4.3 (a) and (b).  

 

Table 4.3 (a): Mean median frequency (with Std. Dev) computed for signals recorded after each 

task from the patella, while under knee flexion.  

Task      0      1      2      3      4      5      6 
Average 

Median 

Frequency 

(S.D) 

 

1509.82 Hz 

(6.36) 

 

1492.0 Hz 

(20.73) 

 

1489.75 Hz 

(25.62) 

 

1504.81 Hz 

(6.69) 

 

1521.39 Hz 

(37.21) 

 

1475.11 Hz 

(50.96) 

 

1489.65 Hz 

(5.54) 

 

 

 

Frequency 

Range 

 t-test (β, dof, p-value)  

t(0.95, 49) = 2.01 

R
2 

RMSE 

 

 

20-100Hz 

Patella Extension β = -2649,  p = 0.99 9.0e-7 11799 

Patella Flexion β = 618321,  p = 0.02* 0.1112 11123 

Medial Condyle Extension β = -78039,  p = 0.78 0.0001 11790 

Medial Condyle Flexion β = -220858,  p = 0.26 0.0258 11646 

 

 

100-500Hz 

Patella Extension β = 47431,  p = 0.36 0.0172 11697 

Patella Flexion β = 8897,  p = 0.83 0.0009 11793 

Medial Condyle Extension β = -68403,  p = 0.57 0.0067 11759 

Medial Condyle Flexion β =  -1073 ,  p =0.98 1.5e-5 11799 

 

 

1000-

2500Hz 

Patella Extension β = -56773,  p = 0.43 0.0131 11721 

Patella Flexion β = -253667,  p <0.0001* 0.2992 9877 

Medial Condyle Extension β =  8833,  p = 0.90 0.0003 11797 

Medial Condyle Flexion β = 7310,  p = 0.88 0.0004 11796 
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Table 4.3 (b): Mean RMS power (with Std. Dev) computed for signals recorded after each task 

from the medial condyle, while under knee flexion. 

Task    0   1   2   3   4   5    6 

Average 

RMS (S.D) 

20.45g 

(0.04) 

20.41g 

(0.007) 

20.34g 

(0.02) 

20.29g 

(0.03) 

20.31g 

(0.02) 

20.34g 

(0.16) 

20.32g 

(0.02) 

 

The RMF of the signals recorded in the 1000Hz-2500Hz range from the patella during knee 

flexion declined linearly with increase in cumulative load at p <0.0001. The coefficient of 

determination (R
2
) was equal to 0.29 implying that 30% of the variability in the vibration 

parameter RMF was explained by the 3-D cumulative joint moment by a linear relationship. The 

regression plot for this case with individual scatters for each participant is shown in Figure 

4.3(a). The residuals for this regression returned a scatter plot which was not entirely random or 

normal as seen from Figure 4.3(b). 

 

 

Figure 4.3 (a)  : Regression plot of Cumulative moments versus Relative Median Frequency for 

vibration signals from the Patella in the range 1000-1500Hz during flexion showing individual 

scatter of points for each participant. Each unique combination of color and shape represents a 

participant. 
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Figure 4.3 (b): Residual plot of linear regression between 3-D cumulative moment and RMF, 

showing a random, but non-normal scatter of points. 

 

As the residual plot revealed a non-normal distribution, the logarithmic value of the 3-D 

cumulative moment was computed. A regression plot of this log moment versus the RMF for the 

1000Hz-2500Hz patella signal during knee flexion showed an increase in the coefficient of 

determination by about 3% as seen in Figure 4.3 (c). This means that the log moment explained 

variability in RMF better than the cumulative moment per se by about 3%.  

 

 

Figure 4.3 (c): Regression plot of the Log of 3-D Cumulative Moment at the knee versus the 

Relative Median Frequency RMF for 1000-2500Hz range. The coefficient of determination R
2
 is 
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now 33% as opposed to 30% when the regression was performed without the logarithm being 

taken.  

As seen from Table 4.2, linear regression analysis performed between the cumulative moments 

and RMF of signals in the 20Hz-100Hz range captured from the patella during knee flexion 

showed a declining association, at p = 0.02 and with R
2
 = 0.11. This means that the 3-D 

cumulative moment decreased linearly with decline in the vibration parameter RMF, explaining 

about 11% of the variability in RMF. The regression plot for this case with individual scatters for 

each participant is shown in Figure 4.4(a). The residuals for this regression returned a non- 

normal scatter plot as seen from Figure 4.4(b). 

