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ABSTRACT

Software metrics attempt to uncover difficult or complex
components of a software system. The hypothesis is that

complex components are more difficult to understand, hence

they are hard to maintain and more prone to error.
Discovery of these complex components can aid the software
developer in 1) setection of which components to redesign,
2) direct the testing effort and 3) gwe an indication of the
maintenance effort required.

Previous studies have demonstrated two main concepis.
First, there exists a high correlation between design
complexity and source code complexity. *Secondly, metrics
applied to source code have a high correlation to the
maintenance activity needed.

The results of this previous research motivates us to develop

a methodology which uses complexity metrics throughout
the software life cycle. Programmer productivity may be
increased and software development cost may be reduced if
error prone software is discovered early in the life cycle.

L. INTRODUCTION . . . . .

In the last decade, the field of computer science has
undergone a revolution. - It has started the move from a
mysterious art form to a detailed science. The vehicle for

this progress has been the rising popularxty of the field of -

software engineering. This innovative area of computer
science has brought about a number of changes in the way
we think of (and work with) the development of software.
Due to this renovation, a field that started with little or no
design techniques, and unstructured, unreliable software has
progressed to a point where a plethora of techniques exist to
improve the quality of a program design as well as that of
the resultant software, The popularity of structured design
and coding techniques prove that there is widespread belief

that the overall product produced using these ideas is
somehow better. Statistics seem to indicate that this belief
is true. Until recently, however, there existed no proven
technique for quantitatively showing that one program is
better than its functional equivalent. In the past few years,
the use of software complexity metrics seems to indicate
that such a comparison is not only possible, but also valid.

Several recent studies have shown that software metrics are
good predxctors of maintenance activities. These studies
correlated number of errors found in the code and number of
lines of source code changed with the metric values
[CANIJBS], [HENSQO] [REDG84] [SELC88]

A typical software life cycle consists . of requirements
definitions, program design, 1mplementat10n testing, and
finally, maintenance. The portion of the life cycle that is of

interest to this research is the design and 1mplementauon

~ with the inclusion of software metrics. Figure 1 contains

one approach of this part of the software life cycle using
complexity metrics.

'DESIGN ——~p IMPLEMENTATION — |

T__RE-DESIGN {—__METRIC ANALYSIS

Diagram of Currently Used Software Life Cycle
With Metrics

Figure 1.

First, a design is created and implemented in software. At
that point, software complexity metrics are generated for the
source code. If necessary, as indicated by the metrics, the
cycle returns to the design phase Ideally, the software life
cycle can be “reduced” to that in Figure 2, where the same
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metrics are generated during the design phase, before code
implementation. This modified cycle eliminates the
generation of undesirable source code, since it is possible to
use the meirics, exactly as before, only earlier. The goal of
this study is to indicate the plausibility of using the
“reduced” cycle to increase the efficiency of the software
development process, by implementing metric analysis as
early as possible. In this research, PDL code is used to
analyze designs [SELC88]. The PDL is Ada-like, however,
any PDL with an imposed syntax could be used.

DESIGN ——p METRIC ANALYSIS ‘1

: T__RE-DESIJN IMPLEMENTATION

Figure 2. Diagram of Proposed Reduced Software Life
Cycle With Metrics

The goal of shortening the loop in the life cycle is highly
dependent on the ability to perform the analysis on the
design, along with the need for evidence that the metric
values produced from the design reflect the complexity and
the maintainability of the resultant source code. To
facilitate this ability, a software metric generator (which for
purposes of this study may be considered a “black box”) is
provided that takes the design as input and produces a
number of complexity metric values as output. For a more
detailed explanation of the metric generator, see [HENS8S).

Some of the existing metrics are qualitative and therefore
non-automatable. These types of measures are not
considered in this study. Here the focus is on metrics that
are both quantitative and automatable. Metrics of this type
can be put into two general categories: code metrics and
structure metrics. In general, code metrics are those that
measure an attribute such as length, number of control
statements, number of tokens, etc. That is, code metrics
produce a “count” of some feature of the source program.
Structure metrics atternpt to capture the interconnectivity of
the components of the source program. Although both code
and structure metrics result in a number that somehow
represents the “goodness™ of a program, it has been shown
that the two types of meirics are measuring different featres
of the source systems {HENS81)]. Note these metrics are
static and do not consider the dynamics of the program.

