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Investigation into the Load Bridging Effect for Block Class Pallets as a Function 

of Package Size and Pallet Stiffness 

Steven Michael Morrissette 

ACADEMIC ABSTRACT 

Pallets and corrugated boxes are ubiquitous in the global supply chain. However, the 

interactions that exist between the boxes and pallet are ignored during the pallet design process 

resulting in an over design of pallet performance and the waste of raw materials. The goal of this 

research is to understand how pallet performance is affected by headspace, box size, and base 

design across multiple support conditions using block class wooden pallets.  

Headspace and base design had no effect on pallet deflection for the experimental weights 

used throughout testing. The effect of box size was significant on pallet deflection across multiple 

support conditions. The effect was greatest for lower stiffness pallets and low stiffness support 

conditions (RAW) with up to a 50% reduction in pallet deflection observed by switching from 

small to large boxes on a very low stiffness pallet.  

Evaluation of pressure mat data showed an increase in the redistribution of pressure away 

from the center of the pallet and towards the supports as box size increased. The redistribution of 

pressure towards the supports is known as load bridging and validates the observed reduction in 

pallet deflection as a function of box size. The results indicate that incorporating the effect of 

packages into current pallet design practices could result more effective and cheaper pallet designs. 
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Steven Michael Morrissette 

GENERAL AUDIENCE ABSTRACT 

Transportation and storage of material goods at a national and international level is an 

integral part of our economy with pallets and corrugated boxes making up the majority of 

packaging materials. Currently, the interactions that exist between the boxes and pallet are ignored 

during pallet design resulting in an over design of pallet performance and a waste of raw materials. 

Understanding the interactions that exist in a unit load is important in optimizing pallet 

performance, reducing the amount of raw materials used, and ultimately reducing cost. 

This research project is specifically focused on the interactions between corrugated boxes 

and block class wooden pallets. The effect of headspace (the gap between the products and the top 

of the box) and box size was investigated as a function of pallet stiffness, support condition, and 

bottom deck design. Both pallet deflection and the pressure distribution on the top surface of the 

pallet were examined to evaluate pallet performance.   

It was found that headspace does not have an effect on pallet deflection unless the weight 

of the unit load exceeds 3,500 lbs. for small boxes and 1,750 lbs. for large boxes. Base design 

showed no significant effect on pallet deflection for all of the support conditions evaluated. The 

effect of box size had a major effect on the deflection of the pallet. Large boxes showed the greatest 

change especially when lower stiffness pallets were used. Increasing the box size can reduce the 

deflection of the pallet as much as 50% which means that pallets supporting larger boxes could 

support much more weight than currently estimated.  

Evaluation of pressure mat data showed that when the size of the boxes increased, more 

pressure is distributed towards the supports. More pressure is applied to the pallet section on the 

top of the supports; therefore, less pressure is available to cause pallet bending. This finding 

validates the observed reduction in pallet deflection as a function of box size. The obtained results 

help pallet designers to incorporate the interactions between the packages and the pallet into their 

design process which will allow them to reduce the amount material used for pallet.
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1. INTRODUCTION 

Our economy is heavily dependent upon the distribution of material goods at both a 

national and international level.  As such, companies are constantly looking for the cheapest 

packaging and shipping options to transport their product from manufacturing plants to the final 

consumer as quickly as possible, yet in a safe manner. Unit loads, consisting of a pallet, the product 

on the pallet, and a form of load stabilization, have become the preferred method of shipping. Up 

to 80% of the material goods in the United States being transported in a unitized form (LeBlanc, 

2019). Both wooden pallets and corrugated boxes quickly became favorites in unitization 

throughout the packaging industry due to the low cost of materials, ease of customization, and 

speed of manufacturing. 

By 2019, there are projected to be over 2.6 billion pallets in circulation globally (Freedonia 

Group, 2015). The materials used for pallet construction include solid wood, plastic, metal, paper-

based, wood composite, or a combination of these materials. The majority of pallets are made from 

solid wood with 96% of companies currently using wooden pallets (McCrea, 2016). Pallets come 

in a variety of sizes; however, the 48 inch x 40 inch pallet, referred to as the Grocery Manufacturers 

Association (GMA) pallet, is the most common pallet and accounted for 35% of wooden pallet 

production in 2016 (Gerber, 2018).  

Corrugated boxes are the packaging material most commonly used and up to 95% of 

products are transported this way (Fibre Box Association, 2015). Corrugated boxes consist of an 

arrangement of flat linerboards (liners) and wavy or fluted linerboards (mediums) glued together, 

cut to size, and folded into shape to get the desired performance. A variety of mechanical properties 

can be achieved by constructing corrugated boxes out of different quality paperboard, using 

different combinations of liners and mediums, and varying the spacing of the flutes (Fibre Box 

Association, 2015). The most common material used for corrugated boxes, with up to 80% of the 

market share, is single-wall C-flute corrugated board. Single-wall C-flute corrugated board is made 

of two liners and one fluted medium spaced 5/32 inches apart with 39±3 flutes per foot (Twede et 

al., 2014).  

Historically, studies have focused on understanding the mechanical properties of the 

components in a unit load individually in an approached called “Component Based Design” -
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(White, 2005). Considering the components of a unit load separately over-simplifies the design 

process as it ignores the interactions between components. Using a “Component Based Design” 

can result in higher material costs associated with overdesign, product damage due to inadequate 

design, and costly downtime associated with unit load failures. More recently, a “Systems Based 

Design”, which attempts to analyze the performance of the unit load considering the interactions 

of all the components with each other and with material handling equipment, was presented by Dr. 

White from Virginia Tech (White, 2005).  

Unit load interactions can either be analyzed by determining the effect of the pallet on the 

packages or by determining the effect of the packages on the pallet. Historically, most research 

has attempted to understand how packages, usually corrugated boxes, are affected by palletization 

and pallet design. Box over hang (Monaghan and Marcondes, 1992), deckboard gap (Monaghan 

and Marcondes, 1992, Baker, 2016), deckboard stiffness (Baker, 2016, Phanthanousy, 2017), 

stacking configuration (Singh et al., 2011, Meng et al., 2007), and the contents of the packages 

(Frank et al., 2010) have all been determined, by various researchers, to influence the strength of 

corrugated boxes. While these studies have furthered how palletization affects corrugated box 

performance, they fail to understand the effect that corrugated boxes can have on pallet 

performance. 

Recent studies have focused on understanding which factors affect pallet performance. 

Pallets are currently designed and tested assuming a uniformly distributed load. However, unit 

loads behave more like a series of discrete concentrated loads effected by the interactions between 

unit load components (Fagan, 1982). The redistribution of pressure away from the center and 

towards the supports based on unit load interactions is called load bridging. Various researchers 

have identified several factors which influence the extent of load bridging.  

Fagan (1982) was the first to study load bridging and determined that pallet deflection for 

stringer class pallets is significantly effect by both pallet stiffness and method of loading (air bag 

vs. boxes vs. platen). Collie (1984) furthered the knowledge of load bridging by investigating 

stringer class pallets in various support conditions. The stiffness of a pallet in its intended support 

condition was determined to affect load bridging. Pallets in the less stiff support condition of 

warehouse racking across the width (RAW) experienced greater load bridging when compared to 

pallets in the warehouse racking across the length (RAL) support condition. Researchers at 
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Virginia Tech’s Center for Unit Load Design also studied load bridging and found that the shape 

and stiffness of the package, the type of load stabilizer used, the applied containment force, 

stacking pattern, pallet stiffness, and unit load handling over time all influenced the amount of load 

bridging observed for stringer class pallets (White et al., 1999).   

Yoo (2011) created a model based on beam theory in order to understand the distribution 

of pressure between the packages and the top surface of a stringer class pallet. The model includes 

factors such as deckboard stiffness, package stiffness, and the flexibility of pallet joints. Park 

(2015) examined the effect of box size, flute type, and stretch wrap containment force on load 

bridging for stinger class pallets. All of the factors investigated were determined to have a 

significant effect on load bridging. Molina (2017) was the first to investigate the effect of stacking 

pattern on load bridging for stringer class pallets. An interlocked stacking pattern only showed a 

significant effect for low stiffness pallets under the warehouse racking across the width (RAW) 

support condition. Clayton (2018) was the first to investigate how load bridging of stringer class 

pallets was influenced by box size and headspace across multiple support conditions using an 

entire unit load. Clayton (2018) proved that box size has a significant effect on load bridging for 

low stiffness pallets with the effect being the greatest for the low stiffness support conditions such 

as warehouse racking across the width (RAW).  

Unit load height and the coefficient of friction between components in a unit load are also 

factors known to influence load bridging; although, little research has been done to understand the 

magnitude of each effect in a quantitative manner. While extensive research has been done in order 

to understand the factors which can influence load bridging, all studies to date have focused on 

stringer class pallets. No one has determined whether the same factors can be expected to influence 

load bridging for block class pallets. Understanding which factors influence load bridging for 

block class pallets furthers the knowledge base for the packaging industry. As a complete 

knowledge of load bridging is developed for both stringer class and block class pallets, unit load 

design can be optimized, and unit loads can be designed with the intended product in mind. 

Customizing unit load design for individual scenarios saves material costs while ensuring desired 

performance and safe transportation.  
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2. OBJECTIVES 

The main objective of this project is to investigate the effect of load bridging caused by 

corrugated boxes on the deflection of full four-way block class wooden pallets.  

Specific objectives include  

 Investigate the effect of headspace, box size, and base design on pallet deflection 

using support conditions which are most commonly used by industry.  

 Investigate the relationship between the pressure distribution on the top surface of 

the pallet and the amount of deflection experienced by the pallet.  

3. LITERATURE REVIEW 

3.1. PALLETS  

3.1.1. History 

The movement of large quantities of material goods has been constantly studied in order 

to increase efficiency and ease of transportation. Throughout history, the movement of materials 

has been achieved through the use of wooden boxes, barrels, and crates, along with skids. Skids, 

which have no bottom deckboards, were the predecessors to pallets and have been used for over 

2000 years (Moorey, 1994). Bottom deckboards were added to the skid in 1925 creating the pallet 

(LeBlanc, 2002). The main breakthrough in pallet advancement coincided with the development 

of the forklift. Forklift technology has its origins in the late 1880’s (LeBlanc, 2002). The original 

lift truck was crude and has undergone several notable changes over the years. Over time, the 

forklift has developed a greater lift height, hydraulic controls instead of manual controls, a 

cantilevered design, and most importantly the addition of forks (LeBlanc, 2002). As the forklift 

gained better material handling abilities, the pallet became an integral part of the storage and 

transportation of material goods. During WWII, the need for fast transportation and storage of 

large quantities of material goods with minimal manual labor led to an explosion in the use of 

pallets and forklifts (LeBlanc, 2018).    
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3.1.2.  Introduction to Industry 

In the United States, about 80% of material goods are transported using pallets (LeBlanc, 

2019). The number of pallets in circulation is projected to reach 2.6 billion in 2019 (Freedonia 

Group, 2015). With the growing number of pallets, there was a need for organization and 

uniformity throughout the industry. To help with this, the American National Standards Institute 

created the Material Handling 1: Pallet, Slip Sheets, and Other Bases for Unit Loads (ANSI 

MH1:2016), a voluntary standard, to define industry terminology, recommend standardized sizes 

and dimensions, and establish testing and inspection procedures (MH1 Committee, 2016). 

According to the ANSI MH1:2016 standard, a pallet is defined as a “portable, horizontal, rigid, 

composite platform used as base for assembling, storing, stacking, handling, and transporting 

goods as unit loads” (MH1 Committee, 2016).  Furthermore, the standard establishes that pallets 

can be described by their class, use, type, style, bottom deck, size, and design (MH1 Committee, 

2016).  

3.1.3. Pallet Classification 

There are two main classifications of pallets and several additional sub-classifications. The 

main classification separates pallets into either stringer pallets or block pallets. This differentiation 

is based on the components used to manufacture the pallet. Stringer pallets are the more common 

of the two comprising about 76% of the market in 2016, while block pallets accounted for 21% 

(Gerber, 2018). Sub-classifications separate the pallets even further based on the intended use of 

the pallet, the accessibility of the pallet to handling equipment, and other design characteristics. 

3.1.3.1. Stringer Class Pallets 

Stringer pallets are the most common class of pallets used by the industry because of their 

faster manufacturing time which leads to lower manufacturing costs (Clarke, 2004). Stringer 

pallets are constructed using a combination of stringers and both top and bottom deckboards. 

Stringers are components made of dimensional lumber, most commonly nominal 2 x 4’s (1.5 inch 

by 3.5 inch), that run the length of the pallet and are positioned on edge to separate the top and 

bottom deckboards. There are at least two stringers, but more commonly, three stringers in any 

given stringer pallet.  Stringers allow connection points for all deckboards running perpendicular 

to the stringers. An example of a stringer pallet, with all components, labelled is shown in Figure 

1.  
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Figure 1: Stringer Class Pallet - Flush, Double-Face, Nonreversible, 

Partial Four-way, Unidirectional Base (MH1 Committee, 2016) 

3.1.3.2. Block Class Pallets 

Block pallets use a series of components, called blocks, to separate the top and bottom 

deckboards. Most commonly, nine blocks are used to create a block class pallet. Blocks are located 

at each of the four corners, center span on each of the four sides, and at the very center of the pallet 

for a total of nine blocks. Blocks vary in dimensions based on design and their location in the 

pallet; however, many blocks are designed to fully support other pallet components such as stringer 

boards. Stringer boards are used to connect the blocks to the top deckboards. Due to the greater 

number of components and a more complex manufacturing process, block pallets use more 

materials and are more expensive (Clarke, 2004). However, this design, using blocks instead of 

stringers, has the distinct advantage of allowing greater access to the pallet with pallet handling 

equipment. Another advantage of the block pallets is their increased strength and durability when 

compared to stringer pallets (Baker, 2016). Although block pallets currently only represent 21% 

of the market (Gerber, 2018), there is great hope for the future of block pallets. Large retail 

companies, such as Wal-Mart and Costco, prefer block pallets due to ease of access 

(FPInnovations, 2009). Also, large pallet pooling companies such as CHEP prefer block pallets 

due to their greater strength and durability (Baker, 2016). An example of block pallet, with all 

components labelled, is shown in Figure 2.  
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Figure 2: Block Class Pallet - Flush, Double-Face, Nonreversible, Full 

Four-way, Unidirectional Base (MH1 Committee, 2016) 

3.1.3.3. Intended Use 

Pallets which are meant to be used only one time are called single use, expendable, or one-

way pallets, and they are disposed of or recycled after use. Single use pallets can be designed to a 

lower quality and are an inexpensive solution if you do not need the pallet returned (MH1 

Committee, 2016). The alternative is a multiuse or a reusable pallet. Reusable pallets are built with 

durability in mind which increases the life expectancy of the pallet (MH1 Committee, 2016).  

