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On-line Calibration of Instrument Transformers Using 

Synchrophasor Measurements 

Paroma Chatterjee 

ABSTRACT 

The world of power systems is ever changing; ever evolving. One such evolution was the 

advent of Phasor Measurement Units (PMUs). With the introduction of PMUs in the field, power 

system monitoring and control changed for the better. Innovative and efficient algorithms that used 

synchrophasors came to be written. To make these algorithms robust, it became necessary to 

remove errors that crept into the power system with time and usage. Thus the process of calibration 

became essential when practical decisions started being made based on PMU measurements.  

In the context of this thesis ‘calibration’ is the method used to estimate a correction factor 

which, when multiplied with the respective measurement, negates the effect of any errors that 

might have crept into them due to the instrument transformers located at the inputs of a PMU or 

the PMU device itself. Though this thesis mainly deals with the calibration of instrument 

transformers, work has been done previously for calibrating other components of a power system. 

A brief description of those methods have been provided along with a history on instrument 

transformer calibration.  

Three new methodologies for instrument transformer calibration have been discussed in details 

in this thesis. The first method describes how only voltage transformers can be calibrated by 

placing optimal number of good quality voltage measurements at strategic locations in the grid, in 

presence of ratio errors in the instrument transformers and Gaussian errors in the PMUs. The 

second method provides a way to calibrate all instrument transformers (both current and voltage) 

in presence of only one good quality voltage measurement located at the end of a tie-line. This 

method assumes that all the instrument transformers have ratio errors and the PMUs have 

quantization errors. The third method attains the same objective as the second one, with the 

additional constraint that the data obtained from the field may be contaminated. Thus, the third 

method shows how calibration of all the instrument transformers can be done with data that is 

intermittent and is therefore, the most practical approach (of the three) for instrument transformer 

calibration.   
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CHAPTER 1: INTRODUCTION 

 

Since its inception, the power system has played a key role in industrialization and 

urbanization. Till date, it plays a socially responsible role in bridging disparities by improving 

provision of affordable commercial energy access. Power sector has come of age through radical 

changes related to the competition scenario and focus on green energy which have progressively 

evolved over the last decade. For the US, the genesis of these changes occurred after the blackout 

of 1965. Till that point in time, the power sector was controlled and protected by analog 

instruments: meters, breakers, etc. The sub-station operators had only their manuals and experience 

to count on. They had no way of looking at the entire grid as a whole and be able to plan for 

contingencies. But, even then, electricity was an irreplaceable part of life. People and economy 

were heavily dependent on reliable power supply. Homes, offices and factories had all been 

transformed by electricity. Elevators, lights, air-conditioners, the upcoming computer industry, 

everything depended on electricity.  

Then came the US North-East blackout of 1965. It blacked out parts of Ontario, Canada as 

well as Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island and 

Vermont in the United States on 9th of November, 1965. A relatively minor error resulted in this 

massive disruption that affected over 30 million people and spread across 80,000 square miles with 

some people being left without electricity for up to 13 hours [1]. The cause of the blackout was 

that the relays had been set according to the load conditions of 1956. In the 9 years that followed, 

the load had increased to such a level that the usual loads on that fateful day became larger than 

the maximum overload that the relays had been designed to operate at. Thus the relays of one of 

the five transmission lines carrying power north from the Sir Adam Beck Station of the Hydro-

Electric Power Commission of Ontario tripped thinking that it was a fault instead of the norm. This 

put the load of that line on the rest four, overloading them in turn [2]. This caused a domino effect 

and brought down the entire North-Eastern grid. Soon after normalcy was restored and the mistake 

corrected, utilities across the country started looking for answers to solving the big issue: How to 

make sure such a cascading failure not repeat itself? The answer lay in integrating information 

systems and power electronics with the power grid. This eventually led to the beginning of the 

concept of a smart grid.  
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1.1 Phasor Measurement Units and their applications 

 

The massive blackout of 1965 had many ramifications. It forced the people to rethink their way 

of life, their dependence on the power grids and also propelled electrical engineers to re-engineer 

the current grid system. It took the Federal Power Commission almost a week to find the root cause 

of the black-out. This got power engineers all across the country thinking that there had to be a 

way of knowing the states of the power system at all times, so that a quicker diagnosis can be 

carried out.  

The state of a power system is the magnitudes and phase angles of the voltages at all network 

buses. A central control system was initially proposed, which could help improve the security and 

thus, the reliability of the electric power system, both at the generation as well as transmission 

levels. The central control system would operate in two steps: (1) a digital computer which would 

be able to process the collected data, and (2) either the computer or a human operator could make 

the control decisions based on the processed data [3]. In accordance with this logic, Fred Schweppe 

came up with the idea of a static-state estimator algorithm in the late 1960s-early 70s. His idea was 

to create a data processing algorithm which would work by processing redundant meter readings 

and any other form of information available and estimate the state vector. 

Utilities were especially interested in wide-area view provided by such an estimator as they 

would get a snap-shot of the entire power systems operation sitting in the comforts of an air-

conditioned room. Thus came the supervisory control and data acquisition (SCADA) system, 

which was used at first to support these static-state estimators. But, these estimators worked for 

steady state applications only. Also, these estimators had to perform complex calculations. Hence, 

they were slow, and would often lag behind. 

With advancement in information systems and communication technology and the advent of 

microprocessors around 1982, it became easier to monitor, control and protect the power grid as a 

whole. In 1983, synchrophasor technology was introduced with the invention of phasor 

measurement units (PMUS) [4]. By 1988, PMUs were being commercially produced [5] [6].  This 

technology enabled power engineers to have access to real-time snapshots of the entire system, 

thus making real-time monitoring possible. There can be two different types of PMUs. The 
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traditional PMUs provide GPS time synchronized values of the phasors (voltage magnitudes and 

phase angles) of the bus they are on, as well as the branch currents of all the transmission lines 

connected to the bus. The newer dual use line relay PMUs (DULR PMUs) are placed on every line 

connected to high voltage transmission buses, and provide the currents on the lines as well as a 

look at the phasors on the bus as output. The block diagram of a PMU is shown in fig. 1.1. These 

were the first devices that gave hope that the entire power system can be monitored, controlled and 

protected in real-time. There was minimal time delay between the actual measurement at the field 

and those reported at the control center. So the control center operators always had the whole 

picture in front of them, to make decisions and take actions in case of any faults. 

 

Figure 1.1: Block diagram of a Phasor Measurement Unit (PMU) 

 

Some downstream applications, like state estimation (hybrid/linear), base-lining studies 

(computing alert/alarm limits), protection (security assessment, adaptive relaying), control 

(damping oscillations), etc. that use PMU data for their operation have been explained below. 

 

1.1.1  Monitoring based applications 

 

With the introduction of PMUs, hybrid state estimators came to be proposed [7]-[9]. Although 

superior to purely static state estimators, hybrid estimators were non-linear and iterative and hence, 

slow. As more and more PMUs were added to the network, a PMU-only state estimator became 

possible. One type of “linear state estimator” has already been developed for Dominion Virginia 

A/D 
Converter 
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Power and is being currently used in their high-voltage network and is working quite successfully 

[10]-[11]. The voltage phasor output of such a linear state estimator has also been used for fault 

classification in [12].  

The idea of partitioned linear state estimator (PLSE) as an alternative to the traditional linear 

state estimator (LSE) has also been presented in [13]. PLSE would have applications in large power 

systems, like the independent system operators (ISOs) which have different utilities functioning 

under them, without compromising the individual privacy requirements of the utilities. 

 

1.1.2  Control based applications 

 

For a power system, the power flow has to be monitored as well as controlled. The key 

quantities to be controlled are: frequency, voltage and current. Uncontrolled variations in any one 

will affect the other two, which in turn will affect the transmission network which can potentially 

lead to a cascading blackout scenario.  

PMUs have come a long way in assisting the monitoring and control of high voltage 

transmission systems. To counter the effects of inter-area oscillations on the stability of a power 

system [14], [15] describe a polytopic approach for damping numerous operating conditions 

simultaneously. But it was observed in [16] that a single polytope is not able to guarantee reliable 

performance over a large number of operating points. A multi-polytope based adaptive damping 

control using PMU data was proposed in [17] that used classification and regression tree (CART) 

for making control decisions. 

 

1.1.3  Protection based applications 

 

The protection system of a power system is traditionally designed to respond to faults in a 

predetermined manner. That is, its behavior is based on some assumptions that have been made 

regarding the power system. Synchrophasor-based adaptive relaying emphasizes the need to 

change the characteristics of a relay to suit prevailing system conditions. Collectively called 

adaptive protection, it is defined as follows: “Adaptive protection is a protection philosophy which 
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permits and seeks to make adjustments in various protection functions automatically in order to 

make them more attuned to prevailing power system conditions” [18].  

Adaptive protection encompasses a large number of applications. The use of apparent 

impedance trajectory obtained from PMUs for transient stability prediction was proposed in [19]. 

System stress was assessed using synchrophasor-based metrics in [20]. A dynamic state prediction 

mechanism using PMU data was developed in [21]. A variety of studies have also been done to 

make the protection system more reliable. Reliability in power system protection encompasses two 

aspects: dependability and security. Dependability can be defined as “the measure of the certainty 

that the relays will operate correctly for all of the faults for which the relays have been designed”. 

Security, on the other hand, can be defined as “the measure of the certainty that the relays will not 

operate incorrectly for any fault” [18]. According to NERC outage reports, hidden failures are 

involved in more than 70% of cascading outages [6] [22]. Hence, the aim of adaptive protection is 

to reduce the likelihood of hidden failure manifestation and potential cascading events by adjusting 

the security and dependability balance of protective relays according to existing system conditions. 

When the power system is in a “safe” state, a bias toward dependability is desired. Under these 

conditions, not clearing a fault with primary protection has a greater impact on the system than a 

relay mis-operation due to a lack of security. However, when the power system is in a “stressed” 

state, unnecessary line trips can greatly exacerbate the severity of the outage, contribute to the 

geographical propagation of the disturbance, and may even lead to a cascading event and 

subsequent blackout. Under these states, it is desirable to alter the reliability balance in favor of 

security. 

To be able to achieve the balance between dependability and security, a voting scheme can be 

implemented. This voting scheme consists of three independent and redundant relays in each 

phase; hence nine relays in three phases. Optimally positioned PMUs on strategic buses provide 

the required wide-area measurements. These measurements can be used to infer the state of the 

power system which can be classified as either “stressed” or “safe.” If the system is found to be 

stressed, the proper course of action would be to enable the voting scheme and, therefore, bias the 

protection system toward security. On the other hand, if the system is found to be safe, the voting 

scheme would be disabled and only one relay will perform the protective function, resulting in a 

favorable bias toward dependability [23].  
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PMU data are complex numbers, both the attributes—real and imaginary—should be 

considered simultaneously for making critical decisions. In order to more accurately classify the 

system as safe or stressed, [24] provides a method to utilize the complex number nature of PMU 

data for building the required decision tree. This paper allows the complex plane to be split into 

two sections, say the “safe” and “stressed” sections by treating the complex numbers as a single 

entity. Thus, depending on which side of the split the data lies, the state of the system can be 

determined with great accuracy. 

 

1.2 Need for Calibration 

 

Since the introduction of phasor measurement units (PMUs) in 1988, a variety of applications 

have been proposed that use synchrophasor measurements for operational decision-making, as 

discussed above. However, un-calibrated instrument transformers present at the inputs of phasor 

measurement units (PMUs) can significantly degrade their outputs. This can then cause problems 

in the downstream applications which use PMU data. 

Current and voltage instrument transformers located at the inputs of a PMU step down the 

levels of current (e.g. from 10 kAmps to 5 Amps) and voltage (e.g. from 500 kV to 5 V) 

measurements to the levels that the PMU’s electronic circuits can bear. However, the nominal 

transformer ratios specified on the name plates of these devices may differ from the actual 

conversion ratios due to age, environmental conditions, and prevailing burdens. Many of the 

downstream applications previously mentioned, suggest applying results obtained from simulated 

data to the field. However, due to the differences that exist between nominal transformer ratios 

and actual conversion ratios, results obtained from simulated data can cause problems when 

applied directly to the field. A base-lining example has been shown below to illustrate this. 

Consider the case shown in fig. 1.3, where there are two buses connected via a transmission 

line. For this example, it is assumed that according to the simulated data (i.e. angle difference of 

the respective voltages between the two buses, as seen by PMUs, in a simulation software such as 

PSS/E or PSLF), the alert limit has been calculated to be 20° while the alarm limit is calculated to 

be 25°. According to [25], the ratio errors in the voltage angles can be as high as ±4°. Now, let 

the real time angle at bus 𝑋 be 68° while that at bus 𝑌 be 50°. Then the real time actual angle 
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difference is 68 − 50 = 18°. Now, considering the worst case scenario, let the instrument 

transformer at bus X have a ratio error (angle) of 4° and bus Y have a ratio error (angle) of −4°. 

Hence, the real time angle difference observed will be (68 + 4) − (50 − 4) = 26°. As a result, if 

the simulated data is the basis for setting the alert/alarm limits, this case would set off the alarm. 

But, it is evident that the system is safe.  

 

 

Figure 1.2: High voltage transmission system with two buses X and Y 

 

It is worse for the other way round, i.e., a system is considered safe when it actually is stressed! 

Thus this example clearly illustrates that calibrating instrument transformers is necessary for the 

smooth operation of modern power systems.  

 

1.3 Process of Calibration  

 

In the context of this thesis, calibration is the process of estimating unknown ratio-errors 

present in the instrument transformers used by PMUs. Early research regarding calibration mostly 

involved off-line methods, some of which included the usage of precise equipment to compare and 

determine the errors in field equipment. The concept of calibration with respect to PMUs was not 

limited to instrument transformers but was applied to other areas as well, such as generator model 

validation, PMU device calibration, etc. The most recent developments in instrument transformer 

calibration has been discussed (Chapter-2). This thesis also presents two new methodologies which 

can be applied in the field to calibrate both voltage and current transformers in the presence of 

PMU errors (Chapters-3 and 4 respectively). All the simulations done in this thesis have been done 

on two test systems: the IEEE 118 bus and 300 bus systems. The original systems have been shown 

in figs. (1.4) and (1.5) with the high voltage (345kV) networks highlighted. For ease of 

understanding and calculation, these figures have been replaced by only their high voltage 

networks later on in this thesis. These are the networks used to provide the simulated results in the 

following chapters.  

X Y 
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Figure 1.3: The IEEE 118 bus system with the high voltage network highlighted [26] 
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Figure 1.4: The IEEE 300 bus system with the high voltage network highlighted [27] 
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1.4 Structure of the Thesis  

 

This thesis has been structured as follows. The first chapter introduced the concept of 

calibration of instrument transformers. The second chapter gives a brief history on calibration, its 

importance and previous work done in that direction. The third chapter describes the new method 

of calibration of both voltage and current transformers in the presence of PMU errors. It explains 

the error model used and includes the results of the simulations for calibrating the instrument 

transformers starting from one good quality voltage transformer (VT) at a tie-line. The fourth 

chapter presents a methodology for calibrating both current and voltage transformers, with only 

one good quality VT present at a tie-line. In this chapter, the data collected from the field is 

incomplete which results in islanding, thus forming a disconnected tree. The methodology takes 

into account all of that and still calibrates the instrument transformers of the entire network quite 

efficiently. This chapter presents the results of various scenarios that can be implemented in the 

field according to the availability of equipment and/or data. The last chapter provides the 

conclusions, i.e. it summarizes all the topics discussed in this thesis and also talks about future 

scope of work in calibration.  
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CHAPTER 2: HISTORY BEHIND CALIBRATION 

 

For the past two decades, in the field of power systems, there has been a growing interest in 

calibration. Hence, a lot of research has been done in this area. While some of these methods are 

for calibrating instrument transformers, mostly in the absence of PMUs, or for calibrating the PMU 

devices themselves, others have used calibration for modeling and parameter identification of 

generators [28] [29].  

One of the earliest attempts at calibration of instrument transformers was made by using on-

site methods, i.e., the instrument transformers had to be taken down from the network to test them. 

One such example of this would be applying impedance synthesis method to active, hybrid and 

phantom burdens [30]. Active burdens in that paper referred to the linear devices which were fully 

programmable by the digital control of analog signal processors. Combining these active burdens 

with high power inductors and resistors would result in hybrid burdens. A phantom voltage burden 

or power controller comprised of an active voltage burden and an auxiliary voltage source for 

reduction of the power dissipation of the controlled current source.  

Another example of the on-site calibration process is given in [31]. The idea presented there is 

to use more accurate devices for performing calibration. This accurate device would be used to 

compare with the one already in use in the field to determine the “ratio errors” present. Instrument 

transformers used in high voltage transmission networks are essentially step-down transformers 

used to step down high-voltages from the transmission lines to low voltages suitable for the PMU 

devices, as these devices have electronic components which can handle very low voltages 

(typically 5V). The nominal transformer ratios mentioned on the nameplates of the transformers 

do not remain constant. They change due to various external factors such as age, weather 

conditions, etc, thus introducing an error termed as the “ratio error”.  

Most of the on-site calibration methods are used for the calibration of current and/or voltage 

instrument transformers. The drawbacks of these on-site tests are that they are quite expensive and 

time consuming, and as a result, applying these methods on a system-wide basis is difficult and 

uneconomical. 
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Some researchers even tried calibrating in the presence of PMUs. One example would be the 

approach which uses synchrophasor measurements for generating unit model validation and 

calibration [32]. But this method is only interested in the generator model calibration by observing 

the behavior of synchronous machine and governor parameters and does not talk about calibrating 

the instrument transformers themselves.  

Another approach for calibration has been discussed in [33]. In this paper, a method to calibrate 

the voltage, current and time measurements of the PMU device has been devised and the total 

vector error uncertainty of that device was calculated to be 0.05%. Yet another method proposed 

in [34] uses nonlinear optimal estimation theory to calculate calibration factor using a traditional 

model of an un-transposed transmission line with unbalanced load. This method is intended to 

work as a pre-filtering scheme that can significantly improve the accuracy of the PMU 

measurement for further use in their down-stream applications. Such methods could be helpful, 

but quite expensive at the same time. Also, taking down the PMUs from the network and taking 

the communication systems off-line for the purpose of calibration would be quite time consuming. 

The use of a three-phase reference grade calibrator, developed by the METAS for the European 

Metrology Research Program (EMRP) to calibrate PMUs has been discussed in [35]. Since a part 

of the process followed in [35] is offline, it would be cumbersome to use this method on a 

commercial level.  

The method proposed by [36] calibrates the transformers online, without having to take them 

off the network and can be performed as frequently as required. But the dependence on heavy and 

light load conditions results in limited practical use, since the load conditions cannot be controlled 

in real systems. It also does not account for the presence of PMU errors.  

Research is also being done for estimation of line parameters of high voltage transmission 

systems. A method of estimating line parameters has been provided in [37], but this paper does 

not account for the shunt elements, which are crucial for high voltage transmission lines. In [38], 

state estimation methods have been used to estimate line parameters of new lines right before their 

commissioning, using data from PMUs at the ends of these lines. In this paper, the state estimator 

calculates the optimal bus voltages based on the redundant data available using the quadratic 

weighted least squares approach. Bad data is filtered out based on measurement accuracies and the 

chi-square test. Unfortunately, for this method to work, the transmission line in question has to be 



13 

 

taken offline and tested. Also, the test can be performed on one line at a time. Thus making this 

method time consuming and uneconomical to be performed on a system-wide basis. 

Another method has been described in [39], which uses both PMU and SCADA data and 

provides a non-linear weighted least square algorithm to estimate line parameters of multi-terminal 

transmission lines. But, PMUs provide data at the rate of 30 times a second, while SCADA data is 

obtained once in five minutes. It will be difficult to time synchronize the two to obtain the required 

set of data for a particular line in question. Moreover, using SCADA data entails the introduction 

of SCADA errors. Also, a non-linear approach gets quite complicated when it has to be applied to 

large systems.  

