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Abstract 

We present an overview of our theoretical and experimental work on a novel type of 

semiconductor lasers – quantum well (QW) lasers with asymmetric barrier layers (ABLs). Our 

experimental work supports our theoretical derivations — ABL QW lasers demonstrate 

superior operating characteristics as compared to conventional QW lasers. In particular, the 

threshold current is lower and more temperature-stable, the light-current characteristic is more 

linear, and the wall-plug efficiency is higher in ABL lasers. 

1. Introduction 

Low lasing threshold, as well as temperature-stable and high-power operation, have always been 

desirable in semiconductor lasers [1]–[13]. In conventional diode lasers with a quantum-confined 

active region, a significant fraction of electrons and holes does not enter into the active region and thus 

does not contribute to stimulated recombination therein. Instead, this fraction is consumed by 

spontaneous recombination in the waveguide region [optical confinement layer (OCL)], wherein the 

carriers are initially injected from the cladding layers and which contains (in its central part) the active 

region [Figure 1(a)]. The parasitic electron-hole recombination outside a low-dimensional active 

region presents a major challenge in conventional injection lasers. Due to this recombination, the laser 

characteristics are adversely affected – the threshold current is increased and more temperature-

sensitive and the light-current characteristic (LCC) is sublinear, even in the absence of heating effects. 

To overcome the limitations placed on the operating characteristics by recombination outside the 

active region, novel designs of semiconductor lasers were proposed – one using double tunnelling-

injection (injection of both electrons and holes) into the active region [14]–[22] and the other using 

asymmetric barrier layers (ABLs) [15]–[17] [one on each side of the active region – see Figure 1(b, c)]. 

The active region in these novel lasers can be in the form of either a single quantum well (QW) or a 

single layer with quantum dots. 

Here we present an overview of our theoretical [23]–[27] and experimental [28]–[32] work on ABL 

QW lasers. Our experimental work supports our theoretical derivations — ABL QW lasers 

demonstrate superior operating characteristics as compared to conventional QW lasers. In particular, 

the threshold current is lower and more temperature-stable, the LCC is more linear, and the wall-plug 

efficiency is higher in ABL lasers. 
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2. ABL laser structures 

Figures 1(b, c) show the schematic energy 

band diagrams of ABL lasers. The barrier 

layers are asymmetric in that they have 

considerably different heights for the carriers 

of opposite signs. The layer located on the 

electron- (hole-) injecting side of the structure 

[left- (right-) hand side in Figs. 1(b, c)] 

provides a low barrier (ideally no barrier) for 

electrons (holes) [so that it does not prevent 

electrons (holes) from easily approaching the 

active region] and a high barrier for holes 

(electrons) [so that holes (electrons) injected 

from the opposite side of the structure do not 

overcome it]. 

The use of ABLs in the structure of 

Figure 1(b) will thus secure that there will be 

no electrons and holes simultaneously (and 

hence no parasitic electron-hole 

recombination) outside the active region. In 

the structure of Figure 1(c), there will 

however be both electrons and holes (and 

hence some electron-hole recombination) not 

only in the active region but also in two 

intermediate layers located between the active 

region and each of the ABLs. The presence of 

these thin intermediate layers may be 

required in order to facilitate the flux 

switches during epitaxial growth process and 

to prevent from the active region re-

evaporation [33, 34]. 

We discuss below the calculated and 

experimental characteristics of ABL QW 

lasers. 

Figure 1. Schematic energy band diagrams of a 

conventional laser (a) and ABL lasers without (b) 

and with (c) intermediate layers. The vertical 

arrows show the electron-hole recombination. 

