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(ABSTRACT) 
 
Many real-world problems could be formulated in a way to fit the necessary form for 

discrete optimization. Discrete optimization problems can be solved by numerous 

different techniques that have developed over time. Some of the techniques provide 

optimal solution(s) to the problem and some of them give “good enough” solution(s). The 

fundamental reason for developing techniques capable of producing solutions that are not 

necessarily optimal is the fact that many discrete optimization problems are NP-complete. 

Metaheuristic algorithms are a common name for a set of general-purpose techniques 

developed to provide solution(s) to the problems associated with discrete optimization. 

Mostly the techniques are based on natural metaphors. Discrete optimization could be 

applied to countless problems in transportation engineering. 

Recently, researchers started studying the behavior of social insects (ants) in an attempt 

to use the swarm intelligence concept to develop artificial systems with the ability to 

search a problem’s solution space in a way that is similar to the foraging search by a 

colony of social insects. The development of artificial systems does not entail the 

complete imitation of natural systems, but explores them in search of ideas for modeling. 

This research is partially devoted to the development of a new system based on the 

foraging behavior of bee colonies – Bee System. The Bee System was tested through 

many instances of the Traveling Salesman Problem. 

Many transportation-engineering problems, besides being of combinatorial nature, are 

characterized by uncertainty. In order to address these problems, the second part of the 

research is devoted to development of the algorithms that combine the existing results in 

the area of swarm intelligence (The Ant System) and approximate reasoning. The 

proposed approach – Fuzzy Ant System is tested on the following two examples: 

Stochastic Vehicle Routing Problem and Schedule Synchronization in Public Transit. 
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Chapter 1. Introduction 

 

1.1 Motivation 
 

The possibility of modeling many real-world problems as discrete optimization problems 

creates a need to develop tools capable of solving such problems quickly and efficiently. 

Discrete optimization problems are characterized by a countably finite solution space 

(feasible region) as well as a value of performance index (objective function) assigned to 

each feasible solution. Discrete optimization finds the best (optimal) solution(s) based on 

objective function values, in the whole of global feasible region of the problem. Many 

discrete optimization problems are NP-hard, meaning that there is no algorithm that can 

solve such problems in polynomial time with respect to problem size. 

There are a number of techniques available to solve discrete optimization problems 

optimally. It could be seen that a great number of practical real-world problems were 

formulated and solved using optimization techniques during the last four decades. 

However, it is important to note that the majority of real-world problems solved by some 

of the optimization techniques were of small dimensionality. 

Many traffic and transportation engineering problems are discrete optimization problems. 

Most of them are difficult to solve either because of the large dimensionality or because it 

is very difficult to decompose them into smaller sub-problems. Typical examples of these 

problems are vehicle fleet planning, static and dynamic routing and scheduling of 

vehicles and crews for airlines, railroads, truck operations and public transportation 

services, designing transportation networks, optimizing alignments for highways and 

public transportation routes through complex geographic spaces, different location 

problems, etc. 

Many times in real life we only need a “good” solution. In other words, very often the 

decision makers are satisfied with a suboptimal solution obtained when heuristic 

algorithm is applied. 

In recent years, metaheuristic algorithms have increasingly been used in solving difficult 

combinatorial optimization problems. In the beginning, metaheuristics included the 

 1



Chapter 1: Introduction 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

2

following technique: simulated annealing (Metropolis et al. (1953), Kirkpatrick et al. 

(1983), Cerny (1985)), genetic algorithms (Holland (1975), Goldberg (1989), and tabu 

search (Glover (1986), Glover and Laguna (1993)). The successful application of 

emergent techniques based on natural metaphors, such as simulated annealing, genetic 

algorithms, and neural networks, to complex engineering problems is certainly 

encouraging; it most definitely points to the natural systems as a source of ideas and 

models for the development of various artificial systems. In recent years, many different 

techniques have been created to perform better than others with respect to produced 

criteria value (to be as close as possible to global extreme) as well as required computer 

time to obtain a solution. 

Recently developed techniques with the general purpose of solving optimization 

problems in various areas are rooted in nature. A subset of the techniques has been 

developed based on concepts that are taken from results of studying the behavior of social 

insects. Among the various behaviors, it has been shown that foraging behavior is very 

important for developing a variety of artificial systems that could be used to solve 

optimization problems. One part of this article is devoted to the idea of applying some 

concepts of natural swarm intelligence to develop artificial ones. It is important to 

underline the fact that researchers have used just ideas (required major points) to develop 

artificial systems based on natural ones. It is not important and in some cases could be 

useless to simply copy all discovered properties of natural systems to artificial ones. 

 

A wide range of traffic and transportation engineering parameters are characterized by 

uncertainty, subjectivity, imprecision, and ambiguity (Teodorović (1994, 1999), 

Teodorović and Vukadinović (1998)). Human operators, dispatchers, drivers, and 

passengers use subjective knowledge or linguistic information on a daily basis while they 

make decisions. Drivers, passengers, or dispatchers make decisions about route choice, 

mode of transportation or/and most suitable departure time. In each case the decision 

maker is a human. The environment in which a human expert (human controller) makes 

decisions is often complex, making it difficult to formulate a suitable mathematical 

model. Thus, the development of fuzzy logic systems seems justified in such situations 

(Zadeh (1965), Zimmermann (1991), Kosko (1992, 1993), Mendel (1995)). Developing 
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models for solving difficult combinatorial optimization problems characterized by 

uncertainty is a very important and challenging research task. Metaheuristic techniques 

need to be combined with Fuzzy Sets Theory Techniques for solving complex traffic and 

transportation engineering problems characterized by uncertainty. 

When using the ideas taken from natural swarm intelligence, taking into account foraging 

behavior of the individual agents, how to model the behavior is still an open question. 

Many other methods such as binary logic have to be explored. The final decision on 

where to place food search among available fields will be made based on some 

probability functions. One part of the dissertation is contributed to this area. 

 

1.2 Research Goals 
 

The ways in which natural systems process information are still unmatched by current 

computers. They learn to recognize relevant patterns, they remember patterns that have 

been seen previously, they construct internal models, and finally, their data and control 

structures are extremely parallel and highly distributed. Examples of such systems are 

common in biology (including neuroscience, vision, immunology and ecology), social 

systems, physics and chemistry. 

The qualities that a social system should necessarily possess to have biological 

intelligence are as follows: 

¾ perception (what is happening in the surrounding area), 

¾ memory (not necessarily but most frequently to memorize perceptions), 

¾ usage of gained knowledge (abstraction of essential characteristics that input data 

can posses) to plan appropriate behavior, 

¾ communication, and 

¾ learning. 

 

One important direction that has been explored widely in last decade is the attempt to use 

the concept of swarm intelligence to develop various artificial systems. Researchers have 

started studying the behavior of social insects to take the most promising concepts from 
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their natural behavior (individual and/or collective), with the purpose of developing 

artificial systems that perform well. The development of artificial systems does not entail 

the complete imitation of natural systems, but it explores natural systems for various 

ideas and models. 

It should be noted that a large number of traditional engineering models and algorithms 

are based on control and centralization. On the other hand, bee or ant swarm behavior in 

nature is primarily characterized by autonomy, distributed functioning and self-

organizing. In natural systems, it is found that very simple individual organisms are 

capable of performing highly complex tasks by dynamically interacting with each other. 

It is of course of great importance to investigate both advantages and disadvantages of 

autonomy, distributed functioning and self-organizing with respect to traditional 

engineering methods that rely on control and centralization. The basic question about the 

above-mentioned characteristics of social insects that should be answered is: 

Can we use some principles of natural swarm intelligence in the development of artificial 

systems aimed at solving complex problems in traffic and transportation? 

 

The first goal of this dissertation is to explore, and to illustrate with examples in the 

transportation area, the possibilities of usage of bees’ behavior for developing artificial 

systems with the purpose of providing a “good” solution to difficult combinatorial 

optimization problems in general. 

 

One of the most important results of the Artificial Systems development, based on Swarm 

Intelligence, was the creation of the Ant System. Artificial ants, proposed by Colorni et 

al. (1991, 1992), search the solution space, simulating real ants looking for food in the 

environment. The objective function values correspond to the quality of food sources. 

Existence of adaptive memory characterizes the searching process. In this case, the 

adaptive memory corresponds to the pheromone trails. Colorni et al. (1991, 1992) 

demonstrated an Ant System through its application to the Traveling Salesman Problem. 

They showed that natural ants foraging behavior could be utilized with certain 

modifications in an optimization field. This could be done as follows: Artificial ants 

would explore the feasible region of the considered problem to find the best possible 

 



Chapter 1: Introduction 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

5

solution, as the natural ants would explore their surrounding environment to find the best 

reachable food source. Many successful implementations of the Ant System through the 

last decade have proven the possibility of usage of this technique in solving discrete 

optimization problems. The main idea was modeling of an individual ant’s behavior in 

the environment of foraging ant colony. To model individual decisions, Colorni et al. 

(1991, 1992) have proposed that ants will make individual decisions based on certain 

probabilities. The proposed way of calculating those probabilities did not allow treating 

problems characterized by uncertainty. 

Many transportation-engineering problems that belong to the discrete optimization area 

are also characterized by uncertainty. Is it possible to expand existing Ant System 

(Colorni et al., 1991, 1992) to address the problems characterized by uncertainty? 

 

The second goal of this dissertation is to explore the possibilities of solving discrete 

optimization problems characterized by uncertainty using Ant systems enriched with 

Fuzzy Logic. Each artificial ant will use an approximate reasoning algorithm in order to 

make individual decisions. The Fuzzy-Ant System should be produced and tested on 

examples taken from the transportation area. 

 

1.3 Organization of the Dissertation 
 

The remainder of this dissertation is organized as follows. Chapter 2 provides a review of 

literature relevant to this research. Practically, the literature review contains an overview 

of discrete optimization problems as well as a brief description of techniques developed 

based on metaphors taken from nature. 

 

Chapter 3, through description of real bees behavior, will introduce the basic ideas that 

will be used for future development of artificial bees’ behavior. An account of the usage 

of artificial bees’ behavior for developing the Bee System – tool that could be used in 

solving discrete optimization problems is provided later. An approach will be illustrated 

on the Traveling Salesman Problem and the Stochastic Vehicle Routing Problem. The 
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last problem will be solved by sequential application of the Bee System and Fuzzy Logic 

system where a fuzzy rule base is developed from numerical examples. Additionally, 

basic information related to Fuzzy Logic will be provided. 

 

Chapter 4 will provide an exhaustive review of natural ants’ behavior as well as Ant 

System development. The Fuzzy-Ant System has been developed as a combination of the 

“classical” Ant System and Fuzzy Logic to be a tool for solving discrete optimization 

problems characterized by uncertainty. This approach has been tested on the following 

two examples: The Vehicle Routing Problem and Scheduling Synchronization in Public 

Transit. 

 

Finally, Chapter 5 provides a summary and conclusions, along with recommendations for 

future research. 

 

 



 

Chapter 2. Literature Review 

2.1 Introduction 
 

Developing algorithms that utilize some analogies with natural and social systems to 

derive non-deterministic heuristics methods capable of obtaining “very good” results in 

hard combinatorial optimization problems could prove to be a promising field of 

research. This chapter presents an overview of existing algorithms in this area of interest 

as well as a brief discussion of the literature devoted to the development and applications 

of these algorithms. Algorithms that use natural metaphors derived from physics, biology 

and social science are the focus of interest. 

Entire population of algorithms are obtained based on the following (Colorni et al., 

1996): 

¾ repeated trials, 

¾ agents (particles, chromosomes, neurons, ants, bees, etc.), 

¾ in case of multiple agents operating mechanism: competition – cooperation, 

¾ introduced procedure for modification of the heuristic’s parameters or of the 

problem representation. 

The basic characteristic of heuristics from nature could be summarized as follows 

(Colorni et al., 1996): 

¾ they model a phenomenon existing in nature, 

¾ they are stochastic, 

¾ in case of multiple agents, they often have parallel structure, 

¾ they use feedback information for modifying their own parameters – they are 

adaptive. 

Let us introduce the landscape of the problem L. Let ε, ω and θ be as follows: 

¾ ε - the set of all points of the search space, 

¾ ω - the operator that is utilized by search algorithm, 

¾ θ = (ε, E) – the graph whose nodes (vertices) are the points in the search space 

 7
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and edges connect point x with point x1 in case where point x1 could be obtained 

by applying operator ω on x, 

The geometrical object that could be obtained by assigning the performance index as an 

altitude of nodes (vertices) of θ is landscape of the problem L. 

 

In cases where some solution of the problem is known (such as one point in the 

landscape) it is possible to walk/jump through the field from one solution to another in 

order to find a better solution to the problem. Steps through the solution space should be 

well organized, in order to find a “good enough” or optimal solution in the least possible 

number of moves. 

It is possible to obtain different agent based heuristics established on the following 

propositions (Colorni et al., 1996): 

¾ In case of one or several agents (located in different positions in solution space) it 

is possible to use a greedy technique to choose each move. 

¾ In case some solution exists, it is possible to improve it by making “small 

perturbations” using local search techniques. 

¾ Make “small perturbations” in a random manner and accept only the ones with 

improvement. 

¾ In case of a non-improving perturbation, it is possible to give the solution a 

chance to be accepted using some non-deterministic rule for accepting. 

¾ After every “small perturbation”, improve system memory if it exists, to direct the 

search process into regions that are not yet explored. 

Algorithms can be classified based on a variety of characteristics. Some of them are as 

follows: 

¾ Algorithms could be used to produce a solution or just improve an existing 

solution. 

¾ Algorithms dealing with one solution or population of solutions. 

¾ Searching process has employed memory or memory is not employed. 
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This chapter presents an overview of the literature devoted to development and 

application of the algorithms that use natural metaphors derived from physics, biology 

and social science, designed to find a “good” solution to discrete optimization problems 

(not necessarily optimal) in a reasonable amount of CPU time. 

 

2.2 Discrete Optimization Problems 
 

Discrete optimization is the process of analyzing and finding a solution for problems 

mathematically modeled as the minimization or maximization of a measure, over a 

feasible space involving mutually exclusive logical constraints (Parker and Rardin, 1988). 

In their most abstract mathematical form, discrete optimization problems can be 

presented in the following way: 

min (or max)   ϕ (S) 

subject to   S ∈ F 

where S is the solution (arrangement), F is the collection of feasible solutions 

(arrangements), and ϕ (S) measures the value of members of F. 

Discrete optimization is the selection of the arrangement (solution) with the best 

performance index (measure) among mutually exclusive alternatives. 

Discrete optimization problems can also be given in the following form: 

min (or max) ct x 

subject to: 

A x ≥ b 

x  ≥ 0 

x - integer 

This is the Integer Programming formulation of the problem. Any Discrete Optimization 

problem can be given in this way. 
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Solving discrete optimization problems, i.e. finding an optimal solution to such problems 

can be a difficult task. Difficulty arises from the fact that the feasible region is not 

necessarily (like in linear programming problems) a convex set. 

There is a significant number of possible approaches to the problem. Some of them will 

give optimal solutions (they could be: enumerative techniques, relaxation and 

decomposition techniques or cutting planes approaches based on polyhedral 

combinatorics) and some of them will direct the search process in a way that finds a good 

enough or near-optimal solution in a reasonable amount of CPU time. 

 

2.3 Simulated Annealing 
 

Simulated annealing (SA) as a technique was mentioned for the first time in the literature 

written by Metropolis et al. (1953). The authors are physicists, and they simulated the 

cooling material in a heat bath to obtain the lowest possible energy states of the particles 

of material. This process was called annealing. 

At the very beginning of the annealing process (solid) material is melted. During the 

annealing process its temperature is slowly reduced. It takes very long time for the 

material’s temperature to become close to the freezing point. The cooling of the material 

happened under a particular cooling schedule until convergence to steady state (a near-

frozen condition) occurs. 

It is possible, at any temperature, to change the total energy of the material with small 

displacements of particles. At one temperature, this process could be called perturbation. 

Several perturbations may occur at one temperature, and each of them gives different 

total energy level. 

The question is, what perturbation will give the lowest total energy level at one 

temperature? 

The following procedure provides a possibility for how to solve the above mentioned 

problem. After perturbation, calculate the magnitude of energy change (∆E). In cases 

where ∆E < 0, the new position of the particles has the lowest energy level and it will 

become the new initial position of particles for making another perturbation. In cases 
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where ∆E > 0, the new position of the particles has a higher level of energy. There is a 

probability (probability increases with temperature) that after perturbation of the (worst) 

configuration of these particles, significant energy decrement takes place. Metropolis et 

al. (1953) used the Boltzmann distribution to calculate the probability of acceptance in 

energy sense worst perturbation: 

Tk
E

acc ep
∆

−

=  

where: 

∆E – magnitude of energy change, 

k – a constant, 

T – current temperature. 

At each temperature it is possible to make a large number of perturbations, but after some 

number of perturbations, the magnitude of change in the total material’s energy is very 

small. At that point the material achieves thermal equilibrium for that fixed temperature. 

Thermal equilibrium means that a material has achieved the lowest possible energy level 

at that fixed temperature. The next step is to decrease the temperature and make 

perturbations again in order to reach thermal equilibrium at that temperature. The 

procedure is finished when the searching process for the last temperature (the lowest 

value specified) is done. 

Before applying this algorithm, the following values should be defined: 

-  the total temperature number (if change between temperatures is step function), 

-  initial temperature value, and 

-  amount of change in energy that is acceptable as very low. It is necessary to define 

when the thermal equilibrium occurs. 

The following authors: Kirkpatrick‚ Gellat and Vecchi (1983), and independently, 

Cherny (1985) were the first to start with implementation of some kind of modification of 

this technique in order to solve problems that belongs to the discrete optimization area. 

The basic idea is to develop some kind of random searching strategy that starts from one 

possible solution (variable and criteria values) and jumps through the neighborhood of 

the solution (in the feasible region) in order to obtain a new starting point (for a new 

jump) using modification of the previously described procedure. It is possible that old 
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and new starting points are the same. In general, through these jumps, the search process 

will arrive into area(s) with better solutions. 

There is an analogy between the Physical Cooling Process and the methodology for 

solving discrete optimization problems: 

Physical Process Meta-heuristic 
Energy Criteria value 
Temperature Control parameter
Particle configuration Feasible solution 

 

Eglese (1990) offers a very simple pseudo-code for Simulated Annealing algorithm: 

Select an initial state i∈S; 
Select an initial temperature T > 0; 
Set temperature change counter t := 0; 
Repeat 
 Set repetition counter n := 0; 
 Repeat 
  Generate state j, a neighbor of i; 
  Calculate δ := f(j) – f(i) 
  if δ < 0 then i := j 
  else if random (0, 1) < exp (-δ/T) then i:= j; 
  Inc(n); 
 Until n = N(t); 

Inc(t); 
T:= T(t); 

Until stopping criterion true. 
 
where: 

S – finite solution set, 
i – previous solution, 
j – next solution, 
f(x) – criteria value for solution x, and 
N(t) – number of perturbation at the same temperature. 

 

2.4 Evolutionary Algorithms 
 
The first work related to this area was done in the late 1950’s. However, development 

and utilization of this area has only become significant during the last decade (Back, et 

al., 1997). 

Evolutionary Algorithms (EA) contains set of procedures-techniques used for solving 
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difficult combinatorial optimization problems. All of them are developed based on 

natural evolution processes. 

The following are the most common EAs: 

¾ Genetic Algorithms, 
¾ Scatter Search, 
¾ Ant Systems, 
¾ Adaptive Memory Algorithms. 

 
The basic idea of EA can be described using the following pseudo-code (Hertz and 

Kobler, 2000): 

 
Generate an initial population of individuals; 
While no stopping condition is met do 
 Co-operation; 
 Self-adaptation; 
End While 
 
Individuals can be solutions of a particular problem or they can be pieces of solutions 

(with the idea being to gather the pieces in order to obtain one feasible solution) or even 

sets of solutions (as found in parallel implementation, for example: island-based genetic 

algorithms). 

Co-operation is the part of the algorithm where two or more individuals in the population 

are identified to exchange information. 

Self-adaptation is the part of the algorithm where every individual or some of them 

(usually randomly selected) is modified independently. 

Each of the techniques of EA, mentioned above, will be discussed briefly later. 

 

2.4.1 Genetic Algorithms 
 

Genetic Algorithms (GA) is a technique inspired by biological processes that allow 

populations of organisms to adapt to their surrounding environment. 

The earliest papers published in this area are by Holland (1962), Rechenberg (1965), 

Fogel et al. (1966) and Holland (1975). 
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Basically, GA works with three operators: 

Selection operator determines which individuals (solutions in optimization problem) will 

survive in the population (set of solutions). That means only the subset of individuals 

produced in the previous generation will be used to produce the next generation of 

individuals. There are several methods for applying the Selection operator, and of those, 

the most efficient are the methods based on some kind of random choice. The probability 

of choosing one individual depends on how good the individual is (usually shown 

through objective function value). 

Crossover is an operator that combines two individuals in order to make two new 

(different) individuals. Crossover can be based on one or several identical cuts over both 

individuals and exchanges of “material” (information) between individuals. 

Mutation operator introduces a little noise in the population with the idea to prevent fast 

convergence that may end up finding the local optimum. Operator mutation can be 

applied in a very small number of individuals. To apply the operator, any of the 

individuals can be chosen, but usually with a very small probability (range 10-3). 

These operators are used sequentially through many iteration in order to make the 

population evolve. 

Hertz and Kobler (2000) offer a very simple pseudo-code for genetic algorithms: 

Chose an even integer p 2 and generate an initial population P≥ 0 of p individuals; 
Set i:= 0; (iteration counter); 
While no stopping criteria is met do1 
 Inc (i) and initialize Pi to the empty set; 
 While Pi has less than p individuals do2 
  Select two individuals I1 and I2 in Pi-1; 
  Apply the crossover operator to I1 and I2 for creating offspring O1 and O2; 
  Add O1 and O2 to Pi; 
 End While 
 Apply the mutation operator to each individual in Pi; 
End While 
 
Before implementation of GA, it is necessary to code a set of feasible solutions in order 

to make sure that new generation individuals created are always in this set after applying 

                                                 
1  Stopping criteria can be satisfied objective value and/or number of generation. 
2  Through all generation developed models keep constant p. This value can be function of number of 

generation. 
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Crossover and Mutation operators. This part can be the hardest in the area of applying 

GA for solving discrete optimization problems. 

 

2.4.1.1 Island-Based Genetic Algorithms 
 

The paper written by Gordon and Whitley (1993) is the first paper published in this area. 

Island-Based GA is an improvement of GA. In GA applications, it usual that individuals 

are solutions of the considered problem. In that light, the first difference between Island-

based GA and GA is the fact that Island-based GA works with sets of solutions as 

individuals. The basic idea is to distribute set of solutions (population in GA) into 

subpopulations that evolve independently (Calegari et al., 1997). Existence of these 

subpopulations (islands or demes) increases the chances for the algorithm to find good 

solutions by having several GA operating on small populations (subpopulations) 

simultaneously. In order to allow some islands to benefit from the information that has 

been founded by others, some solutions can migrate from one island to another. In this 

way we have introduced a new operator in GA called migration. 

There are several ways to define the migration operator. One of them is as follows: 

Let us imagine that islands are virtually positioned on an oriented ring and migrations are 

allowed only along the ring. Every time the new generation is computed (CPU time can 

be subdivided onto several workstations – one island on each), a copy of the best solution 

(defined based on criteria value) ever found by each island is sent to the next island on 

the ring. In this way every island will receive a new solution, the best from the previous 

island on the ring that would replace the randomly chosen solution (local individual).  

Pseudo-code for Island-based GA (Hertz and Kobler, 2000): 

Choose the number k of islands and the size p of each island; 
Generate a set of k · p initial feasible solutions and partition this set into k islands P1, P2, …Pk; 
Set i:= 0; 
While no stopping criteria is met do 
 Set i:= i + 1; 
 For each island Pj do 
  Select two solutions I1 and I2 in Pj; 
  Apply the crossover operator to I1 and I2 for creating offspring O1 and O2; 
  Apply the mutation operator and improvement algorithm (if exist) on O1 and O2; 
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  Decide whether or not O1 and O2 should enter Pj for replacing older solutions; 
 End For 
 If i is multiple of a given integer n then 
  Move the best solution of each island Pj to island P(jmodk)+1; 
End While 
 
Calegari et al. (1997) have obtained much better results with Island-based GA than with 

GA. They have tested both on the same example with initial populations of the same size. 

The question was whether it is necessary to subdivide the initial population into set of 

subpopulations. They have discovered that the number of islands has a significant effect 

on the quality of the results obtained by Island-based GA. 

 

For implementing Island-based GA, the following questions need to be answered in 

addition to the common questions considered in GA (Cantu-Paz and Goldberg, 2000): 

¾ the size and number of islands (demes), 
¾ the topology of the connections between the islands and 
¾ how many individuals migrate each time. 

 

2.4.2 Scatter Search 
 

Proposed by Glover (1994), scatter search is a search strategy based on two sets of points 

in a solution space. The first is a set of reference points from which iteration would 

generate set of dispersed points that may act as reference points along with some of the 

previous reference points for the next iteration. Every point in the set of dispersed points 

is defined through several steps: 

1.  make linear combination of subset of the current reference points (trial point will 
be defined), 

2. apply repair procedure if necessary (trial point can be out of feasible region and 
repair procedure should make that point feasible), 

3. apply improvement algorithm in order to get point with higher quality. 
 
In order to generate a linear combination of the reference points, it is even possible to 

apply negative weights (more general case). 

 

Pseudo code for the Scatter search technique (Hertz and Kobler, 2000): 
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Generate an initial set R0 of reference points; 
Set i:= 0;  
While no stopping criteria is met do 
 Inc(i); 
 Determine a set Ti of trial points by making linear combinations of points in Ri-1; 
 Transforms the trial points in Ti into set Fi of feasible points; 
 Improve the points in Fi in order to obtain a set Di of dispersed points; 
 Select points inRi-1 ∪ Di to be put in the new set Ri of reference points; 
End While 
 

2.4.3 Ant Systems 
 

The algorithms that are defined by Colorni et al. (1991, 1992) are models derived from 

the study of real ant colonies. 

Ant Systems (AS) contain artificial ants that have some major differences with real 

(natural) ones: 

¾ artificial ants will have some memory, 
¾ they will not be completely blind, 
¾ they will live in an environment where time is discrete. 

 

When applying AS, search in the feasible region will happen at discrete time points. 

Artificial ants are able to define one part of a solution per iteration through the searching 

process. After finishing the set of iterations, every ant would have finished one solution 

of the considered problem. The next step is to exchange some information that will allow 

all the ants to benefit from the solutions developed by all other ants through the searching 

process. Thus, one cycle is finished through the searching process. The algorithm ends 

after a certain number of cycles. 

Ants will make movements along iterations in a random manner. Probabilities for 

possible steps in the next iteration are calculated based on visibility (available local 

information) and pheromone trail (exchange of information among ants). 

 

Simple pseudo code for AS technique (Hertz and Kobler, 2000): 

Initialize pheromone trails and define number of ants; 
While stopping criteria is not met do 
 Build solution based on visibility and pheromone trail for every ant; 
 Update pheromone trail; 
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 Apply improvement algorithm on each new solution if such algorithm exist; 
End While 
 

More detailed information about development of the AS algorithms would be provided at 

the beginning of chapter 4. 

 

2.4.4 Adaptive Memory Algorithms 
 

Adaptive memory algorithms were recently developed (Rochat and Taillard (1995), 

Golden et al. (1997)) based on the Tabu Search technique. This technique works with 

central memory that keeps track of the best components of the solutions visited during the 

search process. These components are combined in order to create a new solution. When 

a new solution is not feasible, it is changed using the repair procedure. Also, on each new 

feasible solution, some improvement procedure like the tabu search or some other 

technique is applied. Then some components from all new solutions are selected to be the 

candidates to replace old components in the central memory. 

 

Pseudo code for Adaptive memory algorithms (Hertz and Kobler, 2000): 

Generate a set of solutions and introduce their components in the central memory; 
While no stopping criteria is met do 
 Combine components of the central memory in order to create new solutions; 
 Use repair procedure on each infeasible new solution; 
 Apply an improvement algorithm on each new solution; 

Update the central memory by removing some components and introducing new ones 
originating from the new feasible solutions; 

End While 
 

2.5 Tabu Search 
 

Tabu Search (TS) is a general heuristic procedure for guiding a search to obtain a good 

solution in a complex solution space (Glover, 1993). This technique is able to escape 

from local extreme points and to search areas beyond local extreme points. TS is 

developed based on some concepts taken from artificial intelligence. TS was introduced 
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by Glover (1986) and independently, Hansen (1986). 

TS, like all other metaheuristics, is a good tool for solving the following kind of problem: 

min ( )
x X

F x
∈

 

The basic idea is to obtain an initial solution ( Xxin ∈ ) – it can be obtained in various 

ways – and reach a solution that is good enough through a certain number of iterations. 

From one iteration to another, two solutions usually exist: current and the best found. In 

that light, there are some similarities between SA and TS. 

If the current solution at the beginning of iteration i is xi then it is possible to obtain a new 

solution that belongs to X with one modification (move) of xi. This solution is the 

neighbor solution to the xi. Let us introduce the set of all neighbor solutions of solution xi 

as N(xi). For set N(xi) there are conditions: N(xi) ⊂ X and xi ∉ N(xi). Sometimes it is very 

hard (time consuming) to generate all solutions that belong to N(xi). Let’s introduce N’(xi) 

⊆ N(xi). Sometimes ( )ixN '  can be equal to 1. 

In one iteration (i), there is a local optimization problem to find a solution xi+1 that yields 

{ )()(')(min 11 iiii xNxNxxF ⊆∈++ } . This new solution will become the current 

solution and the same actions are repeated, even if a new solution is worse than previous 

(based on criteria value). In order to avoid cycling (repetition), TS contains a history list 

and a tabu list. Both are parts of the adaptive memory structure that penalizes or forbids 

certain move(s) that lead the searching process to recently visited solutions. 

Dammeyer and Voβ (1993) offer a very simple pseudo-code for TS. One modification of 

the code is as follows: 

Set iteration counter i := 1; 
Select an initial state xi∈X and initial objective value F(xi); 
Let x* := xi  and  F* := F(xi); 
While stopping criterion is not fulfilled do 
 Select best admissible move (based on history and tabu lists entities) that transforms xi 

into xi+1 with objective function value F(xi+1); 
 Perform tabu list management: update history and tabu lists; 
 Replace solution xi with xi+1 and objective value F(xi) with F(xi+1); 
 If F(xi+1) > F* then x* := xi+1 and  F* := F(xi+1); 
 Inc (i); 
End While 
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where: 

x* - the best solution found through the entire searching process. 

 

Pham and Karaboga (2000) describes strategies of TS algorithms: 

The forbidding strategy is employed to avoid stopping the searching process in some area 

by forbidding certain moves (put them as tabu). A tabu list can contain just the few last 

moves (even only one) or a large number of moves (extreme is all of them). The number 

of iterations where one move is forbidden is called the length of tabu list (Ts). The 

probability of cycling among the same solutions is highly dependent on Ts. 

Making moves that are tabu is allowed when the aspiration criteria is satisfied. The 

criteria can be time independent (earlier applications) or dependent (new applications). 

While the tabu list has a role in constraining the search space, the aspiration criterion has 

a role in guiding the search process. 

 

2.6 Current Research 
 

The main differences between traditional mathematical methods to solve some kind of 

problems and metaheuristics can be determined based on solution optimality and CPU 

time. The beauty of traditional mathematical methods is that they provide an optimal 

solution to the stated problem. However, when large size instances are treated, the CPU 

time required to achieve an optimal solution becomes an issue. In addition to that, 

traditional approaches most often require simplifications of the original problem 

formulation. Some times due to oversimplifications, computed solution does not solve the 

original problem. Furthermore, one of the fundamental advantages of the metaheuristics 

approach over traditional mathematical methods is its capability to adapt to the 

considered problem (Back et al., 1997). All metaheuristics should not be considered as 

ready to use algorithms but rather as a general concept that can be applied to most of the 

real world applications. 

The possibility to adapt to the problem as well as lower required CPU time to obtain a 

“good enough” solution encourages researchers to explore the potential to make the 
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existing techniques available in a variety of areas (expand the capabilities of these 

techniques to make them capable of solving a variety of problems) and develop new 

ones. 

From the literature, it is possible to separate the following few directions of the current 

research: 

¾ application of metaheuristics and comparison among them, 

¾ expansion in the development of the existing algorithms, 

¾ development of new techniques, and 

¾ convergence analysis. 

 

2.6.1 Application of metaheuristics and comparison among them 
 

Application oriented research in this area has been quite successful. Only a few 

application domains could be identified, if any, where these algorithms have not been 

tested so far (Back et al., 1997). 

Some authors in their articles, in addition to presenting the developed applications, have 

tried to compare several techniques to find the most suitable one. 

Youssef et al. (2001) give a comparison of SA, GA and TS based on the floorplanning 

problem. The authors discovered that the best performance was given by the TS 

algorithm with respect to obtained solutions. Furthermore, with respect to the complexity 

of implementation and tuning of algorithm parameters, they have found that GA requires 

the highest effort. 

Hasan et al. (2000) have compared SA, GA and TS in terms of solution quality and CPU 

time for their application to the unconstrained 0-1 Pseudo-Boolean quadratic problems. 

They have found that general performance of the TS algorithm compared to the 

performances of GA and SA was unsatisfactory with respect to both criteria. 

Furthermore, they conclude about the superiority of the GA method over SA and TS in 

Quadratic Programming (QP) applications. 

Wolpert and Macready (1997) proved a number of theorems stating that the average 

performance of any pair of iterative (deterministic or non deterministic) algorithms across 
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all problems is identical. 

Taking into account any metaheuristic algorithm, it is clear that there are several different 

parameters that should be adjusted. For some parameters there is an adjusting procedure 

and for some there is not. Second ones are assigned subjectively estimated values. In 

addition, it is important to say once again, all metaheuristics are general concepts. In that 

light there is some part in implementation that could be called the “art of modeling”. 

It seems that there is no need for this kind of comparison. There is a possibility that 

someone will present, on the same problems, even on the same instances, different 

recommendations later. 

 

2.6.2 Expansion in development of the existing algorithms 
 

One of the most important reasons for the existence of metaheuristics is the fact that the 

time that is necessary to achieve a “good enough” problem solution is significantly lower 

than the time for traditional mathematical methods. However, for some larger instances 

of any problem, CPU time is still “high”. In literature, one can find a lot of papers related 

to metaheuristics where authors tried to develop procedures that would allow parallel 

searching process. In other words, if CPU time is high, let us define the random searching 

algorithm in a way to allow simultaneous searching processes at several computers. 

In the case of population based algorithms, it is not so hard to imagine how the search 

process can be subdivided into several parallel processes. In case of SA and TS it is not 

the case because they always operate with one solution (single point search techniques).  

