
Atmos. Chem. Phys., 6, 187–195, 2006
www.atmos-chem-phys.org/acp/6/187/
SRef-ID: 1680-7324/acp/2006-6-187
European Geosciences Union

Atmospheric
Chemistry

and Physics

Technical note: Simulating chemical systems in Fortran90 and
Matlab with the Kinetic PreProcessor KPP-2.1

A. Sandu1 and R. Sander2

1Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
2Air Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany

Received: 18 July 2005 – Published in Atmos. Chem. Phys. Discuss.: 13 September 2005
Revised: 30 November 2005 – Accepted: 15 September 2005 – Published: 26 January 2006

Abstract. This paper presents the new version 2.1 of the Ki-
netic PreProcessor (KPP). Taking a set of chemical reactions
and their rate coefficients as input, KPP generates Fortran90,
Fortran77, Matlab, or C code for the temporal integration of
the kinetic system. Efficiency is obtained by carefully ex-
ploiting the sparsity structures of the Jacobian and of the
Hessian. A comprehensive suite of stiff numerical integra-
tors is also provided. Moreover, KPP can be used to generate
the tangent linear model, as well as the continuous and dis-
crete adjoint models of the chemical system.

1 Introduction

Next to laboratory studies and field work, computer model-
ing is one of the main methods to study atmospheric chem-
istry. The simulation and analysis of comprehensive chemi-
cal reaction mechanisms, parameter estimation techniques,
and variational chemical data assimilation applications re-
quire the development of efficient tools for the computational
simulation of chemical kinetics systems. From a numerical
point of view, atmospheric chemistry is challenging due to
the coexistence of very stable (e.g., CH4) and very reactive
(e.g., O(1D)) species. Several software packages have been
developed to integrate these stiff sets of ordinary differential
equations (ODEs), e.g., Facsimile (Curtis and Sweetenham,
1987), AutoChem (http://gest.umbc.edu/AutoChem), Spack
(Djouad et al., 2003), Chemkin (http://www.reactiondesign.
com/products/open/chemkin.html), Odepack (http://www.
llnl.gov/CASC/odepack/), and KPP (Damian et al., 1995,
2002). KPP is currently being used by many academic, re-
search, and industry groups in several countries (e.g.von
Glasow et al., 2002; von Kuhlmann et al., 2003; Trent-
mann et al., 2003; Tang et al., 2003; Sander et al., 2005).

Correspondence to:A. Sandu
(sandu@cs.vt.edu)

The well-established Master Chemical Mechanism (MCM,
http://mcm.leeds.ac.uk/MCM/) has also recently been mod-
ified to add the option of producing output in KPP syn-
tax. In the present paper we focus on the new features in-
troduced in the release 2.1 of KPP. These features allow
an efficient simulation of chemical kinetic systems in For-
tran90 and Matlab. Fortran90 is the programming language
of choice for the vast majority of scientific applications. Mat-
lab (http://www.mathworks.com/products/matlab/) provides
a high-level programming environment for algorithm devel-
opment, numerical computations, and data analysis and visu-
alization. The Matlab code produced by KPP allows a rapid
implementation and analysis of a specific chemical mech-
anism. KPP-2.1 is distributed under the provisions of the
GNU public license (http://www.gnu.org/copyleft/gpl.html)
and can be obtained on the web athttp://people.cs.vt.edu/
∼asandu/Software/Kpp. It is also available in the electronic
supplement to this paper at http://www.atmos-chem-phys.
org/acp/6/187/acp-6-187-sp.zip.

The paper is organized as follows. Section2 describes
the input information necessary for a simulation, and Sect.3
presents the output produced by KPP. Aspects of the simula-
tion code generated in Fortran90, Fortran77, C, and Matlab
are discussed in Sect.4. Several applications are presented
in Sect.5. The presentation focuses on the main aspects
of modeling but, in the interest of space, omits a number
of important (but previously described) features. For a full
description of KPP, inculding the installation procedure, the
reader should consult the user manual in the electronic sup-
plement.

2 Input for KPP

To create a chemistry model, KPP needs as input a chemical
mechanism, a numerical integrator, and a driver. Each of
these components can either be chosen from the KPP library

© 2006 Author(s). This work is licensed under a Creative Commons License.

http://gest.umbc.edu/AutoChem
http://www.reactiondesign.com/products/open/chemkin.html
http://www.reactiondesign.com/products/open/chemkin.html
http://www.llnl.gov/CASC/odepack/
http://www.llnl.gov/CASC/odepack/
http://mcm.leeds.ac.uk/MCM/
http://www.mathworks.com/products/matlab/
http://www.gnu.org/copyleft/gpl.html
http://people.cs.vt.edu/~asandu/Software/Kpp
http://people.cs.vt.edu/~asandu/Software/Kpp
borrego
Typewritten Text
Published by Copernicus Publications on behalf of the European Geosciences Union. Sandu, A. and Sander, R.: Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187-195, doi:10.5194/acp-6-187-2006, 2006.



188 A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1

or provided by the user. The KPP input files (with suffix
.kpp) specify the model, the target language, the precision,
the integrator and the driver, etc. The file name (without the
suffix .kpp) serves as the default root name for the simulation.
In this paper we will refer to this name as “ROOT”. To specify
a KPP model, write aROOT.kpp file with the following lines:

#MODEL small_strato
#LANGUAGE Fortran90
#DOUBLE ON
#INTEGRATOR rosenbrock
#DRIVER general
#JACOBIAN SPARSE_LU_ROW
#HESSIAN ON
#STOICMAT ON

We now explain these elements with the help of an example.

