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ABSTRACT: Neospora caninum and Hammondia heydorni are morpho-
logically and phylogenetically related coccidians that are found in dogs.
New diagnostic genetic loci, based on random-amplified polymorphic
DNA–polymerase chain reaction (RAPD-PCR), were developed to aid
in the detection of H. heydorni–like parasites and to discriminate them
from N. caninum and other related coccidians of dogs. On the basis of
the data obtained from 5 random decamers, H. heydorni (Manhattan-1)
and N. caninum (NC1) were characterized by distinct banding patterns
(similarity index 5 0.068). High-stringency PCR assays were developed
from the sequences of 2 cloned bands (GenBank BZ592549 and
BZ592593), uniquely amplified from H. heydorni. Interestingly, using
these primers, PCR amplification was achieved only from 2 of the 5
isolates presumed to represent H. heydorni. The same result was ob-
tained from these 5 isolates using a recently described PCR assay di-
rected to the H. heydorni internal transcribed spacer-1. It is concluded
that H. heydorni and N. caninum are genetically distinct and that such
tools may be useful for more detailed characterization of the diversity
of related parasites occurring in dogs.

Neospora caninum is a parasite of livestock and companion animals

and is an important cause of bovine abortion in dairy cattle worldwide
(Dubey, 1999). It is transmitted transplacentally, by the ingestion of
infected tissues and by the ingestion of food and water contaminated
with oocysts excreted in the feces of dogs. The domestic dog is the
only known definitive host for N. caninum (McAllister et al., 1998).
The role of the dog in the epidemiology of N. caninum is currently
unclear because experimentally infected dogs excrete only a few oocysts
and the parasite has been isolated only twice from naturally infected
dogs (Basso et al., 2001; S̆lapeta, Modry et al., 2002). Furthermore, N.
caninum oocysts resemble morphologically the oocysts of a related coc-
cidian, Hammondia heydorni, and there is no simple method to distin-
guish them. Little is known about the life cycle of H. heydorni or wheth-
er additional Hammondia species occur that use dogs as their definitive
host (Dubey et al., 2002; Schares et al., 2002; S̆lapeta, Modry et al.,
2002).

Until recently, the only genetic locus characterized for H. heydorni
was the 18S ribosomal DNA (Dubey et al., 2002). More genetic data
are needed to determine how distinct H. heydorni and related species
are from N. caninum and to differentiate among them. Recently, H.
heydorni was discriminated from N. caninum using primers based on
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TABLE I. Hammondia heydorni isolates and their amplification results.

Date received
Host/isolate
designation

Amplification with

CT-1/CT-2,*
Common

NP6/NP21,
Neospora
caninum

JS4/JS5,
H. heydorni

HhAP7F&R,†
HhAP10 F&R†

4 February 1999
15 October 1998
4 April 2001

1988‡
17 April 2002

Dog/Manhattan-1
Dog/Virginia-1
Dog/Mississippi-1
Dog/Alabama-1‡
Dog/Brazil-1

Yes
Yes
Yes
Yes
Yes

No
No
No
No
No

Yes
Yes
No
No
No

Yes
Yes
No
No
No

* Newly designed from ITS-1 sequences, amplifying DNA from Toxoplasma gondii, N. caninum, and Hammondia sp.
† Newly designed from the sequences of the polymorphic RAPD bands unique to H. heydorni.
‡ Blagburn et al. (1988) and Dubey et al. (2002).

TABLE II. Primers and PCR conditions.

Primer name, sequence (59–39) Target DNA (band size [bp]) Cycling conditions*; (reference)

AP7, gtgatcgcag
AP10, ccggtgtggg
AP15, cggacgtcgc
AP17, tcacgatgca
AP22, ctgagacgga

DNA
DNA
DNA
DNA
DNA

6 45 (94 C/1 min, 36 C/45 sec, 72 C/1 min); (Dubey et al.,
2003)

HhAP7F, ggcagtgggcacatacag
HhAP7R, gcagtgcttcgagaatgc
HhAP10F, ccggagtacaatagcgctgcc
HhAP10R, ccacgaccgccaaatgatacaac

Hammondia heydorni DNA (517)

