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Outdoor watering of lawns accounts for about half of single-family residential potable water
demand in the arid southwest United States. Consequently, many water utilities in the region offer
customers cash rebates to replace lawns with drought tolerant landscaping. Here we present a
parcel-scale analysis of water savings achieved by a ‘cash-for-grass’ program offered to 60 000
homes in Southern California. The probability a resident will participate in the program, and the
lawn area they replace with drought tolerant landscaping, both increase with a home’s outdoor
area. The participation probability is also higher if a home is occupied by its owner. From these
results we derive and test a simple and generalizable probabilistic framework for upscaling water
conservation behavior at the parcel-scale to overall water savings at the city- or water
provider-scale, accounting for the probability distribution of parcel outdoor areas across a utility’s
service area, climate, cultural drivers of landscape choices, conservation behavior, equity concerns,

and financial incentives.

1. Introduction

Climate change and population growth threaten the
balance of water supply and demand in many urban
regions around the world [1-6]. A dramatic case
in point is the urban water stress brought on by
the California drought of 2011 to 2016, the most
severe drought in the southwest United States over
the past 1200 years [7]. In January 2014, Califor-
nia’s Governor Jerry Brown issued the first of a series
of emergency proclamations to address the statewide
drought, and California’s roughly 400 urban water
agencies responded with a number of short- and
long-term water conservation programs [8]. Because
irrigation of lawns accounts for roughly half of resid-
ential water demand in a typical California home [9,
10], many water agencies focused on reducing resid-
ential outdoor water use [8]. In general, utilities can

© 2020 The Author(s). Published by IOP Publishing Ltd

encourage conservation through [11]: (1) direct pos-
itive financial incentives such as rebates; (2) direct
negative financial incentives such as fines; (3) indir-
ect financial incentives such as tiered pricing, (4) pub-
lic education campaigns; and (5) sanctions, bans, or
norming. In this study we focus on an example of
the first approach; namely, a ‘cash-for-grass’ lawn
replacement rebate program.

Cash-for-grass programs are a popular approach
for incentivizing lawn replacement. In these pro-
grams, water agencies offer customers a rebate for
replacing irrigated grass in their yards with drought
tolerant landscaping [6, 12—14]. Even with cash
incentives, however, social barriers—such as the
preference for lawns, requirements for an initial
expenditure outlay, and neighborhood norms and
covenants—limit participation [15, 16]. In their
recent analysis of the $350 million cash-for-grass
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rebate program implemented by the Metropolitan
Water District in Southern California, Pincetl et al
[16] called for more research into factors that influ-
ence residential participation in these programs,
including ‘building density, lot sizes, and other char-
acteristics’.

To address this knowledge gap, we carried out
a parcel scale analysis of a cash-for-grass pro-
gram implemented by the Irvine Ranch Water Dis-
trict (IRWD) in Orange County, California. IRWD’s
rebate program, which began in late 2010, pays res-
idential customers a fixed unit rebate (dollars per
area) to replace lawns with drought-tolerant outdoor
landscaping. The unit rebate paid by IRWD changed
over time, from $1.50 per square foot (1 October
2010 through 1 June 2014) to $2 per square foot (1
June 2014 to 31 March 2017), except for a roughly
three-week period (1-19 May 2015) when it was tem-
porarily increased to $3 per square foot. Over our
study period (October 2010 through March 2017),
a total of 1559 single-family residential (SFR) par-
cels, or 2.6% of the approximately 60 000 SFR parcels
in IRWD’s service area, participated in the program.
The program replaced approximately 130 000 m?
of lawn area with drought tolerant landscaping, for
an annual water savings of between 130 and 222
megaliters (ML), assuming unit reduction in water
use of between 1002 and 1711 1 m=2 yr~! [17, 18].
IRWD’s service area is divided into 77 villages, each of
which has its own architectural theme (reflecting the
region’s master-planned heritage and development
history) and clearly defined edges [19]. In this letter
we examine how the outdoor area and owner occu-
pancy status of individual parcels in IRWD’s service
area—data that are readily available from the local tax
assessor’s office—influence the probability that a res-
ident will participate in the rebate program. We then
demonstrate how this information can be upscaled,
directly linking outdoor water conservation behavior
at the parcel scale to overall water savings achieved at
the water provider or city-scale.

2. Materials and methods

2.1. Definitions of SFR parcel and rebate
participation

For the purposes of this study, an SFR is defined
as a parcel with a residential detached dwelling and
an IRWD water meter account and associated ser-
vice point ID (SPID). SFR parcels were classified as
rebate ‘participants’ provided: (1) a rebate application
was filed within our study period (1 October 2010 to
31 March 2017); (2) the applicant passed an onsite
inspection by IRWD personnel (to verify that lawn
was replaced with drought tolerant landscaping); and
(3) the applicant received a rebate check from IRWD
following the inspection. Because rebates were typic-
ally processed within 6 months of the initial applica-
tion, the status of all rebate applications was evaluated
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as of November 2017, eight months after our study
window closed. SFR parcels were classified as rebate
‘non-participants’ if they failed any of the above cri-
teria.