One of the earliest attempts at calibrating instrument transformers using PMUs was made in 

[40]. But the model in [40] did not include the PMU errors that were present in the individual 

measurement sets. Three-phase line parameter estimation using a PMU data driven recursive 

Kalman filter was proposed in [41]. But [41] assumed that the instrument transformers were free 

from errors. An improvement to [36] was made in [42] in which the dependence on load conditions 

was removed. But both [36] and [42] required at least one highly accurate calibrated VT used as 

the reference for all other transformers. Combined with a highly calibrated current measurement 

the logic developed in [42] could also estimate line parameters [43], [44]. 

 

2.1  Previous Research 

 

Considering the challenges for solving the calibration problem, the approach developed in [44] 

was significant because with the least number of assumptions, it was able to simultaneously 

calibrate voltage and current transducers as well as estimate line parameters. A brief overview of 

that approach is provided here. Although, the algorithm developed in [44] works for both three-

phase and positive sequence, for simplicity of notations, the positive sequence version is presented 

below.  
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Figure 2.1: Two-bus pi-network model of the power system 

 

Considering the two-bus pi-network model pq shown in fig. 2.1, PMUs placed on both ends of 

the line provide direct measurements of two complex voltages (V⃗⃗ p and V⃗⃗ q) and two complex 

currents (I p and I q). For this method dual use line relay PMUs (DULR PMUs) have been used. 

Using Kirchhoff’s laws in fig. 2.1, the following equations can be realized, 

I p = bpqV⃗⃗ p + (V⃗⃗ p − V⃗⃗ q)y⃗ pq

I q = bpqV⃗⃗ q − (V⃗⃗ p − V⃗⃗ q)y⃗ pq
                                                                                                                (2.1) 

On multiplying both equations of eq. (2.1) by z pq we get eq. (2.2). 

z pqI p = bpqz pqV⃗⃗ p + (V⃗⃗ p − V⃗⃗ q)

z pqI q = bpqz pqV⃗⃗ q − (V⃗⃗ p − V⃗⃗ q)
                                                                                                          (2.2) 

On multiplying the first equation of eq. (2.2) by W⃗⃗⃗ pq where W⃗⃗⃗ pq = (1 + bpqz pq) and 

rearranging we get eq. (2.3). 

W⃗⃗⃗ pq
2
V⃗⃗ p − W⃗⃗⃗ pqV⃗⃗ q − W⃗⃗⃗ pqz pqI p = 0

W⃗⃗⃗ pqV⃗⃗ q − z pqI q = V⃗⃗ p                          
                                                                                                   (2.3) 

The voltages and currents in eq. (2.3) are the true voltages and currents of the network. Now, if 

voltage of the “p” side is known, then in absence of PMU errors, the measured voltages and 

currents can be written as shown in eq. (2.4). 

V⃗⃗ pm(j) = V⃗⃗ p(j) ; V⃗⃗ qm(j) = REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qV⃗⃗ q(j)

I pm(j) = REI⃗⃗ ⃗⃗ ⃗⃗  
pI p(j) ; I qm(j) = REI⃗⃗ ⃗⃗ ⃗⃗  

qI q(j)
                                                                               (2.4) 
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In eq. (2.4), REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
q, REI⃗⃗ ⃗⃗ ⃗⃗  

p and REI⃗⃗ ⃗⃗ ⃗⃗  
q are the unknown voltage and current ratio errors, and j =

{1, 2, … , N} where N is the total number of measurements made. Now, if KV⃗⃗⃗⃗  ⃗q =
1

REV⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗
q
, KI⃗⃗  ⃗p =

1

REI⃗⃗ ⃗⃗ ⃗⃗  ⃗
p
 

and KI⃗⃗  ⃗q =
1

REI⃗⃗ ⃗⃗ ⃗⃗  ⃗
q
 are the ratio correction factors, then using eq. (2.4), for the jth measurement, eq. 

(2.3) can be rewritten as 

W⃗⃗⃗ pq
2
V⃗⃗ pm(j) − W⃗⃗⃗ pqKV⃗⃗⃗⃗  ⃗qV⃗⃗ qm(j) − W⃗⃗⃗ pqz pqKI⃗⃗  ⃗pI pm(j) = 0

W⃗⃗⃗ pqKV⃗⃗⃗⃗  ⃗qV⃗⃗ qm(j) − z pqKI⃗⃗  ⃗qI qm(j) = V⃗⃗ pm(j)                          
                                                              (2.5) 

Now, if N such measurements are made, where N > 2, then an over-determined set of equations 

can be written for the pi-section pq as shown in eq. (2.6).  

[
 
 
 
 
 
 
 
 V⃗⃗
 
pm(1) −V⃗⃗ qm(1) −I pm(1) 0

0 V⃗⃗ qm(1) 0 −I qm(1)

V⃗⃗ pm(2) −V⃗⃗ qm(2) −I pm(2) 0

0 V⃗⃗ qm(2) 0 −I qm(2)

⋮ ⋮ ⋮ ⋮

V⃗⃗ pm(N) −V⃗⃗ qm(N) −I pm(N) 0

0 V⃗⃗ qm(N) 0 −I qm(N)]
 
 
 
 
 
 
 
 

⏞                            
𝐀

[
 
 
 
 
 W⃗⃗⃗ pq

2

W⃗⃗⃗ pqKV⃗⃗⃗⃗  ⃗q

z pqW⃗⃗⃗ pqKI⃗⃗  ⃗p

z pqKI⃗⃗  ⃗q ]
 
 
 
 
 

⏞        
𝐱

= 𝐛                                               (2.6) 

In eq. (2.6), 𝐛 = [0 V⃗⃗ pm(1) 0 V⃗⃗ pm(2) … 0 V⃗⃗ pm(N)]
T

 and the numbers within 

brackets represent different measurement sets. Eq. (2.6) is of the form 𝐀𝐱 = 𝐛 in which 𝐀 and 𝐛 

are known and 𝐱 is unknown. Hence, eq. (2.6) can be solved in the least-square sense to compute 

for 𝐱. An example showing how eq. (2.6) can be used for computing for the unknown ratio errors 

is provided below. 

Consider the case where all line parameters are known and all ratio errors except that of the 

pre-calibrated voltage measurement are unknown. That is, there is only one known voltage 

measurement (V⃗⃗ pm = V⃗⃗ p) present in the system. Then, for the pi-section pq,  z pq and bpq are 

known and hence W⃗⃗⃗ pq is known, while KV⃗⃗⃗⃗  ⃗q, KI⃗⃗  ⃗p and KI⃗⃗  ⃗q are unknown. Then, if 𝐱⃗ =

[x⃗ (1) x⃗ (2) x⃗ (3) x⃗ (4)]T is the solution to eq. (2.6), we get eq. (2.7). 

KV⃗⃗⃗⃗  ⃗q =
x⃗ (2)

W⃗⃗⃗ pq
; KI⃗⃗  ⃗p =

x⃗ (3)

z pqW⃗⃗⃗ pq
; KI⃗⃗  ⃗q =

x⃗ (4)

z pq
                                                                              (2.7) 
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Using KV⃗⃗⃗⃗  ⃗q obtained from eq. (2.7), V⃗⃗ q can be calculated using eq. (2.4). Then, for the next pi-

section, say qr, a similar procedure can be followed to compute V⃗⃗ r. This process can then be 

repeated for subsequent pi-sections. 

It is important to note here that eqs. (2.4) - (2.7) do not contain PMU errors in the measured 

voltages and currents. In the presence of PMU errors in the measurements, the unknown ratio 

correction factors of pi-section pq cannot be computed accurately. This implies that V⃗⃗ q also cannot 

be estimated precisely. Now, since V⃗⃗ q is used in the computation of subsequent pi-sections, as one 

keeps moving further away from the pre-calibrated measurement, the errors in the estimates of the 

ratio errors keep growing. Moreover, since the true measurement is difficult to know in practice, 

eq. (2.6) cannot be used directly in the field. A methodology that is capable of containing the 

growth in error of the estimates of the ratio errors is presented in the next section. 

 

2.2 On-line Calibration of VTs Using Synchrophasor Measurements 

 

 

This section focuses on the online calibration of only the voltage instrument transformers. 

Major control and measurement systems, such as the supervisory control and data acquisition 

(SCADA) system and the PMU based hybrid/ linear state estimation system depend on accurate 

voltage measurements for their proper functioning. The voltage instrument transformers are 

typically assumed to have very high accuracy levels [25]. However, as the error values vary with 

the manufacturer and increase over time and usage, the resulting biased measurements become an 

inherent component of input data errors for both SCADA and PMU data based applications. Since 

the accuracy of modern intelligent electronic devices (IEDs) is constantly improving, it becomes 

important to also calibrate the instrument transformers so as to take full advantage of these devices. 

The computation of ratio errors in the presence of PMU errors is not straightforward. The 

reason for this is that the two errors are multiplicative and when combined with the unknown true 

measurement results in three unknowns being multiplied together. Mathematically, for the voltage 

of the ith bus, this is described by eq. (2.8) 

V⃗⃗ measij = α⃗⃗ ijβ⃗
 
iV⃗⃗ trueij                                                                                                                              (2.8) 
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In eq. (2.8), j = {1, 2, … , N} where N is the total number of measurements made, V⃗⃗ measij is the 

jth measured voltage, α⃗⃗ ij is the unknown PMU error for the jth measurement, β⃗ i is the ratio error 

of the voltage of the ith bus, and V⃗⃗ trueij is the jth true voltage. The symbol → on top of a variable 

indicates that it is a complex number. If N is sufficiently large, then the PMU errors can be 

approximated by a Gaussian distribution having zero mean and a small standard deviation (σ). 

However, since the ratio error (which follows a uniform distribution) and the true voltage values 

are not known, the number of unknowns still exceeds the number of equations. Under such 

circumstances, the previous researches either did not consider the PMU errors [40], or made the 

assumption that there is one measurement whose errors are known and computed the rest on the 

basis of that measurement [36]-[44]. This section explains the methodology developed in [45] 

which shows that by placing sufficient number of good quality measurements, the errors in the 

computation of the ratio errors of all the voltages can be kept below a pre-defined threshold.  

The problem associated with un-calibrated measurements surfaced during the research 

performed for a DOE-demonstration project of a three phase, linear PMU-only state estimator 

developed for Dominion Virginia Power (DVP) [10], [11]. Because of this, the characteristics of 

the solution match problems/constraints specific to DVP as described below. 

1) Focus is on calibrating voltage transformers: As DVP is interested in improving the 

accuracy of their linear state estimator, the primary focus of this research is on calibrating 

voltage instrument transformers. 

2) PMUs are placed on all buses that need to be calibrated: Since phasor measurements are 

used for calibrating the instrument transformers, it is necessary that a PMU is placed at the 

locations where calibration is needed. For the DVP system calibration was intended for the 

high-voltage network and PMUs were placed on all high-voltage buses. 

3) A connected tree is present: If {i, j} ∈ 𝐁 where 𝐁 is the set of buses whose voltages need to 

be calibrated, then for all i and j there has to be at-least one path connecting them (called 

constraint-approved path) such that all buses that lie between i and j belong to 𝐁. 

4) Some good quality measurement instruments are already present in the system: Typical 

examples are revenue quality meters that are placed on the tie-line buses that join two 
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utilities. 

5) Use of dual-use line relay PMUs (DULR PMUs) instead of traditional PMUs: DVP is 

placing dual-use line relay PMUs in their high-voltage network. While a traditional PMU 

installed at a particular bus is assumed to measure currents of all lines connected to that bus 

and voltage of that bus, a dual use line relay acting as a PMU when placed on a line measures 

the voltage of the bus that it is protecting and the current in that line. Thus, when choosing 

locations for good measurements, end-points of the lines were selected rather than the nodes. 

 

2.2.1 Formulation 

 

The objective here is to compute the voltage ratio errors when PMU errors are present and the 

practical constraints are satisfied. To do so, a modified version of eq. (2.6) was derived as shown 

below. Since the known voltage measurement at p is replaced by an unknown but relatively good 

measurement, eq. (2.4) becomes 

V⃗⃗ pm(j) = REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pV⃗⃗ p(j) ; V⃗⃗ qm(j) = REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

qV⃗⃗ q(j)

I pm(j) = REI⃗⃗ ⃗⃗ ⃗⃗  
pI p(j) ; I qm(j) = REI⃗⃗ ⃗⃗ ⃗⃗  

qI q(j)
                                                                              (2.9) 

However, since the p side voltage is a good quality measurement in comparison to the other 

normal measurements, REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
p is smaller than the other ratio errors. Now, if KV⃗⃗⃗⃗  ⃗p =

1

REV⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗
p
, KV⃗⃗⃗⃗  ⃗q =

1

REV⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗
q
, KI⃗⃗  ⃗p =

1

REI⃗⃗ ⃗⃗ ⃗⃗  ⃗
p
 and KI⃗⃗  ⃗q =

1

REI⃗⃗ ⃗⃗ ⃗⃗  ⃗
q
 are the ratio correction factors, then using eq. (2.9), for the jth 

measurement eq. (2.2) can be re-written as shown in eq. (2.10). 

z pqKI⃗⃗  ⃗pI pm(j) = W⃗⃗⃗ pqKV⃗⃗⃗⃗  ⃗pV⃗⃗ pm(j) − KV⃗⃗⃗⃗  ⃗qV⃗⃗ qm(j)

z pqKI⃗⃗  ⃗qI qm(j) = W⃗⃗⃗ pqKV⃗⃗⃗⃗  ⃗qV⃗⃗ qm(j) − KV⃗⃗⃗⃗  ⃗pV⃗⃗ pm(j)
                                                                              (2.10) 

where, W⃗⃗⃗ pq = (1 + bpqz pq). By dividing both equations in eq. (2.10) by KV⃗⃗⃗⃗  ⃗p and 

rearranging, we get eq. (2.11). 
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KV⃗⃗⃗⃗  ⃗q

KV⃗⃗⃗⃗  ⃗p
V⃗⃗ qm(j) +

KI⃗⃗  ⃗p

KV⃗⃗⃗⃗  ⃗p
z pqI pm(j) =  W⃗⃗⃗ pqV⃗⃗ pm(j)

KV⃗⃗⃗⃗  ⃗q

KV⃗⃗⃗⃗  ⃗p
 W⃗⃗⃗ pqV⃗⃗ qm(j) −

KI⃗⃗  ⃗q

KV⃗⃗⃗⃗  ⃗p
z pqI qm(j) = V⃗⃗ pm(j)

                                                                                  (2.11) 

Now, if N such measurements are made, where N > 2, then an over-determined set of 

equations can be written for the pi-section pq as shown in eq. (2.12). 

 

[
 
 
 
 
 
 
 
 V⃗⃗ qm(1) z pqI pm(1) 0

W⃗⃗⃗ pqV⃗⃗ qm(1) 0 −z pqI qm(1)

V⃗⃗ qm(2) z pqI pm(2) 0

W⃗⃗⃗ pqV⃗⃗ qm(2) 0 −z pqI qm(2)

⋮ ⋮ ⋮

V⃗⃗ qm(N) z pqI pm(N) 0

W⃗⃗⃗ pqV⃗⃗ qm(N) 0 −z pqI qm(N)]
 
 
 
 
 
 
 
 

⏞                          
𝐀1

[
 
 
 
 
 
KV⃗⃗⃗⃗⃗⃗ q

KV⃗⃗⃗⃗⃗⃗ p

KI⃗⃗⃗⃗ p

KV⃗⃗⃗⃗⃗⃗ p

KI⃗⃗⃗⃗ q

KV⃗⃗⃗⃗⃗⃗ p]
 
 
 
 
 

⏞
𝐱1

=

[
 
 
 
 
 
 
 
 W⃗⃗⃗
 
pqV⃗⃗ pm(1)

V⃗⃗ pm(1)

W⃗⃗⃗ pqV⃗⃗ pm(2)

V⃗⃗ pm(2)

⋮

W⃗⃗⃗ pqV⃗⃗ pm(N)

V⃗⃗ pm(N) ]
 
 
 
 
 
 
 
 

⏞        
𝐛1

                                    (2.12) 

Eq. (2.12) solves for the other ratio errors in pi-section pq with respect to the ratio error in 

voltage of bus p. This implies that for subsequent pi-sections, the estimates of the ratio errors will 

also be a function of KV⃗⃗⃗⃗  ⃗p. In order to accommodate for dual-use line relay PMUs and PMU errors, 

the following changes are made to eq. (2.12). 

 

Figure 2.2: Two pi-sections with dual-use line relays acting as PMUs 

 

1) When dual-use line relays are present: Let the two neighboring pi-sections be pq 

and qr  as shown in Fig. 2.2. The small rectangles depict the dual-use line relays while the 

dotted shapes at q indicate the possibility of an injection. For the pi-section pq shown in fig. 

2.2, eq. (2.12) will become eq. (2.13).  
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[
 
 
 
 
 
 
 
 V⃗⃗ qpm(1) z pqI pqm(1) 0

W⃗⃗⃗ pqV⃗⃗ qpm(1) 0 −z pqI qpm(1)

V⃗⃗ qpm(2) z pqI pqm(2) 0

W⃗⃗⃗ pqV⃗⃗ qpm(2) 0 −z pqI qpm(2)

⋮ ⋮ ⋮

V⃗⃗ qpm(N) z pqI pqm(N) 0

W⃗⃗⃗ pqV⃗⃗ qpm(N) 0 −z pqI qpm(N)]
 
 
 
 
 
 
 
 

⏞                            
𝐀2

[
 
 
 
 
 
 
 
 KV
⃗⃗⃗⃗  ⃗

qp

KV⃗⃗⃗⃗  ⃗pq

KI⃗⃗  ⃗pq

KV⃗⃗⃗⃗  ⃗pq

KI⃗⃗  ⃗qp

KV⃗⃗⃗⃗  ⃗pq]
 
 
 
 
 
 
 
 

⏞    
𝐱2

= 𝐛2                                                     (2.13) 

In eq. (2.13),  

𝐛2 = [W⃗⃗⃗ pqV⃗⃗ pqm(1) V⃗⃗ pqm(1) W⃗⃗⃗ pqV⃗⃗ pqm(2)V⃗⃗ pqm(2) … W⃗⃗⃗ pqV⃗⃗ pqm(N) V⃗⃗ pqm(N)]
T
  

Now, if V⃗⃗ q is the actual voltage of bus q then 

V⃗⃗ q = KV⃗⃗⃗⃗  ⃗qpV⃗⃗ qpm

V⃗⃗ q = KV⃗⃗⃗⃗  ⃗qrV⃗⃗ qrm
                                                                                                                               (2.14) 

Using eq. (2.14), a variable γ⃗ q can be defined where, 

γ⃗ q =
V⃗⃗ qrm

V⃗⃗ qpm
=
KV⃗⃗⃗⃗  ⃗qp

KV⃗⃗⃗⃗  ⃗qr
                                                                                                                       (2.15) 

If N measurements are made, then the complex quantity γ⃗ q can be calculated experimentally 

from the measurements of V⃗⃗ qpm and V⃗⃗ qrm as shown in eq. (2.16). 