 

Onbasoglu and Ozdamar (2001) have presented the basic concepts of Parallel SA. They 

have used two different approaches to develop various categories of SA algorithms as 

follows: 

¾ the asynchronous approach where no information is exchanged among parallel 

runs, 

¾ the synchronous approaches where solutions are 

o exchanged using genetic operators, 
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o transmitted occasionally, 

o highly coupled (synchronization is achieved at every iteration). 

First work in this field has been summarized in Aarts and Korst (1989). 

 

Gordon and Whitley (1993) have subdivided all modification of GA into the following 

two groups: 

¾ “traditional” GA, 

¾ parallel GA  

o Global GA, 

o Island GA, and 

o Cellular GA (in literature known as massively parallel GA or fine grain 

GA). 

The second part presents research directions devoted to speeding up the searching 

process. 

 

There have been several successful attempts to develop a Parallel TS algorithm. Fiechter 

(1994) has proposed a method based on the Parallel TS algorithm to solve large TSP 

instances. 

 

Another direction in this area is the development of algorithms that will give “better” 

solutions that usually take a larger amount of CPU time. Those algorithms were produced 

based on a combination of existing algorithms, and they are known as hybrid algorithms 

in literature. One of the most important types of hybrid algorithms is memetic algorithms 

(MA). MA are population based heuristic search algorithms for optimization problems 

similar to GA. In contrast to GA, MA mimic cultural evolution. While, in nature, genes 

are usually not modified during an individual’s lifetime, memes are. MAs are developed 

when individuals in GA (solutions to the problem) are improved by the local search 

technique such as SA, TS or any other. In addition, improvement is usually done at the 

very beginning through the entire first generation, and every time during the mutation 

phase. 

Burke and Smith (2000) provide one application of this technique to a maintenance 
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scheduling problem. They have tested several improvement techniques (local optimizers) 

and for the considered problem they have found that MA with TS as a local optimizer 

produced the best results. 

Hybrid algorithms could be developed as a combination of metaheuristics and 

optimization techniques. Budenbender et al. (2000) have successfully developed a hybrid 

of tabu search and branch and bound algorithm with application to the direct flight 

network design problem. 

 

There are a lot of papers that tried to offer improvements for all metaheuristics through 

applications. Those improvements are related to, for example, visiting distribution in SA 

offering different expressions for acceptance probability, etc. 

From literature, we can find a strong relationship between metaheuristics (specially 

evolutionary algorithms) and some other techniques like fuzzy logic and neural networks 

(Back et al., 1997).  

 

2.6.3 Development of New Metaheuristics  
 

The number of publications in the area of metaheuristics is still high. “We can observe a 

remarkable and steady (still exponential) increase in the number of publications” in the 

EA area (Back et al., 1997). With the introduction of memetic algorithms, and even 

without, in other areas of metaheuristics we can find a high amount of publications. 

Furthermore, it is important to say that new stochastic search procedures are being 

created. Researchers are trying to find better algorithms, more suitable for some kinds of 

problems. Successful implementation of some techniques highly depends on the problem 

that is being considered (comparison of the techniques on different problems will give 

different rank of techniques). 

Here are some recent results laid out: 

Hansen and Mladenović (2001) have described, in detail, a Variable neighborhood 

search (VNS) technique that has been introduced by the same authors in the year 1996. 
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A simple pseudo code of a VNS algorithm can be presented in the following way 

(Hansen and Mladenović, 2001): 

Select the set of neighborhood structures Nk, k= 1, 2, …, kmax, that will be used in the search; find 
initial solution x; choose a stopping condition; 
While stopping condition is not met do 
 Set k = 1; 
 While k<> kmax do  
 Shaking. Generate a point x’ at random from the k-th neighborhood of x (x’ ∈ 

Nk(x)); 
 Local search. Apply some local search method with x’ as initial solution; denote 

with x” obtained local optimum; 
 Move or not. If this local optimum is better than the incumbent, move there (x = 

x”), and continue search with N1(k=1); otherwise, set Inc(k) 
 End While 
End While 
 

Boettcher and Percus (2000) have introduced a new method called Extremal 

Optimization. This procedure successfully eliminates extremely undesirable components 

of sub-optimal solutions. They have tested the algorithm on TSP instances up to 256 

nodes, and they have concluded that they arrived at better solutions than the ones they 

had gotten using SA or GA on the same instances. 

 

This material would describe some outcomes obtained as a result of our work in the 

development of new metaheuristics. Chapter 3 is devoted to the development of the 

random search technique based on bees’ behavior; Bee System. 

 

An artificial immune system could potentially be a new approach to the hard 

combinatorial optimization problems. King et al. (2001) provide a biological basis for 

this system. They have applied the artificial immune system in the area of computers 

stems (control parallel programs during their execution and monitoring their 

performance). 

In addition, it is important to mention that most probably there are some other works that 

have been done, and it is not stated here. There is a tremendous number of publications in 

this area and it is hard to cover everyone’s work precisely. 
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2.6.4 Convergence Analysis 
 

In contrast to practical results, the theoretical foundations are to some extent still weak. 

More precisely, “We know that they work, but we do not know why.” Back et al. (1997). 

Some theoretical results about convergence fortunately exist, and here some of them are 

briefly pointed out. 

 

¾ Simulated Annealing 

Theoretical results exist for the SA algorithm modeled as a homogenous Markov 

chain or an inhomogeneous Markov chain (Sullivan, 1999). Aarts and Laarhoven 

(1985) have produced the first theoretical result related to the convergence of SA. 

Locatelli (2000) proved that convergence exists in the case of SA application on 

continuous global optimization problems. The author states several assumptions 

to prove that convergence exists. 

Stainhofel et al. (2000) applied a logarithmic cooling schedule of inhomogeneous 

Markov chains to the flow shop scheduling problem. They prove a lower bound 

for the number of steps, which are sufficient to approach an optimum solution 

with certain probability. 

 

¾ Genetic Algorithms 

Holland (1975) has presented the Schema Theorem stating that individual 

solutions with good, low order schema (similar beneficial parts among solutions) 

should be evaluated and allowed to crossover in an exponentially increasing 

number of successive populations. 

Eiben et al. (1991) use Markov chain analysis to obtain a unifying theory for SA 

and GA, such that any SA or GA application at hand is an instance of developed 

abstract algorithm. 

Agapie (1997) has used homogenous Markov chain modeling to provide a set of 

minimal sufficient conditions for convergence to the global optimum of Elitist 

GA (EGA). 
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¾ Tabu Search 

The least number of papers in this area were published with TS consideration. 

However, some theoretical results exist; Faigle and Kern (1992) provide a 

convergence result for probabilistic versions of TS. Probabilistic TS incorporates 

the acceptance function of SA into the TS framework. The authors prove that this 

kind of TS converges asymptotically. 

 

2.7 Artificial Neural Networks 
 

One of the areas based on natural metaphor that has been studied widely is Artificial 

Neural Networks (ANN). The human brain performs some complex tasks relatively 

easily compared to traditional algorithms and computational techniques. The architecture 

of the brain is different from common serial computers. Researchers interested in ANN 

seek possible ways to produce machines with abilities as close as possible to the human 

brain. ANN are inspired by biology; they are composed of elements with functionality 

similar to a biological neurons. Even the most optimistic supporters do not state that 

ANN will soon mimic the entire functionality of the human brain. However, today’s level 

of development proves promising for the future of the technique. 

Basically, ANN are considered as approximators because of their ability to approximate 

unknown functions with a certain degree of accuracy. 

 

2.7.1 The Biological Neuron 
 

The most basic element of the human brain is a specific type of cell – neuron. The human 

brain contains approximately 1011 neurons each having the ability to receive, process and 

transmit electrochemical signals. Neurons are connected; the process of receiving and 

transmitting of signals is allowed between connected neurons. A simplified scheme of the 

biological neuron structure is shown on figure 2.1. 
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Axon

Soma

Dendrite

Synapse

 

Figure 2.1 – Biological neuron – basic structures 

A neuron contains a cell body (soma) and several branches that accept input information 

to the cell (dendrites), or transmit information out of the cell (axons). Interaction among 

the neurons takes place at the connection points – synapses. In cases where stimulus 

exceeds a certain threshold, the neuron will transmit a signal through the axon to other 

neurons. Transmitted signals highly depend on received signals from all other neurons 

connected to the current neuron, as well as the strength of their connectivity. The 

transmitted signal is considered to be a weighted summation of the received inputs. 

Basic characteristics of the human brain are: ability to learn and generalization of 

knowledge that has been obtained. Generalization refers to generation of similar response 

on similar inputs. 

 

2.7.2 The Artificial Neuron 
 

The basic unit of ANN is the artificial neuron. Artificial neurons simulate properties of 

the biological neurons. That means artificial neurons will receive some input signals 

(outputs of adjacent artificial neurons) and transmit some output signals. The output 

signals of connected neurons are denoted by x1, x2, …, xn. Considering that an output 

signal is a weighted summation of the input signals, the output signal (NET) could be 

defined as follows: 
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NET = w1x1 + w2x2 +   + wnxn 

where wi denotes the strength of connection between artificial neuron i and the neuron 

under consideration. 

A graphical representation of the simple structure of an artificial neuron is presented in 

figure 2.2. 

 

x1

NET

w1

w2
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x2

xn
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Figure 2.2 – Artificial neuron structure 

 

The first artificial neuron was proposed by McCulloch and Pitts (1943). The developed 

artificial neuron had binary input, binary output and a fixed activation threshold. 

 

In order to process signals of different strength, usually an activation function is applied 

on the output signal. Activation functions most commonly used are (Teodorović and 

Vukadinović, 1998): nonlinear, continuous, monotonously increasing, bounded, 

differentiable logistic function. 

 

2.7.3 ANN Design 
 

The design of ANN is an iterative process containing, most frequently, a trial and error 

procedure before coming up with a satisfactory design. For the design of ANN, one 

should determine the following elements: 

¾ set of artificial neurons and their arrangement in various layers, 
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¾ type of connections among neurons for different layers as well as among the 

neurons within the same layer, 

¾ rule of signal propagation through the network, 

¾ activation functions, 

¾ training algorithm. 

 

ANN contains three types of nodes: input, output and hidden. The nodes are collected 

into layers. Input nodes are collected into the input layer, output nodes in the output layer, 

and the others into one or several layers in between. Input nodes receive signals from a 

source that is outside of the ANN. Output nodes transmit signals outside of the ANN that 

could be used for an input for some other algorithm or making a decision. Signals that 

occur on input and output of any other nodes will be the internal property of the ANN 

and will not be “visible” from the outside. Based on the input signal obtained at the input 

layer, all the other nodes will receive and transmit signals of different strengths to 

adjacent nodes (adjacent to one node are all nodes connected to it). At the very end, 

signal progression will come to nodes in the output layer and they will provide an output 

signal. 

Connections among nodes are commonly unidirectional. One node will receive output 

signals from one group of adjacent nodes and transmit its own signal as an input to the 

other adjacent nodes. With respect to connectivity among nodes, in some ANN, there is a 

possibility that only inter-layer and some intra-layer connectivity could exist. 

 

ANNs could be classified as follows (Teodorović and Vukadinović, 1998): 

Classification according to the network structure: 

¾ autoassocciative – input nodes are simultaneously output nodes, 

¾ heteroassociative – there is a set of output nodes different than the set of input 

nodes. 

Classification according to feedback presence: 

¾ ANN where there are no connections between output and input nodes, 

¾ ANN with feedback (recurrent neural networks) where the current output signal 

is determined by the current input signal and former output signal. 
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Classification according to the network training: 

¾ Supervised training is training performed until the ANN is able to produce the 

desired output vector y for each input vector x. Training will be performed based 

on the set of input-output data pairs (x, y). 

¾ Unsupervised training is the kind of training where a sample of input vectors is 

involved in the learning process. During the training, statistical properties of the 

samples are estimated and similar input vectors are grouped into classes. The idea 

is to obtain consistent output vectors for similar inputs. 

¾ Reinforcement learning is provided as a combination of previous training 

algorithms in the following way: ANN will give output vector y for each input 

vector x. If the obtained output vector is valued as “good” then the ANN is 

“rewarded” by increasing the existing weights of the branches. Otherwise, the 

ANN is “punished” decreasing weights on the branches. 

 

The literature shows a wide range of possible applications of ANN. It is seen that there 

has been a significant growth in the number of publications in recent years. The most 

successful applications of ANN are in categorization and pattern recognition. In the 

transportation area ANN was implemented on a large number of different problems such 

as dispatching, incident detection, drivers behavior modeling, origin-destination matrices 

estimation, etc. 

 



 

Chapter 3. Bee System Approach to the Modeling of 
Combinatorial Optimization Problems 

3.1 Behavior of real bees 
 

The honey bee colony chooses sections of a field that are most profitable among different 

nectar sources available. Previous studies have shown that the colony quickly and 

precisely adjusts its searching pattern in time and space following the environment’s 

changing of nectar sources. Self-organization of the bees is based on a few relatively 

simple rules of individual insect’s behavior (Gould (1987), Hill et al. (1997), Banschbach 

and Waddington (1994), Dukas and Real (1991), Kadmoon and Shmida (1992), Peleg et 

al. (1992), Seeley (1992), Dukas and Visscher (1994), Keasar et al. (1996), Chittka et al. 

(1997), Chittka and Thompson (1997), Collevatti et al. (1997), Waddington et al. (1998), 

Williams and Thompson (1998)). It is described here how the activities of a large number 

of individual bees can emerge into an organized pattern of collective foraging. 

It is natural to consider a colony as a system of interacting individuals – foraging bees 

(Camazine and Sneyd, 1991). In that light, it is possible to first examine the relevant 

behavior of the individuals and then the information shared among the individuals in 

order to achieve common knowledge. “Collective – Swarm intelligence” is the emergent 

property of the colony of individuals requiring only limited and local knowledge that 

every contributor should possess. The exchange of information among individuals is the 

most important occurrence in the formation of collective knowledge. While examining 

the entire hive it is possible to distinguish some parts that commonly exist in all hives. 

The most important part of the hive with respect to exchanging information is the dancing 

area. Communication among bees related to the quality of food sources occurs in the 

dancing area. The related dance is called the waggle dance. 

Generally, in a social insect colony individuals usually do not perform all tasks. They 

specialize in a set of tasks according to their morphology, age or chance (Bonabeau et al., 

1999). However, a significant part of the entire bee colony will be foragers. 
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The basic characteristics of behavioral cycle of honey bee foraging for nectar could be 

seen in figure 3.1. 
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Figure 3.1 –  Typical behavioral cycle of honey bee foraging for nectar in case when three 
discovered food sources exist 
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At the very beginning, a potential forager will start as an unemployed forager. That bee 

will have no knowledge about the food sources in the field. There are two possible 

options for such a bee: 

¾ Due to some internal motivation or possibly some external clue, the bee will start 

searching spontaneously and in that way becomes a scout. 

¾ As a response to the attendance of the waggle dance done by some other bee, the 

bee will start searching for a food source and in that way becomes a recruit. 

After finding the food source, the bee utilizes its own capability to memorize the location 

and then immediately starts exploiting it. In this way the bee will become an “employed 

forager”. 

The foraging bee takes a load of nectar from the field and returns to the hive, 

relinquishing the nectar to a food store. After it relinquishes the food, the bee has the 

following options: 

(a) abandon the food source and become an uncommitted follower,  

(b) continue to forage at the food source without recruiting the nestmates, or  

(c) dance and thus recruit the nestmates before returning to the same food source. 

The bee opts for one of the above alternatives with a certain probability. The probabilities 

highly depend on the quality of the food source that has been visited. 

Within the dancing area, the bee dancers “advertise” different food areas. The 

mechanisms by which the bee decides to follow a specific dancer are not well 

understood, but it is considered that “the recruitment among bees is always a function of 

the quality of the food source” (Camazine and Sneyd, 1991). 

Through the passage of time, food sources could become exhausted and it could happen 

that some employed foraging bees could become unemployed – stop exploiting the 

source. 

Bees have some memory and as long as a bee keeps information about this food source in 

memory, the bee is called an experienced unemployed bee. Sometimes experienced 

unemployed bees will make examinational flights to the food source and thus the bee is 

called an inspector. A reactivated forager is an experienced unemployed bee that has 

attended a dance containing information about a food source that is already known and 
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based on that has made a decision to go and explore the known and at the same time the 

advertised food source. In cases where an experienced unemployed bee attends a dance 

advertising an unknown food source, is possible that the bee wanted to begin exploring 

this unknown source, and become a recruit. In cases of experienced unemployed bees not 

finding a waggle dance to follow on the dance floor, the bee might start to search for 

some unknown (new) food source spontaneously and become a scout again. 

It can be seen that there are several categories of foragers (de Vries and Biesmeijer, 

1998): 

¾ Employed forager – knows and uses a profitable food source. Just flying from 

food source to unloading zone in hive and vice versa (EF on figure 3.1). 

¾ Unemployed forager could be the following (begin foraging – figure 3.1): 

o Scout, starts searching spontaneously without any knowledge of the food 

sources (S on figure 3.1). 

o Recruit, starts searching upon attending dance area in the hive – knows 

approximately the position of food source without any knowledge about 

quality (R on figure 3.1). 

¾ Experienced forager that has some knowledge about the position and profitability 

of a food source could have the following tasks: 

o Inspector inspects the profitability status of a food source that has been 

already discovered. 

o Reactivated forager explore the same food source but upon attending 

dancing area – after receiving confirmation about source from other 

nestmates (RF on figure 3.1). 

o Scout starts to search for a new source after the previous source has been 

deteriorated (ES on figure 3.1). 

o Recruit unsatisfied with the currently visited food source, will start 

searching for a new source that has been advertised in dancing area (ER 

on figure 3.1). 

It is important to note that not all bees start foraging simultaneously. The experiments 

confirmed that new bees begin foraging at a rate proportional to the difference between 

the eventual total number of bees and the number presently foraging. 
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At any moment, each foraging bee could be in one of the following places: 

¾ not active, 

¾ unloading nectar from food source, 

¾ dancing for food source, 

¾ feeding at food source, 

¾ following a dancer, and 

¾ scouting. 

 

3.2 Artificial Bees 
 

The successful applications of the Ant System to the complex engineering and 

management problems are certainly encouraging. At the same time, these successes act as 

a great inspiration to attempt to explore bees’ behavior as a source of ideas and models 

for development of various artificial systems. 

A large portion of social insects’ activities is tied to food foraging. It is known that 

honeybees “normally spend the last part of their life collecting food” (Biesmeijer et al, 

1998). Also, they “spend a considerable portion of their life span learning and improving 

their foraging skills” (Dukas and Visscher, 1994). Every bee colony has scouts that are 

the colony’s explorers (Seeley and Visscher, 1988). The explorers do not have any 

guidance while looking for food. They are primarily concerned with finding any kind of 

food source. As a result of such behavior, the scouts are characterized by low search costs 

and a low average in food source quality. Occasionally, the scouts can accidentally 

discover rich, entirely unknown food sources. In the case of artificial bees, the artificial 

scouts attempting to solve difficult combinatorial optimization problems could have the 

fast discovery of the group of feasible solutions as a task. Some of those feasible 

solutions to the difficult combinatorial optimization problems could then prove to be 

solutions of very good quality.  

In the case of honey bees, the recruitment rate represents a “measure” of how quickly the 

bee colony finds and exploits a newly discovered food source. Artificial recruiting could 

similarly represent the “measurement” of the speed with which the feasible solutions or 
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the “good quality” solutions are found.  

The cooperation between the insects decreases foragers’ costs in finding new food 

sources. This suggests that cooperation between artificial bees would also allow the fast 

discovery of the feasible solution.  

It is also known that cooperation increases the quality of the food sources located by 

foragers. This implies that cooperation could also help us find the best solutions of the 

difficult combinatorial optimization problems.  

The survival and progress of the bee colony is dependent upon the rapid discovery and 

efficient utilization of the best food resources. In other words, the successful solution of 

difficult engineering problems (especially those that need to be solved in real time) is 

connected to the relatively fast discovery of “good solutions”. 

 

3.3 Solving The Traveling Salesman Problem with The Bee 
System 

 

The primary goal of the research is to explore the possible applications of swarm 

intelligence (and especially, in this part, collective bee intelligence) in solving complex 

traffic and transportation engineering problems. The development of the new heuristic 

algorithm for the Traveling Salesman Problem using the Bee System will serve as an 

illustrative example for such applications and will show the characteristics of the 

proposed concept. 

The Traveling Salesman Problem (TSP) is chosen for the following characteristics: 

¾ Very difficult (NP-hard) problem. 

¾ There are plenty of benchmark problems (TSP has been studied a lot and through 

that process with purpose of technique comparison a lot of instances appears). 

¾ Easy to understand. 

¾ If one assumes that the closest food source is more attractive for honey bees, 

foraging bees behavior could be applied in order to find the best solution. 

 

TSP could be formulated in the following way: 
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Let G = (N, A) be a graph where N is a set of nodes and A is a set of arcs or edges. Let us 

also introduce C = (cij) as the distance or cost matrix associated with a set of arcs. In TSP, 

the minimum distance circuit that passes through each node once and only once should be 

determined. In literature, this circuit is known as the Hamiltonian circuit (or cycle). There 

are a lot of different modalities to the problem. Most important are symmetric TSP where 

cij = cji for all (i, j) ∈ A and asymmetric TSP that occur otherwise. 

 

There are several ways to formulate TSP mathematically. One of the earliest 

formulations, given by Dantzig, Fulkerson and Johnson (1954) will be presented here. 

Let xij be the following binary variable: 


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Integer linear programming formulation could be as follows: 
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The objective is to find the least costly tour. Constraints 3.2 and 3.3 should restrict the 

number of times that one node is visited on value 1. Constraint 3.4 represent subtour 

elimination constraints – they prohibit formulation of subtours (tours with less than N 

nodes). 
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Here, the focus will not be on TSP and its solutions developed in the past; more detailed 

survey can be found in Laporte (1992). 

 

Let G = (N, A) be the graph in which the bees are collecting nectar (the graph in which 

the traveling salesman route should be discovered). Let us also randomly locate the hive 

in one of the nodes. When foraging, the bees are trying to collect as much nectar as 

possible. Let us also assume that the nectar quantity that is possible to collect flying along 

a certain link is inversely proportional to the link length. In other words, the shorter the 

link, the higher the nectar quantity collected along that link. This means that the greatest 

possible nectar quantity could be collected when flying along the shortest traveling 

salesman route. Our artificial bees will collect the nectar during a certain prescribed time 

interval. After that, we will randomly change the hive position. The bees will start to 

collect the nectar from the new location. We will then again randomly change the hive 

location, etc. The iteration in the searching process represents one change of the hive’s 

position. Our artificial bees live in an environment characterized by discrete time. Each 

iteration is composed of a certain number of stages. A stage is an elementary time unit in 

the bees’ environment. During one stage the bee will visit s nodes, create a partial 

traveling salesman tour, and after that return to the hive (the number of nodes s to be 

visited within one stage is prescribed by the analyst at the beginning of the search 

process). In the hive the bee will participate in a decision making process. The bee will 

decide whether to abandon the food source and become again uncommitted follower, to 

continue to forage at the food source without recruiting the nestmates, or to dance and 

thus recruit the nestmates before returning to the food source. Let us denote by B the total 

number of bees in the hive and by B(u, z) the total number of bees collecting nectar 

during stage u )
1

,...,2,1,0 






 −
=

s
N

u(  in iteration z. 

We will assume that at the beginning of every iteration z all bees are in the hive, i.e.: 

B(0, z) = 0 (3.6) 

It is noted that not all bees start foraging simultaneously in nature. In the case of artificial 

bees, we increase the number of foraging bees in every subsequent stage in the following 
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way: 

Let us introduce the binary variables bk(u, z), defined as: 





=
otherwise 0,
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where: 

M – maximum number of iterations. 

 

Some bees will start foraging in the first stage. The remaining bees will join the 

nestmates in the second stage, or in the third stage, or in the fourth stage, etc. Once a bee 

starts foraging, it will remain “active” until the end of the considered iteration. The 

foraging activity of every bee can be described by the array composed of 0’s and 1’s. The 

array [1, 1, 1,…, 1] describes foraging activity of the bee that has been foraging from the 

first stage; the array [0, 0, 0, 1, 1, 1,…, 1] describes foraging activity of the bee that has 

been foraging from the fourth stage, and so forth. 

Let us also introduce the binary variables hk(u, z), defined in the following way: 


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where: 

w –  the parameter given by the analyst ( 0 )1≤≤ w  

rk(u, z) –  the random number taken from the unit interval [0, 1] 

 

The binary variables hk(u, z) indicate the stage in which a particular bee starts foraging. 

For every bee k that has not been participating in the foraging process in the stage (u – 1), 

we have chosen the random number rk(u, z). The k-th bee will join her nestmates in 

foraging during stage u, if the following relation has been satisfied: 
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w > rk(u, z) (3.9) 

The higher the value of the parameter w given by the analyst, the higher the chance for 

any bee to become foraging. That is, practically all bees from the hive will start the 

foraging process very quickly. A smaller value for the parameter w implies a slower 

increase of the number of foraging bees. 

The binary variable bk(u, z) equals: 

bk(u, z) = bk(u-1, z)+hk(u, z) (3.10) 

The total number of foraging bees during u-th stage in the z-th iteration equals: 

∑
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k
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),(  (3.11) 

 
During any stage, bees are choosing nodes to be visited in a random manner. The Logit 

model is one of the most successful and widely accepted discrete choice models. Inspired 

by the Logit model, we have assumed that the probability of choosing node j by the k-th 

bee, located in the node i (during stage u +1 and iteration z) equals: 
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where: 

i, j –  node indexes (i, j = 1, 2, …, |N|), 
dij –  length of link (i, j), 
k –  bee index (k = 1,2,…, B), 
z –  iteration index (z = 1, 2,…, M), 
gk(u, z) –  last node that bee k visits at the end of stage u in iteration z, 
Nk(u, z) –  set of unvisited nodes for bee k at stage u in iteration z (in one stage 

bee will visits s nodes; we have |Nk(u, z)| = |N| - us), 
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b –  “memory length”*, 
nil(r) –  total number of bees that visited link (i, l) in r-th iteration, 
a –  input parameter. 

 
Let us discuss relation (3.12) in more detail. The greater the distance between node i and 

node j, the lower the probability that the k-th bee located in the node i will choose node j 

during stage u and iteration z. The distance dij is obviously a very important factor 

influencing the bee’s choice of the next node. The influence of the distance is lower at the 

beginning of the search process. The greater the number of iterations z, the higher the 

influence of the distance. This is expressed by the term z in the nominator of the exponent 

(relation 3.12). In other words, at the beginning of the search process bees have “more 

freedom of flight”. They have more freedom to search the solution space. The more 

iterations we make, the less freedom the bees have to explore the solution space. The 

closer we come to the end of the search process, the more focused the bees are on the 

flowers (nodes) in the neighborhood. Like their natural counterparts, artificial bees have 

memory; they can receive and remember information about how many bees visited a 

certain link during the last b iterations. The greater the total number of bees that visited a 

certain link in the past, the higher the probability is of choosing that link in the future. 

This represents the interaction between individual bees in the colony. 

For every bee, we now know the nectar quantity collected by the bee (the length of the 

partial traveling salesman tour). After returning to the hive, bees relinquish the nectar to a 

food storer bee. After relinquishing the food, the bee then makes the decision about 

abandoning the food source or continuing the foraging at the food source. The basic 

assumption is that every bee can obtain the information about nectar quantity collected by 

every other bee. The probability that the bee k, at the beginning of the stage u + 1, will 

use the same partial tour that is defined in stage u in iteration z equals: 
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* While foraging in stage u, every artificial bee has the ability to notice the total number of bees in every 
link. Every artificial bee has the same ability for previous stages as well. That is, artificial bees have the 
capacity to remember former bee assignments in the network. However, bee recollection is limited. The 
maximum number of stages that a bee can recall represents memory length. 
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where Lk(u, z) is the length of partial route that is discovered by bee k in stage u in 

iteration z. 

 

We can see from relation (3.13) that the bee will fly along the same partial tour with the 

probability equal to one when the bee has discovered the shortest partial traveling 

salesman tour in stage u in iteration z. The longer the tour that the bee has discovered, the 

smaller is the probability that the bee will fly again along the same tour. When bee 

decides not to abandon the food source it can:  

(a) continue to forage at the same food source without recruiting the nestmates; 

(b) fly to the dance floor area and start dancing, thus recruiting the nestmates 

before the return to the food source.  

The bee opts for each one of the above alternatives with a certain probability. Within the 

dance area the bee dancers “advertise” different food areas. It has been mentioned before 

that the mechanisms by which the bee in nature decides to follow a specific dancer are 

not well understood, but it is considered that the recruitment among bees is a function of 

the quality of the advertised food source. Since the bees are, before all, social insects (the 

interaction between individual bees in the colony has been well documented), it is 

assumed in this paper that the probability p* of an event in which the bee will continue 

foraging at the food source without recruiting the nestmates is very low: 

p* << 1 (3.14) 

After relinquishing the food, and after making the decision to continue foraging at the 

food source, the bee flies to the dance floor and starts dancing with the probability equal 

to (1- p*). Bee dancing represents the interaction between individual bees in the colony. 

This kind of communication between individual bees contributes to the formation of the 

“collective intelligence” of the bee colony.  

At the beginning of stage u + 1, if a bee does not use the same partial traveling salesman 

tour, the bee will go to the dancing area and will follow another bee(s). Every partial 

traveling salesman tour ξ that is being advertised in the dance area has two main 

attributes:  
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(a) the total length, and 

(b) the number of bees that are advertising the partial route. 

We introduce the normalized value of the total length of the partial traveling salesman 

tour and the normalized value of the number of bees advertising the partial tour. Both the 

normalized values are defined in the following way: (a) They can take any value between 

0 and 1; (b) The smaller the normalized value of the total length, the better is the partial 

tour; (c) The bigger the normalized value of the number of bees, the better is the partial 

tour. 

Let us denote by Y(u, z), the set of partial tours that were visited by at least one bee and 

by Bξ( u, z) – the number of bees that discovered partial route ξ . The normalized value of 

the partial route length equals: 


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The normalized value of the number of bees advertising the partial tour equals: 
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Inspired by the Logit model, we have assumed that the probability that the partial route ξ 

will be chosen by any bee that decided to choose the new route equals: 
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 (3.17) 

where: 

θρ ,  - parameters given by the analyst. 

 

Before relocating the hive, we tried to improve the solution obtained by the bees in the 

current iteration by applying the well-known 2-opt and 3-opt heuristic algorithms. 
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Creating the partial Traveling Salesman Tours, where in every stage every bee will visit 

just one node (s = 1) is shown in figure 3.2. It could be seen that the bee ( ) has 

abandoned the food source it discovered in stage 1 and follows bee ( ) through stage 

2. 

 

Hive

Hive

Hive

Stage 1

Stage 2

Stage 3

s = 1

 

Figure 3.2 – Creating partial Traveling Salesmen Tours (for stage length s = 1) 
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3.3.1 Tour improving algorithms 
 

The most frequently used tour improvement algorithms are developed based on the k-opt 

procedure. The basic idea is to replace the subset of k arcs in the previously defined tour 

with the subset of new arcs with same cardinality and smaller total length such that a 

new, shorter tour will result. The complexity of the k-opt algorithm is O(nk) where n is 

the number of nodes considered in the TSP instance. In the literature, researchers have 

used 2-opt and 3-opt algorithms most frequently. 

To explain the 2-opt procedure, let us consider two arcs that are not adjacent (for example 

(ti, ti+1) and (tj, tj+1) from figure 3.3). If we were to remove them from the tour, the 

remainder of the tour will contain two paths with end nodes ti+1 – tj and ti – tj+1. There are 

two ways to reconnect those two paths into a tour again: by inserting already removed 

arcs, which would yield the old tour or by inserting the edges (ti, tj) and (ti+1, tj+1). The 

original tour will be changed in case the total length of the new arc pair is shorter than the 

total length of previously removed arc pair (i.e. 
1111 ,,,, ++++

−−+
jjiijiji tttttttt dddd  is 

negative). 

ti ti

tj tj

ti+1 ti+1

tj+1 tj+1

 

Figure 3.3 – A 2-opt change (original tour on the left and resulting tour on the right) 

A pseudo code for a 2-opt algorithm could be formulated as follows (Smith, 1982): 

Consider the tour (t1, t2, …., tn, t1) with total length L; 
Set i := 1; 
Set j := i + 2; 
While i <= │N│ - 2 do begin 

Consider the tour (t1, t2, …, ti, tj, tj-1, …, ti+1, tj+1, tj+2, …, t1) with total length L1; 
if L1 < L then begin 

(t1, t2, …., tn, t1) := (t1, t2, …, ti, tj, tj-1, …, ti+1, tj+1, tj+2, …, t1); 
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L := L1; 
i := 1; 
j := i + 2; 

end else begin 
Inc (j); 
if j > │N│ then begin 

Inc (i); 
j := i + 2; 

end; 
end; 

End While; 
 
The 3-opt algorithm utilizes the same idea as the 2-opt. The only difference is the fact 

that now, initially three arcs are removed and then three new arcs are added. The 

algorithm used to make the tour improvement is Lin’s algorithm (Lin, 1965). 

The pseudo code for 3-opt algorithm could be formulated as follows: 

for i := 1 to n do begin 
for k := 1 to n-3 do begin 

for j:= k+1 to n-1 do begin 
if 

jkjjjk tttttttt dddd ,,,, 1111
+≤+

++
then begin 

jjk tttt ddd ,, 11
: +=

+
; 

α := true; 
end else begin 

jkj tttt ddd ,, 11
: +=

+
; 

α := false; 
end; 
if 

1111 ,,,, +++
++<+

jjkkntnk ttttttt ddddd  then begin 

if α then 
(t1, t2, …., tn) = (tj+2, …., tn, tk+1, …., tj, t1, …., tk, tj+1) 

else 
(t1, t2, …., tn) = (tj+2, …., tn, tk+1, …., tj, tk, …., t1, tj+1); 

end; 
end; 

end; 
(t1, t2, …., tn) = (tn, t1, t2, …., tn-1); 

end; 
 
The procedure for the 3-opt algorithm described by the pseudo code is time consuming 

because the algorithm will try all possible combinations of three arcs replacement. There 

is the possibility to run this algorithm much faster with a little chance of loss in solution 

quality. One simple way to do that is to reduce the size of searching space. Nodes 

 should be “close enough” to each other to be considered as starting nodes of jk ttt and,,1
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arcs to be removed. Algorithm will start with node t1 at the beginning of each improving 

trial. The number of closest nodes to node t1 that will be considered for possible 

improvement is given in advance. 

