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Abstract

Degradation data provide a useful resource for obtaining reliability information for

some highly reliable products and systems. In addition to product/system degradation

measurements, it is common nowadays to dynamically record product/system usage as

well as other life-affecting environmental variables such as load, amount of use, temper-

ature, and humidity. We refer to these variables as dynamic covariate information. In

this paper, we introduce a class of models for analyzing degradation data with dynamic

covariate information. We use a general path model with individual random effects to

describe degradation paths and a vector time series model to describe the covariate pro-

cess. Shape restricted splines are used to estimate the effects of dynamic covariates on

the degradation process. The unknown parameters in the degradation data model and

the covariate process model are estimated by using maximum likelihood. We also de-

scribe algorithms for computing an estimate of the lifetime distribution induced by the

proposed degradation path model. The proposed methods are illustrated with an appli-

cation for predicting the life of an organic coating in a complicated dynamic environment

(i.e., changing UV spectrum and intensity, temperature, and humidity).

Key Words: Covariate process, Environmental conditions, Lifetime prediction, Or-

ganic coatings, System health monitoring, Usage history.
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1 Introduction

1.1 Background and Motivation

For products and systems with high reliability, it is challenging to do field reliability assess-

ment in a timely manner based only on limited lifetime data. When available, degradation

data provide a useful resource for obtaining reliability information because there are degra-

dation measurements for each individual unit in the field before the individual unit fails. For

products with degradation driven by usage and environmental conditions, information about

these variables can be important for modeling the degradation process. For example, the

degradation of organic coatings is primarily driven by Ultraviolet (UV) exposure, while tem-

perature and humidity are other important factors. There are many other more examples

that the degradation is driven by usage and environmental variables such as, the loss of light

output from an LED array, the decrease of power output of photovoltaic arrays, the corrosion

in an oil transportation pipeline, the vibration from a worn bearing in a wind turbine, and

the loss of gloss and color of an automobile finish.

The developments in technology allow many systems to collect and transmit massive

datasets. It is common nowadays to dynamically record product/system usage and load

as well as other environmental variables such as temperature and humidity, which we refer to

as dynamic covariate information. For example, even a small device like a power inverter that

are used in solar panel arrays can gather and transmit information on the output of power, the

ambient temperature and humidity in every few seconds. The availability of such large-scale

dynamic data creates many opportunities and challenges.

The dynamic covariate data contain rich information that can be useful for modeling and

predicting product reliability. One can expect those units which are heavily used and are

used under extreme environments to fail sooner than those units that are less heavily used

and are used under normal environmental conditions. Thus it is attractive to incorporate

dynamic covariate information into degradation modeling and data analysis, especially when

predictions are required for individual units.

Although not all systems will provide degradation data, there are many that will. Examples

include power output from a satellite transmitter, power from solar cells, power from voltage

inverters, light output from an LED array, number of paper jams per week in a printer/copier,

rechargeable battery capacity, etc. The main goal of this paper is to develop general models

for analyzing degradation data and dynamic covariate information that are available up to

the current time point for a fleet of products. Based on the degradation data model, one can

obtain estimates for the lifetime distribution for the product population and for individual

units in the field. We use data from an outdoor weathering experiment to illustrate the models
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and methods.

1.2 Related Literature

In literature, general path models are commonly used to analyze degradation data (e.g., Lu

and Meeker 1993). For a specified failure definition, the cumulative distribution function (cdf)

of the lifetime distribution is induced by the parametric model for the degradation paths.

Stochastic models are another class of models to analyze degradation data (e.g., Lawless and

Crowder 2004). The stochastic model approach assumes that the data are generated from

a stochastic process, such as a Wiener process, a gamma process, and an inverse Gaussian

process. By the properties of the assumed underlying stochastic process, the cdf of the lifetime

distribution can be obtained. Details on parameter estimation for various degradation models

are available in Chapter 13 of Bagdonavičius and Nikulin (2001a). Singpurwalla (1995) con-

sidered both univariate and multivariate survival models under dynamic environments. Zhou,

Serban, and Gebraeel (2011) applied a functional data analysis approach to degradation data

modeling.

For degradation data analysis, covariate information and the modeling of covariates are

available in several settings such as accelerated repeated-measures degradation tests (e.g.,

Meeker, Escobar, and Lu 1998, and Bagdonavičius and Nikulin 2001b), accelerated destruc-

tive degradation tests (e.g., Escobar et al. 2003), and degradation-test experimental designs

(e.g., Joseph and Yu 2006, and Park and Padgett 2006). Gebraeel and Pan (2008) considered

a Bayesian linear degradation path model with time varying covariates. Bagdonavičius, Ma-

siulaitytė, and Nikulin (2010) considered a stochastic degradation model with time varying

covariates. The time-varying covariates are incorporated into the induced cdf of the degrada-

tion process through a cumulative damage model (e.g., see Nelson 2001).

Little work has been done in degradation data modeling that also considers unit-to-unit or

temporal variability for covariates. The modeling of the effect of the dynamics on degradation

can provide valuable information in several areas. For example, degradation information is

important in the area of system health monitoring or condition-based maintenance, where

dynamic covariate information is available for continuously monitored systems. Thus, general

models for analyzing degradation with dynamic covariate information need to be developed.