γ⃗ q =
1

N
∑

V⃗⃗ qrm(j)

V⃗⃗ qpm(j)

N

j=1

                                                                                                                    (2.16) 

Then, since KV⃗⃗⃗⃗  ⃗qp as a function of KV⃗⃗⃗⃗  ⃗pq can be estimated from eq. (2.13), using γ⃗ q obtained 

from eq. (2.16), KV⃗⃗⃗⃗  ⃗qr can be computed using eq. (2.15). The KV⃗⃗⃗⃗  ⃗qr thus obtained (also as a function 

of KV⃗⃗⃗⃗  ⃗pq) can be used in the next pi-section (qr of Fig. 2.2). This process can then be repeated for 

subsequent pi-sections. 
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2) When PMU errors are present: In the presence of PMU errors in measurements, there will 

be further degradation in the quality of the estimates. The over-all deterioration in the quality is 

quantified by the growth in standard deviation of the difference in the actual ratio error and its 

estimate (defined sigma from henceforth). One contributing factor that was identified for this was 

the ill-conditioning of the 𝐀2 matrix of eq. (2.13). The ill-conditioning was reduced by splitting 

the impedance term in eq. (2.13) between 𝐀2 and 𝐱2. The resulting matrices 𝐀3 and 𝐱3 are shown 

in eq. (2.17). The   ̃ symbol over the measurements in eq. (2.17) indicate that PMU errors are 

embedded in them. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 V⃗⃗ qpm
̃(1) √z pq

2
I pqm
̃(1) 0

W⃗⃗⃗ pqV⃗⃗ qpm
̃(1) 0 −√z pq

2
I qpm
̃(1)

V⃗⃗ qpm
̃(2) √z pq

2
I pqm
̃(2) 0

W⃗⃗⃗ pqV⃗⃗ qpm
̃(2) 0 −√z pq

2
I qpm
̃(2)

⋮ ⋮ ⋮

V⃗⃗ qpm
̃(N) √z pq

2
I pqm
̃(N) 0

W⃗⃗⃗ pqV⃗⃗ qpm
̃(N) 0 −√z pq

2
I qpm
̃(N)

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏞                              
𝐀3

[
 
 
 
 
 
 
 
 KV⃗⃗⃗⃗  ⃗qp

KV⃗⃗⃗⃗  ⃗pq

√z pq
2 KI⃗⃗  ⃗pq

KV⃗⃗⃗⃗  ⃗pq

√z pq
2 KI⃗⃗  ⃗qp

KV⃗⃗⃗⃗  ⃗pq]
 
 
 
 
 
 
 
 

⏞        
𝐱3

= 𝐛3                                   (2.17) 

In eq. (2.17),  

𝐛3 = [W⃗⃗⃗ pqV⃗⃗ pqm
̃(1) V⃗⃗ pqm

̃(1) W⃗⃗⃗ pqV⃗⃗ pqm
̃(2) V⃗⃗ pqm

̃(2) … W⃗⃗⃗ pqV⃗⃗ pqm
̃(N) V⃗⃗ pqm

̃(N)]
T

  

As an example of the improvement in conditioning, typical condition numbers of the 𝐀2 

matrices of eq. (2.13) for different pi-sections were of the order of few thousands. By splitting the 

impedance term, as was done in eq. (2.17), the condition numbers of the 𝐀3 matrices for the same 

pi-sections were found to be below fifty. However, even after improving the conditioning of 𝐀3, 

due to their being only one reliable measurement, the results did not improve significantly. This 

was especially found to be true for estimating the ratio errors that were more than 3-4 pi-sections 

away from that reliable measurement. Therefore, it was realized that more reliable measurements 

must be added to the system.  
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Before identifying the optimal locations where good measurements can be added, the following 

Lemma is defined.  

Lemma 1: The advantage of adding multiple good measurements to a system is that as long 

as the measurements are independent, their combination will give a better estimate.  

Proof of Lemma 1: Let n measurements be made of an unknown quantity x. For the given 

problem, x is a scalar that denotes the standard deviation. Then for the kth measurement, we have 

zk = x + ek                                                                                                                                           (2.18) 

where e~N(0, σ2). The residual is given by (19). 

[𝐫]n×1 = x̂[𝟏]n×1− [𝐳]n×1                                                                                                                (2.19) 

In eq. (2.19), x̂ is the optimal estimate of x and [𝟏]n×1 is a n × 1 vector of ones. In order to 

find x̂, weighted least squares approach is used which minimizes [𝐫]T[𝐐]−1[𝐫] where [𝐐] is the 

error covariance matrix. On solving, the desired value of x̂ comes out to be 

x̂ =
[𝟏]Tn×1[𝐐]

−1[𝐳]n×1
[𝟏]Tn×1[𝐐]

−1[𝟏]n×1
                                                                                                                  (2.20) 

Then, the covariance of x̂ is given by 

cov(x̂) = E [
[𝟏]Tn×1[𝐐]

−1[𝐳]n×1[𝐳]
T
n×1[𝐐]

−1[𝟏]n×1

([𝟏]Tn×1[𝐐]
−1[𝟏]n×1)

2 ]                                                            (2.21) 

Simplifying the RHS of eq. (2.21) gives 

cov(x̂) =
1

([𝟏]Tn×1[𝐐]
−1[𝟏]n×1)

                                                                                                    (2.22) 

Now, if measurements are independent, [𝐐] = diag(σk
2) and so [𝟏]Tn×1[𝐐]

−1[𝟏]n×1 =

∑
1

(σk)2
n
k=1  which gives 

cov(x̂)independent =
1

1
(σ1)

2 +
1

(σ2)
2 +⋯

1
(σn)

2

                                                                           (2.23) 

Therefore, as long as the measurements are independent, the net variance will be lower than 
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the variance of the individual measurements; thereby resulting in an improvement of the over-all 

estimate. For example, let measurements be made independently of end-point v from good 

measurements located at end-points u and w. Now, if the sigma of the difference between the 

actual ratio error and its estimate at v for u and w be σvu and σvw, respectively, then the combined 

sigma at end-point v denoted by σv is 

σv = √

1

1
(σvu)

2 +
1

(σvw)
2

2                                                                                                                    (2.24) 

From eq. (2.24), it is easy to see that σv < σvu and σv < σvw. 

However, if the n measurements are not independent then the resulting covariance of x̂ is a 

function of the correlation between the measurements. In the context of the given problem, 

dependence occurs only when there is more than one constraint-approved path to reach one end-

point from another end-point. However, since the degree of correlation between parallel paths is 

difficult to compute in practice, a definite upper-bound on the value of the net variance is obtained 

based on the premise that being able to observe a particular entity by a different path can only 

increase the over-all accuracy (and not decrease it). Therefore, the net-variance is set equal to the 

minimum variance obtained along any one of the parallel paths as shown in eq. (2.25).      

cov(x̂)dependent = min(σk
2) for k = {1, 2,… n}                                                                         (2.25) 

For example, let measurements be made of end-point v from the good measurement located at 

end-point u via paths 1 and 2. Now, if the sigma of the difference between the actual ratio error 

and its estimate at v for u via paths 1 and 2 are σvu1 and σvu2, respectively, where σvu2 > σvu1 

then the combined sigma at end-point v due to the good measurement at u denoted by σvu is 

σvu = σvu1                                                                                                                                            (2.26) 

On the basis of Lemma 1, the calibration problem reduces to choosing optimal locations for 

adding good measurements to the network. This can be done through a binary integer programming 

(BIP) formulation as shown below.  

Let the connected undirected graph of buses whose voltages need to be calibrated be described 

by 𝓖(𝐕, 𝐄) where 𝐕 is the set of vertices, and 𝐄 is the set of edges. Let [𝐒] be a 2|𝐄| × 2|𝐄| matrix 
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whose columns correspond to the locations where the good measurements can be placed and whose 

rows denote the standard deviation obtained for all the other locations with respect to a good 

measurement at the column to which the row belongs to. Let [𝐗init] be a 2|𝐄| × 1 binary integer 

matrix such that the indices of the non-zero entries of [𝐗init] denote locations of initial good 

measurements. Also, let the variable T denote the value below which all the standard deviation 

must lie. Then, the objective of the optimization problem is the minimization of the L1 − norm of 

a 2|𝐄| × 1 binary integer matrix [𝐗] such that the indices of the non-zero entries of [𝐗] denote 

locations of good measurements. The constraints further imposed on this objective are given by 

eqs. (2.27) - (2.28). 

[𝐀]2|𝐄|×2|𝐄|[𝐗]2|𝐄|×1 ≥ [𝐁]2|𝐄|×1                                                                                                       (2.27a) 

where 

𝐀(i, j) =
1

(𝐒(i, j))2
          

[𝐁]2|𝐄|×1 =
1

T2
[𝟏]2|𝐄|×1

                                                                                                                       (2.27b) 

[𝐗init]
T
2|𝐄|×1

[𝐗]2|𝐄|×1 = nnz([𝐗init]2|𝐄|×1)                                                                                     (2.28) 

Eq. (2.27) ensures that the combined standard deviation are below the desired threshold while 

eq. (2.28) guarantees that the locations of the initial good measurements are retained and accounted 

for in the final solution. 

The flowchart based on this BIP formulation for finding the optimal locations is shown in fig. 

2.3 and described below in more details.  

Step 1: Find good measurements initially present in the system. If there are no good 

measurements initially present, then GO TO Step 5. 

Step 2: Taking one good measurement at a time, find standard deviation for end-points that 

are P pi-sections away from the end-point where the good measurement is placed. 

Step 3: For the initial good measurements, find combined standard deviation for all end-points 

using eq. (2.22). Call initial set of good measurement end-points as the Starting Set. 

Step 4: Define T0 as the pre-defined threshold for the standard deviation, where T0 is a constant 
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scalar quantity independent of the test systems. If the maximum  of the combined standard 

deviation for all end-points computed based on the Starting Set is less than T0, then no more good 

measurements need to be added to the system; GO TO Step 12. 

Step 5: For all the end-points that do not have good measurements initially, taking one end-

point at a time, find standard deviation for end-points that are P pi-sections away from that end-

point by assuming that a good measurement will be placed only on that end-point.  

Step 6: In presence of dependent measurements, find net standard deviation using eq. (2.25). 

Step 7: Set T = T0. 

Step 8: Perform the optimization using eqs. (2.27) - (2.28). This gives the minimum number 

of good measurements that must be present in the system to keep the standard deviation for all the 

end-points below T0. 

Step 9: Reduce T by a small amount (say 1%). 

Step 10: Re-do the optimization using eqs. (2.27) - (2.28). If the number of good measurements 

required is equal to the number obtained in Step 8, then GO TO Step 9. 

Step 11: The location set corresponding to the smallest value of T (called Tmin) for which the 

number of good measurements is equal to the number of good measurements obtained in Step 8 

is the best location set. 

Step 12: Stop. 

Steps 1-4 of the flowchart cater to the initial good measurements present in the system. The 

optimal number of good measurements is computed in Steps 5-8. Steps 9-11 increase the 

robustness of the solution. The results obtained by applying this methodology to different test 

systems are described next. 
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Start

Are good measurements 
initially present?

For individual good measurements, find sigmas for other end-
points using eq. (2.17)

Find combined sigmas for all end-points using eq. (2.22)

Are combined sigmas for all 
end-points below     ?

Taking one end-point at a time, find sigmas for other end-
points by assuming a good measurement at only that end-point

Set T =    and using eqs. (2.27)-(2.28) find minimum number of 
good measurements required to keep sigmas for all end-points 

below T

Lower T by a small amount and re-do the optimization using 
eqs. (2.27)-(2.28) to find new number of good measurements 

required

Is new number of good 
measurements greater than 

minimum number?

Location set corresponding to lowest T value (         ) for which 
new number of good measurements is equal to the minimum 

number is the best location set 

Stop

No

Yes

No

Yes

Yes

No

In presence of dependent measurements, find net sigmas using 
eq. (2.25)

 
Figure 2.3: Flowchart for finding optimal locations of good quality measurements 
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2.2.2 Simulations and Results 

 

The IEEE-118 bus system and the IEEE-300 bus system were selected for the analysis done 

here. The characteristics of the test systems which make them relevant for this study are that both 

the systems have a distinct high voltage (HV) network which forms the backbone of the respective 

systems; also the IEEE-300 bus system has closed loops in it, which makes dependent 

measurements possible. For illustration purposes, the HV network of the IEEE-118 and 300 bus 

systems are shown in figs. 2.4 and 2.5.  

 

 

Figure 2.4: High-voltage network of IEEE-118 bus system 
 

 

Figure 2.5: High-voltage network of IEEE-300 bus system 
 

For each system, the simulation was run 1000 times to generate the standard deviation. During 

each run, for every measurement a different ratio error was picked at random from the range given 

in [25]. Moreover, for every run, 12 different operating conditions were created, that is N = 12. 

The perfect measurements were assumed to have no ratio errors or PMU errors in them. The 

smaller ratio errors of the good quality measurements were chosen from a uniform distribution 

having zero mean and standard deviation of 0.15% for magnitudes and 0.1° for angles [25]. All 

PMU errors were chosen from a Gaussian distribution having zero mean and standard deviation of 

0.2% for magnitudes and 0.104° for angles. It was assumed in the simulations that the standard 

deviation were to be kept below 1%. Accordingly, T0 was set at 0.01. The test system data can be 

found in the MATPOWER [47] toolbox of MATLAB [48], while the integer optimization was 

performed using GUROBI [49]. The results obtained are as follows. 
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Fig. 2.6 depicts the growth in standard deviation if one reliable measurement (either good 

quality or perfect quality) is placed at different locations in the IEEE-118 and 300-bus systems. In 

order to create fig. 2.6, all possible locations where a reliable measurement could be placed were 

initially identified. For instance, the IEEE-118 bus system had 20 such locations (either end of the 

ten HV lines shown in fig. 2.4). Then taking one location at a time, the standard deviation were 

computed for all the other locations by assuming that the reliable measurement was placed only at 

that location. So, for the IEEE-118 bus system, the whole set-up (1000 runs with randomly chosen 

ratio errors for 12 sets of measurements) was repeated 20 times with the reliable measurement at 

one of those 20 locations at each time.  

 

Figure 2.6: Growth of standard deviation (σ) when only one reliable measurement is present in the systems; 

the dashed line shows the pre-defined threshold (𝐓𝟎) of 0.01 

 

From fig. 2.6, it is realized that good quality and perfect quality measurements have similar 

performances (almost all dots lay inside circles). Another observation that is made from fig. 2.6 is 

that one reliable measurement is not able to keep most of the standard deviation below 0.01 beyond 

3-4 pi-sections. This observation is important because it meant that it was not necessary to compute 

standard deviation for end-points that were far away as their combination would not have 

significant influence on the net variance. This theory was further tested for the IEEE-300 bus 

system and the results obtained are shown in Table 2.1. 
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TABLE 2.1: OPTIMAL LOCATIONS OF GOOD MEASUREMENTS FOR DIFFERENT PI-SECTION LENGTHS OF IEEE-300 

BUS SYSTEM 

All pi-section 4 pi-section 5 pi-section 6 pi-section 7 pi-section 8 pi-section 

4-16 4-16 4-16 4-16 4-16 4-16 

36-16 16-4 16-4 28-36 36-40 36-16 

28-36 36-28 36-33 40-68 28-36 28-36 

68-173 28-36 28-36 242-173 242-173 68-173 

242-173 242-173 242-173 198-173 216-198 242-173 

 210-169 210-216    

      

0.0094 0.0087 0.0085 0.0098 0.0095 0.0094 
 

 

Table 2.1 compares the optimal locations obtained when standard deviation for all pi-section 

lengths are considered, and when standard deviation up to 4 to 8 pi-section lengths are considered. 

An entry i − j in Table 2.1 means that the good measurement is placed on the i end of line i − j. 

The location of the initial good measurements are shown in red. They were so chosen because the 

ith node of those lines was connected to only one other node of the network (the jth node). 

Therefore, in all practicality, they could be assumed to be the tie-lines that join the test system with 

its neighbors, with the ith nodes becoming the tie-line buses. The numbers in the disconnected row 

of Table 2.1 indicate the value of Tmin obtained for the location set given in the corresponding 

column. From the table it is realized that the numbers and locations are identical for all pi-section 

and 8 pi-section lengths. This meant that standard deviation computed up to a length of 8 pi-

sections was sufficient for finding optimal locations where new good measurements can be added. 

This result is particularly important for large systems where it is computationally complex to 

consider all possible pi-section lengths. 

In the final set of simulations, the optimal locations for adding good quality measurements for 

both test systems were computed using the proposed approach. Table 2.2 shows the results 

obtained with the disconnected row listing the Tmin values for both the systems.  

TABLE 2.2: OPTIMAL LOCATIONS OF GOOD MEASUREMENTS FOR TEST SYSTEMS 

118-Bus System 300-Bus System 

10-9 4-16 

30-26 36-16 

63-64 28-36 

 68-173 

 242-173 

  

0.0073 0.0094 
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The results of Table 2.2 are also validated by fig. 2.7. In fig. 2.7, the dots correspond to the 

standard deviation while the dashed line depicts T0. From the figure it becomes clear that by using 

the proposed approach the growth in standard deviation has been contained for both the systems. 

 

Figure 2.7: All the standard deviations (σ) for both test systems are below the pre-defined threshold (𝐓𝟎) 

where 𝐓𝟎 = 𝟎.𝟎𝟏 

 

This chapter presents a methodology for calibrating voltage transducers without having to take 

them off-line, in the presence of PMU errors and a good quality VT at a tie-line. The complications 

thus introduced were resolved by placing multiple good quality measurements at optimal locations 

inside the network so that all calibration errors stay below a desired threshold. The results indicate 

that the methodology described here provides a simple and effective solution to the online VT 

calibration problem.  

The next chapter talks about a new methodology for online calibration of both VTs and CTs 

in the presence of PMU errors and starting from good quality VTs at the tie-lines.  
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CHAPTER 3: A NEW APPROACH TO INSTRUMENT TRANSFORMER CALIBRATION 

 

In the field of power engineering, calibration has a variety of applications [28]-[45]. Improving 

instrument transformer’s performance is one such application. This chapter describes one such 

method to calibrate both VTs and CTs.  

In order to get a feel of what the data in real systems look like, field data obtained from a utility 

for a 500 kV network were plotted in the complex plane as shown in figs. 3.1 and 3.2. These are 

the plots of the data obtained from a utility plotted in the complex plane.  

 

Figure 3.1(a): Field data-Voltages 
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Figure 3.1(b): Field data-Voltages (magnified view) 

 

 

Figure 3.2(a): Field data-Currents 
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Figure 3.2(b): Field data-Currents (magnified view) 

 

Analyzing these plots, an error of a constant value is observed between consecutive 

measurements. This error is introduced due to the standards applied on the analog to digital 

convertors present in the PMUs [46]. The data plotted here shows the presence of a quantized 

difference of 20 𝑉 in the voltage plots and 0.64 𝐴 in the currents. The presence of these errors 

have been explained in the next section. 

 

3.1 Error Model  

 

It has been observed from real world data that there exists some error in both the voltages and 

currents measured by PMUs. These errors can, in turn, be divided into two components, ratio errors 

arising from the instrument transformers and PMU errors introduced by the PMUs. The instrument 

transformers are essentially step-down transformers used to step down high-voltages/currents from 

the transmission lines to low voltages/currents suitable for the PMU devices, as these devices have 

electronic components which can only handle very low voltages/currents. The nominal transformer 
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ratios mentioned on the nameplates of the transformers do not remain constant over a period of 

time. They change due to various external factors such as age, weather conditions, etc, thus 

introducing an error termed as the ratio error.  

The PMUs, on the other hand, have errors which have been observed to be quantization errors. 

In most commercially available PMUs, the output is of 16-bits. 1 bit out of the 16-bits is used to 

store the signs of the phasors. For the case of voltage transformers, 1 extra bit is also saved for 

determining if there an overvoltage, thus leaving 14 bits for the rest of its operation. Thus, the 

quantization error present in voltage measurements at the 500 𝑘𝑉 level is calculated to be ∆𝑉 =

500 𝑘𝑉/(√3 × 214)  ~ 20 𝑉. In the case of current transformers that extra bit is not required. For 

ease of understanding, a fault current of 20 𝑘𝐴 has been assumed here. The quantization error 

present in current measurements is calculated to be ∆𝐼 = 20 𝑘𝐴/215~ 0.64 𝐴. These values of 

quantization error are supported by the field data obtained from a certain utility. Hence, these are 

the values which have been used for all the simulations done in this thesis.  

 

3.2 PMU data based Voltage & Current Transformer Calibration  

 

Majority of PMUs used in industries now a days are DULR PMUs. These instruments serve 

dual purposes and the following explanation is given on the basis of these devices. It is assumed 

here that DULR PMUs are placed on all transmission lines present in the high voltage network.  

