
Personalizing the GAMS Cross-Index

Saverio Perugini Priya Lakshminarayanan Naren Ramakrishnan

Department of Computer Science
Virginia Tech, VA 24061

Email: {sperugin, plakshmi, naren}@cs.vt.edu

March 18, 2000

Abstract

The NIST Guide to Available Mathematical Software (GAMS) system at http://gams.nist
.gov serves as the gateway to thousands of scientific codes and modules for numerical com-
putation. We describe the PIPE personalization facility for GAMS, whereby content from the
cross-index is specialized for a user desiring software recommendations for a specific problem
instance. The key idea is to (i) mine structure, and (ii) exploit it in a programmatic manner to
generate personalized web pages. Our approach supports both content-based and collaborative
personalization and enables information integration from multiple (and complementary) web
resources. We present case studies for the domain of linear, second-order, elliptic partial differ-
ential equations that indicate strong empirical evidence for the usefulness of our semi-automatic
approach.

1 Introduction

The explosive growth of the World Wide Web (WWW) and the concomitant increase in online
content has greatly exacerbated information overload. Search engines, while attempting to alleviate

this problem, harness only a small fraction of the indexable web (one study estimates this to be
< 30% [6]), and still require users to sift through a multitude of results to determine relevant

selections. The low coverage of search engines is attributed to at least two reasons: (i) a majority
of web pages are dynamically generated [3] (and hence not directly accessible via hyperlinks), and

(ii) lack of sophisticated conceptual models for web information retrieval (but see [2] for some
interesting work in this direction). To counter information overload, recommender systems and

personalization technology have emerged as a major segment of the Internet economy. They also
serve as an effective mechanism to retain customers in E-commerce [10].

The online mathematical software community is not insured from information overload, either.
The wide acceptance of repositories such as Netlib (http://www.netlib.org), cross-indices such
as the Guide to Available Mathematical Software (GAMS at http://gams.nist.gov), and prob-

lem solving environments (PSEs) has increased the number of online algorithms available to the
computational scientist. However, much of this information is accessible only if we know ‘what we

want’ and ‘where it is.’ The obstacles in selecting the best algorithm for a particular problem and
subsequently finding an appropriate software implementation are often difficult and sometimes even

impossible to surmount. As an example, it is estimated that there are nearly 10 million software

1

2

modules for numerical quadrature that are potentially interesting and significantly different from
one another!

Various approaches have been proposed to conduct personalization. Two broad flavors of re-
search can be identified:

1. The information filtering research provides content-based schemes that use keywords, string

matching, link patterns, and manually compiled identifiers to provide simple ‘web query
languages’ for personalization (e.g. “Find all books on the NY times best-seller list for more
than 7 consecutive weeks”). An example from the CS&E domain would be to use GAMS to

“find all algorithms that are applicable to helmholtz-type elliptic partial differential equations
(PDEs).”

2. The collaborative filtering approaches bring in preferences/ratings/experiences into the per-

sonalization process. The average Internet user will be familiar with book recommender
systems that mine user buying patterns to provide customizations (“Since you liked ‘Sense

and Sensibility’, you might want to buy ‘Pride and Prejudice’ too”). In the CS&E arena, the
GAUSS recommender system [9] selects algorithms for numerical quadrature by organizing

a battery of benchmark problems & algorithm executions and mining it to obtain high-level
rules that can form the basis of a recommendation. A similar facility for elliptic PDEs is pro-

vided by the PYTHIA system [4]. For example, with a given PDE (and performance criteria
constraints on its solution), PYTHIA might suggest ‘Use the 5–point star algorithm with a

200× 200 grid on an NCube/2 using 16 processors. Confidence: 0.85 (based on performance
on similar problem p-36).’ We refer the interested reader to [4] for more details about this
system.

However, both these approaches are limited in that they (i) must be individually handcrafted
for particular domains and, more importantly, (ii) do not provide facilities to integrate information
from multiple web sources. It is well understood that to deliver compelling experiences, personal-

ization systems need to operate on multiple web sites, cross-indices, topic-specific recommenders,
individual pages, resource lists, meta search-tools, and internet repositories. Two main technical

bottlenecks are (i) the lack of a uniform programming model for building personalization systems,
and (ii) integrating the design of such information systems with the task model(s) underlying the

(assumed) interaction scenario. This issue is further complicated by the inherent difficulties in
information integration — synonymy (‘numerical quadrature’ in one web site is referred to as ‘nu-

merical integration’ in another), polysemy (the interpretation of ‘linear’ depends on the context),
and lack of apriori schema in web site organization.