3.3.2 Experimental study of the bee system 
 
The proposed Bee System was tested on a large number of numerical examples. In all the 

cases one of the tour improving algorithms was employed. There are three sets of results 

that correspond to 2opt, 3-opt and 3-opt “short version” tour improving algorithm 

respectively. The benchmark problems were taken from the following Internet address: 

http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/tsp/. The 

following 10 problem instances were considered: Eil51.tsp, Berlin52.tsp, St70.tsp, 

Pr76.tsp, Kroa100.tsp, Eil101.tsp, Tsp225.tsp, A280.tsp, Pcb442.tsp and Pr1002.tsp. 

Problem instances Pcb442.tsp and Pr1002.tsp were considered just with 3opt “short 

version” tour improving algorithm. All tests were run on an IBM compatible PC with PIII 

processor (533MHz). Tables 3.1, 3.2 and 3.3 present the results obtained by Bee System 

when search is limited to 100 cycles. 

 
Table 3.1 – The results obtained by the Bee System enriched with 2-opt heuristic 
Problem Number 

of nodes 
Optimal 

Value 
(O) 

The best 
value 
obtained 
by the 
Bee 
System 
(B) 

 

O
OB )( −

 
(%) 

Time 
required 
to find 
the best 
solution 
(seconds) 

Average 
value 
obtained 
by the 
Bee 
System 
over 20 
runs (A) 

St. Dev. 
(SD) 

 

O
OA )( −

 
(%) 

Eil51 51 428.87 431.121 0.53% 44 433.758 1.37 1.14%
Berlin52 52 7544.366 7544.366 0% 18 7634.37 78.2 1.19%
St70 70 677.11 678.621 0.22% 238 684.275 3.53 1.06%
Pr76 76 108159 108790 0.58% 127 109444.6 461 1.19%
Kroa100 100 21285.4 21441.5 0.73% 58 21575.7 138.83 1.36%
Eil101 101 640.21 642.45 0.35% 146 665.62 7.94 3.97%
Tsp225 225 3859 4065.56 5.35% 2076 4113.71 27.3 6.6%
A280 280 2586.77 2740.63 5.95% 1855 2784.81 19.56 7.66%
 
From table 3.1 it could be seen that the Bee System, reinforced with 2-opt tour 

improvement heuristic will provide excellent results for a small size of TSP instances. 

However, if the size of instances is increased, the quality of the solutions is reduced (last 

column table 3.1). 

 

http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/tsp/
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Table 3.2 – The results obtained by the Bee System enriched with 3-opt heuristic 

Problem Number 
of nodes 

Optimal 
Value 
(O) 

The best 
value 
obtained 
by the 
Bee 
System 
(B) 

 

O
OB )( −

 
(%) 

Time 
required 
to find 
the best 
solution 
(seconds) 

Average 
value 
obtained 
by the 
Bee 
System 
over 20 
runs (A) 

St. Dev. 
(SD) 

 

O
OA )( −

 
(%) 

Eil51 51 428.87 428.87 0 37 428.87 0 0
Berlin52 52 7544.366 7544.366 0 1 7544.366 0 0
St70 70 677.11 677.11 0 22 677.11 0 0
Pr76 76 108159 108159 0 11 108159 0 0
Kroa100 100 21285.4 21285.4 0 10 21285.4 0 0
Eil101 101 640.21 640.21 0 1741 643.05 1.7 0.44%
Tsp225 225 3859 3876.05 0.44% 5153 3905.32 18.9 1.2%
A280 280 2586.77 2600.34 0.53% 13465 2627.45 12.31 1.57%
 
Table 3.3 –  The results obtained by the Bee System enriched with 3-opt “short version” 

heuristic 
Problem Number 

of nodes 
Optimal 

Value 
(O) 

The best 
value 
obtained 
by the 
Bee 
System 
(B) 

 

O
OB )( −

 
(%) 

Time 
required 
to find 
the best 
solution 
(seconds) 

Average 
value 
obtained 
by the 
Bee 
System 
over 20 
runs (A) 

St. Dev. 
(SD) 

 

O
OA )( −

 
(%) 

Eil51 51 428.87 428.87 0 29 428.87 0 0
Berlin52 52 7544.366 7544.366 0 0 7544.366 0 0
St70 70 677.11 677.11 0 7 677.11 0 0
Pr76 76 108159 108159 0 2 108159 0 0
Kroa100 100 21285.4 21285.4 0 10 21285.4 0 0
Eil101 101 640.21 640.21 0 61 643.07 1.84 0.45%
Tsp225 225 3859 3899.9 1.06% 11651 3909.69 9.19 1.31%
A280 280 2586.77 2608.33 0.83% 6270 2632.42 14.89 1.76%
Pcb442 442 50783.55 51366.04 1.15% 4384 51756.89 195.3 1.92%
Pr1002 1002 259066.6 267340.7 3.19% 28101 268965.6 1182.22 3.82%
 
We can see from tables 3.1, 3.2 and 3.3 that the proposed Bee System produced results of 

a very high quality. The Bee System was able to obtain the objective function values that 

are very close to the optimal values of the objective function. In all instances with less 

than 100 nodes, the Bee System produced the optimal solution (table 3.2 and table 3.3). 

The times required to find the best solutions by the Bee System are low. In other words, 

the Bee System was able to produce “very good” solutions in a “reasonable amount” of 

computer time. 

The best solutions discovered by Bee System are presented in the following figures. 
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Figure 3.4 –  Bee System solution to the TSP problem instance Eil51.tsp (limited to 100 

cycles) 
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Figure 3.5 –  Bee System solution to the TSP problem instance Berlin52.tsp (limited to 

100 cycles) 
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Figure 3.6 –  Bee System solution to the TSP problem instance St70.tsp (limited to 100 
cycles) 
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Figure 3.7 –  Bee System solution to the TSP problem instance Pr76.tsp (limited to 100 
cycles) 
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Figure 3.8 –  Bee System solution to the TSP problem instance Kroa100.tsp (limited to 

100 cycles) 
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Figure 3.9 – Bee System solution to the TSP problem instance Eil101.tsp (limited to 100 
cycles) 
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Figure 3.10 –  Bee System solution to the TSP problem instance Tsp225.tsp (limited to 
100 cycles) 
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Figure 3.11 –  Bee System solution to the TSP problem instance A280.tsp (limited to 100 
cycles) 
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Figure 3.12 –  Bee System solution to the TSP problem instance Pcb442.tsp (limited to 

100 cycles) 
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Figure 3.13 –  Bee System solution to the TSP problem instance Pr1002.tsp (limited to 

100 cycles) 
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3.4 Bee System and Fuzzy Logic approach to the Stochastic 
Vehicle Routing Problem 

 

3.4.1 Introduction 
 

The classical vehicle routing problem, which appears in various transportation activities, 

consists of finding a set of routes that would minimize transport costs. Vehicles leave the 

depot, serve nodes that request service, and on completion of their routes, return to the 

depot. Every node is characterized by a certain demand (the amount to be delivered or the 

amount to be picked up from the node). Other known values include the coordinates of 

the depot and nodes, the distances between all pairs of nodes, and the capacity of the 

vehicles providing service. 

During the last two decades, papers that deal with uncertain demand at nodes have 

appeared (Dror and Trudeau (1986), Dror et al. (1989), Teodorović and Pavković (1992), 

Lambert et al. (1993), Dror (1993), Dror et al. (1993), Gendreau et al. (1996), Teodorović 

and Pavković (1996), Yang et al. (2000), Teodorović and Lučić (2000)). In all of them, 

stochastic demand at nodes was represented by random variables. 

Vehicle routing problems with uncertain demand at nodes appears in the delivery of 

home heating, trash collection, beer and soft drink distribution, provision of the bank 

automates with cash and collection of cash from bank branches. The basic characteristic 

of the vehicle routing problem with uncertain demand at nodes is that the real value of 

demand at a node becomes known only after the vehicle has reached the node. Because of 

the uncertainty of demand at the nodes, a vehicle might not be able to service a node once 

it arrives there due to an insufficient capacity. Such a situation is known as a “route 

failure”. In the case of “route failure” different actions need to be applied. 

A new algorithm for handling the vehicle routing problem when there is uncertain 

demand at nodes will be described. The goal is to produce an “intelligent” vehicle routing 

system capable of providing real time decisions necessary to build a set of “high quality 

routes” for the vehicles servicing the nodes. 

The entire approach presentation is organized in the following way: Statement of the 

problem is given in section 3.4.2. A proposed solution to the problem is given in section 
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3.4.3. Numerical experiments are shown in section 3.4.4. 

 

3.4.2 Statement of the problem 
 

Let us assume that Stochastic Vehicle Routing Problem is assigned as follows: 

¾ single depot and n nodes to be serviced (figure 3.14), 

¾ homogenous feet (vehicle capacity is denoted by C) and 

¾ demand at each node is a random variable (probability density function is known). 

 

Vehicles set out from depot D, serve a number of nodes, and on completion of their 

service, return to the depot. 

 

 

Figure 3.14 – Depot D and nodes requiring service 

 

Increasing the number of nodes served along a route decreases the available (remaining) 

capacity of the vehicle. After completing service at one node, it is simple to calculate 

whether the vehicle is able to serve the next node or not, when demand at nodes is 

deterministic. On the other hand, when the demand at the nodes is characterized by 

uncertainty and treated as a random value, it is not a simple task to decide whether the 
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vehicle should serve the next node or return to the depot. 

It is quite clear that the greater the vehicle’s remaining capacity and the lesser the 

demand at the next node, the greater the vehicle’s “chances” of being able to serve the 

next node. In other words, the greater the difference between the remaining capacity and 

demand at the next node, the greater is our preference to send the vehicle to serve that 

subsequent node and thus, the greater is the number of nodes in the route. Also, due to the 

uncertainty of demand at nodes, a vehicle might not be able to service a node once it 

arrives there due to insufficient capacity. It will be assumed that in such situations, the 

vehicle returns to the depot, empties what it has picked up thus far, returns to the node 

where it had a “failure,” and continues service along the predefined path (or along the rest 

of the planned route in cases where the set of routes is defined in advance) as it has been 

shown on figure 3.15. 

 

Failure

 

Figure 3.15 - “Failure” at a node of the planned route 

Our wish to use the vehicle capacity to its fullest potential will produce planned routes 

with shorter total distances. However, this will also increase the number of cases in which 

vehicles arrive at a node and are unable to service it. In other words, the total distance 

will be increased due to the route “failure”. Smaller utilization of vehicle capacity, on the 

other hand, will produce longer routes and less additional distance to cover due to the 
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failures. 

The goal is to develop a decision support system that will make real time decisions on 

whether one particular vehicle located in the just serviced node will go to another node in 

the sequence or return to the depot. 

 

3.4.3 Proposed solution to the problem 
 

This part of the dissertation will describe an attempt to develop an “intelligent” vehicle 

routing system capable of making real time decisions of high quality. The system behaves 

“intelligently” if it “emits” similar output results for similar input variables. Artificial 

neural networks and fuzzy systems are “intelligent” systems since they have the ability to 

“learn from experience”. Recognition without definition is a characteristic of intelligent 

behavior. The initial assumption is that it is possible to develop a vehicle routing system 

that will recognize different situations. As in other intelligent systems, the “intelligent” 

vehicle routing system should be able to generalize, adapt and learn based on new 

knowledge and new information. 

Let us introduce the following assumption: the future could be predicted without a 

mistake. In this case, the assumption means that we are able to exactly predict demand 

values at all nodes in the transportation network. In the case of perfect prediction we 

should be able to make optimal decisions. In other words, once we know the random 

demand values at all nodes, we can try to develop the best vehicle routes. 

For a known “scenario” (the random demand values at all nodes are known) the problem 

of producing the best set of vehicle routes can be solved using a particular optimization 

technique or heuristic algorithm.  

The approach applied here contains the following two steps:  

¾ Using the developed Bee System, solve the Vehicle Routing Problem as a 

Traveling Salesman Problem and create a “Giant route” (most frequently 

unfeasible solution to the original problem).  

¾ By “walking” along the created giant route it is possible to decide when to finish 

one vehicle’s route and when to start with the next vehicle’s route. These 

decisions could be made easily since knowledge about demand at every node and 
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vehicle capacity is assumed. 

The above-considered problem can be solved many times for different scenarios. If one 

can precisely predict the future then he/she can get the optimal or close to the optimal 

solution to the problem. Instead of predicting it though, one can simulate future events. In 

other words, one can simulate the demand at nodes represented by random variables. In 

the next step the optimal, or close to the optimal solution will be obtained for the set of 

demands simulated, by solving the problem. One can repeat this procedure a large 

number of times. In this way one can get the “best” solution for every simulated 

“scenario”. This “statistical material” enables the generation of a fuzzy rule base. The 

Wang and Mendel (1992) procedure could be used to generate a fuzzy rule base from 

numerical data. Before introducing the procedure for generating a fuzzy rule base from 

numerical data, basic elements of fuzzy systems are to be presented. 

 

3.4.4 Fuzzy Systems 
 

It could happen that an experienced decision maker could achieve better results than a 

classical automatic control system when managing a complex system (transportation, 

industrial, etc.). The entire control strategy of an experienced decision maker could be 

formulated into a huge set of descriptive rules (number of rules highly depends on the 

complexity of the system that should be managed). The set of rules could be easily 

processed manually, but it could be complicated to reformulate those rules and apply one 

of the classical algorithms. Complications arise from the fact that extracting knowledge 

from human beings could bring qualitative expressions instead of quantitative. For human 

beings this, at times, is more preferred. The qualitative, or fuzzy nature of the human 

process of thinking and decision making has encouraged researchers to attempt to 

develop artificial systems that will behave in a similar way, while making decisions to 

control some processes. 

 

Development of the fuzzy set theory started in the 1960s (Zadeh, 1965) and up to now, 

fuzzy logic has been successfully used in the management of processes in many different 

areas. Fuzzy logic has been used in solving transportation and traffic problems. The first 
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implementation of fuzzy logic theory was in the control system for isolated signalized 

intersections of two one-way streets (Pappis and Mamdani, 1977). 

The fuzzy logic system can be described as mapping of an input data into a scalar output 

(Mendel, 1995). Most often mapping is crisp input into crisp output. 

Fuzzy rules could be defined from the knowledge of experienced operators used in 

control systems. The rules could be collected – produced by verbalizing the operator’s 

expertise or by conducting a carefully composed survey. In both cases, rules are formed 

by observing the decisions being made. Decisions are composed based on some input 

data and finally input-output data pairs could be seen. 

When it can be positively claimed that the operator is consciously or unconsciously using 

the rules in managing, the rules can be recorded by observing the operator’s behavior. In 

other words, the rules can be formulated by using the observed decisions (input/output 

numerical data) of the operator. 

 

Fuzzy rules include descriptive expressions such as small, medium, or large used to 

categorize the linguistic (fuzzy) input and output variables. A set of fuzzy rules, 

describing the control strategy, forms a fuzzy control algorithm, that is, an approximate 

reasoning algorithm, where the linguistic expressions are represented and quantified by 

fuzzy sets. The main advantage of this approach is the possibility of introducing and 

using rules from experience, intuition, heuristics, and the fact that a model of the process 

is not required. Fuzzy reasoning (approximate reasoning) involves the transformation of a 

group of fuzzy rules into fuzzy relations in order to achieve a result. Fuzzy reasoning is 

an inference procedure, i.e., the method of generating the conclusion from the premises 

when the linguistic expressions are quantified by fuzzy sets. The inference engine of the 

fuzzy logic system maps fuzzy sets into fuzzy sets. The inference engine “handles the 

way in which rules are combined” (Mendel, 1995). There are a number of various 

inferential procedures in literature. 

Fuzzy rule (fuzzy implication) could be presented in the following form: 

If x is A, then y is B 

where A and B represent linguistic values quantified by fuzzy sets defined over universes 
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of discourse X and Y. The first part of the rule “x is A” is premise or hypothesis or 

antecedent, the second part of the rule “y is B” forming conclusion or consequent. 

The entire expression describes an existing relation between the variables x and y; a fuzzy 

rule is defined as a binary fuzzy relation R in the Cartesian space X × Y = {(x, y)}. Each 

element (x, y) of the fuzzy relation is associated with the corresponding membership 

grade µR(x, y). The binary fuzzy relation R can be treated as the fuzzy set defined in 

space X × Y characterized by a two-dimensional membership function µR(x, y). 

In cases where “x is A*” is a fact, after application of fuzzy implication fuzzy set B* 

could be expressed in the following way: 

{ }),(),(minmax)( ** yxxy RAxB µµµ =  

)()(* yqy BB µµ ∧=  

 

In order to determine fuzzy set B*, the degree of match of sets A and A*, represented by 

q, is first defined as the maximal value of the intersection of the sets; as it is shown on 

figure 3.16. Fuzzy set B* is determined by the intersection of fuzzy sets B and q. 
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Bµ µA*
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Figure 3.16 – Approximate reasoning for a single rule 

 

Let us introduce the following rule for instance: 

If x1 is A1 and x2 is A2, then y is B 

At the same time let us assume the following facts: 

x1 is A*
1 and x2 is A*

2 

First, the degree of match of sets A and A*
1, q1, should be determined, then the degree of 
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match of sets A2 and A*
2, q2, and in final, the resulting fuzzy set B* is obtained by the 

intersection of fuzzy set B and q = min (q1, q2); as it shown in figure 3.17. In this 

procedure the operator min represents operation “and.” 
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Figure 3.17 – Approximate reasoning for a single rule with two elements in premise 

 

A set of rules presents union of fuzzy relations. Let us consider the following example: 

 

If x1 is A1 and x2 is B1, then y is C1 

If x1 is A2 and x2 is B2, then y is C2 

 

Operator max represents operation “or,” and the composition of inferences could be 

found under name “max-min composition” in literature. Mamdani and Assilian (1975) 

proposed the first model of the fuzzy system where the approximate reasoning is 

performed by max-min composition. Figure 3.18 shows the approximate reasoning 

performed by max-min composition when the algorithm is composed of two rules – given 

example. 
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Figure 3.18 – Approximate reasoning algorithm when two rules are present 

 

Practically, the last step in the approximate reasoning algorithm is defuzzification; 

choosing one value for the output variable. Using the fuzzy reasoning algorithm, a fuzzy 

set is obtained as the output result of max-min composition. By defuzzification, the fuzzy 

information is compressed and given out by representative numerical information. 

Mamdani and Assilian (1975) used the center of gravity of the resulting fuzzy set as a 

representative output numerical value. In most applications an analyst or decision maker 

will decide about representative value. Besides choosing the center of gravity, “the 

smallest maximal value,” “the largest maximal value,” “mean of the range of maximal 

values,” and so on (Figure 3.19) also could be chosen. 
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Center of gravityMean of max.

 

Figure 3.19 – Approximate reasoning using max-min composition 

 

3.4.5 Generating fuzzy rule base from numerical examples 
 

In order to generate fuzzy rule bases from numerical examples, the procedure proposed 

by Wang and Mendel (1992) was used. We could establish fuzzy sets for all the 

antecedents and the consequences. We will do it in such a way that, at the very 

beginning, we will establish the domain intervals for all input and output variables 

(Figure 3.20). 
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Figure 3.20 –  Division of the domain interval into a prespecified number of overlapping 

regions 
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As Wang and Mendel (1992) suggested, it is possible to divide each domain interval into 

a prespecified number of overlapping regions (Figure 3.20). The number of overlapping 

regions is not the same for each variable. The lengths of these overlapping regions are 

usually equal, but not necessarily. In the next step each overlapping region is labeled and 

one membership function is assigned to it. Furthermore, different types of membership 

functions for different variables can be used. According to figure 3.20, let us assume that 

triangular membership functions for all variables will be used. Let us assume that the 

following set of the input-output data pairs is available: 

(x1
1, x2

1,… y1), (x1
2, x2

2,… y2), (x1
3, x2

3,… y3) (3.18) 

where x1, x2,… are input and y is output. We will generate the fuzzy rule base from this 

set of input-output data pairs. The values of x1, x2,… and y belong to the domain intervals 

(x1min, x1max), (x2min, x2max), … (ymin, ymax) respectively. From every input-output data pair 

we can eventually generate one fuzzy rule. The next step is to explain how to generate 

fuzzy rule from the first input-output data pair (x1
1, x2

1, … y1). 

We have to determine the membership function values of the elements. From figure 3.20 

can be seen that  has degree 0.2 in Ax1
1

y

2, and 0.8 in A1, also, x2
1 has degree 0.7 in B2 and 

0.3 in B3, … and  has degree 0.4 in P1
4, and 0.6 in P3. The next step is to assign each 

variable to the region with maximum degree. This means that  is considered to be Ax1
1

1, 

for x2
1 is B2, …, and  is considered to be Py1

3. The rule, which we obtained from the first 

pair of the input-output data, is: 

If       x1  is A1 and x2  is B2 and … 

Then  y  is P3 

This is the way to generate the rules from the input-output data pairs. Because many 

input-output data pairs are generated, some conflicting rules can be produced. The 

conflicting rules have the same antecedents but different consequence. Wang and Mendel 

(1992) resolved this “by assigning a degree to each rule and accept only the rule from a 

conflict group that has maximum degree”. The degree of a rule 1, which we got from the 

first input-output data pair, equals: 
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( ) ( ) ( ) ( ) 6.0...7.08.0...1 11
2
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1 321

⋅⋅=⋅⋅= yxxRuleD PBA µµµ  (3.19) 

Finally, following this procedure it is possible to generate a fuzzy rule base containing a 

minimum of one rule (all data pairs are similar and produce the same rule or all produced 

rules are conflicting each other) and a maximum number of rules equal to the number of 

input-output data pairs. 

To apply Wang and Mendel’s procedure it is necessary first of all to define all variables 

xi (i = 1, 2, 3, …) that would appear in premise and variable y (consequence). It is 

important to simultaneously consider appropriate domain when defining any of these 

variables. 

A developed decision support system should provide judgment about visiting the next 

node (ti+1) in the “giant” route, once the vehicle has visited a previous node (ti) in the 

route. Important data that should be considered when making decision would be the 

following: 

¾ Cr – remaining of the vehicle capacity, 

¾ C – vehicle capacity, 

¾ 
1+it

µ  – mean of the demand in the following node, and 

¾ 
1+it

σ  – standard deviation of the demand in the following node. 

When considering the Stochastic Vehicle Routing Problem we have introduced the 

following three variables for the antecedent part: 

¾ 
C
Cr=1x , 

¾ 
C

it 1
2

+=x
µ

, and 

¾ 
C

it 1
3

+=x
σ

. 

Consequent (y) is number of nodes to be visited after node ti. 

All introduced variables are bounded; x1, x2 and x3 are ranging from 0 to 1 and y is 

ranging from 0 to the total number of nodes. 
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3.4.6 Numerical example 
 

We have considered the same set of ten TSP examples introduced in section 3.3.2. To 

transfer original TSP problem into Vehicle Routing Problem, in all the examples, the first 

node was considered to be depot. Originally, examples just contain node coordinates 

(they were prepared to fit TSP needs).  

The following procedure was used to define/generate random demand associated to each 

of the nodes: 

1. Define vehicle capacity and the ranges for mean and standard deviation of 
demand at nodes. 

2. For each particular node define values for mean and standard deviation as random 
number taken from uniform distribution within predefined range. This procedure 
is not completely random because it is necessary to avoid the possibility to have 
“actual” demand as negative value. 

3. Based on values for mean and standard deviation for every node define “actual” 
demand as a random number taken from the Normal distribution with predefined 
mean and standard deviation. 

 

In all examples we have vehicle capacity and the ranges for mean and standard deviation 

defined as follows: 

¾ Vehicle capacity is 1000, 

¾ Range for mean is (0, 200) and 

¾ Range for standard deviation is (0, 60). 

The basic assumption was that demand at a node is distributed according to Normal 

probability density function. Through simulation we have assigned values for mean and 

standard deviation and then “actual demand” (based on previously assigned parameters of 

the distribution) to every node. The entire set of cases (experiments) is subdivided into 

two parts: a training set (based on training set fuzzy rule base is produced) and a control 

set (the control set is used to check the quality of the developed fuzzy rule base). 

 

When producing the fuzzy rule base in all the cases we have used triangular fuzzy 

numbers, uniformly distributed over the entire domain interval for variables that appear 

in the antecedent and consequent parts. The number of uniformly distributed fuzzy 
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numbers associated to each of variables x1, x2 and x3 was nine and we have associated 17 

fuzzy numbers to y (consequent part). 

Figures 3.21 and 3.22 show the error distribution in all 10 considered examples. When 

producing the error distribution we consider just results obtained on the test set. 

 

Figure 3.21 –  Error distribution for the following examples: Eil51, Berlin52, St70, Pr76, 
Kroa100 and Eil101 
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Figure 3.22 –  Error distribution for the following examples: Tsp225, A280, Pcb442 and 
Pr1002 

 

Each experiment has two solutions associated with it. One is the solution obtained under 

conditions where future demand is known in advance (a priory) and the other one is 

solution obtained by the developed Fuzzy Logic based system. Those two solutions are 

associated with each particular experiment. This could be referred to as the solution pair. 

Graphical representation of the solution pair obtained as result for one random demand 

assignment to the nodes (one experiment) is shown for the following examples: Berlin52, 

Pr76, Eil101 and A280. 
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Figure 3.23 –  One solution pair for Berlin52 example ((a) perfect future knowledge and 
(b) fuzzy system solution) 
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Figure 3.24 –  One solution pair for Pr76 example ((a) perfect future knowledge and (b) 
fuzzy system solution) 
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Figure 3.25 –  One solution pair for Eil101 example ((a) perfect future knowledge and 
(b) fuzzy system solution) 
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Figure 3.26 –  One solution pair for A280 example ((a) perfect future knowledge and (b) 
fuzzy system solution) 

 

Maximum and average values of relative error for all considered examples are provided 

in table 3.4. 
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Table 3.4 – Maximum and average values of relative error 
 Maximum of relative error [%] Average relative error [%] 
Eil51 5.83 0.607 
Berlin52 5.98 1.44 
St70 4.05 1.63 
Pr76 5.83 1.75 
Kroa100 5.75 2.42 
Eil101 5.44 2.18 
Tsp225 4.70 1.49 
A280 3.48 1.26 
Pcb442 4.32 1.15 
Pr1002 2.38 0.93 
 

 

 

 



 

Chapter 4. Combined Ant System and Fuzzy Logic 
Modeling Approach 

 

4.1 Behavior of real ants 
 

As social insects, ants live in colonies. Ants’ behavior is directed towards the survival of 

the colony as a whole rather then achieving individual goals. From an optimization point 

of view, one of the most important behaviors of ant colonies is foraging behavior. More 

precisely, how ants can find the shortest path between their nest and food source. 

Ethnologists tried to solve the same problem. The question was how almost blind animals 

like ants could establish and manage the shortest route from their nest to a feeding source 

and back. 

When walking from the nest to the food source and vice versa, ants will deposit on the 

ground a substance called pheromone. When one or several ants use the same path, a 

pheromone trail will be formed. Ants are able to smell pheromone trails. Under the 

presumption that ants choose their future direction of walk based on some probability, it 

is obvious that a stronger pheromone concentration will cause a higher probability for 

that path to be chosen. Using pheromone trails, ants are able to find the way back to the 

nest or food source. In the same manner, other ants could use pheromone trails in order to 

find food sources discovered by their nestmates. 

 

In case of the existence of several possible paths, it has been shown that pheromone trail 

following behavior employed by a colony of ants will emerge into choosing the one with 

the shortest path between the nest and food source. These conclusions come from 

experimental study of ants’ behavior. One experiment that will be briefly described here 

is the binary bridge experiment that has been set up by Deneubourg et al. (1990). The 

nest of ant colony is separated from the food source by a double bridge (figure 4.1) where 

each branch has the same length. 

 75
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Figure 4.1 – Initial condition of the “double bridge” experiment 

 

Ants are then left to move freely from the nest to the food source and vice versa. The 

percentage of ants that choose one or the other of the two branches is observed over time. 

The result shows that after an initial transition phase where some oscillations appear, ants 

converge to one (the same) path. At the beginning of the experiment there is no 

pheromone trail on the two branches and ants select branches with the same probability. 

Randomness after initial phase would cause that a few more ants will select one branch 

over the other. While walking, ants deposit pheromone and a greater number of ants on 

one branch will finally give a greater amount of pheromone on it. The produced 

pheromone trail will stimulate more ants to choose the same branch and so on. Goss et al. 

(1989) have presented the following probabilistic model describing this phenomenon: 

h
m

h
m

h
m

kNkN
kN

mP
)()(
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,2,1

,1
1 +++

+
=      (4.1) 

where: 

N1, m and N2, m –  number of ants that have used branches denoted by “1” and “2” 

after m ants have crossed bridge (N1, m + N2, m = m), 

P1(m) –  probability that m+1-st ant will choose “1” branch, 

k, h –  tuning parameters. 

In order to test for correspondence between model and real (experimental) data, the 

Monte Carlo simulation was performed. To determine which branch an ant will use, after 
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calculating corresponding probabilities, a random number ψ was chosen. In cases where 

ψ ≤ P1(m) is fulfilled N1,m+1 = N1,m + 1; N2,m+1 = N2,m; otherwise, N1,m+1 = N1,m; N2,m+1 = 

N2,m + 1. Random variable ψ has uniform distribution over the interval [0, 1]. Simulations 

were performed with the following values of the parameters: k ≈ 20 and h ≈ 2 (Pasteels et 

al., 1987). 

The authors built the model with the following assumptions: 

¾ the amount of pheromone on the branch is proportional to the number of ants that 

used that branch in the past (basic assumptions are: every ant will deposit 

pheromone with the same rate and ants are walking with approximately the same 

speed), 

¾ evaporation of the pheromone is not considered (applicable in case of providing 

experiment for a short period of time). 

The model closely matches the experimental observations. 

In cases where bridge branches have different lengths, the difference in the amount of 

time that ants spend to cross the bridge (using different branches) causes the shorter 

branch to be passed more times than longer branch. Initially, transition period in this case 

will be much shorter. Finally, the shorter branch would have more pheromone that will, 

in turn, stimulate a significant number of ants to use the shorter branch. Occasionally, 

some ants will use the other route. 

In principle, a single ant is able to find the route from the nest to the food source and vice 

versa (build some solution to the problem). However, only the ant colony is capable of 

finding the “shortest” path (shortest path finding behavior is a property of ant colony 

only). The ant colony is able to perform this specific behavior using a simple form of 

indirect communication (based of pheromone deposit) known as stigmergy. 

The main characteristics that separate stigmetry from other means of communications are 

the following: 

¾ information is released by the changing of the physical environment of the site 

visited by the ant, and 

¾ information can be accessed by an ant that is visiting the same site (or 

neighboring site) – information has a local nature. 
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Additionally, experiments show that ants are capable of reconnecting the developed 

“shortest” path (Figure 4.2a) when an obstacle appears suddenly. When an obstacle 

appears, ants located in front of the obstacle are not able to continue to follow the 

pheromone trail and they have to choose to turn right or left (Figure 4.2b). In both 

directions a pheromone trail does not exist and expectation is that half of the ants will 

turn left and another half to turn right (Figure 4.2c). The same situation could be found on 

the other side of the obstacle, for those ants traveling in the opposite direction. 

 

The difference in traveling time will cause those ants which choose the shorter path 

around the obstacle by chance, to more rapidly form a pheromone trail. This trail will be 

stronger than the trail created by the ants which choose the longer path. The higher 

amount of pheromone will cause more ants to choose the shorter path. Due to this 

positive feedback process, in a short period of time, all of the ants will use the shorter 

path (Figure 4.2d). 

 

It has been observed that in ants foraging behavior it is not essential to have the following 

properties (Pasteels et al., 1987): 

¾ visual clues, and 

¾ individual memory (including left-right memory). 

The same results were obtained with and without possibility of their use. 

The experimental study also showed that the ant colony is incapable of switching to the 

short path, due to the irreversible nature of the positive feedback process involved, when 

shorter path is only present after the trail on long path has been established (Pasteels et 

al., 1987). 
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Figure 4.2 –  Example of real ant behavior. (a) ants following the shortest route between 
the nest and food source, (b) suddenly an obstacle appears – ants have to 
choose to turn left or right, (c) approximately half of the ants would use 
either direction, (d) because of a stronger pheromone trail, ants will choose 
the new shorter path. 
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4.2 Ant System 
 

The Ant System (AS) is a general-purpose heuristic algorithm that could be used to solve 

various combinatorial optimization problems. This algorithm has been developed based 

on an analogy with the foraging of real ant colonies. The transition from real ants to 

artificial is described based on the first presented examples Colorni et al. (1991, 1992) 

and Dorigo et al. (1996). The authors introduced AS by applying it to solve the 

Symmetric Traveling Salesman problem without time windows (TSP) using AS. 

 

TSP is the problem of finding a shortest closed tour such that the tour will visit all the 

cities in a given set exactly once. TSP could be formulated in the following way: 

Consider a sequence of n towns, and for each town pair (i, j) consider a distance dij. Aim 

is to find permutation π of n towns that will minimize the quantity: 

)1(),(

1

1
)1(),( ππππ n

n

i
ii dd +∑

−

=
+  (4.2) 

In this example attention will be restricted to TSP in which cities are on a plane and a 

path (edge, arc) exists between each pair of cities (i.e., the TSP graph is completely 

connected). All distances are Euclidean. 

Let us introduce graph G = (N, A, d), and denote by: 

n = N -  number of cities that ant should visit, and 

m –  total number of ants. 

Formally, ants will make tours through steps; they will travel over the introduced graph 

by walking from one city to another. When all ants have produced routes (TSP solutions), 

they will do that again, so on. 

Let us introduce the following indexes: 

t –  cycle index (will give information how many times ants make set of tours), 

s –  iteration index (it will give information how many steps all ants have made in 
the current cycle – every cycle contains n iterations). 
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Colorni et al. (1991, 1992) and Dorigo et al. (1996), have considered each ant as a simple 

agent that chooses the town to go with a probability that is a function of the town distance 

and of the amount of pheromone trail present on the connecting edge, to explain the 

transition from real ants to artificial ones. 

The transition probability from town i to town j for the k-th ant is: 


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 (4.3) 

where: 

τij(t) – pheromone trail on arc (i, j) in cycle t, 

ηij = 1/dij – “visibility”, 

Jk
i(t, s) = {N – tabuk (t, s)} – set of nodes where ant k can go from node i, 

tabuk (t, s) – tabu list for ant k in cycle t and iteration s, 

α, β – parameters given in advance. 

To force the ant to make legal tours, transitions to already visited towns are disallowed 

until a tour is completed (this is controlled by a tabu list). 

?

?

??

?
?

 

Figure 4.3 –  Graph and search process that could happen in any cycle after s = 2 
iterations where search process is carried out by m = 3 ants. Dark nodes are 
the ones where the ants are initially randomly placed. 
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Placed at the towns at the beginning randomly, ants explore the given graph 

simultaneously. Each ant in iteration s will choose the next town, where it will be in 

iteration s+1. The progression through iterations (figure 4.3) would exist until all ants 

have completed their tours. After the completion of their tours, ants will lay an artificial 

pheromone trail on each visited edge (i, j). Thereafter, a new cycle could start. 