 

3. Threshold characteristics 

The threshold current density of a QW laser is given as the sum of the current densities of spontaneous 

radiative recombination in and outside the QW, 

outside
thspon,

QW
sponth jjj  .    (1) 

The current densities of spontaneous radiative recombination in and outside the QW are 

QWQW
2D

QW
spon pneBj  ,    (2) 

outside
th

outside
th3D

outsideoutside
thspon, pnBebj  ,  (3) 

where e is the electron charge, B2D is the spontaneous radiative recombination coefficient for a two-

dimensional region (QW) (see [35] for the expression for B2D), n
QW

 and p
QW

 are the two-dimensional 

electron and hole densities in the QW, b
outside

 is the thickness of the region outside the QW wherein the 

parasitic electron-hole recombination occurs, B3D is the spontaneous radiative recombination 

(a) 

(b) 

(c) 
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coefficient for the material of that region (see [5, 35] for the expression for B3D), and 
outside

thn  and 

outside

thp  are the free electron and hole densities in that region at the lasing threshold. 

In conventional QW lasers (CQWLs), b
outside

 is the thickness of the entire OCL and hence is large 

[300 nm in the structure of Figure 5(a)]. In the ABL QW laser with intermediate layers, b
outside

 is the 

sum of the thicknesses of the intermediate layers, which are very thin [5 nm each in the structure of 

Figure 5(b)], and hence is very small. In the ABL QW laser without intermediate layers, b
outside

 is 

simply zero since there is no region outside the QW wherein the electron-hole recombination occurs. 

Consequently, the parasitic recombination current density outside
thspon,j  is high in CQWLs, low in the ABL 

QW laser with intermediate layers, and zero in the ABL QW laser without intermediate layers. This is 

illustrated in figures 2 and 3, which show the calculated threshold current density against cavity length 

and temperature, respectively. As seen from the figures, the threshold current density is considerably 

higher in the reference CQWL as compared to both ABL QW lasers and there is no much difference 

between the threshold current density in the ABL QW lasers without and with intermediate layers. 

The temperature dependence of threshold current in semiconductor lasers is described by the 

parameter T0 termed as ‘characteristic temperature’ and defined as 

1
th

0

ln
















T

j
T .    (4) 

As clear from (4), the higher T0, the more temperature-stable is jth. 

In CQWLs, the temperature dependence of jth is primarily due to such dependence of the parasitic 

recombination current density in the entire OCL, outside
thspon,j , and hence T0 is low. In the ABL QW laser 

without intermediate layers, the temperature dependence of jth is merely due to such dependence of the 

recombination current density in the QW, 
QW
sponj , and hence T0 is very high (ideally, T0 calculated for 

QW
sponj  is equal to T – see [23]). In the ABL QW laser with intermediate layers, the temperature 

dependence of jth is due to such dependence of both recombination current densities in and outside the 

QW. For the cavity lengths considerably exceeding the shortest cavity length (the minimum tolerable 

cavity length below which the lasing is impossible to attain – see [36]), the contribution of the 

parasitic recombination in the intermediate layers is small and hence T0 is high also in this ABL QW 

laser [23]. This is illustrated in Figure 4, which shows the calculated T0 against cavity. 

Figures 6 and 7 show the threshold characteristics measured in our experimental ABL QW laser 

structure with intermediate layers [the structure of Figure 5(b)] – T0 against reciprocal cavity length, 

and T0 and jth against temperature. For comparison, the characteristics measured for the reference 

CQWL structure [the structure of Figure 5(a)] are also presented. As seen from the figures, T0 is 

considerably higher in the ABL QW laser as compared to the reference CQWL. In particular, at the 

operating temperature 20
 
ºC, T0 is 143 K in the ABL QW laser while it is 99 K in the reference CQWL. 

 

4. Power characteristics 

The LCC of a diode laser (the output optical power P versus injection current density j) is given by 

)()()( intth jjjS
e

jP 





,    (5) 

where   is the photon energy, S = WL is the cross-section of the junction, W is the lateral size of the 

device, L is the cavity length, and )(int j  is the internal differential quantum efficiency (efficiency of 

stimulated recombination). 

In the CQWL, the internal quantum efficiency is a decreasing function of the injection density. The 

following expression was derived for int in [37]–[39]: 
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Figure 2. Threshold current density vs. cavity 

length in the ABL QW lasers without and with 

intermediate layers and reference conventional 

quantum well laser (CQWL). 

Figure 3. Threshold current density vs. 

temperature in the ABL QW laser without 

intermediate layers and reference CQWL. 
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Figure 4. Characteristic temperature vs. cavity 

length in the ABL QW lasers without and with 

intermediate layers and reference CQWL. 