H. heydorni DNA (369) 6 10 (94 C/1 min, 65 C/1 min, 72 C/1 min), 20 (94 C/1
min, 60 C/1 min, 72 C/1 min); (this study)

CT-1, tgaatcccaagcaaaaca Toxoplasmatiid DNA (;400) 40 (94 C/1 min, 60 C/1 min, 72 C/1 min); (this study)
CT-2, gcgcgagccaagacatccat
JS4, cgaaatgggaagttttgtgaac H. heydorni DNA (;270) 35 (95 C/1 min, 65 C/1 min, 72 C/1.5 min); (Sl̆apeta,

Koudela et al., 2002)
JS5, cagcagctacatacgtaga
COC-1, aagtataagcttttatacggct Apicomplexan DNA (298–350) 40 (94 C/1 min, 60 C/1 min, 72 C/1 min); (Ho et al.,

1996†)
COC-2, cactgccacggtagtccaatac
NP6, cagtcaacctacgtcttct Neospora caninum DNA (328) 40 (94 C/1 min, 50 C/1 min, 72 C/2 min); (Yamage et

al., 1996)
NP21, gtgcgtccaatcctgtaac

* An initial denaturation at 95 C for 5 min and final extension at 72 C for 5 min added to all protocols.
† Original PCR conditions modified.

the first internal transcribed spacer (ITS-1) sequences of ribosomal DNA
(S̆lapeta, Koudela et al., 2002). The primers were designed from a re-
gion of the genome that is relatively conserved among many apicom-
plexans. Primers based on polymorphic sequences unique to H. hey-
dorni may unequivocally differentiate it from N. caninum and provide
an independent means of assessing genetic diversity among these related
canine coccidia. An approach for studying DNA polymorphisms with-
out the requirement of prior knowledge of the genome is the random-
amplified polymorphic DNA–polymerase chain reaction (RAPD-PCR)
(Welsh and McClelland, 1990; Williams et al., 1990). This technique
uses single oligonucleotide primers at low stringency to produce poly-
morphic DNA. The patterns generated using this technique provide a
rapid method for detecting genetic variation. Sequences obtained from
individual polymorphic fragments thus generated can enable the design
of primers for the PCR-based diagnosis and differentiation of closely
related species under more stringent conditions, yielding reproducible
results (Cere et al., 1996). In this study, we used RAPD-generated poly-
morphic fragments to design diagnostic primers to differentiate H. hey-
dorni from N. caninum and used them to explore the genetic diversity
among several canine coccidian isolates.

Information about the H. heydorni–like isolates used is given in Table
I. These isolates were considered as H. heydorni based on the mor-
phology of the oocysts (10.7 by 13.8 mm, n 5 50) and their inability

to amplify the target fragment with N. caninum–specific primers (Table
II). The NC1 isolate of N. caninum (Dubey et al., 1988) and the VEG
strain of Toxoplasma gondii (Dubey et al., 1996) were maintained as
tachyzoites in vitro in HCT-8 (ATCC CCL-244) cells. Isolates of Isos-
pora canis, Nemeséri, 1959, Sarcocystis tenella (Railliet, 1886), Moule,
1886, and H. hammondi, Frenkel and Dubey, 1975 were available as
sporocysts or sporulated oocysts.

To obtain DNA from H. heydorni, H. hammondi, S. tenella, and I.
canis, sporulated oocyst or sporocyst suspensions were washed by re-
peated centrifugation in distilled water to remove the potassium dichro-
mate. Each pellet was treated with 10–15 ml of 5.25% sodium hypo-
chlorite (on ice) to remove organic debris and then washed in water.
The oocysts were ruptured by 2–3 freeze–thaw cycles, followed by
grinding of the pellet in small volumes (about 30 ml) in a 0.2-ml mi-
crotissue grinder (Wheaton, Fischer Scientific, Pittsburgh, Pennsylva-
nia). The DNA was extracted from the homogenized suspensions using
DNAzol (MRC, Cincinnati, Ohio) according to the manufacturer’s in-
structions. Toxoplasma gondii and N. caninum DNA were isolated using
DNAzol from culture-derived tachyzoites. Canine DNA was isolated
from the blood of an uninfected dog using the same procedure. The
DNA preparations were suspended in distilled water and quantified
spectrophotometrically (DU 640, Beckman, Fullerton, California).