 

 

 
 

Figure 4.4 (a) Regression plot of Cumulative moments versus Relative Median Frequency for 

vibration signals from the Patella in the range 20Hz-100Hz during flexion showing individual 

scatter of points for each participant. Each unique combination of color and shape represents a 

participant.    

 

 

As the residual plot revealed a non-normal distribution, the logarithmic value of the 3-D 

cumulative moment was computed. A regression plot of this log moment versus the RMF for the 

20Hz-100Hz patella signal during knee flexion showed an increase in the coefficient of 

determination by about 2% as seen in Figure 4.3 (c). This means that the log moment explained 

variability in RMF better than the cumulative moment per se by about 2%.  
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Figure 4.4 (b): The residual scatter plot for the linear regression performed between 3-D 

cumulative load and the RMF for vibration signals in the 20Hz-100Hz range recorded from the 

patella during knee flexion. 

 

 

Figure 4.4 (c): The regression plot of the log of 3-D cumulative moment versus vibration signal 

RMF in the range 20Hz-100Hz captured from the patella during knee flexion.  
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4.3 Cumulative moment normalized with respect to body mass. 

The cumulative load on the joint is influenced by the participant’s body mass among other 

variables (Norman et al., 1998). Therefore the cumulative load was normalized with respect to 

body mass and this normalized cumulative moment (Nm.s/kg) was regressed with the spectral 

parameter, RMF for the  1000-2500Hz Patella Flexion and 20-100Hz Patella Extension cases. 

The linear regression performed between the normalized cumulative moment and the Relative 

Median Frequency for signals between 1000Hz and 2500Hz resulted in an increase in the 

coefficient of determination (R
2
) by 1%. The R

2
 value for the new regression was 0.30. There 

was no increase in R
2
 for the 20-100Hz Patella flexion case. 

 

4.4 Two-factor regression model  

Since two significant but opposite associations were observed, a two factor regression model was 

considered, with the predictor variables as the RMF in the two conditions in which opposite 

associations were observed. The dependent variable was set as the cumulative moment 

normalized to body mass and the resulting model returned an R
2
 value of 32.27%, which was 

higher than the individual R
2
 values and the coefficients and p-values for each variable are 

presented in Table 4.3. Figure 4.5 (a) shows the scatterplot of the actual versus predicted 

cumulative moment.  

Table 4.3: p-values for the two predictor variables of the two-factor model for signals captured 

from the patella during knee flexion 

 

Term Estimate Std. Error t Ratio Prob >|t| 

20-100Hz (X2) 3979.76 3338.57 1.19 0.2392 

1000-2500Hz (X1) -3232.99 835.11 -3.87 0.0003* 

Intercept -550.73 3713.63 -0.15 0.8827 
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The two-factor model establishing the estimated value of the normalized cumulative moment as 

a function of the two predictor variables which are RMF of the signals in the 20Hz-100Hz range 

and the 1000Hz-2500Hz range is:  

 

 

 

 

Figure 4.5: Scatterplot of actual versus predicted values of the cumulative moment normalized to 

body mass.  

 

As seen from the scatter plot, R
2
 = 0.32. Thus, the two-factor model shows a greater correlation 

than each of the individual factors. Also, from Table 4.3 we see that the signals in the 1000Hz-

2500Hz range exhibit a significant influence on the model at p = 0.0003. Hence, these signals are 

more robust compared to the 20Hz-100Hz signals. 

   

Multicollinearity 

The two predictor variables were also regressed upon each other to test for multicollinearity and 

the association turned out significant (p = 0.0136). This means that the two factor model is not 

necessarily very robust because of the presence of an association between the two predictor 

variables. However, the degree of association, R
2
 for this plot turned out to be low at about 12% 

R
2
 = 0.32 

Ῡ = -550.73 -3232.99X
1
 + 3979.76X

2
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and typically R
2
 values less than around 16% do not affect the variance in the model due to 

multicollinearity significantly. Gravel et al. (1997) who developed predictive equations for 

maximal static moments generated by trunk musculatures disregarded one of their regression 

cases due to low R
2
 values of 0.09-0.12. Moreover, the two-factor model is exploratory and has 

been created from a small sample size of about ten participants. A larger sample size should be 

investigated before anything can be confirmed regarding the multi-factor model.    
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5.0 DISCUSSION 

The purpose of this exploratory study was to investigate the effect of mechanical loading on the 

vibration properties of the knee joint. Preliminary analyses of the knee joint signals showed that 

the vibration properties including RMS power and relative median frequency of the signal 

significantly change with increase in cumulative load on the knee.  Specifically, signals from 

captured from the patella during knee flexion showed these differences. The results of the study 

indicate the possibility of a relationship between joint exposure to load and vibration signals 

emitted during joint movement. However the quantitative nature of this relationship is not clear 

yet although the current study points towards a nonlinear model.  