Again, an iteration of the AS algorithm contains the m moves carried out by the m ants. 

Every n iterations of the algorithm, each ant has completed a tour, and the cycle of the 

algorithm is also completed. At this point, the trail intensity is updated according to the 

following equation: 

τij (t + 1) = ρτij (t) + ∆τij (t, t + 1) (4.4) 

where : 

ρ –  coefficient such that (1-ρ) represents the evaporation of trail between 

cycle t and t + 1. This coefficient is given in advance with value in interval 

(0, 1]. 

∆τij (t, t+1) –  “additional” pheromone on arc (i, j) produced in cycle t. This amount of 

pheromone will be available for all ants through entire iteration t + 1. 

Additional pheromone could be calculated using the following equation: 
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∆τk
ij (t) – the quantity per unit of length of trail substance laid on edge (i, j) by the k-th ant 

at the end of cycle t. There are several ways to calculate this value – one 

common method is: 
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Q –  constant given in advance, 

Lk(t) – produced tour length of the k-th ant in cycle t. 

In order to initialize the process, some initial pheromone τij(0) = c will be assigned to 
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every arc (c is small positive value). 

 

Equation 4.3 contains two parameters α and β that have considerable role in the final 

probability values. If α = 0, the closest city is more likely to be selected; it corresponds to 

the classical stochastic greedy algorithm that has multiple starting points (initially ants 

are located in cities randomly). On the other hand, if β = 0, pheromone trail intensity on 

arcs will influence the probabilities for stochastic node choice. This will lead the search 

process to rapid convergence – stagnation (generating tours that are similar). It is clear 

that trade-off among consideration of visibility and the pheromone trail should exist. 

Only values of α and β other than 0 will make it possible for ants to explore the feasible 

region in the way that would increase the chances to get a good enough or optimal 

solution to the problem. 

 

The following algorithm presents the main steps that this developed AS algorithm 

contains. 

For every arc (i, j) do τij (0) = c; 
For k = 1 to m do Place ant k on a randomly chosen city; 
Let T+ be the shortest tour found from beginning and L+ its length; 
For t = 1 to tmax do 
 For k = 1 to m do 
 Build tour Tk(t) by applying n - 1 times transition probability (4.3). 

Always updating tabu list (tabuk (t, s)); 
 Complete Tk(t) – add returning link to the starting city of the tour Tk(t); i.e. 

provide last (n-th) step. 
 End For 
 For k = 1 to m do 
  Compute the length Lk(t) of the tour Tk(t) produced by ant k; 
 End For 
 If an improved tour is found then update T+ and L+; 
 For every arc (i, j) do 
  Update pheromone trails by applying the rule (4.4 – 4.6); 
 End For 
End For 
Print T+ and L+; 
 

In contrast to the real ants, it could be seen from the algorithm that artificial ants do not 

deposit pheromone when traveling between nodes. Pheromone trail will be updated at the 
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end of every cycle. In the literature, it could be found that the name of this algorithm is 

the Ant-Cycle algorithm. Among others (Ant-density and Ant-quantity), Ant-cycle 

algorithm is the most successful.  

All these algorithms have similar structure, and the main difference is seen in the 

pheromone updating rule. Ant-density and Ant-quantity algorithms presume that 

pheromone will be updated when every iteration is completed. In every iteration of both 

algorithms, all ants will make one step (move from one city to another) and then 

pheromone trail will be updated on all visited arcs according to the following rules: 

Ant-density: 
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Ant-quantity: 
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4.3 Similarities and differences between real and artificial ants 
 

It has been mentioned earlier that in order to build AS, authors have used mostly ideas 

from real ants behavior. However, some differences exist. Similarities could be stated as 

follows (Dorigo et al., 1999): 

¾ Colony of cooperating individuals. Both real ant colonies and AS contain a 

population, or colony, of independent individuals – agents. They globally 

cooperate in order to find a “good solution” to the task under consideration. In 

both cases one agent is able to find “feasible solution” independently of others. 

However, a region of good solutions could be discovered as a result of the 

cooperation among agents. 

¾ Stigmergy through pheromone trail. Like real ants, artificial ants, when 

“walking”, change some aspects of their environment. While walking, real ants 
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deposit a chemical substance (pheromone) on the visited state. Artificial ants will 

change some numerical information of the problem state, locally stored, when that 

state is visited. Based on analogy, these information and changes could be called 

an artificial pheromone trail. Ant System algorithms presume that a local 

pheromone trail is the single way of communication among artificial ants. In 

reality, pheromone evaporation exists. AS algorithms also include artificial 

pheromone evaporation in the form of reduction in the artificial pheromone trail 

over time. Pheromone evaporation in nature and in AS algorithms are important 

because it will allow ant colony to slowly forget the history and direct the 

searching process in new directions. Artificial pheromone evaporation could be 

helpful to move the searching process towards new regions and to avoid stacking 

in local extremes. 

¾ Local moves and the shortest path searching. In contrast with real ants that are 

walking through adjacent terrain’s states, artificial ants are “jumping” from one to 

another “adjacent state” of the considered problem. The definition of states and 

their adjacency is problem specific, and should be different for different 

problems. Either walking or jumping these steps have the same purpose, which is 

finding the shortest (minimum cost) path between the origin and the destination. 

¾ Transition policy. Both real ants and artificial ones will build solutions by 

applying decision making procedures to move through adjacent states. Decision 

making procedures could be based on some probabilistic rules (introduced by 

Colorni et al. (1991, 1992), and Dorigo et al. (1996)) or probabilities could be 

calculated based on approximate reasoning rules. In both cases, the transition 

policy will use local information only – it should be local in the space and time 

sense. The transition policy is a function of local – state information represented 

by problem specifications (this could be equivalent to the terrain’s structure that 

surrounds the real ants) and the local modification of the environment (existing 

pheromone trails) introduced by ants that have visited the same location. 

Main differences could be stated as follows: 

¾ Artificial ants live in a discrete world. All their moves are jumps from one 

discrete state to another. 
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¾ Artificial ants have memory; they could remember states that have been visited 

already (tabu lists in the model). 

¾ Pheromone deposit methodology is significantly different between real and 

artificial ants. Timing in pheromone laying is problem dependent and often does 

not have similarities with the real ants pheromone deposit methodology. 

¾ Amount of pheromone that an artificial ant will deposit is mostly a function of the 

quality of the discovered solution. In reality, some ants behave in a similar way; 

the deposited amount of pheromone is highly dependent on the quality of the 

discovered food source. 

¾ To improve overall performances, AS algorithms could be enriched with some 

additional capabilities that cannot be found in real ant colonies. Mostly AS 

contains some local optimization technique to improve solutions developed by 

ants. 

 

4.4 Similarities and differences between artificial ants and 
artificial bees 

 

Similarities could be stated as follows: 

¾ Both approaches present artificial colonies of cooperating individuals. 

¾ Basic structure is taken from natural swarms. In both cases the system was 

developed based on foraging behavior of the corresponding natural swarms. 

¾ General behavior contains individual decisions based on simplified rules taken 

from nature and collaboration among individuals through exchanging of collected 

information. 

¾ Artificial ants and artificial bees live in a discrete world. 

 
Main differences could be stated as follows: 

¾ An exchange of information among agents occurs at the end of iteration (Bee 

System) or at the end of cycle (Ant System). 

¾ Type of the approach to the problem could be simultaneous (Bee System) or 

sequential (Ant System). 
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¾ Amount and type of information exchanged through one exchange of information 

trial. Agents will receive just local information (Ant system) or information about 

any relatively promising food source in the covered region. 

 

4.5 Other AS approaches 

4.5.1 Ant Colony System 
 
It has been shown experimentally that the previously described AS algorithm is capable 

of producing good solutions within a reasonable amount of time for only small problem 

instances. In order to improve capabilities of AS, Gambardella and Dorigo (1996), 

Dorigo and Gambardella (1997a, 1997b) introduce the Ant Colony System (ACS).  

 
ACS was developed based on the Ant – cycle algorithm. A description of dissimilarity 

will be presented on the same example (TSP) as it was for the AS introduction. Main 

differences could be stated as follows: 

Change in transition rule: 

Ant k that is located in city i (cycle t and iteration s) will make choice about city j (where 

to move) based on the following rule: 
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where: 

q0 –  tunable parameter (q0 ∈ [0, 1]), 

q –  value taken from uniform distribution over [0, 1], 

),( stpk
iu  -  probabilities calculated based on equation 4.3. 

 
The basic idea is to allow ants to choose the “closest” city based on criteria [  

and one random value q. In case q > q

βητ ][)]( ijij t ⋅

0, city J that the ant will go to will be chosen based 

on the same procedure like in AS. In other words, a second random number will be taken 
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and based on it as well as probabilities  the ant will make the choice of where to 

go among its allowed cities and for its current position. 

),( stpk
ij

+

,0

if,1
L

Tuning parameter q0 will take value from the [0, 1] interval. In cases where q0 is close to 

0, the search process will explore the feasible region widely. If q0 is closed to 1, the 

search process will be concentrated on the best partial solution (greedy). 

 
Change in pheromone updating rule: 

In contrast to previous algorithms where pheromone is updated at the end of each cycle – 

the global pheromone update, ACS algorithm contains pheromone updates at the end of 

each cycle and pheromone updates at the end of each iteration – local pheromone update. 

To further explain how pheromone trails will be updated; let τij (t, s) be the amount of 

pheromone that could be found on arc (i, j) at iteration s that belongs to cycle t. 

 
¾ The global pheromone updating rule (will be provided offline like in AS); 

At the end of every cycle t pheromone will be updated according the following 

equation: 

τij (t + 1, 1) = ρ τij (t, n) + (1 - ρ) ∆τij(t, t + 1) (4.10) 
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

Only arcs that belong to the best tour T+ (since beginning of search process) 

would have a pheromone update at the global level. The strategy will increase the 

importance of searching around the best route ever found. 

 
¾ Local updates of the pheromone trail (will go on-line – after each iteration): 

When ant k located in city i selects city j∈Jk
i(t, s), the pheromone concentration 

on arc (i, j) will be changed according to: 

τij (t, s + 1) = ϕ τij (t, s) + (1 - ϕ) τ0,       s < n (4.12) 

τij (t + 1, 1) = ϕ τij (t, n) + (1 - ϕ) τ0,      s = n (4.13) 

 



Chapter 4: Combined Ant System and Fuzzy Logic Modeling Approach 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 
89

where:  

ϕ -  value (taken from interval (0, 1]), 

τ0 –  initial pheromone trail; it was experimentally found that the best results 

are obtained when τ0 is calculated according the following equation: 

nnLn
1

0 =τ  (4.14) 

n –  number of cities, 

Lnn – tour length produced by the nearest neighborhood heuristic. 

Local pheromone updating is necessary to avoid stagnation of the searching 

process. Without local pheromone updating, the searching process could be 

stacked because of the global pheromone update. Additionally, the local update 

rule should decrease attraction of a recently visited arc. The idea is to make the 

visited arcs less and less attractive as ants visit them. In that way the ants’ route 

will disperse – a common path would not be formed. 

 
“Candidate list” data structure. A candidate list could be defined as a list of preferred 

cities to be visited from the given city. In order to avoid examination of all unvisited 

neighbors of the current city (which for large instances could be time consuming) the ant 

would choose to examine only those cities in the candidate list. The candidate list 

contains a certain number f (given in advance) of neighboring cities in ascending order of 

distances. If the ant has visited all cities in the candidate list, other neighboring cities 

could be considered. If the candidate list is not empty then the next city that ant will visit 

will be chosen according to the formulas (4.9 and 4.3) otherwise, the ant will go to the 

first closest city from the rest of the unvisited cities. 

 

4.5.2 Ant-Q 
 
Gambardella and Dorigo (1995) Dorigo and Gambardella (1996a) developed the Ant–Q 

system. The system is similar to ACS and in fact ACS was developed based on an 

experimental study related to the Ant–Q system. The main difference is in the local 
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pheromone updating rule that could be represented as follows: 

τij (t, s+1) = ϕ τij (t, s) + (1 - ϕ) γ iu
stJu k

i

τ
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max
∈

,         s < n (4.15) 

τij (t + 1, 1) = ϕ τij (t, n) + (1 - ϕ) γ iu
stJu k

i

τ
),(∈

max ,      s = n (4.16) 

Difference exists in the last term of the summation. Through experimental study it was 

discovered that setting the last term in the summation to a small constant value would 

result in the reduction of time required to solve the problem without significant 

performance deterioration of the algorithm. The next step in Ant based algorithm 

development was practically the introduction of ACS. 

 

4.5.3 Concept of “Elitist ants”: 
 
The elitist ant concept is almost the same as the Ant-cycle approach. Dorigo et al. (1996) 

have introduced the concept by adding one element into summation (in the equation 4.4). 

τij (t + 1) = ρτij (t) + ∆τij (t, t + 1) + e ∆τe
ij  (4.17) 

where: 

e – constant (given in advance), 
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The main idea is to increase the attraction of arcs that belong to the best tour. 

 

4.5.4 Max-Min AS 
 
Stützle and Hoos (1997) introduced the Max-Min AS developed based on the concept of 

elitist ants in an AS algorithm with the following differences: 

¾ The pheromone trail could be updated only at the end of every cycle for arcs that 

belong to the best route discovered in the cycle. 
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¾ Pheromone trail values associated to each arc are restricted to an interval [τmin, 

τmax]. 

¾ At the very beginning of the search process, pheromone trails should be initialized 

to the maximum pheromone trail value (τmax). 

Restriction of pheromone intensity to a predefined interval will cause all the probabilities 

of choosing arcs (according to the equation 4.3) to also be restricted. This will help in 

avoiding possible stagnation, which was the main problem in the implementation of the 

elitist ants concept. 

 

4.5.5 ASrank algorithm 
 
Bullnheimer et al. (1999) proposed one modification of AS called the ASrank algorithm. 

As it was proposed in AS, the pheromone trail will be updated at the end of every cycle. 

The main difference is the fact that in the proposed algorithm, developed solutions would 

be ranked in a descending order based on their quality at the end of each cycle, and then 

just the arcs that belong to the first ω - 1 (given in advance) solutions will receive an 

amount of pheromone proportional to the solution rank. Additionally, arcs that belong to 

the best tour ever found will receive an extra amount of pheromone (equivalent to the 

elitist ants strategy). Pheromone updates will be provided according the following 

equation: 

τij (t + 1) = ρτij (t) + ω ∆τij(t, t + 1) + ∆τr
ij (t, t + 1) (4.19) 

where: 

∆τij(t, t + 1) –  additional pheromone on the best route ever found (calculation 

based on equation 4.11), 

∆τr
ij (t, t + 1) –  additional pheromone that each arc will receive because it 

belongs to one or more tours in first ω - 1 tours (ranked on the 

bases of their length). 
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Where Lχ(t) is the χ ranked tour length. 

In the literature, it could be found that this improvement has made a significant 

contribution to the quality of solutions produced by AS. 

 

4.6 Parallel AS 
 
Many models that have been developed with the purpose of defining parallel algorithms 

for other population-based algorithms could be used for building parallel AS. 

Parallelization of the metaheuristics algorithms is desirable when attempting to solve 

problems huge in dimensionality. There are several papers describing the various 

possibilities of implementation of parallel AS algorithms to solve large combinatorial 

optimization problems. 

The time taken for the ants to form feasible solutions to the considered problem (the time 

spent within a cycle) is the major component in the total time needed by AS based 

algorithms to be completed. In each cycle, each ant will form a solution through a certain 

number of steps (iterations), making decisions independently of other ants’ decisions. 

Precisely, those decisions are independent of decisions that other ants are making just in 

the current cycle. That is the reason why the first natural method of parallelization of the 

AS based algorithms could be provided in the way of subdividing an ant colony (set of 

ants) into η subsets. Every subset could perform a search process within a cycle on one 

different processor. After completion of the search process in the cycle, produced 

solutions from all processors involved will be sent to the place where pheromone 

updating will be performed. That will change information about the pheromone trails on 

all links and then a new cycle can start. Solutions on all processors are built based on the 

same pheromone trails on links (all subsets of ants will build solutions based on the same 

history information). 

Another approach is to allow an ant colony to change information (through pheromone 
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updating) occasionally. In cases where parallel AS is applied, on large instances of some 

problems there is a possibility that after every cycle ants exchange information only 

within the subset. After a predefined number of cycles, information about discovered 

solutions will be exchanged between subsets of ants. 

Both approaches could be found in Bullnheimer et al. (1997) with the names 

Synchronous Parallel Implementation of AS for the first approach and Partially 

Asynchronous Parallel Implementation for the second one. Authors suggest that for the 

second approach ratio local /global information exchange should be five to one. 

Stützle (1998) presents one simple approach to parallelization of AS through the 

execution of parallel independent runs. This approach is reasonable only in cases where 

the considered algorithm is randomized – decisions in the search process contain 

randomness. This approach is suitable when the solution to the problem should be found 

in a short period of time. It has been shown experimentally that the highest chance of 

finding an optimal solution has multiple runs of the algorithm as opposed to single runs 

in cases where all independent runs have the same amount of time as a single run. Surely, 

for every independent run it is necessary to have more time than the certain initial amount 

(tinit). This initial amount of time (tinit) could be defined for any metaheuristic algorithm 

and any considered problem instance. It is necessary to have the search process at least a 

little longer than tinit to have an acceptable chance for producing a solution that is good 

enough. 

In many cases, metaheuristic algorithms are supported with some local search technique 

to produce better solutions and make the search time shorter. The amount of time that the 

local search technique needs to improve the current solution highly depends on 

heuristic’s complexity and the size of the considered instance. One possible approach to 

parallelization is separation of the searching process among processors in such a way that 

the local search technique will be provided on one processor and the entire algorithm on 

the other one. 

 

4.7 Fuzzy Ant System 
 
The modifications in the development of later AS have primarily been in modeling the 
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methods of communication among ants. Through many publications, the methodology of 

how ants make the choice where to go in the next iteration (transition rule) has stayed 

practically unmodified for an entire decade. AS shows good performance in solving 

problems that are combinatorial in nature. However, some of the real-life problems are 

simultaneously characterized by uncertainty and by combinatorial nature. It could be seen 

that combinatorial problems characterized by uncertainty are not covered by any of the 

modifications of AS that are found in literature. 

In this part of the article, research is focused on the attempt to modify the “classical” Ant 

system by proposing a new one – The Fuzzy Ant System (FAS). The basic modification 

would be in the way of calculating transition probabilities, where fuzzy logic is used. It is 

possible to deal with the uncertainty that could exist in complex combinatorial 

optimization problems by using fuzzy logic as a separate module within the Ant system. 

The control strategies of the ant can also be formulated in terms of numerous descriptive 

rules. 

When making a decision about next node to be visited (in the case of the Traveling 

salesman problem), the ant takes both “visibility” and pheromone trail intensity, into the 

consideration. It is possible to assume that an ant can perceive a particular distance 

between nodes as fuzzy values (example: “small”, “medium” or “large”), and the trail 

intensity as fuzzy values such as “weak”, “medium” or “strong”. 

When choosing the next link, the ant will have greater or lesser perceived utility towards 

it, depending on the distance from the next node, as well as the trail intensity. These 

utilities can be described by appropriate fuzzy sets. 

The approximate reasoning algorithm for calculating the utility of choosing the next link 

could consist of the rules of the following type: 

 
 If distance is SMALL and trail intensity is STRONG 

 Then utility is VERY HIGH 

 
The result of the application of approximate reasoning algorithms is finally a crisp 

number. In this example it should be the perceived ant’s utility to go to a certain node. 

Based on all obtained utilities it is possible to calculate probabilities associated with each 

node where an ant could move from its current node position, taking into account all 
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nodes that the ant has visited as well as the arcs that are connecting the current node with 

others. At the end, final node choice would be obtained in a random manner as in 

“classic” AS. That means, the approximate reasoning algorithm could replace the original 

relation for calculating transition probabilities (4.3). Therefore, it is possible to calculate 

transition probabilities even if some of the input data were only approximately known. It 

seems that the approaches that have combined the Ant System and Fuzzy Logic (Fuzzy 

Ant System) could be a very powerful tool in solving different problems that are 

simultaneously characterized by combinatorial nature and uncertainty. 

 

This approach will be illustrated with the following two examples: 

¾ Vehicle routing problem when demand at nodes is uncertain. Demand at the 

nodes is treated as a fuzzy number and the actual demand value is known only 

after the visit to the node. Vehicle routing problems with all modifications are 

well known in literature and one new approach to the problem will be shown here. 

¾ Schedule synchronization in public transit. Trips between two nodes in a public 

transit network may be made with or without making transfers. Transfers usually 

represent inconvenience to the passengers. Since badly coordinated transfers can 

significantly increase waiting times, it is especially important to carefully 

synchronize schedules in the cases of bigger headways. At the same time, badly 

coordinated transfers can decrease the total number of passengers in public transit 

and result in their switching to the competitive modes. When synchronizing 

schedules, it is necessary to try to minimize the total waiting times of all 

passengers at transfer nodes in a transit network. Very often only approximate 

numbers of transfer passengers are known. The model for schedule 

synchronization that is applicable while constructing timetables will be presented. 

The basic assumption is that the number of transfer passengers is only 

approximately known. The model is based on the Ant System and Fuzzy Logic 

(Fuzzy Ant System). 
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4.8 The combined Ant System - Fuzzy Logic approach to the 
vehicle routing problem when demand at nodes is uncertain 

4.8.1 Introduction 
 

The Stochastic Vehicle Routing problem has been introduced in chapter 3.4. In a high 

percentage of papers devoted to the vehicle routing problem, uncertain demand at nodes 

was treated as a random variable. The exception is the model proposed by Teodorović 

and Pavković (1996) in which appropriate fuzzy numbers represent demand at the nodes. 

In this section, we will describe a new algorithm for handling the vehicle routing problem 

when there is uncertain demand at nodes. In the problem considered, as before, locations 

of the depot, location of the nodes to be served and vehicle capacity are known. Demands 

at the nodes are represented using triangular fuzzy numbers. The goal is to produce a set 

of “high quality routes” for the vehicles in advance (planning purpose). 

The entire approach presentation is organized in the following way. Statement of the 

problem is given in section 4.8.2. The proposed solution to the problem is given in 

section 4.8.3. Numerical experiments are shown in section 4.8.4. 

 

4.8.2 Statement of the problem 
 
Let us assume that there are n nodes to be serviced (Figure 3.14). It is also assumed that 

vehicles of uniform size provide the service. We will denote vehicle capacity by C. 

Vehicles set out from depot D serve a number of nodes and after completing their service, 

return to the depot. Demand at each node is only approximately known and presented by 

an appropriate fuzzy number. 

Let us assume that demand Dj at any node j, can be represented by the triangular fuzzy 

number, i.e.: 

Dj = (d1j, d2j, d3j) (4.22) 

where d1j is the left boundary of fuzzy number Dj, d2j is the value of fuzzy number Dj 

corresponding to a grade of membership of 1, and d3j is the right boundary of fuzzy 

number Dj. 
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As in previous example, “route failure” can occur due to uncertainty that characterizes 

demand at nodes. When evaluating the planned route, the additional distance that the 

vehicle travels due to the possible “route failure” at any node along the route, must be 

taken into consideration. The problem is to design such a set of vehicle routes that will 

result in the least total sum of planned route lengths and additional distance covered by 

vehicles due to “route failure”. 

 

4.8.3 Proposed solution to the problem 
 
Let us denote the total number of ants by m and let us locate all of them in the depot. We 

will also assume that instead of vehicles, ants are servicing the nodes. Ants located in the 

depot of the considered transportation network must visit at least one node before coming 

back to the depot. Let us denote the capacity of every ant by C. In other words, every ant 

has the same capacity C and cannot have a load greater than C at any moment. The ants 

have the choice to pick up the next link. The number of choices is equal to the number of 

links incident to the current ant’s position. At the beginning of the search process, we will 

assume that the pheromone trail is very low on every link and that is equal to some small 

positive constant.  

Let us consider k-th ant located in node i at time t. Let us denote by Ji
k(t) the set of nodes 

that ant k has not visited by the time t. Set of visited nodes, obviously, is )(tJ k
i . This set 

could be subdivided into two subsets, one contains all nodes that are already included in 

routes that the ant has developed ( )(' tJ k
i ) and another contains nodes that the ant includes 

in its currently building route ( )(" tJ k
i ). After serving nodes from the set )(" tJ k

i , the 

available ant’s capacity 
)(, " tJk k

i
A  will equal: 

∑
∈

−=
)(

)(,
"

"

tJj
jtJk

k
i

k
i

DCA  (4.23) 

Demand at every node Dj = (d1j, d2j, d3j) is represented by a corresponding triangular 

fuzzy number. Using fuzzy arithmetic rules, we obtain that the quantities ∑
∈ )(" tJj

j
k

i

D  and 
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( ∑
∈

−
)(" tJj

j
k

i

DC ) are also triangular fuzzy numbers, i.e.: 

∑
∈ )(" tJj

j
k

i

D = ( ∑
∈ )(

1
" tJj

j
k

i

d , ∑
∈ )(

2
" tJj

j
k

i

d , ∑
∈ )(

3
" tJj

j
k

i

d ) (4.24) 

∑− DC
∈ )(" tJj

j
k

i

= (C, C, C) (-) ( ∑
∈ )(

1
" tJj

j
k

i

d , ∑
∈ )(

2
" tJj

j
k

i

d , ∑d
∈ )(

3
" tJj

j
k

i

) =  

( ∑− d
∈ )(

1
" tJj

j
k

i

C , ∑
∈ )(

2
" tJj

j
k

i

− dC , ∑
∈ )(

3
" tJj

j
k

i

− dC ) (4.25) 

The available capacity 
)(, " tJk k

i
A  is also triangular fuzzy number: 

)(, " tJk k
i

A = (
)(,,1 " tJk k

i
a ,

)(,,2 " tJk k
i

a ,
)(,,3 " tJk k

i
a ) = ( ∑

∈

−
)(
1

" tJj
j

k
i

dC , ∑
∈

−
)(

2
" tJj

j
k

i

dC , ∑
∈

−
)(

3
" tJj

j
k

i

dC )    (4.26) 

Membership functions of the fuzzy set 
)(, " tJk k

i
A representing available capacity, and fuzzy 

set 
)(, " tJk k

i
A≥  whose name is “demand greater than available capacity” are shown in 

figure 4.4. 

x

1

0

)(, " tJk k
i

A

)(, " tJk k
i

A≥

 

Figure 4.4 – Membership functions of fuzzy sets 
)(, " tJk k

i
A  and 

)(, " tJk k
i

A≥  

“In the theory of fuzzy subsets the law of possibility plays a role similar to that played by 

the law of probability in measurement theory for ordinary sets” (Kaufmann and Gupta, 

1985). 
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If 

1and1][0,:R
R

=h(x)                    h(x)      x
x∈
∨∈∈∀  (4.27) 

then h(x) is called the possibility law on R. If A is a fuzzy subset of R, then the possibility 

of A for the law h(x) is defined as 

( ))()(poss
RH xhx

x
∧∨=

∈ AA µ  (4.28) 

where µ A(x) is a membership function of fuzzy set A, ∨ is maximum symbol, and ∧ is 

minimum symbol.  

The  presents the possibility of A (left) and  presents the possibility of B 

(right) for the law h(x), as shown in figure 4.5. 

AHposs BHposs

 

x

1

0

(a)

h x( )

A

possHA

x

1

0

(b)

h x( )possHB

B

 

Figure 4.5 – The possibility of A and the possibility of B for the law h(x) 

 

Let possibility h(x) refer to “demand greater than available capacity”. In figure 4.6, we 

denoted the possibility that demand in the next node to be visited Dj is equal to the 

“demand greater than available capacity”. This possibility practically represents the 

possibility that the “route failure” will occur in the next node.  
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x

1

0

)(, " tJk k
i

A≥

Possibility
jD

 

Figure 4.6 –  The possibility that demand ( ) in the next node to be visited is equal to 
the “demand greater than available capacity” (

jD

)(, " tJk k
i

A≥ ). 

It is clear that the “strength” of the ant’s preference to serve some node after it has served 

)(" tJ k
i  nodes depends on the available capacity 

)(, " tJk k
i

A , as well as on expected demand 

in the considered node (Dj). The bigger the available capacity and the smaller the 

expected demand in the potential node to be visited, the higher the ant’s expectation that 

it can serve the next node without the failure and the higher the ant’s wish to go to that 

node. It is assumed that the artificial ants use the approximate reasoning to reach the 

conclusion about the next node to be visited. The ant's perceived utility of visiting the 

next node could be, for example, “low”, “medium” or “high”. Let uj be the ant's utility of 

visiting node j (j being the ( )(" tJ k
i +1)-st node in the route), after it has already served 

)(" tJ k
i  nodes. 

Let the perceived utility index be between 0 and 1, that is,  

(t)10 k
ij Jj        u ∈≤≤  (4.29) 

When uj = 1, the ant is absolutely certain that he wants to serve j-th node. When uj = 0, 

ant is completely sure that he should return to the depot or serve another node. The 

linguistic expressions “very very low utility,” “very low utility,” “low utility,” “medium 

utility,” “high utility,” “very high utility” and “very very high utility” can be represented 

by corresponding fuzzy sets. The membership functions of fuzzy sets “very very low,” 
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“very low,” “low,” “medium,” “high,” “very high” and “very very high” ant's perceived 

utility are shown in figure 4.7. 

 

u

1

1

VVL   VL              L                M               H               VH  VVH

0
 

Figure 4.7 – Fuzzy sets describing ant's utility strength 

 

The estimation of additional distance that ant will pass by introducing node j into route 

could be also described using fuzzy sets. The membership function of fuzzy sets “small,” 

“medium” and “large” are shown in figure 4.8. 

 

d

1
Small

0

Medium Large

 

Figure 4.8 – Fuzzy sets describing expected additional distance 

 

Furthermore, let us introduce fuzzy sets “weak,” “medium” and “strong” denoting weak, 

medium and strong feelings by the ant about pheromone trail intensity (Figure 4.9). 
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1
Weak

0

Medium Strong

 

Figure 4.9 – Fuzzy sets describing pheromone trail intensity 

 
Let us assume that at the time point t, ant k is located at node i. It is already mentioned 

that Jk
i (t) denotes the set of nodes that ant k has not visited by the time t (the set of 

unvisited nodes). In the cases of bigger instances of this problem (especially in the 

beginning of search process) the number of nodesJk
i(t)in the set of unvisited nodes 

Jk
i(t) could be large. We have assumed that our artificial ant will consider only q nodes 

from set Jk
i (t) that are closest to node i as a potential candidates for visit. Let us denote 

this subset of q closest node to node i, by qJk
i (t). In this way, the number of potential 

nodes to be visited is decreased. Knowing available capacity and demand at every node j 

∈  qJk
i (t) and available vehicle capacity, we can calculate the possibility λk

ij(t) of route 

failure in node j if artificial ant k, being located at node i, decides to visit node j.  

If  λk
ij (t) > λ, ant k will exclude node j from future consideration. This will further 

decrease the number of potential nodes to be visited. The set qJ’k
i (t) contains all nodes j 

that satisfy the following relation: λk
ij (t)  ≤  λ. The value of parameter λ is given in 

advance. Let us assume that, after the exclusion of a certain number of nodes from further 

consideration, set qJ’k
i (t) is not empty, i.e.  qJ’k

i (t)> 0. This means that there are still 

some unvisited nodes that are relatively "good" candidates to be visited by the ant. Here, 

it will be assumed that the ant has the following two options regarding next node to be 

visited: (a) The ant will visit the closest unvisited node; (b) Artificial ants use the 

approximate reasoning to reach the conclusion about the next node to be visited. Random 

number r∈  is chosen. In the case when ]1,0[ *rr < , ant will go to the closest node. 

When *rr ≥ , ant will choose approximate reasoning algorithm to reach the conclusion 
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about next node to be visited. Value r* is constant given in advance. Let us explain the 

input and output variables that participate in this approximate reasoning algorithm. Let us 

denote the following variables by dk
ij, τij and uk

ij respectively: 

 

dk
ij  -  the “expected” distance that the k-th ant will travel if he decides to go from node i 

to node j; 
τij -  the pheromone trail intensity that the k-th ant can smell when traveling between 

node i and node j; 
uk

ij -  utility of k-th ant being located in node i to visit node j; 
 

Due to the uncertainty of demand at the nodes, an ant might not be able to service a node 

when it arrives there because of insufficient capacity. In such situations, the ant returns to 

the depot, empties what it has picked up thus far, returns to the node where it had a 

“failure,” and continues service along the planed route. This means that the “expected” 

distance dk
ij could be calculated as: 

dk
ij = dij  + 2dD,j · λk

ij (t) (4.30) 

where: 

dD,j -  distance between depot D and node j 

λk
ij (t) –  as we have mentioned, possibility that the demand in node j, Dj is 

greater than the available capacity 
)(, " tJk k

i
A . 

Usually, an ant's visibility is expressed as inverse of the distance between the current and 

considered ant's position. The better the visibility (the smaller the distance), the higher 

the chances are that the ant will visit the considered node. In our case, when calculating 

the distance between the current and potential (new) ant's location, it was necessary to 

take into account the potential additional distance that the ant could travel due to 

insufficient capacity. The k-th ant is located in node i. The variable dk
ij measures the 

“goodness” of visiting the j-th node by the k-th ant, taking into account the available 

capacity, as well as the demand characteristics in the j-th node. The lower the value of the 

variable dk
ij, the better for the ant to go to the j-th node. The variable τij represents the 

pheromone trail intensity that the k-th ant can smell when traveling between node i and 

node j. The higher the value of the variable τij, the better it is for the ant to go to the j-th 
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node. The typical rule in the approximate reasoning algorithm for determining the 

perceived utility of visiting the next node can be the following one: 

 

If dk
ij is Small and τij is Strong  

Then Ant's utility uk
ij of visiting the j-th node is Very High. 

 

We can see that the antecedent of the rules contains the expected travel distance and the 

pheromone trail intensity. The approximate reasoning algorithm for calculating the ant's 

perceived utility of visiting some of the neighboring nodes consists of the following 9 

rules: 

 
Rule 1: 
If dk

ij is Small and τij is Weak  
Then Ant's utility uk

ij of visiting the j-th node is High. 
else 
Rule 2: 
If dk

ij is Small and τij is Medium  
Then Ant's utility uk

ij of visiting the j-th node is Very High. 
else 
Rule 3: 
If dk

ij is Small and τij is Strong  
Then Ant's utility uk

ij of visiting the j-th node is Very Very High. 
else 
Rule 4: 
If dk

ij is Medium and τij is Weak  
Then Ant's utility uk

ij of visiting the j-th node is Low. 
else 
Rule 5: 
If dk

ij is Medium and τij is Medium  
Then Ant's utility uk

ij of visiting the j-th node is Medium. 
else 
Rule 6: 
If dk

ij is Medium and τij is Strong  
Then Ant's utility uk

ij of visiting the j-th node is High. 
else 
Rule 7: 
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If dk
ij is Large and τij is Weak  

Then Ant's utility uk
ij of visiting the j-th node is Very Very Low. 

else 
Rule 8: 
If dk

ij is Large and τij is Medium  
Then Ant's utility uk

ij of visiting the j-th node is Very Low. 
else 
Rule 9: 
If dk

ij is Large and τij is Strong  
Then Ant's utility uk

ij of visiting the j-th node is Low. 
 
