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1.0  Introduction

1.1  Motivation

Engineering systems of practical interest are usually characterized by complex interactions

occurring between various disciplines. In some cases, simplifying assumptions may be

made, with reasonable accuracy, that decouple these disciplines. In other situations, the

interactions themselves may produce changes in the system’s response that is of the same

order of magnitude as the decoupled analyses. For example, in a system such as an aircraft

wing, aerodynamics, structures, and controls all contribute integrally to its behavior and

performance. If, for example, the structures discipline is neglected in the analysis of a wing

in transonic flow, where large elastic deformations are present, predicted rigid-wing lift

calculations have been found to be in error by more than 25% in some cases. Similar

scenarios may be postulated for the controls discipline for the suppression of aeroelastic

instabilities such as wing divergence and flutter. This reality, therefore, forces the design

engineer to consider multiple disciplines in order to accurately evaluate the sensitivities of

system performance.

Sensitivities of system performance, commonly referred to as sensitivity derivatives

(which provide a measure of how  the system output will respond to a change in system

input), are an invaluable commodity to the designer and may be used to make informed

decisions about possible directions for improving existing designs. When these derivatives

are used in conjunction with a numerical optimization technique, procedures may be

developed that are not biased by intuition or experience (or lack thereof) [1]. Hence, the
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motivation for performing accurate multidisciplinary analysis and sensitivity analysis

becomes obvious.

1.2  Survey of Recent Advancements

Multidisciplinary analysis and optimization (MDA&O) by its very name implies a coming

together of various disciplines, each one having a distinct historical development, and any

attempt at a comprehensive review of such a vast subject matter would require numerous

volumes. As a visualization tool, one possible interpretation of an MDA&O procedure is

outlined in Fig. 1.1 for the coupling of the fluid and structures disciplines. This outline will

serve as a road map to guide the discussion to follow and later as a flowchart for the

research conducted in the present work. The survey presented in the subsequent sections

include some of the most recent advancements in the respective topic areas, and the

interested reader may use this as a starting point for further study. In each case, however,

sources of more complete reviews are cited.

1.2.1  Aerodynamic Design Optimization

In the mid-70s, researchers [2-6] began exploring the use of numerical optimization

techniques for the design of aircraft components. These early studies primarily focused on

airfoil and wing design using low fidelity fluid models for the analyses and finite-difference

calculations for gradient information. The inability of these fluid models to accurately

predict nonlinear phenomena limited their applicability. By the mid-80s, computational

resources were available that permitted aerodynamic simulations using the higher fidelity

Euler and Navier-Stokes equations about isolated components and moderately complex

configurations. Then Sobieski [7] challenged the aerodynamic community to extend their

computational fluid dynamic (CFD) algorithms to include the shape sensitivity analysis of
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the geometry. This plea ignited intense studies aimed at developing methods that would

render the use of nonlinear aerodynamics in shape optimization feasible.

With improvements in computer speed and memory, as well as advances in computer

architectures, numerous aerodynamic design optimization procedures [8-25] have emerged

which directly couple the fields of computational fluid dynamics (CFD), sensitivity

analysis, and numerical optimization. These procedures, schematically shown in Fig. 1.2,

have enormous potential as design tools and are therefore receiving considerable attention

in the aerospace, automotive, and biomedical research communities (among others).

Moreover, bottlenecks associated with the in-core memory needed for the analytic

evaluation of discrete sensitivity derivatives, appear to have been addressed [13] via the use

of an incremental iterative solution of the sensitivity equation [15] where memory efficient

methods [26] are used to construct Jacobian matrix-vector products.

The other limiting factor governing the acceptance of these shape optimization procedures

is the large CPU times incurred when nonlinear fluid models are considered. Reductions of

the excessive CPU run times required to perform the design optimization are being

explored through the use of simultaneous analysis and design optimization (SAADO) [27-

29], one-shot methods [21], pseudo-time methods [30], and parallel computing

architectures [24,31]. Another crucial capability which these aerodynamic optimization

procedures must have to become useful design tools is the ability to analyze and design

complex configurations of practical interest. Elliot and Peraire [32], with regards to the

geometrically complex domains associated with the integration of the engine into the wing

design process and to the possible multipoint design of the aircraft’s high lift system and

cruise design, assert that this capability may provide “the step that determines the economic

viability of the vehicle”.