 

Two types of analysis were conducted to study vibrations. First, RMS and median frequency of 

the vibration signals captured from the patella during knee flexion, by a piezoelectric 

accelerometer were computed in the 750Hz-2000Hz range. This bandwidth was based on results 

obtained from the ensemble average of the particpants’ frequency spectra for various vibration 

signals and loading conditions. Second, the signal RMS and relative median frequency were 

computed in the ranges 20Hz-100Hz, 100Hz-500Hz, 1000Hz-2500Hz using the Butterworth 

filter. These bandwidths were determined based on pilot studies and literature review of 

pathological vibrations. 

 

5.1 General findings 

In the first analysis, a pre-post t-test revealed that the RMS of the signal from the patella under 

flexion, declined with increase in loading. This leads us to reject the null hypothesis 1a, that 

there is no difference in the RMS of the signal before and after loading the joint. However, 

contrary to our expectation as outlined in alternate hypothesis 1a, the RMS decreased as the 

cumulative load increased and this leads us to question the etiology of vibration signals from the 

knee. A possible explanation for this phenomenon of decline in RMS could come from 

understanding change in cartilage morphological characteristics, such as cartilage thickness and 

area in relation to vibration signals from the joint. From an ANOVA, we observe a declining 

trend in the normalized power of vibrations with increasing cumulative load. As such, we fail to 

reject the null hypothesis that there exists no relationship between the vibration characteristic 

RMS power and cumulative load. However, since a trend was observed in the power of 
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vibrations, the possibility of a relationship between vibration characteristics and cumulative load 

should be explored further. 

 

In the second analysis, the relative median frequency of vibrations captured from the patella 

during flexion in the frequency range of 1000Hz-2500Hz declined while increasing the 

cumulative exposure on the joint. The coefficient of determination R
2
 for the linear regression 

between the relative median frequency and the 3-D cumulative moment turned out to be nearly 

30%.  This implies that about a third of the variability in cumulative exposure could be explained 

by the vibration characteristic, relative median frequency. These findings suggest a quantitative 

relationship between the variables, leading us to reject the null hypotheses 1b and 2b. Moreover, 

this also means that we fail to reject the alternate hypothesis 1b and 2b that the median frequency 

decreases with increase in exposure since we see a declining frequency characteristic as 

purported. As such, we fail to reject the null hypothesis that there exists no relationship between 

the vibration characteristic RMS power and cumulative load. However, since a trend was 

observed in the power of vibrations, the possibility of a relationship between vibration 

characteristics and cumulative load should be explored further. 

 

5.2 Frequency range under consideration 

One of the purposes of constructing the ensemble average of participants’ frequency spectra was 

to gather an understanding of the frequency bandwidth in which the vibrations across loading 

conditions varied from each other. By visual inspection of the ensemble graphs, the 750Hz-

2000Hz bandwidth for vibrations under flexion from the patella were most distinguishable in 

terms of magnitude across loading conditions. Since the study was performed on healthy adults, 

this finding was indirectly supported by McCoy et al. (1987) who asserted that pathological 

vibrations in the knee exist only at frequencies below 1000Hz. They used miniature 

accelerometers affixed on the patella and condyle and suggested that pathological vibrations due 

to meniscal lesions exist below 100Hz and those due to signs of degeneration between 300-

600Hz. Rangayyan et al. (1988) collected joint vibration signals from the patellofemoral joint 

using miniature sensors and determined that mild chondromalacia existed at higher frequencies 

(up to 300 Hz) than severe chondromalacia which showed vibrations below 100Hz.  
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These studies added evidence to the notion that pathological knee vibrations existed only below 

1000Hz and basically led to the proposition in hypothesis 1b that the frequency of vibrations 

decreased as severity of joint deformation increased. Since our study was conducted only on 

individuals with no history of joint pathology, it is likely that vibrations from these healthy joints 

would be composed of higher frequencies than vibrations from pathological joints. Besides, in 

our second analysis, the relative median frequency found changes in the 1000Hz-2500Hz 

bandwidth. This is again in tandem with the proposition that the frequency of the joint vibrations 

would be greater for healthier joints as compared to pathological joints.  