1.3 Overview

The rest of the paper is organized as follows. Section 2 introduces a motivating example from

the National Institute of Standards and Technology (NIST) outdoor weathering of epoxy coat-

ing experiments. Section 2 also introduces the data structure and notation for degradation
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data with dynamic covariates. Section 3 proposes a general additive model for incorporating

dynamic covariate information into the degradation path model and develops parameter esti-

mation procedures. Section 4 describes parametric models for a multivariate covariate process

and the corresponding procedures for parameter estimation. Section 5 develops procedures

for failure-time distribution estimation based on the parametric models given in Sections 3

and 4. Section 6 contains some concluding remarks and describes possible areas for future

research.

2 Data

2.1 NIST Outdoor Weathering Data

The illustrative application is from the NIST outdoor weathering data. The data were collected

in a study of the service life of organic coatings in outdoor environments. Outdoor weathering

experiments were carried out in Gaithersburg, MD, from 2002 through 2006. There were

36 specimens placed in outdoor environmental chambers on the roof of a building on the

NIST campus, starting at different times of the year. The outdoor temperature, humidity,

and Ultraviolet (UV) spectrum and intensity for each unit were recorded automatically by

sensors. See Gu et al. (2009) for more details.

A degradation measurement is proportional to the damage to the coating and it was

measured periodically for each specimen using FTIR. The degradation measurements were

taken at intervals of several days. For illustration, we consider the degradation of aromatic

C-O bonds, corresponding to damage number 1250 cm−1 on the FTIR spectrum. Figure 1(a)

shows nine representative degradation paths from nine specimens, started at different times

of the year. The time scale of the degradation measurement, denoted by t, is the time in days

since the first measurements. A large part of the variability in these data is due to the varying

amount of UV exposure during the nine different periods of time.

For dynamic covariate information, Figures 1b, 1c, and 1d show the daily values of the

UV dosage, temperature, and relative humidity (RH), respectively. The time scale for those

covariates, denoted by τ , is the time in days since 01 January 2002. Although those covari-

ates are recorded at much more finer resolutions, we aggregated them into daily values for

convenience of modeling. Scientifically, the appropriate time scale to model photodegrada-

tion should be proportional to the number of photons absorbed into the degrading material.

One such quantity is known as dosage. The daily UV dosage at day τ is computed by∫ τ+1

τ

∫ λmax

λmin
E(ζ, λ)

[
1− eA(λ)

]
dλdζ where the spectral irradiance E(ζ, λ) is the dose (propor-

tional to the number of photons hitting the surface) at time ζ from sun light with wave-

length λ, [1− eA(λ)] is the absorbance rate for different wavelengths, and λmin = 300 nm and
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λmax = 532 nm give the wavelength limits. Wave lengths above 532 nm are not harmful and

wave lengths below 300 nm are generally filtered by atmospheric ozone. The UV spectrum and

intensity values were recorded at 12-minute intervals but were aggregated into daily dosage

values. For the period between day 598 and day 805, the covariate information is not available

because there was no experimental data being collected during that period.

As it can be seen in Figure 1, the environmental covariates show seasonal patterns and also

different degrees of variability during different time periods. For example, the UV dosage shows

more variability during summer time than during winter time. Due to different starting times,

each specimen has its own profile of dynamic covariate information, resulting in different rates

of degradation, as we can see from Figure 1(a). For example, those units started in summers

initially degraded much more rapidly than those started in winters.

2.2 Notation for the Data

Here we introduce some notation for the degradation data model and the dynamic covariate

model. Let X(t) = [X1(t), . . . , Xp(t)]
′ be the usage/environmental information at time t,

where p is the number of covariates. Let X(t) = {X(s) : 0 ≤ s ≤ t} be the history of the

covariate process, which records the dynamic information from time 0 to time t.

Suppose there are n units/specimens in the field. For unit i, denote the degradation

measurements at time tij by yi(tij), i = 1, . . . , n, j = 1, . . . , ni, and ni is the number of time

points where degradation measurements were taken. The value of covariate l for unit i at

the time s is denoted by xil(s). The history of the covariate process for unit i is denoted by

xi(tini
) = {xi(s) : 0 ≤ s ≤ tini

} which records the dynamic information from time 0 to time

tini
for unit i. Here xi(s) = [xi1(s), . . . , xip(s)]

′.

3 Model for a Degradation Path

3.1 General Path Model

Let D(t); t > 0 be the actual degradation path and let

y(t) = D(t) + ǫ(t) (1)

be the degradation measurement at time t. The degradation model implies a degradation path

D(t) for each unit in the population. When the degradation level D(t) reaches the failure-

definition level Df , a soft failure occurs and we say that the unit has failed. The first crossing

time is denoted by tD and

tD = min{t : D(t) reaches Df}.
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Figure 1: Plot of nine representative degradation paths and dynamic covariate information

(the dots show the daily values, connected by line segments).
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The failure-time random variable T is defined as the collection of the failure times tD for all

the units in the population. The cdf of T is F (t) = Pr(T ≤ t). The estimate of F (t) is used for

the reliability prediction for the population, which is obtained by using both the degradation

measurements and the dynamic covariate information.

