
Variational study of the spin-gap phase of the one-dimensionalt-J model

Y. C. Chen
Department of Physics, Tunghai University, Taichung 400, Taiwan, Republic of China

T. K. Lee
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061

~Received 29 April 1996!

We propose a correlated spin-singlet-pair wave function to describe the spin-gap phase of the one-
dimensionalt-J model at low density and largeJ/t. In addition to having singlet pairs, this wave function has
a Jastrow factor with a variational parametern. Several correlation functions are calculated by using the
variational Monte Carlo method. The result shows the expected long-range behavior of the Luther-Emery
phase with the Luttinger exponentKr related ton, Kr51/2n. @S0163-1829~96!05638-X#

High-temperature superconductivity~HTSC! has contin-
ued to be one of the important current issues in the field of
condensed matter physics. It is generally believed that the
two-dimensional~2D! t-J model is a good working model
for the theory of HTSC, which involves the basic interac-
tions of the copper-oxygen planes. However, recently the
one-dimensional~1D! version of the model has received
much attention. Inspired by the unusual normal-state proper-
ties of high-temperature superconductors~HTS’s!,
Anderson1 proposed that HTS may be described as the
Tomonaga-Luttinger liquid2 ~TLL ! instead of the conven-
tional Landau’s Fermi liquid. Since the TLL is well studied
in the 1D model, many of its properties give us useful refer-
ences in the study of the 2D model. For example, the shift of
the characteristic momentum from 2kF to 2kF

SF of spinless
fermions ~SF’s! in the density-density correlation function
has been used to argue for spin and charge separation.3,4

Recently, there has been more experimental evidence for a
spin-gap phase5 in HTS’s. So far there is no good account of
this phase from the 2D model. It turns out that there is also a
phase with a spin gap in the 1D model. Recent studies6,7

have identified this phase as the Luther-Emery~LE! phase.8

A more careful study of this phase in 1D would help us to
gain insight into dealing with the 2D model. In this paper we
will present a wave function that catches the essence of this
LE phase.

The 1D t-J model is defined as

HtJ52t(
is

~cis
† ci11s1H.c.!1J(

i
~Si•Si112

1
4 nini11!,

~1!

with the constraint of no double occupancy. By diagonaliz-
ing the 16-site chain, Ogataet al.10 have found two phases in
the phase diagram of the 1Dt-J model. For very largeJ/t
holes and spins phase separate. With decreasingJ the system
is described as a TLL which exhibits power-law correlations
with exponents characterized by a single parameterKr . For
the TLL there is no gap in both spin and charge excitations.
In addition to the momentum distribution, the important cor-
relation functions, such as the spin-spin, density-density, and
pair-pair, functions all have power-law decay:

^Sz~r !Sz~0!&;A0r
221A1cos~2kFr !r2lS

1A2cos~4kFr !r2l4, ~2!

^N~r !N~0!&;B0r
221B1cos~2kFr !r2lN

1B2cos~4kFr !r2l4, ~3!

P~r !5^D†~r !D~0!&;C0r
2lP, ~4!

whereD( i )5Ci↑Ci11↓2Ci↓Ci11↑ , and some of the expo-
nents arelS5Kr11, lN5Kr11, andlP51/Kr11.

Using the ground-state projection method, two groups6,7

have recently found a third phase, the Luther-Emery8 ~LE!
phase with a nonzero spin gap in the region of low electron
density and high interaction strength. Due to the spin gap,
the spin-spin correlation function decays exponentially with
distance. It has similar power-law correlation functions for
density-density and pair-pair functions as the TLL but with
different exponentslN5Kr andlP51/Kr .

Variational approaches have been very successful in the
study of the phase diagram. In particular, Hellberg and Mele9

~HM! have shown that the TLL is very well represented by a
wave function with long-range Jastrow correlations. The HM
wave function is defined as

uHM&5)
i. j

F LpsinS p

L
~r i2r j ! D Gn

FF , ~5!

wherer i denotes the hole position,L is the total number of
sites, andFF is the projected ideal Fermi gas wave function.
The holes repel each other whenn is positive and attract
otherwise. HM also showed that with tuningn for different
J/t and densities this wave function can reproduce the phase
diagram of the 1Dt-J model. Not only is the energy quite
accurate, it also produces the correct power-law correlations
that are the signatures of the TLL. Specifically they have
found

Kr5
1

2n11
. ~6!