As recently noted by Reuther et al. [33] “while flow analysis has matured to the extent

that Navier-Stokes calculations are routinely carried out over very complex configurations,
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direct CFD based design is only just beginning to be used in the treatment of moderately

complex three-dimensional configurations”. This shortcoming is primarily due to the fact

that to generate a single structured grid about such a configuration is difficult, if not

impossible. Thus, to handle a typical complex geometry of practical interest, some sort of

domain-decomposition scheme must be incorporated into the design code. For structured

grid solvers, these techniques include multiblocked [34,35], zonally patched [36,37], and

overlapped [38,39] (sometimes referred to as Chimera [40]) grid algorithms. However, as

the geometric flexibility of the method increases, so does the complexity of the underlying

algorithm. Since the use of sensitivity analysis to evaluate the needed gradients for a

numerical optimizer is still evolving, little work has been done toward extending these

algorithms to include these domain-decomposition methods. The research which has been

accomplished has mostly concentrated on the use of multiblocked grids. To this end,

Reuther et al. [33] have developed a multiblock-multigrid adjoint solver via a “continuous”

or “control theory” approach [41,42] (see sections 2.2 and 3.3 for a description of the

continuous and discrete approaches) which was applied to the wing redesign of a transonic

business jet. Eleshaky and Baysal [43] developed a multiblock “discrete” adjoint solver

which was applied to a simple axisymmetric nozzle near a flat plat. As for the use of the

more advanced domain decomposition methods (zonal and overlapped grids), and

combinations of the three various types, Taylor [44,45] has differentiated an advanced

flow-analysis code to perform the discrete sensitivity analysis.

Unstructured grid schemes provide an alternative to resorting to structured-grid domain-

decomposition methods to cope with complex configurations. Since triangles and tetrahedra

are the simplest geometric shapes possessing area and volume, respectively, they are

capable of resolving irregularly shaped domains easier and with greater efficiency. Another

attribute of unstructured grids is that they may be adapted and locally enriched where
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needed without affecting other regions of the mesh. Examples of mesh refinement

techniques for aerodynamic simulations may be found in references 46 and 47.

As for unstructured grid approaches to aerodynamic design optimization, Beux and

Dervieux [48] did perform spatially first-order accurate sensitivity analysis and optimization

of a two-dimensional nozzle using a continuous adjoint method to derive the optimality

conditions, but reverted to a discrete approach for computer implementation. Orozco and

Ghattas [23] proposed an infeasible path method similar in nature to a SAADO approach

where a Galerkin finite-element discretization of the nonlinear potential flow equations was

performed. In Ref. 23, target-pressure distributions were matched on a subsonic airfoil

using what was referred to as the coordinate basis infeasible path (CBIP) method.

Newman, Taylor, and Burgreen [49] developed a two-dimensional, and later a three-

dimensional [13], second-order spatially accurate discrete sensitivity analysis approach

which has been used to perform the design optimization of airfoils and transport wings in

transonic flow. More recently, Newman, Taylor, and Barnwell [50] have performed the

shape sensitivity analysis and design optimization of a subsonic, high angle-of-attack

multielement airfoil and of a full Boeing 747-200 aircraft. Elliot and Peraire [32] have also

developed an unstructured discrete-adjoint sensitivity analysis approach which was used to

match target pressure distributions for a two-element airfoil, a 3D infinite wing, and a

wing-body configuration. Subsequently, Elliot and Peraire [14] have applied their

algorithm to perform the inverse pressure design of a business jet wing immersed in

transonic flow. An equally impressive use of unstructured grid approaches for the design

of geometrically complex devices has been performed by Burgreen and Antaki [51]. In

Ref. 51, CFD-based design optimization methods are used to improve the thrombogenic

performance of an axial flow blood pump. The research of Burgreen and Antaki [51],

furthermore, represents the expansion of traditional aerodynamic design optimization

procedures into the biomedical field to aid in artificial heart design. Anderson and
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Venkatakrishnan [52] have recently developed an unstructured grid approach to sensitivity

analysis which actually utilizes a continuous adjoint approach for computer implementation

for the first time. Moreover, in Ref. 52, limitations of the continuous adjoint approach are

discussed and a hybrid continuous-discrete approach, which addresses some of these

deficiencies, is developed.

A detailed and concise review on the use of sensitivity analysis in aerodynamic shape

optimization has been previously reported by Taylor et al. [53]; the reader is strongly urged

to seek this source for research performed prior to that listed above.

1.2.2  Static Aeroelastic Analysis

Again, with the furtherance of modern computers, numerical simulations are being used

more frequently to aid in the design process. To be useful, these simulations must predict

quantitatively the features of the actual model under consideration in both an economical

and reliable manner. An aircraft in flight, for example, is subjected to complex interactions

between aerodynamics, structures, controls, and the propulsion system. Traditionally,

these disciplines were uncoupled and solved separately in the absence of powerful

computational resources [54]. This approach, although less expensive, may neglect the

nonlinearity associated with the interaction and, thus, only provide limited information.