2.1 The chemical mechanism

The KPP software is general and can be applied to any kinetic
mechanism. Here, we revisit the Chapman-like stratospheric
chemistry mechanism fromSandu et al.(2003) to illustrate
the KPP capabilities.

O2
hν
→ 2O (R1)

O + O2 → O3 (R2)

O3
hν
→ O + O2 (R3)

O + O3 → 2O2 (R4)

O3
hν
→ O(1D) + O2 (R5)

O(1D) + M → O + M (R6)

O(1D) + O3 → 2O2 (R7)

NO + O3 → NO2 + O2 (R8)

NO2 + O → NO + O2 (R9)

NO2
hν
→ NO + O (R10)

The #MODELcommand selects a kinetic mechanism which
consists of a species file (with suffix .spc) and an equation file
(with suffix .eqn). The species file lists all the species in the
model. Some of them are variable (defined with#DEFVAR),
meaning that their concentrations change according to the
law of mass action kinetics. Others are fixed (defined with
#DEFFIX), with the concentrations determined by physical
and not chemical factors. For each species its atomic com-
position is given (unless the user chooses to explicitly ignore
it).

#INCLUDE atoms
#DEFVAR

O = O;
O1D = O;
O3 = O + O + O;
NO = N + O;
NO2 = N + O + O;

#DEFFIX
M = ignore;
O2 = O + O;

The chemical kinetic mechanism is specified in the KPP lan-
guage in the equation file:

#EQUATIONS { Stratospheric Mechanism }
<R1> O2 + hv = 2O : 2.6e-10*SUN;
<R2> O + O2 = O3 : 8.0e-17;
<R3> O3 + hv = O + O2 : 6.1e-04*SUN;
<R4> O + O3 = 2O2 : 1.5e-15;
<R5> O3 + hv = O1D + O2 : 1.0e-03*SUN;
<R6> O1D + M = O + M : 7.1e-11;
<R7> O1D + O3 = 2O2 : 1.2e-10;
<R8> NO + O3 = NO2 + O2 : 6.0e-15;
<R9> NO2 + O = NO + O2 : 1.0e-11;
<R10> NO2 + hv = NO + O : 1.2e-02*SUN;

Here, each line starts with an (optional) equation tag in an-
gle brackets. Reactions are described as “the sum of reactants
equals the sum of products” and are followed by their rate co-
efficients.SUNis the normalized sunlight intensity, equal to
one at noon and zero at night. The value ofSUNcan either be
calculated with the KPP-generated subroutineUpdate SUN
or provided by the user.

2.2 The target language and data types

The target language Fortran90 (i.e. the language of the code
generated by KPP) is selected with the command:

#LANGUAGE Fortran90

Other options areFortran77 , C, andMatlab . The capa-
bility to generate Fortran90 and Matlab code are new features
of KPP-2.1, and this is what we focus on in the current paper.

The data type of the generated model is set to double pre-
cision with the command:

#DOUBLE ON

2.3 The numerical integrator

The#INTEGRATORcommand specifies a numerical solver
from the templates provided by KPP or implemented by the
user. More exactly, it points to an integrator definition file.
This file is written in the KPP language and contains a refer-
ence to the integrator source code file, together with specific
options required by the selected integrator.

Each integrator may require specific KPP-generated func-
tions (e.g., the production/destruction function in aggregate
or in split form, and the Jacobian in full or in sparse format,
etc.) These options are selected through appropriate parame-
ters given in the integrator definition file. Integrator-specific
parameters that can be fine tuned for better performance are
also included in the integrator definition file.

Atmos. Chem. Phys., 6, 187–195, 2006 www.atmos-chem-phys.org/acp/6/187/



A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1 189

KPP implements several Rosenbrock methods: Ros-1 and
Ros-2 (Verwer et al., 1999), Ros-3 (Sandu et al., 1997),
Rodas-3 (Sandu et al., 1997), Ros-4 (Hairer and Wanner,
1991), and Rodas-4 (Hairer and Wanner, 1991). For details
on Rosenbrock methods and their implementation, consult
section IV.7 ofHairer and Wanner(1991).

The KPP numerical library also contains implementa-
tions of several off-the-shelf, highly popular stiff numerical
solvers:

– Radau5:
This Runge Kutta method of order 5 based on Radau-
IIA quadrature (Hairer and Wanner, 1991) is stiffly ac-
curate. The KPP implementation follows the original
implementation ofHairer and Wanner(1991), and the
original Fortran 77 implementation has been translated
to Fortran 90 for incorporation into the KPP library.
While Radau5 is relatively expensive (when compared
to the Rosenbrock methods), it is more robust and is
useful to obtain accurate reference solutions.

– SDIRK4:
This is an L-stable, singly-diagonally-implicit Runge
Kutta method of order 4. SDIRK4 originates from
Hairer and Wanner(1991), and the original Fortran 77
implementation has been translated to Fortran 90 for in-
corporation into the KPP library.

– SEULEX:
This variable order stiff extrapolation code is able to
produce highly accurate solutions. The KPP implemen-
tation follows the one inHairer and Wanner(1991), and
the original Fortran 77 implementation has been trans-
lated to Fortran 90 for incorporation into the KPP li-
brary.