HoweveruHM& fails to predict the spin-gap phase6,7 which is
a LE phase instead of a TLL.
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In the study of the spin-gap phase, using the exact pairing
wave function of two electrons in an infinite chain as a basis,
Chen and Lee6 ~CL! proposed a singlet-pair~SP! wave func-
tion

uSP&5PdF (
n51

`

hn21bn
1GNe/2u0&, ~7!

whereh52t/J, Ne is the total number of electrons,Pd is the
projection operator that forbids two particles occupying the
same site, and the operatorbn

15( iCi↑
1Ci1n↓

1 2Ci↓
1Ci1n↑

1 .
Without any tuning parameters CL showed thatuSP& has
lower energy thanuHM& and more significantly it has the
correct short-distance spin-spin correlation which character-
izes the LE phase. However, with increasing particle density
there will be correlations among pairs and holes. And more
seriously,uSP& is of a particular form of the projected BCS
wave function @or resonance valence bond~RVB!#, and
hence produces a long-range pairing order, which is incon-
sistent with the LE phase with a power-law correlation in
pairing. Takingh as a tuning parameter will not help to
suppress the long-range order.

TABLE I. Critical exponentslP (lN) of pairing ~density! cor-
relations foruCSP& with various variational parametersn. The num-
bers in the parentheses show the error in the last digit. The last row
is the predicted values ofKr by Eq. ~11!.

n 0.1 0.2 0.3 0.4 0.5 0.6
lP 0.21~2! 0.43~3! .62~2! 0.77~8! 1.03~4! 1.16~8!

lN 2.3~4! 1.63~8! 1.32~8! 1.06~8! 0.84~5!

Kr 5 2.5 1.667 1.25 1.0 0.833

FIG. 1. Variational Monte Carlo results of~a! pairing correla-
tions ~shown in real space!, ~b! spin, and~c! density structure fac-
tors of uHM,n520.5& and uCSP& for several differentn. The sys-
tem has 10 electrons in 60 sites. Symbols are defined in~b!.

FIG. 2. Finite-size scaling of the quantities~a! bP(L/2) and~b!
bN(L/2) as defined in Eqs.~9! and ~10! for uCSP& with a fixed
h50.6. The electronic density is fixed atne5

1
6 for lattice sizes

ranging fromL536 to 132. The solid lines are the results of linear
fits of the data points. The slopes of the lines in~a! and ~b! give
12lP and 12lN , respectively.~c! is similar to~a! but for a fixed
n50.2 and varioush.
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In view of the power-law correlation produced by the Ja-
strow factor in uHM&, a natural way to modify the wave
function uSP& in order to correctly represent the pairing cor-
relation in the LE phase is to add the Jastrow factor to
uSP&. This new trial function denoted asuCSP& is

uCSP&5)
i. j

F LpsinS p

L
~r i2r j ! D Gn

uSP&. ~8!

Here we present our results ofuCSP& by using the varia-
tional Monte Carlo method. The closed-shell boundary con-
dition is used for all the data presented in this paper. The
correlation functions either in real space or in Fourier space
are shown in Fig. 1 for variousn. The pairing correlation
function is defined in Eq.~4!. The variational parameter is
h52/3 for J/t.3 at the electron densityne51/6. Open
circles are the results ofuHM& with n520.5 which is the
optimal wave function withinuHM& in the spin-gap region of
the 1Dt-J model. Comparing the variational energies among
several wave functions forJ/t53 we find that the lowest
energy is obtained byuCSP& with n50.1 ~open triangles!.
Figure 1~a! shows that in this region ofJ/t, uHM& underes-
timates the pairing correlation as compared to theuCSP&.
This has been pointed out in previous studies using the
ground-state projection method.6,7 On the other hand, the

long-distance behavior of the pairing correlation ofuSP&
(n50, solid circle! seems to lead to a long-range pair order-
ing as mentioned above. With a nonzeron the long-range
behavior has changed and we will show below that it has the
power-law dependence as expected from the LE phase.

Spin @S(q)# and density@N(q)# structure factors are plot-
ted in Figs. 1~b! and 1~c!, respectively, with the same param-
eters as in Fig. 1~a!. It is easy to show thatS(q) should be
quadratic at smallq if there is a gap in spin excitations.11

This indeed has been found in Fig. 1~b! for uSP& and
uCSP&. More interestingly, this behavior is quite robust, and
it hardly changes with the variation of the exponentn in
contrast to the drastic changes occurring in pairing and den-
sity correlations. The reason, we believe, is that the wave
functions uSP& and uCSP& only have short-range pairs. This
preserves the spin gap even in the presence of strong density
fluctuations induced by the Jastrow correlation factor.

