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500 MW x $2 million/MW (in average) = $1 billion
00 MW $2-millionMW.G \— $0.8 bill
400 MW for only $0.65 billion or $1.625 million/MW

100 MW for $0.35 billion or $3.5 million/MW

HOW ABOUT EXPLORING TRADE-OFF RANGE ?
Providing that

ALL CALCULATIONS ARE BASED ON DATA OFFERED
BY MANUFACTURERS & DEVELOPERS
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1- WFLO, a background (1)

It 1s the problem of how to design a wind farm so that
desirable quantity (P, CF, etc.) i1s maximized and/or
undesirable quantity (cost, noise, etc.) 1s minimized.

WFLO

Design
Variables

N

Turbines’ siting
Turbines’ sizes
Turbines’ heights
Owners’ Decision

C . Optimization Objective
onstraints -
Methodology Function(s)
N GA P
Farm Area Other Bio-Inspired Cost Of Energy
Total Cost MILP & MINLP CF
Noise Level MCO
PSO Land Usage
other Multi-Objective




1- WFLO, a background (2)
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The first WFLO work has been published in 1994,
1994-2005: no significant contributions have been added,
2005-2009: few remarkable contributions,

2009-2014: wide awareness and variety in approaches,

Very few studies considered turbine selection and/or hub

height variation,
= Nobody implemented COMMERCIAL turbine selection,
= Nobody implemented general realistic C representation,

= Nobody considered more than TWO objective functions.



2- Research Objectives

“The proposed work aims to add the
commercial turbine selection and general
realistic C, representation to the WFLO,
combined with hub height wvariation and
considering three objective functions”

The investigated parameters:

= Selection among 61 HAWT (1.5 ~3 MW)

= Hub height ( 80 m< #<140 )

" Average spacing (3.5 p<5<6 D)

= Reference wind speed (8 m/s <wvirer <12 m/s) (@ 60

m
6



UNIVERSITY OF

CALGARY

3- Wake Modelling

Jensen’s Wake Model: Jensen (1983), Katic et al. (1986), and Frandsen (1992)

Riw =R [1—alj /1-2alj ]T1/2 +(0.5/in(

SULI =(1—V1—CIT] J[1+aljAyiif /R [1

I > Ui = Ulo,i (1-6U17i)

Udloi=Uref [In(Hli]zlo )/

Y Ground level ¥

A Schematic front view, parallel to the wind direction, Y. 7




0.9

0.7

06

051

0.4H

0.3H

0.2H

0.1H

N
0.8

UNIVERSITY OF

CALGARY

4- Commercial Turbines & Coefficients
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= 61 numerical power curves are fitted with 9™ degree polynomial,
= 8 cr-cpc and 3 cr-cp,a, could be found 1n the manuals,

= Neither Frandsen’s formula nor ct = 0.88 is accurate,

= Each of c7-cp,c, and cr-cp,a has almost a general curve,

= 7 should be related to c2 instead of U.



5- Power Calculations
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= Total output power
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» Farm capacity factor

IP Installed Power Py Rated Power



@ 6- Simple Cost Analysis (1)
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. Construction
u Only the ICC 1S Contingency Finance
1 Assembly & 6
considered, hsernbly 8

Turbine

= Turbines’ cost is the major

cost component Electrical Interface
5
\N = Roads and Civil __}34
- The ICC Of 1 M at H > swaor:k ' /1\, Tusrsb;:e

80 m is considered unity 3,5/
and denoted Capital Cost o
Index (CCT), permits

Foundations

\_Drivetrain

= The tower cost =0.15/0.68

= 0.2206 of the CCI , Typical Installed .Capital Cost (ICC) breakdown of an onshore
wind power project [2011 Cost of Wind Energy Review, NREL Report, 2013].

* An increase in A4 by 1 m costs 0.2206/80 = 0.0027575 of the CCT ,

10



6- Simple Cost Analysis (2)
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= (Capital Cost Index per Installed Power

)12 )Tk
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/- Optimization
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combined into one Total Objective Function:

The 3 objective functions are scaled, adapted, weighted, and

TOF=wIP fLP1/P+wlCF FLCF1/CF +4

WIC FLC CCL/P

WP+ WwICF+ wlC=1.0

* Scaling: turning all terms 1n to the same order of magnitude,

*  Minimum turbines’ proximity = 3 D
=  Tolrun = 101 (default = 109),
=  confFun = 107 (default = 10-°),

. PopulationSize =10~ 50 nvars & Generations = 3,000.

12



UNIVERSITY OF

CALGARY

8- Results and Discussion (1)

Case 1: Turbines In Line (parallel to wind direction), N =6
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8- Results and Discussion (2)

Case 1: Turbines In Line (parallel to wind direction), N =6

o
~l

1.1 x , \ 1.1
> O
% 09 R D Q 09
T —P Q
2 ——CF Q
o . |/—c¢ccCiorP || O
(_‘;- 08 ——Ref. VHY || O °°
5 _— Ee: VHH g
er. o
N £
© o
g =
(@]
=

06

o
o

05 | i ‘ 05

1 | 1
4 4.5 5 5.5 6 4 4.5 5 5.5 6

S S
Normalized P & CCI for case 1, U, = 10 m/s @ 60 m.




@ 8- Results and Discussion (3)
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Case 1: Turbines In Line (parallel to wind direction), N =6
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8- Results and Discussion (4)

UNIVERSITY OF

CALGARY

Case 2: Small Rectangular Wind Farm, N = 18
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8- Results and Discussion (5)
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Case 2: Small Rectangular Wind Farm, N = 18
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8- Results and Discussion (6)
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The dependence of P and CCI on U and S is not smooth, which
1s expected, because the problem 1s not continuous, as the
turbines’ data are not. So, the results should be understood
qualitatively not necessarily quantitatively.

There 1s a wide margin of trade-off between power output and
capital cost, so the weighting factors should be adjusted
according to the design priorities in order to obtain the
desirable optimum layout.

= At high wind speeds, all optimizations (except for minimum
CCIOP) tend to develop almost the same output power as the
reference case while costing less /CC.

18



8- Results and Discussion (7)
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The range of trade-off between power and cost can be
summarized as:

P/P,. CCI/CClL
Case 1
from to from to
CF 0.88 1.00 0.72 1.00

CCIOP 0.65 1.00 0.57 0.85

P/P,o CCI/CCl,y
Case 2
from to from to
CF 0.91 1.10 0.72 0.90

CCIOP 0.68 0.91 0.50 0.66




9- Conclusions
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1. Wind farm design with identical turbines or even with
different turbines from one manufacturer should be
abandoned 1n favour of the turbine selection optimizations

described 1n this proposal.

2. A wide band of optimum designs can be obtained according
to the optimization preferences and priorities.

3. The representation of C; in terms of the wind speed 1s not
the right way.

4. The lack in C, data could be overcome for multi-MW
HAWT by generalization of the available data.

20



9- Conclusions
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4. The proposed methodology is suitable for large scale WFs
as well as for compact designs.

5. Taller towers are needed, not only to reach higher wind

speeds, but also to reduce the wake effects in the compact
WF designs.

6. The manufacturers should show more flexibility and accept
the fair competition by providing more wind turbine
designs and more accurate technical data.

21



10- Further Work

Real case large wind farm.
Modified wake model.
More realistic wind profile.

Noise Level minimization.

TOF with different weighting factors.

Optimization.

22
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