Five random decamers (Table II) were used to investigate microhet-
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FIGURE 1. RAPD-PCR fingerprints of Neospora caninum (A) and
Hammondia heydorni (B) with random primers AP7 (1), AP10 (2),
AP15 (3), AP17 (4), and AP22 (5). Polymorphic fragments of 1,084 bp
(1B) and 1,041 bp (2B) were cloned and sequenced. M 5 1 kb DNA
ladder (GIBCO BRL), Gaithersburg, Maryland.

FIGURE 2. PCR with de novo primers HhAP7 (a) and HhAP10 (b).
Specific amplification of 517-bp (a) and 369-bp (b) fragments noticed
only with Hammondia heydorni DNA (lanes A and B). No amplification
was noticed with negative control (N), Neospora caninum (C, D, and
E), Sarcocystis tenella (F), Isospora canis (G), Toxoplasma gondii (H),
H. hammondi (I), and canine DNA (J). M 5 1 kb DNA ladder (GIBCO
BRL).

FIGURE 3. Amplification of ;270-bp fragment from Hammondia
heydorni (A–B), 328-bp fragment from Neospora caninum (lanes C, D,
and E) and ;300-bp fragments from Sarcocystis tenella (F), Isospora
canis (G), Toxoplasma gondii (H), and H. hammondi (I) DNA using
previously described primers (refer Table II). M 5 1 kb DNA ladder
(GIBCO BRL).

erogenity between the isolates of N. caninum (NC1) and H. heydorni
(Manhattan-1). The Manhattan-1 isolate was chosen because of high
oocyst count and apparent absence of other parasites. The RAPD-PCR
reactions were set up in 25-ml volumes in 0.2-ml thin-walled PCR tubes
as described by Dubey et al. (2003). The PCR assays were run 3 times
to ensure reproducibility. Electrophoresis was performed at 5 V/cm (90–
100 V) and documented using ProExpress Gel Documentation system
(Perkin Elmer, Wellesley, Massachusetts). Data from each isolate–prim-
er combination were combined, and the similarity coefficient between
the isolates was calculated (Nei and Li, 1979).

Fragments unique in the RAPD fingerprint of H. heydorni DNA were
selected for cloning and sequencing. The region of the gel containing
the band was excised and placed in a microcentrifuge tube. The DNA
was extracted from the gel piece using GFX PCR gel band purification
kit (Amersham, Piscataway, New Jersey), reamplified using the original
random primer, and cloned into TOPO-TA vectors (Invitrogen, Carls-
bad, California). The vectors were inserted into competent DH5a cells
(Invitrogen) and cultured overnight according to the manufacturer’s in-
structions. Colonies with inserts were selected by blue–white differen-
tiation, and white colonies were cultured overnight in Luria–Bertani
broth at 37 C. Plasmids were extracted using QIAprep Spin Miniprep
Kit (Qiagen, Valencia, California), and DNA was quantified. Sequenc-
ing reactions were performed using the Big Dye terminator system (Ap-
plied Biosystems, Foster City, California) and sequenced in an ABI
3100 sequencer. The sequence chromatograms were edited using Se-
quencher software (Genecodes Corp., Ann Arbor, Michigan). BLAST
(http://www.ncbi.nlm.nih.gov/BLAST/) searches were performed to de-
termine whether the sequences were similar to any of the previously
published sequences of H. heydorni or any other parasite.

De novo primers were designed from the cloned RAPD products
using the Gene Tool software program (Bio Tools Inc., Edmonton, Al-
berta, Canada). Primer pairs were optimized for amplification of the
target fragments from H. heydorni DNA. To ascertain the specificity of
these primers for H. heydorni, amplification was attempted from DNA
of other apicomplexans (N. caninum, S. tenella, I. canis, T. gondii, and
H. hammondi), canine DNA, and negative controls without any DNA.
The quality of the H. heydorni DNA samples was verified using newly
designed primers complementary to portions of the ITS-1 sequences
conserved among T. gondii, N. caninum, and Hammondia sp. (Table
II).

Experiments were conducted to determine the minimum amount of
parasite DNA required to produce a visible band, using the newly de-
signed PCR assays. PCR reactions were run, using serial 10-fold dilu-
tions of DNA (representing 10,000 oocysts to 0.001 oocyst). The lowest
number of oocyst(s) yielding a detectable band was considered to be
the threshold level. For comparative purposes, the ITS-1 primers (S̆la-
peta, Koudela et al., 2002) were used under the same PCR conditions.