Most modern commercial and military aircraft operate in the transonic flow regime, where

flow nonlinearities such as shock waves and large structural deformations may be present.

Numerous computer codes from both the research and commercial communities have been

developed to account for these interactions. Some familiar examples of commercially

available software that can, among other capabilities, solve the integrated aerodynamic and

structural analysis include NASTRAN [55], ELFINI [56], and ASTROS [57]. However,

these codes utilize linear aerodynamic methods, which limit their applicability. More

advanced aeroelastic codes, which take advantage of modern CFD techniques, include
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XTRANS [58], CAP-TSD [59], and ENSAERO [60]. The higher fidelity Euler and

Navier-Stokes equations are incorporated in ENSAERO, whereas the other codes rely on

transonic small-perturbation theory. A recent concise review of aeroelastic codes and

capabilities has been given by Edwards and Malone [61] and by Batina et al. [62]; the

reader is referred to these sources for further discussion.

The mathematical modeling of the individual-discipline state equations, interdisciplinary

interactions, and configuration geometry is governed by a balance between the

requirements of the problem physics and the model complexity weighed against available

computational resources. Several issues must be considered in the development of an

efficient multidisciplinary analysis code that includes nonlinear CFD solutions. These

nonlinear solutions are obtained as a succession of linearized solutions (iterations);

interaction with other disciplines may be accomplished at the convergence of the nonlinear

equations or possibly during the iterations that lead to convergence. These interdisciplinary

interactions and discipline analyses may be achieved by using a single integrated code or by

interfaced analysis codes; these codes are referred to hereafter as integrated or interfaced

systems.

Interdisciplinary interactions occur in real time (dynamically) but are often modeled as the

iterated, steady-state discipline solutions that are required to match interface or compatibility

conditions. Thus, many nonlinear CFD solutions may be needed to achieve the interface

matching. Borland [63] has defined a multidisciplinary interfaced system as “a collection of

programs or technical modules which have been connected through methods of passing

information from one module to another, usually through data files.” That is, discipline

analysis codes (essentially treated as black boxes) are interfaced, and usually linked over

specific computer platforms. Some of the inherent advantages and disadvantages of

interfaced versus integrated systems are discussed in Ref. 9. Examples of interfaced
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systems currently under development are FIDO [64] and the Boeing Commercial Airplane

Group’s Advanced Aeroelastic System [63].

In an integrated system, it is possible to solve the coupled systems of equations in one of

two ways. The first is a single-domain approach, the other a domain-decomposition

approach (not to be confused with the mesh domain-decomposition methods discussed in

section 1.2.1 and again in the paragraph to follow; one decomposes the individual

discipline equations, the other decomposes the physical domain of interest). The former has

been attempted by numerous researchers, some of whom are Felker [65], Sutjahjo et al.

[66], and Ghattas and Li [67]. However, for an integrated system that solves the

disciplines in a single computational domain, ill-conditioning of the resulting coefficient

matrix dramatically hinders the convergence of the coupled systems. The alternative is an

integrated system that solves (or partially solves) the disciplines separately and matches the

solutions at the boundary interfaces as depicted in Fig. 1.3. This is referred to as the

domain-decomposition approach and does not suffer from the aforementioned

shortcomings. Furthermore, it appears that integrated codes, which utilize the domain-

decomposition approach, tend to be more efficient and portable than their interfaced

counterparts discussed above.

The ability of the code to model realistic configurations with respect to both the physics

and the geometry is a concern within the aerodynamics discipline. To accomplish this task,

several CFD codes are readily available that solve the Euler and Navier-Stokes equations by

using structured-grid domain-decomposition techniques (e.g., multiblock, zonally patched,

or overlapped grids) or unstructured grid technology. Excellent candidate codes, into which

other discipline codes can be integrated, include CFL3D [68], TLNS3D [69], and

OVERFLOW [70] for structured grids and USM3D [71] and FUN3D [72] for unstructured

grid solvers. The integration of OVERFLOW with a finite-element structural code has been

performed by Tzong et al. [73]. Examples of this type of integration with USM3D have
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been reported by Cavallo [74], who coupled this solver with ELAPS [75] (which models

the wing as a flat plate) to perform aeroelastic analysis, and by Bhat and Parikh [76], who

are currently developing an unstructured grid module for ENSAERO with USM3D. Batina

et al. [62] also developed an unstructured grid approach for unsteady aerodynamic and

aeroelastic analysis, which has been applied to full three-dimensional aircraft and utilizes

modal shapes for the bending modes.