– LSODE, LSODES:
The Livermore ODE solver (Radhakrishnan and Hind-
marsh, 1993) implements backward differentiation for-
mula (BDF) methods for stiff problems. LSODE has
been translated from Fortran 77 to Fortran 90 for in-
corporation into the KPP library. LSODES (Radhakr-
ishnan and Hindmarsh, 1993), the sparse version of the
Livermore ODE solver LSODE, is modified to interface
directly with the KPP generated code.

– VODE:
This solver (Brown et al., 1989) uses a different formu-
lation of backward differentiation formulas. The ver-
sion of VODE present in the KPP library uses directly
the KPP sparse linear algebra routines.

– ODESSA:
The BDF-based direct-decoupled sensitivity integrator
ODESSA (Leis and Kramer, 1986) has been modified
to use the KPP sparse linear algebra routines.

All methods in the KPP library have excellent stability prop-
erties for stiff systems. The computational work per time step
depends on the type of method (BDF, Runge Kutta, or Rosen-
brock). For Rosenbrock methods it increases with the num-
ber of stages. The order of accuracy typically increases with
the number of stages as well. For example, Ros-2 uses only
two stages and is an order 2 method while Ros-4 has 4 stages
and is an order 4 method. Despite their added work, higher
order methods are typically more efficient when higher ac-
curacy is desired. The KPP library offers different methods
that can have relative advantages depending on the level of
desired solution accuracy. Regarding stability, all the Rosen-
brock methods are L-stable, and therefore are well suited for
stiff problems. For these methods the embedded formulas
are also L-stable (or strongly A-stable) which makes the step
size controller work well for stiff problems. Radau5 is a fully
implicit Runge Kutta method with 3 stages and order 5. Each
step is relatively expensive since it requires one real and one
complex LU decomposition. However, Radau5 is very ro-
bust and can provide solutions of high accuracy. It is rec-
ommended that Radau5 is used to obtain reference solutions,
against which one can check the correctness and the accuracy
of other methods. A lighter (less expensive) Runge Kutta
method is SDIRK4, a diagonally implicit formula of order
4, which only requires one real LU decomposition per step
(SDIRK4 has about the same cost as a Rosenbrock method,
but it performs some additional back substitutions required
in the solution of nonlinear systems at each step). While
SDIRK4 does not have the strong nonlinear stability prop-
erties of Radau5, it is L-stable and is also well suited for
solving stiff chemical kinetics.

The implementations use the KPP sparse linear algebra
routines by default. However, full linear algebra (using LA-
PACK routines) is also implemented. To switch from sparse
to full linear algebra the user only needs to define the prepro-
cessor variable (-DFULL ALGEBRA=1) during compilation.

2.4 The driver

The so-called driver is the main program. It is responsible for
calling the integrator routine, reading the data from files and
writing the results. Existing drivers differ from one another
by their input and output data file format, and by the auxil-
iary files created for interfacing with visualization tools. For
large 3-D atmospheric chemistry simulations, the 3-D code
will replace the default drivers and call the KPP-generated
routines directly. In our current implementation of KPP into
a 3-D model (Sander et al., 2005), the chemical mechanism
is integrated separately for each grid cell. The interaction be-
tween the grid cells (advection, diffusion, convection . . . ) is
calculated outside of KPP, i.e. the operator splitting approach
is used.

www.atmos-chem-phys.org/acp/6/187/ Atmos. Chem. Phys., 6, 187–195, 2006



190 A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1

2.5 The substitution preprocessor

Templates are inserted into the simulation code after be-
ing run by the substitution preprocessor. This preprocessor
replaces placeholders in the template files with their partic-
ular values in the model at hand. For example,KPP ROOT
is replaced by the model (ROOT) name,KPP REAL by the
selected real data type, andKPP NSPECandKPP NREACT
by the numbers of species and reactions, respectively.

2.6 The inlined code

In order to offer maximum flexibility, KPP allows the user to
include pieces of code in the kinetic description file. Inlined
code begins on a new line with#INLINE and the inline type.
Next, one or more lines of code follow, written in Fortran90,
Fortran77, C, or Matlab, as specified by the inline type. The
inlined code ends with#ENDINLINE . The code is inserted
into the KPP output at a position which is also determined by
inline type.

3 Output of KPP

KPP generates code for the temporal integration of chemical
systems. This code consists of a set of global variables, plus
several functions and subroutines. The code distinguishes
between variable and fixed species. The ordinary differential
equations are produced for the time evolution of the vari-
able species. Fixed species enter the chemical reactions, but
their concentrations are not modified. For example, the at-
mospheric oxygen O2 is reactive, however its concentration
is in practice not influenced by chemical reactions.

3.1 Parameters

KPP defines a complete set of simulation parameters which
are global and can be accessed by all functions. Im-
portant simulation parameters are the total number of
species (NSPEC=7), the number of variable (NVAR=5) and
fixed (NFIX=2) species, the number of chemical reactions
(NREACT=10), the number of nonzero entries in the Jaco-
bian (NONZERO=18) and in the sparse Hessian (NHESS=10),
etc. The explicit values given here refer to our example from
Sect.2.1. KPP orders the variable species such that the spar-
sity pattern of the Jacobian is maintained after an LU decom-
position and defines their indices explicitly. For our example:

ind_O1D=1, ind_O=2, ind_O3=3, ind_NO=4,
ind_NO2=5, ind_M=6, ind_O2=7

3.2 Global data

KPP defines a set of global variables that can be accessed by
all routines. This set includesC(NSPEC), the array of con-
centrations of all species.Ccontains variable (VAR(NVAR))
and fixed (FIX(NFIX) ) species. Rate coefficients are

stored inRCONST(NREACT), the current integration time
is TIME, absolute and relative integration tolerances are
ATOL(NSPEC)andRTOL(NSPEC), etc.