3.2 Modeling Degradation Path with Dynamic Covariates

Here we introduce a general additive model to incorporate dynamic covariate information into

the degradation path model. In particular, the observed degradation path, conditional on the

dynamic covariate information, is modeled as

yi(tij) = D[tij ;xi(tij)] +R(tij ;wi) + εi(tij). (2)

The corresponding model for the actual degradation path is D[tij;xi(tij)]+R(tij ;wi). The first

component D[tij ;xi(tij)] = β0 +
∑p

l=1

∫ tij
0

fl[xil(τ); βl]dτ incorporates the dynamic covariates

into the degradation path through a covariate effect transformation function f(·). Here β0 is

the initial level of degradation, and βl denotes the parameter(s) in covariate effect function

fl(·), l, l = 1, . . . , p. The coefficient vector for the initial degradation and covariate effects is

denoted by β = (β0, β
′
1, . . . , β

′
p)

′. For covariate l, the function fl[xil(τ); βl] represents the effect

of xil(τ) at time τ on the degradation process. Thus,
∫ t

0
fl[xl(τ); βl]dτ is the cumulative effect

of xl on the degradation process up to time t. This modeling approach is motivated by the

cumulative damage model for the accelerated failure time model in Nelson (2001, Chapter 10).

The second component R(t;wi) is a monotone function of t. An individual random effect

wi is used to account for unit-to-unit variability caused by unobservable factors. A simple

but useful form of R(tij ;wi) is R(tij;wi) = w0i + w1itij where w0i and w1i are interpreted as

individual random effects for the initial degradation and the time trend, respectively. The

random effect wi is modeled by a bivariate normal distribution N(0,Σw). Let σw be a general

notation for the unique parameters in Σw. The third component εi(tij) in (2) is the noise

term. In literature, for example, Meeker and Escobar (1998), the εi(tij)’s are often modeled

to be independent and identically distributed with N(0, σ2
ε).

3.3 Functional Forms for Covariate Effect f(·)

Two alternative approaches are available for choosing the functional form for the covariate

effect transformation function f(·). The first approach is based on models motivated by

physical, chemical and engineering knowledge. For example, if there is dynamic information

on temperature, the Arrhenius relationship (e.g., page 472 of Meeker and Escobar 1998) can

sometimes be used to model the effect of temperature on the rate of a degradation process.
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When there is not sufficient knowledge about the form of f(·) from physical/engineering

knowledge or when such models do not fit the data well, an alternative is to use nonparametric

methods. For this approach, the function f(·) is estimated as a linear combination of spline

bases. Because most physical variables have a particular relationship with the degradation

process (e.g., the degradation rate is increasing as the temperature is increasing), we apply

shape restrictions on f(·). To obtain functional forms for f(·) with different shape restrictions

(e.g., monotonic increasing, decreasing, or convex), we use shaped-restricted splines described

in Meyer (2008).

Here we give a brief introduction to bases for shaped-restricted splines. More details can

be found in, for example, Ramsay (1988), and Meyer (2008). Consider a general covariate z

with n values {z1, · · · , zn}. The range of z is denoted by [zmin, zmax]. Let z = (z1, · · · , zn)
′.

For regression splines of order h, choose b locations dh+1, . . . , dh+b, and define knots zmin =

d1 = · · · = dh < dh+1 < · · · < dh+b < dh+b+1 = · · · = d2h+b = zmax. The M-spline basis of order

h, denoted by M
(h)
q (z), is positive on (dq, dq+h), zero elsewhere, and has the normalization∫

M
(h)
q (z)dz = 1.

Note that there are h+ b M-spline bases of order h, which are given recursively as follows.

Order 1 M-splines are the piecewise constant M
(1)
q (z) = 1(dq≤z<dq+1)(dq+1 − dq)

−1 for q =

1, · · · , b + 1 where 1(·) is an indicator function. Order h M-splines are computed recursively

by

M (h)
q (z) =

h[(z − dq)M
(h−1)
q (z) + (dq+h − z)M

(h−1)
q+1 (z)]

(h− 1)(dq+h − dq)
1(dq≤z<dq+h)

for q = 1, · · · , b + h. The I-splines are Ĩ
(h)
q (z) =

∫ x

zmin
M

(h)
q (u)du, q = 1, . . . , b + h, for z ∈

[zmin, zmax]. Note that the I-spline bases are monotone increasing functions of z. The I-

splines are integrated to obtain C-splines, C̃
(h)
q (z) =

∫ z

zmin
I
(h)
q (u)du, q = 1, . . . , b + h, for

z ∈ [zmin, zmax]. To remove the dependency on the constant spline, the I-splines are regular-

ized by

I(h)q (z) = Ĩ(h)q (z)−P{1}[Ĩ
(h)
q (z)], q = 1, · · · , b+ h (3)

where P{1}[Ĩ
(h)
q (z)] is the projection of Ĩ

(h)
q (z) onto the linear space spanned by 1. Similarly,

to remove the dependency of the constant and identity splines, the C-splines are regularized

by

C(h)
q (z) = C̃(h)

q (z)−P{1,z}[C̃
(h)
q (z)], q = 1, · · · , b+ h (4)

where P{1,z}[C̃
(h)
q (z)] is the projection of C̃

(h)
q (z) onto the linear space spanned by 1 and z.

