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Professor Joseph A. Ball, Chair

(ABSTRACT)

We develop the robust control theories of stopping-time nonlinear systems and switching-
control nonlinear systems. We formulate a robust optimal stopping-time control problem for
a state-space nonlinear system and give the connection between various notions of lower value
function for the associated game (and storage function for the associated dissipative system)
with solutions of the appropriate variational inequality (VI). We show that the stopping-time
rule can be obtained by solving the VI in the viscosity sense. It also happens that a positive
definite supersolution of the VI can be used for stability analysis. We also show how to
solve the VI for some prototype examples with one-dimensional state space. For the robust
optimal switching-control problem, we establish the Dynamic Programming Principle (DPP)
for the lower value function of the associated game and employ it to derive the appropriate
system of quasivariational inequalities (SQVI) for the lower value vector function. Moreover
we formulate the problem in the L2-gain/dissipative system framework. We show that, under
appropriate assumptions, continuous switching-storage (vector) functions are characterized
as viscosity supersolutions of the SQVI, and that the minimal such storage function is equal
to the lower value function for the game. We show that the control strategy achieving the
dissipative inequality is obtained by solving the SQVI in the viscosity sense; in fact this
solution is also used to address stability analysis of the switching system. In addition we
prove the comparison principle between a viscosity subsolution and a viscosity supersolution
of the SQVI satisfying a boundary condition and use it to give an alternative derivation of
the characterization of the lower value function. Finally we solve the SQVI for a simple
one-dimensional example by a direct geometric construction.
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Chapter 1

Introduction

In this dissertation, we develop the robust control theory for hybrid, nonlinear state-space
systems, namely the robust control theory of stopping-time or switching-control problems.

Nonlinear H∞ control

Robust (or H∞) control has been studied intensely in the past decade [6, 7, 8, 9, 10, 12,
34, 45, 48, 49, 55]. The notions of dissipative systems and differential games have been
used to solve the nonlinear H∞-control problems. A general nonlinear system used for the
formulation of the robust control (or H∞-control) problem is given as

Σ


ẏ = f(y, a, b)
w = g(y, a, b)
z = h(y, a, b).

(1.1)

b z

Σ
a w

Figure 1.1: Standard control configuration

Here y(·) ∈ IRn denotes the system state, a(·) ∈ A ⊆ IRp denotes the control input, b(·) ∈
B ⊆ IRm denotes the deterministic unknown disturbance on the system, or exogenous input,
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b z

Σ

K

a w

Figure 1.2: Standard closed-loop configuration

w(·) ∈ IRd denotes the observed output, and z(·) ∈ IR denotes the cost variable. Usually in
applications h(y, a, b) = |h̄(y, a)|2 where h̄ : IRn ×A→ IRr.

The H∞-control problem is to find a controller K : w(·) → a(·) and the smallest number
γ∗ > 0 so that the closed-loop system (Σ, K) of Figure 1.2 is γ∗-dissipative and stable. We say
that the closed-loop system (Σ, K) is γ-dissipative if there exist an γ > 0 and a nonnegative
real-valued function S with S(0) = 0 such that{ ∫ T

0
h(yx(s, a, b), a(s), b(s))ds ≤ γ2

∫ T

0
|b(s)|2ds+ S(x)

for all x ∈ IRn, all b ∈ L2 and all T ≥ 0.
(1.2)

We have used the notation yx(·, a, b) for the unique solution of ẏ = f(y, a, b) with yx(0, a, b) =
x. The inequality (1.2) corresponds to an input-output system having L2-gain at most γ

where
∫ T

0
h(yx(s, a, b), a(s), b(s))ds replaces the L2-norm of the output signal over the time

interval [0, T ].

In general it is hard to solve the H∞ control problem, so we instead solve the suboptimal H∞
control problem. The suboptimal H∞ control version asks for a preassigned attenuation level
γ > γ∗ to find a controller K with some information structure so that the closed-loop system
(Σ, K) is γ-dissipative and internally stable, i.e. stable for any initial condition subject to
zero disturbance b ≡ 0. Notice that the solvability of the suboptimal H∞ control problem
will depend on the choice of the attenuation level γ. In fact, the main goal of the H∞ control
theory is to find the admissible controller so that the L2-gain of the closed-loop system from
disturbances b to outputs z is minimized. That is to compute the real number

γ∗ = inf{γ > 0 : the suboptimal H∞ control problem with index γ can be solved}.
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The optimal disturbance attenuation γ∗ is a measure of the robustness of the system and, on
the other hand, of the influence that the disturbances have on its behavior. Unfortunately,
there is no general effective method to our knowledge, to characterize the value γ∗. In
practice, the solution of optimal H∞ control problem may be approximated by an iteration
of the suboptimal H∞ control problem (successively decreasing γ to the optimal disturbance
attenuation level γ∗).

Dissipative systems

In an L2-gain/dissipative framework, the notion of a storage function for a dissipative system
plays a prominent role (see [36, 45]). The dissipative system theory was developed by Willems
in the 70’s [52]. For a given control a∗(·) = K(y(·)), the state feedback closed-loop system{

ẏ = f(y, a∗, b)
z̄ = h̄(y, a∗)

(1.3)

is said to be dissipative with respect to the supply rate γ2|b|2 − |z̄|2, for γ > 0 if there is
a nonnegative function S : IRn → IR, called the storage function, such that for all initial
condition yx(0) = x ∈ IRn, all T ≥ 0 and all disturbance functions b ∈ L2[0, T ]

S(yx(T )) ≤ S(x) +

∫ T

0

[γ2|b(s)|2 − |z̄(s)|2]ds. (1.4)

For brevity we have written yx(·) instead of yx(·, a∗, b). The inequality (1.4) is called the
dissipation inequality. It expresses the fact that the “stored energy” S(yx(T )) at any future
time T is at most equal to the sum of the stored energy S(x) = S(yx(0)) at present time

0 and the total externally supplied energy
∫ T

0
[γ2|b(s)|2 − |z̄(s)|2]ds during the time interval

[0, T ]. Hence there can be no internal “creation of energy”; only internal dissipation of energy
is possible. The dissipative inequality gives

S(x) ≥ sup
b(·), T

{
∫ T

0

[|z̄(s)|2 − γ2|b(s)|2]ds+ S(yx(T ))}

≥ sup
b(·), T

{
∫ T

0

[|z̄(s)|2 − γ2|b(s)|2]ds}.

We then define the available storage as

Sa(x) = sup
b(·), T

{
∫ T

0

[|z̄(s)|2 − γ2|b(s)|2]ds}. (1.5)

The available storage Sa(x) can be interpreted as the maximal “energy” which can be ex-
tracted from the system starting in an initial condition y(0) = x. It is well-known that
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the system is dissipative if and only if the available storage is finite for every initial condi-
tion. Moreover if the available storage is finite, then it is again a storage function and is
characterized as the minimal storage function.

In general, the supply rate can be any function s : IRd × B → IR. Two important choices of
the supply rate are

ŝ(z̄, b) = bT z̄ and s̄(z̄, b) =
1

2
[γ2|b|2 − |z̄|2], γ > 0.

The closed-loop system (1.3) is passive if it is dissipative with respect to the supply rate
ŝ(z̄, b) and it has L2-gain ≤ γ if it is dissipative with respect to the supply rate s̄(z̄, b).

If a storage function S is continuously differentiable (C1), we see that (1.4) is equivalent to

−DS(x) · f(x, a∗, b)− |h̄(x, a∗)|2 + γ2|b|2 ≥ 0, for all x, b. (1.6)

The inequality (1.6) is called the differential dissipative inequality, and it is usually easier
to check than (1.4) since we do not have to compute the system trajectories. It is easy to
check that the closed-loop system (1.3) is dissipative with the supply rate γ2|b|2 − |z̄|2 and
with the C1 storage function S if and only if there is a nonnegative C1 solution S to the
Hamilton-Jacobi-Bellman inequality

H∗(x,DS(x)) ≥ 0,

where the Hamiltonian function H∗ is given as

H∗(x, p) = inf
b
{−p · f(x, a∗, b)− |h̄(x, a∗)|2 + γ2|b|2}.

It follows from the theory of dynamic programming that if Sa is C1, then it is a solution of
the Hamilton-Jacobi-Bellman equation (HJBE)

H∗(x,DSa(x)) = 0.

In fact, S and Sa can be used as Lyapunov functions in stability analysis (see [45]). However
storage functions are usually not everywhere differentiable, nor even continuous. Thus we
should want to have a solution of the HJBE in “weak” form. The concept of viscosity
solutions comes to play a role.

Viscosity solutions

The theory of viscosity solutions, invented in the early 80’s by M.G. Crandall, P.L. Lions
and L.C. Evans, provides a PDE framework for dealing with the lack of smoothness of the
value functions arising in dynamic optimization problems.
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For the definition of a viscosity solution, we consider the first order PDE of the form

F (x,Du(x)) = 0 x ∈ X (1.7)

where X is an open domain of IRn and the Hamiltonian F = F (x, r) is a continuous real
valued function on X × IRn. A function u ∈ USC(X ) is a viscosity subsolution of (1.7) if for
any ϕ ∈ C1(X )

F (x0, DU(x0)) ≤ 0 (1.8)

at any local maximum point x0 ∈ X of u−ϕ. Similarly, a function u ∈ LSC(X ) is a viscosity
supersolution of (1.7) if for any ϕ ∈ C1(X )

F (x1, DU(x1)) ≥ 0 (1.9)

at any local minimum point x1 ∈ X of u − ϕ. A locally bounded function u : X → IR is
a non-continuous viscosity solution of (1.7) if u∗ is a viscosity subsolution of (1.7) and u∗
is a viscosity supersolution of (1.7), where u∗ and u∗ are respectively the upper and lower
semicontinuous envelope of u defined as

u∗(x) = lim sup
y→x

u(y)

u∗(x) = lim inf
y→x

u(y).

In the definition of a subsolution we can always assume that x0 is local strict maximum point
for u−ϕ (otherwise replace ϕ(x) by ϕ(x)+ |x−x0|2). Moreover since (1.8) depends on only
the value of Dϕ at x0, it is not restrictive to assume that u(x0) = ϕ(x0). Similar remarks
apply to the definition of a supersolution. Geometrically, this means that the validity of the
subsolution condition (1.8) for u is tested on the smooth functions “touching from above”
the graph of u at x0. For more details of viscosity solution theories we refer to [10] and [22].

Differential games

There is a close connection between H∞ control and differential games. The theory of (two-
person zero-sum) differential games has a close connection with the worst case analysis of
a controlled system with a disturbance. It is well-known that the existence of a solution of
the H∞ problem can be established by studying the lower value function of the associated
game. The theory of differential games started at the beginning of the ’60s with the work of
Isaacs (see [35]) in the U.S.A. and of Pontryagin (see [41]) in the Soviet Union. The main
motivation at that time was the study of the military problems.

For the two-person zero-sum differential games, we consider the system dynamics of the form

ẏ = f(y, a, b), y(0) = x,
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where the admissible control a(·) and admissible disturbance b(·) are respectively the control
functions of the first and second player. In addition there is a cost functional J(x, a(·), b(·))

J(x, a, b) =

∫ ∞

0

l(yx(s), a(s), b(s))e
−λsds.

where l is a running cost and λ is a positive discount factor. J is the cost which the first
player wants to minimize and the second player wants to maximize. In other words, −J is the
cost the second player has to pay, so the sum of the costs of the two players is zero, which
explains the name “zero-sum”. We also give an information pattern for the two players,
namely nonanticipating strategy where one player knows the current and past choices of the
control made by his opponent (for the other information pattern, see Chapter VIII in [10]).
We say that the strategy α (respectively, β) for the first (respectively, second) player is
nonanticipating (or causal) if for any t > 0 and b(s) = b̄(s) (respectively, a(s) = ā(s)) for all
s ≤ t implies α[b](s) = α[̄b](s) (respectively, β[a](s) = β[ā](s)) for all s ≤ t. The lower value
and upper value of a game are then respectively given as

v(x) = inf
α

sup
b
J(x, α[b], b)

u(x) = sup
β

inf
a
J(x, a, β[a]).

It is well-known that

v(x) ≤ u(x) for all x, (1.10)

which justifies the terms “lower” and “upper”. The inequality (1.10) is not obvious at first
glance and requires a proof. Actually, one might first guess the opposite inequality since
inf sup ≥ sup inf if they are taken over the same sets. We say that the value of the game
exists if v(x) = u(x). It is well-known that if the Isaacs’ condition or solvability of the small
game holds, i.e.,

sup
a∈A

inf
b∈B

F (x, p, a, b) = inf
b∈B

sup
a∈A

F (x, p, a, b), for all x, p ∈ IRn, (1.11)

where F (x, p, a, b) = −p · f(x, a, b) − l(x, a, b), then the value of the game exists. More
generally the condition (1.11) is equivalent to saying that the two-person zero-sum static
game over the sets A and B with payoff F has a saddle point. We refer to [10], [12] and
references therein for the details of (two-person zero-sum) differential games and for detailed
treatment of some advanced topics.

We view the suboptimal H∞ control setup as a game with the payoff functional

J̄T (x, a, b) =

∫ T

0

¯̀(yx(t, a, b), a(t), b(t)) dt

with
¯̀(y, a, b) = [h(y, a, b)− γ2|b|2],
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where the disturbance player seeks to use b(t) and T to maximize the payoff while the control
player seeks to use a(t) to minimize the payoff. The lower-value function V̄ for this game is
then defined to be

V̄ (x) = inf
α

sup
b, T

J̄T (x, αx[b], b) (1.12)

where the supremum is over all nonnegative real numbers T and L2-disturbance signals b(·),
while the infimum is over all nonanticipating control strategies α. The main result concern-
ing this game-theoretic approach to the nonlinear H∞-control problem is: under minimal
smoothness and boundedness assumptions on the problem data f and h, the lower value func-
tion V̄ is the minimal possible storage function, and, if also continuous, is characterized as
the minimal viscosity-sense supersolution of the Hamilton-Jacobi-Bellman-Isaacs Equation
(HJBIE)

H̄(x,DV̄ (x)) = 0

where we have set

H̄(x, p) = inf
b

sup
a
{−p · f(x, a, b)− h(x, a, b) + γ2|b|2}.

When V̄ is smooth and H̄ has a saddle point, the optimal control law can be derived from
the lower value function V̄ (x) via a∗(x(t)) = a∗(x(t), DV̄ (x(t))) where

a∗(x, p) = arg sup
a

[inf
b
{−p · f(x, a, b)− h(x, a, b) + γ2|b|2}].

For details, we refer to [45], [48] and [49].

For practical applications, one must next solve (HJBIE). One approach is via the connection
with the stable invariant manifold for the associated Hamiltonian flow (see [45]); it is possible
to turn this into a numerical procedure analogous to the method of bicharacteristics for
general PDEs (see [23]). Alternatively, one can find an approximation to the true lower
value function by computing the lower value function for a discrete-time robust control
problem which approximates the true continuous-time problem—see Appendix A in [10] for
one illustration of this idea, and [20] and [37] for discrete approximation methods. The
approximation methods in [20] and [37] are different. In [20], the author introduced a
discrete system and defined the corresponding H∞ norm. He characterized the H∞ norm
of the discrete system in terms of the finite difference inequality (the discrete version of the
Hamilton-Jacobi-Bellman inequality in this context) and a property of the value function
associated to an ergodic problem, and showed that the ergodic cost index can be used
to characterize the discrete H∞ norm (similar results for a continuous-time problem were
discussed in [27] and [28]). The author then proved the convergence of the discrete norm
to the continuous norm and the discrete ergodic cost index to the continuous one. In [37],
the authors showed that the available storage was the limit of a corresponding finite-horizon
storage function which is the unique solution of the time-dependent version of the Hamilton-
Jacobi-Bellman equation. They then introduced the discrete versions of the Hamilton-Jacobi-
Bellman equation corresponding to an finite-horizon problem for a controlled Markov chain
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(this finite-difference scheme was presented in [25] for approximation solution to dynamic
programming arising in stochastic optimal control). While there are various methods for
improving the efficiency of such numerical approaches to solving HJBIEs, for a state space
of high dimension one quickly runs into the “curse of dimensionality”. If one’s true goal to
solve H∞ control problem is more qualitative (stability with the satisfaction of some more
qualitative performance specs), other approaches which avoid the solution of HJBIEs (such
as the Lyapunov-based techniques developed in [38] and [31]) have now been proposed. See
also [2] which summarized theories of the modern control and reviewed some recent books
in control theory.

Motivation

In this dissertation we develop analogues of all these standard robust control ideas mentioned
above for the case (1) of a robust stopping-time problem, and (2) of a robust switching-cost
problem.

We formulate a robust optimal control stopping-time problem for a state-space system and
give the connection between various notions of lower value function for the associated games
(and storage function for the associated dissipative system) with the solution of the ap-
propriate variational inequality (VI) (the analogue of the Hamilton-Jacobi-Bellman-Isaacs
equation for this setting). We obtain results of the robust optimal stopping-time problem
similar to the standard H∞ control problem. We also find the lower-value function W (x)
(see(2.12)) explicitly for a prototype problem with one-dimensional state space by a simple,
direct, geometric construction (see Section 2.5). The algorithm in Section 2.5 was developed
by Professor Ball and the example was given by Professor Day. (Professor Day also provided
the example for a robust optimal switching-control problem in Section 3.5.2.) I would like
to thank both of them for permitting me to use this.

Our original motivation for study of robust optimal stopping-time problems was as a simpler
prototype of the robust control problem with switching costs; the precise connection is
explained in Section 3.5.1. However many real-world problems can be formulated as stopping-
time problems. For example an electricity company runs a system of hydroelectric and
thermal power stations to provide electricity. This system must be managed to minimize the
running cost. For the thermal power stations, at every moment it must be decided whether
a shut down power station must be started up, or whether one in operation must be shut
down. In stock management, after investors buy stocks, they have to watch those stocks
carefully in order to make money. Either stocks go up or go down, they have to decide
if they should hold or sell those stocks. Roughly speaking, a stopping-time problem is a
management problem. Here management problems do not refer to just only business, but
also energy, natural resources, information technology problems. For more examples of these
problems, see [13].
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Engineering and biological complex systems usually have interaction of different types of
information which leads to hybrid systems, i.e., systems involving both continuous and dis-
crete aspects. The theory of hybrid control systems have been developed rapidly (see [17],
[18], [19], [39] [43] and references therein). In both engineering and biology systems, the
robustness of the systems is essential because it guarantees that the designed systems do not
change too dramatically where subjected to exogenous disturbances or modeling errors. In
many real-world problems, the control systems have the hybrid feature, namely switching-
control. That is the feature where the system dynamic changes abruptly in respond to a
control command, usually with an associated cost. The following examples of switching-
control problems are modified from [17]. In satellite control, we consider the system of the
form

ẏ1 = y2

ẏ2 = Ca,

where y1 and y2 are respectively angular position and angular velocity of the satellite, a ∈
{−1, 0, 1} depending on whether the reaction jets are full reverse, off, or full on, and C is a
given constant. In a manual transmission on a car, we consider

ẏ1 = y2

ẏ2 =
−g(y2/a) + b

1 + a
,

where y1 is the ground speed, y2 is the engine RPM, b ∈ [0, 1] is the throttle position, and
a ∈ {1, 2, 3, 4} is the gear shift position. The function g is positive for positive argument.

We formulate a robust optimal control problem for a general nonlinear system with finitely
many admissible controls and with positive costs assigned to switching of controls. We
give the connection between the lower value (vector) function for an associated game (or
the storage function for an associated dissipative system) with the appropriate system of the
quasivariational inequalities (the appropriate generalization of the Hamilton-Jacobi-Bellman-
Isaacs equation for this context), and the characterization of the continuous lower value
vector function as the minimal nonnegative continuous viscosity supersolution of the SQVI.

Our original motivation for robust switching-control problems arose from the problem of
designing a real-time feedback control for traffic signals at a highway intersection (see [6],
[7]), where the size of the cost imposed on switching can be used as a tuning parameter
to lead to more desirable types of traffic-light signalization. Also a positive switching cost
eliminates the chattering present in the solution otherwise. We discuss this example more
in detail in “future work”, Chapter 4.

Related work

Optimal stopping-time problems have a long history in probability theory. There is an
introductory exposition in [26] and a more thorough treatment in [13], [30] and [46]. Just
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as (deterministic) robust control has many analogies with classical stochastic control, our
idea here can be viewed as developing a deterministic robust analogue of optimal stopping.
A stochastic stopping-time game is formulated in [13, Section 2.9], but with both players
having only the option to stop the system (as opposed to our setup with one player having
an input-signal control and the other player having a stopping-time option). A deterministic
formulation of an optimal stopping-time problem is discussed in Section III.4.2 of [10], but
with a discounted cost rather than dissipation inequality and with no disturbance competing
with the control as in the robust approach. Since there is a discount in the running cost,
the authors were able to show that the value function is bounded and uniformly continuous,
and is the unique viscosity solution of the appropriate variational inequality (VI). Infinite-
horizon optimal switching-control problems are discussed in [10, Chapter III, Section 4.4] but
with a discount factor in the running cost and no disturbance term. Differential games with
switching strategies and switching costs for the case of finite horizon problems are discussed
in [53] while the case of infinite-horizon with both control and competing disturbance but
with a discount factor in the running cost are discussed in [54]. Again these authors were
able to show that the vector value function is continuous and is the unique solution of the
appropriate system of quasivariational inequalities (SQVI) because of the positive discount
factor in the running cost.

Our derivation of the VI for the stopping-time problem and of the SQVI for the switching-
control problem is a direct application of the method of dynamic programming standard in
control theory. The technical contribution here to the optimal stopping-time and switching-
cost problems can be seen as parallel to that of Soravia in [48] for the nonlinear H∞-control
problem: to extend the game-theoretic, dynamic-programming approach to the infinite-
horizon setting where, due to a lack of discount factor in the running cost, the running cost is
not guaranteed to be integrable over the infinite interval [0,∞). This forces the introduction
of the extra “disturbance player” T in (1.12), (2.12) and (3.11), and complicates many of
the proofs (see also [32], [49] and [10, Appendix B] for later, closely related refinements
of the nonlinear H∞ results). Due to a lack of positive discount factor and the presence
of the extra disturbance player T , our lower-value function (see 2.12 for a stopping-time
problem and 3.11 for a switching-control problem) probably in general is not continuous,
and moreover cannot be characterized simply as the unique solution of the VI (and SQVI)
as is the case for finite-horizon problems and problems with a positive discount factor.

We give two derivations of the minimality characterization of the lower value vector function
for the switching-control problem. One is the direct argument by using the synthesis method
of an optimal control. An alternative derivation of this characterization relies on a general
comparison principle for viscosity super- and subsolutions of the SQVI. James ([36]) used
this method to obtain a characterization of the storage function for the standard L2-gain
problem. However for our situation, the comparison principle of the SQVI of the form we
want is not in the literature. Thus we prove the comparison principle in Section 3.3.2 and
apply it to obtain the characterization of the lower value vector function in Section 3.3.3.
The proof of the comparison principle of the SQVI with a positive discount λ > 0 was given



Jerawan Chudoung Chapter 1. Introduction 11

in [10, Section II.4.4]. However to the best of our knowledge, it is impossible to adapt the
proof there directly to our setting, λ = 0. So our proof of the comparison principle is from
scratch. The basic idea is now a standard technique in the theory of viscosity solutions (see
[22]), namely: introduce an auxiliary function depending on some additional parameters of
twice the number of variables which is equal to a function of interest on the diagonal, and
then use the parameters to penalize the doubling the number of variables. A proof of the
comparison principle for the Hamilton-Jacobi-Bellman case is carried out in detail using this
technique in [10, Section III3.2].

This dissertation is organized as follows. Following the present chapter, Chapter 2 presents
the robust stopping-time control problem, Chapter 3 presents the robust optimal switching-
control problem, and finally Chapter 4 presents the conclusions and future work. The ma-
terial on Chapter 2 overlaps with [3], Chapter 3 except Section 3.3.2 and 3.3.3 with [4] and
Section 3.3.2 and 3.3.3 with [5].



Chapter 2

Robust optimal stopping-time
problems

In this chapter, we develop the theory of robust stopping-time problem for a general nonlinear
state-space system.

2.1 Preliminaries

In this section we give assumptions, definitions and background material needed in subse-
quent sections. We consider the nonlinear system Σst

Σst

{
ẏ = f(y, b), y(0) = x ∈ IRn

z = h(y, b),
(2.1)

where y(·) ∈ IRn denotes the state, b(·) ∈ B ⊂ IRm denotes the deterministic unknown dis-
turbance on the system, and z(·) ∈ IRdenotes the cost function. Usually in the applications
h(y, b) = |h̄(y)|2, where h̄ : IRn → IRp. In addition we assume that we are given a positive
stopping cost function Φ(y).

We make the following assumptions:

(A0) 0 ∈ B ⊆ IRm and B is closed;
f : IRn × B → IRn and h : IRn × B → IR are continuous;

(A1) f and h are bounded on B(0, R)× B for all R > 0;

(A2) there are moduli ωf and ωh such that

|f(x, b)− f(y, b)| ≤ ωf(|x− y|, R)

|h(x, b)− h(y, b)| ≤ ωh(|x− y|, R),

12
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for all x, y ∈ B(0, R) and R > 0, where a modulus is a function ω : IR+ × IR+ → IR+

such that, for all R > 0, ω(·, R) is continuous, nondecreasing and ω(0, R) = 0;

(A3) (f(x, b)− f(y, b)) · (x− y) ≤ L|x− y|2 for all x, y ∈ IRn and b ∈ B;

(A4) Φ : IRn → IR is positive and continuous;

(A5) h(x, 0) ≥ 0 for all x ∈ IRn.

In addition we assume that f(0, 0) = 0 and h(0, 0) = 0, so that x = 0 is an equilibrium point
of the undisturbed system ẏ = f(y, 0).

Remark 2.1 Note that assumption (A1) eliminates the linear-quadratic case (where f is
linear in y and b and h is quadratic in the components of y and b) if B is taken to be
an entire Euclidean space IRm; if B is restricted to a compact subset, e.g., a large closed
ball B(0, R) ⊂ IRm, then the assumptions (A0)–(A5) do apply in the linear-quadratic case;
this is sufficient for many applications. Alternatively one could use the reparametrization
technique of Soravia (see [10, Appendix B] and [48]) to reduce the linear-quadratic case to an
adapted problem where estimates which are uniform with respect to the disturbance b ∈ B
are satisfied.

For a specified gain parameter γ > 0 we define the running cost function

l(y, b) = h(y, b)− γ2|b|2, (2.2)

and the Hamiltonian function

H(y, p) = inf
b∈B
{−p · f(y, b)− l(y, b)}. (2.3)

Note that H(y, p) < +∞ for all y, p ∈ IRn by (A1). Under assumptions (A0)-(A3), we can
show that H is continuous. (The proof is similar to that in [10, page 106].) Let B denote
the set of locally square integrable functions b : [0,∞) → B. We consider B to be the set of
admissible disturbances. We look at trajectories of the nonlinear dynamical system

ẏ(s) = f(y(s), b(s)), y(0) = x ∈ IRn. (2.4)

Under the assumptions (A0), (A1) and (A3), for each b ∈ B and x ∈ IRn the solution of
(2.4) exists uniquely for all s ≥ 0. (The proof of this result is in Section III.5 of [10].) The
solution of (2.4) will be denoted by yx(s, b), or briefly by yx(s) if there is no confusion. The
basic estimates on yx are the following (for the proofs see Section III.5 of [10]):

|yx(t, b)− yz(t, b)| ≤ eLt|x− z|, t > 0 (2.5)

|yx(t, b)− x| ≤ Mxt, t ∈ [0, 1/Mx], (2.6)

|yx(t, b)| ≤ (|x|+
√

2Kt)eKt, t > 0, (2.7)
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for all b ∈ B, where

Mx := sup{|f(z, b)| : |x− z| ≤ 1, b ∈ B}
K := L+ sup{|f(0, b)| : b ∈ B}.

Let us introduce the notion of upper and lower semicontinuous envelope of a function U :
IRn → [−∞,+∞]. These two new functions are, respectively,

U∗(x) := lim sup
r→0+

{U(z) : |z − x| ≤ r}
U∗(x) := lim inf

r→0+
{U(z) : |z − x| ≤ r}.

It is well-known that if U is locally bounded, then U∗ ∈ LSC(IRn) and U∗ ∈ USC(IRn). Let
us now introduce the variational inequality (VI)

max{H(x,DU(x)), U(x)− Φ(x)} = 0, x ∈ IRn.

Definition 2.2 A locally bounded function U : IRn → [−∞,+∞] is a viscosity subsolution
of the VI in IRn if for any Ψ ∈ C1(IRn)

max{H(x0, DΨ(x0)), U(x0)− Φ(x0)} ≤ 0 (2.8)

at any local maximum point x0 ∈ IRn of U∗ −Ψ. Similarly, U is a viscosity supersolution of
the VI in IRn if for any Ψ ∈ C1(IRn)

max{H(x1, DΨ(x1)), U(x1)− Φ(x1)} ≥ 0 (2.9)

at any local minimum point x1 ∈ IRn of U∗ −Ψ. Finally, U is a viscosity solution of the VI
if it is simultaneously a viscosity subsolution and supersolution.

We now describe an alternative way of defining viscosity solutions of the VI by means of the
semidifferentials instead of test functions. We define the superdifferential of U∗ at x by

D+U∗(x) := {p ∈ IRn : lim sup
y→x

U∗(y)− U∗(x)− p · (y − x)

|x− y| ≤ 0}

and the subdifferential of U∗ at x by

D−U∗(x) := {p ∈ IRn : lim inf
y→x

U∗(y)− U∗(x)− p · (y − x)

|x− y| ≥ 0}.