For ease of explanation, a single pi-section (fig.3.4) has been used for illustration purposes. 

The voltage transformer on end 𝑝 is a revenue quality instrument transformer (for the simulations 

done for this thesis, 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = ±0.15% and 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒 = ±0.104°).  

In order to find the ratio errors of the instrument transformers on the side 𝑞 as well as calculate 

the ratio errors for the current transformer on side 𝑝, the following set of equations are solved.  
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Figure 3.3: Two-bus 𝝅-network model of the power system 
 

Vpqm
=  Vpq × REVpq  ⇒  Vpq =  

Vpqm
REVpq

=  Vpqm
× KVpq                                                          (3.1) 

Vqp = 
Vqpm
REVqp

=  Vqpm
× KVqp                                                                                                             (3.2) 

Ipq =  
Ipqm
REIpq

= Ipqm
× KIpq                                                                                                                 (3.3) 

Iqp =  
Iqpm
REIqp

= Iqpm
× KIqp                                                                                                                 (3.4) 

The voltages and currents with subscript 𝑚 are the voltages and currents measured by the 

DULR PMUs, while the other voltages and currents in the above equations are the original values 

of voltages and currents, in the absence of ratio errors. It is important to mention here that the 

quantization errors are already present, since the values are obtained from PMUs. 𝑅𝐸𝑉s are the 

ratio errors in the voltages while 𝑅𝐸𝐼s are the ratio errors in the currents. The inverse of the ratio 

errors are referred to as ratio correction factors and denoted by 𝐾𝑉s and 𝐾𝐼s, respectively. Using 

Kirchhoff’s Laws on the pi-section, we get, 

[
Ipq
Iqp
] = [

𝑏𝑝𝑞 + 𝑦𝑝𝑞 −𝑦𝑝𝑞
−𝑦𝑝𝑞 𝑏𝑝𝑞 + 𝑦𝑝𝑞

] [
Vpq
Vqp
] =  

[
 
 
 
 𝑏𝑝𝑞 +

1

𝑧𝑝𝑞
−
1

𝑧𝑝𝑞

−
1

𝑧𝑝𝑞
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞]
 
 
 
 

[
Vpq
Vqp
]                                  (3.5) 

Eq. (3.5) can be re-written for ease of calculation, as shown below. Taking the transpose of eq. 

(3.5), 
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[Ipq Iqp] =  [Vpq Vqp]

[
 
 
 
 𝑏𝑝𝑞 +

1

𝑧𝑝𝑞
−
1

𝑧𝑝𝑞

−
1

𝑧𝑝𝑞
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞]
 
 
 
 

                                                                (3.5(𝑎))  

This equation is in the form 𝐀𝐗 = 𝐁, where 𝐀 = [Vpq Vqp], 𝐗 =  [
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞
−

1

𝑧𝑝𝑞

−
1

𝑧𝑝𝑞
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞

] 

and 𝐁 = [Ipq Iqp] . Multiplying the inverse of [
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞
−

1

𝑧𝑝𝑞

−
1

𝑧𝑝𝑞
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞

] on both sides of eq. 

(3.5(a)),  

[Ipq Iqp]

[
 
 
 
 𝑏𝑝𝑞 +

1

𝑧𝑝𝑞
−
1

𝑧𝑝𝑞

−
1

𝑧𝑝𝑞
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞]
 
 
 
 
−1

=  [Vpq Vqp]                                                                (3.5(𝑏)) 

Eq. (3.5(b)) also takes the form 𝐀𝐗 = 𝐁, where 𝐀 =  [Ipq Iqp], 𝐗 =

 [
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞
−

1

𝑧𝑝𝑞

−
1

𝑧𝑝𝑞
𝑏𝑝𝑞 +

1

𝑧𝑝𝑞

]

−1

and 𝐁 =  [Vpq Vqp].  

𝐗 in eq. (3.5(a)) is the admittance matrix while in eq. (3.5(b)) it is the impedance matrix. To 

solve these equations, it is best to use the impedance matrix instead of the admittance matrix, since 

the 𝐀 matrix in eq. (3.5(b)) has a better condition number than that in eq. (3.5(b)), as shown in fig. 

3.5.  
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Figure 3.4: A Comparison of condition numbers when 𝑨 is voltages (blue) instead of currents (red) 

 

Next, replacing the actual voltages and currents by the measured quantities as shown in eq. 

(3.1) to (3.4) in eq. (3.5(b)), and solving the same we can get an equation of the form 𝐀𝐗 = 𝐁 as 

shown in eq. (3.6). 

[Ipqm
Iqpm]

[
 
 
 
 (

(bpqzpq + 1)

bpq(bpqzpq + 2)
) (
kIpq

kVpq
) (

1

bpq(bpqzpq + 2)
) (
kIqp

kVpq
)

(
1

bpq(bpqzpq + 2)
) (
kIpq

kVqp
) (

(bpqzpq + 1)

bpq(bpqzpq + 2)
) (
kIqp

kVqp
)
]
 
 
 
 
−1

= [Vpqm
Vqpm]                                                                                                                                        (3.6) 

Replacing bpqzpq + 1 by wpq for simplification, we get eq. (3.7). 

[Ipqm
Iqpm]

[
 
 
 
 (

wpq

bpq(wpq + 1)
)(
kIpq

kVpq
) (

1

bpq(wpq+ 1)
)(
kIqp

kVpq
)

(
1

bpq(wpq + 1)
)(
kIpq

kVqp
) (

wpq

bpq(wpq+ 1)
)(
kIqp

kVqp
)
]
 
 
 
 
−1

=  [Vpqm
Vqpm]                                                                                                                                      (3.7) 

Thus the equation can be written as 𝐈𝐦𝐙𝐦 = 𝐕𝐦, i.e. 𝐀 = 𝐈𝐦, 𝐗 = 𝐙𝐦 and 𝐁 =  𝐕𝐦. As the 

measured values of the phases are known, we have the matrices 𝐀 and 𝐁 are known completely 

while the matrix 𝐗 is unknown. The best way to solve this equation is to solve for 𝐗 in the least-

squares sense. This is done in MATLAB using the command 𝑙𝑠𝑐𝑜𝑣 as shown in eq. (3.8).  
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{Condition numbers for A 
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𝐙𝐦 = lscov (𝐈m, 𝐕m) = [
𝑎0 𝑏0
𝑐0 𝑑0

]                                                                                                        (3.8) 

Eq. (3.7) is a versatile equation. It can be molded according to the requirement of the utility. 

In a utility, the tie-lines normally have revenue quality metering. Starting from such instrument 

transformers the high voltage network of the utility can be calibrated using this equation. If there 

are good quality voltage transformers available, both the voltage and current of the entire network 

can be calibrated, provided we know the line parameters. On the other hand, in the presence of a 

good quality current transformer along with a good voltage transformer, the line parameters can 

be estimated as well. 

 

3.2.1 Voltage and Current Transformer Calibration 

 

In the pi-section model shown in fig. 3.3, if 𝑝 is an end of a tie-line, then the voltage transformer 

at that bus will be revenue quality. If the line parameters are known, then solving eqs. (3.7) and 

(3.8), the following equations can be obtained. 

KIpq = 𝑎0KVpq (
bpq(wpq + 1)

wpq
)                                                                                                       (3.9)  

KIqp =  𝑐0KVpq (bpq(wpq + 1))                                                                                                      (3.10)  

KVqp =   
KIpq

𝑏0
(

1

bpq(wpq + 1)
) =   (

𝑎0

𝑏0
) KVpq(wpq )                                                                 (3.11)  

In any network, one pi-section is connected to the next. Once the first pi-section has been 

solved, as shown above, the process of moving to the next one to estimate the ratio errors in the 

other PMUs is shown below.  
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Figure 3.5: Two pi-sections with dual-use line relays acting as PMUs 
 

Using fig.3.6 as an illustration, the true voltage at the node 𝑞 should be the same, seen from 

any direction. But, due to the presence of ratio errors, that will not be the case for the measured 

phasors. To overcome this issue, a new term, γ, has been introduced. γ is the ratio of the two 

voltages obtained by the two DULR PMUs on either side of the node 𝑞. 

γ =  
Vqpm
Vqrm

=  
Vqp × REVqp

Vqr × REVqr
=
REVqp

REVqr
 {𝑆𝑖𝑛𝑐𝑒 Vqp = Vqr = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑞}    (3.12)  

Solving eqs. (3.11) and (3.12), the following equation can be obtained. 

REVqr = 
REVqp

γ
=  REVqp × 

Vqrm
Vqpm

                                                                                                  (3.13) 

Thus this process can be repeated and the entire network can be solved by moving from one 

pi-section to the next.  

 

3.2.2 Simulation and Results for Voltage and Current Transformer Calibration 

 

For the problem solved here, data for the morning load pickup has been assumed, which has 

unknown ratio errors and quantization errors. Ratio errors normally remain constant for an 

extended period of time, like over a period of six months. Quantization is modeled as additive 

noise in signal processing [14] but the signals change rapidly and over large ranges. As such, a 

staircase like data plot is obtained. To get a smooth data set, the data has been interpolated and this 

new data has been used to perform the rest of the calculation.  
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For simulation purposes, the IEEE 118 bus and 300 bus systems have been used to demonstrate 

the logic developed. The data for both these systems was created using MATPOWER [47]. This 

was assumed to be the actual data. The measured data was created from this data by introducing 

random ratio errors in the range of ± 0.15% for magnitude and ± 0.104° for angle in the good 

quality voltage measurement placed at bus 10, while the random ratio errors introduced had a range 

of ± 6% for magnitude and ± 4° for angle in the rest of the voltage measurements and ± 10% for 

magnitude and ± 6.67° for angle in all of the current measurements. Next, the quantization errors 

were introduced, as discussed in section 3.1 of this chapter. Eqs. (3.9) through (3.11) were then 

applied to this “measured data” to be able to get an estimate of the ratio errors. Once the ratio 

errors are estimated, they are compared to the original ratio errors that had been originally 

introduced into the data. The errors in estimating ratio errors is calculated from there and then the 

standard deviation (σ) of these errors are calculated. The plots thus obtained for standard deviation 

of the ratio errors for both voltage and current transformers have been shown below.  

Figs. 3.7 and 3.8 show the standard deviation of the ratio errors in all the voltage transformers 

placed on the high-voltage networks of the IEEE 118 and 300 bus systems. As is seen in the plots, 

the standard deviation of the ratio errors are well within the pre-defined threshold of 0.01 𝑜𝑟 1%. 

It has been assumed that there exists one good quality voltage transformer at bus 10 for the IEEE 

118 bus system and one at bus 242 for the IEEE 300 bus system, which is one end of a tie line. 

The rest of them have been estimated using this knowledge. 

Figs. 3.9 and 310, on the other hand, show the ratio errors present in all the current transformers 

associated with the high voltage networks, again, for both the test systems, with only one good 

quality voltage measurement present in the system. These plots, however, show that there are two 

instrument transformers in each system which have ratio errors well above the threshold 

of 0.01 𝑜𝑟 1%. Though the rest of them lie within the threshold, these outliers may cause 

computational complication down the line.  
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Figure 3.6: Standard deviation (σ) of the ratio errors in voltage transformers of the IEEE 118 bus system with 

good quality measurements only at bus 10 

 

 

Figure 3.7: Standard deviation (σ) of the ratio errors in voltage transformers of the IEEE 300 bus system with 

good quality measurements only at bus 242 
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Figure 3.8: Standard deviation (σ) of the ratio errors in current transformers of the IEEE 118 bus system 

with good quality measurements only at bus 10 

 

 

Figure 3.9: Standard deviation (σ) of the ratio errors in current transformers of the IEEE 300 bus system 

with good quality measurements only at bus 242 
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The reason behind this anomaly was identified to be the line parameters of some particular pi-

sections. Due to extremely low impedance values in the lines, the ratio errors in the current 

transformers rose rapidly. Such kind of line parameters will not be observed in real systems. In 

these test systems, for the ease of simulations, some step-up transformers have been represented 

as high voltage transmission lines. Though, in real systems, this issue should not arise, since in 

real systems, the currents passing through these transformers will be monitored. As a result, they 

can be treated as injections into the high voltage network. For the rest of this thesis, all such pi-

sections have been treated as injections and not real pi-sections. 

Most real life systems have more than one tie-line. Thus in most systems, there will be more 

than one revenue quality voltage transformers present. This aids the process of calibration further. 

To illustrate this point, the IEEE-300 bus system has been calibrated in the presence of two good 

voltage quality measurements and the results have been shown in the following plots. 

 

Figure 3.10: Standard deviation (σ) of the ratio errors in voltage transformers of the IEEE 300 bus system 

with good quality VT at bus 242 and bus 28 
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Figure 3.11: Standard deviation (σ) of the ratio errors in current transformers of the IEEE 300 bus system 

with good quality VT at bus 242 and bus 28 

 

The next chapter talks about yet another derivative of the calibration method developed in this 

chapter, which calibrates all the instrument transformers of a network with only one good quality 

measurement at a tie-line even when the data obtained from the field is incomplete or has some 

garbage values in it. 
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Chapter 4: Calibrating Instrument Transformers in Presence of Incomplete 

Data 

 

To maintain an optimal economic balance between demand and supply, utilities often have to 

take some lines off the grid.  At other times certain lines need to be taken offline for the purpose 

of maintenance as well. As such it gets extremely difficult to collect and store the data for an entire 

transmission network at any point in time. That is, some of the data is either missing or tainted (for 

example voltage magnitude of in-service buses ≤ 0,  voltage or current angles = 9999 etc.). 

Therefore, it is a very rare occurrence that all the instrument transformers of the transmission 

network will be calibrated in one go.  

The biggest challenge that arises from insufficient data availability is calibrating the voltage 

and current transformers of the entire high voltage network in the presence of only one good quality 

voltage transformer placed at the end of a tie-line. So far all the methods discussed in this thesis 

required a connected tree for their calculation processes. Unfortunately, with insufficient or 

garbage data, the connected tree can no longer be formed at any given point in time. This chapter 

describes a method to work around the missing or garbage data problem in order to calibrate the 

entire high voltage network. 

 

4.1 Methodology 

 

For the issue at hand, all the line parameters of the transmission system must be known, as 

well as the position of the good quality voltage transformer. The error model used in this chapter 

is the same as the one developed in the previous chapter. Also, all the PMUs used are DULR 

PMUs.  

When a utility collects data, there are certain pockets of data missing since certain lines are out 

of service. The method developed in this chapter evaluates the ratios of ratio errors of individual 

pi-sections, irrespective of the presence or absence of a connected tree. It looks for the two voltages 

and two currents for a pi-section available at a given time and solves for that particular pi-section 

and stores the results. It keeps repeating the process for the data collected over the period of days 

or weeks. Once it solves for all the pi-sections in the entire network, at different times, it puts the 
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solution together like a jigsaw puzzle and provides a look at the entire network which is now 

calibrated completely. 

The proposed methodology is described as follows. To solve for the pi-section shown in fig. 

3.4, the basic data required are V⃗⃗ pqm
, V⃗⃗ qpm

, I pqm
 and I qpm

, i.e., the measured values of voltages 

and currents from either ends of the pi-section.  Now, only one group of the measured values of 

these four quantities is not enough. For the calculations done in this chapter, a set of 𝑚 data points 

for each quantity over a period of ℎ hours was assumed to be available.  If the good voltage 

measurement is placed at 𝑝, the ratio errors can be calculated as shown in equations (3.1) to (3.4). 

The field data obtained from a utility is loaded, as it is, into the database. When the database 

encounters voltage magnitude values for in-service buses as zero, near-zero, or negative, or if the 

current or voltage angles are found to be 9999, then it identifies those values as garbage. Such 

inappropriate values along with missing data points are replaced by NaN (not a number) in the 

database. From this modified information it is found out which pi-sections in the network can be 

solved, i.e., a set of at least 𝑚 data points for each of the four quantities needed to solve a pi-

section are available (these data points have to be spread out evenly and not consecutive in order 

to be able to calibrate the system without running into numerical problems). The pi-section in 

question can then be solved by using the eqs. (3.5) through (3.8). For ease of calculation, eqs. (3.9) 

through (3.11) are modified as shown below. 

Eq. (3.9) can be modified into:  

KI⃗⃗  ⃗pq =  𝑎0KV⃗⃗⃗⃗  ⃗pq (
b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1)

w⃗⃗⃗ 𝑝𝑞
)   𝑜𝑟  REI⃗⃗ ⃗⃗ ⃗⃗  

pq  =  
REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

pq

𝑎0
(

w⃗⃗⃗ 𝑝𝑞

b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1)
)                            (4.1𝑎) 

Hence,  

REI⃗⃗ ⃗⃗ ⃗⃗  
pq

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq

 =  
1

𝑎0
(

w⃗⃗⃗ 𝑝𝑞

b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1)
)                                                                                                          (4.1𝑏) 

Similarly, eq. (3.10) can be modified as: 

KI⃗⃗  ⃗qp =  𝑐0KV⃗⃗⃗⃗  ⃗pq (b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1))  𝑜𝑟 REI⃗⃗ ⃗⃗ ⃗⃗  
qp = 

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq

𝑐0
 (

1

b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1)
)                                (4.2𝑎) 
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Hence, 

REI⃗⃗ ⃗⃗ ⃗⃗  
qp

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq

= 
1

𝑐0
 (

1

b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1)
)                                                                                                           (4.2𝑏) 

Finally, eq. (3.11) can be modified into: 

KV⃗⃗⃗⃗  ⃗qp =  
kI⃗⃗  ⃗pq

𝑏0
(

1

b⃗ pq(w⃗⃗⃗ 𝑝𝑞 + 1)
) =   (

𝑎0

𝑏0
) kV⃗⃗ ⃗⃗ pq (

1

w⃗⃗⃗ 𝑝𝑞
 ) 𝑜𝑟 REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

qp = (
𝑏0

𝑎0
)REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

pqw⃗⃗⃗ 𝑝𝑞          (4.3𝑎) 

Hence,  

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qp

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq

=  (
𝑏0

𝑎0
) w⃗⃗⃗ 𝑝𝑞                                                                                                                                (4.3𝑏) 

The above equations explain the process of solving the first pi-section that has the good quality 

voltage measurement at 𝑝. But, this is also how the other pi-sections are individually solved as 

well. To explain this further, the second pi-section of fig. (3.6) is considered. If, for example, in 

the data collected for a particular day does not have enough data for the pi-section 𝑝𝑞 to be solved, 

but 𝑞𝑟 can be solved, the eqs. (4.1) though (4.3) can be modified as follows. 

REI⃗⃗ ⃗⃗ ⃗⃗  
qr

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qr

 =  
1

𝑎1
(

w⃗⃗⃗ 𝑞𝑟

b⃗ qr(w⃗⃗⃗ 𝑞𝑟 + 1)
)                                                                                                             (4.4) 

REI⃗⃗ ⃗⃗ ⃗⃗  
rq

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qr

=  
1

𝑐1
 (

1

b⃗ qr(w⃗⃗⃗ 𝑞𝑟 + 1)
)                                                                                                             (4.5) 

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
rq

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qr

=  (
𝑏1

𝑎1
) w⃗⃗⃗ 𝑞𝑟                                                                                                                                   (4.6) 

where, [
𝑎1 𝑏1
𝑐1 𝑑1

] =  lscov (Iqr𝑚
, Vqr𝑚

) =  𝐙𝐪𝐫𝒎
  

Here, the ratio errors of this pi-section have all been calculated with respect to the one for the 

voltage transformer on the end 𝑞𝑟. Once all the pi-sections have been solved in this manner, the 

results can be put together to form the picture of the entire high voltage network.  