In this article, we present a system for creating personalized recommendations about mathe-
matical and scientific software on the web. One of the main research issues here is understanding
and modeling the fundamental processes by which knowledge about scientific problems and algo-

rithms is created, validated, and communicated. Our prototype system (PIPE at http://pipe.cs
.vt.edu) personalizes content from the GAMS cross-index and the PYTHIA recommender sys-

tem (at http://www.cs.purdue.edu/research/cse/pythia), and integrates them into a unified
framework. We demonstrate how PIPE produces results that cannot be achieved by either of the

two facilities alone. Moreover, PIPE’s integrated methodology is applicable to a wide variety of
domains and not restricted to the implementation presented here.

The rest of this article is organized as follows: We first briefly review certain research issues in
information personalization and motivate the PIPE methodology. Implementation considerations

and the design of a web portal are described next. Finally, experimental results and evaluation of
our prototype are addressed.

3

Web Examples Data Mining

Sources Models Algorithms

Unstructured User Pages Vector-Space LSI [1]
Documents Probabilistic n-grams

Case-Based Reasoning

Semi-structured XML Graph-Based Typing Rules
Labeled Hyperlinks Hypergraph Clustering

Table 1: Comparison of Data Models, Web Sources, and Mining Algorithms.

2 Design of the PIPE System

The key idea in PIPE is to (i) extract structure from web sources (such as GAMS), and (ii)
exploit it in a programmatic manner to yield customized content. At a high level, web sites can

be characterized by a phenomenon of ‘implicit but loose structure’, denoting the irregular and
constantly evolving schema of information (contrast this to relational database systems where

the schema is set apriori). Various semi-structured data models have been proposed, particularly
graph-based schemes that use directed labeled arcs to model the connection between web pages and

between web sites. At the other extreme, textual content in individual pages is highly unstructured
and traditional approaches such as the vector-space model are appropriate. It is not surprising that

these diverse models are amenable to different mechanisms for extracting and mining for structure
(see Table 1). Mining unstructured data has been well-addressed in a previous issue of CiSE [1],

and will not be explored further here. We mention briefly that the basic idea is to use linear
algebraic matrix transformations and approximations to identify hidden structures in word usage,

thus enabling searches that go beyond simple keyword matching. In this article, we concentrate on
the graph-based schemes for abstracting and modeling semi-structured data and, in particular, the
algorithm of Nestorov et al. [7], as they are more relevant for our purposes.

Consider the hypothetical web site depicted in the top left part of Fig. 1. The individual web
pages are denoted by M1, M2 etc., the pre-leaf nodes by P1, P2 etc., while the other internal nodes

are represented as S1, S2 etc. Notice that the links are assumed to be tagged via some labeling
mechanism, say XML tags (more on this later). The web pages are treated as atomic objects, and

the links between web pages are modeled as relations between the atomic objects. The first step in
extracting structure from the web site is to proceed to type the data. For example, the S2 node can

be typed as: S2(Y) :- S1(X), link(X,Y,’a’), P1(Z), link(Y,Z,’e’), which indicates that
it is reachable from S1 (using the a tag), and has a link to P1 (via the label e). Such a typing

(expressed in the form of a logic program) might not yield any compression to the original data, so
various approximations and simplifications are employed to reduce its size for further processing.
We first identify commonalities due to encountering the same page multiple times (top right of

Fig. 1). Next, the algorithm of Nestorov et al. [7] uses program-theoretic techniques to find the
minimal set of types necessary to accurately represent the original data. And finally, allowing one

type to be expressed as the superposition of multiple other types helps further reduce the size of
the logic program. The end-result of this process (see bottom right of Fig. 1) is a logic program

whose interpretation refers to the organization of information in the web sources. For example, the
data in Fig. 1 (bottom right) results in:

4

S1

S2

a

S3

b

S4

c

S5

d

P1

e

P2

e

P3

e e

P4

e

P4

f

M1

g

M1

g

M2

h

M1

g

M2

h

M2

h

S1

S2

a

S3

b

S4

c

S5

d

P1

e

P2

e

P3

e e

P4

e f

M1

g g g

M2

h h

S1

S2

a

S3

b

S4

c

S5

d

P1,2

e e

P3

e e

P4

e f

M1

g g

M2

h h

S1

S2

a

S3

b

S4

c

S5

d

P1,2

e e

P4

e f

M1

g

M2

h

Figure 1: Four stages in extracting structure from a semi-structured data source. The input
is assumed to be a graph-structure with labeled and directed edges (top left). Commonalities

encountered in tree-building are factored first (top right). At this stage, multiple internal nodes
may possess the same input and output labels (for example, P1 and P2). The algorithm then

proceeds to type the data, thus collapsing P1 and P2 (bottom left). Finally, nodes are allowed to
belong to multiple types, rendering P3 to be redundant (bottom right).