A monotone function is estimated by a linear combination of the basis functions (I-splines)

and a constant function. To constrain the estimate to be monotone increasing, the coefficients
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Figure 2: Splines bases for the covariate effects of UV dosage, temperature, and RH.

of the basis functions must be nonnegative (the coefficient of the constant function is not

constrained). A convex regression function is estimated using linear combinations of the basis

functions (C-splines) with nonnegative coefficients, plus an unrestricted linear combination of

the constant function and the identity function g(x) = x.

For the outdoor weathering data, the degradation path of the FTIR damage number

1250 cm−1 is monotone decreasing. Higher UV dosage or temperature tends to cause larger

damage rates. Thus the effects of UV dosage and temperature are constrained to be monotone

decreasing in UV dosage and temperature. The effect of RH is constrained to be concave,

based on a graphical analysis of the indoor weathering data in Gu et al. (2009) where the RH

was controlled (along with other experimental variables) at different levels for serval groups of

test units. Figure 2 shows the spline bases for the covariate effects of UV dosage, temperature,

and RH. The monotone decreasing splines bases are obtained by using −I
(h)
q (·). The concave

splines bases are obtained by using −C
(h)
q (·). The asymptotically optimal number for b is

b ≈ n1/(2h+1) (e.g., Meyer 2008). Here the sample size n is taken to be the number of time

points where the covariates are recorded. For the weathering data, there are 676 time points.

With order 3 polynomial pieces (i.e., h = 3), we chose b = 3 for the covariates in the weather

data. The b = 3 locations were chosen as the 0.25, 0.5, and 0.75 sample quantiles of the

covariate values.
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3.4 Parameter Estimation

Because the degradation data and dynamic covariate process are observed at discrete points

in time, the discrete-data version of model (2) is

yi(tij) = β0 +

p∑

l=1

∑

τik≤tij

fl[xil(τik); βl] +R(tij ;wi) + εi(tij). (5)

Here D[tij ;xi(tij)] = β0 +
∑p

l=1

∑
τik≤tij

fl[xil(τik); βl] is still used to denote the discrete-data

version of the model. Let θD = {β,γ,σw, σε} be the collection of unknown parameters.

The maximum likelihood (ML) method is used for parameter estimation. Given the observed

covariate process, the likelihood is

L(θD) =

n∏

i=1

∫

wi


 ∏

tij≤tini

1

σε
φ

{
B[yi(tij);xi(tij), wi]

σε

}
gwi

(wi;σw)


 dwi (6)

where B[yi(tij);xi(tij), wi] = yi(tij)−D[tij ;xi(tij)]−R(tij ;wi), φ(·) is the probability density

function (pdf) of a N(0, 1) distribution, and gwi
(·) is the pdf of a N(0,Σw) distribution. The

ML estimate θ̂D is obtained by finding the value of θD that maximizes (6).

The maximization of (6), in general, is not trivial because numerical methods such as

quadrature (e.g., Liu and Pierce 1994) are needed to evaluate the integral in the likelihood

function. When shape-restricted splines are used and the random component is modeled as a

linear function of wi, the model in (5) is a linear mixed-effects model with constraints on the

parameters. The estimation of the unknown parameters can be done by using the procedure

in Davidov and Rosen (2011). For computational efficiency, the constrained quadratic pro-

gramming used in Davidov and Rosen (2011) can be replaced by the mixed primal-dual bases

algorithm used in Fraser and Massam (1989) to solve the generalized least squares problem

under constraints.

When shape-restricted splines are used and R(tij ;wi) = w0i + w1itij , the model in (5) can

be represented by

yi(tij) = β0 +

p∑

l=1

Ql∑

q=1

Blq(tij)βlq + w0i + w1itij + εi(tij) (7)

where Blq(·)’s are spline bases, Blq(tij) =
∑

τik≤tij
Blq[xil(τik)], and Ql is the number of spline

bases for covariate l. Let yi = (yi1, . . . , yini
)′,

X i =




1 B11(ti1) · · · B1Q1
(ti1) · · · Bp1(ti1) · · · BpQp

(ti1)
...

...
. . .

...
. . .

...
. . .

...
1 B11(tini

) · · · B1Q1
(tini

) · · · Bp1(tini
) · · · BpQp

(tini
)


 , Zi =




1 ti1
...

...
1 tini


 ,
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and εi = [εi(ti1), . . . , εi(tini
)]′. Using this notation, the model in (7) can be expressed as

yi = X iβ +Ziwi + εi.

Note that the variance-covariance matrix of yi is Σi = ZiΣwZ
′
i + σ2

ǫ Ini
where

Σw =

[
σ2
0 ρσ0σ1

ρσ0σ1 σ2
0

]

and Ini
is an ni × ni matrix. Let σw = (σ0, σ1, ρ)

′. Some components of β are constrained

to be nonnegative to produce a shape-restricted covariate effect. Without loss of generality,

let β = (β′
u,β

′
c)

′ where βu and βc represent unconstrained and constrained parameters,

respectively.

The estimation algorithm is as follows.

Algorithm 1:

1. Obtain initial values of σw and σε, which can be done by fitting the unconstrained linear

mixed-effects model.

2. Compute Σi = ZiΣwZ
′
i + σ2

ǫI i.

3. With Σi computed in step 2, use the mixed primal-dual bases algorithm to obtain the

estimate of β by minimizing
∑n

i=1(yi −X iβ)
′Σ−1

i (yi −X iβ) subject to the constraints

that the elements of βc are greater than or equal to 0.