2.2. Parcel-scale features

For each SFR parcel in IRWD’s service area we
compiled tax assessor information referenced by
Assessor Parcel Number (APN), including outdoor
area (which was calculated as the difference between
the parcel’s lot area and building area) and owner
occupancy (APN and SPID were matched from
IRWD records).

2.3. Data curation

Parcels were removed from our analysis if any of the
following applied: (1) ‘0’ was listed for the parcel’s lot
size or year built; (2) the parcel did not have an asso-
ciated SPID, indicating that there was no IRWD water
connection; and (3) manual inspection revealed that
the parcel in question was associated with a park or
other non-residential green space.

2.4. Classification and regression trees (CART)

We used the machine-learning algorithm CART (R-
PART in R Software) [20] to evaluate if a SFR’s out-
door area and/or owner occupancy status could dis-
criminate between participants and non-participants
(see section 1 of SM (stacks.iop.org/ERL/15/054010/
mmedia) for details).

2.5. Participation probability and 95% ClIs

The probability that a randomly chosen resident will
participate in the rebate program, or ‘participation
probability’ p, was estimated as the proportion of
rebate participants in any sample of N SFR parcels,

N

p = > Xi where X; is the random variable for par-
i=1

ticipation (X; = 1) or non-participation (X; = 0) and

the index i represents a particular SFR parcel. The cor-
responding 95% confidence intervals were calculated

from the formula [21]: p £ 1.96+/p (1 —p)/N.

3. Results and discussion

3.1. Study statistics

Of the 60 000 SFR parcels in IRWD’s service area,
46 915 were enrolled in our study based on the data
curation procedure outlined in the section 2. Of these
46 915 SFR parcels, 1366 participated in IRWD’s lawn
rebate program for an overall participation probabil-
ity 0£ 2.9% (p = 0.029 £ 0.002).

3.2. Classification and regression tree (CART)

A forest of 33 decision trees was generated by pairing
the 1366 SFR participants with an equal number of
randomly chosen non-participants (see section 1 of
SM). For this analysis, we adopted a SFR’s decision to
participate in the rebate program (=‘1") or not (=°0)
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Figure 1. (a) CART reveals that a resident’s decision to participate in the rebate program depends on whether their home is owner
occupied (first decision point) and whether its outdoor area exceeds 168 m? (second decision point). Y and N stand for ‘yes’ and
‘no; respectively. (b) The fraction of residents participating in the rebate program (‘participation probability’) is 3.4% if the home
is owner occupied, compared to 1.1% if it is not. When owner-occupied homes are further divided based on outdoor area, homes
with outdoor areas of >168 m? or <168 m? have participation probabilities of 3.7 and 1.5%, respectively. The number of parcels
included in the calculation of participation probability is shown for each category (grey bars in upper chart).

as the dependent variable, and the SFR’s outdoor area
and owner occupancy status as the two independ-
ent variables. Of the 33 trees generated, 30 (or about
90%) split the dataset according to whether the SFR is
owner-occupied or not (first decision point) followed
by whether the parcel’s outdoor area is greater than
168 m? or not (second decision point, figure 1(a)).
The same two variables appear in reverse order in the
three remaining trees. Across all 33 trees, misclassific-
ation rates estimated for the top two decision points
ranged from 39%—42%. These misclassification rates
are reasonable, considering we restricted tree depth to
just two decisions made on two parcel-scale variables;
i.e. owner occupancy and outdoor area [20].

Consistent with the CART results and across
all enrolled SFR parcels (N = 46 915), the parti-
cipation probability is three times higher if a SFR
is owner occupied (p=0.033+0.002) compared
to if it is not owner occupied (p =0.011=+0.002)
(figure 1b). When owner occupied SFRs are further
divided according to their outdoor area, the particip-
ation probability is nearly 4% if the outdoor area is
greater than 168 m? (p = 0.037 +0.002) compared
to less than 2% if the outdoor area is smaller than
this threshold (p = 0.015 £ 0.003) (figure 1b). Thus,
participation in the rebate program is highest for
SFRs that are owner occupied and have outdoor areas
>168 m?.