Graphical representation of the fuzzy rule base is shown in figure 4.10. 
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Figure 4.10 – Graphical representation of the fuzzy rule base 
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The nodes with better perceived utility values are more likely to be selected by the ant. 

The probability pk
ij for node j to be selected by the ant k is equal to the ratio of uk

ij to the 

sum of utility values of all nodes in the group of considered nodes: 

 

∑
∈

=

)(" tJh

k
ih

k
ijk

ij

k
iq

u

u
p  (4.31) 

This type of selection represents a proportional selection, known as the “roulette wheel 

selection” in Evolutionary programming (The sections of roulette are in proportion to the 

probabilities pk
ij).  

In the situation where,  qJ’k
i (t) = 0 and  Jk

i (t) > 0  the ant will go to the depot and 

start a new route. Since  qJ’k
i (t) = 0 the route failure possibility is very high in all 

unvisited nodes, so the ant decides to go back to the depot and start with a new route, 

because Jk
i(t) > 0, which means there are still nodes not visited by the ant k. 

After returning to the depot, the same ant will continue to design the routes, taking care 

exclusive of only the unvisited nodes. In this way one ant can design one set of routes. Since 

there are m ants, the total of m sets of routes will be created. When all m ants create routes 

one cycle will be finished. As it is mentioned earlier artificial ants live in discrete time. After 

finishing the cycle, we will update the pheromone trails. We have determined the number of 

cycles in advance. After the assigned number of cycles is finished, the best set of routes is 

chosen. 

 

The following strategy has been used for updating pheromone trail: 

The best set of routes is chosen based on the value of performance index (F) of that set. 

Performance index (F) is the total sum of planned routes lengths and additional distance 

covered by vehicles due to route failure. For the pheromone updating rule equations 4.4, 

4.5 and one modification of equation 4.6 were used. Additional rewarding was applied on 

the arcs that belong to the solutions that have performance indexes (F) that is the best ever 

found or γ percent higher than the best. The value of γ is given in advance and will be 

proportionally reduced as the cycle progresses. Expression that has been used for selection 
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of the solutions whose arcs will receive additional amount of pheromone is as follows: 

 

....,,2,1for),1(1)(
max

max mk
t

ttFtFk =+
+−

≤ + γ  (4.32) 

where: 

F+ –  the best performance index value ever found, 
tmax –  total number of cycles (given in advance), 
t –  current cycle number. 

The equation 4.6 has been modified as follows: 






 −+−
=∆

otherwise0,

cycletheinsolution  itsin  ) ,( arc usesant thif)),()(1(
)()(

tjiktet
tF

Q
t kk

k
k
ij

φφ
τ   (4.33) 

where: 





=
otherwise0,

True is 4.32 inequalitytheif,1
)(tkφ  

Q, e – constants given in advance. 

 

This pheromone updating strategy is just one variation of the “Elitist ants” concept 

introduced in section 4.5.3. The main idea is to increase the attraction of arcs that belong 

to the certain number of “good” sets of tours. 

At the end of each cycle, routes that ants involved in the search process have developed 

are improved by 2-opt heuristic independently. 

The vehicle routes are created in the following way: 

Step 1: Describe the demand at the nodes by corresponding triangular fuzzy numbers. 
Set the counter of the cycles to one (t = 1). 

Step 2: If the number of finished cycles t is equal to the assigned number of cycles 
tmax, go to step 4. Otherwise, go to Step 3.  

Step 3:  Set the counter of ants to one (k = 1). Locate all m ants in the depot. Generate 
m sets of routes by m ants. Generate routes using sequential approach (one ant 
at the time). When all nodes are visited, ant k will finish with the route design. 
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Increase the ant counter by one after creating one set of the routes. If the ant 
counter is equal to m+1, increase the cycle counter by one, apply 2-opt 
heuristic, update pheromone trails and go to step 2. In the opposite case allow 
the next ant to create the set of routes within considered cycle.  

Step4: Take the final solution as a set of routes, such that they have the least total 
sum of planned route lengths and additional distance covered by vehicles due 
to failure. End the algorithm.  

 

4.8.4 Results obtained using the Fuzzy Ant Vehicle Routing System 
 

The developed model was tested on a large number of different numerical examples. In 

the first step the location of the depot and n (up to 150) nodes were generated randomly. 

The characteristics of the node demand (symmetric triangular fuzzy numbers Di) were 

also randomly generated for every created node i. When randomly generating the demand 

in every node the following relations are fulfilled: 

 

....,,2,1;
32

;0 213
2 ni

dddCd iii
i =≤

−
≤≤
ρ

 (4.34) 

 

where value ρ is integer (ρ >1) given in advance. 

 

The “real” demand in every node was also generated randomly.  

Demand at each node is a deterministic amount, obtained by simulation. By moving 

along the route, designed by the approximate reasoning algorithm, and accumulating the 

amounts picked up at each node, it was easy to determine the nodes where failures 

occurred and to calculate the additional distance that the vehicles had to make.  

All computer experiments were done on a PC computer (PII 450 processor). CPU time 

highly depends about input data (problem size, number of cycles and number of ants) and 

for example with 70 node, 500 iterations and 15 ants it takes about 2 hours. Achieved 

CPU time is acceptable for planning purpose. 
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Input data and final solution for one 70 node numerical example are shown in table 4.1 

and figure 4.11. In the example we assumed vehicle capacity of 1500 units. Node 0 is 

depot. 

 

Table 4.1 – Input data (70 nodes example) 
Node Coordinates Demand at nodes Node No. 

xi yi d1i d2i d3i 
0 0 0 / / / 
1 748 -397 136 140 144 
2 669 988 26 39 52 
3 709 -325 49 71 93 
4 654 397 32 48 64 
5 874 636 52 54 56 
6 -211 281 80 81 82 
7 811 -197 137 165 193 
8 463 -615 77 111 145 
9 -291 -491 64.6667 97 129.3333 
10 867 432 98 144 190 
11 73 399 30.6667 46 61.3333 
12 292 -637 52 52 52 
13 761 -534 169 191 213 
14 151 369 12.6667 19 25.3333 
15 720 -140 1.3333 2 2.6667 
16 -600 937 198 198 198 
17 55 -558 113 154 195 
18 793 315 167 185 203 
19 647 -250 34 51 68 
20 211 194 81 97 113 
. 
. 
. 
. 
. 
. 

. 

. 

. 

. 

. 

. 
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. 

. 

. 

. 
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. 
68 437 -392 10 10 10 
69 119 -514 106 152 198 
70 -161 -590 105 122 139 
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Figure 4.11 – Graphical representation of the best solution 

 

The typical shape of the curve that represents the best performance index progression 

through cycles is shown on figure 4.12. This result was obtained for the same example 

(70 nodes). 
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Figure 4.12 – The best criteria value progression through cycles 

 

4.9 Schedule synchronization in public transit using Ant 
System and Fuzzy Logic 

 

4.9.1 Introduction 
 

Trips between two nodes in a public transit network may be made with or without 

making a transfer. A direct connection could be provided only to a certain number of 

passengers primarily due to the economic reasons. In addition, some passengers need to 

make trips by using different modes of transportation (bus, light rail, tram, metro, trolley 

bus, coordinated Dial-A-Ride). In other words, transfers are a necessity in public transit. 

At the same time, transfers represent inconvenience to the passengers. It is especially 

important to carefully synchronize schedules in the case of bigger headways, since badly 

coordinated transfers can significantly increase waiting times. Poorly coordinated 

transfers can also decrease the total number of passengers in public transit and encourage 

their switching to the competitive modes (private cars). The total number of transfers 
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when making a trip between any two nodes in the network is determined by the line 

alignments. The average waiting times while making transfers are a direct consequence 

of the schedule synchronization. While making schedule synchronization it is necessary 

to try to minimize the total waiting times of all passengers at transfer nodes in the transit 

network. The uncertainty surrounding the number of transfer passengers complicates the 

schedule synchronization. Very often only approximate numbers of transfer passengers 

are known. Sometimes it is very difficult and quite costly to collect relevant statistical 

data and to make an accurate prediction of the number of transfer passengers. In the case 

of a new or reconstructed transit network such data usually do not exist at all. In this 

section, the attempt to develop a model for schedule synchronization (while constructing 

timetables), when the number of transfer passengers is only approximately known, is 

presented. The presented model is based on the Ant System and Fuzzy Logic. This part of 

the document is organized in the following way. A statement of the problem is given in 

section 4.9.2. A proposed solution to the problem is described in section 4.9.3. The 

results obtained by using proposed model are given in section 4.9.4. 

 

4.9.2 Statement of the problem 
 

Timetabling and schedule synchronization are the planning phases that follow transit 

network design, detailed line alignment and determination of the frequencies and line 

headways. 

The basic assumption is that the following input quantities and data are given:  

(a) vehicle travel times between any two successive nodes along any transit line, 

(b) vehicle stop times at any station, 

(c) line headways, 

(d) transfer times at any station, and 

(e) the numbers of transfer passengers among particular transit lines are only 

approximately known. 

An example of a public transit network is given in figure 4.13. 
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Figure 4.13 – Public transit network 

Let us denote by m the total number of transit lines, by L = {l1, l2, l3, …, lm} the set of 

transit lines, and by Hi the headway along the i-th transit line (i = 1, 2, 3,…, m). Let us 

also assume that the first departure from the first station of the transit line li can be 

performed only in certain time points (Figure 4.14). 

 

di1 di2 di3 din

Hi

Time

i

 

Figure 4.14 – Possible departure times from the first station of the transit line li 

We can see from the figure 4.14 that there is the set Di = { , , …, } composed of 

the n

1id 2id
iind

i possible departure times within the headway Hi (i = 1, 2, …, m).  

Let us assume that public transit network is considered within a certain period of time T 

(Figure 4.15). 

T

Hi2Hi1
Time iHT /

 

Figure 4.15 – Considered time interval T and possible headways 
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In order to take into account variations in the number of transfer passengers for every line 

pair, it is possible to subdivide entire interval T into ξ parts (Figure 4.16). The number ξ 

is given in advance. 

T

1 2
Timeξ

 

Figure 4.16 –  Horizon T subdivided into intervals with approximately the same number 
of transfer passengers 

 

Let Piju be number of transfer passengers from transit line li to transit line lj when 

transfers occurring within interval u. It has been already mentioned that the initial 

assumption is that the number of transfer passengers is only approximately known for 

every intersecting transit line pair. Furthermore, the number of transfer passengers will be 

expressed as triangular fuzzy number as follows: 

Piju = (piju1,piju2, piju3),     i = 1, 2, …, m. (4.35) 

                                       j =  1, 2, …, m.  

                                      u =  1, 2, …, ξ.  

where, following the previous notation, piju1 is the lower (left) boundary of the triangular 

fuzzy number, piju2 is a number corresponding to the highest level of presumption, and 

piju3 is the upper (right) boundary of the fuzzy number (Figure 4.17). 
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Figure 4.17 – Triangular fuzzy numbers representing the number of transfer passengers 

 

We cannot expect to have fewer than piju1 or more than piju3 transfer passengers. The most 

expected value of the transfer passengers equals piju2. The values of piju1, piju2, and piju3 

can be determined using all available statistical data, as well as the experience and 

intuition of the transportation experts. The more precise statistical data we have, the 

smaller the uncertainty and the smaller the difference between piju3 and piju1. 

 

The total waiting time, W , of all transfer passengers from transit line lrs
pq p to transit line lq 

when the departure times from the first stations of these lines are dpr and dqs, equals: 
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 (4.36) 

where: 

τir, τjs –  the first arrival times at the intersection station of the lines li and lj 
when departure times from the starting stations are respectively dir and 
djs 

ρ, ω, ξ -  binary variables defined as follows: 



 +<+

=
otherwise,0

,1
),( qqspprrs

pq

bHaH
ba

ττ
ρ  (4.37) 
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



 <−−+

=
otherwise,0

,1
),( qqqspprrs

pq

HbHaH
ba

ττ
ω  (4.38) 

 





 <+≤−

=
otherwise,0

)1(,1
),( ξ

τ
ξξ

TuaHTu
ua pprr

p  (4.39) 

 

A graphical representation of waiting times is given on figure 4.18. 
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Figure 4.18 – Waiting times for intersecting transit line pair (i, j) 

 

The total waiting time that occurs when dir is chosen as a starting time for line li and djs is 

chosen as a starting time for line lj, could be presented in the following way: 
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sr
ji

rs
ijirjs WWW +=  (4.40) 

The total waiting time W  is a triangular fuzzy number that can be easily calculated 

using Fuzzy arithmetic rules (Kaufman and Gupta (1985), Teodorović and Vukadinović 

(1998)). 

irjs

 

Let us introduce the following binary variables: 





=
otherwise,0

point  in time is  line  theofstation first   thefrom departure if,1 iri dl
xir  (4.41) 

The total waiting time of all transfer passengers in the whole transit network equals: 

∑∑∑∑
= =

≠
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WW  (4.42) 

The departure from the first station of any transit line li must be in one of the time points 

, , …, . In other words, the following relation must be satisfied: 1id 2id
iind

∑
=

=
in

r
irx

1
1,       i = 1, 2, …, m. (4.43) 

The problem of transit schedule synchronization could be defined in the following way: 

for the known line headways for every transit line, determine the departure times from 

the first station so as to minimize the total waiting times of all passengers at transfer 

nodes in a whole transit network. Mathematically, the problem of schedule 

synchronization could be defined as follows:  

 

Minimize    W  (4.44) ∑∑∑∑
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≠
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subject to: 
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∑
=

=
in

r
irx

1
1 ,     i = 1, 2, …, m (4.45) 

xir ∈{0, 1}     i = 1, 2, …m,     r = 1, 2, …, ni   

 

4.9.3 Schedule synchronization in public transit using the Fuzzy Ant 
System 

 

It is possible to try to determine the departure times simultaneously for all transit lines, or 

sequentially, line by line. Here the sequential approach is used. 

Let us sort the lines in descending order of the number of transfer points. There are also 

some other options for this sorting (descending order of the number of transfer 

passengers, randomly, etc).  

Let us denote the total number of ants by n. Let us also locate all ants in the starting 

terminal of the transit line with the greatest number of intersection points. Ants will walk 

along the transit lines one by one. The first ant located at the starting terminal of the 

transit line with the greatest number of intersections will walk first. An ant will randomly 

choose its departure time. An ant’s departure time choice mechanism will be explained in 

more detail later. After randomly choosing the departure time from the first station, the 

first ant will walk to the end of the first line, and return (by walking in opposite direction) 

to the starting terminal. For every station along the line the ant’s departure and arrival 

time are known. At this moment the total waiting times of all transfer passengers equals 

zero. The first ant will then go to the starting terminal of the transit line with the second 

greatest number of intersections. Then, it will again randomly choose the departure time 

associated with the second transit line. The first ant will also walk to the end of the 

second transit line, change direction and return to the starting point. In this way, the first 

ant’s departure and arrival time for every station along the second line are determined. If 

the second transit line has the intersection with the first one, the total waiting time of all 

transfer passengers from the first transit line to the second transit line and from the 

second transit line to the first transit line will be calculated. In this calculation we will use 

relations (4.36)-(4.40). If these two transit lines do not intersect the total waiting time will 
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still equal zero. The first ant will start its walk along the third transit line. After that, 

calculation of the total waiting time of all transfer passengers from the first transit line to 

the third transit line, from the third transit line to the first transit line, from the second 

transit line to the third transit line, and from the third transit line to the second transit line 

is performed. After that, the first ant will start to walk along the fourth transit line, and so 

on. When the first ant finishes its walks along all transit lines, the first iteration will be 

finished. This means that the first alternative of the public transit schedule will be 

determined. After the first ant, the second ant will start to generate the second alternative 

of the public transit schedule. When n iterations are finished, n different public transit 

schedules will be generated. As in previous example, one cycle is composed of n 

iterations. The pheromone trail will be updated at the end of the first cycle. After that, all 

n ants will start the second cycle. At the end of the second cycle, the second set of public 

transit schedules will be created, and the pheromone trail will be updated again. Ants will 

then start the third cycle, etc. Ants will finish with the public transit schedule generation 

after tmax cycles, where tmax is a previously defined number of cycles. The best solution 

discovered during the search process will contain final departure times on all transit lines. 

 

4.9.3.1 Departure time choice mechanism 
 

Ants’ movements could also be graphically represented in the following way. Let us note 

the network shown in figure 4.19. The network is composed of a few layers. The total 

number of layers in the network, m, is equal to the total number of transit lines. The 

number of nodes in every layer equals to the number of possible transit line departure 

times. There is a full connectivity between the two neighboring layers. Let us assume that 

all ants are located in origin O and that all of them travel to destination D. Every node in 

the network is described by the appropriate coordinates. For example, the coordinates (i, 

r) describe r-th node located in the i-th layer. This node represents r-th possible departure 

moment of the i-th transit line. 
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Figure 4.19 – Transit lines and possible departure times 

 

Ants located in origin O go towards destination D. The ants have few options when 

choosing the first node in the first layer (the departure time of the first transit line). The 
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number of choices is equal to the number of possible departure times. A pheromone will 

be deposited at every node that was visited by at least one ant. At the beginning of the 

search process, like in other AS applications, it will be assumed that the pheromone trail 

is very low in every node and that it is equal to some small positive constant (c). 

An ant starts its trip from the origin, chooses one node in the first layer, then moves to the 

second layer, chooses one node from the second layer, and so on. When considering a 

certain node (departure time) to be visited by an ant, we use the formulas (4.36) - (4.40) 

to calculate the potential waiting time of transfer passengers caused by an ant's possible 

choice. It should be underlined once again that passenger waiting time is a fuzzy number. 

While deciding on the next node to be visited, the ant takes into account local information 

such as “visibility”, as well as historical information such as pheromone trail intensity. It 

is assumed that the ant can perceive the particular waiting time as “small”, “medium” or 

“long”, and the trail intensity as “weak”, “medium” or “strong”. Possible membership 

functions for small, medium and long waiting time are shown in figure 4.20. In this 

example, it has been used the same set of membership functions like in previous example 

with respect to pheromone trail intensity. The set is shown in figure 4.9. 

W

1
Small

0

Medium Long

 
Figure 4.20 – Membership functions of the fuzzy sets describing expected waiting time 

 

Depending on calculated total waiting time, as well as the trail intensity, the ant will have 

stronger or weaker utility to choose the considered node. These utilities can be described 

by appropriate fuzzy sets and here is used the same fuzzy sets as in the previous example 

(Figure 4.7). 

 



Chapter 4: Combined Ant System and Fuzzy Logic Modeling Approach 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 
122

Let Wk
ir be the total (cumulative) waiting time caused by decisions that ant k has made 

when walking up to the layer i; τir be the pheromone intensity in node (i, r); and uk
ir be 

the value of the utility that ant has where it chose the departure r of the transit line i 

respectively. 

An approximate reasoning algorithm for calculating the utility of choosing the next node 

could be composed, for example, of the rules of the following type: 

 

 If        Wk
ir is SMALL and τir is STRONG 

 Then    uk
ir is VERY HIGH 

 

The ant’s utility for choosing the next node would be calculated using the following 

approximate reasoning algorithm:  

 

Rule 1: 
 If Wk

ir is SMALL and τir is WEAK 
 Then uk

ir is HIGH 
else 
Rule 2: 
 If Wk

ir is SMALL and τir is MEDIUM 
 Then uk

ir is VERY HIGH 
else 
Rule 3: 
 If Wk

ir is SMALL and τir is STRONG 
 Then uk

ir is VERY VERY HIGH 
else 
Rule 4: 
 If Wk

ir is MEDIUM and τir is WEAK 
 Then uk

ir is LOW 
else 
Rule 5: 
 If Wk

ir is MEDIUM and τir is MEDIUM 
 Then uk

ir is MEDIUM 
else 
Rule 6: 
 If Wk

ir is MEDIUM and τir is STRONG 
  Then uk

ir is HIGH 
else 
Rule 7: 
 If Wk

ir is BIG and τir is WEAK 
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 Then uk
ir is VERY VERY LOW 

else 
Rule 8: 
 If Wk

ir is BIG and τir is MEDIUM 
 Then uk

ir is VERY LOW 
else 
Rule 9: 
 If Wk

ir is BIG and τir is STRONG 
 Then uk

ir is LOW 
 

Graphical representation of fuzzy set reasoning algorithm is given in figure 4.21. 

W

W

W

W k
ir

W k
ir

W k
ir

Rule 1

Rule 2

Rule 9

u

min

u

u

uk
ir

u

Small

Small

Long

Weak

Medium

Strong

H

VH

L

..
.

..
.

..
.

τir

τir

τir

τ

τ

τ

 

Figure 4.21 – Graphical representation of the approximate reasoning algorithm 
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The nodes with better utility values are more likely to be selected by an ant. The 

probability pk
ir for node (i, r) to be selected by ant k will be equal, as before, to the ratio 

of uk
ir to the sum of all nodes’ utility values in the group of considered nodes: 

∑
=

=
in

h

k
ih

k
irk

ir

u

up

1

 (4.46) 

This type of selection represents a proportional selection known in Evolutionary 

programming as the “roulette wheel selection.” (The sections of roulette are proportional 

to probabilities pk
ir). 

 

4.9.3.2 Pheromone update 
 
When n different transit schedules are generated, one cycle in the searching process is 

finished. Pheromone trail will be updated after every finished cycle. In contrast to 

previous example, pheromone will be given only to nodes. Let us denote by (i, r) the 

coordinates of the node representing r-th possible departure time of the i-th transit line. 

Amount of pheromone associated to node (i, r) would be updated in the following way: 

τir (t + 1) = ρτir (t) + ∆τir (t, t +1) (4.47) 

where: 

ρ  is the coefficient (0 < ρ  < 1) such that (1 - ρ ) represents evaporation of the 

trail in cycle. 

 

The total increase in trail intensity in node (i, r) after one completed cycle is equal to: 

∑
=

∆=+∆
n

k

k
irir ttt

1
)()1,( ττ  (4.48) 

where:  

)(tk
irτ∆  is the quantity of pheromone laid in node (i, r) by the k-th ant at the end 

of cycle t. 
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The quantity ∆  is given by: )(tk
irτ






 +
=∆

otherwise,0

  cycle trough performed in toure ) ,( node choseant th - if,
)(

))(1(
)(

trik
t

Qtab
t k

kk
ir Wτ (4.49) 

where: 

Q, a - the constants, 
)(tkW - the total waiting time of all passengers in the case of the schedule 

generated by the k-th ant in the cycle t. 
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otherwise,0
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*
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max WW
t

ttxt
tb k

k  (4.50) 

where: 

W* - the best criteria value discovered in all previous cycles, 

x - parameter given in advance (x∈ (0, 1)), 

tmax - total number of cycles that will be performed by algorithm. 

 

Let us explain relations (4.49) and (4.50) in more details. All nodes visited by the k-th ant 

will at least get the amount of pheromone equal to 
)(t

Q

kW
. The “good” nodes will get 

even more pheromone. The amount of pheromone that will be given to the “good” nodes 

equals to 
)(

))(1
t

Qtab
k

k W
+( . The idea is to differentiate among nodes and extract some of 

them that are more promising for future search. Using relation (4.50) it is possible to 

discover those “good” nodes. The “good” nodes belong to the path that will lead to the 

objective function value that is “close enough” to the best objective function value 

discovered in all previous cycles. Parameter )1,( +ttkb  that is additionally rewarding 

“good” nodes is time dependent. We can see from relation (4.50) that we treat more 

nodes as “good” nodes at the beginning of a search process. The more time passes during 

which the ants are searching for a solution, the stricter we are in declaring some nodes to 

be “good” nodes. In other words, as more time passes, the search process should be more 
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focused to search primarily the paths producing objective function values relatively close 

to the best objective function value discovered in all previous cycles. 

 

4.9.3.3 Comparison of fuzzy numbers during search process 
 

The total waiting time W of all passengers in the case of the schedule generated by 

the k-th ant in the cycle t represents a triangular fuzzy number. Quantity  could be 

treated as a triangular fuzzy number. Parameter  that is additionally rewarding 

“good” nodes is time dependent. This parameter can take the value 0 or value 1. To reach 

the conclusion about the parameter  value we must compare fuzzy numbers W  

and 

)(tk

)(tk
irτ∆

)(tbk

)(tbk )(tk

*W
max

max 1
1 ⋅







 +−
+

t
tt

x . 

The problem of comparing fuzzy numbers has been the subject of many papers. Here, for 

comparison of fuzzy numbers Kaufmann and Gupta’s (1988) method is used. This method 

is chosen primarily because of its simplicity. The method is based on the concept of 

“removal” of a fuzzy number. 

 

Kaufmann and Gupta’s (1988) method for comparing fuzzy numbers comprises the 

following steps: 

 
Step 1: Compare the “removal” of the numbers. If a conclusion can be made based on 

this comparison, the algorithm is ended. Otherwise, go to Step 2. 
Step 2: Compare the values that correspond to the highest grades of membership. If a 

number order can be determined after this comparison, the algorithm is ended. If 
a conclusion cannot be made after comparing the highest grades of membership, 
go to Step 3. 

Step 3: Compare the length of the fuzzy numbers' bases. 
 

Let us note figure 4.22. The “Left removal” Rl(A, a) of fuzzy number A compared to real 

number a consists of the surface between real number a and the left side of fuzzy number 

A. The “right removal” Rr(A, a) of fuzzy number A is defined as the surface between real 

number a and the right side of fuzzy number A.  
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Figure 4.22 – Fuzzy number A’s “removal” compared to real number a 

 
The “removal” of fuzzy number A compared to real number k is defined as 

( )
2

),(R),(R),(R aaa rl AAA +
=  (4.51) 

Figure 4.22 shows the “left removal,” “right removal,” and “removal” of fuzzy number A 

compared to real number a. When fuzzy number A has a triangular shape and when a = 0, 

it can be easily shown that the “removal” of fuzzy number A equals: 

( )
4

2)0,(R 321 aaa ++
=A  (4.52) 

Fuzzy number A is smaller than fuzzy number B if 

),(R),(R aa BA <  (4.53) 

When R(A, a) = R(B, a), the second algorithmic step must be used and the values of the 

highest grades of membership must be compared. Let x*
A and x*

B denote the highest 

grades of membership in fuzzy sets A and B. Fuzzy number A is smaller than fuzzy 

number B if 

x xA
∗ < B

∗  (4.54) 

When R(A, a) = R(B, a) and x*
A = x*

B, the third step must be used, which compares the 

bases of the fuzzy numbers. Fuzzy number A is smaller than fuzzy number B if the base 

of fuzzy number A is smaller than the base of fuzzy number B. 
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4.9.4 Numerical example 
 

The model developed is tested on a greater number of numerical examples. The results 

for a transit network containing 50 transit lines are presented. The configuration of the 

network was generated randomly. The example was treated under the following 

assumptions:  

¾ T = 3 hours, 

¾ ξ = 1, 

¾ ni = 5, i. ∀

 

Input data representing network configuration were organized in a way presented in 

tables 4.2 and 4.3. 

 

Table 4.2 – Intersecting points data for public transit line pair (i, j) 
Transit line 

pair Pij Pji 

li lj 

Travel time from the first 
station to the intersecting 
point – line li [h] pij1 pij2 pij3 

Travel time from the first 
station to the intersecting 
point – line lj [h] pji1 pji2 pji3 

1 2 0.4094 10 11 12 0.1492 4 4 4 
1 3 0.7458 12 12 12 0.3655 3 4 5 
1 6 0.5216 6 9 12 0.6677 4 5 6 
1 10 0.2196 8 10 12 0.4071 8 13 18 
1 14 0.3338 6 9 12 0.2158 12 12 12 
1 17 0.3435 10 13 16 0.5414 12 13 14 
1 22 0.774 3 4 5 0.1492 10 10 10 
1 24 0.3104 4 5 6 0.337 6 7 8 
1 25 0.779 10 10 10 0.7623 4 5 6 
1 29 0.4387 6 7 8 0.5344 6 7 8 
1 32 0.6509 3 4 5 0.2928 2 3 4 
1 37 0.6612 9 11 13 0.2522 12 13 14 
1 46 0.2768 8 11 14 0.2307 6 8 10 
1 50 0.6414 7 10 13 0.1367 10 13 16 
2 7 0.3703 6 9 12 0.309 3 5 7 
2 8 0.5984 7 7 7 0.2288 6 7 8 
. 
. 
. 
. 
. 

. 

. 

. 

. 

. 

. 
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. 
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. 
43 47 0.2803 10 14 18 0.3281 8 10 12 
47 48 0.1234 8 8 8 0.4141 5 6 7 
47 49 0.3022 8 11 14 0.5387 6 9 12 
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Table 4.3 – Transit lines data 
Line number (i) Hi [h] ni No intersecting points 
1 0.5 5 15 
2 0.6667 5 14 
3 0.4167 5 13 
4 0.5833 5 13 
. 
. 

. 

. 
. 
. 

. 

. 
48 0.4167 5 5 
49 0.75 5 4 
50 0.5 5 4 

 
Achieved final results are decisions for each transit route (li) with ordinary number of 

starting time point dir. Data pairs i (dir) are presented below: 

1(3), 2(4), 3(3), 4(3), 5(4), 6(4), 7(5), 8(5), 9(4), 10(5), 11(4), 12(5), 13(4), 14(5), 15(5), 

16(5), 17(1), 18(4), 19(4), 20(2), 21(5), 22(5), 23(5), 24(3), 25(3), 26(2), 27(3), 28(5), 

29(1), 30(5), 31(5), 32(5), 33(5), 34(4), 35(3), 36(2), 37(3), 38(1), 39(5), 40(5), 41(3), 

42(1), 43(1), 44(1), 45(3), 46(1), 47(2), 48(4), 49(1) and 50(2). 

 
In the example, the highest number of intersecting points per line was 15 and the lowest 

was 4. The best criteria value changes through cycles are shown in figure 4.23. 
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Figure 4.23 – The best criteria value changes through cycles 
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Three curves shown in figure 4.23 represent the lowest possible, expected and the 

maximum possible waiting time values W*. Relatively fast discovery of a good solution 

can be seen in figure 4.23. The total number of ants was equal to 10. Computer 

experiments were performed using a 600MHz Pentium III. The total computer time 

necessary to produce one transit schedule was about one second. Relatively low values of 

computer time enable the analyst to explore different transit network configurations, and 

different headways values, and to choose the most desirable transit schedule. 

 



 

Chapter 5. Summary, conclusions and 
recommendations for future research 

 

5.1 Summary and conclusions 
 

Many real-world problems could be modeled as discrete optimization problems; therefore 

a need to develop tools capable of solving such problems efficiently is significant. There 

are numerous techniques available to solve discrete optimization problems. Some of these 

techniques are capable of providing an optimal solution to the problem. These techniques 

could be used to discover optimal solutions to the problem in instances of small 

dimensionality. The remaining techniques are either heuristics (provide solutions of 

“acceptable” quality in reasonable amount of computer time for some specific problems) 

or metaheuristics (provide “good enough” solutions in reasonable amount of computer 

time for variety of problems). Real life applications are most frequently large in 

dimensionality and very often decision makers are satisfied with suboptimal solution(s) 

to their problem. 

In the last couple of decades, metaheuristic algorithms have increasingly been used in 

solving discrete optimization problems. Early stages of metaheuristics development 

include the following techniques: simulated annealing, genetic algorithms and tabu 

search. The successful applications of these techniques in variety of complex engineering 

problems encourage researchers to try building new techniques having better 

performances than previous ones. They mostly identify the natural systems as a source of 

ideas and models for development of various artificial systems. During the last decade, 

researchers identified possibilities to use concepts obtained from studying the behavior of 

social insects for developing artificial systems that could be employed in optimization. 

Among the other behaviors, it has been shown that analysis of foraging behavior of 

different swarms is essential. 

Many Transportation Engineering problems can be addressed by discrete optimization. 

Furthermore, numerous transportation engineering parameters are characterized by 
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uncertainty, subjectivity, and imprecision. Human operators, dispatchers, drivers, and 

passengers often use subjective knowledge or linguistic information on a daily basis 

while they make different decisions. The entire environment in which decisions should be 

made is often complex, and formulating a suitable mathematical model could be rather 

difficult. 

 

This dissertation has two parts. The first part of the dissertation is devoted to developing 

a new technique based on the foraging behavior of natural bees – the Bee System. The 

artificial Bee System has been successfully applied to the classical Traveling Salesman 

Problem. This application of the Bee System to the difficult combinatorial optimization 

problem is very encouraging as it confirms the value of natural systems as a source of 

ideas and models for development of various useful artificial systems. 

Additionally, in this research the Stochastic Vehicle Routing problem is considered on 

well-known set of nodes (statistical data about node demand is available). Demands at 

nodes are considered to be random variables. The problem was attacked by sequential 

usage of the following two techniques: the Bee System and Fuzzy Logic. The first step 

was to consider all the nodes and solve the problem as a Traveling Salesman Problem by 

the developed Bee System. When solving TSP node demand is ignored and one “giant” 

route is produced. Through the second step, a tool capable of subdividing “giant” route 

(usually unfeasible solution to the original problem) into set of routes (feasible solution) 

is produced. Based on the assumption that we have perfect knowledge about future 

demand at nodes, we first design a fuzzy logic tool (define variables that would appear in 

antecedent and consequent part, their ranges and appropriate fuzzy numbers that will 

cover the ranges) and then collect an appropriate set of input output data pairs. One set of 

input output data pairs corresponds to one simulation of future demands at nodes. 

Simulations of future demands at nodes and data collection are repeated numerous times. 

The set of simulations was subdivided into two parts, the first one was used to build a 

fuzzy rule base and the other one to test the quality of decisions that the fuzzy controller 

is producing once it is developed. 

The entire tool would be used as decision support system that will provide judgment for a 

vehicle located at one node whether to go to the other – adjacent node on the “giant” 
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route or return to depot. 

 

The second part of the dissertation is focused on an attempt to develop tool capable of 

solving discrete optimization problems characterized by uncertainty. To solve such 

problems, a metaheuristic approach is proposed based on a combination of the existing 

Ant System and Fuzzy Logic. It could be seen, through publications, that researchers 

mostly stay focused on improvement of the part of the Ant System algorithm related to 

collaboration among individuals with the intent to improve its efficiency in general. None 

of them had tried to change any part (even minor) of the transition probability – the way 

in which agents will make individual decisions. This research proposed the calculation of 

transition probabilities based on normalization of an agent’s utilities to visit particular 

states in a solution space. It has been proposed to use Fuzzy Logic to obtain those 

utilities. 