5

S2(Y) :- S1(X), link(X,Y,’a’).

S3(Y) :- S1(X), link(X,Y,’a’).

S4(Y) :- S1(X), link(X,Y,’c’).

S5(Y) :- S1(X), link(X,Y,’d’).

P1,2(Y) :- S2(X), S3(Z), link(X,Y,’e’),link(Z,Y,’e’),...

...

It should be noted that the final predicates S2, P1,2 etc. are obtained by data mining using the
link information, and are merely the most natural/obvious interpretations for the types discovered

by the program (i.e. they are not obtained by the algorithm). We refer the reader to [7] for a more
detailed explanation. Notice that while we have only modeled and abstracted the link information

between web pages, nonstructural information such as text can be stored alongside using augmented
data structures. Such logic programs (from diverse sources), can then be merged, taking care to

ensure that entities referred to in different ways by individual web sources are correctly merged
together. This involves the effective design of mediators that resolve naming conflicts and issues

of synonymy (typically addressed by domain specific conventions in applications) [3]. These steps
constitute the off-line aspect of the methodology.

Once web pages and sources are abstracted as logic programs, the next step is to personalize

content for the user by creating specialized programs (and reconstructing web pages from them, in
turn). Our main contribution is the use of partial evaluation to automatically personalize the logic

program, by using personalization criteria (from a consultation session with the user). The basic
goal of partial evaluation is to automatically specialize programs, given incomplete information

about their input. The input to a partial evaluator is a program and (some) static information
about its arguments. Its output is a specialized version of this program (typically in the same lan-

guage), that uses the static information to ‘pre-compile’ as many operations as possible. A simple
example is how the C function pow can be specialized to create a new function, say pow2, that

computes the square of an integer. Consider for example, the definition of a power function shown
in the left part of Fig. 2 (grossly simplified for presentation purposes). If we knew that a particular
user will utilize it only for computing squares of integers, we could specialize it (for that user) to

produce the pow2 function. Thus, pow2 is obtained automatically (not by a human programmer)
from pow by precomputing all expressions that involve exponent, unfolding the for-loop and by var-

ious other compiler transformations such as copy propagation and forward substitution. Its benefit
is obvious when we consider a higher-level loop that would invoke pow repeatedly for computing,

say, the squares of all integers from 1 · · ·100. Partial evaluation is now used in a wide variety of
applications (scientific computing, database systems etc.) to achieve speedup in highly parame-

terized environments. Automatic program specializers are available for C, FORTRAN, PROLOG,
LISP, and several other important languages. We refer the interested reader to [5] for a good intro-

duction. While the traditional motivation for using partial evaluation is to achieve speedup and/or
remove interpretation overhead, partial evaluation can also be viewed as a technique to remove
inapplicable, unnecessary and ‘uninteresting’ information from a program.

3 Experimental Results

Our implementation of PIPE personalizes content from the GAMS cross-index for the domain of

elliptic PDEs. GAMS is a tree-structured taxonomy that indexes nearly 10, 000 algorithms (from
over 100 software packages) for most areas of scientific software. It functions in an interactive

6

int pow(int base, int exponent) { int pow2(int base) {
int prod = 1; return (base * base)

for (int i=0;i<exponent;i++) }
prod = prod * base;

return (prod);

}

Figure 2: Illustration of the partial evaluation technique. A general purpose power function writ-
ten in C (left) and its specialized version (with exponent = 2) to handle squares (right). Such

specializations are performed automatically by partial evaluators such as C-Mix [5].

Figure 3: Snapshot of the GAMS Interface (http://gams.nist.gov) at three levels of the hierarchy.

7

fashion, guiding the user from the top of a classification tree to specific modules as the user describes
the problem in increasing detail. During this process, many features of the problem are determined,

indirectly from the user. However, at the ‘leaves’, there still exist several choices of algorithms for
a specific problem. Fig. 3 describes three screen shots during a typical GAMS session. At first
glance, the regularity of the GAMS taxonomy is unequivocally judged by the average web surfer

to be a highly structured web site. However, closer inspection reveals that it is best abstracted via
semi-structured models:

• Absence of Apriori Schema: GAMS organizes its taxonomy into a hierarchy consisting of

Classes, Subclasses, Packages, and Modules. However, not all levels of the hierarchy contain
the same type of pages. For example, some Subclass pages link to not only other Subclasses,

but also directly to Packages.