3.3 The chemical ODE function

The chemical ODE system for our example is:

d [O(1D)]

dt
= k5 [O3]−k6 [O(1D)] [M]−k7 [O(1D)] [O3]

d [O]

dt
= 2k1 [O2]−k2 [O] [O2] + k3 [O3]

−k4 [O] [O3] + k6 [O(1D)] [M]

−k9 [O] [NO2] + k10 [NO2]

d [O3]

dt
= k2 [O] [O2]−k3 [O3]−k4 [O] [O3]−k5 [O3]

−k7 [O(1D)] [O3]−k8 [O3] [NO]

d [NO]

dt
= −k8 [O3] [NO] + k9 [O] [NO2] + k10 [NO2]

d [NO2]

dt
= k8 [O3] [NO]−k9 [O] [NO2]−k10 [NO2]

where square brackets denote concentrations of the species.
The chemical ODE system has dimensionNVAR. The con-
centrations of fixed species are parameters in the derivative
function. KPP computes the vectorA of reaction rates and
the vectorVdot of variable species time derivatives. The
input argumentsV andF are the concentrations of variable
and fixed species, respectively.RCTcontains the rate coeffi-
cients. Below is the Fortran90 code generated by KPP for the
ODE function of our example stratospheric system. It shows
how the KPP-generated code forVdot corresponds to the
ODE system shown above, using the indicies from Sect.3.1:

SUBROUTINE Fun (V, F, RCT, Vdot )
USE small_Precision
USE small_Params
REAL(kind=DP) :: V(NVAR), &

F(NFIX), RCT(NREACT), &
Vdot(NVAR), A(NREACT) &

! Computation of equation rates
A(1) = RCT(1)*F(2)
A(2) = RCT(2)*V(2)*F(2)
A(3) = RCT(3)*V(3)
A(4) = RCT(4)*V(2)*V(3)
A(5) = RCT(5)*V(3)
A(6) = RCT(6)*V(1)*F(1)
A(7) = RCT(7)*V(1)*V(3)
A(8) = RCT(8)*V(3)*V(4)
A(9) = RCT(9)*V(2)*V(5)
A(10) = RCT(10)*V(5)

! Aggregate function
Vdot(1) = A(5)-A(6)-A(7)
Vdot(2) = 2*A(1)-A(2)+A(3) &

-A(4)+A(6)-A(9)+A(10)

Atmos. Chem. Phys., 6, 187–195, 2006 www.atmos-chem-phys.org/acp/6/187/



A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1 191

Vdot(3) = A(2)-A(3)-A(4)-A(5) &
-A(7)-A(8)

Vdot(4) = -A(8)+A(9)+A(10)
Vdot(5) = A(8)-A(9)-A(10)

END SUBROUTINE Fun

3.4 The chemical ODE Jacobian

The Jacobian matrix for our example contains 18 non-zero
elements:

J(1, 1) = −k6 [M]−k7 [O3]

J(1, 3) = k5 − k7 [O(1D)]

J(2, 1) = k6 [M]

J(2, 2) = −k2 [O2]−k4 [O3]−k9 [NO2]

J(2, 3) = k3 − k4 [O]

J(2, 5) = −k9 [O] + k10

J(3, 1) = −k7 [O3]

J(3, 2) = k2 [O2]−k4 [O3]

J(3, 3) = −k3 − k4 [O]−k5−k7 [O(1D)]−k8 [NO]

J(3, 4) = −k8 [O3]

J(4, 2) = k9 [NO2]

J(4, 3) = −k8 [NO]

J(4, 4) = −k8 [O3]

J(4, 5) = k9 [O] + k10

J(5, 2) = −k9 [NO2]

J(5, 3) = k8 [NO]

J(5, 4) = k8 [O3]

J(5, 5) = −k9 [O]−k10

It defines how the temporal change of each chemical species
depends on all other species. For example,J(5, 2) shows that
NO2 (species number 5) is affected by O (species number 2)
via reaction number R9.

The command#JACOBIAN controls the generation of
the Jacobian routine. The optionOFF inhibits the con-
struction of the Jacobian. The optionFULL generates the
subroutineJac(V,F,RCT,JVS) which produces a square
(NVAR×NVAR) Jacobian.

The optionsSPARSEROWand SPARSELU ROWgen-
erate the routineJac SP(V,F,RCT,JVS) which pro-
duces the Jacobian in sparse (compressed on rows) for-
mat. With the optionSPARSELU ROW, KPP extends
the number of nonzeros to account for the fill-in due
to the LU decomposition. The vectorJVS contains
the LU NONZEROelements of the Jacobian in row or-
der. Each rowI starts at positionLU CROW(I) , and
LU CROW(NVAR+1)=LUNONZERO+1. The location of
the I -th diagonal element isLU DIAG(I) . The sparse el-
ementJVS(K) is the Jacobian entry in rowLU IROW(K)

and columnLU ICOL(K) . The sparsity coordinate vectors
are computed by KPP and initialized statically. These vec-
tors are constant as the sparsity pattern of the Hessian does
not change during the computation.

The routines Jac SP Vec(JVS,U,V) and
JacTR SP Vec(JVS,U,V) perform sparse multipli-
cation ofJVS (or its transpose) with a user-supplied vector
Uwithout any indirect addressing.