The approach was tested on the following two problems: 

¾ Stochastic Vehicle Routing Problem and 

¾ Scheduling Synchronization in Public Transit. 

 

In the Stochastic Vehicle Routing Problem, the source of uncertainty was node demand. 

Very often only approximate values of demand at nodes are known. Sometimes it is quite 

difficult and very costly to collect relevant statistical data and to make accurate 

predictions of the demand values. In some cases, such data does not exist at all. These are 

the reasons why the demand values were treated as triangular fuzzy numbers. Using 

triangular fuzzy numbers could make communication between the analyst and 

practitioner easier. Practitioners usually do not have any difficulties accepting the concept 

of triangular fuzzy numbers. Using knowledge, experience and intuition, they can 

determine “least expected demand” (left boundary of triangular fuzzy number), or 

“greatest expected demand” (right boundary of triangular fuzzy number) relatively easily.  

The developed Fuzzy Ant System was successful in producing sets of routes for the 

problem instances considered. 

 

The average waiting times while making transfers are the direct consequence of the 
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schedule synchronization. While making schedule synchronization, it is necessary to try 

to minimize the total waiting times of all passengers at transfer nodes in the transit 

network. In the previous research, the numbers of passengers making transfers were 

treated as deterministic quantities. However, very often only approximate numbers of 

transfer passengers are known. Sometimes it is very difficult and costly to collect relevant 

statistical data and to make accurate predictions of the number of transfer passengers. In 

the case of a new or reconstructed transit network, such data usually do not exist at all. 

These were the reasons for treating the numbers of transfer passengers as fuzzy numbers. 

All the other quantities that serve as input data for the problem are assumed to be crisp 

values. The Fuzzy Ant System was applied to the problem and obtained solutions were 

promising. Usually, when applying the Ant System, pheromone is deposited along the 

links in the network. The nature of the problem caused pheromone to be deposited just in 

network nodes. At the same time, due to calculations, the values of the deposited 

pheromone at nodes were only approximately known. 

 

The Swarm intelligence approach has huge potential. The approach offers a new way of 

modeling different complex systems. Instead of building centralized control and 

extensive preprocessing, the system will relay on direct or indirect interaction among 

simple agents. The Swarm intelligence approach in discrete optimization should have a 

promising future. Belonging to the group of Evolutionary Algorithms, the Swarm 

intelligence approach is easy to parallelize. The main advantage of the Swarm 

Intelligence approach is the possibility to assign (create) different properties to each 

individual agent. Individual agents could be grouped with the idea to achieve a common 

goal. Individual agents could be in reality very simple or be enriched with a more 

complex algorithm. Development of simple, but at the same time robust hybrid 

algorithms would be a promising direction of future research. Swarm intelligence 

algorithms have the capability to be part of the future. 

The main disadvantage of Swarm Intelligence models is their possible unpredictable 

behavior. This occurs because of the lack of detailed understanding of the rules that 

agents use to interact in nature. Better understanding of the rules in nature is crucial to 

avoid the appearance of unpredictable behavior of artificial swarms. 
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5.2 Dissertation contribution 
 

The dissertation contributions are as follows: 

 

Metaheuristic algorithms have increasingly been used in solving problems belonging to 

discrete optimization. Natural systems are mostly identified as a source of ideas and 

models for development of various artificial systems capable of providing “good” 

solution(s) to variety of engineering problems. During the last decade, researchers 

identified possibilities of using concepts obtained from studying the behavior of social 

insects for developing artificial systems that could be employed in optimization. One 

contribution of the dissertation to the idea of usage concepts taken from studying of real 

swarms in optimization is development of a new artificial system based on foraging 

behavior of bee colonies – the Bee System. 

 
Many real life problems, besides being of combinatorial nature, are characterized by the 

uncertainty associated to one or more of their independent parameters. In order to treat 

these problems using the metaheuristic approach, the Fuzzy Ant System is proposed. The 

proposed algorithm presents a hybrid approach; it combines existing results in the area of 

swarm intelligence (existing Ant System) and approximate reasoning. The approximate 

reasoning algorithm is used to help every individual agent (artificial ant) make its 

decisions when some of the independent parameters are just approximately known. 

 
The Stochastic Vehicle Routing Problem is considered in two its variations and two new 

approaches to the problem are proposed as follows: 

¾ Sequential usage of the developed Bees System and Approximate Reasoning 

Algorithm developed from numerical example is proposed to treat the problem 

when demand at nodes is described by known probability density function. 

¾ The Fuzzy Ant System is proposed to treat the problem when appropriate fuzzy 

numbers describe stochasticity associated to the demands at nodes. 
 
The Fuzzy Ant System approach to the Scheduling Synchronization in Public Transit 

problem is proposed. 
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5.3 Recommendations for future research 
 

In future research, one of the main goals should be the exploration of the different types 

of artificial bee organizations and interactions and their influence on the dynamics of the 

population. There are questions relating to the above mentioned characteristics of the 

social insects that need to be further answered in future research: (a) Should artificial 

bees (agents) be equal, or should there sometimes be several types of agents? (b) Are 

there further possibilities for hybrid combination of swarm intelligence and other 

artificial intelligence approaches and different heuristic algorithms? (c) What are the 

costs and benefits of the development of Artificial Systems based on natural Swarm 

Intelligence in engineering, computer science and management science? 

Swarm Intelligence (Ant System) has already been applied in some other engineering 

areas such as robotics. The results obtained are also very good. In further research, 

models inspired by the developed Bee System could be created for different 

transportation engineering problems. The quality of the results obtained in the classical 

TSP indicates that the development of new models based on swarm intelligence 

principles could significantly contribute to the solution of complex transportation 

engineering problems. 

 

The developed Bee System was employed as the first step in the process of solving the 

Stochastic Vehicle Routing Problem. The second step in the proposed solution was 

development (based on set of input output data pairs) and employment of a Fuzzy Logic 

controller with the purpose of making real time decisions, such as whether a vehicle 

being located at one particular node will go to an adjacent node or return to the depot. 

Instead of developing a solution in advance, a set of routes was developed based on real 

time decisions. 

The Fuzzy Logic based controller had an antecedent part containing just variables 

associated with remaining vehicle capacity and demand characteristics of successive 

node. Future research in this area should explore the possibilities of incorporating 

distances from the node where the vehicle is currently located to the depot and from the 

node next to the current vehicle location to the depot into the decision process 
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(antecedent part). 

 

A short description of some of the potential applications of the Bee System in 

development of Artificial Systems aimed to solve complex problems in transportation 

engineering is provided. The following examples were chosen among a great number of 

potential applications of the developed Bee System.  

Planning and designing the transit, airline, or utility networks is an extremely complex 

planning task combinatorial by its nature. The chosen network shape and the vehicle 

frequency on individual links directly affect the business results of the operator and the 

level of service provided to passengers. Passengers in intercity transport and goods are 

very frequently routed from the origins to the destinations through one or more hubs. 

Instead of routing the passengers from each origin directly to their destination, the hub 

and spoke system transports passengers and goods through the hubs. Due to the highly 

competitive environment in air transportation, logistics and communication assumes the 

best possible hub and spoke architecture. It should also be underlined that when 

transportation is to be established among a large number of nodes, the dimensions of the 

problem become very large. The transportation network planning and design problem is 

the ideal problem for the application of the developed Bee System.  

The classical vehicle routing problem consists of finding the set of routes that minimizes 

transport costs. Further variations of the classical vehicle routing problem include 

existing few depots in the network, doing service with a few types of different vehicles, 

uncertain demand at nodes, or existing time windows for doing service at certain nodes. 

Developing hybrid models (Bee System, Fuzzy Logic and Visualization) for solving 

complex vehicle routing and scheduling problems would be of a great benefit for both the 

distribution companies, and the wider public.  

The highway alignment problem assumes selection of the “best” path to connect two 

points in the space. The “best” alignment minimizes total costs and satisfies the 

engineering design, operational constraints. Developing a hybrid model (Bee System and 

Fuzzy Logic) for solving highway alignment problem would be of a great benefit for 

transportation agencies, as well as to the wider public.  

Different versions of the Dial-A-Ride problem are found in every day practice: 
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transportation of people in low-density areas, transportation of the disabled and elderly 

persons, and parcel pick-up and delivery service in urban areas are some of the examples. 

The dynamic Dial-A-Ride problem could be described as follows: all customers 

demanding fast service define pick-up and delivery location, as well as preferred 

beginning of the service. The problem is to assign every new passenger request to one of 

the vehicles already on the network, and to design a new route and schedule for this 

vehicle. This assignment has to be done in real time.  

The Gate Assignment Problem represents the assignment of arriving aircraft to available 

gates. During the last decade, with the increase in the number of flights and number of 

passengers in air transportation, the airport gate assignment problem has become much 

more complex. This problem is a difficult combinatorial optimization problem. By its 

nature this problem is also dynamic. Originating passengers walk from the check-in to the 

departure gate. Transfer passengers walk from the arriving gate to the new departing gate, 

while terminating passengers walk from arriving gate to the baggage claim area. The total 

passenger walking distance depends on the passenger transfer volume between every pair 

of aircraft, as well as the distance between every pair of gates. It is very logical to try to 

minimize the total passenger walking distance. While solving this problem it is necessary 

to take into account different operational constraints. Developing Decision Support 

Systems based on the Bee System for the aircraft gate assignments would be also of great 

importance for the mitigation of airline schedule disturbances. 

Berthing time of ships carrying containers accounts for a considerable portion of the 

journey. Decreasing the turnaround time at port would result in a reduction of total 

traveling time of ships and accordingly a reduction in the cost of container transportation. 

Berth allocation addresses the problem of determining berth assignment to ships in the 

public berth systems. The assignment should be done in a way to minimize summation of 

waiting and service times of all ships coming to the port within the planning horizon. 

Waiting time depends on previous assignment of the ships to the berth and service time 

depends on the distance between a ship (the berth where ship is assigned) and its 

container(s) location. 

 

Currently there is a variety of metaheuristic algorithms and a direction of future research 
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would be comparison of the results obtained with the Bee System versus results obtained 

with the other techniques. Based on the comparison it is possible to make 

recommendations about a more promising approach to the problem. 

 

One of directions for future research would be convergence analysis of Bee System 

algorithm. 

Taking into account the Fuzzy Ant System and its application to the Stochastic Vehicle 

Routing Problem, it should be considered as a step in future research, application of tour 

improvement heuristic on the entire set of vehicle routes produced by each ant. In the 

case of applying n-opt algorithm it is necessary to introduce artificial nodes that represent 

a depot. The total number of nodes representing a depot would be equal to the total 

number of routes produced by the ant. 

 

Additional sources of uncertainty when Scheduling Synchronization is considered could 

be travel time between successive nodes and/or dwelling time. Both values could be 

treated as approximate known values. A possible direction of future research regarding 

the problem is incorporation of these new sources of uncertainty into a model by using 

the Fuzzy Sets Theory. 

 

The Fuzzy Ant System has been tested on two examples. In order to prove its suitability 

to provide solutions for combinatorial optimization problems where one or more of the 

independent variables are characterized by uncertainty, the approach should be tested on 

a variety of different problems. 
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	Introduction
	Motivation

	The possibility of modeling many real-world problems as discrete optimization problems creates a need to develop tools capable of solving such problems quickly and efficiently. Discrete optimization problems are characterized by a countably finite soluti
	There are a number of techniques available to solve discrete optimization problems optimally. It could be seen that a great number of practical real-world problems were formulated and solved using optimization techniques during the last four decades. How
	Many traffic and transportation engineering problems are discrete optimization problems. Most of them are difficult to solve either because of the large dimensionality or because it is very difficult to decompose them into smaller sub-problems. Typical e
	Many times in real life we only need a “good” sol
	In recent years, metaheuristic algorithms have increasingly been used in solving difficult combinatorial optimization problems. In the beginning, metaheuristics included the
	following technique: simulated annealing (Metropolis et al. (1953), Kirkpatrick et al. (1983), Cerny (1985)), genetic algorithms (Holland (1975), Goldberg (1989), and tabu search (Glover (1986), Glover and Laguna (1993)). The successfu
	Recently developed techniques with the general purpose of solving optimization problems in various areas are rooted in nature. A subset of the techniques has been developed based on concepts that are taken from results of studying the behavior of social
	A wide range of traffic and transportation engineering parameters are characterized by uncertainty, subjectivity, imprecision, and ambiguity (Teodorovic (1994, 1999), Teodorovic and Vukadinovic (1998)). Human operators, dispatchers, drivers, and pa
	When using the ideas taken from natural swarm intelligence, taking into account foraging behavior of the individual agents, how to model the behavior is still an open question. Many other methods such as binary logic have to be explored. The final decisi
	Research Goals

	The ways in which natural systems process information are still unmatched by current computers. They learn to recognize relevant patterns, they remember patterns that have been seen previously, they construct internal models, and finally, their data and
	The qualities that a social system should necessarily possess to have biological intelligence are as follows:
	perception (what is happening in the surrounding area),
	memory (not necessarily but most frequently to memorize perceptions),
	usage of gained knowledge (abstraction of essential characteristics that input data can posses) to plan appropriate behavior,
	communication, and
	learning.
	One important direction that has been explored widely in last decade is the attempt to use the concept of swarm intelligence to develop various artificial systems. Researchers have started studying the behavior of social insects to take the most promisin
	It should be noted that a large number of traditional engineering models and algorithms are based on control and centralization. On the other hand, bee or ant swarm behavior in nature is primarily characterized by autonomy, distributed functioning and se
	Can we use some principles of natural swarm intelligence in the development of artificial systems aimed at solving complex problems in traffic and transportation?
	The first goal of this dissertation is to explore
	One of the most important results of the Artificial Systems development, based on Swarm Intelligence, was the creation of the Ant System. Artificial ants, proposed by Colorni et al. (1991, 1992), search the solution space, simulating real ants looking 
	Many transportation-engineering problems that belong to the discrete optimization area are also characterized by uncertainty. Is it possible to expand existing Ant System (Colorni et al., 1991, 1992) to address the problems characterized by uncertainty
	The second goal of this dissertation is to explore the possibilities of solving discrete optimization problems characterized by uncertainty using Ant systems enriched with Fuzzy Logic. Each artificial ant will use an approximate reasoning algorithm in or
	Organization of the Dissertation

	The remainder of this dissertation is organized as follows. Chapter 2 provides a review of literature relevant to this research. Practically, the literature review contains an overview of discrete optimization problems as well as a brief description of t
	Chapter 3, through description of real bees behav
	Chapter 4 will provide an exhaustive review of na
	Finally, Chapter 5 provides a summary and conclusions, along with recommendations for future research.
	Literature Review
	Introduction

	Developing algorithms that utilize some analogies
	Entire population of algorithms are obtained based on the following (Colorni et al., 1996):
	repeated trials,
	agents (particles, chromosomes, neurons, ants, bees, etc.),
	in case of multiple agents operating mechanism: c
	introduced procedure for modification of the heur
	The basic characteristic of heuristics from nature could be summarized as follows (Colorni et al., 1996):
	they model a phenomenon existing in nature,
	they are stochastic,
	in case of multiple agents, they often have parallel structure,
	they use feedback information for modifying their
	Let us introduce the landscape of the problem L. Let (, ( and ( be as follows:
	( - the set of all points of the search space,
	( - the operator that is utilized by search algorithm,
	\( = \(\(, E\) – the graph whose nodes \(ve
	and edges connect point x with point x1 in case where point x1 could be obtained by applying operator ( on x,
	The geometrical object that could be obtained by assigning the performance index as an altitude of nodes (vertices) of ( is landscape of the problem L.
	In cases where some solution of the problem is known (such as one point in the landscape) it is possible to walk/jump through the field from one solution to another in order to find a better solution to the problem. Steps through the solution space sho
	It is possible to obtain different agent based heuristics established on the following propositions (Colorni et al., 1996):
	In case of one or several agents (located in different positions in solution space) it is possible to use a greedy technique to choose each move.
	In case some solution exists, it is possible to i
	Make “small perturbations” in a random manner and
	In case of a non-improving perturbation, it is possible to give the solution a chance to be accepted using some non-deterministic rule for accepting.
	After every “small perturbation”, improve system 
	Algorithms can be classified based on a variety of characteristics. Some of them are as follows:
	Algorithms could be used to produce a solution or just improve an existing solution.
	Algorithms dealing with one solution or population of solutions.
	Searching process has employed memory or memory is not employed.
	This chapter presents an overview of the literatu
	Discrete Optimization Problems

	Discrete optimization is the process of analyzing and finding a solution for problems mathematically modeled as the minimization or maximization of a measure, over a feasible space involving mutually exclusive logical constraints (Parker and Rardin, 198
	In their most abstract mathematical form, discrete optimization problems can be presented in the following way:
	min (or max)   ( (S)
	subject to   S ( F
	where S is the solution (arrangement), F is the collection of feasible solutions (arrangements), and ( (S) measures the value of members of F.
	Discrete optimization is the selection of the arrangement (solution) with the best performance index (measure) among mutually exclusive alternatives.
	Discrete optimization problems can also be given in the following form:
	min (or max) ct x
	subject to:
	A x ( b
	x  ( 0
	x - integer
	This is the Integer Programming formulation of the problem. Any Discrete Optimization problem can be given in this way.
	Solving discrete optimization problems, i.e. finding an optimal solution to such problems can be a difficult task. Difficulty arises from the fact that the feasible region is not necessarily (like in linear programming problems) a convex set.
	There is a significant number of possible approaches to the problem. Some of them will give optimal solutions (they could be: enumerative techniques, relaxation and decomposition techniques or cutting planes approaches based on polyhedral combinatorics
	Simulated Annealing

	Simulated annealing (SA) as a technique was mentioned for the first time in the literature written by Metropolis et al. (1953). The authors are physicists, and they simulated the cooling material in a heat bath to obtain the lowest possible energy st
	At the very beginning of the annealing process \�
	It is possible, at any temperature, to change the total energy of the material with small displacements of particles. At one temperature, this process could be called perturbation. Several perturbations may occur at one temperature, and each of them give
	The question is, what perturbation will give the lowest total energy level at one temperature?
	The following procedure provides a possibility for how to solve the above mentioned problem. After perturbation, calculate the magnitude of energy change (?E). In cases where ?E < 0, the new position of the particles has the lowest energy level and it 
	�
	where:
	?E – magnitude of energy change,
	k – a constant,
	T – current temperature.
	At each temperature it is possible to make a larg
	Before applying this algorithm, the following values should be defined:
	- the total temperature number (if change between temperatures is step function),
	- initial temperature value, and
	- amount of change in energy that is acceptable as very low. It is necessary to define when the thermal equilibrium occurs.
	The following authors: Kirkpatrick‚ Gellat and Ve
	The basic idea is to develop some kind of random searching strategy that starts from one possible solution (variable and criteria values) and jumps through the neighborhood of the solution (in the feasible region) in order to obtain a new starting po
	There is an analogy between the Physical Cooling Process and the methodology for solving discrete optimization problems:
	Physical Process
	Meta-heuristic
	Energy
	Criteria value
	Temperature
	Control parameter
	Particle configuration
	Feasible solution
	Eglese (1990) offers a very simple pseudo-code for Simulated Annealing algorithm:
	Select an initial state i�S;
	Select an initial temperature T > 0;
	Set temperature change counter t := 0;
	Repeat
	Set repetition counter n := 0;
	Repeat
	Generate state j, a neighbor of i;
	Calculate d := f\(j\) – f\(i\)
	if d < 0 then i := j
	else if random (0, 1) < exp (-d/T) then i:= j;
	Inc(n);
	Until n = N(t);
	Inc(t);
	T:= T(t);
	Until stopping criterion true.
	where:
	S – finite solution set,
	i – previous solution,
	j – next solution,
	f\(x\) – criteria value for solution x, and
	N\(t\) – number of perturbation at the same te�
	Evolutionary Algorithms

	The first work related to this area was done in t
	Evolutionary Algorithms (EA) contains set of procedures-techniques used for solving difficult combinatorial optimization problems. All of them are developed based on natural evolution processes.
	The following are the most common EAs:
	Genetic Algorithms,
	Scatter Search,
	Ant Systems,
	Adaptive Memory Algorithms.
	The basic idea of EA can be described using the following pseudo-code (Hertz and Kobler, 2000):
	Generate an initial population of individuals;
	While no stopping condition is met do
	Co-operation;
	Self-adaptation;
	End While
	Individuals can be solutions of a particular problem or they can be pieces of solutions (with the idea being to gather the pieces in order to obtain one feasible solution) or even sets of solutions (as found in parallel implementation, for example: is
	Co-operation is the part of the algorithm where two or more individuals in the population are identified to exchange information.
	Self-adaptation is the part of the algorithm where every individual or some of them (usually randomly selected) is modified independently.
	Each of the techniques of EA, mentioned above, will be discussed briefly later.
	
	Genetic Algorithms


	Genetic Algorithms (GA) is a technique inspired by biological processes that allow populations of organisms to adapt to their surrounding environment.
	The earliest papers published in this area are by Holland (1962), Rechenberg (1965), Fogel et al. (1966) and Holland (1975).
	Basically, GA works with three operators:
	Selection operator determines which individuals (solutions in optimization problem) will survive in the population (set of solutions). That means only the subset of individuals produced in the previous generation will be used to produce the next gene
	Crossover is an operator that combines two indivi
	Mutation operator introduces a little noise in the population with the idea to prevent fast convergence that may end up finding the local optimum. Operator mutation can be applied in a very small number of individuals. To apply the operator, any of the i
	These operators are used sequentially through many iteration in order to make the population evolve.
	Hertz and Kobler (2000) offer a very simple pseudo-code for genetic algorithms:
	Chose an even integer p�2 and generate an initial population P0 of p individuals;
	Set i:= 0; (iteration counter);
	While no stopping criteria is met do
	Inc (i) and initialize Pi to the empty set;
	While Pi has less than p individuals do
	Select two individuals I1 and I2 in Pi-1;
	Apply the crossover operator to I1 and I2 for creating offspring O1 and O2;
	Add O1 and O2 to Pi;
	End While
	Apply the mutation operator to each individual in Pi;
	End While
	Before implementation of GA, it is necessary to code a set of feasible solutions in order to make sure that new generation individuals created are always in this set after applying Crossover and Mutation operators. This part can be the hardest in the are
	
	
	Island-Based Genetic Algorithms



	The paper written by Gordon and Whitley (1993) is the first paper published in this area.
	Island-Based GA is an improvement of GA. In GA applications, it usual that individuals are solutions of the considered problem. In that light, the first difference between Island-based GA and GA is the fact that Island-based GA works with sets of solutio
	There are several ways to define the migration operator. One of them is as follows:
	Let us imagine that islands are virtually positio
	Pseudo-code for Island-based GA (Hertz and Kobler, 2000):
	Choose the number k of islands and the size p of each island;
	Generate a set of k · p initial feasible solutio�
	Set i:= 0;
	While no stopping criteria is met do
	Set i:= i + 1;
	For each island Pj do
	Select two solutions I1 and I2 in Pj;
	Apply the crossover operator to I1 and I2 for creating offspring O1 and O2;
	Apply the mutation operator and improvement algorithm (if exist) on O1 and O2;
	Decide whether or not O1 and O2 should enter Pj for replacing older solutions;
	End For
	If i is multiple of a given integer n then
	Move the best solution of each island Pj to island P(jmodk)+1;
	End While
	Calegari et al. (1997) have obtained much better results with Island-based GA than with GA. They have tested both on the same example with initial populations of the same size. The question was whether it is necessary to subdivide the initial populatio
	For implementing Island-based GA, the following questions need to be answered in addition to the common questions considered in GA (Cantu-Paz and Goldberg, 2000):
	the size and number of islands (demes),
	the topology of the connections between the islands and
	how many individuals migrate each time.
	
	Scatter Search


	Proposed by Glover (1994), scatter search is a search strategy based on two sets of points in a solution space. The first is a set of reference points from which iteration would generate set of dispersed points that may act as reference points along wi
	make linear combination of subset of the current reference points (trial point will be defined),
	apply repair procedure if necessary (trial point can be out of feasible region and repair procedure should make that point feasible),
	apply improvement algorithm in order to get point with higher quality.
	In order to generate a linear combination of the reference points, it is even possible to apply negative weights (more general case).
	Pseudo code for the Scatter search technique (Hertz and Kobler, 2000):
	Generate an initial set R0 of reference points;
	Set i:= 0;
	While no stopping criteria is met do
	Inc(i);
	Determine a set Ti of trial points by making linear combinations of points in Ri-1;
	Transforms the trial points in Ti into set Fi of feasible points;
	Improve the points in Fi in order to obtain a set Di of dispersed points;
	Select points inRi-1 ( Di to be put in the new set Ri of reference points;
	End While
	
	Ant Systems


	The algorithms that are defined by Colorni et al. (1991, 1992) are models derived from the study of real ant colonies.
	Ant Systems (AS) contain artificial ants that have some major differences with real (natural) ones:
	artificial ants will have some memory,
	they will not be completely blind,
	they will live in an environment where time is discrete.
	When applying AS, search in the feasible region will happen at discrete time points. Artificial ants are able to define one part of a solution per iteration through the searching process. After finishing the set of iterations, every ant would have finish
	Ants will make movements along iterations in a random manner. Probabilities for possible steps in the next iteration are calculated based on visibility (available local information) and pheromone trail (exchange of information among ants).
	Simple pseudo code for AS technique (Hertz and Kobler, 2000):
	Initialize pheromone trails and define number of ants;
	While stopping criteria is not met do
	Build solution based on visibility and pheromone trail for every ant;
	Update pheromone trail;
	Apply improvement algorithm on each new solution if such algorithm exist;
	End While
	More detailed information about development of the AS algorithms would be provided at the beginning of chapter 4.
	
	Adaptive Memory Algorithms


	Adaptive memory algorithms were recently developed (Rochat and Taillard (1995), Golden et al. (1997)) based on the Tabu Search technique. This technique works with central memory that keeps track of the best components of the solutions visited duri
	Pseudo code for Adaptive memory algorithms (Hertz and Kobler, 2000):
	Generate a set of solutions and introduce their components in the central memory;
	While no stopping criteria is met do
	Combine components of the central memory in order to create new solutions;
	Use repair procedure on each infeasible new solution;
	Apply an improvement algorithm on each new solution;
	Update the central memory by removing some components and introducing new ones originating from the new feasible solutions;
	End While
	Tabu Search

	Tabu Search (TS) is a general heuristic procedure for guiding a search to obtain a good solution in a complex solution space (Glover, 1993). This technique is able to escape from local extreme points and to search areas beyond local extreme points. T
	TS, like all other metaheuristics, is a good tool for solving the following kind of problem:
	�
	The basic idea is to obtain an initial solution �
	If the current solution at the beginning of iteration i is xi then it is possible to obtain a new solution that belongs to X with one modification (move) of xi. This solution is the neighbor solution to the xi. Let us introduce the set of all neighbor 
	In one iteration (i), there is a local optimization problem to find a solution xi+1 that yields �. This new solution will become the current solution and the same actions are repeated, even if a new solution is worse than previous (based on criteria v
	Dammeyer and Voß \(1993\) offer a very simple 
	Set iteration counter i := 1;
	Select an initial state xi�X and initial objective value F(xi);
	Let x* := xi  and  F* := F(xi);
	While stopping criterion is not fulfilled do
	Select best admissible move (based on history and tabu lists entities) that transforms xi into xi+1 with objective function value F(xi+1);
	Perform tabu list management: update history and tabu lists;
	Replace solution xi with xi+1 and objective value F(xi) with F(xi+1);
	If F(xi+1) > F* then x* := xi+1 and  F* := F(xi+1);
	Inc (i);
	End While
	where:
	x* - the best solution found through the entire searching process.
	Pham and Karaboga (2000) describes strategies of TS algorithms:
	The forbidding strategy is employed to avoid stopping the searching process in some area by forbidding certain moves (put them as tabu). A tabu list can contain just the few last moves (even only one) or a large number of moves (extreme is all of th
	Making moves that are tabu is allowed when the aspiration criteria is satisfied. The criteria can be time independent (earlier applications) or dependent (new applications). While the tabu list has a role in constraining the search space, the aspirat
	Current Research

	The main differences between traditional mathematical methods to solve some kind of problems and metaheuristics can be determined based on solution optimality and CPU time. The beauty of traditional mathematical methods is that they provide an optimal so
	The possibility to adapt to the problem as well a
	From the literature, it is possible to separate the following few directions of the current research:
	application of metaheuristics and comparison among them,
	expansion in the development of the existing algorithms,
	development of new techniques, and
	convergence analysis.
	
	Application of metaheuristics and comparison among them


	Application oriented research in this area has been quite successful. Only a few application domains could be identified, if any, where these algorithms have not been tested so far (Back et al., 1997).
	Some authors in their articles, in addition to presenting the developed applications, have tried to compare several techniques to find the most suitable one.
	Youssef et al. (2001) give a comparison of SA, GA and TS based on the floorplanning problem. The authors discovered that the best performance was given by the TS algorithm with respect to obtained solutions. Furthermore, with respect to the complexity 
	Hasan et al. (2000) have compared SA, GA and TS in terms of solution quality and CPU time for their application to the unconstrained 0-1 Pseudo-Boolean quadratic problems. They have found that general performance of the TS algorithm compared to the per
	Wolpert and Macready (1997) proved a number of theorems stating that the average performance of any pair of iterative (deterministic or non deterministic) algorithms across all problems is identical.
	Taking into account any metaheuristic algorithm, it is clear that there are several different parameters that should be adjusted. For some parameters there is an adjusting procedure and for some there is not. Second ones are assigned subjectively estimat
	It seems that there is no need for this kind of comparison. There is a possibility that someone will present, on the same problems, even on the same instances, different recommendations later.
	
	Expansion in development of the existing algorithms


	One of the most important reasons for the existen
	In the case of population based algorithms, it is not so hard to imagine how the search process can be subdivided into several parallel processes. In case of SA and TS it is not the case because they always operate with one solution (single point search
	Onbasoglu and Ozdamar (2001) have presented the basic concepts of Parallel SA. They have used two different approaches to develop various categories of SA algorithms as follows:
	the asynchronous approach where no information is exchanged among parallel runs,
	the synchronous approaches where solutions are
	exchanged using genetic operators,
	transmitted occasionally,
	highly coupled (synchronization is achieved at every iteration).
	First work in this field has been summarized in Aarts and Korst (1989).
	Gordon and Whitley (1993) have subdivided all modification of GA into the following two groups:
	“traditional” GA,
	parallel GA
	Global GA,
	Island GA, and
	Cellular GA (in literature known as massively parallel GA or fine grain GA).
	The second part presents research directions devoted to speeding up the searching process.
	There have been several successful attempts to develop a Parallel TS algorithm. Fiechter (1994) has proposed a method based on the Parallel TS algorithm to solve large TSP instances.
	Another direction in this area is the development
	Burke and Smith (2000) provide one application of this technique to a maintenance scheduling problem. They have tested several improvement techniques (local optimizers) and for the considered problem they have found that MA with TS as a local optimiz
	Hybrid algorithms could be developed as a combination of metaheuristics and optimization techniques. Budenbender et al. (2000) have successfully developed a hybrid of tabu search and branch and bound algorithm with application to the direct flight netw
	There are a lot of papers that tried to offer improvements for all metaheuristics through applications. Those improvements are related to, for example, visiting distribution in SA offering different expressions for acceptance probability, etc.
	From literature, we can find a strong relationship between metaheuristics (specially evolutionary algorithms) and some other techniques like fuzzy logic and neural networks (Back et al., 1997).
	
	Development of New Metaheuristics


	The number of publications in the area of metaheu
	Here are some recent results laid out:
	Hansen and Mladenovic (2001) have described, in detail, a Variable neighborhood search (VNS) technique that has been introduced by the same authors in the year 1996.
	A simple pseudo code of a VNS algorithm can be presented in the following way (Hansen and Mladenovic, 2001):
	Select the set of neighborhood structures Nk, k= 
	While stopping condition is not met do
	Set k = 1;
	While k<> kmax do
	Shaking. Generate a point x’ at random from the k
	Local search. Apply some local search method with
	Move or not. If this local optimum is better than
	End While
	End While
	Boettcher and Percus (2000) have introduced a new method called Extremal Optimization. This procedure successfully eliminates extremely undesirable components of sub-optimal solutions. They have tested the algorithm on TSP instances up to 256 nodes, an
	This material would describe some outcomes obtain
	An artificial immune system could potentially be a new approach to the hard combinatorial optimization problems. King et al. (2001) provide a biological basis for this system. They have applied the artificial immune system in the area of computers stem
	In addition, it is important to mention that most
	
	Convergence Analysis


	In contrast to practical results, the theoretical
	Some theoretical results about convergence fortunately exist, and here some of them are briefly pointed out.
	Simulated Annealing
	Theoretical results exist for the SA algorithm modeled as a homogenous Markov chain or an inhomogeneous Markov chain (Sullivan, 1999). Aarts and Laarhoven (1985) have produced the first theoretical result related to the convergence of SA.
	Locatelli (2000) proved that convergence exists in the case of SA application on continuous global optimization problems. The author states several assumptions to prove that convergence exists.
	Stainhofel et al. (2000) applied a logarithmic cooling schedule of inhomogeneous Markov chains to the flow shop scheduling problem. They prove a lower bound for the number of steps, which are sufficient to approach an optimum solution with certain prob
	Genetic Algorithms
	Holland (1975) has presented the Schema Theorem stating that individual solutions with good, low order schema (similar beneficial parts among solutions) should be evaluated and allowed to crossover in an exponentially increasing number of successive 
	Eiben et al. (1991) use Markov chain analysis to obtain a unifying theory for SA and GA, such that any SA or GA application at hand is an instance of developed abstract algorithm.
	Agapie (1997) has used homogenous Markov chain modeling to provide a set of minimal sufficient conditions for convergence to the global optimum of Elitist GA (EGA).
	Tabu Search
	The least number of papers in this area were published with TS consideration. However, some theoretical results exist; Faigle and Kern (1992) provide a convergence result for probabilistic versions of TS. Probabilistic TS incorporates the acceptance fu
	Artificial Neural Networks

	One of the areas based on natural metaphor that has been studied widely is Artificial Neural Networks (ANN). The human brain performs some complex tasks relatively easily compared to traditional algorithms and computational techniques. The architecture
	Basically, ANN are considered as approximators because of their ability to approximate unknown functions with a certain degree of accuracy.
	
	The Biological Neuron


	The most basic element of the human brain is a sp
	�
	Figure 2.1 – Biological neuron – basic structures
	A neuron contains a cell body \(soma\) and sev�
	Basic characteristics of the human brain are: ability to learn and generalization of knowledge that has been obtained. Generalization refers to generation of similar response on similar inputs.
	