• Cross-References: For certain problem types, more than one category in GAMS is perti-

nent. For example, optimization software reside not only in the subtree rooted at G (‘op-
timization’), but also K (‘approximation’), and L8 (‘regression’). Some of this information

is provided via “Search also” labels on the corresponding links. Modeling this aspect with
graph-based schema introduces additional links that aid in the mining process.

• Duplication of Common Module Sets: We also create a virtual page for every instance
of a distinct set of modules associated with a package and pointed to by a non-leaf node. For

example, different subsets of the CMLIB package are reproduced multiple times at various
leaves. Mapping these into a virtual entry provides an additional source for commonalities at

the lower levels of the taxonomy.

We designed a web crawler that employs a recursive depth first search complemented with a Perl
hash1 to drive the mining algorithm. Since the same web page may be encountered multiple times,

a hash indexed by page URL helps identify commonalities during tree building. The text processing
capabilities of the lynx browser are used to populate individual hash table entries. Notice that
while links in GAMS (and most web sites) are not typed, we interpret the text anchoring the ‘a

href’s in the web pages as the label when following the associated link. Furthermore, the labels
for certain links (typically to modules) are very long that they cannot be listed intelligibly on the

originating page. In such cases, the label is suffixed with “...” and continued on the page pointed
to. For the purposes of personalization, we cannot ignore the continuation of the label as it may

contain important keywords that describe the module.
The compressions arising from mining GAMS schema are of two main flavors: (i) reductions due

to factoring common nodes at the pre-leaf level (typically module sets), and (ii) reductions arising
from links that violate the tree taxonomy. The first kind are captured by the tree-building process

while the second are addressed by the typing algorithm(s). For example, results from the I2b1a

(11%; Fig. 4) and L subtrees (51%; which contains a number of “Search also” links) fall primarily
under the first category. Results from the D subtree, for instance, arise due to compressions from

typing (14%). In addition, the drastic reduction obtained for the L subtree is due to the broad,
encompassing nature of its category (‘Statistics and Probability’) and the software modules indexed

by it. A more comprehensive tabulation of results for various GAMS subtrees is provided in Table. 2.
In this implementation of PIPE, we focus on the GAMS subtree I2b1a (linear, second-order

elliptic PDEs). The next step is to merge the schema extracted from this subtree with the PYTHIA
rule base for recommending individual solvers for PDEs (information integration). Fig. 5 describes

1Perl hashes use arrays indexed by strings, in this case the URL of the web page.

8

1

2 17

223 12 1819 21 20

14 15 23 25 249 78 6 5 4 1110 16 13

76 59 60 61 6263 64 65 66 67 68 69 70 7172 73 74 75 56 5758 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 26 27 28 29 30 31 32 33 34 35 36 37 38 39 88 89 90 9177 78 7980 81 82 83 84 85 86 87 9396 9798 99 100 949592

101102103104 107108 105106

109 110 111112 114115 116 113

1

2 17

213 12 18 20 19

14 15 22 24 239 7 8 6 5 4 11 10 16 13

73 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 55 56 57 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 25 26 27 28 29 30 31 32 33 34 35 36 37 38 85 86 87 88 74 75 76 77 78 79 80 81 82 83 84 90 92 93 94 95 9691 89

97 98 101 102 99 100

103 104 105 106 108 109 110 107

Figure 4: The I2b1a subtree before (top) and after (bottom) the processing of the mining algorithm.
Notice the reductions arising from factoring module sets at the pre-leaf level. In other subtrees of

the GAMS hierarchy, higher levels of compression are observed.