As shown in Fig. 1~c! uHM,n520.5& has the maximum
of N(q) at 2p/L. This indicates that the system is close to
the phase separation. However, for the LE phase one would
expect a sharp peak at 2kF and even a divergent one if
Kr,1. ForuSP& the maximum is indeed at 2kF but it is quite
broad. As foruCSP& we find that the peak becomes sharper
and sharper asn increases. The size of the peak also grows
with n. By using finite-size scaling we find that the peak

FIG. 3. ~a! Variational ener-
gies, ~b! density, and ~c! spin
structure factor, as well as~d!
pairing correlation of the t-J
model for uCSP&, uSP&, and
uHM& at the densityne51/6. The
variational parameters are opti-
mized for J/t52.8. We take
h52t/J for both uCSP& and
uSP&, andn50.08 and20.5 for
uCSP& and uHM&, respectively.
The lines and symbols are labeled
in ~c!. This system with 4 elec-
trons in a 24-site chain is also ex-
actly diagonalized by the Lanczos
method and these exact results are
shown as the circles.
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diverges with the lattice size forn.0.5 ~see below!.
In addition to establishing the power-law behavior for

density-density and pair-pair correlations we must also find a
relation between their exponents. In order to extract the ex-
ponents of the power-law correlations we consider the finite-
size scaling behavior of the following quantities:12

bP~L/2!5P~q50!2P~q52p/L ! ~9!

and

bN~L/2!52N~q52kF!2N~q52kF12p/L !

2N~q52kF22p/L !, ~10!

whereP(q) is the Fourier transform ofP(r ). In Fig. 2~a! we
plot log@bP(q50,L/2)# versus log(L/2) to obtain the exponent
12lP as the slope of the linear fit of the data. A similar
analysis ofbN(q52kF ,L/2) gives the exponent 12lN . We
have used lattice sizes ranging fromL536 to 132. The suc-
cessful fit of the data supports our conclusion of power-law
behavior in pairing and density correlations. The exponents
obtained in these plots are tabulated in Table I. We find that
the relationlP51/lN is satisfied with the data in Table I,
i.e., the scaling relation expected for the LE phase is
recovered.13 Additionally we find that within the error bars
the variational parametern is related to the critical exponent
Kr of the LE phase in a simple relation14

Kr5
1

2n
. ~11!

Correspondingly we havelN5 1/2n andlP52n.
The finite-size scaling of pairing correlations for a given

n~50.2! and varioush is shown in Fig. 2~c!. We find that all
the data fit to lines of the same slope and hence of the same
exponent. Therefore we conclude that the long-range power-
law correlations are controlled by the Jastrow factors, irre-
spective of the parameterh which controls the short-range
properties.

Having establisheduCSP& as a good wave function to de-
scribe the LE phase, now we like to investigate if it is also a

proper wave function to faithfully represent the ground state.
The variational energies ofuHM&, uSP&, and uCSP& at the
density ne51/6 are shown in Fig. 3~a!. We observe that
uCSP& and uSP& are very close in energy for largeJ/t. By
using the power method6 we find that the variational energy
of uCSP& is about 0.3% above the ground-state energy. Al-
thoughuCSP& anduSP& have similar energies, they have sig-
nificant differences in their long-range correlations as indi-
cated above. In Figs. 3~b!–3~d! we show the density and spin
structure factors and pairing correlations foruHM&, uSP&, and
uCSP& optimized for thet-J model withJ/t52.8. This sys-
tem contains 4 electrons in a 24-site chain. For this system
the exact ground state can be obtained by the Lanczos diago-
nalization method. Results for the ground state are shown as
the open circles in Fig. 3. We find that for the spin correla-
tion uCSP& anduSP& have similar quadratic behavior at small
q and agree with the exact result very well. However, for
density and pairing correlationsuCSP& describes much better
thanuSP&. We have also looked at the overlap of these three
trial wave functions with the exact ground state. They are
0.984, 0.982, and 0.914 foruCSP&, uSP&, anduHM&, respec-
tively. The excellent consistency between the correlations of
the ground state anduCSP& and the substantial overlap of the
two wave functions support the expectation of the LE phase

In conclusion, we have presented a wave function to de-
scribe the LE phase in 1D. This wave functionuCSP& has
correlated spin-singlet pairs. This is established by using the
variational Monte Carlo method. The wave function shows
exponential dependence for the spin-spin correlation and
power-law behavior in density-density and pair-pair correla-
tions. By finite-size scaling we established the relation of the
variational parametern to the exponentKr , Kr51/2n.
Comparing with the exact ground state of a small lattice we
showed thatuCSP& describes very well the ground-state
properties of the spin-gap phase of the 1Dt-J model.
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