While the initial cost is higher, if these pallets are used in a closed loop and/or are able to be 

retrieved, then the initial cost is offset through long term savings.  

3.1.3.4. Entry Type 

A pallet is classified as either a two-way pallet, a partial four-way pallet, or a full four-way 

pallet based on pallet construction. Stringer pallets can either be two-way pallets or partial four-

way pallets. A two-way pallet has solid stringer boards and can only be accessed from the two 

ends using either a pallet jack or a forklift. A partial four-way pallet has notched stringer boards. 

This allows for the same access as a two-way pallet, with additional access from the sides of the 

pallet using a forklift. The notches aren’t large enough for a pallet jack hence the name partial 

four-way. Block pallets are considered full four-way pallets. Block pallets can be accessed from 
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all four sides using both a pallet jack and a forklift. A typical wooden pallet design of each entry 

type is shown in Figure 3.   

 

Figure 3: Example of typical two-way, partial four-way, and four-way 

wooden pallets (adapted from Uline, n.d.) 

3.1.3.5. Other Design Characteristics 

There are several design characteristics which can be used to classify pallets. One design 

characteristic is face construction, either single-face or double-face. Single face pallets have no 

bottom deckboards and are often called skids. Most pallets are double-faced pallets which have 

both top and bottom deckboards. Double-faced pallets can be further subdivided into reversible 

and nonreversible. Reversible pallets have the same top and bottom deck designs allowing the 

pallet to be flipped over. Nonreversible pallets differ in top and bottom deck construction and 

therefore have a designated top and bottom (usually fewer deckboards on the bottom).  

Another design characteristic is the alignment of the top and bottom deckboards with the 

stringers or stringer boards. If the deckboards are evenly aligned with the stringers or stringer 

boards, then the pallet is called a flush pallet. If the top deckboards overhang the stringers or 

stringer boards then the pallet is considered a single winged pallet (MH1 Committee, 2016). If 

both the top and bottom deckboards overhang, then the pallet is considered a double winged pallet. 

Examples of flush, single-winged, and double-winged pallets are shown in Figure 4.  

  

Figure 4: Examples of flush, single-winged, and double-winged stringer pallets (Adaptalift 

Group, 2013) 

Flush Pallet Single-Winged Pallet Double-Winged Pallet 
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Top deck construction can also vary between pallet designs. Stringer pallets use either 

deckboards or a panel connected directly to the stringers to create the top deck surface. Block 

pallets need an extra component when using deckboards and employ the use of stringer boards to 

connect the top deckboards to the blocks below. When using a panel as the top deck surface, the 

panel can either be connected directly to the blocks or it can be connected using the same stringer 

board method mentioned above (Figure 2).  

The bottom deck can also take on several different configurations. The unidirectional base 

design is one in which all bottom deck boards are oriented in the same direction. Some block 

pallets have a unidirectional base design and almost all stringer pallets are considered 

unidirectional. Block pallets can also have an overlapping base design, a perimeter base design, or 

a cruciform base design. An overlapping base design is when bottom stringer boards are used in 

conjunction with bottom deckboards to create a base that is composed of two layers. A perimeter 

base design is when the bottom deckboards are butted up against each other instead of overlapping. 

The bottom deckboards are arranged in two different directions; usually three along the length and 

two along the width. A cruciform base also uses a butted bottom deckboard design, but it includes 

an extra bottom deckboard across the center width of the pallet. Wooden pallets with a cruciform 

bottom deck design are most commonly created using an overlapping design; plastic pallets can 

have a single layer cruciform bottom deck design. An example of a cruciform bottom deck is 

shown in Figure 5 with all of the components labelled.  

 

Figure 5: Component names for perimeter and cruciform bottom 

deck construction (MH1 Committee, 2016) 
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3.1.3.6. Materials Used  

There are several different materials used in pallet construction. The choice of materials 

depends on desired strength and stiffness properties, intended use, and all associated costs. Pallets 

can be solid wood, plastic, wood composite, metal or paper based. Some pallet designs even 

combine different materials to create the desired properties in the finished pallet.  

3.1.3.6.1. Solid Wood 

Pallets were originally constructed from solid wood. Currently 96% of companies in the 

United States use solid wood pallets (McCrea, 2016).  Wooden pallets have experienced a 14% 

growth in production from 2011 to 2016 (Gerber, 2018). There were around 849 million new and 

repaired wood pallets constructed in the United States in 2016 (Gerber, 2018). Pallets made from 

solid wood can be made of softwood or hardwoods and the exact species varies between different 

regions. The chosen species is usually limited to just a few species which are native to the given 

manufacturing region (Figure 6).  

  
Figure 6: Species typically used for pallet production in various 

regions of the United States (adapted from White, 2012) 

Wood is the material of choice for pallets for multiple reasons. The raw materials for pallet 

construction are cheap and easy to obtain. Most pallet wood is the low grade wood that is available 

from sawmills and which has few other uses (Bejune, 2001). Another reason wood is favored is 

because the manufacturing process is quick and cheap, which results in faster production rates and 

produces cheaper pallets. Wood pallets can also be repaired with relative ease, and recycling 

facilities already exist to repurpose old pallets with broken components into useable pallets for 
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resale. The disadvantages of wood include the potential for fastener withdrawal and splintering, 

which can cause product damage or bodily injury. Wood pallets can also experience moisture 

issues, including mold and insects, if not heat treated and stored properly. Also, the natural 

variations in solid wood materials’ properties (e.g. density, growth variations such as knots and 

wood grain) lends itself to higher variation in the performance of the pallets themselves.  

3.1.3.6.2. Plastic 

Plastic pallets entered the market in the 1960’s (LeBlanc, 2015). Plastic is currently the 

second most common material for pallet manufacturing, with 37% of United States companies 

using plastic pallets (McCrea, 2016). High-density polyethylene (HDPE) and polypropylene (PP) 

are the two most common types of plastics used for pallet manufacturing. Just like wood pallets, 

plastic pallets also have their advantages and disadvantages. One advantage of plastic pallets is 

their resistance to moisture. This helps eliminate problems with insects, mold, and product damage 

due to desorption of the water in the wood. Plastic pallets also have no issues with fastener 

withdrawal since there are no fasteners used in the construction of plastic pallets. When compared 

to wood, plastic pallets also have higher durability. Plastic pallets lend themselves to a much wider 

range of design alternatives, and they tend to be lighter weight. Disadvantages of plastic pallets 

include lower stiffness, higher initial costs, and no ability to repair damaged pallets. Considering 

the advantages and disadvantages, plastic pallets are usually used in closed loop environments or 

situations in which sanitation is a concern.  

3.1.3.6.3. Wood Composite 

Wood composites are another option for pallet materials with 15% of companies using 

these composite pallets (McCrea, 2016). Wood composites pallets, usually molded wood, address 

some of the issues associated with solid wood pallets (Li et al., 2018). The biggest problem 

addressed by wood composite pallets is the high variability in material properties associated with 

solid wood. Wood composites randomize wood growth variations increasing the overall 

homogeneity of the pallet. Wood composite pallets also have fewer issues relating to moisture than 

solid wood pallets. Wood composite pallets are not subject to the same pest regulations due to the 

high temperatures used in their manufacturing process (Li et al., 2018). However, wood composite 

pallets cost more than solid wood pallets, but they are usually cheaper than plastic or metal pallets. 

The disadvantages of wood composite pallets include costly repairs, problems associated with 

fastener withdrawal, and moisture problems in wet environments when compared to plastic and 
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metal. Given the advantages and disadvantages, wood composite pallets are mainly used in 

situations where pest regulations are a concern or where increased durability or strength is needed.   

3.1.3.6.4. Metal 

Metal, usually aluminum or steel, is yet another material from which pallets are constructed 

(McCrea, 2016). Metal pallets can be manufactured in several ways, including CNC machining 

and robotic welding (Avex Steel Products, 2018). Only 5% of companies currently use metal 

pallets due to their high initial costs (McCrea, 2016). The primary use for metal pallets is 

transporting and storing heavy loads. Metal pallets are extremely durable, have high strength and 

stiffness values, and are easy to recycle. These pallets are also free of issues relating to moisture, 

fasteners, and sanitation. The disadvantages include a high initial cost, heavy pallet weight, and 

lower surface friction (Clarke, 2004). Due to the high initial cost and the potential for long term 

use, metal pallets are most commonly used in closed loop environments where pallet loss is not a 

concern.  

3.1.3.6.5. Paper-based 

Paper-based pallets were first conceived of in the 1940’s and the term encompasses pallets 

made of corrugated, honeycomb, solid fiberboard, and molded pulp (LeBlanc, 2017). While paper-

based pallets are lightweight, easy to recycle, and have high adaptability, the price is similar to 

that of wood pallets (LeBlanc, 2017). These pallets tend have low stiffness, low durability, and a 

high level of moisture related issues; as such, paper-based pallets are expected to be single use 

pallets. One of the biggest challenges for paper-based pallets is industry perception. Currently, 

around 90% of the largest retail stores in the United States, including Walmart®, will not accept 

paper-based pallets (Change The Pallet, 2015).   

3.1.3.7. Sizes 

To help keep the processes consistent throughout transportation, storage, and handling, 

there are several standard pallet sizes. These standard sizes vary by industry and country. Pallet 

dimensions are given in the form of length by width (MH1 Committee, 2016). The length is defined 

as the dimension parallel to the stringers for stringer pallets and the dimension parallel to the 

stringer boards for block pallets (MH1 Committee, 2016). The width of a pallet is defined as the 

direction of the top deck perpendicular to the length (MH1 Committee, 2016). The most common 

pallet sizes by region are shown in Table 1 in both millimeters and inches. The wood pallet sizes 

which are most commonly used in the United States are presented in  
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Table 2 by industry and percentage of new wood pallet production in various years. The 

48 in. x 40 in. pallet, known as the GMA (Grocery Manufacturers Association) pallet, accounted 

for 35% of all wood pallets produced in the U. S. in 2016 (Gerber, 2018).  

Table 1: Most common pallet sizes by region in both inches and millimeters (ISO, 2003) 

Metric size (mm) US size (in.) Region 

1200 x 1000 47.24 x 39.37 Europe, Asia 

1200 x 800 47.24 x 31.50 Europe 

1219 x 1016 48.00 x 40.00 North America 

1140 x 1140 44.88 x 44.88 Australia 

1100 x 1100 43.30 x 43.30 Asia 

1067 x 1067 42.00 x 42.00 North America, Europe, Asia 

 

Table 2: Most popular wood pallet sizes by industry and percentage of new wood pallet 

production in the United States in various years (adapted from Gerber, 2018 and Clayton, 2018) 

 

Industry Dimensions 
Year 

2006 2011 2016 

Grocery 48 in. x 40 in. 27% 24% 35% 

Military 40 in. x 48 in. 5% 3% 4% 

Drums 48 in. x 48 in. 4% 4% 7% 

Automotive 48 in. x 45 in. 2% - 5% 

Chemical, Beverage 48 in. x 42 in. 4% - 3% 

Beverage, Shingles, Packaged Paper 48 in. x 36 in. 2% 2% 1% 

Chemical 42 in. x 42 in. 5% 5% 5% 

Beverage 37 in. x 37 in. 2% 2% <1% 

European 800 mm x 1200 mm - 1% 1% 

Various Other 50% 60% 39% 
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3.1.4. Standards for Pallets 

There are several standards which relate directly to quality, reliability, and repeatability of 

pallets throughout the packaging industry. One of the largest and most comprehensive standards 

is the MH1 – Pallets, Slip Sheets, and Other Bases for Unit Loads (2016) produced by the Material 

Handling Industry and certified by the American National Standards Institute (ANSI). The ANSI 

MH1:2016 standard originated in 1953 (ASME, 2005) Improvements and adjustments have 

continually been made to this standard in order to remain current with industry trends. This 

standard defines industry terminology in Part 1, establishes common pallet dimensions in Part 2, 

and addresses the manufacturing and tolerances of pallets and their components in Part 3 and Parts 

9 - 14. It also has sections relating to the use of fasteners, including tables of common fasteners 

and their specifications (Part 5), along with a protocol for measuring the quality of pallet nails and 

staples (Part 6). Part 7 of the ANSI MH1:2016 standard refers to multiple testing methods 

(standards) which are intended to evaluate the performance of pallets across a variety of real-world 

scenarios.   

Another leading standard in the packaging industry is the National Wooden Pallet and 

Container Association (NWPCA) Uniform Standard for Wood Pallets (2014). The effort by 

NWPCA to establish industry wide standards started at Virginia Tech in the late 1950’s with the 

creation of a pallet grading system (Brindley, 2006). It wasn’t until the early 1990’s that a uniform 

voluntary standard was developed (Brindley, 2006). The current NWPCA standard stemmed from 

Part 3: Wood Pallets of the ANSI MH1:2016 standard and is almost identical. Since NWPCA is a 

leading organization in the wooden pallet industry, this standard was adopted from the Material 

Handling Industry and was established as a voluntary industry wide standard.  

3.1.5. Manufacturing 

Both standards mentioned above address manufacturing specifications for pallets. The 

NWPCA standard focuses on the manufacturing of wooden pallets, while the ANSI MH1:2016 

standard has additional sections which encompass the manufacturing of pallets from other 

materials such as plastic and plastic composites, corrugated/paper-based, metal, and molded, 

wood-based composites. When it comes to wood pallets, both standards establish quality control 

by addressing manufacturing topics such as defects arising from wood growth variations, 

component tolerances, and moisture content (MH1 Committee, 2016).  
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Tables presented in the standards establish different defect limitations for pallet 

components based on whether the pallet is classified as reusable or single-use. The standards also 

define manufacturing tolerances for pallet components. For deckboards and stringer boards, 

component tolerances are expected to be ±1/16 inch (±1.6 mm) of desired thickness and +1/8 inch 

(+3 mm) or -1/4 inch (-6 mm) of desired length (NWPCA, 2014 and MH1 Committee, 2016). For 

stringers and blocks, the width and height can vary by only ±1/16 inch (±1.6 mm) from desired 

dimensions and the length must fall within the range of +1/8 inch (+3 mm) to -1/4 inch (-6 mm) 

of desired length (NWPCA, 2014 and MH1 Committee, 2016). Moisture content is not limited as 

long as component dimensions are within the expected tolerances.  