4. Fit a linear mixed model to ε̂i = yi −X iβ̂ to obtain updated estimates of σw and σε.

5. Repeat steps 2 to 4 until convergence.

Making inferences for the constrained ML estimator is not straightforward. Some elements

of ML estimate vector may be on the boundary of the parameter space. Although asymptotic

theory is available for constrained ML estimator (e.g., Self and Liang 1987), the bootstrap

method provides a flexible and easy-to-implement alternative. The residuals and estimated

random effects are sampled with replacement to construct the bootstrap version of the data, in

which the estimated random effects are adjusted by using the method proposed by Carpenter,

Goldstein, and Rasbash (2003). The details of the bootstrap algorithm are described in

Appendix A. As pointed out by Morris (2002), the direct resampling (i.e., without appropriate

adjustment) of the estimated random effect will result in confidence intervals (CIs) that are too

narrow. The estimation procedure in Algorithm 1 is applied to the bootstrapped data. The

resampling process is repeated with a large number of the times (10,000 times here) and CIs

can be constructed based on the sample quantiles of the bootstrapped parameter estimates.
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Table 1: Parameter estimates and approximate 95% CIs for β0, σ0, σ1, ρ and σε in the degra-

dation path model.

Parameter Estimate
Standard 95% Bootstrap CI
Error Lower Upper

β0 -0.04166 0.00398 -0.04971 -0.03419
σ0 0.02273 0.00319 0.01578 0.02831
σ1 0.00068 0.00010 0.00046 0.00084
ρ -0.46114 0.14420 -0.68234 -0.12840
σε 0.01776 0.00053 0.01599 0.01805
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Figure 3: Estimated effect functions for UV dosage, temperature, and RH, and the corre-

sponding approximate 95% pointwise CIs.

For the outdoor weathering application, the spline bases shown in Figure 2 are used to

fit the effect of UV dosage, temperature, and RH. The parameter estimates are obtained by

using the Algorithm 1. The estimates and CIs for β0, σ0, σ1, ρ, and σε are shown in Table 1.

Figure 3 shows the estimated effect functions for UV dosage, temperature and RH, and the

corresponding approximate 95% pointwise CIs. Figure 3(a) shows that larger UV dosages

lead to more damage. The UV dosage also causes relatively large amounts of damage relative

to temperature and RH. Figure 4 shows the plot of degradation measurements and fitted

degradation path for the nine representative specimens shown in Figure 1. The figure shows

that the general path model fits the degradation data well.
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Figure 4: Plot of degradation measurements and fitted degradation path for the nine repre-

sentative specimens shown in Figure 1.
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4 Model for Multivariate Covariate Process

4.1 General Strategy for Covariates Modeling

In order to predict a degradation path into the future, it is necessary to have a parametric

model that can adequately predict the covariate process. In general, the following parametric

structure for X(t) can be used for each individual unit,

X(t) = m(t;η) + a(t)

where m(t;η) is the mean function with parameter η and some components of η can be

random to allow for population unit-to-unit (or time period-to-time period in our application)

variability for the covariate process. Depending on the application, the parametric form for

m(t;η) can be specified. For example, the environmental temperature of an individual unit

can be modeled as

X(t) = Trend(t) + Seasonal(t) + a(t)

where Trend(t) is the long term trend and Seasonal(t) is a seasonal periodic term. The error

term a(t) is assumed to be a stationary process. In some applications, a(t) for different values

of t can be modeled as independently and identically distributed with N(0,Σa) where Σa is

the covariance matrix. The vector autoregressive (VAR) time series models in Reinsel (2003)

can be used if more complicated structures are needed for modeling a(t).

4.2 Parametric Models for Covariates for Outdoor Weathering Data

For each application, special modeling effort is needed to capture the unique features in the

covariate process. Here we present the modeling of the environmental variables in the outdoor

weathering data. Let x1(τ), x2(τ) and x3(τ) be the values of UV dosage, temperature, and

RH at time τ , respectively. For these three variables, there is no significant time trend but

the seasonal effect is evident. For time series with a seasonal component, combinations of sine

and cosine functions are commonly used to capture the seasonal component (e.g., Campbell

and Diebold 2005).

Based on initial analysis of the covariates in the weathering data, a single sine function is

adequate to describe the mean structure of x1(τ), x2(τ) and x3(τ). There is also a seasonal

pattern in the process variance. For example, there is more variability in UV dosage during

the summer months than during the winter months. Thus a seasonal component is also added

to the variance structure. In particular, the multivariate time series is modeled by

14






x1(τ)
x2(τ)
x3(τ)


 =




µ1 + κ1 sin
[
2π
365

(τ − η1)
]

µ2 + κ2 sin
[
2π
365

(τ − η2)
]

µ3 + κ3 sin
[
2π
365

(τ − η3)
]


+




(
1 + ν1

{
1 + sin

[
2π
365

(τ − ς1)
]})

ε1(τ)(
1 + ν2

{
1 + sin

[
2π
365

(τ − ς2)
]})

ε2(τ)

ε3(τ)


 . (8)

The sin(·) function with a period of 365 days is used to capture the seasonal pattern in

the covariates. For the UV dosage and temperature, extra terms are used to capture the

nonhomogeneity of variance over time. A likelihood ratio test suggested that the seasonal

pattern is not important in the RH variance component. Thus a constant variance component

is used for RH.