The following Proposition can be proven by the arguments in [10, page 29 and 294].

Proposition 2.3 (i) A locally bounded function U : IRn → [−∞,+∞] is a viscosity subso-
lution of the VI in IRn if

max{H(x, p), U(x)− Φ(x)} ≤ 0

for all x ∈ IRn and all p ∈ D+U∗(x).
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(ii) A locally bounded function U : IRn → [−∞,+∞] is a viscosity supersolution of the VI
in IRn if

max{H(x, p), U(x)− Φ(x)} ≥ 0

for all x ∈ IRn and all p ∈ D−U∗(x).

We shall need the following theorem in the exposition below. The proof is similar to that in
[10, page 92], and hence will be omitted.

Theorem 2.4 Let Ω be an open subset of IRn and g : Ω × B → IR. Assume (A0), (A1),
(A3), g ∈ C(Ω×B) and g is bounded on Ω×B. Then for U ∈ C(Ω) the following statements
are equivalent:

(i) U(yx(ν, b))− U(yx(t, b)) ≥
∫ t

ν
g(yx(s), b(s)) ds,

for all b ∈ B, x ∈ Ω, 0 ≤ ν ≤ t < τx[b], where τx[b] := inf{t ≥ 0 : yx(t, b) 6∈ Ω};
(ii) infb∈B{−DU(x) · f(x, b)− g(x, b)} ≥ 0 in Ω in the viscosity sense;

(iii) − infb∈B{−DU(x) · f(x, b)− g(x, b)} ≤ 0 in Ω in the viscosity sense.

Note that the equivalence of (i) and (ii) is also in [36] and of (i) and (iii) is in [8].

For each b ∈ B and x ∈ IRn, a stopping rule τ associates a single time: 0 ≤ τx[b] ≤ +∞.
The essential nonanticipating (or causal) property of stopping rules is that for every t ≥ 0,
whenever two disturbances b and b̃ agree up to t,

b(s) = b̃(s) for all s ≤ t

then

1[0,t](τx[b]) = 1[0,t](τx [̃b]) for all x.

(We have set the notation 1[0,T ] for the indicator function with 1[0,T ](τ) = 1 if 0 ≤ τ ≤ T
and 0 otherwise.) In other words, knowing the history of b(s) for s ≤ t is enough to answer
the question of whether or not τx[b] ≤ t. We denote the set of stopping rules which have the
nonanticipating property by Γ, i.e.

Γ := {τ : IRn × B → [0,+∞] : τ is nonanticipating}.
If b ∈ B is a disturbance, x ∈ IRn is an initial state and t > 0, then we may consider yx(t, b)
as a new initial state imposed at the time t. If Γ has the additional property

τx[b] = t+ τyx(t,b)[bt] for all b ∈ B and all τ ∈ Γ with τx[b] > t (2.10)

(where we have set bt(s) = b(t + s)), we shall refer to Γ as a set of state-feedback stopping
rules. In this case, given that the system has continued running up to time t, the decision of
whether to stop immediately at time t or to continue can be read off from the current value
of the state yx(t, b).
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2.2 Formulations

We consider a state-space system Σst with a positive stopping cost Φ(y). We set the cost
of running the system up to time T with an initial condition x, disturbance b and stopping
time τ to be the quantity

CT (x, τ, b) :=

∫ T∧τ

0

h(yx(s, b), b(s)) ds+ 1[0,T ](τ)Φ(yx(τ, b)).

We have used the notation T ∧ τ for min{T, τ}. For a prescribed tolerance level γ > 0, we
seek a function U(x) ≥ 0 with U(0) = 0 and a stopping-rule τ ∈ [0,∞] so that{

CT (x, τ, b) ≤ γ2
∫ T∧τ

0
|b(s)|2 ds+ U(x)

for all b ∈ B and all T ≥ 0.
(2.11)

The control decision at each moment of time is then whether to stop and cut one’s losses
(with penalty Φ(yx(τ)) in addition to the accumulated running cost up to time T ), or to
continue running the system (including the possibility of never stopping the system before
the disturbance stops it). In the open loop version of the problem, τ is simply a nonnegative
extended real number. In the state feedback version of the problem, τ is a causal (or nonan-
ticipating) function of the current state in the sense that one decides on whether to stop or
continue at a given point in time t as a function of the state vector yx(·, b) at time t. In
the standard game-theoretic formulation of the problem, τ is taken to be a nonanticipating
function of the disturbance b, i.e., one decides whether τ ≤ t based solely on the information
consisting of the initial state x and the past of the disturbance b|[0,t]. The dissipation inequal-
ity (2.11) can then be viewed as the analogue of the closed-loop system (with L2-norm of
output signal being taken to be CT (x, τ, b) for each finite-time horizon [0, T ]) having L2-gain
of at most γ. A refinement of the problem then asks for the control τ which gives the best
system performance, in the sense that the nonnegative function U(x) is as small as possible.

A closely related formulation is to view the stopping-time system as a game with payoff
function

JT (x, τ, b) =

∫ T∧τ

0

[h(yx(s, b), b(s))− γ2|b|2]ds+ 1[0,T ](τ)Φ(yx(τ, b))

=

∫ T∧τ

0

l(yx(s, b), b(s))ds+ 1[0,T ](τ)Φ(yx(τ, b))

where the disturbance player tries to use b(·) and T to maximize the payoff, while the
control player tries to use the stopping time τ to minimize the payoff. As we shall introduce
a variation on this game below, we shall refer to this game as Game I. We define a lower
value function for Game I as

W (x) = inf
τ∈Γ

sup
b∈B, T≥0

{
1[0,T ](τx[b])Φ(yx(τx[b])) +

∫ T∧τx[b]

0

l(yx(s), b(s)) ds

}
(2.12)
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By construction, W (x) gives the smallest possible value which can satisfy (2.11) for some
strategy τ .

We now introduce a variation on Game I which we shall call Game II. For the rules of Game
II, the maximizing player no longer controls a cutoff time T but rather only the disturbance
b, while the minimizing player is constrained to play only nonanticipating stopping-time
rules (x, b) → νx[b] with finite values νx[b] <∞ for all (x, b), and the payoff function is taken
to be J∞(x, ν, b). In this formulation, the payoff is guaranteed to be finite due to νx[b] <∞
rather than from T <∞. The lower value function for Game II is then given by

V (x) := inf
ν∈∆

sup
b∈B

{
Φ(yx(νx[b])) +

∫ νx[b]

0

l(yx(s), b(s)) ds

}
, (2.13)

where ∆ := {ν : IRn × B → [0,∞) : ν nonanticipating}. From the L2-gain perspective, V (x)
is associated with the desire to optimize the performance bound∫ ν

0

h(yx(s), b(s)) ds+ Φ(yx(ν)) ≤ γ2

∫ ν

0

|b(s)|2 ds+ U(x),

(over finite-valued stopping rules ν).

For the purposes of comparison, we also introduce the available storage function Sa(x) asso-
ciated with a disturbance-input to cost-output system (with stopping-time options ignored)

Sa(x) := sup
b∈B, T≥0

{∫ T

0

l(yx(s), b(s)) ds

}
. (2.14)

The function Sa(x) is associated with the desire to optimize the standard performance bound
associated with L2-gain attenuation level γ for an input-output system (with all stopping
options ignored) ∫ T

0

h(yx(s), b(s)) ds ≤ γ2

∫ T

0

|b(s)|2 ds+ U(x).

Under some technical assumptions, it is well-known that if locally bounded, this available
storage function Sa is a viscosity solution in IRn of the Hamilton-Jacobi-Bellman equation
(HJBE)

H(x,DSa(x)) = 0

where H is given by (2.3) and if Sa is also continuous, then it is characterized as the minimal,
nonnegative, continuous viscosity supersolution of the HJBE.

In addition we introduce the notion of a stopping-time storage function S for a stopping-time
system (with some particular stopping rule (x, b) → τx[b] already implemented), namely, a
nonnegative function x→ S(x) such that

1(T,∞)(τx[b])S(yx(T, b))− S(x)

≤ ∫ T∧τx[b]

0
[γ2|b(s)|2 − h(yx(s), b(s))] ds− 1[0,T ](τx[b])Φ(yx(τx[b], b))

for all b ∈ B and T ≥ 0.

(2.15)
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If we set τx[b] = ∞ for all x ∈ IRn and b ∈ B, we recover the notion of storage function
associated with L2-gain supply rate. The control problem then is to find the stopping-
time rule (x, b) → τx[b] which gives the best performance, as measured by obtaining the
minimal possible S(x) as the associated storage function. This suggests that the stopping-
time available storage function Sst,a (i.e., the minimal possible stopping-time storage function
over all possible stopping rules) should be equal to the lower-value function W for Game I;
we shall see that this is indeed the case with appropriate hypotheses imposed.

2.3 Main results

In this section we derive the main results concerning the robust stopping-time problem. We
will give the connection between lower value functions W (see (2.12)), V (see (2.13)) and a
stopping-time storage function S (see (2.15)) with solutions of the appropriate variational
inequality.

2.3.1 The lower value function for Game I

Some simple inequalities are obvious from the definition of W . By using T = 0 (and Φ > 0)
in the definition of W , we see that

W (x) ≥ 0. (2.16)

Using τ ≡ 0 gives

W (x) ≤ Φ(x). (2.17)

On the other hand, τ ≡ +∞ gives

W (x) ≤ Sa(x), (2.18)

where Sa is the available storage function given by (2.14).

Proposition 2.5 Assume (A0)-(A4). Then for x ∈ IRn and t > 0

W (x) ≤ sup
b∈B, T>0

{∫ T∧t

0

l(yx(s), b(s)) ds+ 1[0,T )(t)W (yx(t, b))

}
.

Proof By the definition of W for each ε > 0 there is a stopping-time rule τ ε so that

W (z) + ε >

∫ T∧τε
z [b]

0

l(yz(s), b(s)) ds+ 1[0,T ](τ
ε
z [b])Φ(yz(τ

ε
z [b])) (2.19)
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for all z ∈ IRn, T > 0 and b ∈ B. Fix t > 0. For each b ∈ B, we define

bt(s) = b(s+ t), s ≥ 0.

For τ ∈ Γ define τ̄ : IRn × B → IR+ ∪∞ by

τ̄x[b] = t+ τyx(t,b)[bt].

It is easy to check that τ̄ has the nonanticipating property whenever τ does, and hence τ̄ ∈ Γ
for τ ∈ Γ.

Fix x ∈ IRn. By the definition of W , for each ε > 0 and τ ∈ Γ we may choose Tτ,ε > 0 and
bτ,ε ∈ B so that

W (x)− ε ≤
∫ Tτ,ε∧τx[bτ,ε]

0

l(yx(s), bτ,ε(s))ds+ 1[0,T ](τx[b])Φ(yx(τx[bτ,ε])).

We may specialize this general inequality to the case where τ is of the form τ̄ for some τ ∈ Γ.
In this case τ̄x[bτ̄ ,ε] ≥ t and we obtain

W (x)− ε ≤ ∫ Tτ̄ ,ε∧t

0
l(yx(s), bτ̄ ,ε(s)) ds

+1[0,Tτ̄ ,ε)(t)
{∫ Tτ̄ ,ε∧τ̄x[bτ̄ ,ε]

t
l(yx(s), bτ̄ ,ε(s)) ds+ 1[t,Tτ̄ ,ε](τ̄x[bτ̄ ,ε])Φ(yx(τ̄x[bτ̄ ,ε]))

}
.

(2.20)

For t < Tτ̄ ,ε, by the change of variable ν = s− t we have∫ Tτ̄ ,ε∧τ̄x[bτ̄ ,ε]

t
l(yx(s), bτ̄ ,ε(s)) ds+ 1[t,Tτ̄ ,ε](τ̄x[bτ̄ ,ε])Φ(yx(τ̄x[bτ̄ ,ε]))

=
∫ (Tτ̄ ,ε−t)∧τyx(t,bτ̄ ,ε)

[(bτ̄ ,ε)t]

0 l(yyx(t,bτ̄ ,ε)(ν), (bτ̄ ,ε)t(ν)) dν
+1[0,Tτ̄ ,ε−t](τyx(t,bτ̄ ,ε)[(bτ̄ ,ε)t])Φ(yyx(t,bτ̄ ,ε)(τyx(t,bτ̄ ,ε)[(bτ̄ ,ε)t]))

(2.21)

Apply (2.19) to the case

z = yx(t, bτε,ε), b = (bτε,ε)t, T = Tτε,ε − t.

Then (2.19) implies that the right hand side of (2.21) (with τ selected to be the τ ε as in
(2.19)) is bounded above by W (yx(t, bτε,ε)) + ε. From (2.20) we finally conclude that

W (x)− 2ε <
∫ T

τε,ε
∧t

0 `(yx(s), bτε,ε(s)) ds+ 1[0,T
τε,ε

](t)W (yx(t, bτε,ε))

≤ supb∈B, T>0

{∫ T∧t

0
l(yx(s), b(s)) ds+ 1[0,T )(t)W (yx(t, b))

}
.

Since ε > 0 is arbitrary, the result follows. ♦

Proposition 2.6 Assume (A0)-(A4). If W (x) < Φ(x), then for each b ∈ B there exists
ρ = ρx,b > 0 such that for all t ∈ [0, ρ),

W (x) ≥
∫ t

0

l(yx(s), b(s)) ds+W (yx(t, b)).
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Proof Fix x ∈ IRn. By definition of W (x), for each ε > 0 there is a choice of strategy τ ε ∈ Γ
so that

W (x) + ε >

∫ T∧τε
x [̃b]

0

`(yx(s), b̃(s)) ds+ 1[0,t](τ
ε
x [̃b])Φ(yx(τ

ε
x [̃b])) (2.22)

for all T ≥ 0 and all b̃ ∈ B.

We claim that for each b ∈ B there is a number ρb > 0 so that τ ε
x[b] > ρb for all ε > 0.

If not, then there is a b ∈ B and a sequence of positive numbers {εn} with limit equal to

0 and with τ εn
x [b] tending to 0. Apply (2.22) with εn replacing ε and with b in place of b̃,

use the continuity of Φ and of yx(s) = yx(s, b) along with the assumption that b is locally
square-integrable to take the limit in (2.22) as n → ∞ to arrive at W (x) ≥ Φ(x), contrary
to assumption. We conclude that for each b ∈ B there is a ρb > 0 so that τ ε

x[b] ≥ ρb for all
ε > 0 as asserted.

Fix b ∈ B and choose any t ∈ [0, ρb). By definition of W (yx(t, b)), for any τ ∈ Γ and for any
ε > 0 there is a choice of Tτ,ε ≥ 0 and of bτ,ε ∈ B so that

W (yx(t, b))− ε ≤ ∫ Tτ,ε∧τyx(t,b)[bτ,ε]

0
`(yyx(t,b)(s), bτ,ε(s)) ds

+1[0,Tτ,ε](τyx(t,b)[bτ,ε])Φ(yyx(t,b)(τyx(t,b)[bτ,ε])).
(2.23)

In particular, (2.23) holds for all τ ∈ Γ for which τx[b] ≥ t. For any b̂ ∈ B, define b̂′ ∈ B by

b̂′(s) =

{
b(s), for 0 ≤ s ≤ t

b̂(s− t), for s > t.

For any τ ∈ Γ with τx[b] > t, we may always find another τ ∈ Γ so that

τx [̂b
′] = τyx(t,b) [̂b] + t for all b̂ ∈ B.

From (2.23) we then get that, for any τ ∈ Γ with τx[b] ≥ t and any ε > 0,∫ t

0
`(yx(s), b(s)) ds+W (yx(t, b))− ε

≤ ∫ t

0
`(yx(s), b(s)) ds+

∫ Tτ,ε∧τyx(t,b)[bτ,ε]

0
`(yyx(t,b)(s), bτ,ε(s)) ds

+1[0,Tτ,ε](τyx(t,b)[bτ,ε])Φ(yyx(t,b)(τyx(t,b)[bτ,ε]))

≤ ∫ t

0
`(yx(s), b(s)) ds+

∫ (Tτ,ε+t)∧(τyx(t,b)[bτ,ε]+t)

t
`(yx(s), b

′
τ,ε(s)) ds

+1[t,Tτ,ε](τyx(t,b)[bτ,ε])Φ(yx(τyx(t,b)[bτ,ε])

=
∫ (Tτ,ε+t)∧τx[b′τ,ε]

0
`(yx(s), b

′
τ,ε(s)) ds+ 1[0,Tτ,ε+t](τx[b

′
τ,ε])Φ(yx(τx[b

′
τ,ε]).

(2.24)

It is important to note that for any τ̃ ∈ Γ with τ̃x[b] > t, there is a τ̃ ′ in Γ with τ̃ = τ̃ ′. To
see this for a given τ̃ ∈ Γ we must find a τ̃ ′ ∈ Γ so that

τ̃ ′x [̂b
′] =

{
τ̃x [̂b

′] on the one hand,

τ̃ ′yx(t,b) [̃b] + t on the other hand,
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or
τ̃x [̂b

′] = τ̃ ′yx(t,b) [̂b] + t

for all b̂ ∈ B. It is always possible to solve for such a τ̃ ′ due to the nonanticipating property
of τ̃ . We apply this observation in particular to the case τ̃ = τ ε where τ ε is as in (2.22);
thus, for each ε > 0 there is a τ ε′ ∈ Γ so that τ ε′ = τ ε.

If we now specialize (2.22) to the case where

T = Tτε′,ε + t, b̃ = b′τε′,ε,

we can continue the estimate in (2.24) (with the general τ replaced with τ ε′) to get∫ t

0
`(yx(s), b(s)) ds+W (yx(t, b))− ε

≤ ∫ (Tτε′,ε+t)∧τε
x[b′

τε′,ε]
0 `(yx(s), b

′
τε′,ε(s)) ds+ 1[0,Tτε′,ε+t](τ

ε
x[b

′
τε′,ε])Φ(yx(τ

ε
x[b

′
τε′,ε]))

< W (x) + ε

where we used (2.22) for the last step. Since ε > 0 is arbitrary, the result follows. ♦

Theorem 2.7 Assume (A0)-(A5). If W is upper semicontinuous, then W is a viscosity
subsolution of the VI in IRn.

Proof Fix x ∈ IRn. Let Ψ ∈ C1(IRn) be such that x is a local maximum point of W ∗ − Ψ.
Since W is upper semicontinuous, we have

Ψ(x)−Ψ(z) ≤W ∗(x)−W ∗(z) = W (x)−W (z), (2.25)

for all z in a neighborhood of x. We want to show that

max{H(x,DΨ(x)), W (x)− Φ(x)} ≤ 0.

Since W (x) ≤ Φ(x), we want to show that H(x,DΨ(x)) ≤ 0.

We first consider the case W (x) > 0. Let ε > 0 and t > 0. From Proposition 2.5, choose
b̂ = b̂t,ε ∈ B and T̂ = T̂t,ε > 0 such that

W (x) ≤
∫ T̂∧t

0

[h(yx(s), b̂(s))− γ2|b̂(s)|2] ds+ 1[0,T̂ )(t)W (yx(t)) + ε t. (2.26)

Since W ≥ 0, we have 1[0,T̂ )(t)W (yx(t)) ≤W (yx(T̂ ∧ t)). Thus

W (x)−W (yx(T̂ ∧ t)) ≤
∫ T̂∧t

0

[h(yx(x), b̂(s))− γ2|b̂(s)|2] ds+ ε t (2.27)
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Under the assumptions on f , for t > 0 small enough, yx(s) is in the neighborhood of x for
which (2.25) holds for all 0 < s ≤ t. As a consequence of (2.25) and (2.27), we have

Ψ(x)−Ψ(yx(T̂ ∧ t)) ≤
∫ T̂∧t

0

[h(yx(s), b̂(s))− γ2|b̂(s)|2] ds+ ε t. (2.28)

Now observe that (2.6) and (A2) imply

|f(yx(s), b̂(s))− f(x, b̂(s))| ≤ ωf(Mxs, |x|+Mxt0), for 0 < s < t0 (2.29)

and

|h(yx(s), b̂(s))− h(x, b̂(s))| ≤ ωh(Mxs, |x|+Mxt0), for 0 < s < t0 (2.30)

where t0 does not depend on ε, t and b̂. By (2.30) the integral on the right-hand side of
(2.28) can be written as∫ T̂∧t

0

[h(x, b̂(s))− γ2|b(s)|2]ds+ o(T̂ ∧ t) as T̂ ∧ t→ 0.

Thus

Ψ(x)−Ψ(yx(T̂ ∧ t)) ≤
∫ T̂∧t

0

[h(x, b̂(s))− γ2|b̂(s)|2] ds+ ε t + o(T̂ ∧ t). (2.31)

Moreover

Ψ(x)−Ψ(yx(T̂ ∧ t)) = −
∫ T̂∧t

0

d

ds
Ψ(yx(s))ds

= −
∫ T̂∧t

0

DΨ(yx(s)) · f(yx(s), b̂(s))ds

= −
∫ T̂∧t

0

DΨ(x) · f(x, b̂(s))ds+ o(T̂ ∧ t) (2.32)

where we used (2.6), (2.29) and Ψ ∈ C1 in the last equality to estimate the difference between
DΨ · f computed at yx(s) and at x, respectively. Plugging (2.32) into (2.31) we get∫ T̂∧t

0

− DΨ(x) · f(x, b̂(s))ds ≤
∫ T̂∧t

0

[h(x, b̂(s))− γ2|b̂(s)|2] ds+ ε t+ o(T̂ ∧ t).

Thus ∫ T̂∧t

0

{−DΨ(x) · f(x, b̂(s))− h(x, b̂(s)) + γ2|b̂(s)|2] ds ≤ ε t + o(T̂ ∧ t). (2.33)
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The term in the brackets in the integral is estimated from below by

inf
b∈B
{−DΨ(x) · f(x, b)− h(x, b) + γ2|b|2}

and hence we have the inequality

inf
b∈B
{−DΨ(x) · f(x, b)− h(x, b) + γ2|b|2} · (T̂ ∧ t) ≤ ε t+ o(T̂ ∧ t). (2.34)

At this stage we write T̂t,ε in place of T̂ to emphasize the dependence of T̂ on t and ε. Note
that t

T̂t,ε∧t
≥ 1 for all t > 0 and hence lim supt→0

t
T̂t,ε∧t

≥ 1. We claim that in fact

lim sup
t→0

t

t ∧ T̂t,ε

= 1 (for each ε > 0).

Indeed, if not, then, for each fixed ε > 0, there would be a sequence of positive numbers {tn}
tending to 0 such that T̂tn,ε < tn and limn→∞ T̂tn,ε/tn = ρε < 1. In this case, the inequality
(2.26) becomes

W (x) ≤
∫ T̂tn,ε

0

[h(yx(s), b̂(s))− γ2|b̂(s)|2] ds+ εtn

for all n, from which we get

W (x)

tn
≤ 1

tn

∫ T̂tn,ε

0

[h(yx(s), b̂(s))− γ2|b̂(s)|2] ds+ ε (2.35)

for all n. From (2.4) and (A1) we have an estimate of the form h(yx(s), b̂(s)) ≤ Kx for all
s in a sufficiently small interval [0, δ) (independent of t and ε), and hence, for n sufficiently
large we have ∫ T̂tn,ε

0

[h(yx(s), b̂(s))− γ2|b̂(s)|2] ds ≤ KxTtn,ε.

Plugging this into (2.35) gives

W (x)

tn
≤ Kx

T̂tn,ε

tn
+ ε.

Letting n tend to infinity and using the assumption that W (x) > 0 leads to the contradiction
∞ ≤ Kxρε + ε ≤ Kx + ε < ∞. Hence lim supt→0

t

t∧T̂t,ε
= 1 for each fixed ε > 0 as asserted,

and we can divide (2.34) by T̂ ∧ t > 0 and pass to the limit to get

inf
b∈B
{−DΨ(x) · f(x, b)− h(x, b) + γ2|b|2} ≤ ε.

Since ε is arbitrary, H(x,DΨ(x)) ≤ 0.
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It remains to handle the case W (x) = 0. In this case we take b̂ = 0 and use (A5) and W ≥ 0
to see that

W (x) = 0 ≤ ∫ t

0
h(yx(s), 0) ds+W (yx(t))

=
∫ t

0
[h(yx(s), b̂(s))− γ2|b̂(s)|2] ds+W (yx(t))

for all t ≥ 0. With this stronger version of (2.26), it is straightforward to follow the procedure
in the first part of the proof to arrive at the desired inequality H(x,DΨ(x)) ≤ 0. ♦

Theorem 2.8 Assume (A0)-(A4). If W is lower semicontinuous, then W is a viscosity
supersolution of the VI in IRn.

Proof Fix x ∈ IRn. Let Ψ ∈ C1(IRn) be such that x is a local minimum point of W∗ − Ψ.
Since W is lower semicontinuous, we have

Ψ(x)−Ψ(z) ≥W∗(x)−W∗(z) = W (x)−W (z), (2.36)

for all z in a neighborhood of x. We want to show that

max{H(x,DΨ(x)), W (x)− Φ(x)} ≥ 0.

If W (x) = Φ(x), the assertion is trivial. Suppose W (x) < Φ(x). We want to show that
H(x,DΨ(x)) ≥ 0. By Proposition 2.6, for each b ∈ B choose tb > 0 such that

W (x) ≥
∫ t

0

l(yx(s), b(s))ds+W (yx(t, b)), ∀t ∈ [0, tb) (2.37)

Fix an arbitrary b ∈ B and let yx(s) be the solution corresponding to the constant disturbance
b(s) = b for all s. Under our assumptions on f , there exists t1 ∈ (0, tb) such that yx(s) is in
the neighborhood of x for which (2.36) holds for all 0 < s ≤ t1. From (2.36) and (2.37), we
have

1

t
[Ψ(x)−Ψ(yx(t))] ≥ 1

t

∫ t

0

l(yx(s), b)ds, ∀t ∈ (0, t1).

Let t→ 0, we have

−DΨ(x) · f(x, b)− h(x, b) + γ2|b| ≥ 0.

Since b ∈ B is arbitrary, it follows that

H(x,DΨ(x)) = inf
b∈B
{−DΨ(x) · f(x, b)− h(x, b) + γ2|b|} ≥ 0. ♦

Corollary 2.9 Assume (A0)-(A5). If W is continuous, then W is a viscosity solution of
the VI in IRn.
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Remark 2.10 Let Sa be the available storage function for the disturbance-to-cost system
with stopping options ignored as in (2.14). Since Sa is a viscosity solution of the HJBE in
IRn, we have

H(x,D−(Sa)∗(x)) ≥ 0 and H(x,D+(Sa)
∗(x)) ≤ 0, x ∈ IRn.

Thus Sa is a viscosity supersolution of the VI. Moreover if Sa ≤ Φ, then Sa is a viscosity
solution of the VI.

2.3.2 The lower value function for Game II

Now we will show some inequalities satisfied by the lower value function V (x) for Game II
(see (2.13)), and use these inequalities to show that if continuous, V is a viscosity solution
of the VI in IRn. For convenience, set

J(x, t, b) = Φ(yx(t)) +

∫ t

0

l(yx(s), b(s)) ds

∆ = {ν : IRn × B → [0,∞) : ν is nonanticipating}.
Thus

V (x) := inf
ν∈∆

sup
b∈B

J(x, b, ν[b]).

Proposition 2.11 Assume (A0)-(A4).

(i) Then V ≤ Φ. If (A5) also holds, then 0 ≤ V ≤ Φ.

(ii) Then

V (x) ≤ sup
b∈B

{
∫ t

0

l(yx(s), b(s)) ds+ V (yx(t))}, for all t ≥ 0.

(iii) If V (x) < Φ(x), then for each b ∈ B there exists tb > 0 such that

V (x) ≥
∫ t

0

l(yx(s), b(s)) ds+ V (yx(t, b)), ∀t ∈ [0, tb).

Proof (i) Using ν ≡ 0 we have

V (x) ≤ Φ(x),

while using b ≡ 0 we have

V (x) ≥ inf
ν∈∆

{
∫ ν[0]

0

h(yx(s), 0)ds+ Φ(yx(ν[0]))}
≥ 0,
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since h is nonnegative by (A5) and Φ are nonnegative by assumption.

(ii) Fix x ∈ IRn. For each ν ∈ ∆ and ε > 0 we may choose bν,ε ∈ B so that

V (x) < J(x, νx[bν,ε], bν,ε) + ε. (2.38)

Fix t > 0. For each b ∈ B, define bt by

bt(s) = b(s + t), s ≥ 0

Notice that yx(t, b) = yyx(t,b)(0, bt).

On the other hand, we may choose νε ∈ ∆ so that

V (z) + ε > J(z, νε
z[b], b) (2.39)

for all z ∈ IRn and b ∈ B. For ν ∈ ∆ define ν̄ : IRn × B → IR+ by

ν̄[b] = t+ νyx(t,b)[bt].