3.5 Sparse linear algebra

To numerically solve for the chemical concentrations one
must employ an implicit timestepping technique, as the sys-
tem is usually stiff. Implicit integrators solve systems of the
form

Px = (I − hγ J) x = b (1)

where the matrixP=I−hγ J is refered to as the “prediction
matrix”. I the identity matrix,h the integration time step,γ a
scalar parameter depending on the method, andJ the system
Jacobian. The vectorb is the system right hand side and the
solution x typically represents an increment to update the
solution.

The chemical Jacobians are typically sparse, i.e. only a
relatively small number of entries are nonzero. The sparsity
structure ofP is given by the sparsity structure of the Jaco-
bian, and is produced by KPP with account for the fill-in. By
carefully exploiting the sparsity structure, the cost of solving
the linear system can be considerably reduced.

KPP orders the variable species such that the sparsity pat-
tern of the Jacobian is maintained after an LU decomposition.
KPP defines a complete set of simulation parameters, includ-
ing the numbers of variable and fixed species, the number
of chemical reactions, the number of nonzero entries in the
sparse Jacobian and in the sparse Hessian, etc.

KPP generates the routineKppDecomp(P,IER) which
performs an in-place, non-pivoting, sparse LU decomposi-
tion of the matrixP. Since the sparsity structure accounts for
fill-in, all elements of the full LU decomposition are actually
stored. The output argument IER returns a nonzero value if
singularity is detected.

The routines KppSolve(P,b,x) and
KppSolveTR(P,b,x) use the LU factorization ofP
as computed byKppDecomp and perform sparse backward
and forward substitutions to solve the linear systemsPx=b

and PT x=b, respectively. The KPP sparse linear algebra
routines are extremely efficient, as shown inSandu et al.
(1996).

3.6 The chemical ODE Hessian

The Hessian is used for sensitivity analysis calculations. It
contains second order derivatives of the time derivative func-

www.atmos-chem-phys.org/acp/6/187/ Atmos. Chem. Phys., 6, 187–195, 2006



192 A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1

tions. More exactly, the Hessian is a 3-tensor such that

HESSi,j,k =
∂2(Vdot )i

∂Vj ∂Vk

, 1 ≤ i, j, k ≤ NVAR. (2)

With the command#HESSIAN ON, KPP produces the
routineHessian(V,F,RCT,HESS) which calculates the
HessianHESSusing the variable (V) and fixed (F) concen-
trations, and the rate coefficients (RCT).

The Hessian is a very sparse tensor. KPP computes the
number of nonzero Hessian entries (and saves this in the
variableNHESS). The Hessian itself is represented in coor-
dinate sparse format. The real vectorHESSholds the values,
and the integer vectorsIHESS I , IHESS J , andIHESS K
hold the indices of nonzero entries. Since the time derivative
function is smooth, these Hessian matrices are symmetric,
HESS(I,J,K) =HESS(I,K,J) . KPP generates code only
for those entriesHESS(I,J,K) with J≤K.

The sparsity coordinate vectorsIHESS I , IHESS J , and
IHESS K are computed by KPP and initialized statically.
These vectors are constant as the sparsity pattern of the Hes-
sian does not change during the simulation.

The routines Hess Vec(HESS,U1,U2,HU) and
HessTR Vec(HESS,U1,U2,HU) compute the action
of the Hessian (or its transpose) on a pair of user-supplied
vectorsU1, U2. Sparse operations are employed to produce
the result vectorHU.

3.7 Utility routines

In addition to the chemical system description routines dis-
cussed above, KPP generates several utility routines. They
are used to set initial values and to update the rate coeffi-
cients, e.g. according to current temperature, pressure, and
solar zenith angle.

It was shown in Sect.2.1 that each reaction may contain
an equation tag. KPP can generate code that allows to ob-
tain individual reaction rates as well as a string describing
the chemical reaction. This information could be used, for
example, to analyze the chemical mechanism and identify
important reaction cycles as shown byLehmann(2004).

4 Language-specific code generation

The code generated by KPP for the kinetic model description
is organized in a set of separate files. The files associated
with the modelROOT are named with the prefix “ROOT ”. A
list of KPP-generated files is shown in Table1.

4.1 Fortran90

The generated code is consistent with the Fortran90 standard.
It will not exceed the maximum number of 39 continuation
lines. If KPP cannot properly split an expression to keep the
number of continuation lines below the threshold then it will

Table 1. List of KPP-generated files (for Fortran90).

File Description

ROOT Main.f90 Driver

ROOT Precision.f90 Parameterized types
ROOT Parameters.f90 Model parameters
ROOT Global.f90 Global data headers
ROOT Monitor.f90 Equation info
ROOT Initialize.f90 Initialization
ROOT Model.f90 Summary of modules

ROOT Function.f90 ODE function

ROOT Jacobian.f90 ODE Jacobian
ROOT JacobianSP.f90 Jacobian sparsity

ROOT Hessian.f90 ODE Hessian
ROOT HessianSP.f90 Sparse Hessian data

ROOT LinearAlgebra.f90 Sparse linear algebra
ROOT Integrator.f90 Numerical integration

ROOT Stoichiom.f90 Stoichiometric model
ROOT StoichiomSP.f90 Stoichiometric matrix

ROOT Rates.f90 User-defined rate laws
ROOT Util.f90 Utility input-output
ROOT Stochastic.f90 Stochastic functions

Makefile ROOT Makefile

ROOT.map Human-readable info

generate a warning message pointing to the location of this
expression.

The driver fileROOT Main.f90 contains the main For-
tran90 program. All other code is enclosed in Fortran mod-
ules. There is exactly one module in each file, and the name
of the module is identical to the file name but without the
suffix .f90 .