3.3. Participation probability

To explore the functional relationship between parti-
cipation probability and outdoor area, we sorted all
enrolled owner-occupied SFR parcels (N = 38 255)
by outdoor area, assigned the parcels into 11

equal-sized bins, and then calculated for each bin
the participation probability and median outdoor
area. For outdoor area <400 m?, the participation
probability is strongly correlated (R* = 0.91) with
median outdoor area, increasing 1.2% for every
100 m? increase in outdoor area; the participa-
tion probability stabilizes at a final value of about
4.5% for parcels with outdoor area >400 m? (blue
points and lines, figure 2(a)). For non-owner occu-
pied SFR parcels (N = 8660), the participation
probability also increases with outdoor area, but
the correlation is weaker (R*> = 0.67), the slope is
reduced (0.39% increase in participation probabil-
ity for every 100 m? increase in outdoor area), and
the final probability is lower (about 1.5% for par-
cels with outdoor area >400 m?) (red points and
lines, figure 2(a)). In summary, program participa-
tion increases monotonically with median outdoor
area, but the magnitude of the response (and strength
of the correlation) is particularly striking for owner
occupied SFR.

Once a resident decides to participate in the
rebate program, the lawn area they replace also
depends on their parcel’s outdoor area. This conclu-
sion was reached by sorting and binning all enrolled
participants in IRWD’s rebate program (N = 1366)
by outdoor area, and then calculating, for each
bin, median values of the outdoor area and of the
lawn area replaced. For parcels with outdoor areas
<600 m?, the median lawn area replaced increases lin-
early with median outdoor area (blue and red filled
circles and lines, figure 2(b)). In contrast to the parti-
cipation probability, however, this linear relationship
is not altered by owner occupancy status. Also note




Environ. Res. Lett. 15 (2020) 054010

0.05 —

0.04

—o0—ri

0.03 —

0.02

—

Participation Probability

0.01

0.00

200 400 800

Outdoor Area (m

600

16 —ooe

1.4
1.2
1.0
0.8 -
0.6
0.4 -
0.2 -
0.0 -

1.

L 0.04

- 0.02

Probability Density
Aujgeqoid uonedionied

—000

Iog1o(Outdoor Area, m )

S B Grant et al

(b)

200 —

150 —

100 —

Lawn Area Replaced (m2)
(6]
o
|

o
1

T T T T T
0 200 400 600 800

Outdoor Area (m2)

(d)

— 0.06
Slope (x107)
—0

— 0.61
| — 122

- 0.04

—0.02

Probability Density
Aunqeqoid uonedionied

0.00

I T I T I T I
1.0 2.0 3.0 4.0

log4o(Outdoor Area, m2)

Figure 2. (a) Participation probability increases monotonically with median outdoor area, but the initial slope and maximum
value depend on whether the home is owner occupied (blue filled circles and lines) or not (red filled circles and lines). (b) The
median lawn area replaced also increases with outdoor area, but there is little difference between owner occupied (blue filled
circles and lines) and non-owner occupied (red filled circles and line) homes; note the considerable parcel-to-parcel scatter (blue
and red dots correspond to owner- and nonowner-occupied parcels, respectively). (c) Probability density histograms of outdoor
area for owner (blue filled circles) and non-owner (red filled circles) occupied SERs closely follow a single log-normal probability
density function (PDE, black curve). The participation probability curves from (a) are superimposed on this graph (blue and red
lines correspond to SER that are owner or non-owner occupied, respectively). (d) Model simulations of total water savings were
carried out for the three participation probability curves with the initial slopes indicated. The PDF of outdoor areas from (c) is

superimposed on this graph (see main text for details).

the substantial parcel-to-parcel scatter around these
linear relationships (blue and red dots in figure 2(b)).

3.4. Size distribution of outdoor area

The results above reveal a strong association between
outdoor area and both the probability a resident will
participate in the rebate program and the lawn area
they replace with drought tolerant landscaping. How
are parcel outdoor areas distributed across IRWD’s
service area? Probability density histograms gener-
ated from the outdoor areas of owner- and non-
owner-occupied SFR parcels (blue and red points,
figure 2(c)) closely follow a single log-normal prob-
ability density function (PDE black curve in the
figure, details in section 2 of SM). There is sub-
stantial overlap between outdoor areas most com-
monly present in IRWD’s service area (i.e. out-
door areas with the highest probability density, solid
black curve in figure 2(c)) and outdoor areas with
the highest participation probability (blue and red
curves in the figure). However, the highest particip-
ation probabilities are skewed toward parcels with
the largest outdoor areas (and highest household
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incomes, see figure S1), consistent with previous
reports that rebate programs are utilized dispropor-
tionately by wealthier residents [15, 22].