One can easily check that ν̄ ∈ ∆ for each ν ∈ ∆. From the definition of J , we have

J(x, ν̄x[b], b) = Φ(yx(ν̄[b])) +
∫ ν̄[b]

0
`(yx(s), b(s)) ds

= Φ(yx(νyx(t,b)[bt] + t)) +
∫ t

0
l(yx(s), b(s)) ds

+
∫ νyx(t,b)[bt]+t

t
l(yx(s), b(s)) ds

=
∫ t

0
l(yx(s), b(s)) ds+ Φ(yyx(t,b)(νyx(t,b)[bt]))

+
∫ νyx(t,b)[bt]

0
l(yyx(t)(α), bt(α)) dα

=
∫ t

0
l(yx(s), b(s)) ds+ J(yx(t, b), νyx(t,b)[bt], bt)

(2.40)

If we specialize (2.40) to the case ν = νε (where νε is as in (2.39)) and specialize (2.39) to
the case z = yx(t, b) and b of the form bt, then (2.39) provides the estimate on (2.40)

J(x, ν̄x[b], b) ≤
∫ t

0

l(yx(s), b(s)) ds+ V (yx(t, b)) + ε (2.41)

for all b ∈ B. If we specialize (2.41) to the case where b = bν̄,ε and apply (2.38) for the case
where ν is of the form ν̄, then (2.38) leads to

V (x) < J(x, ν̄x[bν̄,ε], bν̄,ε) + ε

≤
∫ t

0

l(yx(s), bν̄,ε(s)) ds+ V (yx(t, bν̄,ε)) + 2ε

≤ sup
b∈B

{∫ t

0

l(yx(s), b(s)) ds+ V (yx(t, b))

}
+ 2ε

Since ε is arbitrary, the result follows.

(iii) The proof of statement (iii) is similar to the proof of Proposition 2.6. ♦
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Theorem 2.12 Assume (A0)-(A4). If upper semicontinuous, V is a viscosity subsolution of
the VI. If lower semicontinuous, V is a viscosity supersolution of the VI. Thus if continuous,
V is a viscosity solution of the VI.

Proof First assume that V is upper semicontinuous. We want to show that V is a viscosity
subsolution of VI. Since V is upper semicontinuous by assumption, V ∗ = V . Fix x ∈ IRn.
Let Ψ ∈ C1(IRn) and x is a local maximum of V −Ψ. We want to show that

max{H(x,DΨ(x)), V (x)− Φ(x)} ≤ 0 (2.42)

From (i) of Proposition 2.11, V (x) ≤ Φ(x). Thus we want to show that H(x,DΨ(x)) ≤ 0.
We proceed by contradiction. Suppose that

H(x,DΨ(x)) > δ > 0.

By the definition of H , we therefore have

−DΨ(x) · f(x, b)− h(x, b) + γ2|b|2 > δ, ∀b ∈ B. (2.43)

Choose R so that x ∈ B(0, R) and suppose that z is another point in B(0, R) and b ∈ B.
We shall need the general estimate

|[−DΨ(z) · f(z, b)− h(z, b)]− [−DΨ(x) · f(x, b)− h(x, b)]|
≤ |[−DΨ(z) +DΨ(x)] · f(z, b)| + |DΨ(x) · [f(x, b)− f(z, b)]|

+|[−h(z, b) + h(x, b)]|
≤ ωDΨ(|z − x|, R)Mf,R + |DΨ(x)|ωf(|z − x|, R) + ωh(|z − x|, R)

(2.44)

where ωDΨ(·, R) is a modulus of continuity for DΨ(·) on B(0, R), where Mf,R is a bound on
f(z, b) for (z, b) ∈ B(0, R)× B, and where we use (A1) and (A2). By the continuity of the
moduli ωDΨ(·, R), ωf(·, R) and ωh(·, R) at the origin, we deduce that there is a δR > 0 so
that

|z − x| < δR =⇒ |[−DΨ(z) · f(z, b)− h(z, b)]− [−DΨ(x) · f(x, b)− h(x, b)]| < δ/2. (2.45)

Moreover, by (2.7) we know that there is a tx > 0 so that

0 ≤ s ≤ tx =⇒ |yx(s, b)− x| < δR for all b ∈ B.
We conclude that, for 0 ≤ s ≤ tx and for all b ∈ B, from (2.43) and (2.44) combined with
(2.45) we have

−DΨ(yx(s, b) · f(yx(s, b), b(s))− h(yx(s, b), b(s)) + γ2|b(s)|2
= [−DΨ(x) · f(x, b(s))− h(x, b(s)) + γ2|b(s)|2]

+ {[−DΨ(yx(s, b)) · f(yx(s), b(s))− h(yx(s), b)]
−[−DΨ(x) · f(x, b(s))− h(x, b(s))]}

≥ δ − δ/2 = δ/2 for 0 ≤ s ≤ tx.

(2.46)
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Since x is a local maximum of V −Ψ, by (2.6) we may assume that tx > 0 also satisfies

V (x)− V (yx,b(s)) ≥ Ψ(x)−Ψ(yx(s, b)) for 0 < s < tx for all b ∈ B. (2.47)

For any t satisfying 0 < t ≤ tx we may integrate (2.46) from 0 to t to get

Ψ(x)−Ψ(yx,b(t)) >
δ

2
t+

∫ t

0

l(yx(s), b(s)) ds. (2.48)

As a consequence of (2.47) and (2.48), we have

V (x)− V (yx(t, b)) >
δ

2
t+

∫ t

0

l(yx(s), b(s)) ds for all b ∈ B

Thus

V (x) ≥ δ

2
t+ sup

b∈B

{∫ t

0

l(yx(s), b(s)) ds+ V (yx(t, b))

}
> sup

b∈B

{∫ t

0

[l(yx(s), b(s)) ds+ V (yx(t, b))

}
which contradicts (ii) of Proposition 2.11.

We now assume that V is lower semicontinuous. The proof that V is a viscosity supersolution
of VI is similar to the proof of Theorem 2.8. By using (i) and (iii) of Proposition 2.11, one
can follow the proof there to show that V is a viscosity supersolution of VI, and the result
follows. ♦

Proposition 2.13 Assume (A0)-(A4). Assume in addition: there is a continuous B-valued
function (x, p) → β(x, p) so that

H(x, p) = −p · f(x, β(x, p))− `(x, β(x, p)).

Then, if Ṽ ∈ C1(IRn) is a subsolution of VI, then Ṽ ≤ V . Hence, under these assumptions,
if V ∈ C1(IRn), then V is the maximal smooth nonnegative subsolution of VI.

Proof Since Ṽ ∈ C1(IRn) is a subsolution of VI, we have

H(x,DṼ (x)) ≤ 0 and Ṽ (x) ≤ Φ(x), ∀x ∈ IRn. (2.49)

Define β∗ : IRn → B by
β∗(z) = β(z,DṼ (z)) for z ∈ IRn.

Then β∗ is continuous in z ∈ IRn and from the first part of (2.49) we see that

−DṼ (z) · f(z, β∗(z))− h(z, β∗(z)) + γ2|β∗(z))| = H(z,DṼ (z)) ≤ 0 (2.50)
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for all z ∈ IRn. By assumption β and DṼ are continuous; hence z → β∗(z) is continuous on
IRn and the initial-value problem

ẏ(t) = f(y(t), β∗(y(t))), y(0) = x

has a solution y∗x(t). Note that we may regard t→ b∗x(t) := β∗(y∗x(t)) as an element of B for
each x ∈ IRn, and then y∗x(t) = yx(t, b

∗
x(t)) for all t ≥ 0. From (2.50) we deduce

−DṼ (yx(t, b
∗
x(t)) · f(yx(t, b

∗
x(t)), b

∗
x(t))− h(yx(t, b

∗
x(t)) + γ2|b∗x(t)|2 ≤ 0. (2.51)

For ν ∈ ∆, integrate (2.51) from 0 to νx[b
∗
x] and use the second part of (2.49) to get

Ṽ (x) ≤
∫ νx[b∗x]

0

l(yx(s), b
∗
x(s))ds+ Ṽ (yx(νx[b

∗
x], b

∗
x))

≤
∫ νx[b∗x]

0

l(yx(s), b
∗
x(s))ds+ Φ(yx(νx[b

∗
x], b

∗
x))

≤ sup
b∈B

{
∫ νx[b]

0

l(yx(s), b(s)) ds+ Φ(yx(νx[b], b))}.

Since this holds for each ν ∈ ∆, we have

Ṽ (x) ≤ inf
ν∈∆

sup
b∈B

{
∫ νx[b]

0

l(yx(s), b(s))ds+ Φ(yx(νx[b], b))} = V (x)

and the result follows. ♦

2.3.3 The stopping-time storage function

In this subsection, we collect our results concerning stopping-time storage functions defined
as in (2.15).

Theorem 2.14 Assume (A0)-(A4). Then a locally bounded stopping-time storage function
is a viscosity supersolution of the VI.

Proof Suppose that U is a stopping-time storage function with stopping-time rule τU , i.e.∫ T∧τU,x[b]

0
h(yx(s), b(s)) ds+ 1[0,T ](τU,x[b])Φ(yx(τU,x[b], b) + 1(T,+∞](τU,x[b])U(yx(T, b))

≤ γ2
∫ T∧τU,x[b]

0
|b(s)|2 ds+ U(x) for all x ∈ IRn, b ∈ B and T ≥ 0.

(2.52)

Fix x ∈ IRn. Let Ψ ∈ C1(IRn) be such that x is a local minimum point of U − Ψ. We want
to show that

H(x,DΨ(x)) ≥ 0 or U(x)− Φ(x) ≥ 0.
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If U(x) ≥ Φ(x), the result is obvious. It remains to show that H(x,DΨ(x)) ≥ 0 when
U(x) < Φ(x).

Fix an arbitrary b ∈ B. Set b(s) = b for all s ≥ 0. Choose xn ∈ IRn with limn→∞ xn = x
so that limn→∞ U(xn) = U∗(x). We claim: there is a δ > 0 so that τU,xn[b] > δ for all n
sufficiently large. If the claim were not true, dropping down to a subsequence if necessary,
we would have limn→∞ tn = 0 where tn := τU,xn[b]. From (2.52) applied with a fixed T
sufficiently large, we then would have

U(xn) ≥
∫ tn

0

`(yxn(s), b) ds+ Φ(yxn(tn, b)). (2.53)

From the estimates (2.5)–(2.7) together with assumption (A3) and the assumed continuity of
Φ, we see that limn→∞ Φ(yxn(tn, b)) = Φ(x) and that `(yxn(s), b) tends uniformly to `(yx(s), b)
in s on the interval [0, δ]. Hence we can take limits in (2.53) to get

U∗(x) ≥ Φ(x).

As U(x) ≥ U∗(x) by definition of U∗, this contradicts our assumption that U(x) < Φ(x), and
the claim follows.

Hence, for 0 < t < δ, we may apply (2.52), this time with T = t, to get, for each n sufficiently
large,

U(xn) ≥
∫ t

0

`(yxn(s), b) ds+ U(yxn(t, b)).

Letting n tend to infinity and again using that `(yxn(s), b) tends uniformly in s to `(yxn(s), b)
on [0, t] and that yxn(t, b) tends to yx(t, b) leads to

U∗(x) ≥
∫ t

0

`(yx(s), b) ds+ lim inf
n→∞

U(yxn(t, b)) (2.54)

≥
∫ t

0

`(yx(s), b) ds+ U∗(yx(t, b)). (2.55)

We now can follow the standard procedure as in the proof of Theorem 2.8 to see that
H(x,DΨ(x)) ≥ 0 as desired. ♦

Remark 2.15 The proof of Theorem 2.14 is adapted from the proof of Proposition 3.2 in
[32], where it is shown that, under certain conditions, the lower and upper semicontinuous
envelopes of a storage function is again a storage function for the classical case (with no
stopping options allowed).

Theorem 2.16 Let U : IRn → IR be a nonnegative continuous function and ΩU := {x ∈ IRn :
U(x) < Φ(x)}. Assume (A0)-(A4) and that B is bounded. If U is viscosity supersolution of
VI in IRn and the stopping rule is given by

τU,x := inf{t : t ≥ 0 and yx(t, b) /∈ ΩU}, (2.56)
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then U is a stopping-time storage function with stopping rule τU , and U ≥ W . Thus if W is
continuous and B is bounded, then W is characterized as the minimal nonnegative continuous
viscosity supersolution of VI, as well as the minimal possible continuous closed-loop storage
function over all possible stopping-time rules τ ∈ Γ.

Proof Since U and Φ are continuous, ΩU is open. Since Φ ≥ W , we have U(x) ≥ W (x)
and τU,x = 0 for all x ∈ IRn\ΩU . For x ∈ ΩU , we must have H(x,D−U(x)) ≥ 0 since U is a
viscosity supersolution of VI. Thus

inf
b∈B
{−DU(x) · f(x, b)− h(x, b) + γ2|b|2} ≥ 0,

in ΩU in the viscosity sense. By Theorem 2.4,

U(yx(t1, b)) ≥
∫ t2

t1
[h(yx(s), b(s))− γ2|b(s)|2]ds+ U(yx(t2, b))

for all b ∈ B, x ∈ ΩU , 0 ≤ t1 ≤ t2 < τU,x[b].

Let T ≥ 0. Take t1 = 0 and replace t2 by T ∧ t2 to get

U(x) ≥
∫ T∧t2

0

l(yx(s), b(s))ds+ U(yx(T ∧ t2, b)), ∀t2 ∈ [0, τU,x[b]), ∀b ∈ B.

Letting t2 → τU,x[b], by continuity of U we get

U(x) ≥
∫ T∧τx[b]

0

l(yx(s), b(s))ds+ U(yx(T ∧ τU,x[b])), ∀b ∈ B.

Since yx(τU,x[b]) ∈ ∂ΩU , we have

U(yx(T ∧ τU,x[b])) =

{
U(yx(τU,x[b])) for 0 ≤ τU,x[b] ≤ T,
U(yx(T )) for τU,x[b] > T

= 1[0,T ](τU,x[b])U(yx(τU,x[b])) + 1(T,+∞](τU,x[b])U(yx(T ))

= 1[0,T ](τU,x[b])Φ(yx(τU,x[b])) + 1(T,+∞](τU,x[b])U(yx(T )).

Thus

U(x) ≥ ∫ T∧τU,x[b]

0
l(yx(s), b(s))ds+ 1(T,+∞](τU,x[b])U(yx(T ))

+1[0,T ](τU,x[b])Φ(yx(τU,x[b]).

Since this inequality holds for all b ∈ B and all T ≥ 0 and U is nonnegative, we have

U(x) ≥ supb∈B, T≥0{
∫ T∧τU,x[b]

0
l(yx(s), b(s)) ds+ 1[0,T ](τU,x[b])Φ(yx(τU,x[b])}

≥ infτ∈Γ supb∈B, T≥0{
∫ T∧τU,x[b]

0
l(yx(s), b(s))ds+ 1[0,T ](τU,x[b])Φ(yx(τU,x[b])}

= W (x).
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We conclude that W , if continuous, is characterized as the minimal nonnegative continuous
viscosity supersolution of the VI, as asserted.

Finally, if W is continuous, from Corollary 2.9 we see that W is a viscosity solution of
the VI, and hence in particular a viscosity supersolution. The first part of Theorem 2.16
already proved then implies that W is a stopping-time storage function with stopping rule
τW . Moreover, if S is any continuous, stopping-time storage function for some stopping-rule
τ , from Theorem 2.14 we see that S is a viscosity supersolution of the VI. Again from the
first part of Theorem 2.16 already proved, we then see that S ≥W , and hence W is also the
minimal, continuous stopping-time storage function, as asserted. ♦

Remark 2.17 The proof of Theorem 2.16 shows that if U is a stopping-time storage function
for some stopping-rule τ , then it is also a stopping-time storage function for the stopping-rule
τU given by (2.56). When the stopping rule τU is used, then one can easily check that the
function U enjoys the following subordination property with respect to Φ along trajectories
of the system:

U(x) < Φ(x) =⇒ U(yx(t, b)) < Φ(yx(t, b)) for 0 ≤ t < τU,x[b];
U(x) ≥ Φ(x) =⇒ τU,x[b] = 0 for all b ∈ B.

Remark 2.18 We expect that the hypothesis in Theorem 2.4 that g is bounded can be
weakened to g being integrable by use of Aubin viability theory (see [32]); in this case the
assumption that B be bounded in Theorem 2.16 can be removed.

2.4 Stability for stopping-time problems

In this section we show how the solution of the VI can be used to prove stability for the
closed-loop system with stopping time (Σst, K) given in Figure 2.1 where K(yx(t, b)) = τx[b].
For a stopping-time system with finite stopping rule, it makes no sense to apply the notion
of an asymptotically stable equilibrium point to the stopping-time dissipative system, but
the notion of Lyapunov stability still makes sense. If the stopping rule is infinite, then
the stopping-time dissipative system becomes a standard dissipative system for which the
available storage function can be used to prove stability results. When the stopping-time is
finite, the stopping-time storage function can be used to prove Lyapunov stability. In this
section we lay these ideas out systematically in detail.

Given a closed-loop stopping-time system (Σst, K), we say that the origin is a stable equilib-
rium point of the undisturbed stopping-time system ẏ = f(y, 0) if

(a) y0(s, 0) = 0 for all 0 ≤ s ≤ τ0[0]; and
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Figure 2.1: A closed-loop stopping-time system (Σst, K)

(b) for each ε > 0 there exists δ = δ(ε) > 0 such that{ |x| < δ implies |yx(s, 0)| < ε for all 0 ≤ s ≤ τx[0];
furthermore, |x| < δ and τx[0] = ∞ implies lims→∞ yx(s, 0) = 0.

We will need the following Lemma in the proof of stability.

Lemma 2.19 If φ(·) : IR→ IR is nonnegative, uniformly continuous and
∫∞
0
φ(s) ds < ∞,

then limt→∞ φ(t) = 0.

Proof See [44].

We also assume the following conditions on the system Σst.

(A6)

{
For each T > 0, if b(t) = 0 and z(t) = 0 for all 0 ≤ t ≤ T ,
then y(t) = 0 for all 0 ≤ t ≤ T .

(A7)

{
If b(t) = 0 for all t ≥ 0 and limt→∞ z(t) = 0,
then limt→∞ y(t) = 0.

The conditions (A6) and (A7) are modifications of the usual notions of zero-state observ-
ability and zero-state detectability, respectively, for nonlinear controlled systems. For the
case of linear systems, it is easy to see that these notions correspond to the usual notions of
observability and detectability.
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Proposition 2.20 Assume (A0)-(A6) and B is bounded. If U be a nonnegative, continuous
viscosity supersolution of the VI in IRn, then U(x) > 0 for all x 6= 0.

Proof Let x ∈ IRn. Since U is a nonnegative, continuous viscosity supersolution of the VI,
we have

U(x) ≥
∫ T∧τx[0]

0

h(yx(s, 0), 0)ds+ 1[0,T ](τx[0])Φ(yx(τx[0])) + 1(T,+∞](τx[0])U(yx(T )), (2.57)

for all T ≥ 0, where τx[0] = inf{t : t ≥ 0 and U(yx(t, 0)) ≥ Φ(yx(t, 0))}. Since U is nonnega-
tive and Φ is positive, we have

U(x) ≥
∫ T∧τx[0]

0

h(yx(s, 0), 0)ds. (2.58)

Also, from the definition of τx[0] and the assumption that Φ(x) > 0, we see that τx[0] > 0
whenever U(x) = 0.

We shall show that if U(x) = 0, then x = 0, from which we get U(x) > 0 for all x 6=
0 as wanted. Assume therefore that U(x) = 0. As noted above, this forces τx[0] > 0.
Furthermore, from (2.58) we get h(yx(s, 0), 0) = 0 for all s ∈ [0, T ∧ τx[0]]. By (A6),
yx(s, 0) = 0 for all s ∈ [0, T ∧ τx[0]]. Thus x = yx(0, 0) = 0 by (A6). ♦
The following is our main result on stability for the case of a stopping-time problem.

Theorem 2.21 Assume (A1)-(A5), (A7) and B is bounded. If U is a nonnegative, contin-
uous, viscosity supersolution of the VI , U(x) > 0 for x 6= 0 and U(0) = 0, then x = 0 is the
stable equilibrium point of the undisturbed stopping-time system ẏ = f(y, 0).

Proof Set Ω := {x ∈ IRn : U(x) < Φ(x)}. By the continuity of U and Φ, Ω is open. Since
Φ is positive, U(0) = 0 < Φ(0) and thus 0 ∈ Ω. Choose δ̂ > 0 such that B(0, δ̂) ⊂ Ω. Since
U is a viscosity supersolution of the VI, we have

H(x,DU(x)) ≥ 0, x ∈ B(0, δ̂) in a viscosity sense.

By Theorem 2.4, we have
U(x)− U(yx(t, 0)) ≥ ∫ t

0
h(yx(s, 0), 0)) ds

for all x ∈ B(0, δ̂) and all 0 ≤ t ≤ τx[0],
where τx[0] = inf{t ≥ 0 : U(yx(t, 0)) = Φ(yx(t, 0))}.

(2.59)

Since h(·, 0) ≥ 0, we have

0 ≤ U(y0(t, 0)) ≤ U(0) = 0, for all 0 ≤ t ≤ τ0[0].
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Thus U(y0(t, 0)) = 0 for all 0 ≤ t ≤ τ0[0]. By the positive definite property of U , y0(t, 0) = 0
for all 0 ≤ t ≤ τ0[0].

Next we want to show that for each ε > 0 there exists δ = δ(ε) > 0 such that (1) if |x| < δ then
|yx(t, 0)| < ε for all 0 ≤ t ≤ τx[0], and (2) if |x| < δ and τx[0] = ∞ then limt→0 yx(t, 0) = 0.
Let ε > 0. Define rε = inf{U(x) | x ∈ ∂B(0, ε)}. Note that rε > 0 because U(x) > 0 for
x 6= 0, U(0)=0 and 0 /∈ ∂B(0, ε). By the continuity of U , choose 0 < δ ≤ min{ε, δ̂} such
that if |x| < δ then U(x) < rε. Thus for any x ∈ B(0, δ), by (2.59) we have

U(yx(t, 0)) +

∫ t

0

h(yx(s, 0), 0) ds ≤ U(x) < rε, for all 0 ≤ t ≤ τx[0].

Since h(·, 0) ≥ 0, we have

U(yx(t, 0)) < rε, for all 0 ≤ t ≤ τx[0].

We conclude that there is no t̄ ∈ [0, τx[0]] such that yx(t̄, 0) ∈ ∂B(0, ε), and hence by
connectedness yx(t, 0) ∈ B(0, ε) for 0 ≤ t ≤ τx[0] as required. Moreover if |x| < δ and
τx[0] = ∞, then we have

U(yx(t, 0)) +

∫ t

0

h(yx(s, 0), 0)ds ≤ U(x), for all t ≥ 0.

Since U is nonnegative, we have∫ t

0

h(yx(s, 0), 0)ds ≤ U(x) ≤ ∞, for all t ≥ 0.

By the continuity of f and the boundedness of yx(·, 0), it follows that yx(·, 0) is uniformly
continuous, and so is h(yx(·, 0), 0). By Lemma 2.19, limt→∞ h(yx(t, 0), 0) = 0. By (A7), we
have limt→∞ yx(t, 0) = 0. ♦

2.5 Computation of optimal stopping-time problem with

one-dimensional state space

We now consider the optimal stopping-time problem for the case of one-dimensional state
space (n = 1). In addition we assume that the stopping cost function Φ is C1 on R.

As a preliminary step, we explicate the structure of solutions U of VI which are piecewise
C1 for the one-dimensional situation. First note that, as a consequence of Proposition 2.3,
the VI can be rewritten as three conditions:

U(x) ≤ Φ(x) (2.60)

H(x,D+U(x)) ≤ 0 (2.61)

H(x,D−U(x)) ≥ 0 for all x with U(x) < Φ(x) (2.62)
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We analyze these conditions under the assumption that the solution U is piecewise C1. Thus,
each real number x either is a smooth point for U where the derivative U ′(x) exists, or x is
a nonsmooth point where the one-sided derivatives U ′(x−) and U ′(x+) exist with different
values. Then there are three cases:

(i) x is smooth, then D+U(x) = {U ′(x)} = D−U(x).

(ii) x is nonsmooth with U ′(x−) < U ′(x+): thenD+U(x) = ∅ andD−U(x) = [U ′(x−), U ′(x+)].

(iii) x is nonsmooth with U ′(x−) > U ′(x+): thenD+U(x) = [U ′(x+), U ′(x−)] andD−U(x) =
∅.

The conditions (2.60)–(2.62) for each of these cases break down as follows:

(i) U ′(x) exists: If U(x) = Φ(x), then U ′(x) = Φ′(x) since U − Φ has a local maximum at
x and H(x, U ′(x)) = H(x,Φ′(x)) ≤ 0; otherwise, U(x) < Φ(x) and H(x, U ′(x)) = 0.

(ii) U ′(x−) < U ′(x+): Then U(x) = Φ(x), or U(x) < Φ(x) and H(x, p) ≥ 0 for all p ∈
[U ′(x−), U ′(x+)].

(iii) U ′(x−) > U ′(x+): Then H(x, p) ≤ 0 for all p ∈ [U ′(x+), U ′(x−)].

We next analyze in detail the particular case where

f(y, b) := g(y) + b; h(y, b) = y2

where both the state vector y and the input-disturbance signal b take values in IR. The
terminal cost function Φ is assumed to be a smooth function defined on all of IRwith strictly
positive values everywhere (Φ(x) > 0 for all x ∈ IR). We assume that g is continuous with
continuous, bounded derivative on all of IR. If we take the admissible control set B to be
a large but fixed bounded interval [−M.M ] ⊂ IR, then the hypotheses (A0)-(A5) are all
satisfied. (This assumption is imposed only to guarantee the validity of assumptions (A1)-
(A3) required for our general theory; most of the discussion below applies even with B equal
to all of IR.) In addition, we assume that

g(0) = 0 and g′(0) < 0; (2.63)

this guarantees that 0 is a locally asymptotically stable equilibrium point for the undisturbed
system, and that the input-output system ẏ = g(y) + b, z = y2 (with stopping options
ignored) is at least locally γ-dissipative for γ with respect to the equilibrium point 0 (see
below). It also then follows from Taylor series approximation that there is a constant γ > 0
so that

|g(x)| < γ|x| for 0 < |x| < δ0 for some δ0 > 0. (2.64)
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In the sequel we shall assume that γ has been chosen sufficiently large so that (2.64) holds.

The Hamiltonian function works out to be

H(x, p) = infb{−(g(x) + b) · p− x2 + γ2b2}
= − 1

4γ2p
2 − g(x)p− x2,

(2.65)

at least as long as bcrit = 1
2γ2p is an admissible control, i.e., as long as |p| ≤ 2γ2M . (If

|p| > 2γ2M , then the constraint |b| ≤ M influences the infimum in (2.65) and the formula
for H in (2.65) is incorrect.) Provided also that |x| ≤ γ|g(x)|, the equation H(x, p) = 0 then
has two distinct real solutions

p±(x) := 2γ2
[
−g(x)±

√
g(x)2 − x2/γ2

]
.

In general, H(x, p) ≤ 0 if and only if p ≤ p−(x), p ≥ p+(x), or |x| > γ|g(x)|.
Note that from our assumptions (2.63) and (2.64) on g and γ, we have

p+(0) = p−(0) = 0,
p+(x) > p−(x) > 0 for 0 < x < δ0, and p−(x) < p+(x) < 0 for − δ0 < x < 0.

We may then solve for the local storage function Sa(x) in the neighborhood (−δ0, δ0) of the
origin:

Sa(x) =

{ ∫ x

0
p−(s) ds for 0 ≤ x < δ0,

− ∫ 0

x
p+(s) ds for − δ0 < x ≤ 0.

(2.66)

Then Sa(x) > 0 for 0 < |x| < δ0 with Sa(0) = 0, and is the minimal solution of the HJB
equation H(x, S ′(x)) = 0 on (−δ0, δ0).
Note that Sa(x) so defined is the available storage function for the input-output system with
all stopping options ignored for the given attenuation level γ satisfying (2.64). From (2.16)
and (2.18), we see that in general 0 ≤ W (x) ≤ Sa(x) and hence W (0) = 0. This gives a
starting point for our construction of the minimal solution of the VI.

To simplify the description of the algorithm, we assume: (i) |x| < γ|g(x)| for 0 < |x|,
so p±(x) exist and satisfy p−(x) < p+(x) for x 6= 0, (ii) p−(x) < M for all x, and (iii)
−M < p+(x) for all x. We expect that other degenerate cases can be handled with similar
ideas, but with more complicated notation and special considerations.

Our algorithm for constructing the minimal piecewise-smooth solution of the VI for the nice
generic case then is as follows:

Step 1. Define U(x) = Sa(x) as in (2.66) for 0 ≤ x ≤ x1 where x1 is the first point to the
right of 0 where Sa(x) =

∫ x

0
p−(s) ds > Φ(x) on some interval x1 < x < x1 + δ. If no

such x1 exists, define U(x) by (2.66) for all x > 0.
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Step 2. At the point x1, we necessarily have U(x1) = Φ(x1) and p−(x1) ≥ Φ′(x1). Assume
that p−(x1) > Φ′(x1). Then it follows that H(x,Φ′(x)) < 0 for x1 ≤ x ≤ x + δ
for some δ > 0. Let [x1, x2] be a maximal interval with left endpoint x1 on which
H(x,Φ′(x)) ≤ 0. Define U(x) = Φ(x) for x1 ≤ x ≤ x2.

Step 3. By continuity, necessarily Φ′(x) ≤ p−(x) for x1 ≤ x ≤ x2 with equality at x = x2.
Assume that Φ′(x) > p−(x) for x in an interval to the right of x2. It follows that

Φ(x2) +

∫ x

x2

p−(s) ds < Φ(x) (2.67)

on an interval (x2, x+ δ) to the right of x2. As in Step 1, choose x3 so that (x2, x3) is
a maximal interval with left end point equal to x2 for which (2.67) holds. Define

U(x) = Φ(x2) +

∫ x

x2

p−(s) ds

for x2 ≤ x ≤ x3.