Fortran90 code uses parameterized real types. KPP gener-
ates the moduleROOT Precision which contains the sin-
gle and double real kind definitions:

INTEGER, PARAMETER :: &
SP = SELECTED_REAL_KIND(6,30), &
DP = SELECTED_REAL_KIND(12,300)

Depending on the user choice of the#DOUBLEswitch the
real variables are of type double or single precision. Chang-
ing the parameters of theSELECTEDREAL KIND function
in this module will cause a change in the working precision
for the whole model.

Atmos. Chem. Phys., 6, 187–195, 2006 www.atmos-chem-phys.org/acp/6/187/



A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1 193

The global parameters (Sect.3.1) are defined and initial-
ized in the moduleROOT Parameters . The global vari-
ables (Sect.3.2) are declared in the moduleROOT Global .
They can be accessed from within each program unit that
uses the global module.

The sparse data structures for the Jacobian (Sect.3.4) are
declared and initialized in the moduleROOT JacobianSP .
The sparse data structures for the Hessian (Sect.3.6) are de-
clared and initialized in the moduleROOT HessianSP .

The code for the ODE function (Sect.3.3) is in mod-
ule ROOT Function . The code for the ODE Jaco-
bian and sparse multiplications (Sect.3.4) is in mod-
ule ROOT Jacobian . The Hessian function and as-
sociated sparse multiplications (Sect.3.6) are in module
ROOT Hessian .

The moduleROOT Stoichiom contains the functions
for reactant products and its Jacobian, and derivatives with
respect to rate coefficients. The declaration and initialization
of the stoichiometric matrix and the associated sparse data
structures is done in the moduleROOT StoichiomSP .

Sparse linear algebra routines (Sect.3.5) are in the mod-
ule ROOT LinearAlgebra . The code to update the rate
constants and the user defined rate law functions are in mod-
ule ROOT Rates . The utility and input/output functions
(Sect.3.7) are inROOT Util andROOT Monitor .

Matlab-mex gateway routines for the ODE function, Jaco-
bian, and Hessian are discussed in Sect.4.5.

4.2 Matlab

Matlab code allows for rapid prototyping of chemical kinetic
schemes, and for a convenient analysis and visualization of
the results. Differences between different kinetic mecha-
nisms can be easily understood. The Matlab code can be
used to derive reference numerical solutions, which are then
compared against the results obtained with user-supplied nu-
merical techniques. Last but not least Matlab is an excellent
environment for educational purposes. KPP/Matlab can be
used to teach students fundamentals of chemical kinetics and
chemical numerical simulations.

Each Matlab function has to reside in a separate m-file.
Function calls use the m-function-file names to reference the
function. Consequently, KPP generates one m-function-file
for each of the functions discussed in Sects.3.3, 3.4, 3.5,
3.6, and3.7. The names of the m-function-files are the same
as the names of the functions (prefixed by the model name
ROOT).

The global parameters (Sect.3.1) are defined as
Matlab global variables and initialized in the file
ROOT parameter defs.m . The global variables
(Sect.3.2) are declared as Matlabglobal variables in the
file ROOT Global defs.m . They can be accessed from
within each Matlab function by usingglobal declarations
of the variables of interest.

The sparse data structures for the Jacobian (Sect.3.4), the
Hessian (Sect.3.6), the stoichiometric matrix and the Jaco-
bian of reaction products are declared as Matlabglobal
variables in the fileROOT Sparse defs.m . They are ini-
tialized in separate m-files, namelyROOT JacobianSP.m
ROOT HessianSP.m , and ROOT StoichiomSP.m , re-
spectively.

Two wrappers (ROOT Fun Chem.m and
ROOT Jac SP Chem.m) are provided for interfacing
the ODE function and the sparse ODE Jacobian with
Matlab’s suite of ODE integrators. Specifically, the syntax
of the wrapper calls matches the syntax required by Matlab’s
integrators like ode15s. Moreover, the Jacobian wrapper
converts the sparse KPP format into a Matlab sparse matrix.

4.3 C

The driver fileROOT Main.c contains the main driver and
numerical integrator functions, as well as declarations and
initializations of global variables (Sect.3.2).

The generated C code includes three header files which
are#include -d in other files as appropriate. The global
parameters (Sect.3.1) are #define -d in the header file
ROOT Parameters.h . The global variables (Sect.3.2)
are extern-declared inROOT Global.h , and declared in
the driver fileROOT.c . The header fileROOT Sparse.h
contains extern declarations of sparse data structures for the
Jacobian (Sect.3.4), Hessian (Sect.3.6), stoichiometric ma-
trix and the Jacobian of reaction products. The actual decla-
rations of each data structures is done in the corresponding
files.

The code for each of the model functions, integration rou-
tine, etc. is located in the corresponding file (with extension
.c ) as shown in Table1.

Finally, Matlab mex gateway routines that allow the C im-
plementation of the ODE function, Jacobian, and Hessian to
be called directly from Matlab (Sect.4.5) are also generated.

4.4 Fortran77

The general layout of the Fortran77 code is similar to the
layout of the C code. The driver fileROOT Main.f contains
the main program and the initialization of global variables.

The generated Fortran77 code includes three header
files. The global parameters (Sect.3.1) are de-
fined as parameters and initialized in the header file
ROOT Parameters.h . The global variables (Sect.3.2)
are declared inROOT Global.h as common block vari-
ables. There are global common blocks for real (GDATA),
integer (INTGDATA), and character (CHARGDATA) global
data. They can be accessed from within each program unit
that includes the global header file.