Code Metrics

Many code metrics have been proposed in the recent past.
An effort has been made to limit this discussion 1o a few of
the more popular ones that are typical of this type of
measure. They include lines of code, parts of Halstead's

Software Science, and McCabe’s Cyclomatic Complexity,
Each of these metrics has been extensively validated
[CANISS] [ELSI78] [REDG84].

Lines Of Code

The most familiar software measure is the count of the lines
of code with a unit of LOC, or, for large programs, KLOC
(thousands of lines of code). For this study, the definition
used is the following: A line of code is counted as the line
or lines between semicolons, where intrinsic semicolons are
assumed at both the beginning and the end of the source file,
This specifically includes all lines containing executable and
non-executable statements, program headers, and

- declarations.

Halstead' s Saftware Science

A natural weighting scheme used by Halstead in his family
of metrics {commaonly called Software Science indicators
[HALM77]) is a count of the number of “tokens,” which are
units distinguishable by a compiler. All of Haistead’s
‘metrics are based on the following definitions:

n} = the number of unique operands. =
n2 = the number of unique operators.

W — mpensc o

Nj = _theotal number of operands. .
N2 = the total number of operators.

N = Njp+N2

Three of the software science metrics, N, V, and E, are nsed
in this research.  The metric N is simply a count of the total
number of tokens expressed as the number of operands plus
the number of operators.

'V represents the number of bits required to store the program
in memory.

V=~Nxlogy(n)

The final Halstead metric examined is effort (E ). The effort
metric, which is used to indicate the effort of understanding,
is dependent on the volume (V) and the difficulty (D). The
unit of measurement of E is elementary mental
discriminations which represents the difficulty of making the
mental comparisons required to implement the algorithm.

n N
E=VxD, whereD=w§1X—2.

nz

MeCabe's Cyclomatic Complexity

McCabe’s metric [MCCT76] is designed to indicate the
testability and maintainability of a procedure by measuring
the number of “linearly independent” paths through the
program. To deiermine the paths, the procedure is
represented as a strongly connected graph with one unique
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entry and exit poin{. The nodes are sequential blocks of
code, and the edges are decisions causing a branch. The
complexity is given by:

VG = E-N+2, where
E = the number of edges in the graph
N = the number of nodes in the graph.

According to McCabe, V(G) = 10 is a reasonable upper
limit for the complexity of a single component of a
program. Throughout this paper, McCabe’s Cyclomatic
Complexity is often abbreviated as CC.

Structure Mefric

It secems reasonable that a more complete measure will need
to do more than simple counts of lines or tokens in order to

fully capture the complexity of a module. This is-dué to the

fact that within a program, there is a great deal of interaction
among modules. Code metrics ignore these dependencies,
implicitly assuming that each individnal component of a
program is a separate entity. Conversely, structure metrics
attempt to quantify the module interactions using the
assumption that the static inter-dependencies involved
contribute 1o the overall complexity of the program units,
and ultimately to that of the entire program. In this study,
the structure metric examined is Henry and Kafura’s
Information Flow metric. _

Henry and Kafura [HENS81] developed a metric based on the

information flow connections between a procedure and its’

environmeni called “fan-in” and “fan-out™ which are defined
ass - PR ] . o

fan in the nurnber of local flows into a procedure plus Lhe
number of global data structures from whlch a
procedure retrieves information; '

fan-out the number of locat flows from a procedure plus the
T T number  of g]obal data structures whlch the
- procedure updates

The complexity fora procedure is deﬁned as:
C = = (fan-in * fa;z—pu:)z.

The next section describes previous research studies.
Section IIT presents a methodology for using metrics
throughout the software life cycle. The statistics used to
validate the methodology is discussed in section IV.
Finally, our conclusions are given in section V.

II, BACKGROUND WORK

In this section, we examine several previously done studies
in the area of sofiware metrics. These studies are in the
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areas of design metrics, which predict the complexity of the
code, and code metrics, which -predict the amount of
maintenance required.