Step 4. At x3, proceed as in Step 2. Continue this process indefinitely to define U(x) on a
maximal interval to the right of 0.

To construct U(x) at points x to the left of 0, one uses an analogous procedure.

Step 1-. Define U(x) = Sa(x) as in (2.66) for x−1 ≤ x ≤ 0 where x−1 is the first point to the

left of 0 where − ∫ 0

x
p+(s) ds > Φ(x) on some interval x−1 − δ < x < x−1 . If no such x−1

exists, use (2.66) to define U(x) for all x < 0.

Step 2-. At the point x−1 , we necessarily have U(x−1 ) = Φ(x−1 ) and p+(x−1 ) ≤ Φ′(x−1 ).
Assume that p+(x−1 ) < Φ′(x−1 ). Then it follows that H(x,Φ′(x)) < 0 for x−1 − δ ≤ x ≤
x−1 for some δ > 0. Let [x−2 , x

−
1 ] be a maximal interval with right endpoint x−1 on which

H(x,Φ′(x)) ≤ 0. Define U(x) = Φ(x) for x−2 ≤ x ≤ x−1 .

Step 3-. By continuity, necessarily Φ′(x) ≥ p+(x) for x−2 ≤ x ≤ x−1 with equality at x = x−2 .
Assume that Φ′(x) < p+(x) for x in an interval to the left of x−2 . It follows that

Φ(x−2 )−
∫ x−2

x

p+(s) ds < Φ(x) (2.68)

on an interval (−δ+x−2 , x
−
2 ) to the left of x2. As in Step 1-, choose x−3 so that (x−3 , x

−
2 )

is a maximal interval with right end point equal to x−2 for which (2.68) holds. Define

U(x) = Φ(x2)−
∫ x−2

x

p+(s) ds

for x−3 ≤ x ≤ x−2 .
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Step 4-. At x−3 , proceed as in Step 2-. Continue this process indefinitely to define U(x) on
a maximal interval to the left of 0.

The construction may fail (in particular, Steps 2 and 3) if special tangencies occur, but we
expect that it or a minor modification will succeed in most examples.

One can check that this procedure produces a piecewise-smooth solution of VI with the
U(0) = 0. We describe how to check this statement for x > 0; the analysis is parallel
for x < 0. Indeed, by construction, U(x) ≤ Φ(x) for all x. At a smooth point where
U(x) < Φ(x), we have U ′(x) = p−(x), and hence H(x,DU(x)) = 0 as required at such
points. At a smooth point where U(x) = Φ(x), we have U ′(x) = Φ′(x) ≤ p−(x) from which
we get H(x,DU(x)) ≤ 0 as required at such points. Nonsmooth points occur in the situation
arising in Step 2. At such a point U(x) = Φ(x) and U ′(x−) = p−(x) > U ′(x+) = Φ′(x).
Hence H(x, p) ≤ 0 for p ∈ [Φ′(x), p−(x)] = [U ′(x+), U ′(x−)]. This verifies the conditions
(i)–(iii) for a piecewise-C1 function U to be a solution of VI.

We next analyze the amount of nonuniqueness in the construction. We assume that our
solution U satisfies U(0) = 0 (as is required if U is to be the minimal viscosity subsolution
W as noted above). By assumption Φ is strictly positive everywhere, and hence U(0) < Φ(0).

We seek to construct a new solution Ũ(x) with Ũ(0) = U(0) but Ũ(x) 6= U(x) for x in a

neighborhood of 0 to the right of 0. By continuity, we still have Ũ(x) < Φ(x) for x close to 0

to the right of 0, hence, for such x we must have H(x, Ũ ′(x)) = 0. Thus, for smooth points to

the right of 0, we have either Ũ ′(x) = p−(x) or Ũ ′(x) = p+(x). If we choose p−(x), we simply

recover U(x). Thus, to get a different solution, we must have Ũ(x) = U(0) +
∫ x

0
p+(s) ds,

leading to Ũ(x) > U(x) for x > 0 and close to 0. At a point x0 > 0 where Φ(x0) > U(x0), the

analysis is similar. Suppose that Ũ(x0) = U(x0) but Ũ(x) 6= U(x) for x in a neighborhood of

x0 to the right of x0. Then by continuity we still have Ũ(x) < Φ(x) for x close to x0 to the

right of x0, hence, for such x we must have H(x, Ũ ′(x)) = 0. Thus, for smooth points to the

right of x0, we have either Ũ ′(x) = p−(x) or Ũ ′(x) = p+(x). If we choose p−(x), we simply

recover U(x). Thus, to get a different solution we must take Ũ(x) = U(x0) +
∫ x

x0
p+(s) ds.

The point x0 becomes a nonsmooth point for Ũ(x) with Ũ ′(x−0 ) = p−(x0) < Ũ ′(x+
0 ) = p+(x0)

and Ũ(x0) < Φ(x0). Then the applicable condition for Ũ to be a viscosity solution of the VI
at x0 is condition (ii); condition (ii) collapses to H(x, p) ≥ 0 for p ∈ [p−(x0), p+(x0] which

is obviously true. In this way we can modify U(x) to a new solution Ũ(x) but necessarily

with Ũ(x) ≥ U(x) near x0. However, once we are following p+(x) with Ũ(x) < Φ(x), it
is not possible to switch slopes from p+(x) back to p−(x), as in this case the inequality in
condition (iii) for a viscosity solution at such a nonsmooth point will be going in the wrong

direction. Once Ũ(x) (following the slope p+(x)) hits a point x1 where Ũ(x1) = Φ(x1) we

meet an obstruction to continuation of this solution Ũ(x) to the right of x1: at such a point

we necessarily have p+(x1) = Ũ ′(x−1 ) > Φ′(x1); to guarantee Ũ(x) ≤ Φ(x) for x to the right

of x1, we must choose Ũ ′(x+
1 ) ≤ Φ′(x1). But then the applicable condition (iii) for Ũ to be
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a viscosity solution of VI at x1 becomes

H(x1, p) ≤ 0 for p ∈ [Ũ ′(x+
1 ), Ũ ′(x−1 )] ⊃ [Φ′(x1), p+(x1)]

which is necessarily violated. At points x0 where U(x0) = Φ(x0) and Φ′(x0) < p−(x0), by a

similar argument one can see that it is not possible to arrange for a new solution Ũ(x) to
agree with U at x0 and depart from U in a neighborhood of x0. A parallel analysis as one
decreases x away from the initial point x = 0 leads to similar conclusions.

In the analysis above, we see that any solution Ũ also satisfying the given initial condition
Ũ(0) = 0 other than the solution U given by the constructive algorithm given above (a)

may have a smaller maximal interval of existence, and (b) satisfies Ũ(x) ≥ U(x) wherever
both are defined. Hence we conclude that the construction given above (when applicable)
gives the minimal piecewise-C1 viscosity solution U of the VI satisfying the initial condition
U(0) = 0. In this way, we then arrive at the minimal, nonnegative, piecewise-C1 solution of
the VI, and hence at the minimal stopping-time storage function or the lower value function
for the game W (x), at least under the assumption that the lower-value function W (x) is
piecewise-C1.

We now illustrate this construction with the following simple example:

ẏ = −y + b,

z = y2,
(2.69)

with gain rate

γ = 2. (2.70)

In a linear-quadratic robust control system such as this it would be typical to impose no
constraints on the disturbance values b ∈ B. However to satisfy our hypothesis (A1) we will
take M = 1, and hence

B = [−1, 1]. (2.71)

One may check that for |p| ≤ 2γ2M = 8 the Hamiltonian (2.3) works out as

H(x, p) =
−1

16
p2 + px− x2. (2.72)

For |p| > 8 the constraint |b| ≤ 1 influences the infimum in (2.3), so that (2.72) is incorrect.
However in our example no values of |p| > 8 will occur. We take the stopping cost to be

Φ(x) =
5

4
+ cos(4x). (2.73)

All hypothesis (A0)–(A5) are satisfied.
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The solution U(x) of (VI) resulting from the construction is plotted in Figure 2.2 below. We
discuss only x > 0 in what follows. (By symmetry we will have U(x) = U(−x) for x < 0.)
First, observe that the minimal solution of H(x, p) = 0 is

p−(x) = (8− 4
√

3)x.

The minimal nonnegative solution of H(x, S ′(x)) = 0 is the available storage function (2.14)
for our system (2.69):

Sa(x) =

∫ x

0

p−(t) dt = (4− 2
√

3)x2.

The initial segment of the solution is

x1x2 x3 x4 x5

0.5

1

1.5

2

Figure 2.2: Example solution of variational inequality

U(x) = Sa(x) for 0 ≤ x < x1.

The value x1 = .723487 is determined by solving Sa(x1) = Φ(x1). Next, Step 2 extends the
construction of U to

U(x) = Φ(x) for x1 ≤ x < x2.

The value of x2 is the first x > x1 at which H(x,Φ′(x)) < 0 fails. The value x2 = .842313 is
located by solving Φ′(x) = p−(x).

The construction now proceeds in Step 3, using U ′(x) = p−(x) or

U(x) = Φ(x2)− Sa(x2) + Sa(x) on an interval x2 ≤ x < x3,

where x3 is maximal such that U(x) ≤ Φ(x) for x2 ≤ x < x3. This turns out to be
x3 = 1.84258. Now we repeat Step 2 to find

U(x) = Φ(x) for x3 ≤ x < x4,
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with x4 = 2.54367 the first solution of Φ′(x) = p−(x) beyond x3. Beyond x4 we take another
section with

U(x) = Φ(x4)− Sa(x4) + Sa(x) on an interval x4 ≤ x < x5,

with x5 = 3.11278 determined again by U(x) = Φ(x). Finally, we find that Φ′(x) < p−(x)
for all x > x5. This means that the remainder of the definition of U is

U(x) = Φ(x) for x5 ≤ x.

The optimal stopping rule, as in Theorem 2.16, for this example is to stop at the first instant
the state y(t) enters the set

[x1, x2] ∪ [x3, x4] ∪ [x5,∞)

on which U(x) = Φ(x).

In higher dimensions, the initialization U(0) = 0 must be given along a submanifold of
codimension 1, as in the method of bicharacteristics, or at an equilibrium point for the
Hamiltonian flow, as in the method of stable or antistable invariant manifolds. The ana-
logue of Step 1 is then to use the method of bicharacteristics to produce a solution U(x) of
H(x,DU(x)) = 0 for x close to the initial manifold on which U(x) < Φ(x). This function
U(x) will solve the VI as long as the inequality U(x) ≤ Φ(x) continues to hold. In higher
dimensions, the boundary of the set ∆ = {x : U(x) = Φ(x)} no longer consists of isolated
points, but rather is a more complicated curve or surface, the free boundary associated with
the variational inequality.



Chapter 3

Robust optimal switching-control
problems

In this chapter, we formulate a robust optimal control problem for a general nonlinear state-
space systems with finitely many admissible controls and with costs assigned to the switching
of the controls.

3.1 Preliminaries

In this section we list some assumptions and definitions. We consider a general nonlinear
system

Σsw

{
ẏ = f(y, a, b), y(0) = x ∈ IRn

z = h(y, a, b)

where y(·) ∈ IRn is the state, a(·) ∈ A ⊂ IRp is the control input, b(·) ∈ B ⊂ IRm is the
disturbance and z(·) ∈ IR is the output of the system. Usually in applications h(y, a, b) =
|h̄(y, a)|2, where h̄ : IRn×A→ IRr. We assume that the set A of admissible controls is a finite
set A = {a1, a2, · · · , ar}. The control signals a(·) then are necessarily piecewise constant with
values in A. We normalize control signals a(·) to be right continuous, and refer to the value
a(t) as the current control and a(t−) as the old current control at time t. We assume that
there is a control input index i0 for which f(y, ai0, 0) = 0 and h(y, ai0, 0) = 0, so that y = 0 is
an equilibrium point for the autonomous system induced by setting a(t) = ai0 , b(t) = 0 for
all t ≥ 0. In addition we assume that a cost k(ai, aj) ≥ 0 is assigned at each time instant τn
at which the controller switches from old current control a(τ−n ) = ai to new current control
a(τn) = aj. For a given old initial control a(0−), the associated control decision is to choose
switching times

0 ≤ τ1 < τ2 < . . . , lim
n→∞

τn = ∞

43
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and controls
a(τ1), a(τ2), a(τ3), . . .

such that the controller switches from the old current control a(τ−n ) to the (new) current
control a(τn) 6= a(τ−n ) at time τn, where we set

a(t) =

{
a(0−), t ∈ [0, τ1),
a(τn), t ∈ [τn, τn+1), n = 1, 2, . . . ,

if τ1 > 0 and

a(t) = a(τn), t ∈ [τn, τn+1), n = 1, 2, . . . ,

otherwise. We assume that the state y(·) does not jump at the switching time τi, i.e., the
solution y(·) is assumed to be absolutely continuous. The set of admissible controls for our
problem is then given by

A = {a(·) =
∑
i≥1

ai−11[τi−1,τi)(·) : [0,+∞) → A| ai ∈ A; ai 6= ai−1 for i ≥ 1,

0 = τ0 ≤ τ1 < τ2 < · · · , τi ↑ ∞},
consisting of piecewise-constant right-continuous functions on [0,∞) with values in the con-
trol set A, where we denote by τ1, τ2, . . . the points at which control switchings occur. We
assume that the set B of admissible disturbance values is compact with 0 ∈ B and the set
of admissible disturbance functions is given by

B = {b : [0,∞) → B |
∫ T

0

|b(s)|2ds <∞, for all T > 0}.

A strategy is a map α : IRn×A×B → A with value at (x, aj) denoted by αj
x[·]. The strategy

α assigns control function a(t) = αj
x[b](t) if the augmented initial condition is (x, aj) and the

disturbance is b(·). Thus, if it happens that τ1 > τ0 = 0, then a(t) = a0 = aj, for t ∈ [τ0, τ1).
Otherwise a(t) = a1 6= aj , for t ∈ [0, τ2) = [τ1, τ2) and an instantaneous charge of k(aj , a(0))
is incurred at time 0 in the cost function. A strategy α is said to be nonanticipating if, for
each x ∈ IRn and j ∈ {1, . . . , r}, for any T > 0 and b, b̄ ∈ B with b(s) = b̄(s) for all s ≤ T , it
follows that αj

x[b](s) = αj
x [̄b](s) for all s ≤ T . We denote by Γ the set of all nonanticipating

strategies:

Γ := {α : IRn × A× B → A | αj
x is nonanticipating for each x ∈ IRn and j = 1, . . . , r}.

We make following assumptions on the problem data f, h, k:

(A8) f : IRn ×A×B → IRn and h : IRn ×A×B → IR are continuous;

(A9) f and h are bounded on B(0, R)× A× B for all R > 0;
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(A10) there are moduli ωf and ωh such that

|f(x, a, b)− f(y, a, b)| ≤ ωf(|x− y|, R)

|h(x, a, b)− h(y, a, b)| ≤ ωh(|x− y|, R),

for all x, y ∈ B(0, R), R > 0, a ∈ A and b ∈ B;

(A11) |f(x, a, b)− f(y, a, b)| ≤ L|x− y| for all x, y ∈ IRn, a ∈ A and b ∈ B;

(A12) k : A× A→ IR and

k(aj , ai) < k(aj , ad) + k(ad, ai)

k(aj , ai) > 0

k(aj , aj) = 0,

for all ad, ai, aj ∈ A, d 6= i 6= j;

(A13) h(x, a, 0) ≥ 0 for all x ∈ IRn, a ∈ A.

We look at trajectories of the nonlinear system{
ẏ(t) = f(y(t), a(t), b(t))
y(0) = x,

(3.1)

Under the assumptions (A8), (A9) and (A11), for given x ∈ IRn, a ∈ A and b ∈ B, the
solution of (3.1) exists uniquely for all t ≥ 0. We denote by yx(·, a, b) or simply yx(·) or y(·)
the unique solution of (3.1) corresponding to the choice of the initial condition y(0) = x ∈ IRn,
the control a(·) ∈ A and the disturbance b(·) ∈ B. We also have the usual estimates on the
trajectories (the proofs are similar to those in Section 2.1):

|yx(t, a, b)− yz(t, a, b)| ≤ eLt|x− z|, t > 0 (3.2)

|yx(t, a, b)− x| ≤ Mxt, t ∈ [0, 1/Mx], (3.3)

|yx(t, a, b)| ≤ (|x|+
√

2kt)eKt (3.4)

for all a ∈ A, b ∈ B, where

Mx := max{|f(z, a, b)| : |x− z| ≤ 1, a ∈ A, b ∈ B}
K := L+ max{|f(0, a, b)| : a ∈ A, b ∈ B}.

For a specified gain parameter γ > 0, we define the Hamiltonian function Hj : IRn× IRn → IR
by setting

Hj(y, p) := min
b∈B

{−p · f(y, aj, b)− h(y, aj, b) + γ2|b|2}, j = 1, . . . , r.

Note that Hj(y, p) < +∞ for all y, p ∈ IRn by (A9). We now want to show that the
Hamiltonian Hj is continuous on IRn × IRn.
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Lemma 3.1 Assume (A8)-(A10). Then for each j ∈ {1, 2, . . . , r}, Hj is continuous and it
satisfies

|Hj(x, p)−Hj(y, p)| ≤ L|x− y||p|+ ωh(|x− y|, R)

for all p ∈ IRn, x, y ∈ B(0, R), R > 0, and

|Hj(x, p)−Hj(x, q)| ≤ L(|x| + 1)|p− q|

for all x, p, q ∈ IRn.

Proof Let aj ∈ A and ε > 0. Fix p ∈ IRn and x, y ∈ B(0, R), R > 0. Choose b̄ ∈ B such
that

Hj(y, p) ≥ −f(y, aj, b̄) · p− h(y, aj, b̄) + γ2|b̄|2 − ε.

From the definition of Hj, we have

Hj(x, p) ≤ −f(x, aj , b̄) · p− h(x, aj , b̄) + γ2|b̄|2.

Thus

Hj(x, p)−Hj(y, p) ≤ f(y, aj, b̄) · p− f(x, aj, b̄) · p+ h(y, aj, b̄)− h(x, aj , b̄) + ε

≤ |p||f(x, aj, b̄)− f(y, aj, b̄)|+ |h(x, aj , b̄)− h(y, aj, b̄)|+ ε

≤ L|x− y||p|+ ωh(|x− y|, R) + ε (3.5)

Next choose b̃ ∈ B such that

Hj(x, p) ≥ −f(x, aj , b̃) · p− h(x, aj , b̃) + γ2|b̃|2 − ε.

From the definition of Hj, we have

Hj(y, p) ≤ −f(y, aj, b̃) · p− h(y, aj, b̃) + γ2|b̃|2.
Thus

Hj(x, p)−Hj(y, p) ≥ −(f(x, aj , b̃) · p− f(y, aj, b̃) · p)− (h(x, aj , b̃)− h(y, aj, b̃))− ε

≥ −|p||f(x, aj, b̄)− f(y, aj, b̄)| − |h(x, aj , b̄)− h(y, aj, b̄)| − ε

≥ −(L|x− y||p|+ ωh(|x− y|, R) + ε) (3.6)

By (3.5) and (3.6) we have

|Hj(x, p)−Hj(y, p)| ≤ L|x− y||p|+ ωh(|x− y|, R) + ε.

Since ε is arbitrary, the result is obtained.
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Fix x, p, q ∈ IRn. Choose b̂ ∈ B such that

Hj(x, q) ≥ −f(x, aj , b̂) · q − h(x, aj , b̂) + γ2|b̂|2 − ε.

From the definition of Hj, we have

Hj(x, p) ≤ −f(x, aj , b̂) · p− h(x, aj , b̂) + γ2|b̂|2.
Thus

Hj(x, p)−Hj(x, q) ≤ −f(x, aj , b̂) · p+ f(x, aj, b̂) · q + ε

≤ |f(x, aj, b̂)||p− q|+ ε

≤ L(|x|+ 1)|p− q|+ ε (3.7)

Next choose b̂ ∈ B such that

Hj(x, p) ≥ −f(x, aj , b̂) · p− h(x, aj , b̂) + γ2 |̂b|2 − ε.

From the definition of Hj, we have

Hj(x, q) ≤ −f(x, aj , b̂) · q − h(x, aj , b̂) + γ2|̂b|2.
Thus

Hj(x, p)−Hj(x, q) ≥ −(f(x, aj , b̂) · p− f(x, aj, b̂) · q)− ε

≥ −|f(x, aj , b̂)||p− q| − ε

≥ −(L(|x| + 1)|p− q|+ ε) (3.8)

By (3.7) and (3.8) we have

|Hj(x, p)−Hj(x, q)| ≤ L(|x|+ 1)|p− q|+ ε

Since ε is arbitrary, the result is obtained. ♦
We now introduce the system of quasivariational inequalities (SQVI)

max{Hj(x,Duj(x)), uj(x)−min
i6=j

{ui(x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, 2, . . . , r (3.9)

Definition 3.2 A vector function u = (u1, u2, . . . , ur), where uj ∈ C(IRn), is a viscosity
subsolution of the SQVI (3.9) if for any ϕj ∈ C1(IRn)

max{Hj(x0, Dϕ
j(x0)), u

j(x0)−min
i6=j

{ui(x0) + k(aj, ai)}} ≤ 0, j = 1, 2, . . . , r

at any local maximum point x0 ∈ IRn of uj − ϕj. Similarly u is a viscosity supersolution of
the SQVI (3.9) if for any ϕj ∈ C1(IRn)

max{Hj(x1, Dϕ
j(x1)), u

j(x1)−min
i6=j

{ui(x1) + k(aj, ai)}} ≥ 0, j = 1, 2, . . . , r

at any local minimum point x1 ∈ IRn of uj−ϕj. Finally u is a viscosity solution of the SQVI
if it is simultaneously a viscosity sub- and supersolution.
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3.2 Formulations

We consider a state space system Σsw with a switching-cost function k. We set the cost of
running the system up to time T ≥ 0 with initial state y(0) = x ∈ IRn, initial old control
setting a(0−) = aj , control signal a ∈ A for t ≥ 0, and disturbance signal b ∈ B to be

CT−(x, aj , a, b) =

∫ T

0

h(yx(t, a, b), a(t), b(t)) dt+
∑

τ : 0≤τ<T

k(a(τ−), a(τ))

As the running cost ˜̀(y(t), aj, a(t), b(t)) = h(y(t), a(t), b(t))+k(a(t−), a(t)), where a(t−) = aj

if t = 0, involves not only the value y(t) of the state along with the value of the control a(t)
and the value of the disturbance b(t) at time t but also the value of the old current con-
trol a(t−), it makes sense to think of the old current control a(t−) at time t as part of an
augmented state vector yaug(t) = (y(t), a(t−)) at time t. This can be done formally by
including a(t−) as part of the state vector, in which case the switching control problem
becomes an impulse control problem (see [19], where problems of this sort are set in the
general framework of hybrid systems). We shall keep the switching-control formalism here;
however, in implementing optimization algorithms, we shall see that it is natural to consider
augmented state-feedback controls (x, aj) → a(x, aj) rather than merely state-feedback con-
trols x→ a(x) in order to obtain solutions. We shall refer to such augmented state-feedback
controls (x, aj) → a(x, aj) ∈ A as simply switching state-feedback controllers. Note that
while the augmented-state is required to compute the instantaneous running cost at time t,
only the (nonaugmented) state vector y(t) is needed to determine the state trajectory past
time t for a given input signal (a(·), b(·)) past time t.

The precise formulation of our optimal control problem is as follows. For a prescribed
attenuation level γ > 0 and given augmented initial state (x, aj), we seek an admissible
control signal a(·) = ax,j(·) with a(0−) = aj so that

CT−(x, aj , a, b) ≤ γ2

∫ T

0

|b(t)|2 dt+ U j
γ(x) (3.10)

for all locally L2 disturbances b, all positive real numbers T and some nonnegative-valued
bias function U j

γ(x) with U i0
γ (0) = 0. Note that this inequality corresponds to an input-

output system having L2-gain at most γ, where CT− replaces the L2-norm of the output
signal over the time interval [0, T ], and where the equilibrium point is taken to be (0, ai0)
in the augmented state space. The dissipation inequality (3.10) then can be viewed as an
L2-gain inequality, and our problem as the analogue of the nonlinear H∞-control problem
for systems with switching costs. In the open loop version of the problem, the control signal
a(·) is simply a piecewise-constant right-continuous function with values in A = {a1, . . . , ar}.
In the switching state feedback version of the problem, a(·) is a function of the current state
and current old control, i.e., one decides what control to use at time t based on knowledge of
the current augmented state (y(t), a(t−)). In the standard game-theoretic formulation of the
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problem, a(·) is a nonanticipating function of the disturbance b. A refinement of the problem
then asks for the admissible control a with a(0−) = aj (with whatever information structure)
which gives the best system performance, in the sense that the nonnegative functions U j(x)
is as small as possible. A closely related problem formulation is to view the switching-cost
system as a game with payoff function

JT−(x, aj , a, b) =

∫
[0,T )

l(yx, a
j, a, b), a(0−) = aj , j = 1, . . . , r,

where we view l(yx, a
j, a, b) as the measure given by

l(y(t), aj, a(t), b(t)) = [h(y(t), a(t), b(t))− γ2|b(t)|2] dt+ k(a(t−), a(t))δt, a(0−) = aj ,

where δt is the unit point-mass distribution at the point t. In this game setting, the distur-
bance player seeks to use b(t) and T to maximize the payoff while the control player seeks to
use the choice of piecewise-constant right-continuous function a(t) to minimize the payoff.
The vector lower-value function V = (V 1

γ , . . . , V
r
γ ) of this game is then given by

V j
γ (x) = inf

α∈Γ
sup

b∈B, T≥0
JT−(x, aj , αj

x[b], b), j = 1, . . . , r (3.11)

By letting T tend to 0, we see that each component of the vector-valued lower value function
Vγ(x) = (V 1

γ (x), . . . , V r
γ (x)) is nonnegative. Then by construction (V 1

γ , . . . , V
r
γ ) gives the

smallest possible value which can satisfy (3.10) (with V j
γ in place of U j

γ) for some nonantici-
pating strategy (x, aj, b) → αj

x[b](·) = a(·).
In the standard theory of nonlinear H∞-control, the notion of storage function for a dis-
sipative system plays a prominent role. We say that a nonnegative vector function S =
(S1, . . . , Sr) on IRn is a switching-storage function for the system Σsw if for each j ∈ {1, . . . , r}
there is piecewise-constant right-continuous function a(·) with a(0−) = aj such that

Sj(t2)(yx(t2, a, b))− Sj(t1)(yx(t1, a, b))

≤ ∫ t2
t1

[γ2|b(s)|2 − h(yx(s), a(s), b(s))] ds−
∑

t1≤τ<t2
k(a(τ−), a(τ))

for all x ∈ IRn, b ∈ B and 0 ≤ t1 < t2

(3.12)

(where j(t) is specified by a(t−) = aj(t)). The control problem then is to find the switch-
ing strategy α : (x, aj , b) → αj

x[b](·) which gives the best performance, as measured by
obtaining the minimal possible S(x) = (S1(x), . . . , Sr(x)) as the associated closed-loop stor-
age function. Note that any vector storage function may serve as the vector bias function
Uγ = (U1

γ , . . . , U
r
γ ) in the L2-gain inequality (3.10), if in addition Si0(0) = 0. This suggests

that the switching-cost available storage function Ssc,a (i.e., the minimal possible switching-
cost storage function over all possible switching strategies) should equal the lower-value
function Vγ (3.11) for the game described above. We shall see that this is indeed the case
with appropriate hypotheses imposed.
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3.3 Main results

In this section we show the connection of the lower value function Vγ = (V 1
γ , . . . , V

r
γ ) (see

(3.11)) with the SQVI (3.9). We also address the comparison principle between viscos-
ity subsolution and supersolution of the system of quasivariational inequalities satisfying a
boundary comparison.

We show that if continuous, then Vγ is the minimal, nonnegative, continuous viscosity su-
persolution of the SQVI. We give two derivations of this characterization of Vγ ; one is a
direct argument which parallels the argument given in Chapter 2 for the analogous result
for optimal stopping-time problems. The second relies on a general comparison principle for
viscosity super- and subsolutions of SQVI.

3.3.1 Dynamic programming

In this subsection we address the Dynamic Programming Principle (DPP) and some prop-
erties of a lower value vector function Vγ. We then use them to show that if continuous, Vγ

is a viscosity solution of the SQVI. Throughout this subsection, we assume that Vγ is finite.

Proposition 3.3 Assume (A8)-(A12). Then for j = 1, 2, . . . , r and x ∈ IRn

V j
γ (x) ≤ min

i6=j
{V i

γ (x) + k(aj, ai)}

Proof Fix a pair of indices i, j ∈ {1, . . . , r} with i 6= j. For a given x ∈ IRn, α ∈ Γ, b ∈ B
and T > 0, we have∫

[0,T )

`(yx(s), a
j, αj

x[b](x), b(s)) = k(aj, αj
x[b](0)) +

∫
[0,T )

`(yx(s), α
j
x[b](0), αj

x[b](s), b(s))

= k(aj , αj
x[b](0))− k(ai, αj

x[b](0))

+ k(ai, αj
x[b](0)) +

∫
[0,T )

`(yx(s), α
j
x[b](0), αj

x[b](s), b(s))

= k(aj , αj
x[b](0))− k(ai, αj

x[b](0)) +

∫
[0,T )

`(yx(s), a
i, αj

x[b](s), b(s))

< k(aj , ai) +

∫
[0,T )

`(yx(s), a
i, αj

x[b](s), b(s)) (3.13)

where the last inequality follows from (A12). By the definition of V j
γ (x), we have

V j
γ (x) ≤ sup

b∈B,T≥0

∫
[0,T )

`(yx(s), a
j, αj

x[b](s), b(s))
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for all α ∈ Γ. Taking the supremum over b ∈ B and T ≥ 0 on the righthand side of (3.13)
therefore gives

V j
γ (x) ≤ k(aj , ai) + sup

b∈B,T≥0

∫
[0,T )

`(yx(s), a
i, αj

x[b](s), b(s)). (3.14)

Given any strategy α ∈ Γ, we can always find another α̃ ∈ Γ with α̃i
x[b] = αj

x[b] for each
b ∈ B, and, conversely, for any α̃ ∈ Γ there is a α ∈ Γ so that α̃i

x is determined by α in this
way. Hence, taking the infimum over all α ∈ Γ in the last terms on the righthand side of
(3.14) leaves us with V i

γ (x). Thus

V j
γ (x) ≤ k(aj, ai) + V i

γ (x).