3.1.6. Fasteners 

Fasteners play a large role in the performance of a unit load. Fastener performance can 

affect the strength and stiffness of individual pallet joints, and ultimately, the unit load as a whole 

(Yoo, 2011). There are several fasteners intended for wood pallets including bolts, wood screws, 

and lag screws along with driven fasteners such as nails and staples which are the most common. 

Nails are further classified, according to the surface of the shank, into categories of plain shank, 

fluted, annularly threaded, helically threaded, or twisted square wire. Staples can be either round 

or square which refers to the shape of the wire that was used to manufacture the staples.  

The NWPCA standard establishes minimum quality requirements for fasteners based on 

their intended use (single use vs. multiuse) and addresses issues such as fastener placement, 

protruding fasteners, and fastener caused splits (NWPCA, 2014). The ANSI MH1:2016 standard 

has this same information as the NWPCA standard, but it also includes a protocol for measuring 

the quality of pallet nails and staples based on work done by Stern and White in 1993 (MH1 

Committee, 2016). This testing protocol establishes two quantitative values of fasteners, termed 

the fastener withdrawal index (FWI) and the fastener shear index (FSI), to determine their expected 

quality and performance (MH1 Committee, 2016).  

3.1.7. Testing of Pallets 

Understanding the mechanical properties of pallets under typical support conditions is 

important in creating a safe, yet cost effective, pallet design. Before the early 1980’s, pallets were 

tested by manually loading packages on to them in order to create a unit load. In 1982, Fagan 

(1982) developed a testing apparatus which used an airbag to apply a uniform load. This method 
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produced more reliable and repeatable results than previous testing methods through the use of a 

constant loading rate and uniform load distribution. Since then, several testing standards have been 

created with the ultimate goal of estimating pallet durability and load capacity. Durability tests are 

conducted to determine the average life expectancy of any given pallet design. Durability tests can 

include incline impact tests, vibration tests, and corner or end drop tests. Load capacity tests are 

conducted to determine the safe load capacity of a pallet across various support and loading 

conditions. The support conditions typically seen in industry include storage in pallet rack system 

[warehouse racking across the width (RAW) and warehouse racking across the length (RAL)], 

floor stacking (including top and bottom deckboard), fork tine support (in both directions where 

applicable), and conveyor support.  

The two most commonly used standards for testing general use pallets are ASTM D1185 

Standard Test Methods for Pallet and Related Structures Employed in Materials Handling and 

Shipping (2017a) and ISO 8611 – Pallets for material handling – Flat Pallets (2011a). ISO 8611 

is the newer of the of the two standards and is recognized internationally, while ASTM D1185 is 

mostly used in the United States. The loading method differs slightly for each of the two standards. 

While both standards try to simulate uniform load distribution, ASTM D1185 achieves this 

through the use of an airbag and ISO 8611 uses a rigid plate on top of two rigid beams for increased 

repeatability between laboratories. Since the load capacity of a pallet depends on the type of load 

the pallet is experiencing, the two standards generate slightly different results; hence, each standard 

applies a different safety factor to their results. Due to the fact that a uniform load creates 

conservative loading conditions, these standards produce a conservatively low, safe load capacity 

pallets which tend to be overdesigned. When pallets only carry a specific package type, such as 

corrugated boxes, their load capacity can be significantly greater than either standard would 

predict. Therefore, ISO 8611 allows the use of a specific load type to generate a so-called 

Maximum Working Load value. The maximum working load capacity of the pallet incorporates 

the effect of packages, but it only applies when the pallet carries the exact same packages that were 

used for the test (ISO, 2011b).  

In the past, the only way to understand the mechanical properties of pallets was to conduct 

physical tests. More recently, however, software has emerged to help with evaluating the 

performance of pallets through predictive mathematical models which include various design 
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features.  These design features include pallet materials, component dimensions, fastener 

specifications, and the expected loading conditions among others. The two most popular pallet 

software programs are Pallet Design System (PDS), that was based on research conducted at 

Virginia Tech and currently commercialized by NWPCA, and Best Load, created by White and 

Company. Both programs use mathematical models to predict the strength and stiffness properties 

of any given pallet design, which allows users to find an optimal balance between cost and 

performance.  

3.2. CORRUGATED BOARD AND CORRUGATED BOXES 

3.2.1. History 

The first documented use of corrugated paper was a patent issued in 1856 for use as a 

cushion or liner in the sweatband on hats (Twede et al., 2014). It was not until 1871 that a patent 

was issued to Albert Jones for the use of corrugated paper as a packaging material (Twede, 2007). 

In 1874, faces (liners) were added to corrugated paper by Oliver Long in order to prevent stretching 

(Twede et al., 2014). The first double-faced (single wall) corrugated box was produced in 1894 by 

Thompson and Norris for use by Wells Fargo (Twede et al., 2014). Over the last hundred years, 

advances have been made in the manufacturing process allowing for greater output rates and 

increased manufacturing accuracy. Advances have also been made in developing standard grades 

of corrugated board and standard testing methods (Fibre Box Association, 2015). Today, a wide 

variety of corrugated products are available with known strength properties.  

3.2.2. Introduction to Industry 

Corrugated boxes are the items most commonly shipped on a unit load (Fibre Box 

Association, 2015). Up to 95% of consumer goods are packaged and transported in this manner 

(Fibre Box Association, 2015). The corrugated fiberboard industry was valued at $26.1 billion in 

2011 (Twede et al., 2014). That represents 63% of the value, and 78% of the tonnage, of the paper 

packaging industry as a whole (Twede et al., 2014). Corrugated boxes are manufactured from 

corrugated fiberboard which is constructed using a pattern of flat containerboards, called liners, 

glued together in combination with wavy containerboards, called corrugated mediums. Using 

different numbers of liners and mediums, along with different flute heights and spacing (height of 

corrugated peak and distance between corrugated peaks), allows corrugated board to be extremely 

versatile, and it finds many different uses throughout the packaging industry. There are also several 
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different styles of corrugated boxes that can be constructed. As the industry has evolved, testing 

standards have been developed to ensure the performance of corrugated board and corrugated 

boxes during intended use.  

3.2.3. Corrugated board 

Corrugated board is a panel product composed of inner layers, which are wavy or 

corrugated, and outer layers, which are flat. Inner layers are referred to as the mediums or the 

walls, and outer layers are referred to as the liners, linerboards, or faces (Twede et al., 2014). 

Linerboards are most commonly made of Kraft linerboard, which is composed of softwood fibers 

pulped using the Kraft process (sulfate pulping) (Koning, 1995). The corrugated medium is either 

made from hardwood fibers using the neutral sulfite semi chemical (NSSC) pulping process, or 

made from recycled corrugated board (Twede et al., 2014). Due to the manufacturing differences 

between linerboard and the corrugated medium, linerboards are considered two-ply while the 

medium is a single ply fiberboard (Soroka, 2009).  

Different numbers of liners and mediums are glued together to create a variety of 

corrugated boards, each with their own desired properties and intended purposes. One linerboard 

glued to one medium is termed single-faced corrugated board. Single-faced corrugated is sold in 

rolls, and it is mainly used to wrap products not manufacture boxes (Twede et al., 2014). Double-

faced corrugated board is made by gluing two linerboards to a single corrugated medium, and it is 

more commonly referred to as single wall corrugated board. Single wall corrugated is the most 

common type used throughout the industry (Soroka, 2009). Double and triple wall corrugated 

boards are manufactured by gluing additional linerboards and mediums to a single wall corrugated 

board in order to create a thicker and more rigid product. Due to superior strength properties, 

double wall and triple wall corrugated board is mainly used for heavy duty applications (Twede et 

al., 2014). The different types of corrugated board are shown in Figure 7. 
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Figure 7: Examples of different types of corrugated board: a) single face b) double 

face or single wall c) double wall d) triple wall (adapted from Kirwan, 2005) 

3.2.3.1. Flute Types 

The term flute refers to the arch like structure formed from bending the medium into its 

corrugated shape (Fibre Box Handbook, 2015). The fluting of corrugated fiberboard has been 

grouped according to fluting specifications such as number of flutes per foot (or meter), flute height 

in inches or millimeters (sometimes referred to as thickness), and take up factor. Take up factor is 

defined as a ratio of the length of the medium to the length of the linerboards (Soroka, 2009). The 

various sizes of corrugated board are given alphabetical designations to differentiate them based 

on their specifications. It is important to note that the alphabetical designations are ordered 

chronologically rather than by size (Twede et al., 2014). The most common flute sizes along with 

their specifications are presented below in Figure 8 and Table 3. C-flute is the most common size 

of corrugated board used by the industry with around 80% of corrugated boxes in the United States 

being constructed of C-flute corrugated board (Twede et al., 2014). Although corrugated board is 

sold based on fluting characteristics, these characteristics can vary widely between manufacturers 

depending on manufacturing equipment.  
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Figure 8: Most common flute types used by industry (Fibre Box Handbook, 2015) 

Table 3: List of the most common flute types along with their specifications including flutes per 

meter, flutes per foot, flute thickness in millimeters (inches), and take up factor (adapted from 

Twede et al., 2014) 

Flute Type Flutes per meter Flutes per foot 
Flute thickness 

mm. (in.) 

Take-up 

Factor 

A 108 ± 10 33 ± 3 4.8 (3/16) 1.54 

C 128 ± 10 39 ± 3 4.0 (5/32) 1.45 

B 154 ± 10 47 ± 3 3.0 (1/8) 1.35 

E 295 ± 13 90 ± 4 1.6 (1/16) 1.25 

3.2.3.2. Board Grades 

The linerboards and mediums that compose corrugated board can vary in strength and 

stiffness properties based on weight and thickness (Soroka, 2009). To help with standardization 

throughout the industry, grades were created based on grammage or basis weight, both of which 

represent the weight of fiber in a given area. Grammage is reported in units of grams per square 

meter (g/m2) while basis weight is reported in pounds per 1,000 square feet (lb/1,000 ft2) (Soroka, 

2009). These grades were determined based on meeting established requirements of the Mullen 

burst test (see Mechanical Properties/Standards) (Soroka, 2009). Due to differences in their 

manufacturing processes, linerboards and mediums have different standardized grades. The most 

common grades used to identify linerboards and mediums are shown in  

 

Table 4.  
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Table 4: Common basis weight in pounds per 1,000 square feet (lb/1,000 ft2) and grammage in 

grams per square meter (g/m2) for both linerboards and mediums (Twede et al., 2014) 

Common Basis Weight or Grammage 

Linerboard Medium 

U. S. Customary 

(lb./1000ft2) 

Metric 

System 

(g/m2) 

U. S. Customary 

(lb./1000ft2) 

Metric 

System 

(g/m2) 

26 125 26 125 

33 150 28 140 

38 175 30 150 

42 200 36 175 

47 225 40 200 

69 339 42 200 

Note: Relation between the common basis weights is not equivalent to the mathematical 

conversion of the units 

Corrugated board can be manufactured using any combination of the different grades of 

both the linerboard(s) and medium(s). To describe corrugated board, the grammage, or basis 

weight, of the individual components are listed from the outside to the inside (Soroka, 2009). A 

corrugated board listed as 159/125B/140 would consist of an outside linerboard with a grammage 

of 159 g/m2, a B-fluted medium with a grammage of 125 g/m2, and an inside linerboard with a 

grammage of 140 g/m2.  

3.2.4. Corrugated box styles 

Box styles are specified by the use of a descriptive name, an acronym, and an international 

code number (Twede et al., 2014). The international code numbers were created by a joint effort 

between the European Federation of Corrugated Board Manufacturers (FEFCO) and the European 

Solid Fiberboard Organization (ESBO). They worked together in order to help create uniformity 

throughout the industry and across different languages (FEFCO-ESBO, 2007). This was later 

adopted by the International Corrugated Case Association and the United Nations (Fibre Box 

Association, 2015).  
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The international code is four digits long and is used to denote the standard shape and 

design of any given box. The first two digits represent different box styles based on form, and the 

second two digits represent a specific design based on characteristics such as shape, number of 

flaps, and amount of flap overlap. The different forms of boxes include slotted boxes, telescope 

boxes, folders, rigid boxes (bliss boxes), ready glued boxes (self-erecting boxes), and interior 

forms, among others (Fibre Box Association, 2015).  

Slotted boxes are manufactured from a single piece of corrugated with a manufacturers 

joint (which is a glued joint that helps form a square shaped box) along with top and bottom flaps. 

Telescope boxes are created using a multi-piece design in which a top and/or bottom fit into each 

other or over the box body. Folders are also constructed from a single piece of corrugated; 

however, this type, is folded around the product, with the intention of fully supporting the bottom 

of the box (Fibre Box Association, 2015). Rigid boxes use a three-piece design including two side 

panels held together as the body is wrapped around them. Ready glued boxes are manufactured in 

such a manner that the box can be constructed without the use of adhesive or equipment (Twede 

et al., 2014). Interior forms can be used to strengthen the box, separate products, or reduce product 

movement, and they can take on a variety of shapes.  

The Regular Slotted Container (RSC), is one of the most common designs for slotted boxes, 

and it is designated by the international code number 0201 (Fibre Box Association, 2015). On an 

RSC, all of the flaps are the same length and each are exactly half of the container’s width. This 

allows the flaps along the length of the box to meet in the center when folded, creating an economic 

design with minimal waste (Twede et al., 2014). All box designs can be manufactured to have any 

desired dimensions, although ISO 3394 – Packaging – Complete, Filled Transport Packages and 

Unit Loads – Dimensions of Rigid Rectangular Packages (2012) was created to help standardize 

box dimensions based on standard pallet dimensions.  