Now, from eq. (3.12), it is known that, 
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γ⃗ =  
V⃗⃗ qpm

V⃗⃗ qrm

=  
REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

qp

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qr

 𝑜𝑟 REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qr = REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

qp (
V⃗⃗ qrm

V⃗⃗ qpm

)                                                                         (4.7)   

Dividing eq. (4.7) by REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq,  

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
qr

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq

= 
REV⃗⃗⃗⃗ ⃗⃗⃗⃗  

qp

REV⃗⃗⃗⃗ ⃗⃗⃗⃗  
pq

(
V⃗⃗ qrm

V⃗⃗ qpm

)                                                                                                                       (4.8) 

Therefore, using eq. (4.8), the ratio errors of the second pi-section can be found with respect 

to that of the good voltage measurement at 𝑝. This process can be repeated as many times as needed 

to solve for the entire network. The simulations done in this thesis were all run in MATLAB, and 

they have been discussed in details in the next section along with the results that were obtained. 

 

4.2 Simulation and Results  

 

The method developed in the previous section has been demonstrated here with the help of 

two test systems, the high voltage networks of the IEEE 118 bus and 300 bus systems. The use of 

each of these test systems have been described in details below. 

The IEEE-118 bus system has 11 high voltage buses connected by 10 lines, as shown in fig. 

3.7(a). As before, the good quality voltage measurement was placed at bus 10. A data file 

consisting of 6000 measurements for each of the 11 bus voltages of the high voltage network of 

the 118 bus system was created using MATPOWER [47]. This data file was used to create 

measurements that mimicked those obtained in the field. As the line parameters of the system are 

known, the currents in the transmission lines were calculated using the voltage data created. Hence, 

the measured data was created by introducing random ratio errors in the range of ± 0.015% for 

magnitude and ± 0.104° for angle in the good quality voltage measurement placed at bus 10, while 

the random ratio errors introduced had a range of ± 0.06% for magnitude and ± 4° for angle in 

the rest of the voltage measurements and ± 0.1% for magnitude and ± 6.67° for angle in all of the 

current measurements. Next, the quantization errors were introduced, as discussed in the error 

model of Chapter 3, to create data resembling those obtained in the field. Hence, the final data 

created was a (6000x20) matrix for both voltages and currents, as there are 20 bus voltages (since 
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each bus voltage had two looks from the DULR PMUs placed on the lines) and 20 line currents 

being measured by the DULR PMUs. 

Fig. 4.1 shows a snapshot of how a typical data file consisting of field data obtained from a 

utility would look like. It can be seen from this figure that there are certain parts of data which has 

garbage or missing values. To make the simulated data created so far for the 118 bus system 

resemble that shown in fig. 4.1, NaNs were introduced in the simulated data at random locations. 

For the purpose of this simulation, 25% of the data was replaced by NaNs. Though in a real life 

scenario, any utility will not have more than 10% NaNs in their data. This means that the 

methodology developed here is robust enough for field data from any utility.  

 

 

Figure 4.1: Snapshot of a part of the field data obtained from a utility with data missing from it 

 

For ease of calculation, as well as to improve the accuracy of the results obtained, these 6000 

data points were divided into groups of 12 data sets for each voltage and current of the entire 
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network. A 3 dimensional matrix was created by clumping together every 500th data point (
6000

12
=

500) into one set, thereby creating a (500x12x20) matrix for both voltage and current.  

The fig. 4.2 illustrates how the 3 dimension matrix can be assumed to resemble a stack of 

laminated sheets. So, for the IEEE-118 bus system, 20 lines being measured, 12 data points of each 

of the lines clumped together (i.e., (1st, 501st, 1001st…), (2nd, 502nd, 1002nd…) and so on) resulted 

in 500 of such laminated data sheets. Two 3 dimensional matrices,  𝑨𝒗𝒐𝒍 and 𝑨𝒄𝒖𝒓𝒓, were then 

created which consisted of ones in the places where data is available and zeros in places where 

there is missing or garbage data (depicted by NaN). Taking one laminated sheet at a time, the 𝐴 

matrices were used to determine which pi-section could be solved as explained in the previous 

section. 

 

 

Figure 4.2: The 3D matrix created for both voltages and currents  

 

If all the rows of the line voltages and line currents of a particular pi-section were available, 

that pi-section was solved using eqs. (4.1) through (4.6) and the results were stored, else they were 

left blank. To solve for each pi-section this way, an assumption had to be made here. One bus of 

each of these pi-sections were supposed to be a good quality measurement and the rest of the ratio 

errors were estimated with respect to the ratio error (voltage) at that bus. This entire process was 
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repeated for each of the laminated sheets and this provided the pieces of a jigsaw puzzle, as shown 

in fig. 4.3.  

 

 

Figure 4.3: Solution of each pi-section available as pieces of a jigsaw puzzle 

 

The solution for each pi-section was obtained multiple times, since there was always more 

than one laminated sheet where all the data for a particular pi-section was available. These values 

were then averaged to get a better estimate and finally all the data was put together to complete 

the jigsaw puzzle, as explained in the previous section using eq. (4.8). This way, the assumption 

previously made regarding the presence of a good quality voltage measurement at each pi-section, 

is not required any more, and hence can be ignored. Thus, for the 118 bus system a (1x20) matrix 

consisting of all the ratio errors with respect to the ratio error of the good quality voltage 

measurement (at the tie-line) was created. 

 

30 8 

30 38 

65 68 
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Figure 4.4: Putting the jigsaw puzzle together 

 

This entire process was repeated 1000 times and the ratios of ratio errors were compiled. To 

compare with the ratio errors that were originally added into the data, a matrix was created which 

subtracted the calculated values from the original values and plotted the standard deviation of these 

errors. To give an example, tables 4.1 and 4.2 show the results for the first and the 1000th iterations. 

TABLE 4.1: RATIO OF RATIO ERRORS IN VOLTAGES FOR THE IEEE-118 BUS SYSTEM FOR THE FIRST ITERATION 
Original Ratio of Ratio Errors 

introduced 

Ratio of Ratio Errors estimated in the 

simulation 
Difference between the Ratio of Ratio Errors 

1.0199-0.0561i 1.0199-0.0561i -5.22505437006160e-06 + 3.67220742400476e-06i 

0.9462-0.0439i 0.9463-0.044i -6.00019774319449e-05 + 6.34274842384042e-05i 

0.9552-0.0358i 0.9553-0.0358i -6.80411301069439e-05 + 5.75846210854950e-05i 

0.9571-0.0125i 0.9571-0.0137i -1.52221284810405e-05 + 0.00122620737809760i 

0.9952-0.0427i 0.9952-0.044i 2.48697299639611e-05 + 0.00126890511124770i 

1.0223+0.0655i 1.0224+0.0643i -0.000105318329399973 + 0.00114182350286481i 

0.9606+0.0083i 0.9606+0.0083i -1.15241383039644e-05 - 2.45384743135096e-05i 

0.9723-0.022i 0.9724-0.0231i -1.73091798579827e-05 + 0.00107540103338690i 

0.9776+0.0645i 0.9777+0.0645i -1.25558698970130e-05 - 2.54714746664025e-05i 

0.969+0.0006i 0.969+0.001i -1.56294501809651e-05 - 0.000371237923711419i 

0.9622-0.0215i 0.9622-0.0212i -2.46939827730497e-05 - 0.000362601089176400i 

1.0583+0.0525i 1.0583+0.0524i -2.19193249300087e-05 + 0.000107819477463904i 

0.9858-0.025i 0.9859-0.0249i -2.18914572739370e-05 - 9.10039216851996e-05i 

0.9555+0.0192i 0.9555+0.0191i -1.18928745539426e-05 + 9.76678062755976e-05i 

0.9476-0.0429i 0.9476-0.0433i 4.93325341199835e-06 + 0.000386726020931698i 

1.0121+0.0615i 1.0122+0.0611i -4.30303077898486e-05 + 0.000418664422958098i 

1.0051-0.0429i 1.0051-0.0428i -2.27956847200783e-05 - 9.18558583004048e-05i 

1.0189-0.0673i 1.0189-0.0675i -1.07083570399791e-05 + 0.000171664788914394i 

1.0125-0.0342i 1.0125-0.0344i -1.47234326199897e-05 + 0.000166326655906400i 
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TABLE 4.2: RATIO OF RATIO ERRORS IN VOLTAGES FOR THE IEEE-118 BUS SYSTEM FOR THE THOUSANDTH 

ITERATION 
Original Ratio of Ratio Errors 

introduced 

Ratio of Ratio Errors estimated in the 

simulation 
Difference between the Ratio of Ratio Errors 

0.9751-0.0279i 0.9751-0.0279i 1.08293494294198e-06 - 2.24194548140155e-06i 

1.0387+0.051i 1.0386+0.0533i 0.000133107455110082 - 0.00227670113587430i 

0.9604+0.0029i 0.9604+0.005i 2.82400465390076e-05 - 0.00211048800061918i 

0.9806-0.0379i 0.9806-0.038i 3.19444770829902e-05 + 9.41012535409999e-05i 

0.9967+0.0485i 0.9966+0.0484i 2.03172046870925e-05 + 0.000100434030943501i 

0.9478-0.0309i 0.9478-0.032i 4.29572905169540e-05 + 0.00111632022724630i 

1.0007+0.002i 1.0007+0.0027i 3.98203040399281e-05 - 0.000726794374587830i 

1.0416-0.023i 1.0416-0.0242i 2.98151321100892e-05 + 0.00124172051633330i 

0.9664-0.0303i 0.9664-0.0296i 1.59282622690382e-05 - 0.000699961208135997i 

1.0299-0.0164i 1.0299-0.0151i 2.92894331799243e-05 - 0.00133427898931080i 

0.9585+0.0425i 0.9584+0.0437i 9.83544294990146e-05 - 0.00123255441682120i 

0.9738+0.0364i 0.9737+0.0365i 5.21670634099358e-05 - 0.000127075650277898i 

1.0161+0.0723i 1.0161+0.072i 3.08324488900169e-05 + 0.000204961080674304i 

0.9971+0.0333i 0.9971+0.0334i 5.48360358409994e-05 - 0.000133189914436199i 

0.9738-0.0042i 0.9737-0.0045i 4.91731793280659e-05 + 0.000334898696840070i 

1.0159+0.0652i 1.0159+0.0649i 2.02338772699040e-05 + 0.000337812333245702i 

0.9749+0.056i 0.9749+0.0558i 3.40181183600130e-05 + 0.000196787795956201i 

1.0348-0.0326i 1.0348-0.0325i 5.07257151300955e-05 - 8.70159340944018e-05i 

0.9523-0.059i 0.9522-0.0589i 4.65385176879884e-05 - 7.92423675890011e-05i 

 

Similarly, the results for the ratios of ratio errors for currents can be obtained. Once all these 

results have been compiled, the standard deviation (σ) of the errors in ratios of ratio errors were 

calculated. Figs. 4.5 and 4.6 show the plots of the standard deviation of the ratio of ratio errors 

calculated with respect to the ratio error of the good quality voltage measurement placed at bus 10 

for both the voltage as well as the current measurements of the entire high voltage network of the 

IEEE-118 bus system.  
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Figure 4.5: Standard deviation (σ) of the errors in estimating the ratios of ratio errors of the voltage 
transformers in the IEEE-118 bus system 

 

Figure 4.6: Standard deviation (σ) of the errors in estimating the ratios of ratio errors of the current 

transformers in the IEEE-118 bus system 
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The same method was repeated for the IEEE-300 bus system and the results obtained for the 

standard deviation of the errors in the ratio errors with respect to the ratio errors of the good quality 

voltage measurement placed at bus 242 for both the voltage as well as current transformers in the 

high voltage network were plotted in figs. 4.7 and 4.8. 

The simulation provided in Appendix II illustrates the method described in this chapter to 

estimate the standard deviations of the ratios of ratio errors (standard deviation) of both voltage 

and current transformers when some measurements are absent.  

 

Figure 4.7: Standard deviation (σ) of the errors in estimating the ratios of ratio errors of the voltage 

transformers in the IEEE-300 bus system 
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Figure 4.8: Standard deviation (σ) of the errors in estimating the ratios of ratio errors of the current 

transformers in the IEEE-300 bus system 

 

This chapter provided a new technique to overcome the issue of insufficient data obtained 

from the field for calibration purposes. The method developed can calibrate both voltage and 

current transformers using data collected over a few days or even weeks. Unfortunately, if a line 

remains offline for the entire period of data collection, it cannot be calibrated. For this method to 

work, every line of the network has to be online for some duration of time during the data collection 

period for the purpose of calibration.   
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Chapter 5: Conclusion and Future Scope of Work 

 

5.1 Thesis Summary 

 

This thesis is aimed at solving the problem of instrument transformer calibration in presence 

of practical constraints. The blackout of 1965, one of the biggest blackouts in the history of the 

United States, made power engineers realize the need to automate the power grid. This major 

blackout resulted in the elevation of the power market from a traditional nascent market to a 

developing market. The gap between the target to be achieved and what it was at that point in time, 

opened up a host of opportunities for growth. Till date, the strong growth potential for power 

generation and distribution emanates from factors like growth in economy and propensity for 

increased electricity consumption. Gradually, transcendence from a developing market to a 

matured market called for more initiatives and measures to fully leverage the inherent potential of 

the market.  

The power plant operators needed to be able to view the entire system at every time instant to 

be able to make decisions to address system viability in order to avoid the risk of cascading non-

performing assets. To that end, Fred Schweppe’s static state estimator algorithm [3] in the late 

1960’s-early 70’s, the invention of microprocessors in 1982, followed by the creation of PMUs in 

1983 [4] and their commercial availability by 1988 [5][6] were a huge leap forward. With the 

advent of PMUs, monitoring, control and protection of a power system became much more 

simplified.  

This, in turn, helped power engineers to be able to understand what the current power system 

lacked and the field was thus poised to attract more investment and innovation. The need for 

calibrating instrument transformers in transmission networks was one such issue that surfaced soon 

after. Instrument transformers are basically step-down transformers that feed voltage and/or 

currents into PMUs for downstream applications. Just like any other piece of machinery, they have 

a tendency to deteriorate over time either due to the weather conditions they are forced to face or 

due to age. Thus, it has been seen that an error creeps into the voltages and currents that pass 

through them. Not just the instrument transformers, but even the PMUs, by virtue of their 

construction seem to introduce a small but inherent error into the measurements. All these errors 
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and the reasons of their existence have already been discussed in details in this thesis. To eliminate 

the downstream issues caused by these errors, a need for online calibration was felt.  

The earliest attempts for calibrating these instrument transformers have been discussed in 

details in the second chapter of this thesis. It also talks about a relatively new and robust method 

for calibrating voltage transformers by placing optimal number of good quality measurements in 

a high voltage transmission network in order to keep the standard deviation of estimating these 

errors below a pre-defined threshold.  

The next chapter developed a new error model based on what was observed in the field data. 

The concept of a PMU error being a quantization error was also introduced in this chapter. It then 

described a methodology where all the instrument transformers of an entire high voltage network 

could be calibrated with the presence of only one good voltage measurement located at the end of 

a tie-line. The major requirement for this method to work was the presence of a connected tree 

whose line parameters were known.  

A new problem was faced when the field data for a certain utility was observed to have missing 

or incomplete data or even garbage data at some places. This resulted in a disconnected tree. 

Chapter 4 of this thesis deals with that issue. A methodology was developed in this chapter which 

calibrates all the instrument transformers of a high voltage transmission network with the presence 

of only one good quality voltage measurement on a tie-line, as before. However, this method solves 

for different pi-sections, one at a time, and puts all the result together like a jigsaw puzzle. This 

trick circumvented the incomplete data or garbage data problem.  

All the simulations for the methods proposed in this thesis were implemented using positive 

sequence measurements of the IEEE 118 and 300 bus networks. The relevant results obtained have 

been presented in the respective chapters.  

 

5.2  Future Scope of work 

 

Striving towards betterment and constant innovation is what research is all about. Just like any 

other avenue of research, the work on calibration can be further extended in new directions. An 

extension to the current work can be the simultaneous estimation of line parameters of the high 
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voltage transmission network. All the methods developed in this thesis have assumed the line 

parameters to be known quantities. But, in reality, due to age, weather conditions and various other 

factors, the actual parameters of the transmission lines can be different from the values mentioned 

in the datasheets. One such method, that estimates line parameters, has been discussed in [43]. 

This method, however needs pre-calibrated voltage and current measurements which may not be 

available in practice.  

A new method can be developed which takes into account good voltage and current 

measurements at a tie-line in the presence of PMU errors and extend the methodologies developed 

in this thesis to calibrate the line parameters as well. In order to be able to do that, however, all the 

injections to the pi-sections must be known. Since utilities mostly monitor the injections into the 

high voltage network, it can be presumed that line-parameter estimation will be limited to the high 

voltage network. Work is currently being done in this direction and it is expected to come to 

fruition soon. 

Though it is known that the quantization error is being introduced either in the PMUs or maybe 

in the phasor data concentrators (PDCs) and not the instrument transformers, its source is still 

under debate. One avenue of research could be the investigation of these quantization errors and 

figure out where they originate from. Finding out the source of these errors could be a significant 

find and could also potentially provide a solution to eradicate them. 

Another direction in which this idea can be extended further is by considering three-phase 

measurements instead of positive sequence components. Although the computations will become 

more cumbersome, the logic will remain the same and therefore, its implementation can be 

expected to be done without much ado. Other channels of research which seem elusive as of now, 

may open up in future when other scholars and researchers work on this topic.  Hopefully, the 

work done in this thesis explains the problem at hand and sets into motion wheels of thought that 

will drive power systems towards a brighter future. 
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APPENDICES 

 

This section comprises of all the pseudo codes that have generated for the execution of the 

algorithms developed for the purpose of this thesis. Appendix I shows the steps followed to apply 

the methodology generated in Chapter 3 for the high voltage networks of both the IEEE 118 and 

300 bus systems in the presence of only one good quality measurement (placed at bus 10 for the 

118 bus system and at bus 242 for the 300 bus system). These simulations can also be extended to 

include more than one good quality measurements to start with at different tie-lines. 