Since i 6= j is arbitrary, the result follows. ♦

Theorem 3.4 (Dynamic Programming Principle) Assume (A8), (A9) and (A11).

Then, for j = 1, 2, . . . , r, t > 0 and x ∈ IRn, we have

V j
γ (x) = inf

α∈Γ
sup

b∈B, T>0
{
∫

[0,t∧T )

l(yx(s, a
j , αj

x[b], b), α
j
x[b](s), b(s)) +

1[0,T )(t)V
i
γ (yx(t, α

j
x[b], b)), αj

x[b](t
−) = ai}. (3.15)

where

l(y(s), aj, a(s), b(s)) := [h(y(s), a(s), b(s))− γ2|b(s)|2]ds+ k(a(s−), a(s))δs.

with a(0−) = aj.

Proof Fix x ∈ IRn, j ∈ {1, 2, . . . , r} and t > 0. We denote by ω(x) the right hand side of
(3.15). Let ε > 0. For any z ∈ IRn and any a` ∈ A, we pick ᾱ ∈ Γ such that

V `
γ (z) + ε ≥

∫
[0,T )

l(yz(s), a
`, ᾱ`

z[b](s), b(s)), ∀b ∈ B, ∀T > 0 (3.16)

We first want to show that ω(x) ≥ V j
γ (x). Choose α̂ ∈ Γ such that

ω(x) + ε ≥ sup
b∈B, T≥0

{
∫

[0,t∧T )

l(yx(s), a
j, α̂j

x[b](s), b(s)) + 1[0,T )(t)V
i
γ (yx(t)), α̂

j
x[b](t

−) = ai}
(3.17)

For each b ∈ B, i ∈ {1, . . . , r} and T > 0, choose δ ∈ Γ so that

δj
x[b](s) =

{
α̂j

x[b](s) s < t ∧ T
ᾱi

z[b(·+ t ∧ T )](s− (t ∧ T )) s ≥ t ∧ T
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with z := yx(t ∧ T, α̂j
x[b], b). Clearly, δj

x is nonanticipating because α̂j
x and ᾱi

z are. Note that

yx(s+ t ∧ T, δj
x[b], b) = yz(s, ᾱ

i
z[b(· + t ∧ T )], b(·+ t ∧ T )), for s ≥ 0

Thus by the change of variables τ = s+ t ∧ T , we have∫
[0,T−(t∧T ))

l(yz(s), a
i, ᾱi

z[b(·+ t ∧ T )](s), b(s+ t ∧ T )) =

∫
[t∧T,T )

l(yx(τ), a
j , δj

x[b](τ), b(τ))

(3.18)

As a consequence of (3.16), (3.17) and (3.18), we have

ω(x) + 2ε ≥ sup
b∈B, T>0

{
∫

[0,t∧T )

l(yx(s), a
j , α̂j

x[b](s), b(s))

+1[0,T )(t)

∫
[t∧T,T )

l(yz(s), a
i, ᾱi

z[b](s), b(s))}

= sup
b∈B, T>0

{
∫

[0,T )

l(yx(s), a
j, δj

x[b](s), b(s))}

≥ inf
α∈Γ

sup
b∈B, T>0

{
∫

[0,T )

l(yx(s), a
j, αj

x[b](s), b(s))}

= V j
γ (x)

Since ε > 0 is arbitrary, we conclude that ω(x) ≥ V j
γ (x).

Next we want to show that ω(x) ≤ V j
γ (x). From the definition of ω(x), choose b1 ∈ B and

T1 ≥ 0 such that

ω(x)− ε ≤
∫

[0,T1∧t)

l(yx(s), a
j, ᾱj

x[b1](s), b1(s)) + 1[0,T1)(t)V
i
γ (yx(t)) (3.19)

where ᾱj
x is defined as in (3.16) and ᾱj

x[b1](t
−) = ai for some ai ∈ A. If t ≥ T1, we have

ω(x)− ε ≤
∫

[0,T1)

l(yx(s), a
j, ᾱj

x[b1](s), b1(s))

≤ sup
b∈B, T>0

{
∫

[0,T )

l(yx(s), a
j, ᾱj

x[b](s), b(s))}

≤ V j
γ (x) + ε,

where the last inequality follows from (3.16). If t < T1, we have

ω(x)− ε ≤
∫

[0,t)

l(yx(s), ᾱ
j
x[b1](s), b1(s)) + V i

γ (yx(t)). (3.20)
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Set z := yx(t, ᾱ
j
x[b1], b1). For each b ∈ B, define b̃ ∈ B by

b̃(s) =

{
b1(s) s < t
b(s− t) s ≥ t

and choose α̂ ∈ Γ so that

α̂z[b](s) = ᾱj
x [̃b](s+ t) for s ≥ 0.

By definition of V i
γ , choose b2 ∈ B and T2 > 0 such that

V i
γ (z)− ε ≤

∫
[0,T2)

l(yz(s), a
i, α̂z[b2](s), b2(s)).

Then, by change of variable τ = s+ t, we have

V i
γ (z)− ε ≤

∫
[t,t+T2)

l(yx(τ), a
j , ᾱj

x [̃b2](τ), b̃2(τ)) (3.21)

As a consequence of (3.20) and (3.21) we have

ω(x)− 2ε ≤
∫

[0,t)

l(yx(s), a
j, ᾱj

x[b1](s), b1(s)) +

∫
[t,t+T2)

l(yx(τ), a
j , ᾱj

x[̃b2](τ), b̃2(τ))

=

∫
[0,t+T2)

l(yx(τ), a
j , ᾱj

x [̃b2](τ), b̃2(τ))

≤ sup
b∈B, T>0

{
∫

[0,T )

l(yx(τ), a
j , ᾱj

x[b](τ), b(τ))}

≤ V j
γ (x) + ε,

where the last inequality follows from (3.16). Since ε > 0 is arbitrary, for both cases we have
ω(x) ≤ V j

γ (x) as required. ♦

Corollary 3.5 Assume (A8)-(A4). Then for each j ∈ {1, . . . , r}, x ∈ IRn, t > 0

V j
γ (x) ≤ sup

b∈B, T≥0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1{t:t<T}(t)V j

γ (yx(t))}.

Proof Fix j ∈ {1, . . . , r}, x ∈ IRn and t > 0. For each b ∈ B, define αj
x[b](s) = aj for all

s ≥ 0. By Theorem 3.4, we have

V j
γ (x) ≤ sup

b∈B, T≥0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1{t:t<T}(t)V j

γ (yx(t))}. ♦
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Proposition 3.6 Assume (A8)-(A12). Suppose that for each j ∈ {1, . . . , r}, V j is con-
tinuous. If V j

γ (x) < mini6=j{V i
γ (x) + k(aj, ai)}, then there exists τ = τx > 0 such that for

0 < t < tx

V j
γ (x) = sup

b∈B, T≥0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1{t:t<T}(t)V j

γ (yx(t))}.

Proof We assume V j
γ (x) < mini6=j{V i

γ (x) + k(aj , ai)}. From Corollary 3.5, we know that

V j
γ (x) ≤ sup

b∈B, T>0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(t)V

j
γ (yx(t))}, ∀t > 0.

Suppose there is a sequence {tn} with 0 < tn <
1
n

for n = 1, 2, . . . such that

V j
γ (x) < sup

b∈B, T>0
{
∫ tn∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1[0,T )(tn)V j

γ (yx(tn))}. (3.22)

Let w(x, tn) be the right hand side of (3.22). For each tn, define εn = 1
3
[w(x, tn) − V j

γ (x)].
It follows that

V j
γ (x) + εn < w(x, tn)− εn (3.23)

Choose bn ∈ B and Tn ≥ 0 such that

w(x, tn)− εn ≤
∫ tn∧Tn

0

[h(yx(s), a
j, bn(s))− γ2|bn(s)|2]ds+ 1[0,Tn)(tn)V j

γ (yx(tn)) (3.24)

By Theorem 3.4 choose αn ∈ Γ such that

V j
γ (x) + εn ≥

∫
[0,tn∧Tn]

l(yx(s), a
j , (αn)

j
x[bn](s), bn(s)) + 1[0,Tn)(tn)V in

γ (yx(tn)), (3.25)

where (αn)j
x[bn](t−n ) = ain ∈ A. From (3.23), (3.24) and (3.25), we have∫

[0,tn∧Tn)
l(yx(s), a

j, (αn)j
x[bn](s), bn(s)) + 1[0,Tn)(tn)V in

γ (yx(tn))

<
∫ tn∧Tn

0
[h(yx(s), a

j, bn(s))− γ2|bn(s)|2]ds+ 1[0,Tn)(tn)V j
γ (yx(tn)).

(3.26)

This implies that (αn)j
x[bn] jumps in the interval [0, tn ∧ Tn]. Without loss of generality

assume the number of switchings is equal to dn. If tn < Tn for infinitely many n, by going
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down to a subsequence we may assume tn ≤ Tn for all n. From (3.25) we have

V j
γ (x) ≥ lim sup

n→∞
{
∫

[0,tn∧Tn)

l(yx(s), a
j, αj

x,n[bn](s), bn(s))

+1[0,T )(tn)V in
γ (yx(tn)), αj

x,n[bn](t−n ) = ain ∈ A}

= lim sup
n→∞

{
∫ tn

0

[h(yx(s), α
j
x,n[bn](s), bn(s))− γ2|bn(s)|2]ds

+
dn∑

m=1

k(am−1, am) + V in
γ (yx(tn)), αj

x,n[bn](tn) = ain ∈ A}

= lim sup
n→∞

{
dn∑

m=1

k(am−1, am) + V in
γ (yx(tn)), αj

x,n[bn](t−n ) = ain ∈ A}.

By using continuity of V in
γ and

∑dn

m=1 k(am−1, am) > k(aj, ain), we have

V j
γ (x) ≥ min

i6=j
{V i

γ (x) + k(aj, ai)}

which contradicts one of the assumptions. If tn ≥ Tn for infinitely many n, again without
loss of generality we may assume tn ≥ Tn for all n. From (3.26) we have

lim infn→∞{
∫
[0,Tn]

l(yx(s), a
jαj

x,n[bn](s), bn(s))}
≤ lim supn→∞{

∫ Tn

0
[h(yx(s), a

j , bn(s))− γ2|bn(s)|2]ds},
or equivalently,

lim infn→∞{
∫ Tn

0
[h(yx(s), α

j
x,n[bn](s), bn(s))− γ2|bn(s)|2]ds+

∑dn

m=1 k(am−1, am)}
≤ lim supn→∞{

∫ Tn

0
[h(yx(s), a

j , bn(s))− γ2|bn(s)|2]ds}.
Thus

lim inf
n→∞

{
dn∑

m=1

k(am−1, am)} ≤ lim sup
n→∞

{
∫ Tn

0

[h(yx(s), a
j, bn(s))ds} −

lim inf
n→∞

{
∫ Tn

0

[h(yx(s), α
j
x,n[bn](s), bn(s))ds},

and in this case Tn → 0 as n → ∞. Note that the integral terms tend to 0 uniformly with
respect to bn ∈ B as Tn → 0 due to the compactness assumption on B, the uniform estimate
(3.3), and the continuity assumption (A8) on h. Thus we have

lim inf
n→∞

{
dn∑

m=1

k(am−1, am)} ≤ 0

which contradicts (A12). ♦
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Lemma 3.7 Assume (A8)- (A12) and V j
γ ∈ C(IRn), j = 1, . . . , r. If

V j
γ (x) < min

i6=j
{V i

γ (x) + k(aj , ai), }

then there exists τ = τx > 0 such that

V j
γ (x) ≥ sup

b∈B
{
∫ t

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ V j

γ (yx(t))}, ∀t ∈ (0, τx).

Proof From Proposition 3.6, choose τ = τx > 0 such that for all t ∈ (0, τ)

V j
γ (x) = sup

b∈B, T≥0
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1{t:t<T}(t)V j

γ (yx(t))}.

Thus

V j
γ (x) ≥ sup

b∈B, T>t
{
∫ t∧T

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ 1{t:t<T}(t)V j

γ (yx(t))}

= sup
b∈B

{
∫ t

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ V j

γ (yx(t))}. ♦

Theorem 3.8 Assume (A8)-(A13) and V j
γ ∈ C(IRn), j = 1, . . . , r. Then Vγ is a viscosity

solution of (SQVI)

max{Hj(x,DV j
γ (x)), V j

γ (x)−min
i6=j

{V i
γ (x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r.

Proof We first show that V j
γ is a viscosity supersolution of (SQVI). Fix x0 ∈ IRn and aj ∈ A.

Let ϕj ∈ C1(IRn) and x0 is a local minimum of V j
γ − ϕj . We want to show that

max{Hj(x0, Dϕ
j(x0)), V

j
γ (x0)−min

i6=j
{V i

γ (x0) + k(aj , ai)}} ≥ 0 (3.27)

We have two cases to consider

case 1 V j
γ (x0) = mini6=j{V i

γ (x0) + k(aj , ai)},
case 2 V j

γ (x0) < mini6=j{V i
γ (x0) + k(aj , ai)}.

If case 1 occurs, we have

max{Hj(x0, Dϕ
j(x0)), V

j
γ (x0)−mini6=j{V i

γ (x0) + k(aj , ai)}
≥ V j

γ (x0)−mini6=j{V i
γ (x0) + k(aj , ai)}

= 0.
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If case 2 occurs, we want to show that Hj(x0, Dϕ
j(x0)) ≥ 0. Fix b ∈ B and set b(s) = b for

all s ≥ 0. From Lemma 3.7, choose t̄0 > 0 such that for t ∈ (0, t̄0)

V j
γ (x0)− V j

γ (yx0(t)) ≥
∫ t

0

[h(yx0(s), a
j , b)− γ2|b|2] ds. (3.28)

Since x0 is a local minimum of V j
γ − ϕj, by (3.3) there exists t̂0 > 0 such that

ϕj(x0)− ϕj(yx0(s, a
j , b)) ≥ V j

γ (x0)− V j
γ (yx0(s, a

j , b)), 0 < s < t̂0. (3.29)

Set t0 = min{t̄0, t̂0}. As a consequence of (3.28) and (3.29) , we have

ϕj(x0)− ϕj(yx0(t)) ≥
∫ t

0

[h(yx0(s), a
j , b)− γ2|b|2]ds, 0 < t < t0. (3.30)

Divide both sides by t and let t→ 0 to get

−Dϕj(x0) · f(x0, a
j, b)− h(x0, a

j, b) + γ2|b|2 ≥ 0.

Since b ∈ B is arbitrary, we have Hj(x0, Dϕ
j(x0)) ≥ 0.

We next show that V j
γ is a viscosity subsolution of (SQVI). Fix x1 ∈ IRn and aj ∈ A. Let

ϕj ∈ C1(IRn) and x1 is a local maximum of V j
γ − ϕj. We want to show that

max{Hj(x1, Dϕ
j(x1)), V

j
γ (x1)−min

i6=j
{V i

γ (x1) + k(aj , ai)}} ≤ 0 (3.31)

From Proposition 3.3, V j
γ (x1) ≤ mini6=j{V i

γ (x1) + k(aj, ai)}. Thus we want to show that
Hj(x1, Dϕ

j(x1)) ≤ 0.

We first consider the case V j
γ (x1) > 0. Let t > 0 and ε > 0. From Corollary 3.5, choose

b̂ = b̂t,ε ∈ B and T̂ = T̂t,ε ≥ 0 such that

V j
γ (x1) ≤

∫ T̂∧t

0

[h(yx1(s), a
j, b̂(s))− γ2|b̂(s)|2] ds+ 1[0,T̂ )(t)V

j
γ (yx1(t, b̂)) + εt (3.32)

In particular,

V j
γ (x1) ≤

∫ T̂∧t

0

[h(yx1(s), a
j, b̂(s))− γ2|b̂(s)|2] ds+ V j

γ (yx1(T̂ ∧ t, b̂)) + εt

and hence

V j
γ (x1)− V j

γ (yx1(T̂ ∧ t, b̂)) ≤
∫ T̂∧t

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt (3.33)
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Since x1 is a local maximum of V j
γ − ϕj, by (3.3) we may assume that

ϕj(x1)− ϕj(yx1(s), a
j , b̂(s)) ≤ V j

γ (x1)− V j
γ (yx1(s), a

j, b̂(s)), 0 < s ≤ t (3.34)

Combine (3.33) and (3.34) to get

ϕj(x1)− ϕj(yx1(T̂ ∧ t, aj , b̂(t)) ≤
∫ T̂∧t

0

[h(yx1(s), a
j , b̂(s))− γ2|b̂(s)|2] ds+ εt. (3.35)

Under the assumptions on f and h, it follows that (3.35) is equivalent to

inf
b∈B
{−Dϕj(x1) · f(x1, a

j, b)− h(x1, a
j, b) + γ2|b|2} · (T̂ ∧ t) ≤ ε t+ o(T̂ ∧ t) (3.36)

and

lim sup
t→0

t

t ∧ T̂t,ε

= 1 (for each ε > 0). (3.37)

For details of the proof, see the proof of Theorem 2.7 in Chapter 2. We now can divide
(3.36) by T̂ ∧ t > 0 and pass to the limit to get

inf
b∈B
{−DΨ(x) · f(x, b)− h(x, b) + γ2|b|2} ≤ ε.

Since ε > 0 is arbitrary, we conclude that H(x,DΨ(x)) ≤ 0.

It remains to handle the case V j
γ (x1) = 0. In this case we take b̂ ≡ 0 and use (A13) and

V j
γ ≥ 0 to see that

V j
γ (x1) = 0 ≤

∫ t

0

h(yx1(s), b̂)ds+ V j
γ (yx1(t))

=

∫ t

0

[h(yx1(s), b̂(s))− γ2|b̂(s)|2]ds+ V j
γ (yx1(t)),

for all t ≥ 0. Then it is straightforward to follow the procedure in the first part of the proof
to arrive at the desired inequality Hj(x1, Dϕ

j(x1)) ≤ 0. ♦

We next give a connection of a switching storage (vector) function with the SQVI.

Theorem 3.9 Assume (A1)-(A5) and assume that S = (S1, . . . , Sr) is a continuous switch-
ing storage function for the closed loop system formed by the nonanticipating strategy α ∈ Γ.
Then S is a viscosity supersolution of SQVI.

Proof. Fix x ∈ IRn and j ∈ {1, . . . , r}. Let Ψj ∈ C1(IRn) be such that x is a local minimum
of Sj −Ψj . Let b ∈ B. Set b(s) = b for s ≥ 0. Choose t1 > 0 so that

Sj(x)−Ψj(x) ≤ Sj(yx(s, α
j
x[b], b))−Ψj(yx(s, α

j
x[b], b)), for all 0 ≤ s ≤ t1. (3.38)

We have two cases to consider:
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case 1 Sj(x) ≥ mini6=j{Si(x) + k(aj, ai)},
case 2 Sj(x) < mini6=j{Si(x) + k(aj , ai)}.

If case 1 occurs, then

max {Hj(x,DΨj(x)), Sj(x)−mini6=j{Si(x) + k(aj, ai)}}
≥ Sj(x)−mini6=j{Si(x) + k(aj, ai)}
≥ 0.

If case 2 occurs, we claim that for each b̂ ∈ B there exists a t2 = t2(̂b) > 0 such that

αj
x [̂b](s) = aj for 0 ≤ s ≤ t2.

Indeed, if not, then, for each t > 0 there exists a b̄t ∈ B such that

αj
x [̄bt](t

−) = aj(t) 6= aj. (3.39)

Since S is a switching storage function, we have

Sj(x)− Sj(t)(yx(t, α
j
x[̄bt], b̄t))

≥
∫ t

0

[h(yx(s), α
j
x[̄bt](s), b̄t(s))− γ2|b̄t(s)|2 ds+

∑
τ<t

k(aj(τ−), aj(τ)).

Letting t tend to 0 gives
Sj(x)− Sj(0+)(x) ≥ k(aj , aj(0+)).

From (3.39) we see that this implies that j(0+) 6= j. Thus

Sj(x) ≥ min
i6=j

{Si(x) + k(aj , ai)}

which gives a contradiction. Thus the claim is proved.

Since S is a switching storage function, we have

Sj(x)− Sj(t)(yx(t, α
j
x[b], b)

≥
∫ t

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds for all 0 < t ≤ t2. (3.40)

Set t = min{t1, t2}. Then (3.38) and (3.40) implies that

Ψj(x)−Ψj(yx(t, α
j
x[b], b))

≥
∫ t

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds for 0 < t < t3. (3.41)
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Divide (3.41) by t and let t tend to 0 to get

−DΨj(x) · f(x, aj, b)− h(x, aj , b) + γ2|b|2 ≥ 0.

Since this inequality holds for an arbitrary b ∈ B, we have Hj(x,DΨj(x)) ≥ 0 as required.
♦

We now proceed to the synthesis of a switching-control strategy achieving the dissipation
inequality for a given viscosity supersolution U = (U1, . . . , U r) of SQVI. Given a continuous
nonnegative vector function U = (U1, . . . , U r) on IRn satisfying the condition

U j(x) ≤ min
i6=j

{U i(x) + k(aj , ai)} for all x ∈ IRn, j = 1, . . . , r,

we associate a state-feedback switching strategy αU : (y(t), aj) → αj
U(y(t)) by the rule

αj(y(t)) =


aj if U j(y(t)) < mini6=j{U i(y(t)) + k(aj , ai)};
any a` 6= aj such that U `(y(t)) + k(aj , a`) = mini6=j{U i(y(t)) + k(aj , ai)},

otherwise.

(3.42)

The associated feedback switching strategy is: if the current state is y(t) and the current
old control is a(t−) = aj , then set a(t) = αj(y(t)). Such a strategy can also be expressed as
a nonanticipating strategy αU : (x, aj , b) → αj

U,x[b]; explicitly for this particular case αU , we

have αj
U,x[b] is given by

αj
U,x[b](t) =

∑
n≥1

an−11[τn−1,τn)(t), for t ≥ 0 (3.43)

and αj
U,x[b](0

−) = a0 where

τ0 = 0, a0 = aj0 = aj

and for n = 1, 2, 3, . . .

τn[b] =


inf{t > τn−1 : U jn−1(yy(τn−1)(t− τn−1, a

jn−1 , b(· − τn−1))

= mini6=jn−1{U i(yy(τn−1)(t− τn−1, a
jn−1 , b(· − τn−1)) + k(ajn−1, ai)}, y(0) = x},

+∞ if the preceding set is empty,

an = ajn =


any al 6= ajn−1 such that

mini6=jn−1{U i(yy(τn−1)(τn − τn−1, a
jn−1 , b(· − τn−1)) + k(ajn−1 , ai)}

= U l(yy(τn−1)(τn − τn−1, a
jn−1, b(· − τn−1)) + k(ajn−1 , al), y(0) = x if τn <∞;

undefined, if τn = ∞.

(3.44)
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Note that if τ1 = τ0 = 0, then there is immediate switching from a0 to a1 and the n = 1 term
in (3.43) is vacuous. Moreover by (A12), τn > τn−1 for τn−1 < ∞. To see this, we assume
that τn = τn−1 <∞. From the definition of τn−1 and τn, we would have

U jn−2(y(τn−1)) = U jn−1(y(τn−1)) + k(ajn−2 , ajn−1)

= U jn(y(τn−1)) + k(ajn−1, ajn) + k(ajn−2, ajn−1) (and hence jn 6= jn−2)

> U jn(y(τn−1)) + k(ajn−2, ajn)

≥ min
i6=jn−2

{U i(y(τn−1)) + k(ajn−2 , ai)},

which gives a contradiction.

Theorem 3.10 Assume
(i) (A8)-(A12) hold.
(ii) U = (U1, . . . , U r) is a nonnegative continuous viscosity supersolution in IRn of the SQVI

max{Hj(x,DU j(x)), U j(x)−min
i6=j

{U i(x) + k(aj, ai)}} = 0, x ∈ IRn, j = 1, . . . , r,

(iii) U j(x) ≤ mini6=j{U i(x) + k(aj , ai)}, x ∈ IRn, j ∈ {1, . . . , r}.
Let αU be the state-feedback strategy defined by (3.42), or equivalently, the nonanticipating
disturbance-feedback strategy αU defined by (3.44). Then U = (U1, . . . , U r) is a storage
function for the closed-loop system formed by the strategy αU . In particular, we have

U j(x) ≥ sup
b∈B, T≥0

{
∫

[0,T )

l(yx(s), a
j, αj

U,x[b](s), b(s))} ≥ V j
γ (x),

for each x ∈ IRn and aj ∈ A. Thus Vγ, if continuous, is characterized as the minimal,
nonnegative, continuous, viscosity supersolution of the SQVI satisfying condition (iii), as
well as the minimal continuous switching storage function satisfying condition (iii) for the
closed-loop system associated with some nonanticipating strategy αVγ .

Proof Let αj
U,x[b](t) be the switching strategy defined as in (3.44). We claim that

τn →∞ as n→∞.

If τn = ∞ for some n, then it is trivially true. Otherwise we assume that

lim
n→∞

τn = T <∞. (3.45)

It follows that
0 ≤ τn ≤ T, for all n,
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since τn is nondecreasing. Also from (3.45), we have that a sequence {τn} is a Cauchy
sequence and hence for all ν > 0 there is some n such that τn < τn−1 + ν. By the definition
of τn, we choose t such that τn ≤ t < τn−1 + ν and

U jn−1(yx(t)) = U l(yx(t)) + k(ajn−1 , al) for some al 6= ajn−1 (3.46)

(We have written yx(t) for yx(t, α
j
x[b], b).) By definition of τn−1, we have

U jn−2(yx(τn−1)) = U jn−1(yx(τn−1)) + k(ajn−2 , ajn−1) (3.47)

By (iii), we have

U jn−2(yx(τn−1)) ≤ min
i6=jn−2

{U i(yx(τn−1)) + k(ajn−2 , ai)}
≤ U l(yx(τn−1)) + k(ajn−2 , al) (3.48)

From (3.47) and (3.48), we have

k(ajn−2 , ajn−1)− k(ajn−2 , al) ≤ U l(yx(τn−1))− U jn−1(yx(τn−1)) (3.49)

As a consequence of (3.46) and (3.49), we have

0 < k(ajn−2 , ajn−1) + k(ajn−1 , al)− k(ajn−2 , al)

≤ U l(yx(τn−1))− U l(yx(t)) + U jn−1(yx(t))− U jn−1(yx(τn−1))

≤ ωl(ν) + ωjn−1(ν)

where ωl and ωjn−1 are moduli of continuity for U l(yx(·)) and U jn−1(yx(·)) on the interval
[0, T ] respectively. Letting ν tend to zero now leads to a contradiction, and proves the claim.

Hence αj
x[b](t) =

∑
an1[τn−1,τn)(t) ∈ Γ. Since U is a viscosity solution of the SQVI, we have

Hjn(yx(s), DU
jn(yx(s))) ≥ 0, in viscosity solution sense for τn < s < τn+1. Thus by Theorem

2.4 in page 15, we have

U jn(yx(s))− U jn(yx(t)) ≥
∫ t

s

[h(yx(s), a
jn, b(s))− γ2|b(s)|2]ds,

for all b ∈ B, τn < s ≤ t < τn+1. Letting s→ τ+
n and t→ τ−n+1 to get

U jn(yx(τn))− U jn(yx(τn+1) ≥
∫ τn+1

τn

[h(yx(s), a
jn, b(s))− γ2|b(s)|2]ds, ∀b ∈ B. (3.50)

We also have

U jn(yx(τn+1)) = U jn+1(yx(τn+1)) + k(ajn, ajn+1), for τn+1 <∞. (3.51)
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Adding (3.50) over τn ≤ T and using (3.51), we have

U j0(x) ≥
∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2]ds+

∑
τn≤T

k(an−1, an) + U jn(yx(T ))

≥
∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2]ds+

∑
τn≤T

k(an−1, an).

Since this inequality holds for arbitrary b ∈ B and T ≥ 0, we have

U j(x) ≥ sup
b∈B, T≥0

{∫
[0,T ]

l(yx(s), a
j, αj

x[b](s), b(s))

}
.

Thus U j(x) ≥ V j
γ (x). By Theorem 3.8, we know that Vγ is a viscosity supersolution of the

SQVI if it is continuous. (Note that the proof of viscosity supersolution of Vγ in Theorem
3.8 does not use the assumption (A13).) Vγ also has the property (iii) by Proposition 3.3.
Thus we conclude that if continuous, Vγ is the minimal, nonnegative, continuous, viscosity
supersolution of the SQVI satisfying the condition (iii).