The header fileROOT Sparse.h contains common block
declarations of sparse data structures for the Jacobian
(Sect.3.4), Hessian (Sect.3.6), stoichiometric matrix and the

www.atmos-chem-phys.org/acp/6/187/ Atmos. Chem. Phys., 6, 187–195, 2006



194 A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1

Jacobian of reaction products. These sparse data structures
are initialized in four named “block data” statements.

The code for each of the model functions, integration rou-
tine, etc. is located in the corresponding file (with extension
.f ) as shown in Table1.

Matlab-mex gateway routines for the ODE function, Jaco-
bian, and Hessian are discussed in Sect.4.5.

4.5 Mex interfaces

KPP generates mex gateway routines for the ODE func-
tion (ROOT mex Fun), Jacobian (ROOT mex Jac SP), and
Hessian (ROOT mex Hessian ), for the target languages C,
Fortran77, and Fortran90.

After compilation (using Matlab’s mex compiler) the mex
functions can be called instead of the corresponding Mat-
lab m-functions. Since the calling syntaxes are identical,
the user only has to insert the “mex” string within the cor-
responding function name. Replacing m-functions by mex-
functions gives the same numerical results, but the computa-
tional time could be considerably shorter, especially for large
kinetic mechanisms.

If possible we recommend to build mex files using the C
language, as Matlab offers most mex interface options for
the C language. Moreover, Matlab distributions come with
a native C compiler (lcc) for building executable functions
from mex files. Fortran77 mex files work well on most plat-
forms without additional efforts. The mex files built using
Fortran90 may require further platform-specific tuning of the
mex compiler options.

5 Applications

In this section we illustrate several applications using KPP.

5.1 Benchmark tests

We performed some model runs to test the stability and ef-
ficiency of the KPP integrators. First, we used the very
simple Chapman-like stratospheric mechanism. Simulations
of one month were made using the 10 different integrators
ros2, ros3, ros4, rodas3, rodas4, ros2manual, kppradau5,
kpp sdirk, kppseulex, and kpplsode. The CPU times used
for the runs are shown in Table2. Radau5, the most ac-
curate integrator, is also the slowest. Since the overhead
for the automatic time step control is relatively large in this
small mechanism, the integrator ros2manual with manual
time step control is by far the fastest here. However, it is
also the least precise integrator, when compared to Radau5
as reference.

As a second example, we have performed runs with
the complex chemistry model MECCA (Sander et al.
(2005), see alsohttp://www.mpch-mainz.mpg.de/∼sander/
messy/mecca/) simulating gas and aerosol chemistry in the
marine boundary layer. We have selected a subset of the

Table 2. Benchmark tests with the small stratospheric mechanism
and with MECCA performed on on a Linux PC with a 2 GHz CPU.

Integrator stratospheric MECCA
mechanism

CPU time [s] CPU time [s]

rodas3 0.42 38.71
kpp lsode 0.32 39.79
ros3 0.38 41.33
rodas4 0.46 49.92
ros4 0.43 51.09
kpp seulex 0.50 55.31
kpp sdirk 0.86 63.24
ros2 0.39 69.43
kpp radau5 0.49 103.33
ros2manual 0.08 —

MECCA mechanism with 212 species, 106 gas-phase reac-
tions, 266 aqueous-phase reactions, 154 heterogeneous reac-
tions, 37 photolyses, and 48 aqueous-phase equilibria. The
CPU times for 8-day simulations with different integrators
are shown in Table2. Again, Radau5 is the slowest in-
tegrator. The Rosenbrock integrators with automatic time
step control and LSODE are much faster. The integrator
ros2manual with manual time step control was unable to
solve this very stiff system of differential equations.

5.2 Direct and adjoined sensitivity studies

KPP has recently been extended with the capability to gen-
erate code for direct and adjoint sensitivity analysis. This
was described in detail bySandu et al.(2003) andDaescu
et al.(2003). Here, we only briefly summarize these features.
The direct decoupled method, build using backward differ-
ence formulas (BDF), has been the method of choice for di-
rect sensitivity studies. The direct decoupled approach was
extended to Rosenbrock stiff integration methods. The need
for Jacobian derivatives prevented Rosenbrock methods to be
used extensively in direct sensitivity calculations. However,
the new automatic differentiation and symbolic differentia-
tion technologies make the computation of these derivatives
feasible. The adjoint modeling is an efficient tool to evalu-
ate the sensitivity of a scalar response function with respect
to the initial conditions and model parameters. In addition,
sensitivity with respect to time dependent model parameters
may be obtained through a single backward integration of
the adjoint model. KPP software may be used to completely
generate the continuous and discrete adjoint models taking
full advantage of the sparsity of the chemical mechanism.
Flexible direct-decoupled and adjoint sensitivity code imple-
mentations are achieved with minimal user intervention.

Atmos. Chem. Phys., 6, 187–195, 2006 www.atmos-chem-phys.org/acp/6/187/

http://www.mpch-mainz.mpg.de/~sander/messy/mecca/
http://www.mpch-mainz.mpg.de/~sander/messy/mecca/


A. Sandu and R. Sander: The Kinetic PreProcessor KPP-2.1 195

6 Conclusions

The widely-used software environment KPP for the simula-
tion of chemical kinetics was added the capabilities to gen-
erate simulation code in Fortran90 and Matlab. An update
of the Fortran77 and C generated code was also performed.
The new capabilities will allow researchers to include KPP
generated modules in state-of-the-art large scale models, for
example in the field of air quality studies. Many of these
models are implemented in Fortran90. The Matlab capabil-
ities will allow for a rapid prototyping of chemical kinetic
systems, and for the visualization of the results. Matlab also
offers an ideal educational environment and KPP can be used
in this context to teach introductory chemistry or modeling
classes.