Henry and Selig [HENS90b}] analyzed PDL designs and the
resulting Pascal code which were collected from the
undergraduate software engineering course at Virginia Tech.
The goal of the course is to expose the student to a real
world environment of teams responsible for designing a
system and "hiring" other class members to code the system.
Each team would then integrate the system into the
completed program. These systems range from 2000 to
8000 lines of Pascal code.

The PDL code and the Pascal code are run through a software
metrics analyzer to calculate the values of various software
metrics. The Pascal procedures were grouped together into
modules to provide a one to one correspondence with the
PDL modules. After elimination of outliers, there were 981
modules to analyze from 27 different projects.

Modules were grouped by level of refinement, where a
highly refined module would contain code-like
specifications, a low refinement module contains many
natural language descriptions, and an average refinement
module would be somewhere in between. -

Each level of refinement was analyzed individually using
correlations {o determine the trends of the data and simple
linear regression to develop predictor equations of the source

rcode quahty from the memc values of the deﬂgn modules

Another study in Lhe area of measurmg r_he complexny of
software design was done by Henry and Goff [HENS89].
The purpose of the study was to determine if a graphical
design language could be measured using established
software quality metrics, and to show that these software
quality metrics can be apphed early in the hfe cycle to

: predlct resultam code quahty

The graphical design language used is GPL, the graphical
programming language of the Dialogue Management
System developed at Virginia Tech [HARHS85]. An
approach for wranslating graphical designs into relation
language, a language used in the software metric analyzer,
was developed in order to generate a consistent set of metrics
for both graphlcai and Lextual demgns

Analysis was done between the design and the resultant
source code to show that there were high correlations
between the code metrics in GPL designs. A simple linear
regression was performed between the complexity of the
design, the independent variable, and the complexity of the
source code, the dependent variable. This regression
produced predictor equations, which did a good job of
predicting the source code quality from the design quality.
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Wake and Henry {WAKS88] measured a 15,000 line C
system consisting of approximately 193 procedures. This
system was a "real world" system obtained from a major
software vendor, Error data, consisting of modifications to
the system after release for bug or performance fixes, was
also obtained.

The number of times a function had emor fixes done to it
along with the total number of lines changed to effect a fix
was calculated for each function, These numbers give an

indication of the amount of maintenance whxch occurred

with this system.

The system was measured using the software metric
analyzer, in order to obtain metric values for each function
in the system. Intermetric correlations were performed to

see which metrics seemed to be measuring the same aspects -

of the code. Code metrics and structure metrics correlated

well with metrics of the same type, but poorly with metrics:

of other types.

Performing correlations between the crror data and the

individual metrics would not give satisfactory results, since

we do not feel that any one metric will perform equally well
in any environment. Therefore, we tried to find a process
that would determine the best set of metrics for the given
environment. To this end, we used the multiple regression
model to find the metric or metrics that best predicted the
amount of ; mamnenancc necessary

Henry and Lew1s {HENS903] conducted an experiment to
integrate metric use into a commercial budget driven
environment. Over 7000 procedures form a specific internal
release of a large product written in an in-house, high-level
language similar to Ada.

Tolerances were developed for the values of the various
metrics which were measured on the software systern, Two

tevels of concern were developed, a flag to indicate that the

specific metric values for a procedure need to be justified in
some manner, and an alarm which shows that values are too
high.

An error history was used to validate the metrics used in the
analysis. Correlations were done between the metric values
and the errors from the error history. Regression analysis
was also performed between multiple metrics and the
number of errors to develop a predicior equation.

Based on these studies and the works of several other metric
researchers, we feel that the promising results can guide us
in developing a metrics methodology which can be
incorporated into the software development life cycle. This
research is explained in the next section.

III. LIFE CYCLE METHODOLOGY

Henry and Selig’s study [HENS90b] shows the possibility
of measuring the design with the existing metrics. Henry
and Wakes’ study [WAXS88] shows the possibility of
predicting the maintainability using the metrics collected
from the code. The study by Henry and Lewis [HENS90a3)
suggests a methodology which incorporates software metrics
throughout the software life cycle. All of these previous
results motivate us to conduct an experiment of applying
software metrics throughout the software life cycle. -

Several factors are considered in designing the experiment.
The first factor is what metrics to use in the experiment.
Among all the available software quality metrics, only those
which are quantitative and automatable are used in this

experiment.. For more detailed information conccrmng the. =

meltrics, refer to Section L.