The first part of this Theorem (Theorem 3.10) already proved then implies that Vγ is a
switching storage function. Moreover if S is any continuous, switching storage function for
some nonanticipating strategy αVγ , from Theorem 3.9 we see that S is a viscosity supersolu-
tion of the SQVI. Again from the first part of this Theorem already proved, we then see that
S ≥ Vγ if S has the property (iii), and hence Vγ is also the minimal, continuous switching
storage function satisfying the condition (iii), as asserted. ♦

3.3.2 Comparison theorems for solutions of a system of quasivari-
ational inequalities

In this subsection we present comparison theorems for SQVIs. We first give the definition
of viscosity sub- and super solution of the system of quasivariational inequalities

max{uj
t(x, t) +Hj(x,Duj(x, t)), uj(x, t)−mini6=j{ui(x, t) + k(aj , ai)}} = 0,

for (x, t) ∈ Ω := IRn × (0, T ), T > 0, j = 1, 2, . . . , r
(3.52)

(where uj
t denotes the partial derivative with respect to t and Duj = Dxu

j the gradient with
respect to x) for the case of a not necessarily continuous vector function u = (u1, . . . , ur).

Definition 3.11 A vector function u = (u1, u2, . . . , ul), where uj ∈ USC(Ω), is a viscosity
subsolution of (3.52) if for any ϕj ∈ C1(Ω), j = 1, 2, . . . , r and any (x, t) ∈ Ω such that
uj − ϕj has a local maximum (x, t) and

max{ϕj
t(x, t) +Hj(x,Dϕj(x, t)), uj(x, t)−min

i6=j
{ui(x, t) + k(aj , ai}} ≤ 0.



Jerawan Chudoung Chapter 3. Robust optimal switching-control problems 64

Similarly, a vector function u = (u1, u2, . . . , ul), where uj ∈ LSC(Ω), is a viscosity superso-
lution of (3.52) if for any ϕj ∈ C1(Ω), j = 1, 2, . . . , r and any (x, t) ∈ Ω such that uj − ϕj

has a local minimum (x, t) and

max{ϕj
t(x, t) +Hj(x,Dϕj(x, t)), uj(x, t)−min

i6=j
{ui(x, t) + k(aj , ai}} ≥ 0.

Let w : Ω → IRbe locally bounded. We define its upper and lower semicontinuous envelopes
as, respectively

w∗(x, t) := lim sup
(y,s)→(x,t)

w(y, s)

w∗(x, t) := lim inf
(y,s)→(x,t)

w(y, s).

The next Lemma collects some properties of the semicontinuous envelopes which we will use
later.

Lemma 3.12 (i) w∗ ≤ w ≤ w∗

(ii) w∗ = −(−w)∗

(iii) w is u.s.c. at (x, t) if and only if w(x, t) = w∗(x, t).
w is l.s.c. at (x, t) if and only if w(x, t) = w∗(x, t).

(iv) w∗(x, t) = min{v(x, t) : v ∈ USC(Ω), v ≥ w}
w∗(x, t) = max{v(x, t) : v ∈ LSC(Ω), v ≤ w}

Proof See [10, page 296].

Next we will prove a local comparison result of SQVIs

max{wj
t +Hj(x,Dwj), wj −min

i6=j
{wi + k(aj, ai)}} = 0, j = 1, 2, . . . , r (3.53)

in the cone

C := {(x, t) : 0 < t < T and |x| < C(T − t), C > 0}. (3.54)

Then we apply this result to prove a global comparison principle for a viscosity sub- and
supersolution.

Theorem 3.13 Let C > 0 and Hj : B̄(0, CT )× IRn → IR be continuous and satisfy

|Hj(x, p)−Hj(x, q)| ≤ C|p− q| (3.55)

|Hj(x, p)−Hj(y, p)| ≤ ω(|x− y|) + ω(|x− y||p|), (3.56)

for all x, y ∈ B(0, CT ); p, q ∈ IRn; j ∈ {1, . . . , r} where ω is a modulus and T > 0. Assume
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(i) (A12) holds;

(ii) uj ∈ LSC(C̄) and vj ∈ USC(C̄) for j = 1, 2, . . . , r;

(iii) u = (u1, . . . , ur) and v = (v1, . . . , vr) are respectively a viscosity super- and subsolution
of (3.53) in C.

(iv) v(x, 0) ≤ u(x, 0) for all x ∈ B(0, CT ), i.e. vj(x, 0) ≤ uj(x, 0) for j = 1, . . . , r, .

Then v ≤ u in C, i.e. vj ≤ uj for j = 1, . . . , r.

Proof We prove by contradiction. Assume that there exist 0 < δ < T, j̃ ∈ {1, 2, . . . , r}, 0 <
t̃ < T and x̃ ∈ IRn such that

(vj̃ − uj̃)(x̃, t̃) = δ and |x̃| ≤ C(T − t̃)− 2δ

It follows that

0 ≤ |x̃| ≤ C(T − t̃)− 2δ < C(T − t̃)

Thus (x̃, t̃) ∈ C. Take

M > max
1≤j≤l

sup{|vj(x, t)− uj(y, s)| : (x, t, y, s) ∈ C2} ≥ δ

and also take g ∈ C1(IR) such that g′ ≤ 0, g(r) = 0 for r ≤ −δ, g(r) = −3M for r ≥ 0. Now

define 〈x〉β := (|x|2 + β2)
1
2 and

Φj(x, y, t, s) := vj(x, t)− uj(y, s)− |x− y|2 + |t− s|2
2ε

− η(t+ s) +

g(〈x〉β − C(T − t)) + g(〈y〉β − C(T − s))

where ε, η, β are positive parameters. Note that Φj is upper semicontinuous.

Let (x̄j
ε , ȳ

j
ε , t̄

j
ε, s̄

j
ε) ∈ C̄2 be such that

Φj(x̄j
ε , ȳ

j
ε , t̄

j
ε , s̄

j
ε) = max

C̄2
Φj

Note that (x̄j
ε , ȳ

j
ε , t̄

j
ε, s̄

j
ε) exists because Weierstrass’ Theorem on the existence of maxima on

compact sets holds for upper semicontinuous functions.

Choose j1 ∈ {1, 2, . . . , r}, say j1 = 1, such that

Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) = max

1≤j≤l
Φj(x̄j

ε , ȳ
j
ε , t̄

j
ε , s̄

j
ε)
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We claim that either t̄1ε = 0 or s̄1
ε = 0 or (x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε) ∈ C2 for β and η small enough. If

t̄1ε = T , we would have

Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) = v1(x̄1

ε , t̄
1
ε)− u1(ȳ1

ε , s̄
1
ε)−

|x̄1
ε − ȳ1

ε |2 + |t̄1ε − s̄1
ε |2

2ε
− η(t̄1ε + s̄1

ε ) +

g(〈x̄1
ε〉β) + g(〈ȳ1

ε 〉β − C(T − s̄1
ε))

≤ M − 3M

< 0.

Similarly if s̄1
ε = T , we would have Φ1(x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε ) < 0. From the definition of 〈x〉β, we

have 〈x〉β > |x| for all x and all β > 0. If |x̄1
ε | = C(T − t̄1ε ), we have 〈x̄1

ε〉β − C(T − t̄1ε) > 0
for any β > 0. Thus

Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) ≤ v1(x̄1

ε , t̄
1
ε)− u1(ȳ1

ε , s̄
1
ε) + g(∠x̄1

ε〉β − C(T − t̄1ε))

≤ M − 3M

< 0.

Similarly if ȳ1
ε = C(T − s̄1

ε), we would have Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) < 0. However, from the assump-

tion x̃| ≤ C(T−t̃)−2δ and the general inequality
√
p2 + q2 ≤ p+q with p = C(T−t̃)−2δ ≥ 0

and q = δ > 0, we see that, for β < δ, that

〈x̃〉β − C(T − t̃) < 〈x̃〉δ − C(T − t̃)

≤
√

[C(T − t̃)− 2δ]2 + δ2 − ([C(T − t̃)− 2δ] + δ)− δ

≤ −δ
and hence g(〈x̃〉β − C(T − t̃)) = 0 for β < δ. Hence

Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε ) ≥ Φj̃(x̃, x̃, t̃, t̃)

= δ − 2ηt̃+ 2g(〈x̃〉β − C(T − t̃))

≥ δ

2
(3.57)

for any ε > 0, β < δ and η < δ
4t̃

. Thus |x̄1
ε | < C(T − t̄1ε ), |ȳ1

ε | < C(T − s̄1
ε ), 0 ≤ t̄1ε < T, 0 ≤

s̄1
ε < T for any ε > 0, β < δ and η < δ

4t̃
. Thus the claim is proved.

From the inequality

Φ1(x̄1
ε , x̄

1
ε , t̄

1
ε , t̄

1
ε ) + Φ1(ȳ1

ε , ȳ
1
ε , s̄

1
ε , s̄

1
ε ) ≤ 2Φ1(x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε)

We get

|x̄1
ε − ȳ1

ε |2 + |t̄1ε − s̄1
ε |2

ε
≤ v1(x̄1

ε , t̄
1
ε )− v1(ȳ1

ε , s̄
1
ε) + u1(x̄1

ε , t̄
1
ε )− u1(ȳ1

ε , s̄
1
ε)

= [v1(x̄1
ε , t̄

1
ε)− u1(ȳ1

ε , s̄
1
ε)]− [v1(ȳ1

ε , s̄
1
ε)− u1(x̄1

ε , t̄
1
ε )]

≤ 2M
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It follows that

|x̄1
ε − ȳ1

ε |2 + |t̄1ε − s̄1
ε |2 ≤ 2Mε (3.58)

Thus we have

|x̄1
ε − ȳ1

ε |2 + |t̄1ε − s̄1
ε |2 → 0 as ε→ 0+ (3.59)

We now want to show that

|x̄1 − ȳ1|2 + |t̄1 − s̄1|2
2ε

→ 0 as ε→ 0+ (3.60)

Define

S1 := max
C̄
{v1(x, t)− u1(x, t)− 2ηt+ 2g(〈x〉β − C(T − t))}

Observe that

S1 ≤ Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε)

≤ v1(x̄1
ε , t̄

1
ε)− u1(ȳ1

ε , s̄
1
ε)− η(t̄1ε + s̄1

ε) + g(〈x̄1
ε〉β − C(T − t̄1ε ))

+g(∠ȳ1
ε 〉β − C(T − s̄1

ε ))

:= W 1(ε)

By the definition of Φ1, we get (3.60) if we show that

W 1(ε) → S1 as ε→ 0+ (3.61)

We proceed by contradiction. Assume that (3.61) does not hold. So by the compactness of
C̄2, there exist εk → 0+, x̄1

εk
→ x∗, ȳ1

εk
→ y∗, t̄1εk

→ t∗, s̄1
εk
→ s∗ such that limk→∞W 1(εk) >

S1. But (3.59) implies x∗ = y∗, t∗ = s∗. Thus the upper semicontinuity of v1 − u1 gives

lim
k→∞

W 1(εk) ≤ v1(x∗, t∗)− u1(x∗, t∗)− 2ηt∗ + 2g(< x∗ >β −C(T − t∗))

≤ S1

which gives a contradiction.

Now we show that neither t̄1ε nor s̄1
ε can be zero if ε is small enough. In fact if t̄1ε = 0 for an

arbitrary ε small enough, choose ε+k → 0+ with tεk
= 0 for all k. Then by the compactness

of C̄2 and (3.59) we may assume εk → 0+, x̄1
εk
→ x∗, ȳ1

εk
→ x∗, t̄1εk

→ t∗, s̄1
εk
→ t∗. Observe

that t∗ = 0 because t̄1εk
= 0 for k. It follows that

lim supk→∞Φ1(x̄1
εk
, ȳ1

εk
, t̄1εk

, s̄1
εk

) ≤ lim supk→∞[v1(x̄1
εk
, t̄1εk

)− u1(ȳ1
εk
, s̄1

εk
)]

≤ v1(x∗, t∗)− u1(x∗, t∗)

≤ 0
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where the last inequality comes from the boundary condition. Thus we have a contradiction
to (3.57). The proof that s̄1

ε > 0 for ε small enough is analogous.

Next we define the test functions on C

ϕ1(x, t) := u1(ȳ1
ε , s̄

1
ε) +

|x− ȳ1
ε |2 + |t− s̄1

ε |2
2ε

+ η(t+ s̄1
ε)

−g(〈x〉β − C(T − t))− g(〈y1
ε 〉β − C(T − s̄1

ε))

ψ1(y, s) := v1(x̄1
ε , t̄

1
ε )−

|x̄1
ε − y|2 + |t̄1ε − s|2

2ε
− η(t̄1ε + s)

+g(〈x̄1
ε〉β − C(T − t̄1ε ))− g(y − C(T − s))

Thus ϕ1, ψ1 ∈ C1(C), v1 − ϕ1 has a maximum at (x̄1
ε , t̄

1
ε) and u1 − ψ1 has a minimum at

(ȳ1
ε , s̄

1
ε). Next we compute the partial derivative of ϕ1 and ψ1. We have

ϕ1
t (x̄

1
ε , t̄

1
ε) =

t̄1ε − s̄1
ε

ε
+ η − Cg′(〈x̄1

ε〉β − C(T − t̄1ε ))

Dϕ1(x̄1
ε , t̄

1
ε) =

x̄1
ε − ȳ1

ε

ε
− g′(〈x̄1

ε〉β − C(T − t̄1ε ))
x̄1

ε

〈x̄1
ε〉β

ψ1
t (ȳ

1
ε , s̄

1
ε) =

t̄1ε − s̄1
ε

ε
− η + Cg′(〈ȳ1

ε 〉β − C(T − s̄1
ε ))

Dψ1(ȳ1
ε , s̄

1
ε) =

x̄1
ε − ȳ1

ε

ε
+ g′(〈ȳ1

ε 〉β − C(T − s̄1
ε ))

ȳ1
ε

〈ȳ1
ε 〉β

Set X := 〈x̄1
ε〉β−C(T− t̄1ε ), Y := 〈ȳ1

ε 〉β−C(T− s̄1
ε ). Since u and v are respectively a viscosity

supersolution and subsolution of (SQVI), we have

max{ψ1
t (ȳ

1
ε , s̄

1
ε) +H1(ȳ1

ε , Dψ
1(ȳ1

ε , s̄
1
ε)), u

1(ȳ1
ε , s̄

1
ε)−min

i6=1
{ui(ȳ1

ε , s̄
1
ε) + k(a1, ai)}} ≥ 0 (3.62)

max{ϕ1
t (x̄

1
ε , t̄

1
ε ) +H1(x̄1

ε , Dϕ
1(x̄1

ε , t̄
1
ε )), v

1(x̄1
ε , t̄

1
ε )−min

i6=1
{vi(x̄1

ε , t̄
1
ε ) + k(a1, ai)}} ≤ 0 (3.63)

We have two cases to consider:

Case 1 u1(ȳ1
ε , s̄

1
ε )−mini6=1{ui(ȳ1

ε , s̄
1
ε) + k(a1, ai)} < 0

Case 2 u1(ȳ1
ε , s̄

1
ε )−mini6=1{ui(ȳ1

ε , s̄
1
ε) + k(a1, ai)} ≥ 0

If Case 1 occurs, we have

ψ1
t (ȳ

1
ε , s̄

1
ε) +H1(ȳ1

ε , Dψ
1(ȳ1

ε , s̄
1
ε)) ≥ 0

From (3.63), we have

ϕ1
t (x̄

1
ε , t̄

1
ε) +H1(x̄1

ε , Dϕ
1(x̄1

ε , t̄
1
ε)) ≤ 0
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Thus

ψ1
t (ȳ

1
ε , s̄

1
ε)− ϕ1

t (x̄
1
ε , t̄

1
ε ) +H1(ȳ1

ε , Dψ
1(ȳ1

ε , s̄
1
ε ))−H1(x̄1

ε , Dϕ
1(x̄1

ε , t̄
1
ε)) ≥ 0 (3.64)

By substituting the values of ψ1
t (ȳ

1
ε , s̄

1
ε), ϕ

1
t (x̄

1
ε , t̄

1
ε ), Dψ

1(ȳ1
ε , s̄

1
ε), Dϕ

1(x̄1
ε , t̄

1
ε) into (3.64), we

get

C(g′(Y ) + g′(X)) +H1(ȳ1
ε ,

x̄1
ε−ȳ1

ε

ε
+ g′(Y ) ȳ1

ε

<ȳ1
ε >β

)−H1(x̄1
ε ,

x̄1
ε−ȳ1

ε

ε
+ g′(X) x̄1

ε

<x̄1
ε>β

)

≥ 2η
(3.65)

Now we add and subtract H1(x̄1
ε ,

x̄1
ε−ȳ1

ε

ε
+ g′(Y ) ȳ1

ε

<ȳ1
ε >β

) to the left hand side of (3.65), then

use (3.55) and (3.56) to get

C(g′(Y ) + g′(X)) + ω(|x̄1
ε − ȳ1

ε |) + ω( |x̄
1
ε−ȳ1

ε |2
ε

+ |x̄1
ε − ȳ1

ε ||g′(Y )| |ȳ1
ε |

〈ȳ1
ε 〉β )

+C(|g′(Y ) |ȳ1
ε |

<ȳ1
ε >β

)− g′(X) |x̄1
ε |

<x̄1
ε>β

|)
≥ 2η.

Since |x̄1
ε |

<x̄1
ε>β

, |ȳ1
ε |

〈ȳ1
ε 〉β < 1 and ω is nondecreasing, we have

C(g′(Y ) + g′(X)) + ω(|x̄1
ε − ȳ1

ε |) + ω( |x̄
1
ε−ȳ1

ε |2
ε

+ |x̄1
ε − ȳ1

ε ||g′(Y )|)
+C(|g′(Y )|+ |g′(X)|) ≥ 2η.

Since g′ = −|g′|, we have

ω(|x̄1
ε − ȳ1

ε |) + ω(
|x̄1

ε − ȳ1
ε |2

ε
+ |x̄1

ε − ȳ1
ε ||g′(Y )|) ≥ 2η. (3.66)

By using (3.59) and (3.60), if ε→ 0+ then the left hand side of (3.66) goes to zero which
gives a contradiction.

If Case 2 occurs, we have

u1(ȳ1
ε , s̄

1
ε) ≥ min

i6=1
{ui(ȳ1

ε , s̄
1
ε) + k(a1, ai)}

Choose j2 ∈ {2, 3, . . . , r}, say j2 = 2, such that

u1(ȳ1
ε , s̄

1
ε) ≥ u2(ȳ1

ε , s̄
1
ε) + k(a1, a2) (3.67)

From (3.63), we have

v1(x̄1
ε , t̄

1
ε) ≤ v2(x̄1

ε , t̄
1
ε) + k(a1, a2) (3.68)

From (3.67) and (3.68), we have

v1(x̄1
ε , t̄

1
ε)− u1(ȳ1

ε , s̄
1
ε) ≤ v2(x̄1

ε , t̄
1
ε )− u2(ȳ1

ε , s̄
1
ε) (3.69)
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Since Φ1(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) ≥ Φ2(x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε), we have

v1(x̄1
ε , t̄

1
ε)− u1(ȳ1

ε , s̄
1
ε) ≥ v2(x̄1

ε , t̄
1
ε )− u2(ȳ1

ε , s̄
1
ε) (3.70)

From (3.69) and (3.70), we have

v1(x̄1
ε , t̄

1
ε)− u1(ȳ1

ε , s̄
1
ε) = v2(x̄1

ε , t̄
1
ε)− u2(ȳ1

ε , s̄
1
ε)

Thus by definition of Φj , we have

Φ2(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) = Φ1(x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε)

Now repeat the previous consideration with index 2 replacing 1. If Case 1 occurs, we are
done. Otherwise there exists j3 ∈ {1, 3, 4, . . . , r} such that

v2(x̄1
ε , t̄

1
ε)− u2(ȳ1

ε , s̄
1
ε) = vj3(x̄1

ε , t̄
1
ε)− uj3(ȳ1

ε , s̄
1
ε)

Note that j3 6= 1. If j3 = 1, we would have

u1(ȳ1
ε , s̄

1
ε) ≥ u2(ȳ1

ε , s̄
1
ε) + k(a1, a2)

≥ u1(ȳ1
ε , s̄

1
ε) + k(a2, a1) + k(a1, a2)

This implies that k(a2, a1) + k(a1, a2) = 0 which contradicts (A12). Assume j3 = 3. As
before we get

Φ3(x̄1
ε , ȳ

1
ε , t̄

1
ε , s̄

1
ε) = Φ2(x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε) = Φ1(x̄1

ε , ȳ
1
ε , t̄

1
ε , s̄

1
ε)

Repeat the process with the index 3 replacing 2 and so on. After finitely many steps, there
is an index jn ≤ r for which Case 1 holds. Then the proof is complete. ♦

Remark 3.14 It is easy to check that Theorem 3.13 holds in the cone {(x, t) : 0 < t <
T, |x − x0| < C(T − t)} for any x0 if (3.55) and (3.56) hold for all x, y ∈ B(x0, CT ) and
v ≤ u in B(x0, CT )× {0}.

The following is our main comparison theorem for super- and subsolutions of SQVIs.

Theorem 3.15 Let Hj : IRn × IRn → IR be continuous and satisfy

|Hj(x, p)−Hj(x, q)| ≤ L(|x| + 1)|p− q| (3.71)

for all x, p, q ∈ IRn, where L > 0 and

|Hj(x, p)−Hj(y, p)| ≤ ω(|x− y|, R) + ω(|x− y||p|, R) (3.72)

for all p ∈ IRn, x, y ∈ B(0, R), R > 0, j ∈ {1, 2, . . . , r} where ω is a modulus. Assume
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(i) (A12) holds;

(ii) uj ∈ LSC(IRn × [0, T ]) and vj ∈ USC(IRn × [0, T ]), j = 1, . . . , r;

(iii) u = (u1, . . . , ur) and v = (v1, . . . , vr) are respectively a viscosity supersolution and
subsolution of (3.53) in IRn × (0, T );

(iv) v(x, 0) ≤ u(x, 0) for all x ∈ IRn.

Then v ≤ u in IRn × [0, T ].

Proof Without loss of generality assume that T < 1
L
, because the proof of the general case

is obtained by iterating the following argument on the time intervals of fixed length smaller
than 1

L
. Fix x0 ∈ IRn and define

r :=
LT (|x0|+ 1)

1− LT
, C := L(|x0|+ 1 + r).

By an easy computation, we have

r = CT (3.73)

We define the cone

Cx0 := {(x, t) : 0 < t < T, |x− x0| < C(T − t)}
If x ∈ B(x0, CT ), then |x| < |x0|+ r by (3.73). Thus from (3.71), we have

|H(x, p)−H(x, p)| ≤ L(|x|+ 1)|p− q|
< L(|x0|+ r + 1)|p− q|
= C|p− q|

Apply Remark 3.14 to get v ≤ u in Cx0 . Since IRn× (0, T ) =
⋃

x0∈IRn Cx0, we have shown that

v ≤ u in IRn × (0, T ). (3.74)

Next we want to show that v(x, T ) ≤ u(x, T ) for all x ∈ IRn. From (3.74), we have

lim sup
(y,t)→(x,T )

{v(y, t)− u(y, t)} ≤ 0

It follows that

v∗(x, T ) + (−u)∗(x, T ) ≤ 0

Since v is u.s.c at (x, T ), we have v(x, T ) = v∗(x, T ) Thus by using (−u)∗(x, T ) = −u∗(x, T ),
we have v(x, T ) ≤ u∗(x, T ) ≤ u(x, T ). ♦
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3.3.3 An application of the comparison principle

In this section, we apply a comparison principle to give an alternative derivation of the char-
acterization of a continuous lower value function Vγ (see (3.11)) as the minimal, nonnegative,
continuous viscosity supersolution of SQVI (3.9).

We set

Zj(x, t) = inf
α∈Γ

sup
b∈B

∫
[0,t)

l(yx(s), a
j, αj

x[b](s), b(s)), j = 1, . . . , r. (3.75)

Proposition 3.16 Assume (A8)-(A12). Zj is upper semicontinuous in IRn× [0, T ] for T >
0.

Proof Fix x ∈ IRn and t ∈ [0, T ]. Let ε > 0. By the definition of Zj(x, t), choose ᾱ ∈ Γ such
that

Zj(x, t) > sup
b∈B

∫
[0,t)

l(yx(s), a
j, ᾱj

x[b](s), b(s))−
ε

4
(3.76)

Let z ∈ IRn and τ ∈ [0, T ]. Find α̂ ∈ Γ so that, for each b ∈ B

α̂j
z[b](s) =

{
ᾱj

x[b](s) 0 ≤ s ≤ t,
ᾱj

x[b](t) s ≥ t

By the definition of Zj(z, τ), choose b̄ ∈ B such that

Zj(z, τ) ≤ sup
b∈B

∫
[0,τ)

l(yz(s), a
j, ᾱj

z[b](s), b(s))

<

∫
[0,τ)

l(yz(s), a
j, α̂j

z [̄b](s), b̄(s)) +
ε

4
(3.77)

From (3.76) and (3.77), we have

Zj(z, τ)− Zj(x, t) <

∫
[0,τ)

l(yz(s), a
j, α̂j

z [̄b](s), b̄(s))−∫
[0,t)

l(yx(s), a
j, ᾱj

x [̄b](s), b̄(s)) +
ε

2
(3.78)
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If τ < t, then from (3.78) we have

Zj(z, τ)− Zj(x, t) <

∫
[0,τ)

[l(yz(s), a
j, ᾱj

x[̄b](s), b̄(s))− l(yx(s), a
j , ᾱj

x[̄b](s), b̄(s))]

−
∫

[τ,t)

l(yx(s), a
j, ᾱj

x[̄b](s), b̄(s)) +
ε

2

≤
∫ τ

0

|h(yz(s), ᾱ
j
x[̄b](s), b̄(s))− h(yx(s), ᾱ

j
x [̄b](s), b̄(s))|ds

−
∫ t

τ

[h(yx(s), ᾱ
j
x[̄b](s), b̄(s))− γ2|b̄|2]ds

−
∑

τ≤s<t

k(ᾱj
x[b](s

−), ᾱj
x[b](s)) +

ε

2

≤
∫ τ

0

|h(yz(s), ᾱ
j
x[̄b](s), b̄(s))− h(yx(s), ᾱ

j
x [̄b](s), b̄(s))|ds

−
∫ t

τ

[h(yx(s), ᾱ
j
x[̄b](s), b̄(s))− γ2|b̄|2]ds+

ε

2

≤
∫ τ

0

ωh(|yz(s)− yx(s)|, R1)ds

+

∫ t

τ

|h(yx(s), ᾱ
j
x [̄b](s), b̄(s))− γ2|b̄|2|ds+

ε

2

≤
∫ t

0

ωh(e
Lt|z − x|, R1)ds+

∫ t

τ

K1ds+
ε

2
(3.79)

for some constant K1, R1 > 0. If τ > t, then from (3.78) we have

Zj(z, τ)− Zj(x, t) <

∫
[0,t)

[l(yz(s), a
j, α̂j

z [̄b](s), b̄(s))− l(yx(s), a
j , ᾱj

x[̄b](s), b̄(s))]

+

∫
[t,τ ]

l(yz(s), a
j, α̂j

z [̄b](s), b̄(s)) +
ε

2

≤
∫ t

0

ωh(|yz(s)− yx(s)|, R2)ds

+

∫ τ

t

|h(yz(s), α̂
j
z [̄b](s), b̄(s))− γ2|b̄|2|ds+

ε

2

≤
∫ t

0

ω(eLt|z − x|, R2)ds+

∫ τ

t

K2ds+
ε

2
(3.80)

for some constant K2, R2 > 0. Thus the right hand side of (3.79) and (3.80) can be
made less than ε if |x − z| and |t − τ | are small enough. Thus for both cases we have
Zj(z, τ) < Zj(x, t) + ε for |x− z|, |t− τ | small enough. ♦
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Proposition 3.17 Assume (A8)-(A12). Then

Zj(x, t) ≤ min
i6=j

{Z i(x, t) + k(aj , ai)}

for all x ∈ IRn, t > 0, j ∈ {1, 2, . . . , r}.

Proof It is similar to the proof of Proposition 3.3. ♦

Theorem 3.18 Assume (A8)-(A12). Then for all x ∈ IRn and τ ∈ (0, t),

Zj(x, t) = inf
α∈Γ

sup
b∈B

{
∫

[0,τ)

l(yx(s), a
j, αj

x,t[b](s), b(s)) + Z i(yx(τ), t− τ), αj
x,t[b](τ

−) = ai}.

Proof It is similar to the proof of Theorem 3.4. ♦

Corollary 3.19 Assume (A8)-(A12). Then for all x ∈ IRn and τ ∈ (0, t),

Zj(x, t) ≤ sup
b∈B

{
∫ τ

0

[h(yx(s), a
j, b(s))− γ2|b(s)|2]ds+ Zj(yx(τ), t− τ)}

Proof Fix x ∈ IRn, 0 < τ < t. For any b ∈ B, choose ᾱ ∈ Γ such that ᾱj
x,t[b](s) = aj for all

0 ≤ s ≤ τ . Thus from Theorem 3.18, we have

Zj(x, t) ≤ sup
b∈B

{
∫

[0,τ)

l(yx(s), ᾱ
j
x[b](s), b(s)) + Zj(yx(τ), t− τ)}

= sup
b∈B

{
∫ τ

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds+ Zj(yx(τ), t− τ)} ♦

Theorem 3.20 Assume (A8)-(A12). Then Z = (Z1, . . . , Zr) is a viscosity subsolution of
(SQVI)

max{wj
t +Hj(x,Dwj), wj −min

i6=j
{wi + k(aj , ai}} = 0 in IRn × (0, T ), j = 1, 2, . . . , r,

where Hj(x, p) = minb∈B{−p · f(x, aj , b)− h(x, aj, b) + γ2|b|2}.