To further capture the autocorrelation within each covariate and correlation among differ-

ent covariates, a VAR model is used. In particular, the error term is modeled by




ε1(τ)
ε2(τ)
ε3(τ)


 = Φ1




ε1(τ − 1)
ε2(τ − 1)
ε3(τ − 1)


+ Φ2




ε1(τ − 2)
ε2(τ − 2)
ε3(τ − 2)


+




e1(τ)
e2(τ)
e3(τ)


 (9)

where Φ1 and Φ2 are matrices of regression coefficients, and [e1(τ), e2(τ), e3(τ)]
′ ∼ N(0,Σe)

are multivariate normal error terms that are independent over time. Here Σe is the covariance

matrix for the error terms. For the weathering example, the model fitting suggested that this

second order VAR model is adequate.

4.3 Parameter Estimation

The estimation of the parameters in models (8) and (9) is done in two steps. In the first step,

ML estimation is used to remove the seasonal trends in the mean and variance structures. Then

the residuals are obtained. The ML method is used to obtain the parameter estimates for

the model in (8). One needs to program the likelihood function and then use an optimization

algorithm (e.g., optim() function in R 2012) to maximize. The estimates of the parameters

and corresponding CIs for the covariate process model in (8) are listed in Table 2. We used a

simple percentile bootstrap approach to obtain CIs. Figure 5 shows the fitted mean structure,

estimated error terms, and the estimated standard deviation (SD) of the error term for UV

dosage, temperature, and RH. The figure shows that model (8) adequately fits the mean and

variance structure for UV dosage, temperature and RH data.

In the second step, ML estimation is used to fit the VAR model to the residuals. The

computing of the parameter estimates uses multivariate least squares (e.g., Lütkepohl 2005,

Chapter 3), which is computationally efficient. The estimates of Φ1, Φ2 and Σe are as follows

(the subscripts are the corresponding standard errors),
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Φ1 =




0.582 0.041 0.020 0.035 0.020 0.011

0.095 0.061 0.634 0.051 0.018 0.017

−0.070 0.195 −0.046 0.166 0.594 0.054


 ,

Φ2 =



−0.109 0.041 −0.019 0.034 −0.013 0.011

−0.106 0.061 0.030 0.051 0.015 0.017

0.388 0.200 −0.108 0.165 −0.112 0.054


 ,

and

Σe =




8.870 1.346 4.081 0.724 −20.073 2.380

4.081 0.732 19.178 2.688 −43.636 4.357

−20.073 2.380 −43.636 4.357 200.960 13.618


 .

The standard errors of the parameter estimates of Φ1,Φ2 and Σ are also obtained by us-

ing the bootstrap method. The bootstrap is done by sampling the estimated error term

[e1(τ), e2(τ), e3(τ)]
′ with replacement and then using the parametric models in (8) and (9)

to obtain a bootstrap version of the covariate data. The bootstrap version of the parame-

ter estimates are obtained by using the two-step approach. The above process is repeated

with a large number of times (e.g., 10,000) to obtain the bootstrap distribution of parameter

estimators.

We also examined the autocorrelation function (ACF) of the estimated [e1(τ), e2(τ), e3(τ)]
′

to check the assumption of the VAR model. The ACF functions of the time series residuals

showed no evidence of autocorrelation. Thus the VAR(2) model provides an adequate descrip-

tion of the residuals.

5 Failure-time Distribution Estimation

5.1 Failure-time Distribution for the Population

The failure-time distribution provides the reliability information for an unobserved population.

We use θD and θX to denote the unknown parameters in the degradation model and covariate

process model, respectively. Let θ = {θD, θX}. The model for the actual path is D[t;X(∞)]+

R(t;w). Given the covariate process X(∞) = x(∞) and the individual random effect w, the

degradation path is deterministic. The first crossing (failure) time tD for a particular unit can

be obtained. That is

tD = min{t : D[t;x(∞)] +R(t;w) = Df}. (10)

Thus the first crossing time tD is a function of Df , x(∞), and w. Numerical methods are

often needed to solve tD from (10). Because X(∞) and w are random, the first crossing
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Figure 5: The fitted mean and variance structures for UV dosage, temperature and RH.
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Table 2: Parameter estimates and corresponding 95% bootstrap CIs for the parameters of the

covariate process model in (8).

Covariate Parameter Estimate
Standard 95% Bootstrap CI
Error Lower Upper

UV Dosage

µ1 24.71 0.58 23.58 25.84
κ1 18.95 0.70 17.58 20.35
η1 79.24 2.07 75.21 83.34
ς1 77.69 3.69 70.43 84.93
ν1 1.80 0.24 1.41 2.37

Temperature

µ2 25.05 0.52 24.04 26.08
κ2 16.54 0.69 15.18 17.93
η2 103.19 2.67 97.99 108.46
ς1 33.53 13.71 8.14 62.41
ν2 0.31 0.09 0.16 0.52

RH

µ3 40.01 1.02 38.02 41.96
κ3 -4.73 1.59 -7.67 -1.05
η3 39.00 19.23 8.29 80.58

time (i.e., the failure-time of the product), denoted by T , is a random variable. The cdf of

T = T [Df ,X(∞), w] is

F (t; θ) = EX(∞)EwPr {T [Df ,X(∞), w] ≤ t} , t > 0. (11)

In most situations, there is no explicit form for F (t; θ) and it has to be computed by using

numerical methods or Monte Carlo simulation.