This result begs the question: could the rebate
structure be altered to incentivize the participation
of residents with lower incomes? In the context of
figure 2c, this would entail ‘flattening’ the particip-
ation probability curve, for example by decreasing
its slope and increasing its intercept. Under the fixed
unit rebate adopted by IRWD, rebate payouts increase
linearly with the lawn area replaced, up to a max-
imum of $3000. This rebate structure may incentiv-
ize the participation of residents with large yards (and
higher household incomes), consistent with the res-
ults presented in figures 2c and S1. To entice the par-
ticipation of households with smaller yards, the utility
could consider transitioning from a fixed unit rebate
to a fixed cash payment to participating residents
that is, within reason, independent of the lawn area
they replace. On the other hand, by enrolling many
more small lawns in the program, per force the aver-
age lawn area replaced per rebate will decline, pos-
sibly leading to a net reduction in water savings over-
all. To clarify such tradeoffs, it would be helpful to
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have a modeling tool that can relate, for these various
‘what if” scenarios, how changes in outdoor water
conservation behavior at the parcel scale translate to
total water savings achieved at the water provider or
city scale.

3.5. Probabilistic framework for outdoor water
savings

From the results in figure 2 we can derive, for
any incremental change in outdoor area (from a
to a+ Aa, units of square meters), the incremental
water savings AW (units of liters per year) accrued
by implementing a cash-for-grass rebate program.
The incremental water savings AW is equal to the
product of the unit water savings associated with
replacing lawn with drought tolerant landscaping
(w”, units of liters per square meter per year), the
probability a randomly chosen resident will particip-
ate (p(a), unitless), the average lawn area replaced
with drought tolerant landscaping (¢(a), units of
square meters), and the number-distribution of out-
door areas across the utility’s service area n(a) (units
of inverse square meters), where the product n (a) Aa
represents the number of SFR parcels with outdoor
areas in the incremental range a to a+ Aa: AW =
w’p(a)l(a)n(a)Aa. The unit water savings, w’,
captures the influence of local climate [23], cultural
preferences for outdoor plants [13, 24-26], and water
use behavior [13] on the water savings realized when
a unit area of lawn is replaced with drought tolerant
landscaping. For its service area, IRWD adopts a value
of w = 1711 liters per square meter per year. Taking
the limit Aa — 0 and integrating, we arrive at the fol-
lowing simple formula for estimating total water sav-
ings achieved by a cash-for-grass program at the city
scale:

/p(u)ew)n(u)du 1)

Amin

W=w"

The variable u is a dummy integration variable
and the limits of integration an;, and an,, (units of
square meters) represent the range of outdoor areas
of interest.

Substituting our empricial expressions for p(a),
£(a), and n(a) into equation (1) and integrating (see
section 2 of the SM for details), equation (1) predicts
that owner and non-owner occupied SFR parcels in
the IRWD service area should yield a total water sav-
ings of 134 and 9.8 ML per year, respectively. These
model predictions are within 22% of the actual water
savings achieved by IRWD’s program, calculated by
summing up the lawn area replaced during the study
period and multiplying by w" = 1711 liters per square
meters per year (163 and 12 ml per year for owner and
non-owner occupied parcels, respectively).

With equation (1) we can now answer the ques-
tion: how would the rebate program’s overall water
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savings change if the participation probability curve
was ‘flattened out) for example by transitioning to
a fixed cash rebate? To simulate this scenario, we
decreased the initial slope of the participation prob-
ability curve while holding the average service area
participation probability constant at 3.3% (consist-
ent with the average participation probability repor-
ted for the enrolled owner occupied SFR parcels in
figure 1(b), details in section 3 of SM). Surprisingly,
the model predicts very little change in water savings
(from 133 to 123 ML per year) as the initial slope is
reduced from the value inferred from IRWD’s data-
set (m, = 1.22 x 10~* m~?) to a completely flat line
(my, =0 m~2). The reason, evident in figure 2(d), is
that a small reduction in the participation of SFRs
with large outdoor areas is balanced by an increase in
the participation of much more numerous SFRs with
small outdoor areas; recall, the number-distribution
of outdoor areas in IRWD’s service area is positively
skewed by virtue of being log-normally distributed
[21]. Thus, at least in this case, there is no inher-
ent trade-off between encouraging the participation
of households with a diverse range of incomes and
water saving goals. It remains to be seen, however, if a
change in the rebate structure alone (e.g. from a fixed
unit rebate to a fixed cash rebate) can alter the shape of
the participation probability curve. Even if this were
possible, other factors might make such an approach
impractical; e.g. administrative costs associated with
vastly more rebate inspections.

Research is presently underway to extend equa-
tion (1) to address additional factors known to influ-
ence the success of water conservation programs,
including temporal variability (e.g. associated with
news coverage of drought) [27, 28], demand harden-
ing [29], and neighborhood adoption effects [15, 30].
The upscaling approach developed and tested here
may also prove useful for estimating changes in
hydrological budgets (e.g. evapotranspiration [31]) at
the water provider or city-scale, associated with the
distributed adoption of drought tolerant landscaping.
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