All 5 random primers produced DNA fingerprint patterns with both
N. caninum and H. heydorni DNA (Fig. 1). The reproducible banding
patterns were distinct for each template, with monomorphic fragments
being amplified using only 2 primers. Of the 44 fragments amplified by

the 5 primers in total (21 for N. caninum and 23 for H. heydorni), only
3 (1 using primer AP7 and 2 using primer AP15) were shared. On the
basis of the combined data from all the primers, a low similarity co-
efficient of 0.068 was established. The DNA fingerprint patterns gen-
erated by the 2 parasites in this study showed significant heterogeneity.
The low similarity coefficient indicated that the parasites, although mor-
phologically similar, were genetically distinct. It would be worthwhile
to investigate the microheterogeneity among these parasites using a
larger panel of random primers.

Two intense and reproducible bands of ;1,000 bp (designated hence-
forth as AP7 and AP10 fragments), amplified only from the H. heydorni
DNA using primers AP7 and AP10, respectively, were selected for clon-
ing and sequencing (GenBank BZ592549 [AP7] and BZ592593
[AP10]). The fragments bore no significant similarity to any published
sequences for H. heydorni, N. caninum, or any other apicomplexan
when the public database was queried with BLAST. Given the nature
of distinct banding patterns between N. caninum and H. heydorni, it is
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possible that these fragments are unique to H. heydorni and can be
valuable genetic markers for the unequivocal differentiation of H. hey-
dorni from N. caninum. Such polymorphic fragments have been suc-
cessfully used in the design of specific primer sets capable of differ-
entiating other coccidians (Cere et al., 1996).

Two sets of primers were designed, 1 each from the AP7 fragment
(HhAP7 forward and reverse) and AP10 fragment (HhAP10 forward
and reverse). Under optimal thermal cycling conditions (Table II), a
single amplification product was obtained from each assay. As estimated
by their migration in an agarose gel, the fragments appeared to corre-
spond to the sizes expected (517 and 369 bp for AP7 and AP10, re-
spectively), based on their design (Fig. 2). The optimal MgCl2 concen-
tration was determined to be 1 mM for AP7 fragment and 1.25 mM for
the AP10 fragment.

The primers designed from the 2 fragments were found to specifically
amplify the DNA from 2 H. heydorni isolates (Manhattan-1 and Vir-
ginia-1) obtained from dogs of 2 different localities in the United States
(Fig. 2). No amplicon was produced from the templates of the other
canine apicomplexans, the host DNA, or negative controls, providing
evidence for specificity of the primers. The suitability of these other
DNA samples as PCR templates was confirmed by the amplification of
fragments of expected length using appropriate primer sets. Thus,
whereas an amplicon of 328 bp was produced from the N. caninum
DNA using the NP6/NP21 primer sets (Yamage et al., 1996), fragments
of approximately 300 bp were amplified using the common apicom-
plexan ssrRNA primers (Ho et al., 1996) from S. tenella and I. canis,
T. gondii, and H. hammondi DNA (Fig. 3).

The sensitivity assays revealed that whereas the new primers could
detect 100 oocysts, the ITS-1 primers were able to produce a signal
with 1 oocyst in a 25-ml reaction. It is possible that a large proportion
of these oocysts was degraded, and thus the number of intact oocysts
contributing to the template was much less than assumed. The threshold
should be verified using high-quality DNA from fresh oocysts.

Effective amplification of the ;400-bp product was achieved from
all the 5 H. heydorni DNA samples using the toxoplasmatiid ITS-1
primers, confirming the presence of an adequate amount of amplifiable
template. The Manhattan-1 and Virginia-1 isolates, which gave positive
results using the primers constructed herein, also tested positive using
the previously published, H. heydorni–specific, ITS-1 primers (Fig. 3),
confirming their identity as H. heydorni. However, no amplification was
observed with the DNA of the other 3 H. heydorni isolates using the
de novo primers, H. heydorni ITS-1 primers, or the N. caninum–specific
primers. Thus, the evidence suggests that these 3 isolates are neither N.
caninum nor H. heydorni.