	The Artificial Neuron


	The basic unit of ANN is the artificial neuron. Artificial neurons simulate properties of the biological neurons. That means artificial neurons will receive some input signals (outputs of adjacent artificial neurons) and transmit some output signals. T
	NET = w1x1 + w2x2 +   + wnxn
	where wi denotes the strength of connection between artificial neuron i and the neuron under consideration.
	A graphical representation of the simple structure of an artificial neuron is presented in figure 2.2.
	�
	Figure 2.2 – Artificial neuron structure
	The first artificial neuron was proposed by McCulloch and Pitts (1943). The developed artificial neuron had binary input, binary output and a fixed activation threshold.
	In order to process signals of different strength, usually an activation function is applied on the output signal. Activation functions most commonly used are (Teodorovic and Vukadinovic, 1998): nonlinear, continuous, monotonously increasing, bounded, 
	
	ANN Design


	The design of ANN is an iterative process containing, most frequently, a trial and error procedure before coming up with a satisfactory design. For the design of ANN, one should determine the following elements:
	set of artificial neurons and their arrangement in various layers,
	type of connections among neurons for different layers as well as among the neurons within the same layer,
	rule of signal propagation through the network,
	activation functions,
	training algorithm.
	ANN contains three types of nodes: input, output and hidden. The nodes are collected into layers. Input nodes are collected into the input layer, output nodes in the output layer, and the others into one or several layers in between. Input nodes receive
	Connections among nodes are commonly unidirectional. One node will receive output signals from one group of adjacent nodes and transmit its own signal as an input to the other adjacent nodes. With respect to connectivity among nodes, in some ANN, there i
	ANNs could be classified as follows (Teodorovic and Vukadinovic, 1998):
	Classification according to the network structure:
	autoassocciative – input nodes are simultaneously
	heteroassociative – there is a set of output node
	Classification according to feedback presence:
	ANN where there are no connections between output and input nodes,
	ANN with feedback (recurrent neural networks) where the current output signal is determined by the current input signal and former output signal.
	Classification according to the network training:
	Supervised training is training performed until the ANN is able to produce the desired output vector y for each input vector x. Training will be performed based on the set of input-output data pairs (x, y).
	Unsupervised training is the kind of training where a sample of input vectors is involved in the learning process. During the training, statistical properties of the samples are estimated and similar input vectors are grouped into classes. The idea is to
	Reinforcement learning is provided as a combinati
	The literature shows a wide range of possible applications of ANN. It is seen that there has been a significant growth in the number of publications in recent years. The most successful applications of ANN are in categorization and pattern recognition. I
	Bee System Approach to the Modeling of Combinatorial Optimization Problems
	Behavior of real bees

	The honey bee colony chooses sections of a field that are most profitable among different nectar sources available. Previous studies have shown that the colony quickly and precisely adjusts its searching pattern in time and space following the environmen
	It is natural to consider a colony as a system of
	Generally, in a social insect colony individuals usually do not perform all tasks. They specialize in a set of tasks according to their morphology, age or chance (Bonabeau et al., 1999). However, a significant part of the entire bee colony will be fora
	The basic characteristics of behavioral cycle of honey bee foraging for nectar could be seen in figure 3.1.
	�
	Figure 3.1 – Typical behavioral cycle of honey be
	At the very beginning, a potential forager will start as an unemployed forager. That bee will have no knowledge about the food sources in the field. There are two possible options for such a bee:
	Due to some internal motivation or possibly some external clue, the bee will start searching spontaneously and in that way becomes a scout.
	As a response to the attendance of the waggle dance done by some other bee, the bee will start searching for a food source and in that way becomes a recruit.
	After finding the food source, the bee utilizes i
	The foraging bee takes a load of nectar from the field and returns to the hive, relinquishing the nectar to a food store. After it relinquishes the food, the bee has the following options:
	abandon the food source and become an uncommitted follower,
	continue to forage at the food source without recruiting the nestmates, or
	dance and thus recruit the nestmates before returning to the same food source.
	The bee opts for one of the above alternatives with a certain probability. The probabilities highly depend on the quality of the food source that has been visited.
	Within the dancing area, the bee dancers “adverti
	Through the passage of time, food sources could b
	Bees have some memory and as long as a bee keeps information about this food source in memory, the bee is called an experienced unemployed bee. Sometimes experienced unemployed bees will make examinational flights to the food source and thus the bee is c
	It can be seen that there are several categories of foragers (de Vries and Biesmeijer, 1998):
	Employed forager – knows and uses a profitable fo
	Unemployed forager could be the following \(begi
	Scout, starts searching spontaneously without any knowledge of the food sources (S on figure 3.1).
	Recruit, starts searching upon attending dance ar
	Experienced forager that has some knowledge about the position and profitability of a food source could have the following tasks:
	Inspector inspects the profitability status of a food source that has been already discovered.
	Reactivated forager explore the same food source 
	Scout starts to search for a new source after the previous source has been deteriorated (ES on figure 3.1).
	Recruit unsatisfied with the currently visited food source, will start searching for a new source that has been advertised in dancing area (ER on figure 3.1).
	It is important to note that not all bees start foraging simultaneously. The experiments confirmed that new bees begin foraging at a rate proportional to the difference between the eventual total number of bees and the number presently foraging.
	At any moment, each foraging bee could be in one of the following places:
	not active,
	unloading nectar from food source,
	dancing for food source,
	feeding at food source,
	following a dancer, and
	scouting.
	Artificial Bees

	The successful applications of the Ant System to 
	A large portion of social insects’ activities is 
	In the case of honey bees, the recruitment rate r
	The cooperation between the insects decreases for
	It is also known that cooperation increases the quality of the food sources located by foragers. This implies that cooperation could also help us find the best solutions of the difficult combinatorial optimization problems.
	The survival and progress of the bee colony is dependent upon the rapid discovery and efficient utilization of the best food resources. In other words, the successful solution of difficult engineering problems (especially those that need to be solved in
	Solving The Traveling Salesman Problem with The Bee System

	The primary goal of the research is to explore the possible applications of swarm intelligence (and especially, in this part, collective bee intelligence) in solving complex traffic and transportation engineering problems. The development of the new he
	The Traveling Salesman Problem (TSP) is chosen for the following characteristics:
	Very difficult (NP-hard) problem.
	There are plenty of benchmark problems (TSP has been studied a lot and through that process with purpose of technique comparison a lot of instances appears).
	Easy to understand.
	If one assumes that the closest food source is more attractive for honey bees, foraging bees behavior could be applied in order to find the best solution.
	TSP could be formulated in the following way:
	Let G = (N, A) be a graph where N is a set of nodes and A is a set of arcs or edges. Let us also introduce C = (cij) as the distance or cost matrix associated with a set of arcs. In TSP, the minimum distance circuit that passes through each node once
	There are several ways to formulate TSP mathematically. One of the earliest formulations, given by Dantzig, Fulkerson and Johnson (1954) will be presented here. Let xij be the following binary variable:
	�
	Integer linear programming formulation could be as follows:
	(3.1)
	subject to
	(3.2)
	(3.3)
	(3.4)
	(3.5)
	The objective is to find the least costly tour. C
	Here, the focus will not be on TSP and its solutions developed in the past; more detailed survey can be found in Laporte (1992).
	Let G = (N, A) be the graph in which the bees are collecting nectar (the graph in which the traveling salesman route should be discovered). Let us also randomly locate the hive in one of the nodes. When foraging, the bees are trying to collect as muc
	We will assume that at the beginning of every iteration z all bees are in the hive, i.e.:
	B(0, z) = 0(3.6)
	It is noted that not all bees start foraging simultaneously in nature. In the case of artificial bees, we increase the number of foraging bees in every subsequent stage in the following way:
	Let us introduce the binary variables bk(u, z), defined as:
	(3.7)
	k = 1,2,…, B
	�
	z = 1,2,…., M
	where:
	M – maximum number of iterations.
	Some bees will start foraging in the first stage.
	Let us also introduce the binary variables hk(u, z), defined in the following way:
	(3.8)
	where:
	w – the parameter given by the analyst \(
	rk\(u, z\) – the random number taken from the �
	The binary variables hk\(u, z\) indicate the s�
	w > rk(u, z)(3.9)
	The higher the value of the parameter w given by the analyst, the higher the chance for any bee to become foraging. That is, practically all bees from the hive will start the foraging process very quickly. A smaller value for the parameter w implies a sl
	The binary variable bk(u, z) equals:
	bk(u, z) = bk(u-1, z)+hk(u, z)(3.10)
	The total number of foraging bees during u-th stage in the z-th iteration equals:
	(3.11)
	During any stage, bees are choosing nodes to be visited in a random manner. The Logit model is one of the most successful and widely accepted discrete choice models. Inspired by the Logit model, we have assumed that the probability of choosing node j by
	(3.12)
	where:
	i, j – node indexes \(i, j = 1, 2, …, |N|\),
	dij – length of link \(i, j\),
	k – bee index \(k = 1,2,…, B\),
	z – iteration index \(z = 1, 2,…, M\),
	gk\(u, z\) – last node that bee k visits at th�
	Nk\(u, z\) – set of unvisited nodes for bee k �
	b – “memory length”*,
	nil\(r\) – total number of bees that visited l�
	a – input parameter.
	Let us discuss relation (3.12) in more detail. The greater the distance between node i and node j, the lower the probability that the k-th bee located in the node i will choose node j during stage u and iteration z. The distance dij is obviously a very
	For every bee, we now know the nectar quantity collected by the bee (the length of the partial traveling salesman tour). After returning to the hive, bees relinquish the nectar to a food storer bee. After relinquishing the food, the bee then makes the 
	(3.13)
	where Lk(u, z) is the length of partial route that is discovered by bee k in stage u in iteration z.
	We can see from relation (3.13) that the bee will fly along the same partial tour with the probability equal to one when the bee has discovered the shortest partial traveling salesman tour in stage u in iteration z. The longer the tour that the bee has
	continue to forage at the same food source without recruiting the nestmates;
	fly to the dance floor area and start dancing, thus recruiting the nestmates before the return to the food source.
	The bee opts for each one of the above alternativ
	p* << 1(3.14)
	After relinquishing the food, and after making the decision to continue foraging at the food source, the bee flies to the dance floor and starts dancing with the probability equal to (1- p*). Bee dancing represents the interaction between individual be
	At the beginning of stage u + 1, if a bee does not use the same partial traveling salesman tour, the bee will go to the dancing area and will follow another bee(s). Every partial traveling salesman tour ( that is being advertised in the dance area has
	the total length, and
	the number of bees that are advertising the partial route.
	We introduce the normalized value of the total length of the partial traveling salesman tour and the normalized value of the number of bees advertising the partial tour. Both the normalized values are defined in the following way: (a) They can take any
	Let us denote by Y\(u, z\), the set of partial�
	(3.15)
	The normalized value of the number of bees advertising the partial tour equals:
	(3.16)
	Inspired by the Logit model, we have assumed that the probability that the partial route ( will be chosen by any bee that decided to choose the new route equals:
	(3.17)
	where:
	- parameters given by the analyst.
	Before relocating the hive, we tried to improve the solution obtained by the bees in the current iteration by applying the well-known 2-opt and 3-opt heuristic algorithms. Creating the partial Traveling Salesman Tours, where in every stage every bee will
	�
	Figure 3.2 – Creating partial Traveling Salesmen 
	
	Tour improving algorithms


	The most frequently used tour improvement algorithms are developed based on the k-opt procedure. The basic idea is to replace the subset of k arcs in the previously defined tour with the subset of new arcs with same cardinality and smaller total length s
	To explain the 2-opt procedure, let us consider t
	�
	Figure 3.3 – A 2-opt change \(original tour on t
	A pseudo code for a 2-opt algorithm could be formulated as follows (Smith, 1982):
	Consider the tour \(t1, t2, …., tn, t1\) with t�
	Set i := 1;
	Set j := i + 2;
	While i <= ¦N¦ - 2 do begin
	Consider the tour \(t1, t2, …, ti, tj, tj-1, …, t
	if L1 < L then begin
	\(t1, t2, …., tn, t1\) := \(t1, t2, …, ti, tj,�
	L := L1;
	i := 1;
	j := i + 2;
	end else begin
	Inc (j);
	if j > ¦N¦ then begin
	Inc (i);
	j := i + 2;
	end;
	end;
	End While;
	The 3-opt algorithm utilizes the same idea as the
	The pseudo code for 3-opt algorithm could be formulated as follows:
	for i := 1 to n do begin
	for k := 1 to n-3 do begin
	for j:= k+1 to n-1 do begin
	if �then begin
	;
	a := true;
	end else begin
	;
	a := false;
	end;
	if � then begin
	if a then
	\(t1, t2, …., tn\) = \(tj+2, …., tn, tk+1, …., �
	else
	\(t1, t2, …., tn\) = \(tj+2, …., tn, tk+1, …., �
	end;
	end;
	end;
	\(t1, t2, …., tn\) = \(tn, t1, t2, …., tn-1\)�
	end;
	The procedure for the 3-opt algorithm described by the pseudo code is time consuming because the algorithm will try all possible combinations of three arcs replacement. There is the possibility to run this algorithm much faster with a little chance of lo
	
	Experimental study of the bee system


	The proposed Bee System was tested on a large num
	Table 3.1 – The results obtained by the Bee Syste
	Problem
	Number of nodes
	Optimal
	Value (O)
	The best value obtained by the Bee System (B)
	�
	(%)
	Time required to find the best solution (seconds)
	Average value obtained by the Bee System over 20 runs (A)
	St. Dev.
	(SD)
	�
	(%)
	Eil51
	51
	428.87
	431.121
	0.53%
	44
	433.758
	1.37
	1.14%
	Berlin52
	52
	7544.366
	7544.366
	0%
	18
	7634.37
	78.2
	1.19%
	St70
	70
	677.11
	678.621
	0.22%
	238
	684.275
	3.53
	1.06%
	Pr76
	76
	108159
	108790
	0.58%
	127
	109444.6
	461
	1.19%
	Kroa100
	100
	21285.4
	21441.5
	0.73%
	58
	21575.7
	138.83
	1.36%
	Eil101
	101
	640.21
	642.45
	0.35%
	146
	665.62
	7.94
	3.97%
	Tsp225
	225
	3859
	4065.56
	5.35%
	2076
	4113.71
	27.3
	6.6%
	A280
	280
	2586.77
	2740.63
	5.95%
	1855
	2784.81
	19.56
	7.66%
	From table 3.1 it could be seen that the Bee System, reinforced with 2-opt tour improvement heuristic will provide excellent results for a small size of TSP instances. However, if the size of instances is increased, the quality of the solutions is reduce
	Table 3.2 – The results obtained by the Bee Syste
	Problem
	Number of nodes
	Optimal
	Value (O)
	The best value obtained by the Bee System (B)
	�
	(%)
	Time required to find the best solution (seconds)
	Average value obtained by the Bee System over 20 runs (A)
	St. Dev.
	(SD)
	�
	(%)
	Eil51
	51
	428.87
	428.87
	0
	37
	428.87
	0
	0
	Berlin52
	52
	7544.366
	7544.366
	0
	1
	7544.366
	0
	0
	St70
	70
	677.11
	677.11
	0
	22
	677.11
	0
	0
	Pr76
	76
	108159
	108159
	0
	11
	108159
	0
	0
	Kroa100
	100
	21285.4
	21285.4
	0
	10
	21285.4
	0
	0
	Eil101
	101
	640.21
	640.21
	0
	1741
	643.05
	1.7
	0.44%
	Tsp225
	225
	3859
	3876.05
	0.44%
	5153
	3905.32
	18.9
	1.2%
	A280
	280
	2586.77
	2600.34
	0.53%
	13465
	2627.45
	12.31
	1.57%
	Table 3.3 – The results obtained by the Bee Syste
	Problem
	Number of nodes
	Optimal
	Value (O)
	The best value obtained by the Bee System (B)
	�
	(%)
	Time required to find the best solution (seconds)
	Average value obtained by the Bee System over 20 runs (A)
	St. Dev.
	(SD)
	�
	(%)
	Eil51
	51
	428.87
	428.87
	0
	29
	428.87
	0
	0
	Berlin52
	52
	7544.366
	7544.366
	0
	0
	7544.366
	0
	0
	St70
	70
	677.11
	677.11
	0
	7
	677.11
	0
	0
	Pr76
	76
	108159
	108159
	0
	2
	108159
	0
	0
	Kroa100
	100
	21285.4
	21285.4
	0
	10
	21285.4
	0
	0
	Eil101
	101
	640.21
	640.21
	0
	61
	643.07
	1.84
	0.45%
	Tsp225
	225
	3859
	3899.9
	1.06%
	11651
	3909.69
	9.19
	1.31%
	A280
	280
	2586.77
	2608.33
	0.83%
	6270
	2632.42
	14.89
	1.76%
	Pcb442
	442
	50783.55
	51366.04
	1.15%
	4384
	51756.89
	195.3
	1.92%
	Pr1002
	1002
	259066.6
	267340.7
	3.19%
	28101
	268965.6
	1182.22
	3.82%
	We can see from tables 3.1, 3.2 and 3.3 that the proposed Bee System produced results of a very high quality. The Bee System was able to obtain the objective function values that are very close to the optimal values of the objective function. In all inst
	The best solutions discovered by Bee System are presented in the following figures.
	�
	Figure 3.4 – Bee System solution to the TSP probl
	�
	Figure 3.5 – Bee System solution to the TSP probl
	�
	Figure 3.6 – Bee System solution to the TSP probl
	�
	Figure 3.7 – Bee System solution to the TSP probl
	�
	Figure 3.8 – Bee System solution to the TSP probl
	�
	Figure 3.9 – Bee System solution to the TSP probl
	�
	Figure 3.10 – Bee System solution to the TSP prob
	�
	Figure 3.11 – Bee System solution to the TSP prob
	�
	Figure 3.12 – Bee System solution to the TSP prob
	�
	Figure 3.13 – Bee System solution to the TSP prob
	Bee System and Fuzzy Logic approach to the Stochastic Vehicle Routing Problem
	Introduction


	The classical vehicle routing problem, which appears in various transportation activities, consists of finding a set of routes that would minimize transport costs. Vehicles leave the depot, serve nodes that request service, and on completion of their rou
	During the last two decades, papers that deal with uncertain demand at nodes have appeared (Dror and Trudeau (1986), Dror et al. (1989), Teodorovic and Pavkovic (1992), Lambert et al. (1993), Dror (1993), Dror et al. (1993), Gendreau et al. 
	Vehicle routing problems with uncertain demand at nodes appears in the delivery of home heating, trash collection, beer and soft drink distribution, provision of the bank automates with cash and collection of cash from bank branches. The basic characteri
	A new algorithm for handling the vehicle routing 
	The entire approach presentation is organized in the following way: Statement of the problem is given in section 3.4.2. A proposed solution to the problem is given in section 3.4.3. Numerical experiments are shown in section 3.4.4.
	
	Statement of the problem


	Let us assume that Stochastic Vehicle Routing Problem is assigned as follows:
	single depot and n nodes to be serviced (figure 3.14),
	homogenous feet (vehicle capacity is denoted by C) and
	demand at each node is a random variable (probability density function is known).
	Vehicles set out from depot D, serve a number of nodes, and on completion of their service, return to the depot.
	�
	Figure 3.14 – Depot D and nodes requiring service
	Increasing the number of nodes served along a route decreases the available (remaining) capacity of the vehicle. After completing service at one node, it is simple to calculate whether the vehicle is able to serve the next node or not, when demand at n
	It is quite clear that the greater the vehicle’s 
	�
	Figure 3.15 - “Failure” at a node of the planned 
	Our wish to use the vehicle capacity to its fullest potential will produce planned routes with shorter total distances. However, this will also increase the number of cases in which vehicles arrive at a node and are unable to service it. In other words,
	The goal is to develop a decision support system that will make real time decisions on whether one particular vehicle located in the just serviced node will go to another node in the sequence or return to the depot.
	
	Proposed solution to the problem


	This part of the dissertation will describe an at
	Let us introduce the following assumption: the future could be predicted without a mistake. In this case, the assumption means that we are able to exactly predict demand values at all nodes in the transportation network. In the case of perfect prediction
	For a known “scenario” \(the random demand value
	The approach applied here contains the following two steps:
	Using the developed Bee System, solve the Vehicle
	By “walking” along the created giant route it is 
	The above-considered problem can be solved many times for different scenarios. If one can precisely predict the future then he/she can get the optimal or close to the optimal solution to the problem. Instead of predicting it though, one can simulate futu
	
	Fuzzy Systems


	It could happen that an experienced decision maker could achieve better results than a classical automatic control system when managing a complex system (transportation, industrial, etc.). The entire control strategy of an experienced decision maker co
	Development of the fuzzy set theory started in the 1960s (Zadeh, 1965) and up to now, fuzzy logic has been successfully used in the management of processes in many different areas. Fuzzy logic has been used in solving transportation and traffic problem
	The fuzzy logic system can be described as mapping of an input data into a scalar output (Mendel, 1995). Most often mapping is crisp input into crisp output.
	Fuzzy rules could be defined from the knowledge o
	When it can be positively claimed that the operat
	Fuzzy rules include descriptive expressions such as small, medium, or large used to categorize the linguistic (fuzzy) input and output variables. A set of fuzzy rules, describing the control strategy, forms a fuzzy control algorithm, that is, an approx
	Fuzzy rule (fuzzy implication) could be presented in the following form:
	If x is A, then y is B
	where A and B represent linguistic values quantif
	The entire expression describes an existing relation between the variables x and y; a fuzzy rule is defined as a binary fuzzy relation R in the Cartesian space X ( Y = {(x, y)(. Each element (x, y) of the fuzzy relation is associated with the corre
	In cases where “x is A*” is a fact, after applica
	�
	�
	In order to determine fuzzy set B*, the degree of match of sets A and A*, represented by q, is first defined as the maximal value of the intersection of the sets; as it is shown on figure 3.16. Fuzzy set B* is determined by the intersection of fuzzy sets
	�
	Figure 3.16 – Approximate reasoning for a single 
	Let us introduce the following rule for instance:
	If x1 is A1 and x2 is A2, then y is B
	At the same time let us assume the following facts:
	x1 is A*1andx2 is A*2
	First, the degree of match of sets A and A*1, q1, should be determined, then the degree of match of sets A2 and A*2, q2, and in final, the resulting fuzzy set B* is obtained by the intersection of fuzzy set B and q = min (q1, q2); as it shown in figure
	�
	Figure 3.17 – Approximate reasoning for a single 
	A set of rules presents union of fuzzy relations. Let us consider the following example:
	If x1 is A1 and x2 is B1, then y is C1
	If x1 is A2 and x2 is B2, then y is C2
	Operator max represents operation “or,” and the c
	�
	Figure 3.18 – Approximate reasoning algorithm whe
	Practically, the last step in the approximate reasoning algorithm is defuzzification; choosing one value for the output variable. Using the fuzzy reasoning algorithm, a fuzzy set is obtained as the output result of max-min composition. By defuzzification
	�
	Figure 3.19 – Approximate reasoning using max-min
	
	Generating fuzzy rule base from numerical examples


	In order to generate fuzzy rule bases from numerical examples, the procedure proposed by Wang and Mendel (1992) was used. We could establish fuzzy sets for all the antecedents and the consequences. We will do it in such a way that, at the very beginnin
	�
	Figure 3.20 – Division of the domain interval int
	As Wang and Mendel (1992) suggested, it is possible to divide each domain interval into a prespecified number of overlapping regions (Figure 3.20). The number of overlapping regions is not the same for each variable. The lengths of these overlapping 
	\(x11, x21,… y1\), \(x12, x22,… y2\), \(x13,�
	where x1, x2,… are input and y is output. We will�
	We have to determine the membership function valu
	If       x1  is A1 and x2  is B2 and …
	Then  y  is P3
	This is the way to generate the rules from the input-output data pairs. Because many input-output data pairs are generated, some conflicting rules can be produced. The conflicting rules have the same antecedents but different consequence. Wang and Mendel
	(3.19)
	Finally, following this procedure it is possible to generate a fuzzy rule base containing a minimum of one rule (all data pairs are similar and produce the same rule or all produced rules are conflicting each other) and a maximum number of rules equal 
	To apply Wang and Mendel’s procedure it is necess
	A developed decision support system should provid
	Cr – remaining of the vehicle capacity,
	C – vehicle capacity,
	– mean of the demand in the following node, and
	– standard deviation of the demand in the followi
	When considering the Stochastic Vehicle Routing Problem we have introduced the following three variables for the antecedent part:
	,
	, and
	.
	Consequent (y) is number of nodes to be visited after node ti.
	All introduced variables are bounded; x1, x2 and x3 are ranging from 0 to 1 and y is ranging from 0 to the total number of nodes.
	
	Numerical example


	We have considered the same set of ten TSP examples introduced in section 3.3.2. To transfer original TSP problem into Vehicle Routing Problem, in all the examples, the first node was considered to be depot. Originally, examples just contain node coordin
	The following procedure was used to define/generate random demand associated to each of the nodes:
	Define vehicle capacity and the ranges for mean and standard deviation of demand at nodes.
	For each particular node define values for mean a
	Based on values for mean and standard deviation f
	In all examples we have vehicle capacity and the ranges for mean and standard deviation defined as follows:
	Vehicle capacity is 1000,
	Range for mean is (0, 200) and
	Range for standard deviation is (0, 60).
	The basic assumption was that demand at a node is
	When producing the fuzzy rule base in all the cases we have used triangular fuzzy numbers, uniformly distributed over the entire domain interval for variables that appear in the antecedent and consequent parts. The number of uniformly distributed fuzzy n
	Figures 3.21 and 3.22 show the error distribution in all 10 considered examples. When producing the error distribution we consider just results obtained on the test set.
	�
	Figure 3.21 – Error distribution for the followin
	�
	Figure 3.22 – Error distribution for the followin
	Each experiment has two solutions associated with it. One is the solution obtained under conditions where future demand is known in advance (a priory) and the other one is solution obtained by the developed Fuzzy Logic based system. Those two solutions
	�
	Figure 3.23 – One solution pair for Berlin52 exam
	�
	Figure 3.24 – One solution pair for Pr76 example 
	�
	Figure 3.25 – One solution pair for Eil101 exampl
	�
	Figure 3.26 – One solution pair for A280 example 
	Maximum and average values of relative error for all considered examples are provided in table 3.4.
	Table 3.4 – Maximum and average values of relativ
	Maximum of relative error [%]
	Average relative error [%]
	Eil51
	5.83
	0.607
	Berlin52
	5.98
	1.44
	St70
	4.05
	1.63
	Pr76
	5.83
	1.75
	Kroa100
	5.75
	2.42
	Eil101
	5.44
	2.18
	Tsp225
	4.70
	1.49
	A280
	3.48
	1.26
	Pcb442
	4.32
	1.15
	Pr1002
	2.38
	0.93
	Combined Ant System and Fuzzy Logic Modeling Approach
	Behavior of real ants

	As social insects, ants live in colonies. Ants’ b
	When walking from the nest to the food source and vice versa, ants will deposit on the ground a substance called pheromone. When one or several ants use the same path, a pheromone trail will be formed. Ants are able to smell pheromone trails. Under the p
	In case of the existence of several possible paths, it has been shown that pheromone trail following behavior employed by a colony of ants will emerge into choosing the one with the shortest path between the nest and food source. These conclusions come f
	�
	Figure 4.1 – Initial condition of the “double bri
	Ants are then left to move freely from the nest to the food source and vice versa. The percentage of ants that choose one or the other of the two branches is observed over time. The result shows that after an initial transition phase where some oscillati
	(4.1)
	where:
	N1, m and N2, m – number of ants that have used b
	P1\(m\) – probability that m+1-st ant will cho�
	k, h – tuning parameters.
	In order to test for correspondence between model and real (experimental) data, the Monte Carlo simulation was performed. To determine which branch an ant will use, after calculating corresponding probabilities, a random number ( was chosen. In cases 
	The authors built the model with the following assumptions:
	the amount of pheromone on the branch is proportional to the number of ants that used that branch in the past (basic assumptions are: every ant will deposit pheromone with the same rate and ants are walking with approximately the same speed),
	evaporation of the pheromone is not considered (applicable in case of providing experiment for a short period of time).
	The model closely matches the experimental observations.
	In cases where bridge branches have different lengths, the difference in the amount of time that ants spend to cross the bridge (using different branches) causes the shorter branch to be passed more times than longer branch. Initially, transition perio
	In principle, a single ant is able to find the ro
	The main characteristics that separate stigmetry from other means of communications are the following:
	information is released by the changing of the physical environment of the site visited by the ant, and
	information can be accessed by an ant that is vis
	Additionally, experiments show that ants are capa
	The difference in traveling time will cause those ants which choose the shorter path around the obstacle by chance, to more rapidly form a pheromone trail. This trail will be stronger than the trail created by the ants which choose the longer path. The h
	It has been observed that in ants foraging behavior it is not essential to have the following properties (Pasteels et al., 1987):
	visual clues, and
	individual memory (including left-right memory).
	The same results were obtained with and without possibility of their use.
	The experimental study also showed that the ant colony is incapable of switching to the short path, due to the irreversible nature of the positive feedback process involved, when shorter path is only present after the trail on long path has been establis
	�
	Figure 4.2 – Example of real ant behavior. \(a\�
	Ant System

	The Ant System (AS) is a general-purpose heuristic algorithm that could be used to solve various combinatorial optimization problems. This algorithm has been developed based on an analogy with the foraging of real ant colonies. The transition from real
	TSP is the problem of finding a shortest closed tour such that the tour will visit all the cities in a given set exactly once. TSP could be formulated in the following way:
	Consider a sequence of n towns, and for each town pair (i, j) consider a distance dij. Aim is to find permutation p of n towns that will minimize the quantity:
	(4.2)
	In this example attention will be restricted to TSP in which cities are on a plane and a path (edge, arc) exists between each pair of cities (i.e., the TSP graph is completely connected). All distances are Euclidean.
	Let us introduce graph G = (N, A, d), and denote by:
	n = (N( - number of cities that ant should visit, and
	m – total number of ants.
	Formally, ants will make tours through steps; they will travel over the introduced graph by walking from one city to another. When all ants have produced routes (TSP solutions), they will do that again, so on.
	Let us introduce the following indexes:
	t – cycle index \(will give information how many
	s – iteration index \(it will give information h
	Colorni et al. (1991, 1992) and Dorigo et al. (1996), have considered each ant as a simple agent that chooses the town to go with a probability that is a function of the town distance and of the amount of pheromone trail present on the connecting edg
	The transition probability from town i to town j for the k-th ant is:
	(4.3)
	where:
	\(ij\(t\) – pheromone trail on arc \(i, j\)
	\(ij = 1/dij – “visibility”,
	Jki\(t, s\) = {N – tabuk \(t, s\)} – set of �
	tabuk \(t, s\) – tabu list for ant k in cycle �
	\(, \( – parameters given in advance.
	To force the ant to make legal tours, transitions to already visited towns are disallowed until a tour is completed (this is controlled by a tabu list).
	�
	Figure 4.3 – Graph and search process that could 
	Placed at the towns at the beginning randomly, ants explore the given graph simultaneously. Each ant in iteration s will choose the next town, where it will be in iteration s+1. The progression through iterations (figure 4.3) would exist until all ants
	Again, an iteration of the AS algorithm contains the m moves carried out by the m ants. Every n iterations of the algorithm, each ant has completed a tour, and the cycle of the algorithm is also completed. At this point, the trail intensity is updated ac
	(ij (t + 1) = ((ij (t) + ((ij (t, t + 1)(4.4)
	where :
	\( – coefficient such that \(1-\(\) represen�
	\(\(ij \(t, t+1\) – “additional” pheromone o�
	Additional pheromone could be calculated using the following equation:
	(4.5)
	\(\(kij \(t\) – the quantity per unit of len�
	(4.6)
	Q – constant given in advance,
	Lk\(t\) –produced tour length of the k-th ant �
	In order to initialize the process, some initial pheromone (ij(0) = c will be assigned to every arc (c is small positive value).
	Equation 4.3 contains two parameters ( and ( that have considerable role in the final probability values. If ( = 0, the closest city is more likely to be selected; it corresponds to the classical stochastic greedy algorithm that has multiple starting 
	The following algorithm presents the main steps that this developed AS algorithm contains.
	For every arc (i, j) do (ij (0) = c;
	For k = 1 to m do Place ant k on a randomly chosen city;
	Let T+ be the shortest tour found from beginning and L+ its length;
	For t = 1 to tmax do
	For k = 1 to m do
	Build tour Tk(t) by applying n - 1 times transition probability (4.3). Always updating tabu list (tabuk (t, s));
	Complete Tk\(t\) – add returning link to the s�
	End For
	For k = 1 to m do
	Compute the length Lk(t) of the tour Tk(t) produced by ant k;
	End For
	If an improved tour is found then update T+ and L+;
	For every arc (i, j) do
	Update pheromone trails by applying the rule \(4
	End For
	End For
	Print T+ and L+;
	In contrast to the real ants, it could be seen from the algorithm that artificial ants do not deposit pheromone when traveling between nodes. Pheromone trail will be updated at the end of every cycle. In the literature, it could be found that the name of
	All these algorithms have similar structure, and the main difference is seen in the pheromone updating rule. Ant-density and Ant-quantity algorithms presume that pheromone will be updated when every iteration is completed. In every iteration of both algo
	Ant-density:
	(4.7)
	Ant-quantity:
	(4.8)
	Similarities and differences between real and artificial ants

	It has been mentioned earlier that in order to build AS, authors have used mostly ideas from real ants behavior. However, some differences exist. Similarities could be stated as follows (Dorigo et al., 1999):
	Colony of cooperating individuals. Both real ant 
	Stigmergy through pheromone trail. Like real ants
	Local moves and the shortest path searching. In c
	Transition policy. Both real ants and artificial ones will build solutions by applying decision making procedures to move through adjacent states. Decision making procedures could be based on some probabilistic rules (introduced by Colorni et al. (1991
	Main differences could be stated as follows:
	Artificial ants live in a discrete world. All their moves are jumps from one discrete state to another.
	Artificial ants have memory; they could remember states that have been visited already (tabu lists in the model).
	Pheromone deposit methodology is significantly different between real and artificial ants. Timing in pheromone laying is problem dependent and often does not have similarities with the real ants pheromone deposit methodology.
	Amount of pheromone that an artificial ant will deposit is mostly a function of the quality of the discovered solution. In reality, some ants behave in a similar way; the deposited amount of pheromone is highly dependent on the quality of the discovered
	To improve overall performances, AS algorithms could be enriched with some additional capabilities that cannot be found in real ant colonies. Mostly AS contains some local optimization technique to improve solutions developed by ants.
	Similarities and differences between artificial ants and artificial bees

	Similarities could be stated as follows:
	Both approaches present artificial colonies of cooperating individuals.
	Basic structure is taken from natural swarms. In both cases the system was developed based on foraging behavior of the corresponding natural swarms.
	General behavior contains individual decisions based on simplified rules taken from nature and collaboration among individuals through exchanging of collected information.
	Artificial ants and artificial bees live in a discrete world.
	Main differences could be stated as follows:
	An exchange of information among agents occurs at the end of iteration (Bee System) or at the end of cycle (Ant System).
	Type of the approach to the problem could be simultaneous (Bee System) or sequential (Ant System).
	Amount and type of information exchanged through one exchange of information trial. Agents will receive just local information (Ant system) or information about any relatively promising food source in the covered region.
	Other AS approaches
	Ant Colony System


	It has been shown experimentally that the previously described AS algorithm is capable of producing good solutions within a reasonable amount of time for only small problem instances. In order to improve capabilities of AS, Gambardella and Dorigo (1996
	ACS was developed based on the Ant – cycle algori
	Change in transition rule:
	Ant k that is located in city i (cycle t and iteration s) will make choice about city j (where to move) based on the following rule:
	(4.9)
	where:
	q0 – tunable parameter \(q0 \( [0, 1]\),
	q – value taken from uniform distribution over [0
	- probabilities calculated based on equation 4.3.
	The basic idea is to allow ants to choose the “cl
	Tuning parameter q0 will take value from the [0, 1] interval. In cases where q0 is close to 0, the search process will explore the feasible region widely. If q0 is closed to 1, the search process will be concentrated on the best partial solution (greedy
	Change in pheromone updating rule:
	In contrast to previous algorithms where pheromon
	The global pheromone updating rule (will be provided offline like in AS);
	At the end of every cycle t pheromone will be updated according the following equation:
	(ij (t + 1, 1) = ( (ij (t, n) + (1 - () ((ij(t, t + 1)(4.10)
	(4.11)
	Only arcs that belong to the best tour T+ (since beginning of search process) would have a pheromone update at the global level. The strategy will increase the importance of searching around the best route ever found.
	Local updates of the pheromone trail \(will go o
	When ant k located in city i selects city j(Jki(t, s), the pheromone concentration on arc (i, j) will be changed according to:
	(ij (t, s + 1) = ( (ij (t, s) + (1 - () (0,       s < n(4.12)
	(ij (t + 1, 1) = ( (ij (t, n) + (1 - () (0,      s = n(4.13)
	where:
	( - value (taken from interval (0, 1]),
	\(0 – initial pheromone trail; it was experiment
	(4.14)
	n – number of cities,
	Lnn – tour length produced by the nearest neighbo
	Local pheromone updating is necessary to avoid stagnation of the searching process. Without local pheromone updating, the searching process could be stacked because of the global pheromone update. Additionally, the local update rule should decrease attra
	“Candidate list” data structure. A candidate list
	
	Ant-Q


	Gambardella and Dorigo \(1995\) Dorigo and Gam�
	(ij (t, s+1) = ( (ij (t, s) + (1 - () ( �,         s < n(4.15)
	(ij (t + 1, 1) = ( (ij (t, n) + (1 - () ( �,      s = n(4.16)
	Difference exists in the last term of the summation. Through experimental study it was discovered that setting the last term in the summation to a small constant value would result in the reduction of time required to solve the problem without significan
	
	Concept of “Elitist ants”:


	The elitist ant concept is almost the same as the Ant-cycle approach. Dorigo et al. (1996) have introduced the concept by adding one element into summation (in the equation 4.4).
	(ij (t + 1) = ((ij (t) + ((ij (t, t + 1) + e ((eij (4.17)
	where:
	e – constant \(given in advance\),
	(4.18)
	The main idea is to increase the attraction of arcs that belong to the best tour.
	