3.2.4.1. Mechanical Properties/Standards 

Historically, grammage, or basis weight, was used as an indication of the expected 

performance of a given fiberboard and therefore of corrugated board. However, there has been an 

increase in the amount of recycled fiber used to manufacture both linerboards and mediums, and 

these recycled fibers reduce the strength properties for a given grammage or basis weight (Twede 

et al., 2014). To address this variation in strength properties, other tests, such as the Mullen burst 
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test and the edge crush test (ECT), are used to assess mechanical properties of the board itself. 

These tests are able to specify the strength properties of the corrugated board as a whole.  

A set of rules for corrugated box construction was created which includes specifications 

for the weight of the box including its contents, the dimensions of the box, and the combined 

weight of the facings. These rules were used to separate corrugated board into different categories 

based on minimum requirements for both the Mullen burst test and the edge crush test (ECT). The 

different categories are shown in the Table 5 below. It is important to note, that although the burst 

strength and ECT values are established for a given box size and weight, these values are not 

directly comparable (Baker, 2016).  

Table 5: Minimum strength requirements for single wall corrugated fiberboard boxes based on 

either Mullen burst test rating and minimum combined facing weight (Part A) or edge crush test 

(ECT) rating (Part B) for varying levels of maximum box and content 

Single Wall Corrugated Fiberboard Boxes 

Max Weight, 

Box and 

Contents (lbs.) 

Max. Outside 

Dimension (length 

+ width + depth) 

Part A Part B 

Min. Burst 

Test 

(lb./sq. in.) 

Min. Combined 

Weight of 

Facings 

Min. Edge Crust 

Test (ECT) 

(lb./in. width) 

20 40 125 52 23 

35 50 150 66 26 

50 60 175 75 29 

65 75 200 84 32 

80 85 250 111 40 

95 95 275 138 44 

120 105 350 180 55 

*Mullen (Part A) and ECT values (Part B) are presented side-by-side, but there is no 

correlation between the values. 

The oldest test for evaluating the strength of corrugated board is the Mullen burst test, 

which measures the amount of pressure (usually in pounds per square inch) that is required to 

puncture or rupture the corrugated board (Twede et al., 2014). Several standardized tests have been 

established in order to measure the burst strength including TAPPI T 810: Bursting Strength of 

Corrugated and Solid Fiberboard (2017a) and ISO 2759: Board – Determination of Bursting 

Strength (2014). The Mullen burst test can be used to measure the burst strength of the corrugated 

board as a whole or of the linerboards individually. Burst strength has been shown to be additive. 
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This means that the individual burst strength of each linerboard in a given corrugated board can 

be combined to estimate the burst strength of the corrugated board as a whole (Twede et al., 2014). 

The results of a Mullen burst test are a good indication of expected containment strength, as the 

test reproduces the forces typically experienced during the material handling process including 

drops and impacts (Allaway, 2005).  

The edge crust test (ECT) became popular in the 1990’s as a way of specifying the 

compression strength of corrugated board, since it is directly related to stacking strength (Twede 

et al., 2014). The ECT is evaluated using one of several standards including TAPPI T 811: 

Edgewise Compressive Strength of Corrugated Fiberboard (Short Column Test) (2017b) and ISO 

13821: Corrugated Fiberboard – Determination of Edgewise Crush Resistance – Waxed Edge 

Method (2013). The edge crush test consists of compressing a piece of corrugated board, with the 

flutes parallel to the direction of loading, until failure. The ECT value is the ratio of the force at 

failure over the length of the sample and is reported in pounds-force/inch (kilonewtons/meter). To 

help with the introduction of a new rating system, ECT values were determined for each of the 

different categories of corrugated board that were already established by the Mullen burst test 

(Twede et al., 2014).  

To help with correlating the strength of the corrugated board to overall box performance, 

the McKee formula was created. This equation is used to estimate box compression strength (BCT) 

for regular slotted containers (RSC) based on the corrugated boards’ thickness, the size of the 

perimeter of the box, and the edge crush test (ECT) values (Twede et al., 2014). There are also 

several standardized testing methods for determining the BCT of a given box design including 

TAPPI T 804: Compression Test of Fiberboard Shipping Containers (2012), ASTM D642: Stand 

Test Method for Determining the Compression Resistance of Shipping Containers, Components, 

and Unit Loads (2015), and ISO 12048 Packaging – Complete, Fill Transport Packages – 

Compression and Stacking Tests Using a Compression Tester (1994). The different standards 

allow for testing under multiple loading conditions (fixed platen vs. floating platen) and with 

different box contents (filled vs. empty).  

3.2.4.2. Manufacturers certificate  

A Box Manufacturer’s Certificate (BMC) is a stamp printed on the corrugated box to 

specify the minimum performance standards met by that box (Koning, 1995). The BMC is also a 
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guarantee that the box complies with the minimum requirements set forth by the given 

transportation industry [National Motor Freight Classification (NMFC) for truck transport and 

Uniform Freight Classification (UFC) for rail transport] (Fibre Box Association, 2015). All BMCs 

include the name and location (city and state) of the box manufacturer along with the box’s gross 

weight and size limits.  This stamp also includes either the edge crust test (ECT) rating or the burst 

test rating and the combined facing weight. An example of a BMC for both ECT rating and burst 

test rating are shown in Figure 9. Boxes intended for use as small parcels will often use BMCs 

designating the burst rating, while boxes intended for palletization prefer BMCs indicating the 

ECT value. The manufacturer’s stamps indicate the stresses the boxes are able to withstand given 

their intended use (Twede et al., 2014).   

 
Figure 9: Left: Box Manufacturer's Certificate displaying the edge crush test 

(ECT) rating Right: Box Manufacturer's Certificate displaying burst testing 

rating and combined weight of facings (Soroka, 2009) 

3.3. STRETCH WRAP 

3.3.1. History 

Originally, products were secured to a pallet using either rope or metal strapping, both of 

which can damage products through pressure points (Bisha, 2012). In the early 1970’s, the use of 

stretch wrap for unit load containment was proposed by the Lancaster brothers from Lantech 

(Wathen, 2016). Stretch wrap was initially made from polyvinyl chloride (PVC) and low density 

polyethylene (LDPE), both of which had drawbacks. PVC was originally preferred by the industry 

because of its greater ability to stretch, but PVC quickly gave way to LDPE as technological 

advances increased the elastic properties of LDPE (Bisha, 2012). In the late 1970’s, linear low-

density polyethylene (LLDPE) was invented, and it quickly became the choice material for 

manufacturing stretch wrap as a result of its improved elasticity and durability (Dowler, 2015). 

The next breakthrough in stretch wrap technology was the addition of extra layers composed of 
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different chemicals in order to optimize the stretch wrap’s mechanical properties (Bisha, 2012). 

The number of layers was increased to three in the 1980’s, five in the 1990’s, and up to nine layers 

by the 2000’s (Dowler, 2015). Today, a multilayer stretch film manufactured from linear low-

density polyethylene (LLDPE) is most commonly used by the industry due to its high puncture 

resistance and enhanced elastic properties compared to other available polymers (Bisha, 2012). 

3.3.2. Introduction to Industry  

It is important to consider the stability of a unit load as it moves through the supply chain. 

A stable unit load is less likely to shift during transportation; therefore, it can reduce product 

damage and repackaging costs while increasing employee safety (Bisha, 2008). There are several 

methods employed by the packaging industry to keep the contents of unit loads stable throughout 

the supply chain, including stretch wrap, pallet sheets, strapping, break away adhesives, stretch 

tape, shrink wrap, stretch hooding, and the use of interlocked stacking patterns. Stretch wrap, 

considered an elastic packaging film, is the most common method of load stabilization (Rogers, 

2011). More than 65% of unit loads utilize stretch wrap during transportation (Wainer, 2002). In 

addition to load stabilization, stretch wrap helps reduce exposure to moisture, dust, and UV rays. 

It also acts as a physical barrier to reduce tampering with products (Hazel 4D, n.d.). It can reduce 

overall costs associated with product handling, labor, and transportation (Wainer, 2002).   

3.3.3. Manufacturing 

Stretch wrap can be manufactured using two different methods: cast film or blown film. 

These two films utilize different manufacturing procedures which result in distinct properties for 

each. Both types of films have advantages and disadvantages associated with their mechanical 

properties and as such, each film type has its intended markets (Bisha, 2012).  

Cast film is manufactured by extruding molten resin through a slotted die, creating a thin 

sheet of film (Degroot et al., 1994). This thin sheet is then pressed against chilled rollers and cooled 

rapidly to re-solidify the resin (Degroot et al., 1994). Due to this manufacturing method, cast films 

tend to have higher clarity, better quality control, and the ability to manufacture more film types 

through the use of additional layers (Bisha, 2012). Cast films are uni-axially oriented (meaning its 

desirable properties exist in one direction) and are used in the machine direction to take advantage 

of these properties. Since cast films have less resistance to tears and punctures than blown films, 

cast films remain the primary choice for the packaging industry (Bisha, 2008).  
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The alternative to cast film is blown film, which is also manufactured by extruding molten 

resin through a die. Instead of a slotted die, the resin is forced through a circular die in the shape 

of a bubble. Air is blown from underneath in order to inflate the bubble. As the bubble extends 

vertically, it is cooled and flattened then cut to desired dimensions and wrapped onto a roll. Blown 

films have a greater load retention, better load coverage (Singh et al., 2014), and a higher puncture 

resistance when compared to cast films due to their elastic properties (Bisha, 2008). The 

manufacturing process for blown film creates a bi-axially oriented product which has the desired 

properties in both the machine and cross-machine directions. Disadvantages include higher opacity 

and a higher noise level during application (Bisha, 2008). 

Stretch wrap can be sold in a variety of dimensions which include film thickness (gauge), 

length, roll width, roll diameter, and weight. One of the most important properties of stretch wrap 

is the thickness, or gauge, of the material which is measured in microns. The manufacturing 

method, along with the gauge, and its chemical composition, directly affects the performance and 

mechanical properties of the stretch wrap. Other properties, such as tensile strength, cling (ability 

to adhere to itself or another surface), tear resistance, puncture resistance, and elasticity are rarely 

mentioned on stretch wrap product specifications as these properties are highly variable and 

require laboratory testing for verification.  

3.3.4. Application 

Stretch wrap is applied to unit loads using one of three methods based on the level of 

automation required: manual, semi-automatic, or fully automatic (Bisha, 2012). The manual 

stretch wrapping method requires no automation, and instead, the unit load is wrapped by hand. 

While this method requires no equipment, stretch wrapping by hand is a labor-intensive process 

prone to inaccuracy and uneven containment (Park, 2015). Semi-automated application is when 

the unit loads are manually loaded onto stretch wrappers, and once in place, the machine applies 

the stretch wrap. Fully automated stretch wrappers are able to load and stretch wrap the unit loads 

without physical labor, usually through the use of conveyors and electronic sensors. Both semi-

automated and fully automated stretch wrappers can be either turn table machines or rotary tower 

machines (Collins, n.d.). Turn table machines rotate the unit load while applying stretch wrap from 

a film carriage. The film carriage moves vertically along a fixed mast in order to wrap the entire 

unit load. Conversely, rotary tower machines apply stretch wrap to a stationary unit load through 
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the use of a mechanical arm that travels around the unit load. Since the unit load remains stationary 

during this stretch wrapping process, rotary tower machines are mainly used for heavy or unstable 

unit loads (Rogers, 2011).  

Regardless of the method used, there are several key variables to consider when applying 

stretch wrap. These variables include prestretching the film, wrapping speed (either turntable speed 

or rotary tower arm speed), and wrapping pattern. Wrapping pattern includes number of wraps to 

be applied, location of the first wrap, and amount of overlap between wraps. Most of these 

variables would be difficult to control consistently during manual stretch wrapping methods. 

However, semi-automated and fully automated machines are able to control all of these variables 

through the use of sensors and photoelectric eyes (Rogers, 2011).  

3.3.5. Load Containment Force 

Load containment force refers to the amount force applied by the stretch wrap while 

securing the unit load. Elastic recovery, the tendency of stretch wrap to return to its initial state 

after being stretched, is directly related to load containment forces; hence, films with a higher 

elastic recovery will exhibit a greater containment force (Bisha, 2012). Load containment force 

can be manipulated by changing to a film with different mechanical properties or by controlling 

the variables associated with stretch wrap application. Temperature also plays a role in 

containment force due to the change in polymer rigidity as temperatures fluctuate (Brown, 1999).  

Bisha (2012) looked at the relationship between stretch wrap prestretch and observed 

containment force. Unit loads were wrapped using varying levels of prestretch. An initial load 

containment force was recorded at three different locations (top, middle, and bottom of unit load). 

The wrapped unit loads were then put through the ISTA 3E (2018) testing sequence. Additional 

containment force measurements were recorded during and after testing. Bisha (2012) concluded 

there was no relationship between the amount of prestretch and the observed containment force. 

This was true for containment force measurements throughout the duration of Bisha’s experiment. 

Since prestretch had no effect on containment force, it was recommended to use the highest level 

of prestretch possible in order to reduce the total amount of stretch wrap film used (Bisha, 2012).   

Singh (2014) further explored this relationship between the tensile properties of stretch 

wrap and the measured containment force. The standard definition of containment force was 
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separated into two distinct quantities of film stiffness and containment force. Film stiffness was 

measured on a face of the unit load while containment force was measured at the corners of the 

unit load. Both definitions include the measurement of the force at a given location. Although a 

thorough analysis of the tensile properties of stretch wrap was conducted, a linear model predicting 

the containment force based on tensile properties was considered impractical. Singh (2014) 

concluded that other factors, not controlled during the experiment, may play a role in 

understanding the relationship between stretch wrap properties and containment force. These 

factors may include the various stretch wrapper application settings.  

3.3.6. Testing/Standards 

ASTM D4649-03 Standard Guide for Selection and Use of Stretch Wrap Films (2016b) 

was created as a method for measuring and comparing the load containment force of a unit load. 