 

5.3 Individual differences in vibration behavior due to diurnal changes and time-dependent 

joint deformation. 

The scatter of the relationship between the relative median frequency and cumulative 3-D joint 

moment as seen in Figure 4.2 (a) and Figure 4.3 (a) show a unique trend for each individual. This 

implies that each person’s joint surfaces reacted differently to the squat-lifting tasks assigned. 

The possible reason for such a distributed scatter across participants could be because joint 

deformation is based on the existent morphology of the joint and that the effect of daily activity 

on joints has not been considered. Koo et al (2011) conducted a cartilage MRI study on healthy 

volunteers and suggested that even walking is an important consideration while analyzing 

cartilage surface characteristics. As a result, each individual’s joint morphology may have been 

different when they walked into the lab for the experiment and due to the viscoelastic nature of 

joint tissues, each joint may have responded differently to mechanical stress. This means that 

there could have been carry-over effects of loading on the joint, thus causing individual 

variations in the vibration responses. Although in the current study we tried to partially account 

for these deformational changes by normalizing the signal parameter relative to its initial value, 

carry over effects in case of the complex cartilage behavior cannot be discounted completely. 

This phenomenon of carry-over effects due to diurnal changes and time-dependent deformation 

is further explained below. 

In the current study, although all the participants were similar in terms of age and fitness 

routines, the experiment was not performed at the same time of the day for everyone. As a result, 

the diurnal variation in physical activity levels was not monitored in the study. Eckstein et al. 

(1998) conducted experiments where participants with healthy knees performed 50 knee bends 
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for a few minutes and MRI images of the cartilage were reconstructed before and after the 

exercise. They discovered a 6% mean decrease in cartilage volume after 3-7 minutes of physical 

exercise and a 5.2% mean decrease after 8-12 minutes of exercise. Their suggestion was to allow 

patients an hour of rest before recording the MRI so as to avoid effects of daily activity. 

Likewise, there can be similar deformational changes in the knee over the course of a day due to 

routine physical exercise. Due to constraint on lab schedules, the experiment was performed at 

different times of the day and participants’ activity levels for hours prior to the experiment could 

not be controlled because of participants’ work commitments. As a result, each participant 

probably had a different joint condition when they came in.  

Hosseini et al. (2010) discovered that the cartilage deformation was time dependent and that for 

healthy knees, cartilage deformed rapidly for the first 20s and the rate became constant after 

about 50s. This implies that deformation behavior is dependent on the existing condition of the 

cartilage. Such carry over effects can also be due to a variety of factors as joint response 

behaviors could differ across ethnicities, genders and age. However, in this experiment, only age 

and exercise patterns have been controlled for. Gender and ethnicity effects have not been 

studied. Thus individual differences due to daily activity could have been a major cause for the 

individual scatters of figures 4.2 (a) and 4.3 (a).  

 

5.4 Only the signals captured from the patella during passive movement of limb were 

consequential.  

An interesting observation in this study was that only signals captured from the patella showed 

useful results. The reason could be that there is a lot of intermediary skin at the medial condyle 

gap for vibrations to be recorded without attenuation by skin friction noise. At the mid-patella, 

the accelerometer comes directly in contact with the patella cap and as per Rangayyan et al. 

(2000), all the vibrations inside the joint travel to the patella cap.  

Another interesting observation was that all significant findings were only in cases of knee 

flexion when the limb moved passively as opposed to extension when the quadriceps and shank 

muscles are not actively engaged. This is in tandem with literature (Reddy et al., 1995) which 

stated the use of passive limb movement for producing significant results while recording joint 

vibrations. This finding is also supported by Rangayyan et al. (2000) who proposed that muscle 

contractions can contribute to noise in vibration signals. However, they used advanced signal 
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processing to eliminate the contractions as opposed to passive limb movement which is a simpler 

choice. 