 

Figure 6. Experimental (symbols) and 

calculated (curves) dependences of the 

characteristic temperature on the reciprocal 

cavity length in the ABL QW laser with 

intermediate layers (solid curve, dark squares) 

and reference CQWL (dashed curve, open 

squares). 

 

Figure 5. Energy band diagrams of the 

experimental structures: (a) reference CQWL 

and (b) ABL QW laser with intermediate 

layers. The lasing wavelength at 20
 
ºC is 

833.8 nm in the CQWL and 835.6 nm in the 

ABL QW laser. 
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where harmonthcapt,  j  and geomthcapt,  j  are the harmonic and geometric means of the current 

densities th,ncapt,j  and thp, capt,j  of electron and hole capture into the QW at the lasing threshold, 
















 thp, capt,th,ncapt,harmonthcapt,

11

2

11

jjj
,   (7) 

    th,pcapt,th,ncapt,geomthcapt, jjj  .    (8) 

As seen from (6), the higher the parasitic recombination current density at the lasing threshold, 
outside

thspon,j , the stronger the decrease in int with increasing j. Hence, int decreases considerably with j 

and the LCC is strongly sublinear in the CQWL. As already mentioned above, outside
thspon,j  is very low in 

the ABL QW laser with intermediate layers and simply zero in the ABL QW laser without 

intermediate layers. Hence, int decreases only slightly with increasing j in the ABL QW laser with 

intermediate layers and constant (unity) in the ABL QW laser without intermediate layers; 

consequently, the LCC is just slightly sublinear in the ABL QW laser with intermediate layers and 

virtually linear in the ABL QW laser without intermediate layers. This is illustrated in Figures 8-10, 

which present the following characteristics calculated as functions of the injection current: the 

parasitic recombination current outside the QW, the internal differential quantum efficiency, and the 

LCC. 
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Figure 12 shows the 

experimental LCC in the ABL 

QW laser and reference CQWL 

of Figure 11. As seen from 

Figure 12, at both operating 

temperatures 20 and 60
 
ºC, the 

LCC is more linear and the 

output power is higher in the 

ABL laser. 

Figure 13 shows the 

experimental wall-plug 

efficiency in the ABL QW laser 

with intermediate layers and 

reference CQWL of Figure 5. 

As seen from Figure 13, at both 

operating temperatures 20 and 

75
 
ºC, the efficiency is distinctly 

higher in the ABL laser. 

Figure 7. Experimental threshold current density (squares, left axis) 

and characteristic temperature (circles, right axis) vs. temperature: 

dark symbols – ABL QW laser with intermediate layers, open 

symbols – reference CQWL. The cavity length is 0.5 mm. 

5. Conclusions 

We have presented an overview of our theoretical and experimental work on a novel type of 

semiconductor lasers – quantum well (QW) lasers with asymmetric barrier layers (ABLs). Our 

experimental work supports our theoretical derivations — ABL QW lasers demonstrate superior 

operating characteristics as compared to conventional QW lasers. In particular, the threshold current is 

lower and more temperature-stable, the LCC is more linear, and the wall-plug efficiency is higher in 

ABL lasers. 
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Figure 8. Parasitic recombination current vs. 

injection current in the ABL QW laser with 

intermediate layers and reference CQWL. 
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Figure 10. Light-current characteristic in the 

ABL QW lasers without and with 

intermediate layers and reference CQWL. 

 

Figure 13. Experimental wall-plug efficiency 

vs. injection current in (1) the ABL QW laser 

with intermediate layers and (2) reference 

CQWL of Figure 5 at (a) 20 and (b) 75°C. 
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Figure 9. Internal differential quantum efficiency 

vs. injection current in the ABL QW lasers without 

and with intermediate layers and reference CQWL. 

 

Figure 11. Energy band diagram of the 

experimental ABL QW laser used for the 

measurements in Figure 12. 

 

Figure 12. Operating current vs. output optical 

power measured in the ABL QW laser of 

Figure 11 and CQWL at 20ºC (a) and 60ºC (b). 
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