Substituting θ̂ into F (t; θ) in (11), one obtains an estimate of the cdf. Because an explicit

form for F (t; θ̂) is, in general, not available, a simulation approach is used to evaluate F (t; θ̂).

The following algorithm is used for computing F (t; θ̂).

Algorithm 2:

1. Simulate the covariate process with the parameter equal to θ̂X .

2. Simulate the random effect w from N(0,Σw) with the parameter equal to θ̂D.

3. Compute the simulated degradation path D[t;X(∞)] + R(t;w) with the simulated co-

variate process and random effect.

4. Given the simulated degradation path, compute the failure-time tD by solving (10).

5. Repeat the above steps 1 to 4 B times (e.g., B =10,000) to obtain the simulated failure-

times tbD, b = 1, . . . , B where B is chosen large enough to provide sufficient precision. The
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estimate of F (t; θ) is obtained by F (t; θ̂) = B−1
∑B

b=1 1(tb
D
≤t) where 1(·) is an indicator

function.

The CIs for the cdf can be obtained as follows. Because the bootstrap parameters θ̂ are

obtained in previous sections, one needs to repeat Algorithm 2 for each set of bootstrap

version of parameter estimates. The pointwise CIs for the cdf are then obtained as the

sample quantiles of the bootstrap estimates of F (t; θ). If the focus is on an individual unit,

Algorithm 2 can also be used to obtain the estimates for the cdf of an individual unit.

The manner in which our model and inference procedures would be used in applications

will depend on relationship between the units of interest and the processes generating the

covariates that will affect the degradation processes. Some example scenarios include the

following.

1. In some applications all units in the population will be subject to different realizations

of a covariate processes that could be adequately modeled as independent (but not

identically distributed) from unit to unit (location to location). For example, when

considering the loss of light output from LED lights in household, the usage history

(the covariate) are different but can be considered to be independent from household to

household.

2. Similar to the groups of units in the weathering experiment, one might be interested

in estimating the failure time distribution of a population of units that are all subject

to the same realization from the covariate processes. For example, when consider the

power output decrease of solar panels installed at one location (e.g., one power plant),

the environmental variables such as temperature and humidity can be considered to be

the same for each unit in the field.

3. Similar to the overall weathering experiment, one might be interested in groups of units

put into service at various points in time (known as staggered entry) so that the groups

are subject to different parts of the same covariate process. The illustrative outdoor

weathering example in this paper falls into this category.

5.2 Application to the Epoxy Degradation Example

To illustrate the use of our methods, we use the outdoor weathering setting and assume that

there is a hypothetical population with infinite size and that units randomly enter service,

according to a uniform distribution, between day 161 and day 190. Each unit has its own

independent realization of the covariate processes, from the observed processes in the exper-

iment. Figure 6 shows the estimated cdf and the corresponding 95% pointwise CIs for this
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hypothetical population. Most of the units in the population fail between 50 days to 150 days

after they are put into service. Similar results can be obtained for the cdf of an individual

unit (e.g., a unit started at day 161).

For the NIST outdoor weathering data, we also checked how well the failure-time model

fits the observed failure times. For the weathering data, we use a failure threshold Df = −0.4.

Generally, this would be chosen to be the level of degradation at which the performance of the

coating would not be acceptable (e.g., the level at which there would be customer perceivable

loss of gloss or color). According to this definition, there were 17 failures out of 36 units that

were put into experiments at different times from 2002 to 2006. The other 19 units survived.

Figure 7 shows the estimated expected number of failures and corresponding 95% pointwise

CIs versus the observed number of failures as a function of time for the 36 specimens in the

outdoor weathering data. The dots show the observed number of failures as a function of time.

The estimated expected number of events is computed based on the estimated degradation

path and covariate process models. For the periods from day 0 to day 597 and from day

806 to day 1153, the covariate processes for the weathering data were already observed, we

treat the covariates as fixed when we compute the estimated expected number of failures.

For those periods that between day 598 to day 805 and after day 1153, realizations of the

covariate process are needed to compute the estimated expected number of events. Thus

multiple realizations of the covariate processes were simulated and the results were averaged

for those periods. The results in Figure 7 show that the estimated expected number of failures

track the observed number of failures well except that there is an abrupt jump around day 50

in the observed number of failures.

5.3 Distribution of Remaining Life for Individual Units

Given the observed degradation path and the covariate process up to time tini
for individual

i, the distribution of the remaining failure-time is needed in some applications. In particular,

the conditional distribution for individual with X i(tini
) = xi(tini

) is

ρi(s; θ) = EXi(∞)|Xi(tini
)=xi(tini

)EwPr {T [Df ,X(∞), w] ≤ tini
+ s|T > tini

} , s > 0.

Here ρi(s; θ) gives the failure probability at a future time, conditional on X i(tini
) = xi(tini

).