The second factor is when to collect these metrics. Metrics
collected from the code have been very successful in
indicating error prone modules, uncovering difficult
modules, and predicting the maintenance work required. But
metrics collected from code are considered too late to have
significant influence on the redesign effort and the reduction
of the overall budget. Collecting metrics earlier in the life
cycle guides the redesign effort and improves the quality of
the end product which reduces the overall budget. In this
experiment, metrics are collccted from both the design and
the code.

The third factor is the validation of the metrics. This
depends on how the metric values are to be interpreted and
used. In this research, the goal is to use the metrics 1o
predict maintainability and guide the redesign effort,
therefore, the successful validation of the metrics depends on
how much of the error variance is accounted for by the
metrics. Therefore, the error history data are collected. The
metrics collected from the design are to be used to predict the
maintainability of the software product. With the metrics
coliected from the code for the same design, the results from
previous studies will be verified.

The use of the statistical model and the interpretation of the
statistical analysis are the keys ta the success development
of the methodology. Wake and Henry [WAKSE8] indicated
in their study that performing correlations between the error
data and the individnal metrics would not give satisfactory
results since they do not feel that any one metric will
perform equally well in any environment. Therefore, to
determine the best set of metrics for the given environment,
a regression model would give us more information about
the relationship of the error data and the design metrics.
Several stndies conducted by Henry and Selig, Wake, and
Goff [HENS90b] [WAKS88] {HENS89] have found that
metrics in different categories measure different aspects of
the software, therefore, metrics from different categories




together should predict maintainability better than any single
category. The multiple linear regression has been
successfully used in the study conducted by Henry and Wake
[WAKS8E] to predict maintainability from metrics collected
from code. In this experiment, the multiple linear
regression is used to predict maintainability from metrics
collected from design. '

Since the successful development of the methodology
depends on the significant result from predicting
maintainability using design metrics, multiple linear
regression is a natural choice as a statistical model in the
experiment. In deciding the independent variables {metrics)
that should be included in the model, the result from Henry
and Selig [HENS90b] study is considered. In their study, an
inter-metric correlation is performed. They found that there

is a high correlation among code metrics, and a low -
correlation between code metrics and design metrics. This

makes us think that different types of metrics measure
different aspects of the software. That means
multicollinearity exists among code metrics. Therefore,
different types of metrics should be included in the model,
and the number of highly correlated metrics should be
limited.

IV. STATISTICAL MODEL
This section describes the statistical mode] used in the study.

Statistical Mode!

Multiple linear regression is chosen as the experiment
statistical model. The different metric values are used as
independent variables in the regression, the number of errors
as the dependent variable. Multiple linear regression will be
performed at the procedure and system level. The multiple
linear regression model for the experiment is defined as :

Y= bg+ by*Xq + bp*Xg + b3*X3 + by*X 4 + bs*Xs +

bg*Xg + by* X7 + ¢,

where Y is the dependent variable representing the number of
errors. X1 through X7 are independent variables
representing nine different metric values. The ¢ is the error
term in the regression. The nine independent variables are
defined as follows:

X : Lines of Code.

X : Halstead N.

X3 : Halstead E.

X4 : Halstead V.

X5 : McCabe's Cyclomatic Complexity.

Xg : Henry-Kafura Information Flow Complexity.
X7 : Woodfield's Review Complexity.
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Statistical Analysis

The statistical analysis has five steps.

Step 1: Dividing the data

Randomly divide the data into two equal groups, say group
A and group B. Group A is used in step 2 and step 3.
Dividing data into two groups can avoid 'overfitting’
problem in regression. Whenever variable selection routine
1s used, there is a possibility that the predicting equation is
tailored just to fit the sample data. To avoid this problem,.
the data is divided into two groups. Only one group is used
to perform the regression first. When the regression turns
cut to be significant. Another group of data is used to verify
the equation. And finally, the whole set of data is used to
perform the multiple linear regression again to get the best
predicting equation.