Determination of structural deformations, as mentioned above, can be achieved via a

modal shape method or by modeling the configurations with equivalent plates or finite

elements. As noted by Guruswamy and Byun [77], however, the reduction in unknowns

gained by the modal approach for isolated bodies is usually offset by the difficulty that is

associated with determining modal shapes that accurately represent the full configuration.

One does not encounter this problem with finite-element structural analysis; in addition, one

can obtain detailed stress information about the system being studied.

Once deformations have been determined from the structural analysis, these deflections

must be represented on the aerodynamic surface. Similarly, aerodynamic loads must also

be transfer to the structural nodes. This aerodynamic-structures coordination has been an

active research area recently. The simplest approach uses bilinear interpolation to transfer

the disciplinary information across the interface boundary. This approach, commonly

referred to as load-lumping, has been successfully used by numerous researchers [54-

60,63,64,74,77-79]. An alternative to this procedure was first developed by Guruswamy

and Byun [77], who introduce a virtual surface, based on Appa splines [80], between the

aerodynamic surface and the structural finite-element mesh. This virtual surface is then

used to transfer the structural deformations to the aerodynamic mesh, and the principle of

virtual work employed to obtain the loads at the structural nodes from the aerodynamic

analysis. In a similar fashion, Tzong et al. [73] introduces a virtual surface based on finite-

element technology to transfer the deflections, and virtual work (reciprocal theorem) to
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obtain the structural loads. Samareh [81] demonstrates the ability to transfer

interdisciplinary information across interface boundaries using Non-Uniform Rational B-

Splines (NURBS) [82]. In Ref. 81, sample functions, such as a sine wave, are mapped via

a NURBS surface onto aerodynamic grids and similar surface deflection are modeled. The

emphasis of that work was to demonstrate that parameterization techniques, consistent with

the CAD definition of the geometry, may be used to perform the coupling between the

aerodynamic and structures disciplines.

1.2.3  Multidisciplinary Design Optimization

MDO is a process which has been utilized by industry for many years; however, more

often than not it has been coordinated at another level independent of the individual

disciplinary expertise. This process can be considered an over-the-fence approach to MDO

where designs, and data for those designs, are produced at the disciplinary levels, then

transferred up to another organizational level (thrown over the fence) where it is compiled,

evaluated, and decisions made. As noted in Ref. 83, that following this procedure “as the

design process goes forward designers gain knowledge but loose freedom to act on that

knowledge.” This drives the need to coordinate the MDO process at the disciplinary levels

where more revolutionary, as opposed to evolutionary, design improvements can be made.

Recommendations on how this flow of information can be used to reduce the cycle time

associated with the design and development of aircraft have been proposed by Grose [84]

and by Jameson [85]. These papers propose a re-engineering of the design process, where

Jameson presents a case study conducted on the McDonnell Douglas MDXX.

Coordination of the MDO process at the disciplinary levels can be considered as the

theory of MDO, as opposed to the practice of MDO described previously. The theory of

MDO is an emerging new field which attempts to use numerical optimization techniques to

develop improved and efficient designs to complex, interacting engineering systems at the
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disciplinary level. Detailed surveys of research being conducted in this area have been

compiled by Sobieski [86,87] and by Sobieski and Haftka [88] and, once again, the reader

is directed to these sources. As should be expected with a relatively new field of research,

numerous techniques have been proposed to accomplish the required coordination between

the disciplines. In an attempt to obtain a perspective on the various methods being

explored, Cramer et al. [89], Balling and Sobieski [90], and Newman et al. [91] have

developed a classification of these techniques. These classifications are based on the means

by which the analyses of the disciplines, the procurement of sensitivity information, and

the numerical optimizer are interacted.

The best known method of computing the sensitivity information between coupled

systems is via the solution of the global sensitivity equations derived by Sobieski [92].