9

Subclass T1 T2 T3 T4 Savings

Example Graph in Fig. 1 10 9 8 7 30 %
A (Arithmetic, Error Analysis) 67 59 58 58 13 %
B (Number Theory) 3 3 3 3 0 %
C (Elementary and Special Functions) 306 283 273 268 12 %
D (Linear Algebra) 883 835 784 763 14 %
E (Interpolation) 85 82 82 82 4 %
F (Solution of Nonlinear Equations) 41 41 39 39 5 %
G (Optimization) 191 186 185 185 3 %
H2a (1-D Quadrature) 80 74 69 69 14 %
I2b1a (Linear, 2nd Order, Elliptic PDEs) 27 25 24 24 11 %
J (Integral Transforms) 66 61 58 58 12 %
K (Approximation) 239 225 220 220 8 %
L (Statistics, Probability) 2706 1340 1330 1330 51 %
M (Simulation, Stochastic Modeling) 11 11 11 11 0 %
N (Data Handling) 101 99 96 96 5 %
O (Symbolic Computation) 6 6 6 6 0 %
P (Computational Geometry) 9 9 9 9 0 %
Q (Graphics) 14 14 14 14 0 %
R (Service Routines) 48 47 45 45 6 %
S (Software Development Tools) 16 16 15 15 6 %
Z (Other) 7 7 7 7 0 %
GAMS 7014 2901 2819 2793 60 %

Table 2: Summary results for various GAMS subtrees. The T’s indicate the number of internal

nodes, as input (T1), after removing commonalities (T2), after minimal perfect typing (T3), and
after factoring nodes that can be expressed as a combination of multiple types (T4). The savings

denote the fraction (T1-T4)/T1. Notice that reductions in the L subtree occur during tree building,
while subtree D presents opportunities for the mining algorithm.

10

...

(defrule I2b1a-rule1

?s <- (type start)

?web <- (url http://pipe.cs.vt.edu/start.html)

(feature opSeparable_yes)

(feature opPoisson_yes)

=>

(assert (type type1))

(retract ?web ?s)

(assert (url http://pipe.cs.vt.edu/type1.html))

)

...

(defrule pythiarule-r9

?web <- (url http://pipe.cs.vt.edu/type4.html)

?p <- (problem unsolved)

(feature opLaplace_yes)

(feature rhsSingDeriv_yes)

(type type4)

=>

(retract ?p)

(assert (best method is dyakanov-cg))

(retract ?web)

(assert (url http://pipe.cs.vt.edu/ell12.html))

(assert (closest exemplar is p2))

(assert (problem is solved))

)

Figure 5: Example program input to the partial evaluator. The defrules in the above CLIPS
program are either automatically mined by the procedure described earlier, or integrated from

the recommender rules of PYTHIA. Notice also the annotations in the rules that will be used to
decompose the final specialized program to the originating web sources.

a partial listing of the composite program obtained by mining the respective web sources and inte-
grating them. This is represented in the CLIPS programming language, which provides procedural,

rule-based, and object-oriented paradigms for representation. The overall architecture of the per-
sonalization system is depicted in Fig. 6. The end-user interface for the personalization system is
available at http://pipe.cs.vt.edu and an example is provided in Fig. 7. As shown, the user

provides the input problem in self-describing mathematical terms (the creation of the logic program
is effected off-line and needs to be done only once for all personalization sessions with this system).

PIPE first parses the input to obtain as many features as possible. The automatic determination of
these features is a complex issue, and various techniques are discussed in [8]. Partially evaluating

the original problem with these features removes a majority of the original information. Some of
the features are used to evaluate the the rules from PYTHIA, providing the final recommendation.

At this stage, the ‘links’ in the specialized program are decomposed into the original web sources.
In the general case, this involves having the ability to decompose queries across individual web

sources. The key research issue is how to restrict decomposition to a small number of web sources
and to determine an exact algorithmic strategy. This is still an open research problem in various

domains. Finally, the specialized program is used by an HTML generator to produce the output

11

Wrapper

FEATURE

INPUT

Web Pages

GAMS Cross-Index

 peaked(Problem).

(Web Taxonomy) (Collaborative Filtering)

Wrapper

Web
Mining

MEDIATORS

PARTIAL
EVALUATOR

HTML
GENERATOR

Personalized

(Parsing etc.)

 accuracy(Problem, -8),

etc.

(Recommendation Rules)

PYTHIA Recommender

use(Problem, FFT6) :-

 laplace(Problem),
 ConstCoeff(Problem),
 entire(Problem)

Figure 6: Implementation of the PIPE methodology to create personalized software recommenda-
tions. Notice that both content-based and collaborative techniques are harnessed in this example.

12

Figure 7: Sample session with the PIPE system, personalizing content for a partial differential
equation problem.

13

Figure 8: Personalized output for the problem in Fig. 7. Information is available about the features
used for partial evaluation and the rules that were evaluated.