Step 2: Significant test on the full model.
Using the F-test at 5% level to see if any prediction from
the model is possible. The null hypothesis used is : Hy:

by=by=b3=by=bg=bg=b7=0. The goal is to reject the null
hypothesis which means that some prediction is possible.

Step 3: Variable Selection

If from step 2 some prediction is possible, we would like to
see if a subset of independent variables could be picked
which does essentially as good of a job as the whole set of
independent variables do. Based on the previous studies,
some metrics correlate very high with some other metrics.
Since multicollinearity may exist among code metrics, the
partial sum of squares of any code metrics given the rest of
the code metrics may be near zero. This indicates that there
might be some redundant predictors in the model. Therefore,

- not all of the code metrics are useful in predicting the error.

A subset of all the metrics will be decided in the final
prediction equation. There are three different variable
selection procedures. They are forward, backward, and
stepwise selection. There are four statistics that can be used
to examine the quality of the prediction. They are R2,
adjusted-R2, MSE ( mean square error ), and C(p). R2 is the
amount of total variability accounted for by the regression in
the sample, R2 increases when adding more predictors into
the model. The adjusted-R2 is the estimated amount of total
variability accounted for by the regression in the population.
It is adjusted for the number of predictors in the regression
model so that it may or may not increase as more predictor
are included in the model. The adjusted-R2 is always less
than R2. They are both within the range of 0 and 1. The
MSE is the measurement of the error variance in the
regression. It does not give more information than the
adjusted-Rz- It is possible that the regression model is
biased (underfit) due 1o too few prediciors in the model, or
overfit due to redundant predictors. The quality predictor
takes into account both possibilities. A small C(p) value
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should indicate that the regression model does not have a
serious underfit or overfit problem. In this experiment,

adjusted-Rz, and C(p) are considered as the quality judgement
for the regression equation.

Step 4: Cross Validation.

The cross validation procedure is used to determine if the
prediction equation is tailored too much for the sample data
used in performing the multiple lincar regression.” Any
variable selection routine is using the sample to help
determine the model. Thus, it is entirely possible that one
will tailor the model too precisely to the data at hand. In
this event the model will look good for the sample, but may
not work at all in the population. To protect against this
possibility, cross-validation should be used any time a
variable selection routine is employed. For each data point
in group B which is not involved in the regression, get the
predicted Y valve using the egquation: - Then test the

comrelation between the observed Y and the predicted Y at the -

5% significance level. " Also, the MSER and MSEA are
compared to see if the former is significantly larger than the
latter, If that is the case, then the predicting equation is
tailored for the sample data. If the correlation test turns ount
to be non-significant or the MSEpR is significantly larger

“than MSE,, then the cross validation fails. If the cross

validation is unsuccessful, the model has been tailored too
precisely to the sample 50 anoLher try will be attempted
with fewer predictors. e :

Step 5: Best prediction equanon i

If the cross-validation is successful the tenmnal model is
run again using all the data (group A and group B) to obtain
the most stable estimates of the regression coefficients.

Development of the methodology

The traditional waterfall model of software development
provides a systematic method to separate the development
process into different stages with explicit communication
boundary between two consequent stages. This
methodology proposes that each phase be subjected to
verification and validation to ensure that the implementation
satisfies the specification, Most of the verification and
validation after each phase finishes are 1) to check if the
documents are complete; 2) to see if a certain discipling is
enforced; 3} to check if the documents produced are
consistent with those accepted at the beginning of the phase.
The new methodology provides 1) the guantitative
evaluation of the design; 2} feedback information (o help
redesign effort; 3) improvement in software development
efficiency; 4) reduction of the budget.

The methodology suggested in this research incorporates all
of those which are not provided by the waterfall model.

V. CONCLUSIONS

Upon the completion of the experiment, the following
questions may be answered:

1. Can the design be measured?

2. Are the design metrics meaningful in predicting the
resultant code quality?

3. Are the design metrics meaningful in predicting the
maintainability of the software product?.

4. Are there threshold values in design metrics that could be
used as the redesign criteria?

5. Can the design metrics be used to guide test effort?

6. Can the design metrics be used to. assist the project
manager in management of the project ?
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