This system of equations, however, may sometimes be ill-conditioned and the memory

requirements associated with the storage of the coefficient matrix may be prohibitive. The

fact that the global sensitivity equations are ill-conditioned should be expected since, as

discussed in section 1.2.2, the single-domain approach to the multidisciplinary analysis

suffers from this problem. Alternative formulations have been proposed, for example, by

James [93] and by Cramer et al. [94]. In particular, the methods proposed in Ref. 94 were

applied to a one-dimensional elastic nozzle by Shubin [95] to demonstrate that by delaying

feasibility until later in the convergence of the multidisciplinary systems, time savings could

be produced. This type of procedure, termed individual disciplinary feasible approach, falls

between the traditional multidisciplinary feasible approach (i.e., at each design iteration the

coupled systems and their respective sensitivity analyses are solved to convergence) and the

SAADO approach that permits disciplinary and multidisciplinary infeasibility during the

design iterations and only satisfies the optimality conditions at convergence. The most

prominent of the aforementioned methods to solve the global sensitivity equations has been

the multidisciplinary feasible approach.
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The logical, and thus the most prevalent, research in MDO using some form of the global

sensitivity equations has been the coupling of the aerodynamic and structures disciplines. A

representative list of the work which has been undertaken may be found in references 95-

100. In each of these procedures, however, simplified models have been used to represent

the disciplinary analyses; most notably for the aerodynamics. This is due to the fact that the

aerodynamic analysis tends to be the most CPU demanding part of the MDO process in

terms of both time and memory requirements Furthermore, the corresponding contribution

from the aerodynamic sensitivity analysis is proned to ill-conditioning for nonlinear fluid

equations [101,102]. As an example on the use of simplified fluid models, Grossman et al.

[96] utilize the finite-element method to analyze the structure of a transport wing, but

resorted to a vortex-lattice method (a linear flow model) for the aerodynamic calculations.

This work was later extended by Rais-Rohani et al. [99] to include the additional discipline

of controls for the aeroelastic tailoring of a forward-swept wing. Only the aeroelastic

instability of wing divergence is considered in Ref. 99 and the configuration was analyzed

at a subsonic, subcritical Mach number which was a limitation of the aerodynamic model

chosen. Subsequently, Arslan and Carlson [100] performed the multidisciplinary

sensitivity analysis using the transonic small-disturbance potential equation for the fluid

model and an equivalent flat plate model for the structure. The use of this simplified

nonlinear fluid model allowed computations and sensitivities to be evaluated in the

transonic regime. The resulting ill-conditioned global sensitivity equations were

reformulated and solved by the incremental iterative technique mentioned previously.

Furthermore, the work of Ref. 100 demonstrated the need for multidisciplinary sensitivity

analysis, within the design optimization process, by showing that the sensitivity

information produced by an aerodynamic-only calculation had different magnitudes, and in

some cases different signs, from that obtained with the coupled sensitivity analysis. Similar

findings have been reported by Barthelemy and Bergen [97] and by Newman et al. [78].
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1.3  Objectives of the Present Work

Over the last half century, through relentless experimental and computational studies,

resourceful design engineers have produced near optimal aerospace configurations. To

further improve these designs, where the margin for improvement is small, designers will

require additional information such as sensitivity derivatives. This additional information

may also be used to expedite the design of new engineering systems for which there is no

vast experimental or computational data base. These needs are the impetus for the

development of efficient and accurate multidisciplinary analysis and sensitivity analysis

procedures. To maximize the benefits of these procedures, they must have the capability of

resolving both the physics and the geometric complexities of practical configurations.

Utilizing a divide-and-conquer strategy, the development of an integrated MDO

procedure, capable of analyzing the nonlinear fluid flow about geometrically complex

configurations, may be decomposed into the following three steps: (i) develop a procedure

to perform the aerodynamic shape sensitivity analysis and optimization, (ii) develop the

ability to perform the aeroelastic analysis, and (iii) develop a procedure which couples the

aerodynamic and structural sensitivity equations to perform the aeroelastic design

optimization. In the current work the first two of these three steps have been accomplished.

For the first step, as depicted in Fig. 1.2, the aerodynamic analysis and the corresponding

shape sensitivity analysis, are performed on unstructured grids. Discretization of the fluid

domain with this technique permits the investigation of extremely complicated geometries.

To allow for the modeling of flow fields in which nonlinearities (such as shock waves)

may be present, the Euler equations have been chosen. Accomplishing the task of

computing discrete sensitivity derivatives for these equations required the use of novel

computational methods. The second step illustrated in Fig. 1.3, was to develop the

capability to accurately account for the multidisciplinary interactions. To accomplish this,
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the aforementioned aerodynamic analysis code was coupled with a structural finite-element

method. This enabled the ability to perform static aeroelastic analysis. Parameters are

introduced to control the interaction of the computational fluid dynamics and structural

analyses; these control parameters permit extremely efficient static aeroelastic computations.

Thus, the fruit of the present research has been the development of a functional

aerodynamic sensitivity analysis procedure capable of performing the shape design

optimization of geometrically complex aerospace configurations, and the ability to perform

extremely efficient static aeroelastic analysis. Applications of this procedure have been

reported in references 13, 49, 50, 78, and 79.
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