	Max-Min AS


	Stützle and Hoos \(1997\) introduced the Max-M
	The pheromone trail could be updated only at the end of every cycle for arcs that belong to the best route discovered in the cycle.
	Pheromone trail values associated to each arc are restricted to an interval [(min, (max].
	At the very beginning of the search process, pheromone trails should be initialized to the maximum pheromone trail value ((max).
	Restriction of pheromone intensity to a predefined interval will cause all the probabilities of choosing arcs (according to the equation 4.3) to also be restricted. This will help in avoiding possible stagnation, which was the main problem in the imple
	
	ASrank algorithm


	Bullnheimer et al. (1999) proposed one modification of AS called the ASrank algorithm. As it was proposed in AS, the pheromone trail will be updated at the end of every cycle. The main difference is the fact that in the proposed algorithm, developed so
	(ij (t + 1) = ((ij (t) + ( ((ij(t, t + 1) + ((rij (t, t + 1)(4.19)
	where:
	\(\(ij\(t, t + 1\) – additional pheromone on�
	\(\(rij \(t, t + 1\) – additional pheromone �
	(4.20)
	(4.21)
	Where L((t) is the ( ranked tour length.
	In the literature, it could be found that this improvement has made a significant contribution to the quality of solutions produced by AS.
	Parallel AS

	Many models that have been developed with the purpose of defining parallel algorithms for other population-based algorithms could be used for building parallel AS. Parallelization of the metaheuristics algorithms is desirable when attempting to solve pro
	The time taken for the ants to form feasible solutions to the considered problem (the time spent within a cycle) is the major component in the total time needed by AS based algorithms to be completed. In each cycle, each ant will form a solution throug
	Another approach is to allow an ant colony to change information (through pheromone updating) occasionally. In cases where parallel AS is applied, on large instances of some problems there is a possibility that after every cycle ants exchange informati
	Both approaches could be found in Bullnheimer et al. (1997) with the names Synchronous Parallel Implementation of AS for the first approach and Partially Asynchronous Parallel Implementation for the second one. Authors suggest that for the second appro
	Stützle \(1998\) presents one simple approach 
	In many cases, metaheuristic algorithms are supported with some local search technique to produce better solutions and make the search time shorter. The amount of time that the local search technique needs to improve the current solution highly depends o
	Fuzzy Ant System

	The modifications in the development of later AS have primarily been in modeling the methods of communication among ants. Through many publications, the methodology of how ants make the choice where to go in the next iteration (transition rule) has sta
	In this part of the article, research is focused 
	When making a decision about next node to be visi
	When choosing the next link, the ant will have greater or lesser perceived utility towards it, depending on the distance from the next node, as well as the trail intensity. These utilities can be described by appropriate fuzzy sets.
	The approximate reasoning algorithm for calculating the utility of choosing the next link could consist of the rules of the following type:
	Ifdistance is SMALL and trail intensity is STRONG
	Thenutility is VERY HIGH
	The result of the application of approximate reas
	This approach will be illustrated with the following two examples:
	Vehicle routing problem when demand at nodes is uncertain. Demand at the nodes is treated as a fuzzy number and the actual demand value is known only after the visit to the node. Vehicle routing problems with all modifications are well known in literatur
	Schedule synchronization in public transit. Trips between two nodes in a public transit network may be made with or without making transfers. Transfers usually represent inconvenience to the passengers. Since badly coordinated transfers can significantly
	The combined Ant System - Fuzzy Logic approach to the vehicle routing problem when demand at nodes is uncertain
	Introduction


	The Stochastic Vehicle Routing problem has been introduced in chapter 3.4. In a high percentage of papers devoted to the vehicle routing problem, uncertain demand at nodes was treated as a random variable. The exception is the model proposed by Teodorovi
	In this section, we will describe a new algorithm for handling the vehicle routing problem when there is uncertain demand at nodes. In the problem considered, as before, locations of the depot, location of the nodes to be served and vehicle capacity are
	The entire approach presentation is organized in the following way. Statement of the problem is given in section 4.8.2. The proposed solution to the problem is given in section 4.8.3. Numerical experiments are shown in section 4.8.4.
	
	Statement of the problem


	Let us assume that there are n nodes to be serviced (Figure 3.14). It is also assumed that vehicles of uniform size provide the service. We will denote vehicle capacity by C. Vehicles set out from depot D serve a number of nodes and after completing th
	Let us assume that demand Dj at any node j, can be represented by the triangular fuzzy number, i.e.:
	Dj = (d1j, d2j, d3j)(4.22)
	where d1j is the left boundary of fuzzy number Dj, d2j is the value of fuzzy number Dj corresponding to a grade of membership of 1, and d3j is the right boundary of fuzzy number Dj.
	As in previous example, “route failure” can occur
	
	Proposed solution to the problem


	Let us denote the total number of ants by m and let us locate all of them in the depot. We will also assume that instead of vehicles, ants are servicing the nodes. Ants located in the depot of the considered transportation network must visit at least one
	Let us consider k-th ant located in node i at time t. Let us denote by Jik(t) the set of nodes that ant k has not visited by the time t. Set of visited nodes, obviously, is �. This set could be subdivided into two subsets, one contains all nodes that a
	(4.23)
	Demand at every node Dj = (d1j, d2j, d3j) is represented by a corresponding triangular fuzzy number. Using fuzzy arithmetic rules, we obtain that the quantities � and (�) are also triangular fuzzy numbers, i.e.:
	= (�,�,�)(4.24)
	= (C, C, C) (-) (�,�,�) =
	(�, �, �)(4.25)
	The available capacity � is also triangular fuzzy number:
	= (�,�,�) = (�,�,�)    (4.26)
	Membership functions of the fuzzy set �represent�
	�
	Figure 4.4 – Membership functions of fuzzy sets �
	“In the theory of fuzzy subsets the law of possib
	If
	(4.27)
	then h(x) is called the possibility law on R. If A is a fuzzy subset of R, then the possibility of A for the law h(x) is defined as
	(4.28)
	where �A(x) is a membership function of fuzzy set A, ( is maximum symbol, and ( is minimum symbol.
	The � presents the possibility of A (left) and � presents the possibility of B (right) for the law h(x), as shown in figure 4.5.
	�
	Figure 4.5 – The possibility of A and the possibi
	Let possibility h\(x\) refer to “demand greate�
	�
	Figure 4.6 – The possibility that demand \(�\)
	It is clear that the “strength” of the ant’s pref
	Let the perceived utility index be between 0 and 1, that is,
	(4.29)
	When uj = 1, the ant is absolutely certain that h
	�
	Figure 4.7 – Fuzzy sets describing ant's utility 
	The estimation of additional distance that ant wi
	�
	Figure 4.8 – Fuzzy sets describing expected addit
	Furthermore, let us introduce fuzzy sets “weak,” �
	�
	Figure 4.9 – Fuzzy sets describing pheromone trai
	Let us assume that at the time point t, ant k is located at node i. It is already mentioned that Jki (t) denotes the set of nodes that ant k has not visited by the time t (the set of unvisited nodes). In the cases of bigger instances of this problem 
	If  \(kij \(t\) > \(, ant k will exclude nod�
	dkij  - the “expected” distance that the k-th ant
	tij - the pheromone trail intensity that the k-th ant can smell when traveling between node i and node j;
	ukij - utility of k-th ant being located in node i to visit node j;
	Due to the uncertainty of demand at the nodes, an ant might not be able to service a node when it arrives there because of insufficient capacity. In such situations, the ant returns to the depot, empties what it has picked up thus far, returns to the nod
	dkij = dij  + 2dD,j · \(kij \(t\)\(4.30\)
	where:
	dD,j - distance between depot D and node j
	\(kij \(t\) – as we have mentioned, possibili�
	Usually, an ant's visibility is expressed as inverse of the distance between the current and considered ant's position. The better the visibility (the smaller the distance), the higher the chances are that the ant will visit the considered node. In our
	Ifdkij is Small and tij is Strong
	ThenAnt's utility ukij of visiting the j-th node is Very High.
	We can see that the antecedent of the rules contains the expected travel distance and the pheromone trail intensity. The approximate reasoning algorithm for calculating the ant's perceived utility of visiting some of the neighboring nodes consists of the
	Rule 1:
	Ifdkij is Small and tij is Weak
	ThenAnt's utility ukij of visiting the j-th node is High.
	else
	Rule 2:
	Ifdkij is Small and tij is Medium
	ThenAnt's utility ukij of visiting the j-th node is Very High.
	else
	Rule 3:
	Ifdkij is Small and tij is Strong
	ThenAnt's utility ukij of visiting the j-th node is Very Very High.
	else
	Rule 4:
	Ifdkij is Medium and tij is Weak
	ThenAnt's utility ukij of visiting the j-th node is Low.
	else
	Rule 5:
	Ifdkij is Medium and tij is Medium
	ThenAnt's utility ukij of visiting the j-th node is Medium.
	else
	Rule 6:
	Ifdkij is Medium and tij is Strong
	ThenAnt's utility ukij of visiting the j-th node is High.
	else
	Rule 7:
	Ifdkij is Large and tij is Weak
	ThenAnt's utility ukij of visiting the j-th node is Very Very Low.
	else
	Rule 8:
	Ifdkij is Large and tij is Medium
	ThenAnt's utility ukij of visiting the j-th node is Very Low.
	else
	Rule 9:
	Ifdkij is Large and tij is Strong
	ThenAnt's utility ukij of visiting the j-th node is Low.
	Graphical representation of the fuzzy rule base is shown in figure 4.10.
	�
	Figure 4.10 – Graphical representation of the fuz
	The nodes with better perceived utility values are more likely to be selected by the ant. The probability pkij for node j to be selected by the ant k is equal to the ratio of ukij to the sum of utility values of all nodes in the group of considered nodes
	(4.31)
	This type of selection represents a proportional 
	In the situation where, \( qJ’ki \(t\)\( = 0�
	After returning to the depot, the same ant will continue to design the routes, taking care exclusive of only the unvisited nodes. In this way one ant can design one set of routes. Since there are m ants, the total of m sets of routes will be created. Whe
	The following strategy has been used for updating pheromone trail:
	The best set of routes is chosen based on the value of performance index (F) of that set. Performance index (F) is the total sum of planned routes lengths and additional distance covered by vehicles due to route failure. For the pheromone updating ru
	(4.32)
	where:
	F+ – the best performance index value ever found,
	tmax – total number of cycles \(given in advance
	t – current cycle number.
	The equation 4.6 has been modified as follows:
	(4.33)
	where:
	�
	Q, e – constants given in advance.
	This pheromone updating strategy is just one vari
	At the end of each cycle, routes that ants involved in the search process have developed are improved by 2-opt heuristic independently.
	The vehicle routes are created in the following way:
	Step 1:Describe the demand at the nodes by corresponding triangular fuzzy numbers. Set the counter of the cycles to one (t = 1).
	Step 2:If the number of finished cycles t is equal to the assigned number of cycles tmax, go to step 4. Otherwise, go to Step 3.
	Step 3: Set the counter of ants to one (k = 1). Locate all m ants in the depot. Generate m sets of routes by m ants. Generate routes using sequential approach (one ant at the time). When all nodes are visited, ant k will finish with the route design.
	Step4:Take the final solution as a set of routes, such that they have the least total sum of planned route lengths and additional distance covered by vehicles due to failure. End the algorithm.
	
	Results obtained using the Fuzzy Ant Vehicle Routing System


	The developed model was tested on a large number of different numerical examples. In the first step the location of the depot and n (up to 150) nodes were generated randomly. The characteristics of the node demand (symmetric triangular fuzzy numbers D
	(4.34)
	where value ? is integer (? >1) given in advance.
	The “real” demand in every node was also generate
	Demand at each node is a deterministic amount, obtained by simulation. By moving along the route, designed by the approximate reasoning algorithm, and accumulating the amounts picked up at each node, it was easy to determine the nodes where failures occu
	All computer experiments were done on a PC computer (PII 450 processor). CPU time highly depends about input data (problem size, number of cycles and number of ants) and for example with 70 node, 500 iterations and 15 ants it takes about 2 hours. Ach
	Input data and final solution for one 70 node numerical example are shown in table 4.1 and figure 4.11. In the example we assumed vehicle capacity of 1500 units. Node 0 is depot.
	Table 4.1 – Input data \(70 nodes example\)
	Node No.
	Node Coordinates
	Demand at nodes
	xi
	yi
	d1i
	d2i
	d3i
	0
	0
	0
	/
	/
	/
	1
	748
	-397
	136
	140
	144
	2
	669
	988
	26
	39
	52
	3
	709
	-325
	49
	71
	93
	4
	654
	397
	32
	48
	64
	5
	874
	636
	52
	54
	56
	6
	-211
	281
	80
	81
	82
	7
	811
	-197
	137
	165
	193
	8
	463
	-615
	77
	111
	145
	9
	-291
	-491
	64.6667
	97
	129.3333
	10
	867
	432
	98
	144
	190
	11
	73
	399
	30.6667
	46
	61.3333
	12
	292
	-637
	52
	52
	52
	13
	761
	-534
	169
	191
	213
	14
	151
	369
	12.6667
	19
	25.3333
	15
	720
	-140
	1.3333
	2
	2.6667
	16
	-600
	937
	198
	198
	198
	17
	55
	-558
	113
	154
	195
	18
	793
	315
	167
	185
	203
	19
	647
	-250
	34
	51
	68
	20
	211
	194
	81
	97
	113
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	68
	437
	-392
	10
	10
	10
	69
	119
	-514
	106
	152
	198
	70
	-161
	-590
	105
	122
	139
	�
	Figure 4.11 – Graphical representation of the bes
	The typical shape of the curve that represents the best performance index progression through cycles is shown on figure 4.12. This result was obtained for the same example (70 nodes).
	�
	Figure 4.12 – The best criteria value progression
	Schedule synchronization in public transit using Ant System and Fuzzy Logic
	Introduction


	Trips between two nodes in a public transit network may be made with or without making a transfer. A direct connection could be provided only to a certain number of passengers primarily due to the economic reasons. In addition, some passengers need to ma
	
	Statement of the problem


	Timetabling and schedule synchronization are the planning phases that follow transit network design, detailed line alignment and determination of the frequencies and line headways.
	The basic assumption is that the following input quantities and data are given:
	vehicle travel times between any two successive nodes along any transit line,
	vehicle stop times at any station,
	line headways,
	transfer times at any station, and
	the numbers of transfer passengers among particular transit lines are only approximately known.
	An example of a public transit network is given in figure 4.13.
	�
	Figure 4.13 – Public transit network
	Let us denote by m the total number of transit li
	�
	Figure 4.14 – Possible departure times from the f
	We can see from the figure 4.14 that there is the
	Let us assume that public transit network is considered within a certain period of time T (Figure 4.15).
	�
	Figure 4.15 – Considered time interval T and poss
	In order to take into account variations in the number of transfer passengers for every line pair, it is possible to subdivide entire interval T into ? parts (Figure 4.16). The number ? is given in advance.
	�
	Figure 4.16 – Horizon T subdivided into intervals
	Let Piju be number of transfer passengers from transit line li to transit line lj when transfers occurring within interval u. It has been already mentioned that the initial assumption is that the number of transfer passengers is only approximately known
	Piju = \(piju1,piju2, piju3\),     i = 1, 2, …,�
	j =  1, 2, …, m.
	u =  1, 2, …, ?.
	where, following the previous notation, piju1 is the lower (left) boundary of the triangular fuzzy number, piju2 is a number corresponding to the highest level of presumption, and piju3 is the upper (right) boundary of the fuzzy number (Figure 4.17
	�
	Figure 4.17 – Triangular fuzzy numbers representi
	We cannot expect to have fewer than piju1 or more than piju3 transfer passengers. The most expected value of the transfer passengers equals piju2. The values of piju1, piju2, and piju3 can be determined using all available statistical data, as well as th
	The total waiting time, �, of all transfer passengers from transit line lp to transit line lq when the departure times from the first stations of these lines are dpr and dqs, equals:
	(4.36)
	where:
	\(ir, tjs – the first arrival times at the inter
	?, ?, ? - binary variables defined as follows:
	(4.37)
	(4.38)
	(4.39)
	A graphical representation of waiting times is given on figure 4.18.
	�
	Figure 4.18 – Waiting times for intersecting tran
	The total waiting time that occurs when dir is chosen as a starting time for line li and djs is chosen as a starting time for line lj, could be presented in the following way:
	(4.40)
	The total waiting time � is a triangular fuzzy number that can be easily calculated using Fuzzy arithmetic rules (Kaufman and Gupta (1985), Teodorovic and Vukadinovic (1998)).
	Let us introduce the following binary variables:
	(4.41)
	The total waiting time of all transfer passengers in the whole transit network equals:
	(4.42)
	The departure from the first station of any trans
	,       i = 1, 2, …, m.\(4.43\)
	The problem of transit schedule synchronization could be defined in the following way: for the known line headways for every transit line, determine the departure times from the first station so as to minimize the total waiting times of all passengers at
	Minimize    �(4.44)
	subject to:
	,     i = 1, 2, …, m\(4.45\)
	xir �{0, 1}     i = 1, 2, …m,     r = 1, 2, …, ni
	
	Schedule synchronization in public transit using the Fuzzy Ant System


	It is possible to try to determine the departure times simultaneously for all transit lines, or sequentially, line by line. Here the sequential approach is used.
	Let us sort the lines in descending order of the number of transfer points. There are also some other options for this sorting (descending order of the number of transfer passengers, randomly, etc).
	Let us denote the total number of ants by n. Let us also locate all ants in the starting terminal of the transit line with the greatest number of intersection points. Ants will walk along the transit lines one by one. The first ant located at the startin
	
	
	Departure time choice mechanism



	Ants’ movements could also be graphically represe
	�
	Figure 4.19 – Transit lines and possible departur
	Ants located in origin O go towards destination D. The ants have few options when choosing the first node in the first layer (the departure time of the first transit line). The number of choices is equal to the number of possible departure times. A phe
	An ant starts its trip from the origin, chooses one node in the first layer, then moves to the second layer, chooses one node from the second layer, and so on. When considering a certain node (departure time) to be visited by an ant, we use the formula
	While deciding on the next node to be visited, th
	�
	Figure 4.20 – Membership functions of the fuzzy s
	Depending on calculated total waiting time, as well as the trail intensity, the ant will have stronger or weaker utility to choose the considered node. These utilities can be described by appropriate fuzzy sets and here is used the same fuzzy sets as in
	Let Wkir be the total (cumulative) waiting time caused by decisions that ant k has made when walking up to the layer i; tir be the pheromone intensity in node (i, r); and ukir be the value of the utility that ant has where it chose the departure r of
	An approximate reasoning algorithm for calculating the utility of choosing the next node could be composed, for example, of the rules of the following type:
	If       Wkir is SMALL and tir is STRONG
	Then   ukir is VERY HIGH
	The ant’s utility for choosing the next node woul
	Rule 1:
	IfWkir is SMALL and tir is WEAK
	Thenukir is HIGH
	else
	Rule 2:
	IfWkir is SMALL and tir is MEDIUM
	Thenukir is VERY HIGH
	else
	Rule 3:
	IfWkir is SMALL and tir is STRONG
	Thenukir is VERY VERY HIGH
	else
	Rule 4:
	IfWkir is MEDIUM and tir is WEAK
	Thenukir is LOW
	else
	Rule 5:
	IfWkir is MEDIUM and tir is MEDIUM
	Thenukir is MEDIUM
	else
	Rule 6:
	IfWkir is MEDIUM and tir is STRONG
	Thenukir is HIGH
	else
	Rule 7:
	IfWkir is BIG and tir is WEAK
	Thenukir is VERY VERY LOW
	else
	Rule 8:
	IfWkir is BIG and tir is MEDIUM
	Thenukir is VERY LOW
	else
	Rule 9:
	IfWkir is BIG and tir is STRONG
	Thenukir is LOW
	Graphical representation of fuzzy set reasoning algorithm is given in figure 4.21.
	�
	Figure 4.21 – Graphical representation of the app
	The nodes with better utility values are more lik
	(4.46)
	This type of selection represents a proportional 
	
	
	Pheromone update



	When n different transit schedules are generated, one cycle in the searching process is finished. Pheromone trail will be updated after every finished cycle. In contrast to previous example, pheromone will be given only to nodes. Let us denote by (i, r
	(ir (t + 1) = ((ir (t) + ((ir (t, t +1)(4.47)
	where:
	is the coefficient (0 < � < 1) such that (1 - �) represents evaporation of the trail in cycle.
	The total increase in trail intensity in node (i, r) after one completed cycle is equal to:
	(4.48)
	where:
	is the quantity of pheromone laid in node (i, r) by the k-th ant at the end of cycle t.
	The quantity � is given by:
	(4.49)
	where:
	Q, a -the constants,
	-the total waiting time of all passengers in the case of the schedule generated by the k-th ant in the cycle t.
	(4.50)
	where:
	W* -the best criteria value discovered in all previous cycles,
	x -parameter given in advance (x( (0, 1)),
	tmax -total number of cycles that will be performed by algorithm.
	Let us explain relations \(4.49\) and \(4.50\
	
	
	Comparison of fuzzy numbers during search process



	The total waiting time �of all passengers in the�
	The problem of comparing fuzzy numbers has been t
	Kaufmann and Gupta’s \(1988\) method for compa�
	Step 1:Compare the “removal” of the numbers. If a
	Step 2:Compare the values that correspond to the highest grades of membership. If a number order can be determined after this comparison, the algorithm is ended. If a conclusion cannot be made after comparing the highest grades of membership, go to Step
	Step 3:Compare the length of the fuzzy numbers' bases.
	Let us note figure 4.22. The “Left removal” Rl\(
	�
	Figure 4.22 – Fuzzy number A’s “removal” compared
	The “removal” of fuzzy number A compared to real 
	(4.51)
	Figure 4.22 shows the “left removal,” “right remo
	(4.52)
	Fuzzy number A is smaller than fuzzy number B if
	(4.53)
	When R(A, a) = R(B, a), the second algorithmic step must be used and the values of the highest grades of membership must be compared. Let x*A and x*B denote the highest grades of membership in fuzzy sets A and B. Fuzzy number A is smaller than fuzzy 
	(4.54)
	When R(A, a) = R(B, a) and x*A = x*B, the third step must be used, which compares the bases of the fuzzy numbers. Fuzzy number A is smaller than fuzzy number B if the base of fuzzy number A is smaller than the base of fuzzy number B.
	
	Numerical example


	The model developed is tested on a greater number of numerical examples. The results for a transit network containing 50 transit lines are presented. The configuration of the network was generated randomly. The example was treated under the following ass
	T = 3 hours,
	? = 1,
	ni = 5, �i.
	Input data representing network configuration were organized in a way presented in tables 4.2 and 4.3.
	Table 4.2 – Intersecting points data for public t
	Transit line pair
	Travel time from the first station to the interse
	Pij
	Travel time from the first station to the interse
	Pji
	li
	lj
	pij1
	pij2
	pij3
	pji1
	pji2
	pji3
	1
	2
	0.4094
	10
	11
	12
	0.1492
	4
	4
	4
	1
	3
	0.7458
	12
	12
	12
	0.3655
	3
	4
	5
	1
	6
	0.5216
	6
	9
	12
	0.6677
	4
	5
	6
	1
	10
	0.2196
	8
	10
	12
	0.4071
	8
	13
	18
	1
	14
	0.3338
	6
	9
	12
	0.2158
	12
	12
	12
	1
	17
	0.3435
	10
	13
	16
	0.5414
	12
	13
	14
	1
	22
	0.774
	3
	4
	5
	0.1492
	10
	10
	10
	1
	24
	0.3104
	4
	5
	6
	0.337
	6
	7
	8
	1
	25
	0.779
	10
	10
	10
	0.7623
	4
	5
	6
	1
	29
	0.4387
	6
	7
	8
	0.5344
	6
	7
	8
	1
	32
	0.6509
	3
	4
	5
	0.2928
	2
	3
	4
	1
	37
	0.6612
	9
	11
	13
	0.2522
	12
	13
	14
	1
	46
	0.2768
	8
	11
	14
	0.2307
	6
	8
	10
	1
	50
	0.6414
	7
	10
	13
	0.1367
	10
	13
	16
	2
	7
	0.3703
	6
	9
	12
	0.309
	3
	5
	7
	2
	8
	0.5984
	7
	7
	7
	0.2288
	6
	7
	8
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	43
	47
	0.2803
	10
	14
	18
	0.3281
	8
	10
	12
	47
	48
	0.1234
	8
	8
	8
	0.4141
	5
	6
	7
	47
	49
	0.3022
	8
	11
	14
	0.5387
	6
	9
	12
	Table 4.3 – Transit lines data
	Line number (i)
	Hi [h]
	ni
	No intersecting points
	1
	0.5
	5
	15
	2
	0.6667
	5
	14
	3
	0.4167
	5
	13
	4
	0.5833
	5
	13
	.
	.
	.
	.
	.
	.
	.
	.
	48
	0.4167
	5
	5
	49
	0.75
	5
	4
	50
	0.5
	5
	4
	Achieved final results are decisions for each transit route (li) with ordinary number of starting time point dir. Data pairs i (dir) are presented below:
	1(3), 2(4), 3(3), 4(3), 5(4), 6(4), 7(5), 8(5), 9(4), 10(5), 11(4), 12(5), 13(4), 14(5), 15(5), 16(5), 17(1), 18(4), 19(4), 20(2), 21(5), 22(5), 23(5), 24(3), 25(3), 26(2), 27(3), 28(5), 29(1), 30
	In the example, the highest number of intersecting points per line was 15 and the lowest was 4. The best criteria value changes through cycles are shown in figure 4.23.
	�
	Figure 4.23 – The best criteria value changes thr
	Three curves shown in figure 4.23 represent the lowest possible, expected and the maximum possible waiting time values W*. Relatively fast discovery of a good solution can be seen in figure 4.23. The total number of ants was equal to 10. Computer experim
	Summary, conclusions and recommendations for future research
	Summary and conclusions

	Many real-world problems could be modeled as discrete optimization problems; therefore a need to develop tools capable of solving such problems efficiently is significant. There are numerous techniques available to solve discrete optimization problems. S
	In the last couple of decades, metaheuristic algorithms have increasingly been used in solving discrete optimization problems. Early stages of metaheuristics development include the following techniques: simulated annealing, genetic algorithms and tabu s
	Many Transportation Engineering problems can be addressed by discrete optimization. Furthermore, numerous transportation engineering parameters are characterized by
	uncertainty, subjectivity, and imprecision. Human operators, dispatchers, drivers, and passengers often use subjective knowledge or linguistic information on a daily basis while they make different decisions. The entire environment in which decisions sho
	This dissertation has two parts. The first part o
	Additionally, in this research the Stochastic Vehicle Routing problem is considered on well-known set of nodes (statistical data about node demand is available). Demands at nodes are considered to be random variables. The problem was attacked by sequen
	The entire tool would be used as decision support
	The second part of the dissertation is focused on an attempt to develop tool capable of solving discrete optimization problems characterized by uncertainty. To solve such problems, a metaheuristic approach is proposed based on a combination of the existi
	The approach was tested on the following two problems:
	Stochastic Vehicle Routing Problem and
	Scheduling Synchronization in Public Transit.
	In the Stochastic Vehicle Routing Problem, the source of uncertainty was node demand. Very often only approximate values of demand at nodes are known. Sometimes it is quite difficult and very costly to collect relevant statistical data and to make accura
	The developed Fuzzy Ant System was successful in producing sets of routes for the problem instances considered.
	The average waiting times while making transfers are the direct consequence of the schedule synchronization. While making schedule synchronization, it is necessary to try to minimize the total waiting times of all passengers at transfer nodes in the tran
	The Swarm intelligence approach has huge potential. The approach offers a new way of modeling different complex systems. Instead of building centralized control and extensive preprocessing, the system will relay on direct or indirect interaction among si
	The main disadvantage of Swarm Intelligence models is their possible unpredictable behavior. This occurs because of the lack of detailed understanding of the rules that agents use to interact in nature. Better understanding of the rules in nature is cruc
	Dissertation contribution

	The dissertation contributions are as follows:
	Metaheuristic algorithms have increasingly been u
	Many real life problems, besides being of combinatorial nature, are characterized by the uncertainty associated to one or more of their independent parameters. In order to treat these problems using the metaheuristic approach, the Fuzzy Ant System is pro
	The Stochastic Vehicle Routing Problem is considered in two its variations and two new approaches to the problem are proposed as follows:
	Sequential usage of the developed Bees System and Approximate Reasoning Algorithm developed from numerical example is proposed to treat the problem when demand at nodes is described by known probability density function.
	The Fuzzy Ant System is proposed to treat the problem when appropriate fuzzy numbers describe stochasticity associated to the demands at nodes.
	The Fuzzy Ant System approach to the Scheduling Synchronization in Public Transit problem is proposed.
	Recommendations for future research

	In future research, one of the main goals should be the exploration of the different types of artificial bee organizations and interactions and their influence on the dynamics of the population. There are questions relating to the above mentioned charact
	Swarm Intelligence (Ant System) has already been applied in some other engineering areas such as robotics. The results obtained are also very good. In further research, models inspired by the developed Bee System could be created for different transpor
	The developed Bee System was employed as the first step in the process of solving the Stochastic Vehicle Routing Problem. The second step in the proposed solution was development (based on set of input output data pairs) and employment of a Fuzzy Logic
	The Fuzzy Logic based controller had an antecedent part containing just variables associated with remaining vehicle capacity and demand characteristics of successive node. Future research in this area should explore the possibilities of incorporating dis
	A short description of some of the potential applications of the Bee System in development of Artificial Systems aimed to solve complex problems in transportation engineering is provided. The following examples were chosen among a great number of potenti
	Planning and designing the transit, airline, or utility networks is an extremely complex planning task combinatorial by its nature. The chosen network shape and the vehicle frequency on individual links directly affect the business results of the operato
	The classical vehicle routing problem consists of finding the set of routes that minimizes transport costs. Further variations of the classical vehicle routing problem include existing few depots in the network, doing service with a few types of differen
	The highway alignment problem assumes selection o
	Different versions of the Dial-A-Ride problem are found in every day practice: transportation of people in low-density areas, transportation of the disabled and elderly persons, and parcel pick-up and delivery service in urban areas are some of the examp
	The Gate Assignment Problem represents the assignment of arriving aircraft to available gates. During the last decade, with the increase in the number of flights and number of passengers in air transportation, the airport gate assignment problem has beco
	Berthing time of ships carrying containers accounts for a considerable portion of the journey. Decreasing the turnaround time at port would result in a reduction of total traveling time of ships and accordingly a reduction in the cost of container transp
	Currently there is a variety of metaheuristic algorithms and a direction of future research would be comparison of the results obtained with the Bee System versus results obtained with the other techniques. Based on the comparison it is possible to make
	One of directions for future research would be convergence analysis of Bee System algorithm.
	Taking into account the Fuzzy Ant System and its application to the Stochastic Vehicle Routing Problem, it should be considered as a step in future research, application of tour improvement heuristic on the entire set of vehicle routes produced by each a
	Additional sources of uncertainty when Scheduling Synchronization is considered could be travel time between successive nodes and/or dwelling time. Both values could be treated as approximate known values. A possible direction of future research regardin
	The Fuzzy Ant System has been tested on two examples. In order to prove its suitability to provide solutions for combinatorial optimization problems where one or more of the independent variables are characterized by uncertainty, the approach should be t
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