Similar algorithms can be used to evaluate the conditional distribution ρi(s; θ̂) for individual

i and the corresponding pointwise CIs. The difference is that the future degradation path and

the covariate process are conditional on xi(tini
) and the degradation measurements that have

been observed up to time tini
.

For illustration, we consider the specimen labeled “G18-10” with age of 158 days by the

end of exposure. The observed degradation level for G18-10 had not reached Df = −0.4 after
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Figure 6: The estimated cdf and corresponding 95% pointwise CIs for a population with units

starting randomly from day 161 to day 190.
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Figure 8: The estimated conditional cdf of remaining life and corresponding 95% pointwise

CIs for unit G18-10.

158 days. Conditional on the observed degradation path and the covariate history for this

unit, we can compute the estimated cdf of remaining life for this unit. Figure 8 shows the

estimated conditional cdf for unit G18-10 and the corresponding 95% pointwise CIs. The

results in Figure 8 show that the remaining life of this unit is roughly with the range of 20

days to 50 days.

6 Concluding Remarks and Areas for Future Research

Motivated by the increasing availability of dynamic covariate information being acquired by

systems operating in the field and the needs to predict future performance of these systems, in

this paper we develop a class of models and methods for using such data. We illustrate these

methods by the outdoor weathering data. We use flexible general path models with individual

random components to describe unit-to-unit variability in the degradation data. Parametric

models are used to model the covariate processes. We develop algorithms to compute an

estimate for the failure-time distribution induced by the underlying degradation model. We

use the outdoor weathering data to illustrate the modeling process and the estimation of the

failure-time distribution functions.

Although the NIST outdoor weathering data was our motivating example, the methods

developed in this paper can have broad applications for many products used in highly variable
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environments and/or subject to time-varying usages. For example, the degradation of LED

power output is mainly due to usage that can be time varying. The corrosion of crude oil

transportation pipeline is subject to the outdoor environments and the characteristics of the

compounds flowing in the pipeline. Damage done to structures in aircraft will depend on

the number of takeoff-landing cycles and other stresses encountered during operation. Also,

the degradation of photovoltaic arrays can be caused by both the time-varying usage and

the outdoor environments. Thus there are tremendous opportunities to apply the method

developed in the paper.

For weathering applications, in the past decades, many solar UV monitoring sites have been

established at different geographical locations within the United States and worldwide (e.g., as

described in Kaetzel 2001). The solar UV spectrum and intensity, as well as temperature and

relative humidity are recorded at high resolution. Such information can be used for prediction

for the lifetime of products that are subject to degradation. When the covariate information

is from different locations, spatial correlations may need to be considered for the model to

predict the covariates for a population. Spatial data modeling techniques can be applied. In

other applications, where the product is not exposed to sunlight or other weather variables,

our models can still be used to model degradation as a function of other variables like load or

amount of use.

The additive model for degradation paths proposed in this paper is equivalent to linear

degradation path when the covariates are time invariant. In the future, it will be useful to

consider nonlinear degradation paths. That is the degradation path D(t) = g{D[t;x(t)] +

R(t;w)} where g(·) is a nonlinear function that depends on some unknown parameters. The

estimation for such a model will, however, be challenging.

A Nonparametric Residual Bootstrap with Adjustment

In this appendix, we described the nonparametric residual bootstrap method for the linear

mixed-effects model used in Section 3.4. The method was proposed by Carpenter, Gold-

stein, and Rasbash (2003) and we customized it for the model in this paper. As described

in Carpenter, Goldstein, and Rasbash (2003), the sample variance-covariance matrix of the

estimated random effects is different from the variance-covariance matrix of the random effect.

Resampling the estimated random effects without appropriate adjustment will result in bias

in estimate of the variance of the random effect. Thus adjustment is needed. The steps of the

bootstrap algorithm are described as follows.

Algorithm 3:
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1. Compute the parametric estimates for model (7) using Algorithm 1 and then obtain

the estimated residuals ε̂i(tij), i = 1 . . . , n, j = 1, . . . , ni and estimated random effects

ŵi = (ŵ0i, ŵ1i)
′, i = 1, . . . , n. Let W be an n× 2 matrix and the ith row of W is ŵi.

2. Adjust the estimated random effects by a linear transformation. The basically idea is

to match the sample variance-covariance matrix for the estimated random effects to the

estimated variance-covariance of the random effect (i.e., Σ̂w). In particular, we need to

find A such that A′SA = Σ̂w where S = W ′W/n. By Cholesky decomposition in terms

of lower triangular matrix, we obtain S = L1L
′
1 and Σ̂w = L2L

′
2. Take A = L2L

−1
1 and

the transformed random effects are obtained by WA.

3. Sample with replacement from ε̂i(tij) and transformed ŵi to obtain ε∗i (tij), w
∗
i . Note

that we sample the row vectors of those transformed ŵi with replacement instead of

individual elements.

4. Compute the bootstrap version of the data by

y∗i (tij) = β̂0 +

p∑

l=1

Ql∑

q=1

Blq(tij)β̂lq + w∗
0i + w∗

1itij + ε∗i (tij).

5. Re-fit the model to the bootstrap version of the data using Algorithm 1 to obtain the

bootstrap estimates of model parameters.

6. Repeat steps 3 to 5 B times to obtain B sets of bootstrap parameter estimates for

inference. The number of repeats was B = 10000 for the results in Section 3.4.
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