 

5.5 Possibility of a non-linear or multi-variate relationship. 

There are several points in the results of this study which indicate the possible non-linearity of 

the variables under consideration. Firstly, a log transformation of the 3-D moment gave a 

stronger association as opposed to using just the 3-D moment in the linear regressions. Secondly, 

the residuals for the significant linear regressions were non-normal indicating that a linear plot 

may not be the ideal regression curve. Thirdly, despite a small sample size the ANOVA result 

between the relative RMS power and time indicates a declining trend in the RMS parameter with 

increase in cumulative load over time, thus suggesting the possibility of a relationship. Further 

studies should account for other risk factors which could strengthen this trend in signal power in 

order to find out the nature of the potential relationship.  

 

The results of linear regression between cumulative moment and RMF in 20-100Hz bandwidth 

showed an R
2
 value of 11% while the 1000-2500Hz bandwidth had an R

2
 of 29%. Therefore 

with these conditions as predictor variables, a combined two factor model was investigated and 

this returned a higher coefficient of determination (R
2
) of 32% than the individual R

2
 values. 

Thus, the two factor model seemed to have better predictive ability and that in future, the effect 

of multiple vibration parameters must be examined simultaneously.  



  

60 
 

6.0 LIMITATIONS AND FUTURE DIRECTIONS 

This study was very exploratory in nature and therefore various aspects of the methods applied to 

answer the research question can be modified to yield stronger associations in the results or to 

reveal new findings. As the current study was limited by sample size and by various other factors 

of the variables chosen, much of the future works needs to focus on understanding the 

fundamentals of the vibration emission phenomenon rather than taking this study to the next 

level. Some limitations and scope for future work are discussed as follows. 

6.1 Etiology of vibrations 

Effects of joint velocity 

Vibration frequencies below 20Hz have been eliminated to remove skin friction artifacts or 

snapping of tendons as purported by Chu et al. (1978). Similarly, high frequencies (above 

2500Hz) were not even considered as all mechanical knee vibrations discovered so far have been 

well below that. However there is no definitive proof  that the vibrations captured indeed 

originate from the soft tissues and are not irrelevant noises during joint movement. Joint 

vibration characteristics can be influenced by kinematic parameters like joint velocity. Kernohan 

et al. (2006) examined 24 pathological joints at different velocities and found out that the root 

mean square power of joint vibrations gets significantly affected by changing the velocity of 

joint movement. Besides, there are some normal joint sounds which are associated with a 

particular joint angle or joint velocity. For instance, the patellofemoral click (PFP) is a routine 

phenomenon which is associated with extremely slow movement in healthy joints irrespective of 

their loading (McCoy et al., 1987). Although the speed of the reference movement used in the 

current study has been keep constant to 6 seconds/cycle in tandem with studies by Tavathia et al. 

(1992) and Reddy et al. (1995), these speeds are largely determined by the participants’ comfort 

level and do not necessarily represent an optimum speed of recording the pathological aspect of 

vibrations. The independent variable (3-D joint moment) considered in the present study 

pertained to joint kinetics rather than kinematics. Future studies should investigate the effect of 

kinematic variables such as joint angles and joint velocities on the vibration parameters to check 

for the possibility of stronger associations. 
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Changes in joint mechanical properties 

Cartilage tissues exhibit senescence, which is a phenomenon where cells of biological tissues 

stop regenerating. This increases the sensitivity of the cartilage response to joint loading. 

Senescence can be induced due to aging and degenerative changes in the cartilage. As a result, a 

healthy cartilage would be less sensitive to joint loading as opposed to an already degenerating 

or aging cartilage. The current study used healthy participants making it difficult to induce a 

deformational change in cartilage response behavior. This could explain why mechanical load 

measured as the joint moment, explained only about 30% of the variability in vibrations. Many 

industry workers undergoing squat-lifting on a daily basis are much older that the student 

population represented in the current study. These workers’ joints may actually be more sensitive 

to changes than those of the students who took part here, by virtue of their age.  Future studies 

should examine participants who are similar to actual factory workers in age and physical 

conditions, so that the results represent real conditions.  

The knee joint is a complex structure composed of different types of tissues and synovial fluid. 

The philosophy behind the current study has majorly been that vibrations are caused due to 

friction between the meniscal surfaces and release of viscoelastic strain energy. Since 

mechanical stress can be a reason for changes in joint mechanical properties, it might be 

worthwhile to study the viscoelastic creep and relaxation behavior of joints with respect to the 

joint vibration emission. Understanding this relationship first could provide a more holistic 

insight into why vibration parameters increase or decrease with joint load.   