Appendix II illustrates the MATLAB program written in order to apply the methodology 

developed in Chapter 4 for both the test systems used in this thesis. Similar to the first half of 

Appendix I, only one good quality measurement has been assumed for each high voltage network 

for the simulations done. All the simulations shown here can be modified according to the 

requirements of the networks the methodologies are being applied to. The examples shown here 

are merely provided to aid the reader’s understanding. 
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Appendix A 

 

MATLAB simulations for Chapter-3 

 

IEEE-118 bus system with good quality measurement at bus 10 in the presence of a connected 

tree 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                          % 
% Program Name: Instrument Transformer Calibration for IEEE-118 bus system % 
%               for the pi-sections 10-9-8-30-26                           %    
%                                                                          % 
% Description: Generating standard deviations of the errors in estimating  %  
%              ratio errors in the high voltage network of the IEEE 118    % 
%              bus system following the methodology developed in Ch-3      % 
%                                                                          % 
% Author: Paroma Chatterjee                                                %  
%         Virginia Polytechnic Institute and State University              % 
%                                                                          % 
% Last Modified: 12/21/2015; 11:20 PM                                      % 
%                                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 

% IEEE-118 bus system: 10, 9, 8, 30, 26 

  
clc 
clear 
close all 

  
% Creating data to mimic field data 

  

load Vraw12 % Loading load flow voltages  
load Iraw12 % Loading currents = voltages * line impedances 

  
load REV % Loading Ratio errors in voltages 
load REI % Loading Ratio errors in currents 

  
N = size(REV,1); 
[m,l] = size(I); 

  

disp('Choose Location of Good Measurement') 
disp('Possible Choices: 10,26,63,81') 
Inp = input('Your choice:'); 
if(Inp==10) 
    n = 1; 
end 
if(Inp==26) 
    n = 9; 
end 
if(Inp==63) 
    n = 17; 
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end 
if(Inp==81) 
    n = 20; 
end 
REV1 = zeros(1,N); 

  
for i=1:N     
    REV(i,n,1) = (0.9985 + 0.003*rand)*exp(1i*0.2*(rand-0.5)*pi/180);    
    % For comparison purposes 
    REV1(i) = REV(i,n,1); 
end     

  
% Inserting errors in measurements   

  
Vm = zeros(N,m,l); 
Im = zeros(N,m,l); 
for i=1:N 
    for j=1:m 
        for k=1:l 
            Vm(i,j,k) = V(j,LOC(k,2))*REV(i,k,1); % Ratio errors present 
        end   
    end 
    for j=1:m 
        for k=1:l 
            Im(i,j,k) = I(j,k)*REI(i,k,1); % Ratio errors present 
        end 
    end 
end 

  
% Quantizing data 

  

q_V = 20/345000; % Changing it to per unit  
q_I = 0.64*345000/100000000; 
Vmq = zeros(N,m,l); 
Imq = zeros(N,m,l); 
for i=1:N 
    Vt(:,:) = Vm(i,:,:); 
    Vmqr = quant(real(Vt),q_V); 
    Vmqi = quant(imag(Vt),q_V); 
    Vmq(i,:,:) = Vmqr + 1i*Vmqi; 
    It(:,:) = Im(i,:,:); 
    Imqr = quant(real(It),q_I); 
    Imqi = quant(imag(It),q_I); 
    Imq(i,:,:) = Imqr + 1i*Imqi; 
end 

  
Vmtotal = Vmq; 
Imtotal = Imq; 

  
clear Vm Im 

  
% Estimating ratio errors in the system 

  
% Pi-sections under study 
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Bus = [10 9 8 30 26 ]; % Pi-sections under study: 10-9-8-30-26 

  
Z = [ 0.00258 + 1i*0.0322    % Line 10-9 
      0.00244 + 1i*0.0305    % Line 9-8 
      0.00431 + 1i*0.0504    % Line 8-30 
      0.00799 + 1i*0.0860 ]; % Line 30-26 

   
 B = 1i*[ 1.230/2    % Line 10-9 
          1.162/2    % Line 9-8 
          0.514/2    % Line 8-30 
          0.908/2 ]; % Line 30-26   

       
order = [1,2,3,4,5,6,7,9]; 
l = length(order); 
num_pie = length(Bus) - 1; 
W = 1 + Z.*B; % W=1+ZB for different pie-sections 

  

REVm = zeros(N,length(order));  
REVe = zeros(N,length(order)); 

  
REVold = zeros(N,1); 

  

REIm = zeros(N,length(order)); 
REIe = zeros(N,length(order)); 

  
for i=1:N 
    Vm(:,:) = Vmtotal(i,:,order); 
    Im(:,:) = Imtotal(i,:,order); 

      
    REVm(i,1) = REV1(i); 
    REVe(i,1) = REV1(i); 
    REVold(i) = REV1(i); 

     
%   Estimation of ratio errors 

  
for j = 1:num_pie-1;  

     
    B0 = Vm(:,(2*j-1):(2*j));  
    A = Im(:,(2*j-1):(2*j)); 
    X = lscov(A,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 

     
    REIm(i,(2*j-1)) = (REVold(i)*W(j,1))/(X(1,1)*B(j,1)*(W(j,1)+1));  

% REIpq = (REVpq/a0)*(W/(B*(W+1))) 
    REIm(i,2*j) = (REVold(i))/(X(2,1)*B(j,1)*(W(j,1)+1));  

%REIqp = (REVpq/c0)*(1/(B*(W+1))) 

     

    REVm(i,(2*j)) = REVold(i)*W(j,1)*X(1,2)/X(1,1);  

% REVqp = (b0/a0)*REVpq*W 
    REVm(i,(2*j+1)) = REVm(i,(2*j))*median(Vm(:,(2*j)+1)./Vm(:,(2*j)));  

% REVqr = REVqp*gamma = REVqp*(Vqr(measured)/Vqp(measured)) 

     
    REIe(i,(2*j-1)) = REI(i,order(2*j-1),1)-REIm(i,(2*j-1));  

% REIpq(difference) = REIpq(original)-REIpq(calculated) 
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    REIe(i,2*j) = REI(i,order(2*j),1)-REIm(i,2*j); 

     
    REVe(i,(2*j)) = REV(i,order(2*j),1)-REVm(i,(2*j));  

% REVqp(difference) = REVqp(original)-REVqp(calculated) 
    REVe(i,(2*j+1)) = REV(i,order(2*j+1),1)-REVm(i,(2*j+1)); 

     
    REVold(i) = REVm(i,(2*j+1)); 

     
end 

  
for j=num_pie 

     
     B1 = Vm(:,(2*j)-1:(2*j));  
     A1 = Im(:,(2*j)-1:(2*j)); 
     X1 = lscov(A1,B1);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 

     

     REIm(i,(2*j-1)) = (REVold(i)*W(j,1))/(X1(1,1)*B(j,1)*(W(j,1)+1));  

% REIpq = (REVpq/a0)*(W/(B*(W+1))) 
     REIm(i,2*j) = (REVold(i))/(X1(2,1)*B(j,1)*(W(j,1)+1));  

%REIqp = (REVpq/c0)*(1/(B*(W+1))) 

      
     REVm(i,(2*j)) = REVold(i)*W(j,1)*X1(1,2)/X1(1,1);  

% REVqp = (b0/a0)*REVpq*W 

          
     REIe(i,(2*j-1)) = REI(i,order(2*j-1),1)-REIm(i,(2*j-1));  

% REIpq(difference) = REIpq(original)-REIpq(calculated) 
     REIe(i, 2*j) = REI(i,order(2*j),1)-REIm(i,2*j); 

     
     REVe(i,(2*j)) = REV(i,order(2*j),1)-REVm(i,(2*j));  

% REVqp(difference) = REVqp(original)-REVqp(calculated) 

          
 end 

        

end 

  
 

VoltSTD = [(std(REV1,0,2)) % Standard deviation for the "good" measurement 
std(REV21,0,2) % Standard deviation at the end of first Pi-section 
std(REV23,0,2) % Standard deviation at the start of second Pi-section 
std(REV32,0,2) % Standard deviation at the end of second Pi-section 
std(REV34,0,2) % Standard deviation at the start of third Pi-section 
std(REV43,0,2) % Standard deviation at the end of third Pi-section 
std(REV45,0,2) % Standard deviation at the start of fourth Pi-section 
std(REV54,0,2)]; % Standard deviation at the end of fourth Pi-section 

  
CurrSTD = [std(REI12,0,2) % Standard deviation for the "good" measurement 
std(REI21,0,2) % Standard deviation at the end of first Pi-section 
std(REI23,0,2) % Standard deviation at the start of second Pi-section 
std(REI32,0,2) % Standard deviation at the end of second Pi-section 
std(REI34,0,2) % Standard deviation at the start of third Pi-section 
std(REI43,0,2) % Standard deviation at the end of third Pi-section 
std(REI45,0,2) % Standard deviation at the start of fourth Pi-section 
std(REI54,0,2)]; % Standard deviation at the end of fourth Pi-section 
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IEEE-300 bus system with good quality measurement at bus 242 in the presence of a connected 

tree 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                          % 
% Program Name: Instrument Transformer Calibration for IEEE-300 bus system % 
%               for the pi-sections 242-173-198-216-210-169                %    
%                                                                          % 
% Description: Generating standard deviations of the errors in estimating  %  
%              ratio errors in the high voltage network of the IEEE 300    % 
%              bus system with only one good quality measurement available % 
%              at bus 242 following the methodology described in Ch-3      % 
%                                                                          % 
% Author: Paroma Chatterjee                                                %  
%         Virginia Polytechnic Institute and State University              % 
%                                                                          % 
% Last Modified: 12/21/2015; 11:30 PM                                      % 
%                                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

% IEEE-300 bus system: 242, 173, 198, 216, 210, 169 

  
clc 
clear 
close all 

  
load V 
load IL 

  
V = downsample(V,200); 
I = downsample(IL,200); 

  
load REV 
load REI 

  
N = size(REV,1); 
[m,l] = size(I); 

  
disp('Choose Location of Good Measurement') 
disp('Possible Choices: 4,190,664') 
Inp = input('Your choice:'); 

  
if(Inp==4) 
    n = 1; 
end 
if(Inp==190) 
    n = 28; 
end 
if(Inp==664) 
    n = 18; 
end 
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REV1 = zeros(1,N);  

  
for i=1:N     
    REV(i,n,1) = (0.9985 + 0.003*rand)*exp(1i*0.2*(rand-0.5)*pi/180);     
    % For comparison purposes 
    REV1(i) = REV(i,n,1); 
end     

  

% Inserting errors in measurements 
Vm = zeros(N,m,l); 
Im = zeros(N,m,l); 

  

for i=1:N 
    for j=1:m 
        for k=1:l 
            Vm(i,j,k) = V(j,LOC(k,2))*REV(i,k,1); % Only Ratio errors present 
        end   
    end 
    for j=1:m 
        for k=1:l 
            Im(i,j,k) = I(j,k)*REI(i,k,1); % Only Ratio errors present 
        end 
    end 
end 

  

% Quantizing data 
q_V = 20/345000; 
q_I = 0.64*345000/100000000; 
Vmq = zeros(N,m,l); 
Imq = zeros(N,m,l); 
for i=1:N 
    Vt(:,:) = Vm(i,:,:); 
    Vmqr = quant(real(Vt),q_V); 
    Vmqi = quant(imag(Vt),q_V); 
    Vmq(i,:,:) = Vmqr + 1i*Vmqi; 
    It(:,:) = Im(i,:,:); 
    Imqr = quant(real(It),q_I); 
    Imqi = quant(imag(It),q_I); 
    Imq(i,:,:) = Imqr + 1i*Imqi; 
end 

  
Vmtotal = Vmq; 
Imtotal = Imq; 

  
clear Vm Im 

  
% Pi-section under study 
Bus = [664 194 219 237 231 190]; % Pi-section under study: 664-194-219-237-

231-190 
Z = [ 0.0024 + 1i*0.0355  % Line 664-194 
      0.0031 + 1i*0.0286  % Line 194-219 
      0.0003 + 1i*0.0018  % Line 219-237 
      0.0001 + 1i*0.0006  % Line 237-231 
      0.0004 + 1i*0.0022 ]; % Line 231-190  
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 B = 1i*[ 0.360/2    % Line 664-194 
          0.500/2    % Line 194-219 
          5.200/2    % Line 219-237 
          3.570/2    % Line 237-231      
          6.200/2 ]; % Line 231-190 
order = [18,17,16,21,23,24,25,26,27,28]; 
l = length(order); 
num_pie = length(Bus) - 1; 
W = 1 + Z.*B; % W=1+ZB for different Pi-sections 

  
for i=1:N 
    Vm(1:m,:) = Vmtotal(i,1:m,order); 
    Im(1:m,:) = Imtotal(i,1:m,order); 

     
    % Estimation of ratio errors 

     
    j = 1; % First Pi-section 

     
    B1 = Vm(:,(2*j)-1:(2*j)); 
    A1 = Im(:,(2*j)-1:(2*j)); 
    X1 = lscov(A1,B1); 

     

    REIm12(i) = (REV1(i)*W(1,1))/(X1(1,1)*B(1,1)*(W(1,1)+1)); 
    REIm21(i) = (REV1(i))/(X1(2,1)*B(1,1)*(W(1,1)+1)); 

     
    REVm21(i) = REV1(i)*W(1,1)*X1(1,2)/X1(1,1);  
    REVm23(i) = REVm21(i)*median(Vm(:,(2*j)+1)./Vm(:,(2*j))); 

     
    REI12(i) = REI(i,order(2*j-1),1)-REIm12(i); 
    REI21(i) = REI(i,order(2*j),1)-REIm21(i); 

     
    REV21(i) = REV(i,order(2*j),1)-REVm21(i); 
    REV23(i) = REV(i,order(2*j+1),1)-REVm23(i); 

        

    j = 2; % Second Pi-section 

    
    B2 = Vm(:,(2*j)-1:(2*j)); 
    A2 = Im(:,(2*j)-1:(2*j)); 
    X2 = lscov(A2,B2); 

     
    REIm23(i) = (REVm23(i)*W(2,1))/(X2(1,1)*B(2,1)*(W(2,1)+1)); 
    REIm32(i) = (REVm23(i))/(X2(2,1)*B(2,1)*(W(2,1)+1)); 

     

    REVm32(i) = REVm23(i)*W(2,1)*X2(1,2)/X2(1,1); 
    REVm34(i) = REVm32(i)*median(Vm(:,(2*j)+1)./Vm(:,(2*j))); 

     
    REI23(i) = REI(i,order(2*j-1),1)-REIm23(i); 
    REI32(i) = REI(i,order(2*j),1)-REIm32(i); 

     
    REV32(i) = REV(i,order(2*j),1)-REVm32(i); 
    REV34(i) = REV(i,order(2*j+1),1)-REVm34(i); 

     
    j = 3; % Third Pi-section 
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    B3 = Vm(:,(2*j)-1:(2*j)); 
    A3 = Im(:,(2*j)-1:(2*j)); 
    X3 = lscov(A3,B3); 

     
    REIm34(i) = (REVm34(i)*W(3,1))/(X3(1,1)*B(3,1)*(W(3,1)+1)); 
    REIm43(i) = (REVm34(i))/(X3(2,1)*B(3,1)*(W(3,1)+1)); 

  
    REVm43(i) = REVm34(i)*W(3,1)*X3(1,2)/X3(1,1); 
    REVm45(i) = REVm43(i)*median(Vm(:,(2*j)+1)./Vm(:,(2*j))); 

     
    REI34(i) = REI(i,order(2*j-1),1)-REIm34(i); 
    REI43(i) = REI(i,order(2*j),1)-REIm43(i); 

     

    REV43(i) = REV(i,order(2*j),1)-REVm43(i); 
    REV45(i) = REV(i,order(2*j+1),1)-REVm45(i); 

     
    j = 4; % Fourth Pi-section 

    
    B4 = Vm(:,(2*j)-1:(2*j)); 
    A4 = Im(:,(2*j)-1:(2*j)); 
    X4 = lscov(A4,B4); 

     
    REIm45(i) = (REVm45(i)*W(4,1))/(X4(1,1)*B(4,1)*(W(4,1)+1)); 
    REIm54(i) = (REVm45(i))/(X4(2,1)*B(4,1)*(W(4,1)+1)); 

     
    REVm54(i) = REVm45(i)*W(4,1)*X4(1,2)/X4(1,1); 
    REVm56(i) = REVm54(i)*median(Vm(:,(2*j)+1)./Vm(:,(2*j))); 

     
    REI45(i) = REI(i,order(2*j-1),1)-REIm45(i); 
    REI54(i) = REI(i,order(2*j),1)-REIm54(i); 

     
    REV54(i) = REV(i,order(2*j),1)-REVm54(i); 
    REV56(i) = REV(i,order(2*j+1),1)-REVm56(i); 

     

    j = 5; % Fifth Pi-section 

     
    B5 = Vm(:,(2*j)-1:(2*j)); 
    A5 = Im(:,(2*j)-1:(2*j)); 
    X5 = lscov(A5,B5); 

     
    REIm56(i) = (REVm56(i)*W(5,1))/(X5(1,1)*B(5,1)*(W(5,1)+1)); 
    REIm65(i) = (REVm56(i))/(X5(2,1)*B(5,1)*(W(5,1)+1)); 

     

    REVm65(i) = REVm56(i)*W(5,1)*X5(1,2)/X5(1,1); 

         
    REI56(i) = REI(i,order(2*j-1),1)-REIm56(i); 
    REI65(i) = REI(i,order(2*j),1)-REIm65(i); 

     
    REV65(i) = REV(i,order(2*j),1)-REVm65(i); 

     
end 

  
VoltSTD = [(std(REV1,0,2)) % Standard deviation for the "good" measurement 
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std(REV21,0,2) % Standard deviation at the end of first Pi-section 
std(REV23,0,2) % Standard deviation at the start of second Pi-section 
std(REV32,0,2) % Standard deviation at the end of second Pi-section 
std(REV34,0,2) % Standard deviation at the start of third Pi-section 
std(REV43,0,2) % Standard deviation at the end of third Pi-section 
std(REV45,0,2) % Standard deviation at the start of fourth Pi-section 
std(REV54,0,2) % Standard deviation at the end of fourth Pi-section 
std(REV56,0,2) % Standard deviation at the start of fifth Pi-section 
std(REV65,0,2)]; % Standard deviation at the end of fifth Pi-section 

  
CurrSTD = [std(REI12,0,2) % Standard deviation for the "good" measurement 
std(REI21,0,2) % Standard deviation at the end of first Pi-section 
std(REI23,0,2) % Standard deviation at the start of second Pi-section 
std(REI32,0,2) % Standard deviation at the end of second Pi-section 
std(REI34,0,2) % Standard deviation at the start of third Pi-section 
std(REI43,0,2) % Standard deviation at the end of third Pi-section 
std(REI45,0,2) % Standard deviation at the start of fourth Pi-section 
std(REI54,0,2) % Standard deviation at the end of fourth Pi-section 
std(REI56,0,2) % Standard deviation at the start of fifth Pi-section 
std(REI65,0,2)]; % Standard deviation at the end of fifth Pi-section 
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Appendix B 

 

MATLAB simulations for Chapter-4 

 

IEEE-118 bus system with a good quality measurement at bus 10 in the absence of a connected 

tree 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                          % 
% Program Name: Instrument Transformer Calibration for IEEE-118 bus system %    
%                                                                          % 
% Description: Generating standard deviations of the errors in estimating  %  
%              ratio errors in the high voltage network of the IEEE 118    % 
%              bus system with only one good quality measurement available % 
%              at bus 10 following the methodology described in Ch-4      % 
%                                                                          % 
% Author: Paroma Chatterjee                                                %  
%         Virginia Polytechnic Institute and State University              % 
%                                                                          % 
% Last Modified: 12/21/2015; 11:45 PM                                      % 
%                                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

clc 
clear 
close all 

  

% Initial data input 
load IL 
load V 
load REV 
load REI 

  
T = 1000; % No of times the simulation is run 

  
RREVm = zeros(T,r/ds,l); % Ratio of ratio errors of voltages 
RREVmMean = zeros(T,l); % Mean of the ratio of ratio errors of voltages 
Vmeas = zeros(T,r/ds,l); 
RREIm = zeros(T,r/ds,l); % Ratio of ratio errors of currents 
RREImMean = zeros(T,l); % Mean of the ratio of ratio errors of currents 

  
for f = 1:T 
    for i = 1:r/ds 
        for j = 1:ds 
            for k = 1:l 
                Vm(i,j,k) = V(i,j,k)*REV(f,k);  

% Introducing the ratio errors in voltages 
                Im(i,j,k) = IL(i,j,k)*REI(f,k);  

% Introducing the ratio errors in currents 
            end 
        end 
    end 
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    % Introducing Quantization Errors 
    q_V = 20/345000; % Changing it to per unit  
    q_I = 0.64*345000/100000000; % Changing it to per unit 
    Vmq = zeros(r/ds,ds,l); 
    Imq = zeros(r/ds,ds,l); 
    for i=1:r/ds 
        Vt(:,:) = Vm(i,:,:); 
        Vmqr = quant(real(Vt),q_V); 
        Vmqi = quant(imag(Vt),q_V); 
        Vmq(i,:,:) = Vmqr + 1i*Vmqi; % Quantized voltages 
        It(:,:) = Im(i,:,:); 
        Imqr = quant(real(It),q_I); 
        Imqi = quant(imag(It),q_I); 
        Imq(i,:,:) = Imqr + 1i*Imqi; % Quantized currents 
    end 

  
    Vnew = Vmq; 
    Inew = Imq; 

     
    % Creating data to resemble that obtained from the field       
    for i = 1:r/ds 
        j = randi([1 ds],ds/2,1); 
        k = randi([1 l],l/2,1); 
        for n = 1:length(j) 
            for m = 1:length(k) 
                Vnew(i,j(n),k(m)) = NaN;  
                Inew(i,j(n),k(m)) = NaN; 
            end 
        end 
    end 