The KPP-2.1 source code is distributed under the pro-
visions of the GNU public license (http://www.gnu.org/
copyleft/gpl.html) and is available in the electronic supple-
ment to this paper at http://www.atmos-chem-phys.org/acp/
6/187/acp-6-187-sp.zip. The source code and the docu-
mentation can also be obtained fromhttp://people.cs.vt.edu/
∼asandu/Software/Kpp.

Acknowledgements.The work of A. Sandu was supported by
the awards NSF-CAREER ACI 0413872 and NSF-ITR AP&IM
0205198.

Edited by: M. Ammann

References

Brown, P., Byrne, G., and Hindmarsh, A.: VODE: A Variable Step
ODE Solver, SIAM J. Sci. Stat. Comput., 10, 1038–1051, 1989.

Curtis, A. R. and Sweetenham, W. P.: Facsimile/Chekmat User’s
Manual, Tech. rep., Computer Science and Systems Division,
Harwell Lab., Oxfordshire, Great Britain, 1987.

Daescu, D., Sandu, A., and Carmichael, G. R.: Direct and ad-
joint sensitivity analysis of chemical kinetic systems with KPP:
II – Validation and numerical experiments, Atmos. Environ., 37,
5097–5114, 2003.

Damian, V., Sandu, A., Damian, M., Carmichael, G. R., and Potra,
F. A.: KPP – A symbolic preprocessor for chemistry kinetics
– User’s guide, Technical report, The University of Iowa, Iowa
City, IA 52246, 1995.

Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael,
G. R.: The kinetic preprocessor KPP – a software environment
for solving chemical kinetics, Comput. Chem. Eng., 26, 1567–
1579, 2002.

Djouad, R., Sportisse, B., and Audiffren, N.: Reduction of mul-
tiphase atmospheric chemistry, J. Atmos. Chem., 46, 131–157,
2003.

Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations
II. Stiff and Differential-Algebraic Problems, Springer-Verlag,
Berlin, 1991.

Lehmann, R.: An algorithm for the determination of all significant
pathways in chemical reaction systems, J. Atmos. Chem., 47,
45–78, 2004.

Leis, J. and Kramer, M.: ODESSA – An Ordinary Differential
Equation Solver with Explicit Simultaneous Sensitivity Analy-
sis, ACM Transactions on Mathematical Software, 14, 61–67,
1986.

Radhakrishnan, K. and Hindmarsh, A.: Description and use of
LSODE, the Livermore solver for differential equations, NASA
reference publication 1327, 1993.

Sander, R., Kerkweg, A., Jöckel, P., and Lelieveld, J.: Technical
Note: The new comprehensive atmospheric chemistry module
MECCA, Atmos. Chem. Phys., 5, 445–450, 2005,
SRef-ID: 1680-7324/acp/2005-5-445.

Sandu, A., Potra, F. A., Damian, V., and Carmichael, G. R.: Effi-
cient implementation of fully implicit methods for atmospheric
chemistry, J. Comp. Phys., 129, 101–110, 1996.

Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael,
G. R., and Potra, F. A.: Benchmarking stiff ODE solvers for at-
mospheric chemistry problems II: Rosenbrock solvers, Atmos.
Environ., 31, 3459–3472, 1997.

Sandu, A., Daescu, D., and Carmichael, G. R.: Direct and adjoint
sensitivity analysis of chemical kinetic systems with KPP: I –
Theory and software tools, Atmos. Environ., 37, 5083–5096,
2003.

Tang, Y., Carmichael, G. R., Uno, I., Woo, J.-H., Kurata, G., Lefer,
B., Shetter, R. E., Huang, H., Anderson, B. E., Avery, M. A.,
Clarke, A. D., and Blake, D. R.: Impacts of aerosols and clouds
on photolysis frequencies and photochemistry during TRACE-P:
2. Three-dimensional study using a regional chemical transport
model, J. Geophys. Res., 108D, doi:10.1029/2002JD003100,
2003.

Trentmann, J., Andreae, M. O., and Graf, H.-F.: Chemical processes
in a young biomass-burning plume, J. Geophys. Res., 108D, doi:
10.1029/2003JD003732, 2003.

Verwer, J., Spee, E., Blom, J. G., and Hunsdorfer, W.: A second
order Rosenbrock method applied to photochemical dispersion
problems, SIAM Journal on Scientific Computing, 20, 1456–
1480, 1999.

von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.:
Modeling halogen chemistry in the marine boundary layer. 1.
Cloud-free MBL, J. Geophys. Res., 107D, 4341, doi:10.1029/
2001JD000942, 2002.

von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch,
P. J.: A model for studies of tropospheric ozone and nonmethane
hydrocarbons: Model description and ozone results, J. Geophys.
Res., 108D, doi:10.1029/2002JD002893, 2003.

www.atmos-chem-phys.org/acp/6/187/ Atmos. Chem. Phys., 6, 187–195, 2006

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://people.cs.vt.edu/~asandu/Software/Kpp
http://people.cs.vt.edu/~asandu/Software/Kpp
http://direct.sref.org/1680-7324/acp/2005-5-445