6.2 Direct measures of loading. 

Although the external moment has been used several times in the past to quantify joint loading, it 

is only driven by external forces such as box weights and body weight and does not include 

internal compression and shear forces acting upon the joint. The knee joint being a complex 

structure of soft tissues and fluids, the 3-D cumulative moment alone is not a complete 

representation of the stresses acting upon the knee. Winter (1995) asserted in his book that co-

contraction forces should be imposed on the free body diagram while constructing a 

biomechanical model. As squat lifting tends towards an extreme posture for the knees, a more 

holistic approach involving direct compression and shear forces, ligamentous forces, co-
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contractions and fluid pressure on the meniscus should be considered while investigating joint 

loading.  

Future studies should therefore consider measuring joint force by methods which directly 

influence injury such as biomechanical knee models to predict direct compression or shear forces 

on the meniscus. Electromyography to capture muscle forces and co-contractions should be 

explored for different muscle groups which influence squatting, including the quadriceps. These 

studies could potentially reveal a dominant force affiliated with joint deformation. 

Mechanomyography from muscle groups of the lower extremity should also be explored for 

comparison with joint vibrations. By examining measurements which are more directly 

associated with injury causation, the correlation between joint vibrations and mechanical load 

may be strengthened, possibly setting the scope for a quantitative relationship.  

6.3 Static versus dynamic loading   

The squat-lifting tasks performed were dynamic loading tasks. There is little literature which 

conducted in vivo studies, suggesting the dynamic behavior of the cartilage under load.  Kääb et 

al. (1998) examined the behavior of cartilage recovery in vitro by subjecting rabbit knee 

cadavers to static as well as dynamic loading and subsequently examining the morphology of the 

cryogenically preserved cartilage tissue under an electron microscope. The cadavers were 

subjected to a static load at 90
0
 flexion for 30 minutes and dynamic load at about 1 Hz frequency 

from 70
0
 to 150

0 
  for 30 minutes. These dynamic parameters are similar to what has been used in 

our in vivo study where the subject was loaded under a frequency of up to 40lifts/min (0.66 Hz) 

while squat-lifting for nearly 30 minutes. Their results revealed that cartilage deformation in 

terms of thickness and time of recovery was significantly lesser and faster for dynamic loading 

than static loading. This directs to the implication that a static load may have induced a higher 

deformation than dynamic squat-lifting. As some of the industrial squatting tasks (such as in 

farming) can last for hours through the day, it may be worthwhile to investigate static tasks in the 

future.  

In order to test for the impact of static loads, a pilot was performed where the participant was 

made to half-squat for as long as he physically could (~2 minutes). No differences in the power 

spectrum were observed in this pilot. Future studies should however focus on static loading for 

extended time periods in deep knee flexion.  
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6.4 Advanced signal processing methods 

According to Krishnan, Rangayyan et al. (2000) the joint vibration signal is non-stationary in 

nature since the quality of joint surfaces in contact changes with the joint kinematics. Therefore, 

these authors have attempted several advanced methods of signal processing for over a decade in 

order to extract useful features and parameters from the signal. Due to the elementary and 

exploratory nature of the current study, signal processing methods applied were restricted to 

examining the frequency spectrum or time series as a whole rather than applying segmentation 

techniques. Use of advanced digital signal processing in future, might yield dependent variables 

which correlate stronger with mechanical loading.  
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7.0 CONCLUSION 

The results of this exploratory study revealed that cumulative mechanical exposure on the joint 

has an effect on the characteristics of vibration signals emitted by the articulating joint. The RMS 

power of the signals showed a declining trend in the 750Hz-2000Hz range with increase in 

mechanical exposure. With the increase in cumulative moment on the joint, the normalized 

median frequency of vibration signals was found to decrease for vibration signals in the 1000Hz-

2500Hz range and increased for signals in the 20Hz-100Hz range. These preliminary findings 

imply the probability of a statistical relationship between vibration characteristics and joint 

mechanical exposure. The quantitative nature of this relationship is not known yet although the 

findings point towards a non-linear, or a multi-variate model. Cumulative moment being an 

indirect measure of joint stress limits our understanding of this relationship.  Therefore as a first 

step, future studies should address the dependence of joint vibrations on cartilage morphological 

changes. Also, future studies conducted should be controlled in terms of accounting for exercise, 

and obtaining a direct means of measuring cumulative load than the 3-D moment. 
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APPENDIX A: DEMOGRAPHIC QUESTIONNAIRE 
Participant no._______ 

Please take some time to answer the following questions. All answers will be kept confidential.  