Two methods of measuring containment force are presented in this standard. One is referred to as 

the pull-plate method, and the other is referred to as the wrap-scale-in method. For the pull-plate 

method, a six-inch diameter plate is inserted behind the stretch wrap so that the center of the plate 

is 10 inches from the top and 18 inches from the side of the unit load. A ruler is placed next to the 

pull-plate, and it is used to measure the distance of the plate relative to the unit load. A fish scale 

is used to pull the plate away from the unit load, and the load containment force is defined as the 

amount of force (in pounds or Newtons) required to pull the stretch film a distance of four inches 

away from the unit load. The wrap-scale-in method uses a strain gauge, commonly a bathroom 

scale, to measure the containment force. The scale is held in place by the stretch wrap with the 

center of the scale located 10 inches from the top and 18 inches from the side of the unit load. The 

load containment force for this method is defined as the force displayed on the strain gauge after 

sitting undisturbed for five minutes.  

Currently, there is no way to calculate the final containment force based on factors such as 

film properties or stretch wrap application variables. Using ASTM D4649-03 to measure 

containment force has its drawbacks. The quantification of load containment force can only be 

found through experimental testing, which is a trial and error approach. Also, containment forces 

are known to be higher at the corners of unit load than at the sides (Bisha, 2012). Since ASTM 

D4649-03 only measures containment forces on the sides of the unit load, the potential for an 

underestimation of maximum containment force exists. There is also inherent variability in the test 
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procedures and even greater variability between the two methods. While this standard has its 

drawbacks, it is useful for making comparisons between different stretch wrapping solutions based 

on relative performance.  

ASTM D4649-03 (2016b) references additional standards to verify the physical and 

mechanical properties of a given stretch wrap. These include breaking factor, cling, elastic 

recovery, stress retention, tensile strength, and yield (coverage) among others. There is also a 

section referencing standards pertaining to the performance of the stretch wrap in a unitized form. 

These include testing the abrasion resistance, determining the effects of vibration and horizontal 

impact, and evaluating the performance of unitized loads during handling. In addition to the tests 

referenced by ASTM D4649-03 (2016b), there are several standards established to evaluate the 

load stability of a unit load as it moves throughout the supply chain. The two most commonly used 

standards are ASTM D4169-16 Standard Practice for Performance Testing of Shipping Containers 

and Systems (2016a) and ISTA 3E Similar Packaged-Products in Unitized Loads for Truckload 

Shipment (2017). Both of these standards also reference other standardized tests available which 

can also be used to evaluate unit load performance.  

Other attempts to quantify the effectiveness of stretch wrap include efforts by Lantech 

(2019) and Highlight Industries (2018). Lantech (2019) created a handheld measurement tool, 

called the CFT-6, as a different method of quantifying containment force. A containment force 

value is obtained through the use of the CFT-6 by determining the force required to pull the stretch 

wrap a given distance away from the unit load. The CFT-6 allows the user to quantify the 

containment force through the use of a single measurement tool. Highlight Industries also created 

a portable measurement system which uses load cells to measure the containment force at up to 

three different locations (Park, 2015). The stretch wrap is applied directly over the load cells which 

then transmit real-time measurements to a computer.  

3.4. LOAD BRIDGING 

There are two different ways to analyze unit load interactions; determining the effect of the 

pallet on the packages or determining the effect of the packages on the pallet. Historically, research 

has focused on understanding how palletization and pallet design affects the packages (usually 

corrugated boxes) in the unit load. Several factors have been identified that influence the strength 

of corrugated boxes. These include the effect of box overhang (Monaghan and Marcondes, 1992), 
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deckboard gap (Monaghan and Marcondes, 1992 and Baker, 2016), deckboard stiffness (Baker, 

2016, Phanthanousy, 2017), stacking configuration (Singh et al., 2011 and Meng et al. 2007), and 

the contents of the packages (Frank et al., 2010). While these studies have all been influential in 

the advancement of our understanding of corrugated boxes, the affects that the corrugated boxes 

can have on the performance of the pallet, and therefore the unit load as a whole, have largely been 

ignored.  

Recently, studies have focused on understanding how packages affect the performance of 

the pallet. Currently, design and testing methods for the more commonly used pallets assume a 

uniformly distributed load.  However, the unit load rarely acts like a uniform load. Instead, a given 

load usually consists of a series of discrete concentrated loads, and the interactions between the 

packages forming the load (Fagan, 1982). This combination of discrete loading and physical 

interactions between packages results in a phenomenon referred to as load bridging. Load bridging 

causes the pressure distribution on top of the pallet to shift away from the center of the pallet and 

towards the supports which can result in a reduction of unit load deflection (Figure 10). The 

amount of load bridging is controlled by several factors that have all been studied by various 

researchers over the years.  

 

Figure 10: Example of the redistribution of the load away from the center 

of the pallet in a warehouse racking support condition for a stringer class 

pallet; a phenomenon known as load bridging (Molina, 2018) 

The first person to study the idea of load bridging was Fagan (1982). He investigated the 

effect of various loading scenarios on four different stringer class pallets, each with a different 
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stiffness. All tests were conducted in warehouse racking support conditions including warehouse 

racking across the width (RAW) and warehouse racking across the length (RAL). The loading 

scenarios used were selected to represent varying levels of load bridging. An airbag was used to 

simulate a uniform load with no load bridging. Boxes arranged in two different stacking patterns 

were used to create the low load bridging and medium load bridging scenarios. Two line loads 

were used to simulate a platen-type load with extreme load bridging. Fagan (1982) concluded that 

there is a significant difference in pallet deflection based on the method of loading (airbag vs. 

boxes vs. platen) and pallet stiffness. Fagan also determined that pallet stiffness determines the 

extent of the load bridging effect.  

Collie (1984) further investigated the phenomenon of load bridging through several 

experiments. First, the stacking pattern and number of unit loads in the stack were examined for 

the three different stiffness stringer class pallets to determine their effect on load bridging. Six 

different stacking patterns, using either boxes or bags as the load, were tested and compared to the 

uniformly distributed load of an airbag as a control. Two of the stacking patterns were stacked 

both two and three unit loads high to determine the effect of the number of unit loads in a stack on 

load bridging. It was determined that for stringer class pallets in a stacking support condition, pallet 

stiffness, stacking pattern, and load type (bags vs. boxes), have no effect on the load distribution. 

The number of pallets in the stack was identified to be a significant factor in load distribution and 

adjustment factors were created to account for this effect.  

The second of Collie’s (1984) experiments looked at identifying various factors involved 

in load bridging for both warehouse racking across the width (RAW) and warehouse racking across 

the length (RAL) support conditions. Once again, three different stringer class pallets were used, 

each with a different stiffness. Five different loading types were chosen to represent varying levels 

of load bridging. An airbag was chosen to simulate no load bridging, bags were used to simulate 

low load bridging, two different arrangements of stacked boxes were used to simulate medium 

load bridging, and large rigid boxes were used to simulate extreme load bridging. Pallet deflection 

was measured as a determination of the effect of load bridging. Collie (1984) verified Fagan’s 

(1982) results and concluded that load bridging displays a greater effect for low stiffness pallets 

and the effect disappears as the stiffness of the pallet increases.  



33 

 

Collie (1984) also discovered that the support condition does affect load bridging for 

stringer class pallets. Pallets racked across the width experienced greater load bridging than those 

racked across the length due to the lower stiffness of a stringer class pallet when it’s racked across 

the width.  Collie (1984) was the first to address the fact that the number of boxes on a pallet 

directly affects the load bridging. Collie showed mathematically that as the number of boxes across 

the supports increase, the load is distributed across a greater number of discrete points, which apply 

more load across the pallet causing greater deflection. Conversely, as the number of boxes across 

the supports decrease, there are fewer discrete points which causes a higher percentage of the load 

to be shifted to the supports. Collie’s (1984) analog models demonstrating the effect of box size 

on the extent of load bridging are shown in Figure 11.   
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Figure 11: Mathematical and analog models showing the effect of 

box size on the extent of load bridging (Collie, 1984) 

Dr. White (Professor Emeritus of Wood Science and Forest Products at Virginia Tech) 

conducted research at Virginia Tech’s Center for Unit Load Design in order to further understand 

the load bridging phenomenon. White (1999) tested a series of different loading configurations 

and various load stabilizers. He used plywood to simulate four pallets, each with a different 

stiffness, to determine the effect on load bridging in racked support conditions (White et al., 1999). 

The loads were selected to emulate different levels of load bridging. The loads used in this study 

included an airbag as a control (no load bridging), cinderblocks, sacks, cases, 5 gallon pails, and 

55 gallon drums. The effect of load stabilizers was examined for all loading conditions except 

cinderblocks and included stretch tape, an interlocked stacking pattern, pallet sheets, stretch wrap, 

adhesive, and strapping. This study identified several factors which influence the extent of load 
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bridging including the shape and stiffness of the packages, the type of load stabilizer used and its 

applied containment force, the stacking pattern, pallet stiffness, and unit load handling overtime. 

Although several factors were identified, many variables such as the containment force of the load 

stabilizers and the stiffness of the packages, were not controlled in any quantitative manner.   

Yoo (2011) furthered the understanding of load bridging by creating a model using beam 

theory on an elastic foundation. Yoo (2011) looked at the stress distribution between the boxes 

and simulated pallet deckboards. Two different deckboard thicknesses, each with its own stiffness, 

were used to create simulated pallet segments, and three different loads were used (boxes of 

bottles, boxes of flour, and empty boxes) to represent variations in the packaging stiffness. Yoo 

(2011) concluded that stresses are non-uniformly distributed across pallets with stresses being 

higher near the supports and decreasing towards the middle of the spans. This same trend identified 

by Collie (1984) and Fagan (1982), of load bridging decreasing with pallet stiffness was also 

observed by Yoo (2011). It was also determined that packaging stiffness had an effect on the 

pressure distribution between boxes and pallets, although it has a minor role compared to pallet 

stiffness.  

Park (2015) looked at the effect of box size and flute type on load bridging. Three different 

stiffness pallet segments and three different size boxes were used for testing. For the small boxes, 

the effect of flute type was investigated by comparing E-flute, B-flute, and BC-flute corrugated 

boxes. Park (2015) concluded that both box size and flute type had a significant effect on deflection 

and ultimately on load bridging. As box size increased, load bridging increased; hence, it reduced 

the unit load deflection.  There was a 70% reduction in unit load deflection observed for all pallet 

stiffnesses, and up to a 76% reduction for low stiffness pallets was shown by switching from the 

uniform loading of an airbag to the discrete loading of large boxes. There was no significant 

difference in the deflection experienced by using B-flute versus BC-flute corrugated; however, 

switching to E-flute corrugated resulted in a reduction of unit load deflection between 19%-23% 

depending on pallet stiffness.  

Park (2015) also investigated the effect of stretch wrap containment force on load bridging 

during warehouse racking support conditions. The experiment consisted of two different 

thicknesses of plywood to simulate different pallet stiffnesses, three levels of containment force (0 

lbs., 30 lbs., and 60 lbs.), and three different package sizes. A pressure mat was used to determine 
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the stress distribution. Deflection measurements were recorded and compared to those obtained 

from uniform loading with an airbag. Stretch wrap containment force had a significant effect on 

unit load deflection for small and medium boxes, but it had much less of an effect for large boxes 

due to the large amount of load bridging already occurring. Up to an 81% reduction in unit load 

deflection was observed by increasing the containment force from 0 lbs. to 60 lbs. for small boxes. 

This was also verified with the pressure mat, which showed a redistribution of pressure away from 

the center and towards the edges as containment force increased.  

Phanthanousy (2017) conducted an experiment to understand how load bridging was 

affected by the contents of the packages. Three different box sizes (small, medium, and large) were 

examined along with three pallet segments, each with a different stiffness. The packages were 

filled with either OSB boxes, manufactured to the inside box dimensions, an OSB board with 

chamfered edges and a metal weight in the center, or wood pellets to represent a rigid, semi-rigid, 

or flexible package, respectively. The weight of each box size varied in order to keep the unit load 

weight consistent throughout testing. Phanthanousy (2017) established that package rigidity has 

no effect on load bridging across multiple box sizes and pallet stiffnesses. It was also determined 

that box size plays an important role in how the unit load is able to bridge the gap and different 

box sizes achieve load bridging through different mechanical means.  

Molina (2017) studied the effect of stacking patterns on load bridging for stringer class 

pallets. The experiment consisted of a low, medium, and high stiffness pallet each tested with five 

different stacking patterns and across varying support conditions. The five stacking patterns 

included column stacking and two different stacking patterns each with a medium and high level 

of interlocking. The support conditions included floor stacking, warehouse racking across the 

width (RAW), warehouse racking across the length (RAL), and racked across the width fork tine 

support. Molina (2017) concluded that using any of the interlocked stacking patterns reduces unit 

load deflection especially when compared to column stacking support conditions where the pallet 

deflection was large enough to exhibit the effect. A pictorial example of how stacking pattern can 

affect unit load deflection is shown in Figure 12. The interlocked stacking pattern only presented 

a difference in deflection for low stiffness pallets under the RAW support condition. A load to 

stiffness ratio was created. It was identified that for high stiffness pallets with a low applied load, 
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the effect of load bridging disappears. It is impractical to consider this effect when designing a unit 

load.  

 
Figure 12: Example of effect of interlock stacking on pallet 

deflection (adapted from CABKA Group, 2019) 

Clayton (2018) was the first to examine the effect of box size and headspace for stringer 

class pallets across multiple common support conditions using an actual unit load. For this 

experiment, three different pallet stiffness levels, two box headspace levels (25.4 mm and 0 mm), 

and three different box sizes were used (small, medium, and large). Clayton (2018) concluded that 

box size plays a significant role in the degree of load bridging for pallets racked across the width, 

with deflection decreasing as box size increases. For pallets racked across the length, the effect of 

box size on load bridging was only present for low and medium stiffness pallets. Under fork tine 

support conditions (both racked across the width fork tine and racked across the length fork tine) 

no load bridging was observed due to the very small deflection under this support condition. This 

data was used to create a finite element model used in the pallet design software PDS. 

Measurement methods were adopted from Clayton (2018), and they included methods of 

measuring pallet deflection and the pressure distribution across the top surface of the pallet. 

Other factors known to affect load bridging include unit load height and the coefficient of 

friction between the components in a unit load; although, little research has been done to 

understand these factors in a quantitative manner. Park (2015) began to investigate the effect of 

unit load height on load bridging, in a preliminary study, he conducted as part of his dissertation. 