     
    % Creating matrices having ones in the places where data is available and 

zeros for NaNs 
    Avol = isfinite(Vnew); 
    Acurr = isfinite(Inew); 

  
    for i = 1:r/ds 

  
        % Solving for 1st Pi section: 10-9  
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,1) == 0    
                count = count+1; 
            end 
            if Avol(i,j,2) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0   
            if count1==0 
                B0(:,:) = [conj(Vnew(i,:,1))' conj(Vnew(i,:,2))']; 
                A0(:,:) = [conj(Inew(i,:,1))' conj(Inew(i,:,2))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
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                RREIm(f,i,1) = W(1,1)/(X(1,1)*b(1,1)*(W(1,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,2) = 1/(X(2,1)*b(1,1)*(W(1,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                RREVm(f,i,2) = W(1,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
                Vmeas(f,i,2) = mean(Vnew(i,:,2)); 
            end 
        end 

  
        % Solving for 2nd Pi section: 9-8 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,3) == 0   
                count = count+1; 
            end 
            if Avol(i,j,4) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,3))' conj(Vnew(i,:,4))']; 
                A0(:,:) = [conj(Inew(i,:,3))' conj(Inew(i,:,4))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,3) = W(2,1)/(X(1,1)*b(2,1)*(W(2,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,4) = 1/(X(2,1)*b(2,1)*(W(2,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,3) = mean(Vnew(i,:,3));  

% Saving the mean voltage 
                Vmeas(f,i,4) = mean(Vnew(i,:,4));  

% Saving the mean voltage 
                RREVm(f,i,4) = W(2,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  
        % Solving for 3rd Pi section: 8-30 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,5) == 0  
                count = count+1; 
            end 
            if Avol(i,j,6) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,5))' conj(Vnew(i,:,6))']; 
                A0(:,:) = [conj(Inew(i,:,5))' conj(Inew(i,:,6))']; 
                X = lscov(A0,B0);  
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% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,5) = W(3,1)/(X(1,1)*b(3,1)*(W(3,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,6) = 1/(X(2,1)*b(3,1)*(W(3,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,5) = mean(Vnew(i,:,5));  

% Saving the mean voltage 
                Vmeas(f,i,6) = mean(Vnew(i,:,6));  

% Saving the mean voltage 
                RREVm(f,i,6) = W(3,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  

        % Solving for 4th Pi section: 30-26 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,7) == 0  
                count = count+1; 
            end 
            if Avol(i,j,9) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 ==0 
                B0(:,:) = [conj(Vnew(i,:,7))' conj(Vnew(i,:,9))']; 
                A0(:,:) = [conj(Inew(i,:,7))' conj(Inew(i,:,9))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,7) = W(4,1)/(X(1,1)*b(4,1)*(W(4,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,9) = 1/(X(2,1)*b(4,1)*(W(4,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,7) = mean(Vnew(i,:,7));  

% Saving the mean voltage 
                Vmeas(f,i,9) = mean(Vnew(i,:,9));  

% Saving the mean voltage 
                RREVm(f,i,9) = W(4,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  
        % Solving for 5th Pi section 30-38 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,8) == 0   
                count = count+1; 
            end 
            if Avol(i,j,10) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
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            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,8))' conj(Vnew(i,:,10))']; 
                A0(:,:) = [conj(Inew(i,:,8))' conj(Inew(i,:,10))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,8) = W(5,1)/(X(1,1)*b(5,1)*(W(5,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,10) = 1/(X(2,1)*b(5,1)*(W(5,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,8) = mean(Vnew(i,:,8));  

% Saving the mean voltage 
                Vmeas(f,i,10) = mean(Vnew(i,:,10));  

% Saving the mean voltage 
                RREVm(f,i,10) = W(5,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  

        % Solving for 6th Pi section: 38-65 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,11) == 0   
                count = count+1; 
            end 
            if Avol(i,j,12) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,11))' conj(Vnew(i,:,12))']; 
                A0(:,:) = [conj(Inew(i,:,11))' conj(Inew(i,:,12))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,11) = W(6,1)/(X(1,1)*b(6,1)*(W(6,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,12) = 1/(X(2,1)*b(6,1)*(W(6,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,11) = mean(Vnew(i,:,11));  

% Saving the mean voltage 
                Vmeas(f,i,12) = mean(Vnew(i,:,12));  

% Saving the mean voltage 
                RREVm(f,i,12) = W(6,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  
        % Solving for 7th Pi section: 65-64 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,13) == 0  
                count = count+1; 
            end 
            if Avol(i,j,15) == 0 
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                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,13))' conj(Vnew(i,:,15))']; 
                A0(:,:) = [conj(Inew(i,:,13))' conj(Inew(i,:,15))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,13) = W(7,1)/(X(1,1)*b(7,1)*(W(7,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,15) = 1/(X(2,1)*b(7,1)*(W(7,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,13) = mean(Vnew(i,:,13));  

% Saving the mean voltage 
                Vmeas(f,i,15) = mean(Vnew(i,:,15));  

% Saving the mean voltage 
                RREVm(f,i,15) = W(7,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  
        % Solving for 8th Pi section: 64-63 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,16) == 0  
                count = count+1; 
            end 
            if Avol(i,j,17) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,16))' conj(Vnew(i,:,17))']; 
                A0(:,:) = [conj(Inew(i,:,16))' conj(Inew(i,:,17))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,16) = W(8,1)/(X(1,1)*b(8,1)*(W(8,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,17) = 1/(X(2,1)*b(8,1)*(W(8,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,16) = mean(Vnew(i,:,16));  

% Saving the mean voltage 
                Vmeas(f,i,17) = mean(Vnew(i,:,17));  

% Saving the mean voltage 
                RREVm(f,i,17) = W(8,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  
        % Solving for 9th Pi section 65-68 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
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            if Avol(i,j,14) == 0  
                count = count+1; 
            end 
            if Avol(i,j,18) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,14))' conj(Vnew(i,:,18))']; 
                A0(:,:) = [conj(Inew(i,:,14))' conj(Inew(i,:,18))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,14) = W(9,1)/(X(1,1)*b(9,1)*(W(9,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,18) = 1/(X(2,1)*b(9,1)*(W(9,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,14) = mean(Vnew(i,:,14));  

% Saving the mean voltage 
                Vmeas(f,i,18) = mean(Vnew(i,:,18));  

% Saving the mean voltage 
                RREVm(f,i,18) = W(9,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 

  
        % Solving for 10th Pi section: 68-81 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,19) == 0  
                count = count+1; 
            end 
            if Avol(i,j,20) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,19))' conj(Vnew(i,:,20))']; 
                A0(:,:) = [conj(Inew(i,:,19))' conj(Inew(i,:,20))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,19) = W(10,1)/(X(1,1)*b(10,1)*(W(10,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,20) = 1/(X(2,1)*b(10,1)*(W(10,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,19) = mean(Vnew(i,:,19));  

% Saving the mean voltage 
                Vmeas(f,i,20) = mean(Vnew(i,:,20));  

% Saving the mean voltage 
                RREVm(f,i,20) = W(10,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            end 
        end 
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    end 

  
    RREVmold = RREVm; 
    RREImold = RREIm; 

     
    DummyV(:,:) = abs(RREVm(f,:,:)); 
    DummyC(:,:) = abs(RREIm(f,:,:)); 
    for j=1:r/ds 
        for k = 1:l 
           if DummyV(j,k)==0 
               RREVm(f,j,k) = NaN; 
           end 
           if DummyC(j,k)==0 
               RREIm(f,j,k) = NaN; 
           end 
        end 
    end 
    RREVmMean(f,:) = nanmean(RREVm(f,:,:)); 
    RREImMean(f,:) = nanmean(RREIm(f,:,:)); 
    clear DummyV DummyC 

  
    % 1st Pi section: 10-9: Everything remains the same 

  
    % 2nd Pi section: 9-8 

  
    % Voltage Ratio Errors 
    RREVmMean(f,3) = 

RREVmMean(f,2)*((sum(Vmeas(f,:,3)./sum(Vmeas(f,:,3)~=0)))/(sum(Vmeas(f,:,2)./

sum(Vmeas(f,:,2)~=0)))); 
    RREVmMean(f,4) = RREVmMean(f,4)*RREVmMean(f,3); 
    % Current Ratio Errors 
    RREImMean(f,3) = RREVmMean(f,3)*RREImMean(f,3); 
    RREImMean(f,4) = RREVmMean(f,3)*RREImMean(f,4); 

  
    % 3rd Pi section: 8-30 

  
    % Voltage Ratio Errors 
    RREVmMean(f,5) = 

RREVmMean(f,4)*(sum(Vmeas(f,:,5)./sum(Vmeas(f,:,5)~=0)))/(sum(Vmeas(f,:,4)./s

um(Vmeas(f,:,4)~=0))); 
    RREVmMean(f,6) = RREVmMean(f,6)*RREVmMean(f,5); 
    % Current Ratio Errors 
    RREImMean(f,5) = RREVmMean(f,5)*RREImMean(f,5); 
    RREImMean(f,6) = RREVmMean(f,5)*RREImMean(f,6); 

  
    % 4th Pi section: 30-26 

  
    % Voltage Ratio Errors 
    RREVmMean(f,7) = 

RREVmMean(f,6)*(sum(Vmeas(f,:,7)./sum(Vmeas(f,:,7)~=0)))/(sum(Vmeas(f,:,6)./s

um(Vmeas(f,:,6)~=0))); 
    RREVmMean(f,9) = RREVmMean(f,9)*RREVmMean(f,7); 
    % Current Ratio Errors 
    RREImMean(f,7) = RREVmMean(f,7)*RREImMean(f,7); 
    RREImMean(f,9) = RREVmMean(f,7)*RREImMean(f,9); 
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    % 5th Pi section: 30-38 

  
    % Voltage Ratio Errors 
    RREVmMean(f,8) = 

RREVmMean(f,6)*(sum(Vmeas(f,:,8)./sum(Vmeas(f,:,8)~=0)))/(sum(Vmeas(f,:,6)./s

um(Vmeas(f,:,6)~=0))); 
    RREVmMean(f,10) = RREVmMean(f,10)*RREVmMean(f,8); 
    % Current Ratio Errors 
    RREImMean(f,8) = RREVmMean(f,8)*RREImMean(f,8); 
    RREImMean(f,10) = RREVmMean(f,8)*RREImMean(f,10); 

  
    % 6th Pi section: 38-65 

  
    % Voltage Ratio Errors 
    RREVmMean(f,11) = 

RREVmMean(f,10)*(sum(Vmeas(f,:,11)./sum(Vmeas(f,:,11)~=0)))/(sum(Vmeas(f,:,10

)./sum(Vmeas(f,:,10)~=0))); 
    RREVmMean(f,12) = RREVmMean(f,12)*RREVmMean(f,11); 
    % Current Ratio Errors 
    RREImMean(f,11) = RREVmMean(f,11)*RREImMean(f,11); 
    RREImMean(f,12) = RREVmMean(f,11)*RREImMean(f,12); 

  
    % 7th Pi section: 65-64 

  
    % Voltage Ratio Errors 
    RREVmMean(f,13) = 

RREVmMean(f,12)*(sum(Vmeas(f,:,13)./sum(Vmeas(f,:,13)~=0)))/(sum(Vmeas(f,:,12

)./sum(Vmeas(f,:,12)~=0))); 
    RREVmMean(f,15) = RREVmMean(f,15)*RREVmMean(f,13); 
    % Current Ratio Errors 
    RREImMean(f,13) = RREVmMean(f,13)*RREImMean(f,13); 
    RREImMean(f,15) = RREVmMean(f,13)*RREImMean(f,15); 

  
    % 8th Pi section: 64-63 

  
    % Voltage Ratio Errors 
    RREVmMean(f,16) = 

RREVmMean(f,15)*(sum(Vmeas(f,:,16)./sum(Vmeas(f,:,16)~=0)))/(sum(Vmeas(f,:,15

)./sum(Vmeas(f,:,15)~=0))); 
    RREVmMean(f,17) = RREVmMean(f,17)*RREVmMean(f,16); 
    % Current Ratio Errors 
    RREImMean(f,16) = RREVmMean(f,16)*RREImMean(f,16); 
    RREImMean(f,17) = RREVmMean(f,16)*RREImMean(f,17); 

  
    % 9th Pi section: 65-68 

  
    % Voltage Ratio Errors 
    RREVmMean(f,14) = 

RREVmMean(f,12)*(sum(Vmeas(f,:,14)./sum(Vmeas(f,:,14)~=0)))/(sum(Vmeas(f,:,12

)./sum(Vmeas(f,:,12)~=0))); 
    RREVmMean(f,18) = RREVmMean(f,18)*RREVmMean(f,14); 
    % Current Ratio Errors 
    RREImMean(f,14) = RREVmMean(f,14)*RREImMean(f,14); 
    RREImMean(f,18) = RREVmMean(f,14)*RREImMean(f,18); 
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    % 10th Pi section: 68-81 

  
    % Voltage Ratio Errors 
    RREVmMean(f,19) = 

RREVmMean(f,18)*(sum(Vmeas(f,:,19)./sum(Vmeas(f,:,19)~=0)))/(sum(Vmeas(f,:,18

)./sum(Vmeas(f,:,18)~=0))); 
    RREVmMean(f,20) = RREVmMean(f,20)*RREVmMean(f,19); 
    % Current Ratio Errors 
    RREImMean(f,19) = RREVmMean(f,19)*RREImMean(f,19); 
    RREImMean(f,20) = RREVmMean(f,19)*RREImMean(f,20); 

  
end 

  
load RREV 
load RREI 

  
RREVe = zeros(T,l); 
RREIe = zeros(T,l); 

  
% Calculating the errors in estimating ratios of ratio errors 
for f = 1:T 
    for i = 2:l 
        RREVe(f,i) = (RREV(f,i))- (RREVmMean(f,i)); 
    end 
    for i = 1:l 
        RREIe(f,i) = (RREI(f,i))- (RREImMean(f,i)); 
    end 
end 

  

% Calculating the standard deviation of the errors in estimating ratios of 

ratio errors 
VoltSTD(1,:) = std(RREVe,0,1); 
CurrSTD(1,:) = std(RREIe,0,1); 

  

% Plotting the final results 
x = 1:20; 
plot(x,VoltSTD,'r.') 
axis([0 21 0 0.012]) 
xlabel('End points of the lines') 
ylabel('Error in estimating ratios of ratio errors of VTs') 

  
figure 

  
x = 1:20; 
plot(x,CurrSTD,'r.') 
axis([0 21 0 0.02]) 
xlabel('End points of the lines') 
ylabel('Error in estimating ratios of ratio errors of CTs') 
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IEEE-300 bus system with a good quality measurement at bus 242 in the absence of a connected 

tree 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                          % 
% Program Name: Instrument Transformer Calibration for IEEE-300 bus system %    
%                                                                          % 
% Description: Generating standard deviations of the errors in estimating  %  
%              ratio errors in the high voltage network of the IEEE 300    % 
%              bus system with only one good quality measurement available % 
%              at bus 242 following the methodology described in Ch-4      % 
%                                                                          % 
% Author: Paroma Chatterjee                                                %  
%         Virginia Polytechnic Institute and State University              % 
%                                                                          % 
% Last Modified: 12/21/2015; 11:40 PM                                      % 
%                                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
clc 
clear 
close all 

  
load V % loading the load flow voltages 
load IL % loading the currents = voltages * line impedances 

  
[row,ds,c] = size(V); 
r = row*ds; 

  
load REV % loading ratio errors in voltage transformers 
load REI % loading ratio errors in current transformers 

  
T = 1000; 
RREVm = zeros(T,r/ds,l); 
RREVmMean = zeros(T,l); 
Vmeas = zeros(T,r/ds,l); 
RREIm = zeros(T,r/ds,l); 
RREImMean = zeros(T,l); 

  
% Creating data to mimic field data 

  
for f = 1:T 
    for i = 1:r/ds 
        for j = 1:ds 
            for k = 1:l 
                Vm(i,j,k) = V(i,j,k)*REV(f,k); 
                Im(i,j,k) = IL(i,j,k)*REI(f,k); 
            end 
        end 
    end 

  

    % Quantizing data 
    q_V = 20/345000; % Changing it to per unit  
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    q_I = 0.64*345000/100000000; 
    Vmq = zeros(r/ds,ds,l); 
    Imq = zeros(r/ds,ds,l); 
    for i=1:r/ds 
        Vt(:,:) = Vm(i,:,:); 
        Vmqr = quant(real(Vt),q_V); 
        Vmqi = quant(imag(Vt),q_V); 
        Vmq(i,:,:) = Vmqr + 1i*Vmqi; 
        It(:,:) = Im(i,:,:); 
        Imqr = quant(real(It),q_I); 
        Imqi = quant(imag(It),q_I); 
        Imq(i,:,:) = Imqr + 1i*Imqi; 
    end 

  

    Vnew = Vmq;  
    Inew = Imq; 

  
    Vold = Vnew; 
    Iold = Inew; 

  
   % Solving for the ratios of ratio errors 

    
    for i = 1:r/ds 
        j = randi([1 ds],ds/2,1); 
        k = randi([1 l],l/2,1); 
        for n = 1:length(j) 
            for m = 1:length(k) 
                Vnew(i,j(n),k(m)) = NaN; 
                Inew(i,j(n),k(m)) = NaN; 
            end 
        end 
    end 

  
    Avol = isfinite(Vnew); 
    Acurr = isfinite(Inew); 

  
    for i = 1:r/ds 

  
        % 1st Pi section: 4-16  
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,1) == 0    
                count = count+1; 
            end 
            if Avol(i,j,2) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0   
            if count1==0 
                B0(:,:) = [conj(Vnew(i,:,1))' conj(Vnew(i,:,2))']; 
                A0(:,:) = [conj(Inew(i,:,1))' conj(Inew(i,:,2))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
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                RREIm(f,i,1) = W(1,1)/(X(1,1)*b(1,1)*(W(1,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,2) = 1/(X(2,1)*b(1,1)*(W(1,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                RREVm(f,i,2) = W(1,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
                Vmeas(f,i,2) = mean(Vnew(i,:,2)); 
            else 
                RREIm(f,i,1) = 0; 
                RREIm(f,i,2) = 0; 
                RREVm(f,i,2) = 0; 
            end 
        end 

  

        % 2nd Pi section: 16-42 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,3) == 0   
                count = count+1; 
            end 
            if Avol(i,j,4) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,3))' conj(Vnew(i,:,4))']; 
                A0(:,:) = [conj(Inew(i,:,3))' conj(Inew(i,:,4))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,3) = W(2,1)/(X(1,1)*b(2,1)*(W(2,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,4) = 1/(X(2,1)*b(2,1)*(W(2,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,3) = mean(Vnew(i,:,3));  

% Saving the mean voltage 
                Vmeas(f,i,4) = mean(Vnew(i,:,4));  

% Saving the mean voltage 
                RREVm(f,i,4) = W(2,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,3) = 0; 
                RREIm(f,i,4) = 0; 
                RREVm(f,i,4) = 0; 
            end 
        end 

  
        % 3rd Pi section: 42-34 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,5) == 0  
                count = count+1; 
            end 
            if Avol(i,j,8) == 0 
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                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,5))' conj(Vnew(i,:,8))']; 
                A0(:,:) = [conj(Inew(i,:,5))' conj(Inew(i,:,8))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,5) = W(3,1)/(X(1,1)*b(3,1)*(W(3,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,8) = 1/(X(2,1)*b(3,1)*(W(3,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,5) = mean(Vnew(i,:,5));  

% Saving the mean voltage 
                Vmeas(f,i,8) = mean(Vnew(i,:,8));  

% Saving the mean voltage 
                RREVm(f,i,8) = W(3,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,5) = 0; 
                RREIm(f,i,8) = 0; 
                RREVm(f,i,5) = 0; 
                RREVm(f,i,8) = 0; 
            end 
        end 

  

        % 4th Pi section: 42-39 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,6) == 0  
                count = count+1; 
            end 
            if Avol(i,j,9) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 ==0 
                B0(:,:) = [conj(Vnew(i,:,6))' conj(Vnew(i,:,9))']; 
                A0(:,:) = [conj(Inew(i,:,6))' conj(Inew(i,:,9))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,6) = W(4,1)/(X(1,1)*b(4,1)*(W(4,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,9) = 1/(X(2,1)*b(4,1)*(W(4,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,6) = mean(Vnew(i,:,6));  