1. Age  ____________ 

2. Gender : Male _______   Female _______ 

3. Height : _______ 

 

4. Weight : _______ 

 

5. Occupation : _________  

 

6. Have you had any ankle, knee or hip injury in the past? Yes _____ No _____ 

If yes, please explain _____________________________________________________ 

 

7. Have you experienced injury on any other part of your body for which you had to take 

days off from work/school? Yes _____  No______ 

If yes, please explain ______________________________________________________ 

 

8. Do you experience any discomfort while squatting on the floor? 

Yes _______ No _______ Don’t Know ________ 

If yes, please explain_______________________________________________________ 

 

9. Do you have any condition which restricts you from physical activity? 

 

10. Dominant Leg ____________. 

 

11. How many times do you exercise per week? _____________________.  What kind of  

exercise?_______________________________________________________. 

 

-----Thank you for your time!----- 
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APPENDIX B : CONSENT FORM 

 

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY 

 

Informed Consent for Participants in Research Projects Involving Human Subjects 
 

Title of Project 

Quantification of cumulative load on the knee using a vibration emission method. 

 

Investigator(s) 

Principal Investigator: Dr.Michael J. Agnew 

Co-Investigator: Navaneeta Dorbala 

 
I. Purpose of this Research/Project 

The purpose of this study is to measure loads on the knee induced by various occupational tasks 

which involve squatting.  This shall be done by capturing acoustic signals emitted from the 

movement of the knee joint. 

 

When two surfaces with some wear and tear slide against each other, acoustic energy in the form 

of vibrations is dissipated due to the friction between them. Similarly, the surfaces of the knee 

joint which facilitate body movement undergo wear and tear during daily activities and dissipate 

acoustic energy. These surfaces are manifested in the form of the articular cartilage, or just 

cartilage. Sliding movements between the rough surfaces of the cartilage cause pain in the knee. 

In many sports such as running, soccer, football, basketball and tennis, players use the knee as 

their primary tool for twisting, rotating and for bearing several times their body weight. As a 

result, these sportsmen are prone to excessive loading on their knees, resulting in a rough 

cartilage which pains during certain movements. The acoustic signature of joint tissues, 

particularly the cartilage, has been used in the past to distinguish between a healthy and a 

diseased knee.  

 

Since the knee joint is the primary weight bearing joint, the nature of a task can affect the quality 

of the surface of its cartilage. Several occupations including construction, mining and agriculture 

involve performing tasks which require frequent squatting while simultaneously lifting and 
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lowering heavy weights with no adequate rest.  

Squatting is a restricted and awkward posture which can cause a lot of mechanical stress on the 

knee joint. Squatting with lifting increases the load placed on the knee by several times. Joint 

tissues such as the cartilage have limited tolerance for withstanding mechanical loads. So just 

like any other material, their threshold of failure decreases if they are under forceful and 

repetitive loads without rest. Such loads are called cumulative loads and they can place heavy 

stresses on the knee joint causing wear and tear in the cartilage tissues. Therefore, injuries and 

illnesses of the knee are commonly reported among workers in such occupations. Our goal is to 

quantify wear and tear in cartilage tissues and associate this with the cumulative load exposure 

caused by the industrial task. 

 

Cumulative loading on the knees should be minimized in order to avoid the occurrence of injury 

or illness due to occupational tasks. As a first step, it is important to quantify this load.  In this 

study, cumulative load on the knees while squatting shall be quantified in terms of the acoustic 

signature of the cartilage. A statistical model elucidating the impact of various loads on changes 

in the acoustic signature This will hopefully broaden our understanding of the impact of 

industrial tasks in restricted postures on the health of the joint tissues. Furthermore, it may be 

possible to use the “acoustic emission” method as a portable and easy means to measure 

occupational loads in field settings rather than lab settings. Moreover, quantifying cumulative 

load on the knee can be useful for estimating the long term effect of knee loading among 

workers. 

 

Twenty people between the ages of 18 and 30, reflective of the university community shall 

participate in this study. All participants chosen will be physically and mentally strong to 

perform in the study without any history of joint disorders.  

 
 
 

II. Procedures 

As a participant in this experiment, you will be expected to attend one session of testing, lasting 

from 1-2 hours in the Industrial Ergonomics and Biomechanics Laboratory at 5
th

 floor, 

Whittemore Hall, Virginia Tech. During the session, you will be asked to perform the following 
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procedures.  