Park (2015) used a single box size as he constructed unit loads ranging from one to five layers in 
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height. Plywood was used to simulate a pallet but only one thickness of plywood was used to 

represent a single pallet stiffness. The simulated pallet had 240 pounds evenly distributed between 

the given layers. It was determined that, as the unit load height increased, deflection decreased, 

and up to a 75% reduction in deflection can be observed by switching from one layer to five layers. 

Although the concept of load bridging has been investigated by researching several 

different factors that were expected to influence pallet deflection, all research so far has focused 

around stringer class pallets. No research has been conducted to understand which factors affect 

load bridging for block class pallets. Investigating the load bridging phenomenon for block class 

pallets will give the packaging industry a more complete understanding of the factors to consider 

in unit load design. Once load bridging is fully understood, pallets can be designed for specific 

scenarios encountered throughout distribution. Ultimately, material costs can be reduced while 

maintaining desired performance ratings.  

4. MATERIALS 

4.1.   CORRUGATED BOXES 

Regular slotted container (RSC) style corrugated boxes were used for this study. All boxes 

were production grade boxes manufactured by Packaging Corporation of America (PCA) in 

Roanoke, Virginia. The boxes were shipped flat with the industry standard manufacturers joint and 

constructed using C-Flute, single wall corrugated board with a nominal 44 lbs./inch Edge Crush 

Test (ECT) strength rating. Four sizes of boxes were manufactured. The inside dimensions and the 

type of corrugated board used for each box size is shown in Table 6. 

Table 6: The specifications of the corrugated boxes used for the study. 

Box Size 

Inside Dimensions (in.) 
Corrugated 

Board 

Filled Box 

Weight 

(lbs.) 
Length Width Height 

Small 11 9/16 9 9/16 11 ¼ C - flute 21.3  

Medium 15 9/16 12 11/16 11 ¼ C - flute 38.3  

Large 11 9/16 19 9/16 11 ¼ C – flute 44.4 
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4.1.1. Construction of the Boxes 

The box was first inserted into the 90° corner jig to help with alignment and ensure 

squareness. The bottom flaps were secured using hot melt glue (3M 3762 TC) by applying three 

parallel lines of glue on each small flap under each large flap. An example of the gluing pattern 

used on the bottom of the boxes is shown in Figure 13. A plywood board (PureBond ¾ inch Maple 

Plywood) was placed on the bottom of the corrugated box while the remaining space was filled 

using wooden boards with nominal 2 x 4, 4 x 4, 2 x 2 dimensions, random thicknesses of plywood, 

and corrugated inserts all cut to leave 0.75 inches of headspace. For the corrugated box designs 

without any headspace, two sheets of B/C-flute and two sheets of E-flute corrugated board inserts 

were used to fill the gaps. Standard 1.88 inch packaging tape from Staples was used to close the 

top flaps. The boxes were filled and then weighed using a floor scale (Arlyn Scales: model number 

MKE-5). The box weights ranged from 19.6 lbs. -23.2 lbs., 37 lbs. – 39.4 lbs., and 42 lbs. – 46.8 

lbs. for small, medium and large boxes respectively. Boxes were organized in such a way as to 

ensure that each column had the same weight and applied an even and symmetric load across the 

pallet. 

  

4.2.   PALLETS 

Five unique full four-way, block class, non-reversible, 48 inch x 40 inch pallet designs 

were tested. One pallet was constructed of ½ inch polycarbonate boards (Makrolon® General 

Purpose by Covestro) and four of the pallets were constructed of plywood boards (Baltic Birch, 

Grade B) with between 7-13 plies depending on component thickness. All boards were held 

together by a variety of #6 and #8 screws, depending on the component thickness and location of 

Figure 13: Gluing pattern for bottom of boxes 
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connection. Screws in line with blocks varied from 3.5 inches to 4 inches in length, while all other 

screws varied from 0.75 inches to 1.25 inches long. Adhesive was also used to secure pallet 

components together and to avoid any loosening of the connections. The adhesive used for the 

polycarbonate pallet was Weld On 16 manufactured by SciGrip Smarter Adhesive Solutions, as it 

was recommended for polycarbonate materials. The adhesive used for wooden pallets was 

Titebond III Ultimate Wood Glue. 

The top deck boards for each pallet consisted of two lead deck boards (one on each end) 

along with five interior deck boards. The lead deck boards were 5.5 inches wide and the interior 

deck boards were 4 inches wide. All top deck boards were 40 inches long. Three stringer boards 

were used for each pallet design. The stringer boards were 4 inches wide and 48 inches long. All 

blocks were made by laminating sheets of 0.625-inch plywood together and sanding in order to 

reach 3.5 inches in height. All blocks had a width of 4 inches in order to fully support the stringer 

boards. The length of the blocks along the width sides of the pallet (6 blocks total: 4 corners and 

2 side blocks along the width) was 5.5 inches to fully support the 5.5 inch wide lead deckboards 

while the remaining blocks (3 blocks total: 2 side blocks along the length and the center block) 

were 4 inches long.  

Four pallet designs were constructed with a perimeter base using five 4-inch-wide bottom 

deck boards. The fifth pallet design was constructed with a unidirectional base using three 4 inches 

wide parallel bottom deck boards. An example of both the perimeter base design and the 

unidirectional base design used for testing are shown in Figure 14. The top deckboard, stringer 

board, and bottom deckboard thicknesses were manipulated to create different pallet stiffnesses. 

The pallet stiffness, component thicknesses, pallet base designs, and the materials used to construct 

the pallet for each of the five designs tested are presented in Table 7. 
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Table 7: Pallet designs by stiffness, component thickness, base design, and pallet material 

Pallet 

Stiffness 

Top Deck board 

Thickness (in.) 

Other Boards 

Thickness (in.) 
Base Design Pallet Material 

Very Low 0.5 0.5 Perimeter Polycarbonate 

Low 0.375 0.5 Perimeter Plywood 

Medium  0.5 0.5 Perimeter Plywood 

Medium 0.5 0.5 Unidirectional Plywood 

High 0.625 0.625 Perimeter Plywood 

4.2.1. MOE of Pallet Components 

Before pallet assembly, the modulus of elasticity (MOE) for each pallet component was 

determined by using ASTM D3043-17: Standard Test Methods for Structural Panels in Flexure 

(2017b) (data in appendix A.1). A universal testing machine (MTS model number 244.31) with a 

5,000lb load cell (model number 661.20E-01) was used to measure the load displacement curve. 

The boards were supported by two roller bearing supports spaced 44 inches apart for stringer 

boards and 36 inches apart for all other boards.  The deflection was measured mid-span along the 

neutral axis using a linear variable differential transducer (LVDT) (Range of 2 inches and 

sensitivity of 0.0001 inches) secured to a wooden yoke. The yoke was supported on two wood 

screws positioned directly over the roller bearing supports (2 inches from either end). The load 

rate varied as the component thickness changed, and it was calculated using ASTM D3043-17 

(2017b) (see appendix A.2). The load rate was calculated in order to reach the maximum load in a 

comparable time regardless of component thickness or length.  The pallet components were sorted 

Figure 14: A) Perimeter Base Design  B) Unidirectional Base Design 

A)   B) 
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based on their measured MOE and each pallet was assembled to make sure that the performance 

of the pallet was symmetrical to its axes.  

To measure the stiffness of the assembled pallet, the guidelines of ASTM D1185-98a 

(2017a) were followed during testing. The pallets were tested before and after data collection (data 

in appendix A.3), in a Tinius Olsen compression tester equipped with four 10,000 lb. load cells. 

Metal beams were used to simulate the investigated support conditions and a flexible airbag was 

used to apply the load. The pallets were loaded with 700 lbs. in 2 minutes. The deflection of the 

pallets was measured using string potentiometers (Model: P510-5-S10-N0S-30K) with a range of 

5 inches and a sensitivity of ±0.30%.  

4.3. UNIT LOADS 

To build a unit load, the pallet was placed on the floor and a rubber mat was placed on top 

in the front right corner of the pallet. The rubber mat was used to help reduce any small errors or 

screw holes created during pallet construction from becoming pressure points on the pressure mat. 

Next, a pressure mat inside a plastic sleeve was aligned with the front right corner of the pallet (on 

top of the rubber mat). The pressure mat was used to determine the pressure distribution between 

various pallet and box interactions. The pressure mat used for this experiment was model number 

7202 manufactured by Tekscan™ (specs in appendix A.4). The pressure mat was composed of 

sensels measuring 0.14 inches by 0.14 inches and arranged into 99 rows and 88 columns. The 

plastic for the sleeve was 0.0275-inch-thick polyethylene terephthalate (PET). I-Scan software 

(Tekscan™) was used to process the results. An external power supply was used to reduce 

extraneous noise in the pressure mat readings. The handle of the pressure mat was also grounded 

to reduce the noise experienced by the system. The pressure measurements were conducted using 

a sensitivity setting of S34.  

The layout of the unit loads varied with the box sizes: small boxes (4 x 4 array), medium 

boxes (3 x 3 array), large boxes (4 x 2 array). All unit loads were constructed three layers tall. 

Small, medium, and large unit loads weighed around 1,013 lbs., 1,030 lbs., and 1,067 lbs. 

respectively. The amount of under-hang around the perimeter of the pallet ranged from 0 inches 

to 0.5 inches. The amount of under-hang was adjusted, so it was evenly distributed across the front, 

back, left, and right.  
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The unit load was then stretch wrapped to reduce any movement of the boxes while 

transporting the unit load from one support condition to the next. The stretch film used was 

purchased from U-line and was model number S-1524. The thickness of the film was 80 gauge, 

and the film width was 20 inches. It was made from linear low-density polyethylene (LLDPE). 

The stretch wrapper used was the Highlight Synergy 4. The containment force of the applied 

stretch wrap was 12 lbs measured using a Highlight Film Force Pull Kit (PTC-919) based on the 

guidelines of ASTM D4649-03: Standard Guide for Selection and Use of Stretch Wrap Films 

(2016b). The film was pre-stretched 200% before application and three top and three bottom layers 

were applied with a 40% overlap in the middle. The film force multiplier was set at 125% which 

resulted in a final film force of 43.5%. The carriage speed was set at 15% while the turntable speed 

was 6rpm. The stretch wrap did not overlap the pallet as this would have interfered with the 

pressure mat and sleeve. However, a stretch film overlap was applied on the top of the unit load 

ranging between 0.75 inches and 1.25 inches depending on box alignment.   

5. METHODS 

The test sequence included moving a wrapped unit load through a cycle of four support 

conditions including warehouse racking across the width (RAW), warehouse racking across the 

length (RAL), single stacked floor storage, and double stacked floor storage. Deflection 

measurements and pressure mat readings were taken for each support condition. After the cycle, 

the unit load was taken apart and rebuilt using the same corrugated boxes. The cycle was repeated 

a total of three times.  

5.1. ZERO MEASUREMENTS 

Before and after each of the three cycles, zero measurements were taken for all support 

conditions. For the RAW and RAL support conditions, an empty pallet was placed on the 

appropriate support platform, and a 50 lb. weight was placed on each of the four corners of the 

pallet to reduce any bow or warp. For the floor stacking support condition, a pallet was placed on 

a level surface without any weights. To take the bottom deck board zero measurements for the top 

pallet in a double stacked condition, a unit load was first built and then a pallet was placed on top 

of the unit load. For all support conditions, deflection measurements were then taken at the 

appropriate locations and recorded as the zero measurements. 
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5.2. WAREHOUSE RACKING ACROSS THE WIDTH AND LENGTH  

The warehouse racking across the width and length support condition were set up according 

to ASTM D1185 (2017a). Two solid steel bars which measured 2 inches x 2 inches x 60 inches 

were spaced to simulate a warehouse racking support condition. A picture of the warehouse 

racking across the width support condition is shown in Error! Reference source not found.A. 

The inside to inside span of the bars was 36 inches for the RAW support condition (stringer boards 

parallel to supports) and 44 inches for the RAL support condition (stringer boards perpendicular 

to the supports). In both cases, the edges of the pallet were flush and square with the supports. A 

measurement jig, including a digital dial gauge (Mitutoyo C1050CEXB), was inserted under the 

pallet for both support conditions, and deflection measurements were taken at the appropriate 

locations.  The locations of the deflection measurements for RAW (red and purple) and RAL (blue 

and purple) support conditions are shown in Figure 15B. After the deflection measurements were 

recorded, a pressure mat reading for that support condition was taken. 

  

Figure 15: A) Example of warehouse racked across the width (RAW) support condition used 

during testing B) Measurement locations for warehouse racking across the width (red and purple) 

and warehouse racking across the length (blue and purple) 

5.3. SINGLE STACKED AND DOUBLE STACKED FLOOR SUPPORT 

For single stacked floor support, the unit load was placed on the floor. The deflection of 

the top deckboards were measured at six locations using a custom jig equipped with an analog dial 

gauge (Mitutoyo 2416S). The locations of these six deflection measurements taken in the front 

  A)   B) 
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right of the pallet are shown in Figure 16A; four top deck board deflections (red) and two stringer 

board deflections (blue). After these were recorded, a pressure mat reading was taken. 

For double stack floor support condition, a rubber mat and the TekScan 7202 pressure mat 

was placed to the front right corner on top of the bottom unit load. A unit load was constructed of 

the same size boxes and placed on the top of the pressure mat. Once the second, identical unit load 

was correctly aligned on top of the first unit load, deflection measurements were taken. This 

includes the same six deflection measurements taken for single stacked floor support condition 

along with an additional three bottom deck board measurements on the pallet in the second unit 

load as shown in Figure 16B. Then, two pressure mat readings are captured; one from the bottom 

unit load and one from the top unit load. 

  

5.4. HEADSPACE TESTING 

Additional testing was conducted using individual boxes in order to evaluate the effect of 

headspace. Boxes were constructed and filled in a manner consistent with unit load testing. Before 

testing, boxes were conditioned for a minimum of 72 hours at 23°C and 50% relative humidity in 

accordance with TAPPI T 402: Standard Condition and Testing Atmospheres for Paper, Board, 

Pulp Handsheets, and Related Products (2013). Five replicates for each combination of box size 

and headspace condition were conducted in a conditioned environment using a Lansmont 

Compression Tester (model Squeezer) using a 5,000 lbs. load cell. The loading rate was 0.5 inches 

Figure 16: A) Top deckboard measurement locations for single stacked and double 

stacked support condition B) Bottom deckboard measurement locations for top pallet 

in a double stacked support condition 

  A)   B) 
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per minute. Boxes were loaded until failure or greater than 1000 lbs was reached. Load-

deformation curves along with pressure mat images were recorded for analysis. 

