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A concise and accurate result for the temperature-jump coefficient based, on the linearized BGK model
and arbitrary accommodation is reported. The jump coefficient is expressed as a power series in (1-a),
and values of the expansion coefficients are given.

We wish to give a rearranged version of some pre- r

. lg & ; ne b 1 z Na(m) = N1a(n)
vious results’ for the temperature-jump coefficient. R(n) = (8)
As discussed earlier' the temperature-jump coefficient N(n) —=V3 Ny(n) Ny

can be expressed as
9 5 We note that Kriese ef al.? have given N,(n) and N(n) in
¢ ;( - oz) T €, + Ala), (1) terms of Dawson’s integral, The operator T in Eq. (6)

« / 8 is such that
where o is the accommodation coefficient for the lin- TleXP(—TIZ)
earized BGK model, (TX) (n) = ———R(n) H™(n)
yr
¢ 1 i 3 d
SN ) R " x| i X(u) expl— ) p =T
0= 577 v | o
(9)
and We have computed the Hilbert—Schmidt® norm of the
kernel K of the operator T, where
(1 - a) 1 ¢ . o0 L 1 O ’
aAle) = —— Hi f H*(n) P
Ol‘/? 0 0 0 ‘/j -
’ K(n, ) = EE.—(_—HZ—) R(n)H(n)
x A(n) nexp(=n?)dn. (3) T
Here, fl(“) is the 2x 2 H matrix introduced by Kriese . VER 1 exp(= )
etal., xH () —_— (10)
0 1 N+ U
H = ()72 fo H(W)Q () Q(u) pPexp(- u¥)du, (4)  We used the definition
w - , 1/2
VW) 1 =3 an [ dnul®Ge, w9l
Q(IJ‘) = \/7 ’ (5) 0 0 -
3 0 (11)
and the vector A(n) is the solution of the Fredholm equa-  where
tion
tr[KIK|=K2 +K2%, +K2% +K&,. (12)
A =(a =2)F(n)+{1 —a)(TA) (1), n>0. (6) nomRrTE T

In addition, we use the superscript ¢ to denote the trans- ~ We find that |11 T]||~0,04; that is, for

pose operation and the superscript —¢ to denote the

- < -1
transpose-inverse operation. In Eq. (6) | 1 -0) i %(0.04)7,

or @525, it should be possible to obtain a convergent

2 -t " \/—g Neumann-Liouville iterative solution of Eq. (6). Infact
F(n) =7 exp(~n*) R(n) H™(n) Ky 1!’ 0 for physically interesting cases a =1 and in this range,
- one can expect a very rapidly convergent iterative solu-
where tion.
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Thus, we now express an iterative solution of Eq.
(6) as

A =(a =2 P+ T (1~ P) w9

then, we can write the jump coefficient as

€ = ﬂ (2—a>[€0+ Z (1 —oz)"'em], (14)
8 o m=1
where
1 8 1) \[%—
€p==— H'W,. H} , m>0,
m ‘/—77_ 5\/? 0 1441 -1
(15)

W, = f " Hiy) (T™B) (n) nexp(-n*)dn,
0

3

(16)
and

B(n)=nexp(-=n2)R(n H(n). 17

Equation (11) is a convenient result because the €,
do not depend on &, We have evaluated Eqs, (2) and
(15) numerically to find the results given in Table I.
A Gaussian quadrature scheme was used to evaluate
all integrals, and the number of quadrature points was
increased until no change in Table I was observed, The
final calculation utilized 80 Gauss-Legendre points* in
the interval (0, 1), which was mapped onto (0, =) accord-
ing to the transformation u=p'/(1 =u’). The accuracy
of the present results to the significant digits reported
here is verified by the fact that Egs. (15) give,

10
2 € =1.,000000;
i=0

that is, in the limit ¢ -0, from Eq. {11) we get

’ 5\/7(2—01)‘

< % \aq
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TABLE I. Numerical values for ¢, as
computed from Eq. (15).

3
)
E

1.17597
—1.60683%107!
~1.37349x1072
—1.38665x107°
—1.44586 x10™
—1.52085%1073
—1.60481x107°
—1.69582x10"7
—1.79329x1078
—1.89710x107%
—2.00735x10710

S W o =1 U W= O

[y

which is an exact result in this limit. Since in view of
the expansion in (1 — @) one would expect the maximum
numerical error at o~ 0, and since in this limit our re=
sult is exact to the number of significant digits quoted,
it is clear that the present series expansion should pro-
vide exact values of € to the number of significant digits
quoted here,
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