Proof Fix j ∈ {1, 2, . . . , r}, x ∈ IRn and t ∈ (0, T ). Let ϕj ∈ C1(IRn × (0, T )) such that
Zj(x, t) = ϕj(x, t) and Zj(z, ν) ≤ ϕj(z, ν) for all (z, ν) near (x, t). We want to show that

max{ϕj
s(x, t) +Hj(x,Dϕj(x, t)), Zj(x, t)−min

i6=j
{Z i(x, t) + k(aj, ai)}} ≤ 0. (3.81)



Jerawan Chudoung Chapter 3. Robust optimal switching-control problems 75

We assume

ϕj
s(x, t) +Hj(x,Dϕj(x, t)) > 0

Since ϕj
s and Hj are continuous, choose ε > 0 such that

ϕj
s(z, ν) +Hj(z,Dϕj(z, ν)) ≥ ε

for all z ∈ B(x, ε) and ν ∈ (t− ε t+ ε)
⋂

(0, T ). Thus by the definition of Hj, we have

ϕj
s(z, ν)−Dϕj(z, ν) · f(z, aj , b)− h(z, aj , b) + γ2|b|2 ≥ ε (3.82)

for all z ∈ B(x, ε), ν ∈ (t− ε, t+ ε)
⋂

(0, T ), b ∈ B.

By assumptions on f and B, choose τ > 0 such that yz(s, a
j, b) ∈ B(x, ε) for all z ∈

B(x, ε
2
), 0 ≤ s ≤ τ and ν − τ ∈ (t − ε, t + ε)

⋂
(0, T ) for all ν ∈ (t − ε, t + ε)

⋂
(0, T ). Let

z ∈ B(x, ε
2
), ν ∈ (t − ε, t + ε)

⋂
(0, T ). Set δ = ετ

2
. From Corollary 3.19, choose b̄ ∈ B such

that

Zj(z, ν) ≤
∫ τ

0

[h(yz(s), a
j, b̄(s))− γ2|b̄(s)|2]ds+ Zj(yz(τ), ν − τ) + δ

Since Zj(yz(τ), ν − τ) ≤ ϕj(yz(τ), ν − τ), we have

Zj(z, ν)− ϕj(z, ν) ≤
∫ τ

0

[h(yz(s), a
j, b̄(s))− γ2|b̄(s)|2]ds+ ϕj(yz(τ), ν − τ)− ϕj(z, ν) + δ

=

∫ τ

0

[h(yz(s), a
j, b̄(s))− γ2|b̄(s)|2 +

d

ds
ϕj(yz(s), ν − s)]ds+ δ

Since

d

ds
ϕj(yz(s), ν − s) = −ϕj

s(yz(s), ν − s) +Dϕj(yz(s), ν − s)ẏz(s),

It follows that

Zj(z, ν)− ϕj(z, ν) ≤
∫ τ

0

[h(yz(s), a
j, b̄(s))− γ2|b̄(s)|2 − ϕj

s(yz(s), ν − s) +

Dϕj(yz(s), ν − s) · f(yz(s), a
j, b̄(s))]ds+ δ

≤ −
∫ τ

0

εds+ δ

= −δ
which the second inequality follows from (3.82). Thus

lim sup
(z,ν)→(x,t)

Zj(z, ν) ≤ lim sup
(z,ν)→(x,t)

{ϕj(z, ν)− δ}

Since Zj is upper semicontinuous, we have

Zj(x, t) ≤ ϕj(x, t)− δ < ϕj(x, t)

which gives a contradiction. Thus ϕj
s(x, t)+H

j(x,Dϕj(x, t)) ≤ 0. Together with Proposition
3.17, we have (3.81). ♦
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Theorem 3.21 Assume (A8)-(A13). Let Vγ = (V 1
γ , . . . , V

r
γ ) be the lower value vector

function where V j
γ is given by (3.11). If U = (U1, . . . , U r), where U j ∈ LSC(IRn) for

j ∈ {1, 2, . . . , r}, is a nonnegative viscosity supersolution of (SQVI)

max{Hj(x,DU j(x)), U j(x)−min
i6=j

{U i(x) + k(aj, ai)}} = 0, x ∈ IRn, j = 1, 2, . . . , r, (3.83)

where Hj(x, p) := minb∈B{−p·f(x, aj , b)−h(x, aj , b)+γ2|b|2}, then U ≥ Vγ, i.e., U j ≥ V j
γ for

j = 1, . . . , r. Hence if continuous, Vγ is characterized as the minimal nonnegative continuous
viscosity supersolution.

Proof Let T > 0. Since U is a viscosity supersolution of (3.83), it is also a viscosity
supersolution of

max{wj
t +Hj(x,Dwj(x)), wj(x)−min

i6=j
{w(x) + k(aj , ai)}} = 0

in IRn × (0, T ), j = 1, 2, . . . , r. (3.84)

We define

Zj(x, t) = inf
α∈Γ

sup
b∈B

∫
[0,t)

l(yx(s), a
j , αj

x[b](s), b(s)), α
j
x[b](0

−) = aj, j = 1, . . . , r,

for all (x, t) ∈ IRn × [0, T ]. Then Z = (Z1, Z2, . . . , Z l) is a viscosity subsolution of (3.84) in
IRn × (0, T ) by Theorem 3.20. Fix (x, t) ∈ IRn × (0, T ). For any b ∈ B, choose α ∈ Γ with
αj

x[b](s) = aj for all 0 ≤ s ≤ t. Thus we have

Zj(x, t) ≤ sup
b∈B

∫ t

0

[h(yx(s), a
j , b(s))− γ2|b(s)|2]ds.

This implies that Zj(x, 0) ≤ 0. Since U j is nonnegative, we have Zj(x, 0) ≤ 0 ≤ U j(x).
Thus by Theorem 3.15 we have U j(x) ≥ Zj(x, t) for all (x, t) ∈ IRn × [0, T ]. Let ε > 0. By
definition of Zj(x, T ) choose ᾱ ∈ Γ such that

Zj(x, T ) + ε > sup
b∈B

∫
[0,T )

l(yx(s), a
j , ᾱj

x[b](s), b(s))

Thus

U j(x) + ε ≥ sup
b∈B

∫
[0,T )

l(yx(s), a
j , ᾱj

x[b](s), b(s))

Since T > 0 is arbitrary, we have

U j(x) + ε ≥ sup
b∈B, T≥0

∫
[0,T )

l(yx(s), a
j , ᾱj

x[b](s), b(s))

≥ inf
α∈Γ

sup
b∈B, T≥0

∫
[0,T )

l(yx(s), a
j , αj

x[b](s), b(s))

= V j(x).
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Since ε is arbitrary, U j(x) ≥ V j
γ (x). If Vγ is continuous, Vγ is a continuous viscosity solution

of the SQVI (3.83) (see Theorem 3.8. Thus Vγ is a viscosity supersolution. The first part
of this Theorem already proved then implies that Vγ can be characterized as the minimal
nonnegative continuous viscosity supersolution, as asserted. ♦

3.4 Stability for switching-control problems

The usual formulation of the H∞-control problem also involves a stability constraint. In this
section we show how the solution of the SQVI can be used for stability analysis. We also
prove that, under appropriate conditions, the closed loop system associated with switching
strategy αU corresponding to the supersolution U of the SQVI is stable. The main idea is to
use the supersolution U as a Lyapunov function for trajectories of the closed-loop system.
Related stability problems for systems with control switching are discussed, e.g., by Branicky
in [18].

We consider the system Σsw with some control strategy α plugged in to get a closed-loop
system with disturbance signal as only input

Σsw

{
ẏ = f(y, αj

x[b], b), y(0) = x, a(0−) = aj

z = h(y, αj
x[b], b].

An example of such a strategy α is the canonical strategy αU (see (3.42) or (3.44)) determined
by a continuous supersolution of the SQVI. Moreover, if Vγ = (V 1

γ , . . . , V
r
γ ) is the vector lower-

value function for the associated game as in ((3.11) and we assume that 0 is an equilibrium
point for the autonomous system Σsw by taking a(s) = ai0 and b(s) = 0 (so f(0, ai0, 0) = 0
and h(0, ai0, 0) = 0), then it is easy to check that V i0

γ (0) = 0. Furthermore, the associated
strategy α = αVγ has the property that

αi0
0 [0] = ai0 , (3.85)

so 0 is an equilibrium point of the closed-loop system Σsw with α = αVγ and a(0−) = ai0 as
well. Our goal is to give conditions which guarantee a sort of converse, starting with any
continuous supersolution U of the SQVI.

We say that the closed-loop switching system Σsw is zero-state observable for initial control
setting aj if, whenever h(yx(t), α

j
x[0](t), 0) = 0 for all t ≥ 0, then yx(t) = yx(t, α

j
x[0], 0) = 0

for all t ≥ 0. We say that the closed-loop system Σsw is zero-state detectable for initial
control setting aj

if lim
t→∞

h(yx(t), α
j
x[0](t), 0) = 0 for some j, then lim

t→∞
yx(t, α

j
x[0], 0) = 0.

The following proposition gives conditions which guarantee that a particular component U j

of a viscosity supersolution U = (U1, . . . , U r) be positive-definite, a conclusion which will be
needed as a hypothesis in the stability theorem to follows.
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Proposition 3.22 Assume
(i) (A8)-(A13) hold;
(ii) Σsw is zero-state observable for the initial control setting aj;
(iii) U = (U1, . . . , U r) is a nonnegative continuous viscosity supersolution of the SQVI

max{Hj(x,DU j(x)), U j(x)−min
i6=j

{U i(x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r;

(iv) U j(x) ≤ mini6=j{U i(x) + k(aj , ai)}, x ∈ IRn, j = 1, . . . , r.
Then U j(x) > 0 for x 6= 0.

Proof Let x ∈ IRn and j ∈ {1, . . . , r}. By Theorem 3.10, U is a storage function for Σsw if
we use α = αU given by (3.42) or equivalently, (3.44). Thus

U j(x) ≥
∫

[0,T )

l(yx(s), a
j, αj

U,x[0](s), 0) ds+ U j(T )(yx(T, α
j
U,x[0], 0))

≥
∫

[0,T )

l(yx(s), a
j, αj

U,x[0](s), 0) ds for all T ≥ 0.

Since k is nonnegative, we have

U j(x) ≥
∫ T

0

h(yx(s), α
j
x[0](s), 0) ds, for all T ≥ 0.

Thus if U j(x) = 0, then h(yx(s, α
j
x[0], 0), αj

x[0](s), 0) = 0 for all s ≥ 0 because h is nonnegative
by assumption (A13). Since Σsw is zero-state observable for initial control setting aj , it
follows that yx(s, α

j
x[0], 0) = 0 for all s ≥ 0. Thus x = yx(0, αx[0], 0) = 0. Since U j is

nonnegative, we conclude that if x 6= 0 then U j(x) > 0. ♦

Proposition 3.23 Assume
(i) (A8)-(A13) hold;
(ii) U = (U1, . . . , U r) is a nonnegative continuous viscosity supersolution of the SQVI

max{Hj(x,DU j(x)), U j(x)−min
i6=j

{U i(x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r;

(iii) U j(x) ≤ mini6=j{U i(x) + k(aj , ai)}, x ∈ IRn, j = 1, . . . , r;
(iv) there is an i0 ∈ {1, . . . , r} such that U i0(0) = 0 and U i0(x) > 0 for x 6= 0.
(v) Σsw is zero-state detectable for all initial control settings aj ∈ A.
Then the strategy αU associated with U as in (3.42) or (3.44) is such that αi0

U [0](s) = ai0 for
all s and 0 is a globally asymptotically stable equilibrium point for the system ẏ = f(y, ai, 0).
Moreover, 0 is a globally asymptotically stable equilibrium point for the system Σsw, in the
sense that the solution y(t) = yj

x(t, α
j
U,x, 0) of

ẏ = f(y, αj
U,x[0], 0), y(0) = x
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has the property that
lim
t→∞

yj
x(t, α

j
U,x[0], 0) = 0

for all x ∈ IRn and all aj ∈ A.

Proof Suppose that U i)(0) = 0 and U i0(x) > 0 for x 6= 0. Let T ≥ 0 and x ∈ IRn. Since U
is a storage function for the closed-loop system formed from Σsw with α = αU , we have

U i0(x) ≥
∫ T

0

h(yx(s), α
i0
x [0](s), 0)) ds+

∑
τ<T

k(αi0
U,x(τ

−), αi0
U,x(τ)) + U j(T )(yx(T, α

i0
x [0], 0).

(3.86)

Since h, k, U are nonnegative and U i0(0) = 0 by our assumptions, we have∑
τ<T

k
(
αi0

U,x[0](τ−), αi0
U,x[0](τ)

)
= 0.

This implies that αi0
U,0[0](t) = ai0 for all 0 ≤ t ≤ T . Thus

0 ≤ U j(T )(yx(T, α
i0
0 [0], 0) = U i0(yx(T, α

i0
0 [0], 0) ≤ U i0(0) = 0.

By the positive definite property of U i0 , we have y0(T, α
i0
U,0[0], 0) = 0. Since T ≥ 0 is

arbitrary, we conclude that 0 is a equilibrium point of the system ẏ = f(y, ai0, 0).

Next we want to show that 0 is a globally asymptotically stable equilibrium point for the
closed-loop switching system Σsw with α = αU . Again, from the storage-function property
of U = (U1, . . . , U r) for the system Σsw with α = αU , we have∫ T

0

h(yx(s), α
j
x[0](s), 0) ds ≤ U j(x) <∞ for all T > 0.

Thus limt→∞ h(yx(s, α
j
U,x[0], 0) = 0 by Lemma 2.19. By the detectability assumption (iv),

we have limt→∞ yx(t, α
j
U,x[0], 0) = 0 as required. ♦

3.5 Computational issues

The results of Section 3.3 reduce the solution of the robust optimal switching-control problem
to the solution of a SQVI. For these results to be useful, of course, one must be able to
compute solutions of such an equation, or more precisely for our situation, the minimal
viscosity supersolution of such a system of equations. In this section we make a few general
observations concerning these issues and give an explicit, direct solution for a simple example
with one-dimensional state space.
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3.5.1 A connection between solutions of SQVIs and VIs

Suppose that U = (U1, . . . , U r), where U1 ∈ C(IRn), is the minimal viscosity supersolution
of SQVI

max{Hj(x,DU j(x)), U j(x)−min
i6=j

{U i(x) + k(aj, ai)}} = 0, j = 1, . . . , r.

Then each U j can be interpreted as the minimal viscosity supersolution of VI with the
Hamiltonian Hj and the stopping cost Φj = mini6=j{U i + k(aj , ai)}.
Given an r-tuple U = (U1, . . . , U r) of nonnegative real-valued functions, define a new r-tuple
F (U) = (F (U)1, . . . , F (U)r) of nonnegative real-valued functions by

F (U)j = the minimal viscosity supersolution of VI with H = Hj and Φ = Φj .

Note that U is the minimal viscosity supersolution of SQVI if and only if F (U) = U , i.e.,
if and only if U is a fixed point of F . Formally, one can solve the fixed point problem by
guessing a starting point U0 = (U1

0 , . . . , U
r
0 ) and then iterating

Un+1 = F (Un), n = 0, 1, 2, . . . .

If Un → U∞ and F is continuous, then from Un+1 = F (Un) one can take the limit to get
U∞ = F (U∞) from which we see that U∞ is a fixed point for F . For finite horizon problems,
or problems with a positive discount factor in the running cost, the connection is a little
cleaner, as in this situation one has a uniqueness theorem for solutions of the relevant SQVI.

3.5.2 Optimal switching-control problem with one-dimensional state

space

In this subsection we consider an optimal switching cost problem with one-dimensional state
space. While in principle it should be possible to solve the problem by using the construction
in Section 2.5 to perform each iterative step in the procedure outlined in Section 3.5.1, it
turns that one can solve explicitly by a direct, geometric, noniterative procedure which we
now describe.

We simplify the general problem to the case where there are only two controls A = {a1, a2},
with respective system dynamics given by

f(y, a1, b) = −y + b; f(y, a2, b) = −µ(y − 1) + b.

(A value for the parameter µ > 1 will be specified below.) We take the output to be simply
the squared state

h(y, a, b) = y2
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and the switching cost to be given by a parameter β > 0:

k(a1, a2) = k(a2, a1) = β; k(a1, a1) = k(a2, a2) = 0.

All the hypotheses (A8)-(A13) are satisfied. All other assumptions are satisfied with the
exception that B = IR is not compact; to alleviate this difficulty, one can restrict B to
a large finite interval [−M,M ]; to live with this restriction, one may have to adjust the
definition of the hamiltonian functions H1(x, p) and H2(x, p) in the discussion to follow. We
will construct a solution to the (SQVI) for this example via a variation of the algorithm
presented in Section 2.5; rather than proving that the solution so constructed is the minimal
nonnegative supersolution of SQVI, we verify directly that it is the lower value function
Vγ = (V 1

γ , V
2
γ ) of the switching-control differential game (3.1).

Because we will take µ > 1, for large |y| the control a = 2 will drive the state toward 0 more
strongly than a = 1. However the origin is stable only if a = 1 used when |y| is small. Thus
we would expect an optimal strategy to switch to a = 2 for y away from the origin, but then
back again to a = 1 near the origin. The details of this will be determined by our solution
(V 1, V 2) to (SQVI).

The two Hamiltonian functions work out to be

H1(x, p) = px− x2 − 1

4γ2
p2

H2(x, p) = µp(1− x)− x2 − 1

4γ2
p2.

These are both instances of the general formula

H(x, p) = inf
b
{−(g(x) + b) · p− x2 + γ2b2}

= −pg(x)− x2 − 1

4γ2
p2

= (γg(x))2 − x2 − (
1

2γ
p+ γg(x))2

where g(x) = −x for a = 1 and g(x) = −µ(x − 1) for a = 2. Provided |x| < γ|g(x)| the
equation H(x, p) = 0 has two distinct real solutions:

p±(x) = −2γ2g(x)± 2γ
√
γ2g(x)2 − x2.

We will use pa
±(x) (a = 1, 2) to refer to these specifically for our two choices of g(x). Observe

that H(x, p) ≤ 0 if and only if p ≤ p−(x), p ≥ p+(x), or |x| > γ|g(x)|. This will be important
for working with (3.93) below. Note also that the infimum in (3.87) is achieved for b∗ = 1

2γ2p.

When p = p±(x) in particular we have



Jerawan Chudoung Chapter 3. Robust optimal switching-control problems 82

f(x, a, b∗) = g(x) +
1

2γ2
p±(x)

= ±1

γ

√
γ2g(x)2 − x2, (3.87)

which will be positive [negative] in the case of p+ [p−] respectively. Moreover, sinceH(x, p±(x)) =
0, we will have

(g(x) + b∗) · p±(x) + x2 = γ2(b∗)2.

These observations will be important in confirming the optimality of our switching policy
below. The expressions for p1

±(x) have a simple composite expression: with

ρ = γ2 − γ
√
γ2 − 1

we have

2ρx =
p1
−(x) if x ≥ 0
p1

+(x) if x ≤ 0.
(3.88)

We now exhibit the desired solution of the (SQVI) for the following specific parameter values:

µ = 3, β = .4, γ = 2. (3.89)

Let

W 1(x) = ρx2

W 2
−(x) =

∫
p2
−(x) dx, for x ≥ 1.2

W 2
+(x) =

∫
p2

+(x) dx, for x ≤ 6

7
.

(One may check that for our parameter values p2
±(x) is undefined for 6

7
< x < 1.2.) Using

values x2 ≈ −1.31775, x1 = 3/2, x3 ≈ 2.55389 we can present the lower value function(s) for
our game:

V 2(x) =
W 2

+(x) + C0 for x < 0
β +W 1(x) for 0 ≤ x ≤ x1

W 2
−(x) + C1 for x1 < x,

(3.90)

where the constants C0, C1 are chosen to make V 2 continuous, and

V 1(x) =
β + V 2(x) for x ≤ x2

W 1(x) for x2 < x < x3

β + V 2(x) for x3 ≤ x.
(3.91)
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x2 x1 x3
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Figure 3.1: V 1 (solid) and V 2 (dashed)

Graphs are presented in Figure (3.1). Our arguments below depend on a number of inequal-
ities involving DV a as defined by (3.91), (3.90). For brevity, we will verify several of them
graphically rather than algebraically.

The procedure for constructing (3.91), (3.90), and the significance of the particular values
x1, x2, x3, will become apparent as we now work through the verification of (SQVI). Observe
that (SQVI) is equivalent to the following three conditions for each of a ∈ {1, 2}. (Here a′

will generically denote the other value of a: a′ = 3− a.)

V a(x) ≤ β + V a′(x), for all x, (3.92)

Ha(x,D+V a(x)) ≤ 0, for all x, (3.93)

Ha(x,D−V a(x)) ≥ 0, for those x with V a(x) < β + V a′(x), (3.94)

At points x where both V 1 and V 2 are smooth, these conditions can be expressed more
explicitly as: Necessarily |V 1(x)− V 2(x)| ≤ β.

1. If V 1(x)−V 2(x) = β, then (V 1)′(x) = (V 2)′(x) =: q(x) (since V 1−V 2 has a maximum
at x), and

H1(x, q(x)) ≤ 0, H2(x), q(x)) = 0.

2. If V 1(x)− V 2(x) = −β, then similarly, (V 1)′(x) = (V 2)′(x) =: q(x) and

H1(x, q(x)) = 0, H2(x, q(x)) ≤ 0.

3. If |V 1(x)− V 2(x)| < β, then both

H1(x, (V 1)′(x)) = 0, H2(x, (V 2)′(x)) = 0.
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There are a number of other cases, depending on whether x is a smooth point for one or
both of V 1 and V 2 and on the relative sizes of the one-sided derivatives of V a at x is x is a
nonsmooth point for V a. We will work these conditions out as they are needed.

We begin the construction by starting at the point 0. For x close to 0, from the structure
of the dynamics and the cost we can see directly that it is optimal to use a1. Thus V 1(x)
for x close to zero necessarily is equal to the available storage function for the system with
disturbance and no control associated with the fixed control a = a1; this available storage
function works out to be W 1(x). Similarly, if one starts with the control a2 and if x > 0,
it is optimal to switch immediately to control a1 and let the dynamics associated with a1

drive the state to the origin; hence for x > 0 and close to 0, we expect to have V 2(x) =
β+W 1(x) = β+V 1(x). On the other hand, if we start with control a2 and initial state x < 0
and small in magnitude, we do better to use a2 to drive us to the origin and then switch to
a1 to keep us at the origin; this leads us to conclude that, for small x with x < 0, V 2(x) is
the minimal solution of H2(x, (V 2)′(x)) = 0 with initialization V 2(0) = β. By such direct
qualitative reasoning we deduce that the form of (V 1(x), V 2(x)) for x in a neighborhood of
the origin 0 is as asserted.

For x close to the origin and positive, we are in case (3): we need to check H1(x, q(x)) = 0
while H2(x, q(x)) ≤ 0, where the q(x) is the common value of DV 1(x) and DV 2(x), or p1

−(x).
The first equation holds trivially while the second holds as a consequence of p1

−(x) < p2
−(x)

for 0 ≤ x < δ for some δ > 0.

Calculation shows that the first δ for which this latter equality fails is δ = x1 = 3/2, where
p1
−(x) and p2

−(x) cross. At this stage, we arrange that V 2(x) follow p2
−(x) instead of p1

−(x)
(as its derivative) while V 1(x) continues to follow p1

−(x). Note that the continuation of V 2(x)
defined in this way is smooth through x1. In this way we have arranged that both Hamilton-
Jacobi equations are satisfied (Ha(x, (V a)′(x)) = 0 for a = 1, 2). The only catch is to
guarantee that we maintain |V 1(x)−V 2(x)| ≤ β. This condition holds for an interval to the
right of x1 since we have V 1(x1)−V 2(x1) = −β while (V 1)′(x)−(V 2)′(x) = p1

−(x)−p2
−(x) ≥ 0.

Calculation shows that the first point to the right of x1 at which |V 1(x) − V 2(x)| < β
fails is the point x3 where V 1(x) − V 2(x) = β; if we continue with the same definitions
of V 1(x) and V 2(x) to the right of x3, we get V 1(x) − V 2(x) > β for x to the immediate
right of x3. To fix this problem, to the immediate right of x3 we arrange that V 2(x) still
follow p2

−(x) but now set V 1(x) = V 2(x) + β. Then points to the immediate right of x3

are smooth for both V 1 and V 2 and the applicable case for the check of a viscosity solution
at such points is case (1). Trivially we still have H2(x, (V 2)′(x)) = H2(x, p2

−(x)) = 0 while
H1(x, (V 1)′(x)) = H1(x, p2

−(x)) ≤ 0 since necessarily V 1(x) − V 2(x) is increasing at x3

from which we get p1
−(x) − p2

−(x) > 0 on an interval containing x3 in its interior. At
the point x3 itself, we have D+V 2(x3) = {p2

−(x)} = D−V 2(x3) while D−V 1(x3) = ∅ and
D+V 1(x3) = [p1

−(x3), p
2
−(x3)]. To check that (V 1, V 2) is a viscosity solution of SQVI at x3

one simply checks that (i) H2(x3, (V
2)′(x3)) = H2(x3, p

2
−(x3)) = 0 and (ii) H1(x, p) ≤ 0 for

all p ∈ [p2
−(x3), p

1
−(x3)].
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The discussion for x < 0 is quite similar to the above. To the immediate left of 0, V 1(x)
follows p1

+(x) rather than p1
−(x), while V 2(x) follows p2

−(x). Thus 0 is a smooth point
for V 2(x). For points x to the immediate left of 0, we have Ha(x, (V a)′(x)) = 0 for a =
1, 2, so the only remaining issue for (V 1, V 2) to be a viscosity solution at such points is
the inequality |V 1(x) − V 2(x)| ≤ β. To verify this, note that V 1(0) − V 2(0) = −β and
(V 1)′(x) − (V 2)′(x) = p1

+(x) − p2
+(x) < 0 on an interval −δ < x < 0. These definitions of

V 1(x) and V 2(x) work well as x moves to the left away from the origin until we reach the
point x2 where V 1(x) − V 2(x) = β and continuation of these definitions for x to the left of
x2 would lead to the unacceptable inequality V 1(x) − V 2(x) > β. For x to the left of x2

we let V 2(x) continue to follow p2
+(x) while we set V 1(x) = V 2(x) + β. To the left of x2

we then have H2(x, (V 2)′(x)) = H2(x, p2
+(x)) = 0 while H1(x, (V 1)′(x)) = H1(x, p2

+(x)) ≤ 0
since we still have p2

+(x) > p1
+(x) for x < 0; this verifies that (V 1, V 2) is a viscosity solution

of SQVI for x < x3. At x = x3, one checks the viscosity solution conditions by noting
that H2(x3, (V

2)′(x2)) = H2(x2, p
2
+(x2)) = 0 and H1(x2, p) ≤ 0 for all p ∈ D+V 1(x2) =

[p1
+(x2), p

2
+(x2)].

It should be possible to verify that any deviation from this construction which maintains the
property that (V 1, V 2) is a viscosity supersolution leads to a larger (V 1, V 2); Theorem 3.21
(apart from the technical gap that we have searched only through all piecewise C1 viscos-
ity supersolutions rather than through all lower semicontinuous viscosity supersolutions—
presumably for this simple case, all viscosity supersolutions are in fact piecewise smooth)
then implies that (V 1, V 2) constructed as above is the lower-value function for this switching-
control game. We shall now give an alternative direct argument that (V 1, V 2) is indeed the
lower value function.

The strategy α∗ associated with our solution (3.90), (3.91) is easy to describe in state-
feedback terms. Define the switching sets

S1 = {x : V 2(x) = β + V 1(x)} = [0, x1],

S2 = {x : V 1(x) = β + V 2(x)} = (−∞, x2] ∪ [x3,∞).

The strategy α∗ will instantly switch from a = 1 to a = 2 whenever y(t) ∈ S2, and instantly
switch from a = 2 to a = 1 whenever y(t) ∈ S1. Otherwise α∗ continues using the current
control state. Theorem 3.21 would imply that V a

γ ≤ V a, where V a
γ are the lower values. We

will prove directly that in fact V a
γ = V a, and that our strategy α∗ is optimal. To be precise,

we shall show that for any j and any strategy α ∈ Γj

V j(y(0)) ≤ sup
b∈B

sup
T>0

{∫ T

0

[h(yx(s), α
j
x[b](s), b(s))− γ2|b(s)|2] ds+

∑
τi≤T

k(ai−i, ai)

}
. (3.95)

Moreover, for our strategy α∗, (3.95) will be an equality for all x, j. The key to this is the
existence of a particular “worst case” disturbance, as described in the following proposition.
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Proposition 3.24 For any x ∈ IRn, j ∈ {1, 2} and strategy α ∈ Γ, there exists a disturbance
b∗ = b∗

αj
x
∈ B with the property that

b∗(t) =
1

2γ2
(V α[b∗])(t))′(y(t)),

holds for all but finitely many t in every interval [0, T ].

We emphasize that this proposition is only intended in the context of the particular example
and parameter values described above.