5.5. EXPERIMENTAL DESIGN  

Table 8: Experimental design for each of the four support conditions 

Pallet Design Box Size Headspace Replicates 

Very Low Stiffness – 

Perimeter Base 

Small 
0.75" 

Headspace 

3 

Medium 3 

Large 3 

Medium No Headspace 3 

Low Stiffness – 

Perimeter Base 

Small 
0.75" 

Headspace 

3 

Medium 3 

Large 3 

Medium No Headspace 3 

Medium Stiffness – 

Perimeter Base 

Small 
0.75" 

Headspace 

3 

Medium 3 

Large 3 

Medium No Headspace 3 

High Stiffness – 

Perimeter Base 

Small 0.75" 

Headspace 

3 

Medium 3 

Medium No Headspace 3 

Medium Stiffness – 

Unidirectional Base 

Small 0.75" 

Headspace 

3 

Medium 3 

Medium No Headspace 3 

 

 This experimental design included four different support conditions, five different pallet 

stiffnesses, two headspace treatments, and three box sizes (Table 8). Only the medium boxes were 

tested using the no headspace condition while all other box sizes were tested using 0.75 inches of 

headspace. Three replicate tests were conducted for each treatment level. During the repetitions, 

the same boxes were restacked to simulate variations due to box positioning. The order of support 

conditions remained the same and was repeated in a pattern called a cycle. The cycle for this 

research included testing the support conditions in the following order: warehouse racking across 

the width (RAW), warehouse racking across the length (RAL), single stack, and double stack.  
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5.6. STATISTICAL ANALYSIS 

Statistics were analyzed with the aid of the statistical analysis software, JMP. Several 

different Type III analysis of variance (ANOVA) models were created in an effort to analyze all 

aspects of the data collected. All models were checked to make sure the assumptions of 

homoscedasticity and normality were met. First, models were created to examine if the presence 

of 0.75 inches of headspace compared to no headspace had any effect on pallet deflection for 

medium boxes given different combinations of support conditions and measurement locations. 

Next, Type III ANOVA models were created to examine the effect of pallet stiffness, box size, 

and the interaction between the two for boxes with headspace across all combinations of support 

conditions and measurement locations. Finally, ANOVA models were created to determine if there 

was any effect from base design on pallet deflection. For all models, a post-hoc multiple 

comparison was made using Tukey’s Honest Significant Difference test at alpha level 0.05 to 

determine individual differences among box sizes for any given pallet stiffness.  

5.7. ASSUMPTIONS  
 

5.7.1. The levels of friction present between different layers, between the sides of boxes in 

a given layer, and between the bottom layer of boxes and the pressure mat sleeve are 

considered to be consistent across all box sizes due to the consistent nature of the 

corrugated board used to manufacture the boxes 

5.7.2. Different pallet stiffnesses were achieved by changing the thickness of various 

components including the top deckboards, the stringer boards, and the bottom 

deckboards 

5.7.3. The screw fasteners used for pallet construction are less likely to experience 

withdrawal (compared to nails); therefore, with the addition of an adhesive, will be 

better suited for maintaining pallet stiffness throughout the duration of the 

experiment. 

5.7.4. The number of layers was fixed at 3 because most unit loads are not taller than 50 

inches to allow double stacking in a trailer 

5.7.5. The level of containment force was fixed at 12 lbs. which represents the lowest 

amount of containment force that still results in a stable unit load. 
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5.7.6. The unit load weight was chosen in order to be able to safely evaluate large boxes 

given a double stacked support condition based on the box strength estimate 

calculated using the McKee equation and with a safety factor of 3.  

5.7.7. The filler material in the corrugated boxes was assumed to be rigid. The plywood 

board on the bottom of the boxes was added to restrict vertical movement of the 

boards and thus prevent shearing forces from occurring within the box.  

5.7.8. The corrugated boards that were used to fill the headspace for the no headspace 

scenario were assumed to stay rigid under the applied loading conditions.   

5.7.9. There was no effect on observed deflection caused by taking measurements for the 

various support conditions in the same order every time (in a cycle).  

6. RESULTS AND DISCUSSION 

For both warehouse racking across the width (RAW) and warehouse racking across the 

length (RAL), the center measurement location consistently experienced greater deflection than 

either of the end measurement locations. Previous studies have also concluded that the center of 

the pallet experiences the greatest deflection in warehouse racking support conditions (Fagan 1982, 

Park 2015). Since the load carrying capacity of a pallet is determined by the maximum deflection, 

analysis of warehouse racking support conditions in this paper will focus only on center 

deflections. For the single and double stacked floor support conditions, several different 

comparisons were made. The top deckboard deflection measurements were analyzed separately 

from the stringer board deflection measurements. In both cases, the worst deflection was reported 

and considered for analysis.  In addition to the top deckboard and the stringer board deflection 

measurements, bottom deckboard deflection measurements were analyzed across the width and 

across the length for the top pallet in all double stacked floor support conditions.   

Initially, the effect of headspace for medium boxes was investigated for each combination 

of support locations and measurement locations. This was done by conducting an analysis of 

variance (ANOVA) test on medium boxes for each group to be analyzed. Additional testing was 

conducted using small and large boxes in order to understand differences in the effect of headspace 

for the various support conditions exhibited during initial analysis. Next, each combination of 

support condition and measurement location was examined through additional ANOVA models in 
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order to determine the effect of pallet stiffness, box size, and the interaction between the two on 

pallet deflection. Finally, a comparison between two medium stiffness pallets (one with a perimeter 

base and one with a unidirectional base), was examined in all applicable support conditions. No 

comparisons of the base designs were made for the warehouse racked across the width (RAW) 

since the unidirectional base design was never tested in this support condition.  

6.1. HEADSPACE VERSUS NO HEADSPACE 

The effect of 0.75 inches of headspace versus no headspace on pallet deflection for medium 

boxes sized was investigated using an analysis of variance (ANOVA) test for each combination of 

support condition and measurement location investigated. The results of the ANOVA effects tests 

for the headspace main effect and the interaction between pallet stiffness and headspace are shown 

in Table 9. The effect of headspace on deflection for pallets under the two racking support 

conditions (RAW or RAL) was not significant. This was also true for the bending of top 

deckboards and stringer boards of pallets in a single stacked condition and the length side of the 

bottom deckboards of the top pallet during the double stacked condition. However, the effect of 

headspace was determined to be statistically significant for other pallet components investigated 

in the double stacked floor support condition. This includes top deckboards and stringer boards for 

the bottom pallet and the width side bottom deckboard of the top pallet.   
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Table 9: Analysis of variance (ANOVA) based on maximum pallet deflection across multiple 

support conditions.  

Support 

Condition 
Components 

P-values 

Headspace 
Pallet Stiffness 

* Headspace 

Racked Across the 

Width (RAW) 
- 0.3109 0.8878 

Racked Across the 

Length (RAL) 
- 0.3987 0.6689 

Single Stacked 
Top deckboards 0.1218 0.0037* 

Stringer boards 0.9163 0.2725 

Double Stacked 

Top deckboards 0.0000* 0.0198* 

Stringer boards 0.0031* 0.1282 

Second Pallet – Width 

Bottom Deckboards 
0.0144* 0.0916 

Second Pallet – Length 

Bottom Deckboards 
0.37268 0.43825 

Note: p-values less than 0.05 indicate a statistically significant main or interaction effect and 

were marked with *. 

The interaction of pallet stiffness and the headspace condition was shown to be statistically 

significant for top deckboards in both single stacked and double stacked scenarios. The Tukey 

HSD comparisons of headspace for worst top deckboard deflections are given for each pallet 

stiffness in Table 10. For pallets in the single stacked scenario, only the high stiffness pallet showed 

a difference between headspace and no headspace. For pallets in the double stacked scenario a 

statistical difference was observed for both the very low stiffness pallet and the high stiffness 

pallet.  

 

 

 

 

 

 

 



51 

 

Table 10: Worst single stacked and double stacked top deckboard deflection measurements for 

0.75 inches of headspace and no headspace along with a p-value to represent probability of 

being statistically different 

Pallet Stiffness 

Single Stacked Double Stacked 

Headspace 

(in.) 

No Headspace 

(in.) 
P-value 

Headspace 

(in.) 

No Headspace 

(in.) 
P-value 

Very Low 0.046 0.056 0.8537 0.087 0.068 0.0095* 

Low 0.031 0.020 0.8749 0.042 0.031 0.2802 

Medium-

Perimeter 
0.018 0.012 0.8537 0.031 0.021 0.4392 

High 0.030 0.008 0.0285* 0.035 0.014 0.0017* 

Medium-

Unidirectional 
0.026 0.037 0.7802 0.038 0.037 1.0000 

Note: p-values less than 0.05 indicate a statistically significant difference between headspace 

and no headspace for a given support condition and pallet stiffness and were marked with *. 

In order to further understand the differences between the behavior of the boxes with 0.75 

inches of headspace and no headspace in single and double stacked scenarios, additional testing 

was conducted. Pressure mat images for small and large boxes with and without headspace under 

single stacked and double stacked loads are displayed in Figure 17 and Figure 18. The images were 

captured at a load corresponding to that experienced for a single unit load (~42 lbs. for small and 

~89 lbs. for large boxes) and a double stacked unit load (~87 lbs. for small and ~183 lbs. for large 

boxes). Visually comparing the images, no obvious effect of headspace is apparent at the 

experimental weights used for unit load construction. However, a difference between the double 

stacked images of large boxes with and without headspace starts to display some signs of increased 

pressure distribution through the length side walls.   
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Figure 17:Small box pressure mat data comparison for A) Single stacked boxes with headspace 

B) Single stacked boxes without headspace C) Double stacked boxes with headspace D) Double 

stacked boxes without headspace 

 

Figure 18: Large box pressure mat data comparison for A) Single stacked boxes with headspace 

B) Single stacked boxes without headspace C) Double stacked boxes with headspace D) Double 

stacked boxes without headspace 

The average load-deformation curves for small and large boxes with and without headspace 

are shown in Figure 19 and Figure 20. The load deformation curve of the boxes with and without 

headspace start to divert after 200 lbs. for small boxes and after 175 lbs. for large boxes. Since the 

compression load on the boxes during the investigated single stack and double stack conditions 

were well below the point when the load-deformation curves started do deviate from each other, 

no difference in box performance should be expected.  

A B 

Large Boxes – Single Stack 

C D 

Large Boxes – Double Stack 
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Figure 19: Load-deformation curve for small boxes with 0.75 inches of headspace and without 

headspace. 

 

 
Figure 20: Load-deformation curves for large boxes with 0.75 inches of headspace and without 

headspace 
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In order to observe a difference between small boxes with and without headspace, over 200 

lbs. of force must be experienced by each of the sixteen bottom boxes in a single unit load. 

Including the weight of the bottom layer of boxes, this equates to a unit load payload of over 3,500 

lbs. Since general use pallets are typically designed to carry a maximum working load of 2,800 

lbs. (Cleveland Consulting Associates, 1990), the effect of headspace for small boxes on the 

pressure distribution and the deflection of a pallet during warehouse racking conditions and single 

stacked conditions is not significant. However, as the number of unit loads in a stack increases, 

the combined weight must be considered when determining if headspace will have an effect.  

The pressure distribution using large boxes during warehouse racking conditions and single 

stacking conditions is not affected by the presence of headspace for unit load weights below 

1,750lbs. For this experiment, unit load weights did not exceed 1,100 lbs. and consequently no 

effect from headspace was observed for pallets in warehouse racking conditions or single stacked 

conditions. Meanwhile, the double stacked scenario applied almost 2,200 lbs. of pressure to the 

bottom pallet and thus began to present a difference between large boxes with 0.75 inches of 

headspace compared to large boxes with no headspace. This means that the effect of headspace 

might be significant at the common load levels used on general use pallets, therefore, more 

investigation is needed. 

In general, it appears that the effect of headspace is a function of box size. This effect can 

be attributed to the difference in box geometry between small and large boxes. The minor flaps on 

a small box measured 4 7/8 inches each while the minor flaps on a large box measure 5 7/8 inches 

each. This means that the minor flaps of a small box support 84% of the major flaps while the 

minor flaps of a large box only support 60% of the major flaps. An image representing this concept 

is shown in Figure 21. This difference results in the major flaps of a large box being supported by 

a longer span when compared to the major flaps of a small box. The longer span of the major flaps 

created by the box geometry of a large box is able to bend more than the shorter span of the major 

flaps in a small box; therefore, they exhibit a difference between headspace and no headspace at a 

lower weight. However, additional research should be done in order to understand this 

phenomenon further.  
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Figure 21: Support provided to major flaps by minor flaps for small and large boxes 

6.2. WAREHOUSE RACKING ACROSS THE WIDTH (RAW) 

6.2.1. Deflection 

  An analysis of variance (ANOVA) test was carried out to determine the effects of box size, 

pallet stiffness, and the interaction between them for pallets in the warehouse racking across the 

width (RAW) support condition. The ANOVA table is shown in Table 11 and the results of the 

effects tests are shown in Table 12. Both pallet stiffness and box size were determined to have 

statistically significant effects on the deflection of pallets in the RAW support condition. The 

interaction between pallet stiffness and box size was also concluded to be statistically significant. 

This means that the effect of box size on pallet deflection is dependent on pallet stiffness. An 

interaction plot is shown in Figure 22. It appears that as pallet stiffness increases, there is less of a 

difference in deflection between the various box sizes; This implies that load bridging has a greater 

effect on lower stiffness pallets.  

 

Table 11: Analysis of variance (ANOVA) table for warehouse racking across the width model 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.27866666 0.027867 151.2873 

Error 22 0.00405233 0.000184 Prob > F 

C. Total 32 0.28271900  <.0001* 

 

Table 12: Analysis of variance (ANOVA) effects tests for warehouse racking across the width 

model 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet Stiffness 3 2 0.13906030 377.4772 <.0001* 

Box Size 2 1 0.00571959 31.0515 <.0001* 

Pallet:Box Size 6 5 0.02274098 24.6920 <.0001* 

 

Major flaps 

Minor 

flaps 

Small Boxes Large Boxes 
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Figure 22: The effect of pallet stiffness on the pallet deflection as a function of box size for the 

warehouse racking across the width support condition. 