14

shown in Fig. 8. Such generators typically take a specification of a web site as input (graphs,
rules etc.) and define the structure of the site in terms of the underlying data model. Our HTML

generator is written using the text manipulation capabilities provided in Perl.
PIPE’s integrated approach is thus applicable to various other domains where a lot of meta-data

(and recommenders) are available, and where the logic program creation can be performed statically;

furthermore it still allows the user to choose the rating mechanism (value-neutrality). In our case,
this is the PYTHIA recommender system. A different system, trained on qualitatively different

examples, might be appropriate in another situation. Also notice that if partial evaluation does
not lead to substantial (or any) reduction in program size, we can still reconstruct the appropriate

web pages (all of them, resp.) from the original program.

3.1 Evaluation of PIPE

The domain presented here was chosen for its importance and immediate relevance to the compu-

tational scientist. While there exist individual recommenders designed for specialized domains of
scientific software, there does not exist any comprehensive personalization facility as described in

this article. This implementation of PIPE is hence a novel application of personalization technology.
In our evaluation of PIPE, we used a benchmark set of problems described in [4] to characterize the

final recommendations obtained. Since PYTHIA’s selection rules recommend only algorithms from
the ELLPACK suite, personalization is most effective with these algorithms. We briefly describe
these results below: First, all selections made by PIPE are ‘valid’ (a selection is considered ‘invalid’

if the algorithm is inappropriate for the given problem). In addition, we recorded the accuracy of
the final selections (a selection is accurate if the selected algorithm does result in solutions sat-

isfying the requested criteria). PIPE selects the best algorithm for 100% of the test cases in the
PDE benchmark. Another interesting aspect of PIPE is its ability to recommend algorithms, even

in the absence of full coverage from the GAMS site. For example, the fourth-order ELLPACK
Dyakunov algorithm DCG4 is identified by GAMS under the category ‘Nonseparable problems’,

whereas PIPE’s recommendations show that it is equally applicable to helmholtz type separable
problems (see http://pipe.cs.vt.edu). This indicates that information integration is a powerful

technique to provide comprehensive recommendations.

4 Concluding Remarks

The use of partial evaluation to provide personalization is no silver bullet. We emphasize that it

is most appropriate for situations where heterogeneity, diversity, and integration of web sources
is important. We also note that the existence of an ontology such as GAMS serves two useful

purposes: (i) to guide the personalization process, and (ii) to overcome conflicts during information
mediation. Systems like PIPE will become increasingly relevant to provide compelling personal-

ization experiences. They will also eliminate the need for restructuring when more web sources or
additional rating mechanisms are introduced. The implementation presented here can be extended
to include more web sources, such as Netlib, as appropriate.

References

[1] A. Booker, M. Condliff, M. Greaves, F.B. Holt, A. Kao, D.J. Pierce, S. Poteet, and Y.-J.J.

Wu. Visualizing Text Data Sets. IEEE Computing in Science and Engineering, Vol. 1(4):pp.
26–34, July/August 1999.

15

[2] S. Chakrabarti, B.E. Dom, D. Gibson, J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagoplan,
and A. Tomkins. Mining the Link Structure of the World Wide Web. IEEE Computer, pages

60–67, August 1999.

[3] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-Wide Web: A

Survey. SIGMOD Record, Vol. 27(3), September 1998.

[4] E.N. Houstis, J.R. Rice, A.C. Catlin, V.S. Verykios, N. Ramakrishnan, and C.E. Houstis.
PYTHIA II: A Knowledge/Database System for Managing Performance Data and Recom-

mending Scientific Software. ACM Transactions on Mathematical Software, 2000. to appear.

[5] N.D. Jones. An Introduction to Partial Evaluation. ACM Computing Surveys, Vol. 28(3):pp.

480–503, September 1996.

[6] S. Lawrence and C. Lee Giles. Searching the World Wide Web. Science, Vol. 280(5360):pp.
98–100, 1998.

[7] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistructured Data.
Proc. ACM International Conf. on Management of Data (SIGMOD’98), 1998.

[8] N. Ramakrishnan. Recommender Systems for Problem Solving Environments. PhD thesis,

Dept. of Computer Sciences, Purdue University, 1997.

[9] N. Ramakrishnan, J.R. Rice, and E.N. Houstis. GAUSS: An Online Algorithm Recommender

System for One-Dimensional Numerical Quadrature. ACM Transactions on Mathematical
Software, 2000. to appear.

[10] C. Shapiro and H. Varian. Information Rules: A Strategic Guide to the Network Economy.

Harvard Business School Press, November 1998.