Throughout the experiment, you will have tiny markers taped to various joints on your body for 

recording your movement data. 

 

There will be several lifting tasks to perform. You will be asked to squat and lift dumbbells in 

pairs of 1lb, 5lbs and 10lbs. Each of these tasks shall be done repetitively at two different speeds.  

Thus, there are in total six tasks –i.e., combinations of three weights and two speeds. Each task 

shall be performed for about 8 minutes, with rest breaks allotted. Thus, the exercise would last 

effectively for a period of 50 minutes to 1 hour excluding rest breaks.  

 

Measurements will be taken every 8-10 minutes, after completion of each task. For 

measurements, you will have a tiny accelerometer attached to bony prominences on your knee. 

This shall be used to collect acoustic signals from the knee. For collecting this data, you will be 

asked to swing your leg according to a certain cadence. This is our reference movement and 

acoustic data recorded in this movement after each task , shall be used for analysis.  

 

If you experience any discomfort at any point of time during the experiment, you are completely 

free to let the researcher know that you want to stop. You may then leave.  

 

III. Risks 

You might experience some muscle fatigue while doing these tasks. This will be the same type 

fatigue you may experience when performing day to day activities, such as climbing stairs, 

lifting your backpack from the floor or lifting a child. There might be mild muscle soreness for 

the next 24-48 hours or so. You are free to quit at any point of time in the experiment.  

 

IV. Benefits 

The methods and results of this study can be of use for early assessment of cartilage health 

among workers in mining, agriculture and construction who have to frequently adopt awkward 

postures due to the nature of their work. This can also be useful to predict exposures due to a 

certain job over a period of time.  
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In sports, many players exert several times their body weight on the knees during sporting 

actions such as bowling, kicking, twisting or throwing. As a result, players are prone to a 

condition called chondromalacia patellae which is pain due to roughening of the cartilage 

surface. This technique offers a method of cartilage health assessment among players of sports 

such as football, basketball and cricket. 

 

Such a technique can be used by clinicians in an easy and affordable manner to assess a person’s 

day-to-day mechanical exposure levels and cartilage health resulting from routine tasks such as 

climbing the stairs, cleaning the floor, working in the kitchen or carrying children. The earlier the 

risk of such exposure is known, the easier it is to provide recommendations for better designs at 

home and work in order to avoid the occurrence of chronic osteoarthritis.  Subjects may contact 

the researcher at a later time for a summary of the results if interested.  

 

V. Anonymity and Confidentiality 

All participant files shall be identified by a participant number. The files will be stored as a soft 

copy which will be accessible only to the student researcher and the principal investigator in 

charge of this project. No information of the participants and the results shall be shared without 

the written consent of the participant. The files will be destroyed once the study has been 

approved for publication in a journal.  

 

VI. Compensation 

Participation in this experiment is completely voluntary and no compensation shall be provided 

for it.  

 

VII. Freedom to Withdraw 

At any point of time during the experimental session, participants are free to withdraw at their 

will if they begin to feel any discomfort due to pain or physical fatigue.  

 

VIII. Subjects’ Responsibilities 

I voluntarily agree to participate in this study.  
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IX. Subject’s Permission   

I have read the Consent Form and conditions of this project. I have had all my questions 

answered. I hereby acknowledge the above and give my voluntary consent:. 

 

  Date  _ 

Subject signature 

   Date    

Witness (Optional except for certain classes of subjects) 
 

 
 

Should I have any pertinent questions about this research or its conduct, and research 

subjects' rights, and whom to contact in the event of a research-related injury to the 

subject, I may contact: 

 

 

                 Navaneeta Dorbala   540-449-3639/nav27@vt.edu  

  _ 

                   Investigator(s)                                                               Telephone/e-mail 
 

 

 

               Dr. Michael J Agnew            mjagnew@vt.edu 

  _ 

                   Faculty Advisor                                                            Telephone/e-mail 
 

 

 

    Dr. Thurmon Lockhart            lockhart@vt.edu 

  _ 

Departmental Reviewer/Department Head                                     Telephone/e-mail 
 
 
 

 

                     David M. Moore                                               540-231-4991/moored@vt.edu 

  _ 

Chair, Virginia Tech Institutional Review            Telephone/e-mail 

Board for the Protection of Human Subjects 

Office of Research Compliance 

2000 Kraft Drive, Suite 2000 (0497) 

Blacksburg, VA 24060 

 

mailto:moored@vt.edu