Proof Suppose j, α ∈ Γj and an initial point x ∈ IRn are given. Begin by considering the
solution of

ẏ = f(y, aj,
1

γ2
(V j)′(y)); y(0) = x. (3.96)

For j = 2 the right side is C1, so the solution is uniquely determined. For j = 1, the right side
has discontinuities at x2 and x3, but since f(x, aj , 1

γ2 (V
1)′(x)) does not change sign across

the discontinuities, the solution is again uniquely determined. Graphs of f(y, aj, 1
γ2 (V

j)′(y))
are provided in Figures 3.2 and 3.3 below. (We comment that although the graphs appear
piecewise linear, they are not. Figure 3.2 is linear only for 0 < x < x1 and Figure 3.3 is only
linear for x2 < x < x3, as inspection of the formulas shows.) Since yẏ < 0 for sufficiently
large |y|, it is clear that the solution of (3.96) is defined for all t ≥ 0. Observe also for j = 1
that, for any solution of (3.96), there is at most one value of t for which y(t) is at one of the
discontinuities of (V 1)′. Thus (V j)′(y(t)) is undefined for at most a single t value.

-1 1 2 3

-6

-4

-2

2

4

6

Figure 3.2: Plot of f(x, 2, 1
2γ2DV

2(x)).
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Figure 3.3: Plot of f(x, 1, 1
2γ2DV

1(x)).

Now consider the disturbance b(t) = 1
γ2 (V

j)′(y(t)). The control αx[b](t) produced for this
disturbance will only take the value j on the initial interval: 0 = τ0 ≤ t ≤ τ1. We define
b∗(t) = b(t) = 1

γ2 (V
j)′(y(t)) for these t. At t = τ1 the control αx[b] will switch from j to j′.

We therefore redefine y(t) for t > τ1 as the solution of

ẏ = f(y, j,
1

γ2
(V j′)′(y))

with initial value y(τ1) as already determined. Likewise, redefine b(t) = 1
γ2 (V

j′)′(y(t)) for

t > τ1. Because we have not changed b on [0, τ1], the nonanticipating property of strategies
insures that αx[b](t) for t ≤ τ1 and τ1 remain the same for this revised b. Using the new
b, the control αx[b](t) determines the next switching time τ2. We know that τ1 < τ2 ≤ ∞
and αx[b](t) = j′ for τ1 < t ≤ τ2. We now extend our definition of b∗ with b∗(t) = b(t) for
τ1 < t ≤ τ2. At τ2 the control switches again, back to j. So we now redefine y(t) and b(t)
for t > τ2 by taking y(τ1) as already determined, solving

ẏ = f(y, j,
1

γ2
(V j)′(y))

and redefining b(t) = 1
γ2 (V

j)′(y(t)) for t > τ2. For t ≤ τ2 the values of b(t), αx[b](t), and y(t)
remain unchanged, again by the nonanticipating hypothesis. We now identify the switching
time τ3 associated with αx[b](t), and extend our definition for τ2 < t ≤ τ3 using b∗(t) = b(t).
At τ3 the control will switch again to j′, so continue our redefinition process again for t > τ3.

Continuing this redefinition and extension process, we produce the desired disturbance b∗(t)
and state trajectory y(t) associated with the control αx[b

∗](t) satisfying the requirements of
the proposition. The only conceivable failure of this construction would be if the switching
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times τi that are generated in the construction were to have a finite limit: lim τi = s < ∞.
Our hypotheses on the strategy α disallow this however, for the following reason. If it were
the case that lim τi = s < ∞, then extend our definition of b∗ in any way to t ≥ s, say
b∗(t) = 0. By hypothesis, α[b∗] is an admissible control in Aj, which means in particular
that its switching times τi no not have a finite accumulation point. But extension of b∗ for
t > s does not alter the switching times τi < s, by the nonanticipating property again. This
would mean that α[b∗] does have an infinite number of τi < s, which is a contradiction.
Finally, by our comments above, on each interval [τi, τi+1] there is at most a single t value
at which (V α[b∗])′(t)(t) is undefined. Thus there are at most a finite number of such t in any
[0, T ]. ♦
Consider now any strategy α ∈ Γj, x = y(0) and b∗ be as in the proposition. On any time
interval [τi, τi+1] between consecutive switching times, (3.93) and the fact that b∗(t) achieves
the infimum in (3.87) for x = y(t) and p = (V ai)′(x) implies that (for all but finitely many
t)

d

dt
V ai(y(t)) ≥ (γb∗(t))2 − h(y(t), ai, b

∗(t)).

Thus for any τi < t ≤ τi+1 we have

V ai(y(t))− V ai(y(τi)) ≥
∫ t

τi

γ2|b∗|2 − h ds.

Across a switching time τi we have from (3.92)

V ai − V ai−1 ≥ −β = −k(ai−1, ai).

Adding these inequalities over τi ≤ T we see that

V α[b∗](T )(y(T ))− V α[b∗](0)(y(0)) ≥ −
{∫ T

0

[h− γ2|b∗|2] ds+
∑
τi≤T

k(ai−1, ai)

}
.

Rearranging, this says that

V α[b∗](T )(y(T )) +

{∫ T

0

[h− γ2|b∗|2] ds+
∑
τi≤T

k(ai−1, ai)

}
≥ V α[b∗](0)(y(0)). (3.97)

When we consider α∗ specifically, we recognize that

Hai(y(t), (V ai)′(y(t))) = 0

(where we set in general Hai
= H i and V ai

= V i for i = 1, 2) for t between the τi, and at τi

V ai+1 − V ai = −β = −k(ai+1, ai).

This means that (3.97) is an equality for α∗ specifically.
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To finish our optimality argument we will show that for α in general above, as T → ∞ we
must have either y(T ) → 0 and α[b∗](T ) → 1, or else∫ T

0

[h− γ2|b∗|2] ds+
∑
τi≤T

k(ai−1, ai) → +∞. (3.98)

In the case of α∗ specifically, we will have the former possibility. Since V 1(0) = 0 and is con-
tinuous, these facts imply (3.95) as claimed. The verification of these asserted limiting prop-
erties depends on some particular inequalities for (V a)′(x) as determined by (3.91), (3.90).
First, we assert that, for both a = 1 and a = 2,

h− γ2|b∗|2 = |x|2 − 1

4γ2
[(V a)′(x)]2 > 0, for x 6= 0. (3.99)

Moreover |x|2 − 1
4γ2 [(V

a)′(x)2 has a positive lower bound on {x : |x| ≥ ε} for each ε > 0.
Instead of what would be a very tedious algebraic demonstration of this, we simply offer
the graphical demonstration in Figure 3.4. For the parameter values (3.89) we have plotted
b∗ = 1

2γ
(V a)′(x) and q = x (dashed lines) as functions of x. The validity of (3.99) is apparent.

x2 x1 x3 x2 x1 x3

Figure 3.4: Graphical verification of (3.99) for DV 1 (left) and DV 2 (right)

The other fact we need is that for a = 2 and the corresponding disturbance b∗(t), the state-
dynamics does not have an equilibrium at 0. This is easy to see, because at x = 0 we have b∗ =
1

2γ2 (V
2)′(0) = 0, but f(0, a2, b∗) = −µ+ b∗. A graph of f(x, a2, b∗) = −µ(x−1)+ 1

2γ2 (V 2)′(x)
is provided in Figure 3.2, where we see a unique equilibrium just beyond x = 1.

In the case of a = 1 however, ẋ = f(x, a1, 1
2γ2 (V

1)′(x)) has a unique globally asymptotically
stable equilibrium at x = 0, as is evident in Figure 3.3.

We turn then to the verification of the assertion of (3.98) or its alternative: assuming (3.98)
to be false we claim that y(T ) → 0 and α[b∗](T ) → 1. By the nonnegativity from (3.99) we
must have both ∑

τi<∞
k(ai−1, ai) <∞, and

∫ ∞

0

[h− γ2|b∗|2] dx <∞. (3.100)
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The first of these implies that there are only a finite number of switches; α[b∗](t) = i∗ is
constant from some time on. It is not possible that i∗ = 2 because in that case y(t) would be
converging to the positive equilibrium of Figure 3.2, which implies by (3.99) that, as t→∞,

h(y(t), ai∗, b
∗(t))− γ∗|b∗(t)|2 → C > 0.

This contradicts the second part of (3.100). Therefore i∗ = 1, which shows that α[b∗](T ) → 1.
But since α[b∗](t) = 1 from some point on, the stability illustrated in Figure 3.3 means that
y(t) → 0 as claimed. This completes our verification of the optimality of the strategy α∗.



Chapter 4

Conclusions and future work

This chapter gives conclusions of the dissertation and a view of future research.

4.1 Conclusions

We have developed the theories of robust stopping-time control and switching-cost control
problems. We formulated the problems in both an L2-gain/dissipative framework and a
game-theoretic framework.

Our main results concerning the robust stopping-time problems are as follows: under minimal
smoothness and boundedness assumptions on the problem data

1. If the lower value function W (see (2.12)) for Game I is upper semicontinuous, then
W is a viscosity subsolution in IRn of the variational inequality (VI) given by

max{H(x,DV (x)), V (x)− Φ(x)} = 0, x ∈ IRn, (4.1)

where H(x, p) = infb{−p · f(x, b)−h(x, b)+ γ|b|2}. If W is lower semicontinuous, then
W is a viscosity supersolution of the VI (4.1). Thus if W is continuous, W is a viscosity
solution of the VI (4.1). In fact, if W is continuous, then W can be characterized as
the minimal, nonnegative, continuous viscosity supersolution of the VI (4.1).

2. If continuous, the lower value function V (see (2.13)) for Game II is a viscosity solu-
tion of the VI. Moreover in certain cases V is characterized as the maximal viscosity
subsolution of the VI (4.1).

3. Any locally bounded stopping-time storage function for some stopping-time strategy
τ is a viscosity supersolution of the VI (4.1) (for the definition of the stopping-time
storage function see (2.15)); conversely, if U is any nonnegative continuous viscosity

91
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supersolution of the VI (4.1), then U is a stopping-time storage function with stopping-
time rule of state-feedback form given by τU,x[b] = inf{t ≥ 0 : U(yx(t, b) ≥ Φ(yx(t, b)},
and U ≥W.

It also happens that a positive definite supersolution U of the VI can be used to prove stability
of the equilibrium point 0 for the system with zero disturbance ẏ = f(y, 0). We also obtain
the lower-value function W (x) explicitly for a prototype problem with one-dimensional state
space by a simple, direct, geometric construction.

Our main results concerning the robust optimal switching-cost problem are as follows: under
minimal smoothness assumptions on the problem data and compactness of the set B,

(i) V j
γ (x) ≤ mini6=j{V i

γ (x) + k(aj, ai)}, x ∈ IRn, j = 1, . . . r (for the definition of Vγ =
(V 1

γ , . . . , V
r
γ ), see (3.11)).

(ii) If continuous, Vγ is a viscosity solution in IRn of the system of quasivariational inequal-
ities (SQVI)

max{Hj(x,DV j
γ (x)), V j(x)−min

i6=j
{V i

γ (x) + k(aj , ai)}} = 0, x ∈ IRn, j = 1, . . . , r,

(4.2)

where Hj(x, p) = minb{−p · f(x, aj , b)− h(x, aj , b) + γ2|b|2}.
(iii) If S = (S1, . . . , Sr) is a continuous switching storage function for some strategy α (for

the definition of the switching storage function see (3.12)), then S is a nonnegative
viscosity supersolution of the SQVI (4.2).

(iv) If Uγ = (U1
γ , . . . , U

r
γ ) is a nonnegative, continuous viscosity supersolution (4.2) and Uγ

has the property (i), then there is a canonical choice of switching state-feedback control
strategy αUγ : (x, aj , b) → αj

Uγ ,x[b] such that Uγ is a switching storage function for the
closed-loop system formed by using the strategy αUγ ; thus,

U j
γ(x) ≥ sup

b, T
{
∫

[0,T )

l(yx(s), a
j , αj

Uγ ,x[b](s), b(s))} ≥ V j
γ (x).

and the lower-value (vector) function Vγ , if continuous, is characterized as the mini-
mal, nonnegative, continuous viscosity supersolution of (4.2) having property (i) above,
as well as the minimal continuous function satisfying property (i) which is a switch-
ing storage function for the closed-loop system associated with some nonanticipating
strategy αVγ .

We gave two derivation of this characterization of Vγ. The first method is a direct argument
which parallels the argument for optimal stopping-time problems and the second method
relies on a general comparison principle for viscosity super- and subsolutions of SQVI which
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is proved in Section 3.3.2. The usual formulation of the H∞-control problem also involves
a stability constraint. We also prove that, under appropriate conditions, the closed loop
system associated with switching strategy αU corresponding to the supersolution U of the
SQVI is stable. The main idea is to use the supersolution U as a Lyapunov function for
trajectories of the closed-loop system.

4.2 Future work

Studying robust stopping-time control problems and robust switching-control problems has
opened the door to further new research.

Methods for solving the VI/SQVI

We have seen that a robust stopping-time control problem (respectively, a robust switching-
control problem) is solvable if we can find a solution of the variational inequality (VI) (respec-
tively, the system of quasivariational inequalities (SQVI)). To make these theories useful, the
methods for solving the VI/SQVI should be developed. The VI/SQVI is the generalization
of the Hamilton-Jacobi-Bellman-Isaacs equation(HJBIE) in this setting, so we hope that the
already existing methods for solving the HJBIE should be adapted to solve the VI/SQVI.
There are two possible ways to solve the VI/SQVI: (i) via adaptation of the method of
bicharacteristics; or (ii) via solving an approximating discrete-time control problem, or more
generally an approximating discrete-time game problem. We now discuss the ideas we have
in mind for these two methods.

We have seen that the first part of the VI/SQVI is the Hamilton-Jacobi-Bellman equation
(HJBE) which can be solved by the method of bicharacteristics via the connection with the
stable invariant manifold for the associated Hamiltonian flow (see [45, Chapter 7]). Thus it is
possible to apply this method to solve the VI/SQVI. We did apply this method for solving the
VI/SQVI of a simple one-dimensional example. The examples in Section 2.5 and 3.5.2 can be
seen as adaptations of this method for simple cases with one-dimensional state space. We also
tried to apply this method for the simple two-dimensional example of the switching-problem.
The author together with Professor Day wrote MATLAB/MATHEMATICA programs to
simulate the problem, but the result was inconclusive. We hope to do more analysis for
adaption of the method of bicharacteristics to solve the VI/SQVI.

Alternatively, we might compute the lower value function for a discrete-time problem which
approximates the continuous-time problem: by introducing the discrete-time system of
stopping-time/switching-control problem, defining the discrete lower value function, apply-
ing dynamical programming method to derive the discrete version of the VI/SQVI, and
finally showing the convergence of the discrete lower value function to the continuous one.
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For the stopping-time problem, the discrete-time system we have in mind is in the form: for
a fixed δ > 0

Σst,δ

{
y(k + 1) = y(k) + δf(y(k), bk), y(0) = x
z(k) = h(y(k), bk).

We denote by Bk the set of sequences taking values in B and
∑N

k=0 |bk|2 < ∞ for all N .
For given sequence β = {bk} ∈ Bk and initial condition y(0) = x ∈ IRn, the trajectory of
the system Σst,δ will be determined and we denote it by yk = yx(k, β). We define the cost
functional to be in the form

Jδ(x, β, τ, T ) =

(τ∧T )−1∑
k=0

δ(h(yk, bk)− γ|bk|2) + 1[0,T )(τ)Φ(yτ ),

where summation over the empty set is equal to zero. The discrete lower value function Wδ

is defined as
Wδ(x) = inf

τ
sup
β, T

Jδ(x, β, τ [β], T ),

where the supremum is over all nonnegative natural numbers T and β ∈ Bk, while the
infimum is over all nonanticipating stopping-time strategies τ with values in IN

⋃{∞}. The
following inequalities about Wδ are obvious. Setting T = 0 (Φ > 0) implies that

Wδ(x) ≥ 0,

while setting τ ≡ 0 implies
Wδ(x) ≤ Φ(x).

By applying the dynamical programming method, it is possible to show that

Wδ(x) = min

{
sup

b

{
Wδ(x+ δf(x, b)) + δ(h(x, b)− γ2|b|2} , Φ(x)

}
.

Then this equation is the discrete version of the VI. It should be possible to show that
Wδ(x) converses to W (x) (given by (2.12)) as δ goes to 0. The discrete approximation of the
stopping-time problem was discussed in [33] and [50], but in the case of the differential games
which both players stop the system in order to minimize or maximize the cost functional.

It is possible that one can use this discrete approximation of the stopping-time to solve the
switching-control problem since there is an interesting connection between the solutions of
the VI and SQVI (see Section 3.5.1). The solution of an SQVI is a fixed point of a map which
assigns to a given vector function the collection of solutions of a decoupled system of VIs, or,
at the level of value functions, the lower value vector function for a switching-control problem
is a fixed point of a map which assigns to an n-tuple of nonnegative-real valued functions
the set of lower value functions for a decoupled collection of stopping-time problems (with
different terminal cost functions determined by the input vector function). In principle, it
should therefore be possible (at least in some cases) to find the lower value function for a
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switching-control problem by iteratively solving for the value functions of a decoupled system
of stopping-time problems, and thereby reduce solution of a switching-cost problem to the
iterative solution of decoupled systems of VIs. This idea is discussed in [13] in the context
of the stochastic, diffusion problems, and a similar remark giving a connection between
the impulsive control problem and the stopping time problem is given in [10, Chapter III
Section 4.3], where some convergence results are also given. Thus one can view stopping-time
problems as having pedagogical value as stepping stones to the more complicated impulsive-
control and switching-control problems. We wish to prove the convergence results in case of
the VI/SQVI as in [10].

Problems with boundary projection dynamics

In many real-world applications, there is a restriction on the state-spaces. Thus if we want
to apply theories developed in this dissertation, the theories with restricted state-space
should be developed. We hope to develop the analogous theories to those developed in this
dissertation for this case. We wish to formulate the robust optimal switching-cost control
problem for a state-space system with projection dynamics in the state evolution. The
projected dynamical system (PDS) was proposed in [24] and it was applied for the standard
robust control problem of the restricted state-space system in [6] and [7], see also [1] for the
connection to the viscosity notion.

We define the PDS associated with a dynamical system ẏ = f(y, a, b) and a closed, convex
set Ω as

ẏ = πΩ(y, f(y, a, b)), y(0) = x ∈ Ω, (4.3)

where a map π has the following property: if y is in the interior of Ω, then πΩ(y, f(y, a, b)) =
f(x, a, b); if y is on the boundary of Ω and f(y, a, b) “point out of Ω”, then we use the
projection of f(y, a, b) onto the tangent space of Ω (see Figure 4.1). This ensures that the
trajectories of the PDS will always remain in the set Ω once the initial condition y(0) = x
starts in Ω (see [6] and [24]).

We now assume that the admissible control set is A = {a1, . . . , ar}. The general problem is
to find the state-feedback control y → a(y) (or nonanticipating strategy (x, aj , b) → αj

x[b])
which guarantees the dissipative inequality∫ T

0
h(yx(s), α

j
x[b](s), b(s))ds+

∑
τ k(α

j
x[b](τ

−), αj
x[b](τ))

≤ γ2
∫ T

0
|b(s)|2ds+ U j(x), αj

x[b](0
−) = aj

(where yx now solves (4.3) with a = α[b]) for all disturbances b ∈ B, initial conditions
y(0) = x ∈ Ω and initial control a(0−) = aj ∈ A. The related game formulation is the lower
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Figure 4.1: Projected dynamics of the state space

value function Vγ = (V 1
γ , . . . , V

r
γ ) is defined by

V j
γ (x) = inf

α∈Γ
sup

b∈B, T≥0

∫
[0,T )

l(x, aj , αj
x[b], b), j = 1, . . . , r (4.4)

where

l(y(t), aj, a(t), b(t)) = [h(y(t), a(t), b(t))− γ2|b(t)|2] dt+ k(a(t−), a(t))δt, a(0−) = aj ,

and δt is the unit point-mass distribution at the point t. The problem is to work out the
theory of Chapter 3 and the various approaches to computational implementation given
in the methods for solving the VI/SQVI subsection for more complicated situation where
discontinuities enter the system dynamics on the boundary.

As we mentioned in the introduction, our original motivation for the study of the robust
switching-cost control problem came from the problem of designing a real-time feedback
control for traffic signals at a highway intersection. This problem was discussed in [6] and [7],
but the switching costs were not considered. Thus the control law produced the “chattering”
phenomenon. We expect that the positive switching costs will prevent fast switching of the
control.

The simple model for traffic flow at an isolated intersection of the two one-way streets of
Figure 4.2 (modified from [6]) is defined as

ẏ = b+ Sa, S =

[ −s1 0
0 −s2

]
, z = y,

where y = (y1, y2) ∈ Ω = {(y1, y2) ∈ IR2 : yi ≥ 0, i = 1, 2}, b = (b1, b2) and a = (a1, a2) ∈ A
where the set A of admissible controls is {(1, 0), (0, 1)}. We set a1 = (1, 0) and a2 = (0, 1).

The variables and parameters appearing in the model are as follows:
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X

Y

y

b1

y2 b2

1

Figure 4.2: A simple two-way intersection

State variables:

y1 is the queue length of the traffic stream in approach X;
y2 is the queue length of the traffic stream in approach Y ;

Exogenous inputs:

b1 is the arrival rate of the vehicles at approach X;
b2 is the arrival rate of the vehicles at approach Y ;

Parameters:

s1 is the saturation flow rate of approach X (vehicles/lane/s);
s2 is the saturation flow rate of approach Y (vehicles/lane/s).

We allow bi to be nonnegative, corresponding to departure of the vehicles from the two
approaches. We assume both si to be strictly positive. The interpretation is that a =
(a1, a2) = (1, 0) corresponds to a green light for approach X (and red light for Y ). Likewise
a = (a1, a2) = (0, 1) corresponds to a red light for X and a green light for Y .

We put the following assumption on the state equation: the difference between the arrival
density and the flow served represents exactly the dynamic rate of the queue length at that
approach, as long as the queue length to be served is positive. That is

ẏi = δ(yi, bi − siai), i = 1, 2, (4.5)
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where the function δ is given by

δ(x, v) =

{
v if x > 0 or if x = 0 and v > 0,
0 otherwise.

The effect of δ is to produce the projected dynamical system, as in (4.3). (Such models can be
applied to more general queueing problems as well). The problem is then to design the state-
feedback controller y → a(y) (or nonanticipating strategy (x, aj) → αj

x[·], x ∈ Ω, aj ∈ A)
which guarantees ∫ T

0
|y(s)|2ds+

∑
τ k(α

j
x[b](τ

−), αj
x[b](τ))

≤ γ2
∫ T

0
|b(s)|2ds+ U j(x), αj

x[b](0
−) = aj

for all T ≥ 0 and locally L2 disturbance b(·) where y(·) solves (4.5) with an initial condition
y(0) = x and control a(·) = αj

x[·] with a(0) = aj. This problem was solved in [6] (and more
generally in [7] for an n-phase traffic signals) with the switching cost function k ≡ 0. The
lower value function (or minimal storage function) there was shown to solve a Hamilton-
Jacobi-Bellman equation with piecewise-defined nonsmooth Hamiltonian. A closely related
problem with boundary dynamics but no switching costs was formulated in [1], where the
value function is shown to satisfy a Hamilton-Jacobi-Bellman equation with smooth Hamil-
tonian but with certain additional boundary conditions taken in the viscosity sense.

Formulations using maximum principle

Pontraygin’s maximum principle (MP) and Bellman’s dynamic programming (DP) are the
main tools in the optimal control theory. The MP, which involves the adjoint (or costate)
vector and the Hamiltonian system, is the most classical and useful necessary condition of
optimality. While the fundamental idea of the DP is that the value function, if smooth
enough, satisfies the Hamilton-Jacobi-Bellman equation, it is well-known that there is a
connection between the MP and the DP for the classical control theory. That is, if the value
function is smooth, then its gradient is equal to the costate vector (e.g., [29] and also see
[10] and [56] for the case of nonsmooth value function).

It was shown in [19] that the switching control system could be converted to be the impulsive
control system. Deterministic impulsive control problem was discussed in [10, Section III.4.3]
(see also [11]), where the authors applied the dynamic programming principle to show that
the value function satisfies the quasivariational inequality. The maximum principle for the
impulse control was developed by Blaquiere ([14], [15] and [16]), see also [42] for a different
proof and [51] for a different setting. Our question is if there is any connection between the
MP and the DP for impulsive control problem.

For the sake of completeness we include the minimum principle of the impulse control problem
invented by Blaquiere here. We consider a dynamical system under the control of an agent
J0 who influences the evolution of the state y = (y1, . . . , yn) ∈ IRn in some planning period
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through his choice of a feedback control s in a prescribed control set S0. The evolution of
state exhibits both sudden jumps and continuous changes.

We assume that the state lies in some open subset Ω of IRn, and one of its components,
say yn, is the time t. Let A ⊆ IRd1 and M ⊆ IRd2 be prescribed nonempty, open sets of
point a and α, respectively. Let Ka and Kα be prescribed nonempty subsets of A and M ,
respectively. Let P and Π be the sets of all functions defined on Ω with range in Ka and Kα

respectively. Let ∆ be the collection of all closed subsets of Ω, in the topology of IRn.

We define the control set S0 = ∆×P ×Π. In other words, J0 will influence the evolution of
the state through his choice of a closed subset of Ω, say Ψ, and a pair of functions defined
on Ω, say (p(·), π(·)) ∈ P × Π.

Let l(·) : Ω × A → IR, k(·) : Ω ×M → IR, f(·) : Ω × A → IRn and g(·) : Ω ×M → IRn be
prescribed C1 functions where

f = (f1, . . . , fn), g = (g1, . . . , gn)
fn(y, a) ≡ 1, gn(y, α) ≡ 0.

We say that a feedback control s = (Ψ, p(·), π(·)) ∈ S0 is admissible if and only if

y ∈ Ψ ⇒ y + g(y, π(y)) ∈ Ω−Ψ.

Let S be the set of all admissible feedback controls.

We say that a function y(·) : I = [0,∞) → Ω̄ is a path generated by s = (Ψ, p(·), π(·)) ∈ S
from the initial condition x ∈ Ω if and only if

(i) y(0) = x;

(ii) y(·) is piecewise continuous on I; let T (I) denote the set of its discontinuity points;

(iii) y(t) = y(t−) for t ∈ I, t 6= 0;

(iv) t ∈ T (I) ⇒ y(t) ∈ Ψ and y(t+) = y(t) + g(y(t), π(y(t)));

(v) for all t ∈ I − T (I), y(t) ∈ Ω−Ψ;

(vi) y(·) is differentiable and y′(t) = f(y(t), p(y(t))) a.e. t ∈ I.

For each initial condition y(0) = x and s = (Ψ, p(·), π(·)) ∈ S we define the cost functional

J(x, s) =

∫
I

f0(yx(s), p(yx(s))ds+
∑

s∈T (I)

g0(yx(s), π(yx(s))),

and the value function

V (x) = inf
s∈S

J(x, s). (4.6)
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Let y∗(·) : I → Ω̄ be a path generated by the optimal feedback control s∗ = (Ψ∗, p∗(·), π∗(·)))
on the interval I and let λ(·) : I → IRn+1 be a piecewise continuous function, with λ(t) =
λ(t−) for t ∈ (0,∞). Let

H(λ, y, a) =

n−1∑
i=0

λifi(y, a),

H(y, α) =
n−1∑
i=0

λi(t
+
c )gi(y, α)

with
λ = (λ0, . . . , λn), t ∈ I, tc ∈ T (I).

We say that λ(·) corresponds to s∗ and y∗(·) if and only if on any subinterval [ti, ti+1] ⊂ I
on which y∗(·) is continuous, λ(·) is a solution of the set of differential equations

λ̇i = −∂H
∂yi

(λ, y, a), y = y∗(t), a = p∗(y),

and, at any point of discontinuity of x∗(·), say tc,

λi(tc) = λi(t
+
c ) +

∂H
∂yi

(y, α), y = y∗(tc), α = π∗(y).

Theorem 4.1 If y∗(·) : I = [0,∞) → Ω̄ is a path generated by the optimal feedback control
s∗ = (Ψ∗, p∗(·), π∗(·)), satisfying some assumptions (see [16]), then there exists a nonzero
piecewise continuous vector function λ(·) : I → IRn+1, corresponding to s∗ = (Ψ∗, p∗(·), π∗(·))
and y∗(·) so that

(i) on any subinterval [ti, ti+1] ⊂ I on which y∗(·) is continuous,

min
a∈Ka

H(λ(t), y∗(t), a) = H(λ(t), y∗(t), p∗(y∗(t)));

(ii) at any discontinuity point, say tc of y∗(·),
min
α∈Kα

H(y∗(tc), α) = H(y∗(tc), π∗(y∗(tc)));

(iii) mina∈Ka H(λ(t+c ), y∗(t+c ), a)−mina∈Ka H(λ(tc), y
∗(tc), a)

= ∂H
∂yn

(y, α) y = y∗(tc), α = π∗(y);

(iv) λ0(t) = 1, for all t ∈ I.

We then have the following open question of the impulsive control: Is there is any connection
between the value function defined in (4.6) and a costate function λ ?. The game version
of the minimum principle for the impulsive control problem with finite time horizon was
discussed in [14] (see also [15] for necessary and sufficient conditions for optimal impulsive
control). It would also be of interest to formulate a maximum (or minimum) principle
tailored specifically for control problems with switching costs.
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tions, Birkhäuser, Boston, MA 1994.

[34] J.W. Helton and M.R. James, Extending H∞ Control to Nonlinear Systems, SIAM,
Philadelphia, 1999.

[35] R. Isaacs, Differential Games, Wiley, New York, 1965.

[36] M.R. James, A partial differential inequality for dissipative nonlinear systems, Systems
& Control Letters 21 (1993), 315-320.

[37] M.R. James and S. Yuliar, Numerical approximation of the H∞ norm for nonlinear
system, Automatica 31 (1995), 1075-1086.
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