% Saving the mean voltage 
                Vmeas(f,i,9) = mean(Vnew(i,:,9));  

% Saving the mean voltage 
                RREVm(f,i,9) = W(4,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,6) = 0; 
                RREIm(f,i,9) = 0; 
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                RREVm(f,i,6) = 0; 
                RREVm(f,i,9) = 0; 
            end 
        end 

  

        % 5th Pi section 42-46 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,7) == 0   
                count = count+1; 
            end 
            if Avol(i,j,10) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,7))' conj(Vnew(i,:,10))']; 
                A0(:,:) = [conj(Inew(i,:,7))' conj(Inew(i,:,10))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,7) = W(5,1)/(X(1,1)*b(5,1)*(W(5,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,10) = 1/(X(2,1)*b(5,1)*(W(5,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,7) = mean(Vnew(i,:,7));  

% Saving the mean voltage 
                Vmeas(f,i,10) = mean(Vnew(i,:,10));  

% Saving the mean voltage 
                RREVm(f,i,10) = W(5,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,7) = 0; 
                RREIm(f,i,10) = 0; 
                RREVm(f,i,7) = 0; 
                RREVm(f,i,10) = 0; 
            end 
        end 

  
        % 6th Pi section: 46-81 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,11) == 0   
                count = count+1; 
            end 
            if Avol(i,j,12) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,11))' conj(Vnew(i,:,12))']; 
                A0(:,:) = [conj(Inew(i,:,11))' conj(Inew(i,:,12))']; 
                X = lscov(A0,B0);  
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% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,11) = W(6,1)/(X(1,1)*b(6,1)*(W(6,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,12) = 1/(X(2,1)*b(6,1)*(W(6,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,11) = mean(Vnew(i,:,11));  

% Saving the mean voltage 
                Vmeas(f,i,12) = mean(Vnew(i,:,12));  

% Saving the mean voltage 
                RREVm(f,i,12) = W(6,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,11) = 0; 
                RREIm(f,i,12) = 0; 
                RREVm(f,i,11) = 0; 
                RREVm(f,i,12) = 0; 
            end 
        end 

  
        % 7th Pi section: 81-194 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,13) == 0  
                count = count+1; 
            end 
            if Avol(i,j,15) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,13))' conj(Vnew(i,:,15))']; 
                A0(:,:) = [conj(Inew(i,:,13))' conj(Inew(i,:,15))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,13) = W(7,1)/(X(1,1)*b(7,1)*(W(7,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,15) = 1/(X(2,1)*b(7,1)*(W(7,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,13) = mean(Vnew(i,:,13));  

% Saving the mean voltage 
                Vmeas(f,i,15) = mean(Vnew(i,:,15));  

% Saving the mean voltage 
                RREVm(f,i,15) = W(7,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,13) = 0; 
                RREIm(f,i,15) = 0; 
                RREVm(f,i,13) = 0; 
                RREVm(f,i,15) = 0; 
            end 
        end 

  

        % 8th Pi section: 81-195 
        count = 0; 
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        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,14) == 0  
                count = count+1; 
            end 
            if Avol(i,j,19) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,14))' conj(Vnew(i,:,19))']; 
                A0(:,:) = [conj(Inew(i,:,14))' conj(Inew(i,:,19))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,14) = W(8,1)/(X(1,1)*b(8,1)*(W(8,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,19) = 1/(X(2,1)*b(8,1)*(W(8,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,14) = mean(Vnew(i,:,14));  

% Saving the mean voltage 
                Vmeas(f,i,19) = mean(Vnew(i,:,19));  

% Saving the mean voltage 
                RREVm(f,i,19) = W(8,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,14) = 0; 
                RREIm(f,i,19) = 0; 
                RREVm(f,i,14) = 0; 
                RREVm(f,i,19) = 0; 
            end 
        end 

  
        % 9th Pi section 194-219 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,16) == 0  
                count = count+1; 
            end 
            if Avol(i,j,21) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,16))' conj(Vnew(i,:,21))']; 
                A0(:,:) = [conj(Inew(i,:,16))' conj(Inew(i,:,21))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,16) = W(9,1)/(X(1,1)*b(9,1)*(W(9,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,21) = 1/(X(2,1)*b(9,1)*(W(9,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,16) = mean(Vnew(i,:,16));  

% Saving the mean voltage 
                Vmeas(f,i,21) = mean(Vnew(i,:,21));  
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% Saving the mean voltage 
                RREVm(f,i,21) = W(9,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,16) = 0; 
                RREIm(f,i,21) = 0; 
                RREVm(f,i,16) = 0; 
                RREVm(f,i,21) = 0; 
            end 
        end 

  
        % 10th Pi section: 194-664 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,17) == 0  
                count = count+1; 
            end 
            if Avol(i,j,18) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,17))' conj(Vnew(i,:,18))']; 
                A0(:,:) = [conj(Inew(i,:,17))' conj(Inew(i,:,18))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,17) = W(10,1)/(X(1,1)*b(10,1)*(W(10,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,18) = 1/(X(2,1)*b(10,1)*(W(10,1)+1));  

%REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,17) = mean(Vnew(i,:,17));  

% Saving the mean voltage 
                Vmeas(f,i,18) = mean(Vnew(i,:,18));  

% Saving the mean voltage 
                RREVm(f,i,18) = W(10,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,17) = 0; 
                RREIm(f,i,18) = 0; 
                RREVm(f,i,17) = 0; 
                RREVm(f,i,18) = 0; 
            end 
        end 

         
        % 11th Pi section: 195-219 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,20) == 0  
                count = count+1; 
            end 
            if Avol(i,j,22) == 0 
                count1 = count1+1; 
            end 
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        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,20))' conj(Vnew(i,:,22))']; 
                A0(:,:) = [conj(Inew(i,:,20))' conj(Inew(i,:,22))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,20) = W(10,1)/(X(1,1)*b(11,1)*(W(11,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,22) = 1/(X(2,1)*b(11,1)*(W(11,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,20) = mean(Vnew(i,:,20));  

% Saving the mean voltage 
                Vmeas(f,i,22) = mean(Vnew(i,:,22));  

% Saving the mean voltage 
                RREVm(f,i,22) = W(11,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,17) = 0; 
                RREIm(f,i,18) = 0; 
                RREVm(f,i,17) = 0; 
                RREVm(f,i,18) = 0; 
            end 
        end 

         
        % 12th Pi section: 219-237 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,23) == 0  
                count = count+1; 
            end 
            if Avol(i,j,24) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,23))' conj(Vnew(i,:,24))']; 
                A0(:,:) = [conj(Inew(i,:,23))' conj(Inew(i,:,24))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,23) = W(12,1)/(X(1,1)*b(12,1)*(W(12,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,24) = 1/(X(2,1)*b(12,1)*(W(12,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,23) = mean(Vnew(i,:,23));  

% Saving the mean voltage 
                Vmeas(f,i,24) = mean(Vnew(i,:,24));  

% Saving the mean voltage 
                RREVm(f,i,24) = W(12,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,17) = 0; 
                RREIm(f,i,18) = 0; 
                RREVm(f,i,17) = 0; 
                RREVm(f,i,18) = 0; 
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            end 
        end 

         
        % 13th Pi section: 237-231 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,25) == 0  
                count = count+1; 
            end 
            if Avol(i,j,26) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,25))' conj(Vnew(i,:,26))']; 
                A0(:,:) = [conj(Inew(i,:,25))' conj(Inew(i,:,26))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,25) = W(13,1)/(X(1,1)*b(13,1)*(W(13,1)+1));  

% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,26) = 1/(X(2,1)*b(13,1)*(W(13,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,25) = mean(Vnew(i,:,25));  

% Saving the mean voltage 
                Vmeas(f,i,26) = mean(Vnew(i,:,26));  

% Saving the mean voltage 
                RREVm(f,i,26) = W(13,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,25) = 0; 
                RREIm(f,i,26) = 0; 
                RREVm(f,i,25) = 0; 
                RREVm(f,i,26) = 0; 
            end 
        end 

         
        % 14th Pi section: 231-190 
        count = 0; 
        count1 = 0; 
        for j = 1:ds 
            if Avol(i,j,27) == 0  
                count = count+1; 
            end 
            if Avol(i,j,28) == 0 
                count1 = count1+1; 
            end 
        end 
        if count == 0 
            if count1 == 0 
                B0(:,:) = [conj(Vnew(i,:,27))' conj(Vnew(i,:,28))']; 
                A0(:,:) = [conj(Inew(i,:,27))' conj(Inew(i,:,28))']; 
                X = lscov(A0,B0);  

% AX = B; IZ = V; Z = lscov(I,V); X = lscov(A,B) = [ao b0; c0 d0] 
                RREIm(f,i,27) = W(14,1)/(X(1,1)*b(14,1)*(W(14,1)+1));  
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% REIpq/REVpq = (1/a0)*(W/(B*(W+1))) 
                RREIm(f,i,28) = 1/(X(2,1)*b(14,1)*(W(14,1)+1));  

% REIqp/REVpq = (1/c0)*(1/(B*(W+1))) 
                Vmeas(f,i,27) = mean(Vnew(i,:,27));  

% Saving the mean voltage 
                Vmeas(f,i,28) = mean(Vnew(i,:,28));  

% Saving the mean voltage 
                RREVm(f,i,28) = W(14,1)*X(1,2)/X(1,1);  

% REVqp/REVpq = (b0/a0)*W 
            else 
                RREIm(f,i,27) = 0; 
                RREIm(f,i,28) = 0; 
                RREVm(f,i,27) = 0; 
                RREVm(f,i,28) = 0; 
            end 
        end 

  
    end 

  
    RREVmold = RREVm; 
    RREImold = RREIm; 

     

    DummyV(:,:) = abs(RREVm(f,:,:)); 
    DummyC(:,:) = abs(RREIm(f,:,:)); 
    for j=1:r/ds 
        for k = 1:l 
           if DummyV(j,k)==0 
               RREVm(f,j,k) = NaN; 
           end 
           if DummyC(j,k)==0 
               RREIm(f,j,k) = NaN; 
           end 
        end 
    end 
    RREVmMean(f,:) = nanmean(RREVm(f,:,:)); 
    RREImMean(f,:) = nanmean(RREIm(f,:,:)); 
    clear DummyV DummyC 

  
    % 1st Pi section: 4-16: Everything remains the same 

  

    % 2nd Pi section: 16-42 

  
    % Voltage Ratio Errors 
    RREVmMean(f,3) = 

RREVmMean(f,2)*((sum(Vmeas(f,:,3)./sum(Vmeas(f,:,3)~=0)))/(sum(Vmeas(f,:,2)./

sum(Vmeas(f,:,2)~=0)))); 
    RREVmMean(f,4) = RREVmMean(f,4)*RREVmMean(f,3); 
    % Current Ratio Errors 
    RREImMean(f,3) = RREVmMean(f,3)*RREImMean(f,3); 
    RREImMean(f,4) = RREVmMean(f,3)*RREImMean(f,4); 

  
    % 3rd Pi section: 42-34 

  

    % Voltage Ratio Errors 
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    RREVmMean(f,5) = 

RREVmMean(f,4)*(sum(Vmeas(f,:,5)./sum(Vmeas(f,:,5)~=0)))/(sum(Vmeas(f,:,4)./s

um(Vmeas(f,:,4)~=0))); 
    RREVmMean(f,8) = RREVmMean(f,8)*RREVmMean(f,5); 
    % Current Ratio Errors 
    RREImMean(f,5) = RREVmMean(f,5)*RREImMean(f,5); 
    RREImMean(f,8) = RREVmMean(f,5)*RREImMean(f,8); 

  
    % 4th Pi section: 42-39 

  
    % Voltage Ratio Errors 
    RREVmMean(f,6) = 

RREVmMean(f,4)*(sum(Vmeas(f,:,6)./sum(Vmeas(f,:,6)~=0)))/(sum(Vmeas(f,:,4)./s

um(Vmeas(f,:,4)~=0))); 
    RREVmMean(f,9) = RREVmMean(f,9)*RREVmMean(f,6); 
    % Current Ratio Errors 
    RREImMean(f,6) = RREVmMean(f,6)*RREImMean(f,6); 
    RREImMean(f,9) = RREVmMean(f,6)*RREImMean(f,9); 

  
    % 5th Pi section: 42-46 

  
    % Voltage Ratio Errors 
    RREVmMean(f,7) = 

RREVmMean(f,4)*(sum(Vmeas(f,:,7)./sum(Vmeas(f,:,7)~=0)))/(sum(Vmeas(f,:,4)./s

um(Vmeas(f,:,4)~=0))); 
    RREVmMean(f,10) = RREVmMean(f,10)*RREVmMean(f,7); 
    % Current Ratio Errors 
    RREImMean(f,7) = RREVmMean(f,7)*RREImMean(f,7); 
    RREImMean(f,10) = RREVmMean(f,7)*RREImMean(f,10); 

  
    % 6th Pi section: 46-81 

  
    % Voltage Ratio Errors 
    RREVmMean(f,11) = 

RREVmMean(f,10)*(sum(Vmeas(f,:,11)./sum(Vmeas(f,:,11)~=0)))/(sum(Vmeas(f,:,10

)./sum(Vmeas(f,:,10)~=0))); 
    RREVmMean(f,12) = RREVmMean(f,12)*RREVmMean(f,11); 
    % Current Ratio Errors 
    RREImMean(f,11) = RREVmMean(f,11)*RREImMean(f,11); 
    RREImMean(f,12) = RREVmMean(f,11)*RREImMean(f,12); 

  
    % 7th Pi section: 81-194 

  
    % Voltage Ratio Errors 
    RREVmMean(f,13) = 

RREVmMean(f,12)*(sum(Vmeas(f,:,13)./sum(Vmeas(f,:,13)~=0)))/(sum(Vmeas(f,:,12

)./sum(Vmeas(f,:,12)~=0))); 
    RREVmMean(f,15) = RREVmMean(f,15)*RREVmMean(f,13); 
    % Current Ratio Errors 
    RREImMean(f,13) = RREVmMean(f,13)*RREImMean(f,13); 
    RREImMean(f,15) = RREVmMean(f,13)*RREImMean(f,15); 

  
    % 8th Pi section: 81-195 

  
    % Voltage Ratio Errors 
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    RREVmMean(f,15) = 

RREVmMean(f,13)*(sum(Vmeas(f,:,15)./sum(Vmeas(f,:,15)~=0)))/(sum(Vmeas(f,:,13

)./sum(Vmeas(f,:,13)~=0))); 
    RREVmMean(f,19) = RREVmMean(f,19)*RREVmMean(f,15); 
    % Current Ratio Errors 
    RREImMean(f,15) = RREVmMean(f,15)*RREImMean(f,15); 
    RREImMean(f,19) = RREVmMean(f,15)*RREImMean(f,19); 

  
    % 9th Pi section: 194-219 

  
    % Voltage Ratio Errors 
    RREVmMean(f,16) = 

RREVmMean(f,15)*(sum(Vmeas(f,:,16)./sum(Vmeas(f,:,16)~=0)))/(sum(Vmeas(f,:,15

)./sum(Vmeas(f,:,15)~=0))); 
    RREVmMean(f,21) = RREVmMean(f,21)*RREVmMean(f,16); 
    % Current Ratio Errors 
    RREImMean(f,16) = RREVmMean(f,16)*RREImMean(f,16); 
    RREImMean(f,21) = RREVmMean(f,16)*RREImMean(f,21); 

  
    % 10th Pi section: 194-664 

  
    % Voltage Ratio Errors 
    RREVmMean(f,17) = 

RREVmMean(f,15)*(sum(Vmeas(f,:,17)./sum(Vmeas(f,:,17)~=0)))/(sum(Vmeas(f,:,15

)./sum(Vmeas(f,:,15)~=0))); 
    RREVmMean(f,18) = RREVmMean(f,18)*RREVmMean(f,17); 
    % Current Ratio Errors 
    RREImMean(f,17) = RREVmMean(f,17)*RREImMean(f,17); 
    RREImMean(f,18) = RREVmMean(f,17)*RREImMean(f,18); 

     
    % 11th Pi section: 195-219 

  
    % Voltage Ratio Errors 
    RREVmMean(f,20) = 

RREVmMean(f,19)*(sum(Vmeas(f,:,20)./sum(Vmeas(f,:,20)~=0)))/(sum(Vmeas(f,:,19

)./sum(Vmeas(f,:,19)~=0))); 
    RREVmMean(f,22) = RREVmMean(f,22)*RREVmMean(f,20); 
    % Current Ratio Errors 
    RREImMean(f,20) = RREVmMean(f,20)*RREImMean(f,20); 
    RREImMean(f,18) = RREVmMean(f,20)*RREImMean(f,22); 

     
    % 12th Pi section: 219-237 

  
    % Voltage Ratio Errors 
    RREVmMean(f,23) = 

(RREVmMean(f,21)*(sum(Vmeas(f,:,23)./sum(Vmeas(f,:,23)~=0)))/(sum(Vmeas(f,:,2

1)./sum(Vmeas(f,:,21)~=0))))+ 

(RREVmMean(f,22)*(sum(Vmeas(f,:,23)./sum(Vmeas(f,:,23)~=0)))/(sum(Vmeas(f,:,2

2)./sum(Vmeas(f,:,22)~=0))))/2 ; 
    RREVmMean(f,24) = RREVmMean(f,24)*RREVmMean(f,23); 
    % Current Ratio Errors 
    RREImMean(f,23) = RREVmMean(f,23)*RREImMean(f,23); 
    RREImMean(f,24) = RREVmMean(f,23)*RREImMean(f,24); 

     
    % 13th Pi section: 237-231 
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    % Voltage Ratio Errors 
    RREVmMean(f,25) = 

RREVmMean(f,24)*(sum(Vmeas(f,:,25)./sum(Vmeas(f,:,25)~=0)))/(sum(Vmeas(f,:,24

)./sum(Vmeas(f,:,24)~=0))); 
    RREVmMean(f,26) = RREVmMean(f,26)*RREVmMean(f,25); 
    % Current Ratio Errors 
    RREImMean(f,25) = RREVmMean(f,25)*RREImMean(f,25); 
    RREImMean(f,26) = RREVmMean(f,25)*RREImMean(f,26); 

     
    % 14th Pi section: 231-190 

  
    % Voltage Ratio Errors 
    RREVmMean(f,27) = 

RREVmMean(f,26)*(sum(Vmeas(f,:,27)./sum(Vmeas(f,:,27)~=0)))/(sum(Vmeas(f,:,26

)./sum(Vmeas(f,:,26)~=0))); 
    RREVmMean(f,28) = RREVmMean(f,28)*RREVmMean(f,27); 
    % Current Ratio Errors 
    RREImMean(f,27) = RREVmMean(f,27)*RREImMean(f,27); 
    RREImMean(f,28) = RREVmMean(f,27)*RREImMean(f,28); 

      
end 

  
load RREV 
load RREI 

  

RREVe = zeros(T,l); 
RREIe = zeros(T,l); 

  
for f = 1:T 
    for i = 1:l 
        RREVe(f,i) = (RREV(f,i))- (RREVmMean(f,i)); 
    end 
    for i = 1:l 
        RREIe(f,i) = (RREI(f,i))- (RREImMean(f,i)); 
    end 
end 

  
VoltSTD(1,:) = std(RREVe,0,1); 
CurrSTD(1,:) = std(RREIe,0,1); 

  
x = 1:28; 
plot(x,VoltSTD,'r.') 
axis([0 21 0 0.012]) 
xlabel('End points of the lines') 
ylabel('Error in estimating ratios of ratio errors of VTs') 

  
figure 

  
x = 1:28; 
plot(x,CurrSTD,'r.') 
axis([0 21 0 0.02]) 
xlabel('End points of the lines') 
ylabel('Error in estimating ratios of ratio errors of CTs') 