The results of amplification with the 5 pairs of primers (common
toxoplasmatiid ITS-1, N. caninum–specific, H. heydorni–specific ITS-
1, and 2 H. heydorni–specific de novo primers) indicate that more than
1 Hammondia-like parasite might be present in dogs (Table I). It has
been proposed that H. heydorni encompasses more than 1 species (Dub-
ey et al., 2002). Results of PCR obtained using the 2 new primer pairs
reported herein provide additional support for the genetic distinction
between H. heydorni and N. caninum and suggest a greater diversity
between the morphologically similar parasites presently grouped as H.
heydorni. Further studies are warranted to elucidate the identity of these
hitherto uncharacterized parasites.

We thank Gena Groner, Entomology Branch, Centers for Disease
Control and Prevention, for her assistance with the sequencing.

LITERATURE CITED

BASSO, W., L. VENTURINI, M. C. VENTURINI, D. E. HILL, O. C. H. KWOK,
S. K. SHEN, AND J. P. DUBEY. 2001. First isolation of Neospora
caninum from the feces of a naturally infected dog. Journal of
Parasitology 87: 612–618.

BLAGBURN, B. L., D. S. LINDSAY, L. J. SWANGO, G. L. PIDGEON, AND K.
G. BRAUND. 1988. Further characterization of the biology of Ham-
mondia heydorni. Veterinary Parasitology 27: 193–198.

CERE, N., J. F. HUMBERT, D. LICOIS, M. CORVIONE, M. AFANASSIEFF, AND

N. CHANTELOUP. 1996. A new approach for the identification and
the diagnosis of Eimeria media parasite of the rabbit. Experimental
Parasitology 82: 132–138.

DUBEY, J. P. 1999. Recent advances in Neospora and neosporosis. Vet-
erinary Parasitology 84: 349–367.

———, B. C. BARR, J. R. BARTA, I. BJERKAS, C. BJORKMAN, B. L.
BLAGBURN, D. D. BOWMAN, D. BUXTON, J. T. ELLIS, B. GOTTSTEIN,
A. HEMPHILL, D. E. HILL, D. K. HOWE, M. C. JENKINS, Y. KOBAY-
ASHI, B. KOUDELA, A. E. MARSH, J. G. MATTSSON, M. M. MCAL-
LISTER, D. MODRY, Y. OMATA, C. A. SPEER, A. J. TREES, A. UGGLA,
S. J. UPTON, D. J. L. WILLIAMS, AND D. S. LINDSAY. 2002. Rede-
scription of Neospora caninum and its differentiation from related
coccidia. International Journal for Parasitology 32: 929–946.

———, J. L. CARPENTER, C. A. SPEER, M. J. TOPPER, AND A. UGGLA.
1988. Newly recognized fatal protozoan disease of dogs. Journal
of American Veterinary Medical Association 192: 1269–1285.

———, J. K. LUNNEY, S. K. SHEN, O. C. H. KWOK, D. A. ASHFORD,
AND P. THULLIEZ. 1996. Infectivity of low numbers of Toxoplasma
gondii oocysts to pigs. Journal of Parasitology 82: 438–443.

———, C. SREEKUMAR, D. S. LINDSAY, D. E. HILL, B. M. ROSENTHAL,
L. VENTURINI, M. C. VENTURINI, AND E. C. GREINER. 2003. Bes-
noitia oryctofelisi n. sp. (Protozoa: Apicomplexa) from domestic
rabbits. Parasitology 126: 521–539.

HO, M. S. Y., B. C. BARR, A. E. MARSH, M. L. ANDERSON, J. D. ROWE,
A. F. TARANTAL, A. G. HENDRICKX, K. SVERLOW, J. P. DUBEY, AND

P. A. CONRAD. 1996. Identification of Neospora parasites by PCR
amplification and small-subunit rRNA sequence probe hybridiza-
tion. Journal of Clinical Microbiology 34: 1203–1208.

MCALLISTER, M. M., J. P. DUBEY, D. S. LINDSAY, W. R. JOLLEY, R. A.
WILLS, AND A. M. MCGUIRE. 1998. Dogs are definitive hosts of
Neospora caninum. International Journal for Parasitology 28:
1473–1478.

NEI, M., AND W. H. LI. 1979. Mathematical model for studying the
variation in terms of restriction endonucleases. Proceedings of the
National Academy of Science of the United States of America 76:
5269–5273.

SCHARES, G., A. O. HEYDORN, A. CÜPPERS, H. MEHLHORN, L. GEUE, M.
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