Average center deflection for pallets in the warehouse racking across the width (RAW) 

support condition are shown in Table 13 and represented graphically in Figure 23. It was 

determined that deflection was significantly affected by a change from small boxes to large boxes, 

regardless of pallet stiffness. The largest reduction in deflection was 50%, and it was achieved by 

changing from small boxes to large boxes on the very low stiffness pallet. This is consistent with 

previous research which has shown that the effect of load bridging is most pronounced for lower 

stiffness pallets (Fagan 1982, Collie 1984, Yoo 2011, Park 2015). 

Table 13: Average pallet center deflection and the percent difference in reference to the small 

boxes during the warehouse racking across the width support condition using boxes with 

headspace. 

Box 

Size 

Pallet Deflection (in.) 

Very Low Low Medium High 

Small 
0.4018 

A  
0.2490 

A 
 

 

0.1866 
A 

 

 

0.1529 
A 

 

 (0.0161) (0.0038) (0.0169) (0.0106) 

Medium 
0.3790 

A -6% 
0.2126 

A -15% 
0.1581 

A/B -15% 
0.1171 

A -23% 
(0.0264) (0.0155) (0.0095) (0.0085) 

Large 
0.2021 

B -50% 
0.1413 

B -43% 
0.1314 

B -30%    
(0.0023) (0.0141) (0.0070) 

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

Small Boxes Medium Boxes Large Boxes

P
al

le
t 
D

ef
le

ct
io

n
 (

in
.)

Box Size

Very Low Low Medium High



57 

 

 

Figure 23:Average pallet center deflection during the warehouse racking across the width 

support condition using boxes with 0.75 in. headspace. The whiskers represent standard 

deviation. 

6.2.2. Pressure Mat 

In order to understand how the pressure distribution displayed in a two-dimensional array 

interacted with a pallet in the warehouse racking across the width (RAW) support condition, 

further analysis was conducted. The steps of analyzing the pressure mat data are shown in Figure 

24. First, the pressure mat image of a half pallet was mirrored to create a whole pallet. Then, the 

two-dimensional array of sensels was summed across the rows parallel to the supports to create a 

one-dimensional array which could be graphed according to distance across the pallet (in inches). 

Finally, point loads were assumed to occur at the edges of each box. The principle of tributary area 

was used to assign half of a given box’s pressure to each box edge. An example of the method 

used to assign tributary area to each point load for small boxes is shown in Figure 24 along with 

the point loads for medium and large boxes.  
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Figure 24: Visual  representation of steps used for warehouse racking 

across the width (RAW) pressure mat analysis 

The results of the pressure distributions based on the tributary areas assigned to each point 

load are shown in Table 14. The amount of pressure over the supports is represented graphically 

in Figure 25. When looking at the change in box size given a specific pallet stiffness, it is clear 

Mirror pressure mat image 

Small Box Point Loads 

P1 P2 P3 P4 P5 

Medium Box Point Loads 

Large Box Point Loads 

Summation across rows 
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that as box size increases, a higher percentage of pressure is distributed away from the center of 

the pallet and towards the supports. This effect is greatest on low stiffness pallets where a change 

from small boxes to large boxes resulted in a change from 54.48% of the pressure to 91.3% of the 

pressure being directly over the supports. All pressure that is directly over the supports does not 

affect pallet deflection. The redistribution of more pressure towards the supports due to increased 

box size, supports the reduction in pallet deflection as a function of increasing box size measured 

during the experiment. It is also evident that an increase in pallet stiffness, given a specific box 

size, causes a reduction in the amount of force transferred to the supports.  

Table 14: Pressure distribution for pallets supported in the warehouse racking across the width 

(RAW) based on tributary area assigned to point loads for small, medium, and large boxes 

across all levels of pallet stiffness 

Pressure distribution based on tributary area represented in percentages 

Pallet  

Stiffness 
Box Size P1 P2 P3 P4 P5 

Very Low 

Small 
27.24% 

(0.6%) 

22.32% 

(0.5%) 

0.88% 

(0.2%) 

22.32% 

(0.5%) 

27.24% 

(0.6%) 

Medium 
37.87% 

(1.7%) 

12.13% 

(1.7%) 
 

12.13% 

(1.7%) 

37.87% 

(1.7%) 

Large 
45.65% 

(0.7%) 
 

8.70% 

(0.7%) 
 

45.65% 

(0.7%) 

Low 

Small 
25.51% 

(0.4%) 

22.10% 

(0.6%) 

4.78% 

(0.1%) 

22.10% 

(0.6%) 

25.51% 

(0.4%) 

Medium 
36.05% 

(2.0%) 

13.95% 

(2.0%) 
 

13.95% 

(2.0%) 

36.05% 

(2.0%) 

Large 
41.67% 

(0.2%) 
 

16.66% 

(0.2%) 
 

41.67% 

(0.2%) 

Medium 

Small 
21.80% 

(0.5%) 

24.09% 

(0.7%) 

8.22% 

(0.7%) 

24.09% 

(0.7%) 

21.80% 

(0.5%) 

Medium 
32.25% 

(1.7%) 

17.75% 

(1.7%) 
 

17.75% 

(1.7%) 

32.25% 

(1.7%) 

Large 
39.35% 

(1.1%) 
 

21.3% 

(1.1%) 
 

39.35% 

(1.1%) 

High 

Small 
21.43% 

(1.0%) 

24.22% 

(0.4%) 

8.70% 

(1.4%) 

24.22% 

(0.4%) 

21.43% 

(1.0%) 

Medium 
31.45% 

(1.5%) 

18.55% 

(1.5%) 
 

18.55% 

(1.5%) 

31.45% 

(1.5%) 

Note: The values in parentheses are standard deviations.  
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Figure 25: Percentage of pressure directly over supports for pallets supported in the warehouse 

racking across the width (RAW) support condition for small, medium, and large boxes across all 

levels of pallet stiffness 

6.3. WAREHOUSE RACKING ACROSS THE LENGTH (RAL) 

6.3.1. Deflection 

The results for the warehouse racking across the length (RAL) analysis of variance 

(ANOVA) model are shown in Table 15, and the results of the effects tests are shown in Table 16.  

For pallets in the RAL support condition, box size did not show any statistically significant effect. 

This can be attributed to the number of boxes along the length of the pallet for each box size. As 

the box size changed from small to medium to large, the number of boxes along the length of the 

pallet changed from four to three to four. Due to the fact that the transitions in box sizes were not 

represented by a linear change in the number of boxes along the length of the unit load, the effect 

of box size on pallet deflection for pallets in the RAL support condition was of no statistical 

significance. The effect of pallet stiffness was found to be significant. Load bridging decreased as 

pallet stiffness increased. Pallet stiffness has also been shown to have a significant effect on pallet 

deflection by the previous researchers (Fagan 1982, Collie 1984, Yoo 2011, Park 2015, 

Phanthanousy 2017, Molina 2017, Clayton 2018). The interaction between pallet stiffness and box 

size was also concluded to be statistically significant. This means that the effect of box size on 

observed pallet deflection is dependent on the stiffness of the pallet.  Although, for RAW, a clear 
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reduction in the effect of box size was observed as a pallet stiffness increased, for RAL, the effect 

was more random in nature. An interaction plot of pallet stiffness and box size is shown in Figure 

26.   

 

Table 15: Analysis of variance (ANOVA) table for warehouse racking across the length model  

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.48965466 0.048965 313.4246 

Error 22 0.00343700 0.000156 Prob > F 

C. Total 32 0.49309166  <.0001* 
 

Table 16: Analysis of variance (ANOVA) effects tests for warehouse racking across the length 

model 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.39012236 1248.573 <.0001* 

Box Size 2 1 0.00023563 1.5082 0.2324 

Pallet*Box Size 6 5 0.00304523 3.8985 0.0111* 

 

 

 

Figure 26: The effect of pallet stiffness on the pallet deflection as a function of 

box size for the warehouse racking across the length support condition 
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Center deflection measurements for pallets in the warehouse racking across the length 

(RAL) support condition are shown in Table 17 and represented graphically in Figure 27. Low and 

medium stiffness pallets had similar deflection measurements due to the fact that both pallet 

designs used 0.5-inch-thick stringer boards. A change from small to large boxes was only 

statistically significant for the very low and low stiffness pallets. Since there are four boxes along 

the length of the pallet for both small and large boxes, the change in deflection observed for lower 

stiffness pallets indicates that the number of boxes along the width has an effect on the load 

bridging for pallets in the RAL support condition when pallet stiffness is low enough. The largest 

reduction in pallet deflection was 19%, and this was achieved by changing from small to large 

boxes on the low stiffness pallet. Although there were statistically significant effects from box size 

changes on pallet deflection for the very low and low stiffness pallets, all observed changes in 

deflection were less than 0.05 inches and of no importance for practical purposes.  

 

Table 17: Average pallet center deflection and the percent difference in reference to the small 

boxes during warehouse racking across the length support condition using boxes with 

headspace. 

Box 

Size 

Pallet Deflection (in.) 

Very Low Low Medium High 

Small 
0.4648 

A/B  
0.2280 

A  
0.2063 

A  
0.1610 

A  
(0.0083) (0.0072) (0.0099) (0.0035) 

Medium 
0.4834 

A 4% 
0.2072 

A/B -9% 
0.2004 

A -3% 
0.1439 

A -11% 
(0.0295) (0.0062) (0.0093) (0.0141) 

Large 
0.4288 

B -8% 
0.1849 

B -19% 
0.1975 

A -4%    
(0.0128) (0.0097) (0.0060) 

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 
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Figure 27: Average pallet center deflection during the warehouse racking across the width 

support condition using boxes with headspace. The whiskers represent standard deviation. 

6.3.2. Pressure Mat 

In order to understand how the pressure distribution displayed in the two-dimensional array 

interacted with the pallet in a warehouse racking across the length (RAL) support condition, further 

analysis was conducted. The steps of analyzing the pressure mat data are shown in Figure 28. A 

procedure similar to that which was used to analyze the warehouse racked across the width 

pressure mat data was employed. The pressure mat image of a half pallet was mirrored to create 

the whole pallet. Then, the two-dimensional array of sensels was summed across the rows parallel 

to the supports to create a one-dimensional array which could be graphed according to distance 

across the pallet (in inches). Finally, the forces across a given top deckboard were summed together 

to create a concentrated point load for each top deckboard. The concentrated top load was 

positioned to the center of the pallet’s top deckboard. This same procedure was used for all box 

sizes tested. 
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The results of pressure distribution based on the point loads assigned to each top deckboard 

are shown in Table 18. The percentage of pressure directly over the supports is represented 

graphically in Figure 29. A change from small to medium boxes caused an increase in the amount 

of pressure distributed to the supports, while a change from medium to large boxes resulted in a 

reduction of the pressure distributed to the supports. These trends are true regardless of the pallet 

stiffness, and are caused by the number of boxes along the length (small-4, medium-3, large-4). 

The largest change was observed by switching from small to medium boxes on the medium 

stiffness pallet. The pressure over the supports went from 58.30% to 70.44%. Pressure directly 

over the supports does not affect the deflection of the pallet. The redistribution of more pressure 

towards the supports due to increased box size (from small to medium), supports the reduction in 

pallet deflection as a function of increasing box size measured during the experiment. It is also 

Summation across rows 

Figure 28: Visual representation of steps used for warehouse 

racking across the length (RAL) pressure mat analysis 

Mirror Pressure Mat Image 



65 

 

evident that increased pallet stiffness given a specific box size causes a reduction in the amount of 

force transferred to the supports.  

Table 18: Pressure distribution based on point loads assigned to individual top deckboards for 

small, medium, and large boxes across all levels of pallet stiffness 

Pressure distribution of each top deckboard in a warehouse racked across the length 

support condition represented in percentages 

Pallet 

Stiffness 
Box Size P1 P2 P3 P4 P5 P6 P7 

Very 

Low 

Small 
33.35% 

(1.6%) 

16.49% 

(1.6%) 

0.13% 

(0.1%) 

0.06% 

(0.0%) 

0.13% 

(0.1%) 

16.49% 

(1.6%) 

33.35% 

(1.6%) 

Medium 
37.98% 

(1.4%) 

0.00% 

(0.0%) 

12.02% 

(1.4%) 

0.00% 

(0.0%) 

12.02% 

(1.4%) 

0.00% 

(0.0%) 

37.98% 

(1.4%) 

Large 
35.97% 

(1.0%) 

12.29% 

(1.2%) 

1.72% 

(0.3%) 

0.04% 

(0.0%) 

1.72% 

(0.3%) 

12.29% 

(1.2%) 

35.97% 

(1.0%) 

Low 

Small 
30.87% 

(1.7%) 

16.40% 

(1.6%) 

2.09% 

(0.1%) 

1.28% 

(0.0%) 

2.09% 

(0.1%) 

16.40% 

(1.6%) 

30.87% 

(1.7%) 

Medium 
34.65% 

(1.0%) 

3.19% 

(0.4%) 

12.16% 

(1.1%) 

0.00% 

(0.0%) 

12.16% 

(1.1%) 

3.19% 

(0.4%) 

34.65% 

(1.0%) 

Large 
32.55% 

(0.5%) 

9.95% 

(0.2%) 

7.04% 

(0.6%) 

0.92% 

(0.1%) 

7.04% 

(0.6%) 

9.95% 

(0.2%) 

32.55% 

(0.5%) 

Medium 

Small 
29.15% 

(1.4%) 

18.42% 

(1.1%) 

0.76% 

(0.3%) 

3.34% 

(0.7%) 

0.76% 

(0.3%) 

18.42% 

(1.1%) 

29.15% 

(1.4%) 

Medium 
35.22% 

(1.0%) 

2.50% 

(0.3%) 

12.28% 

(0.7%) 

0.00% 

(0.0%) 

12.28% 

(0.7%) 

2.50% 

(0.3%) 

35.22% 

(1.0%) 

Large 
33.24% 

(0.7%) 

9.02% 

(0.8%) 

7.23% 

(0.4%) 

1.02% 

(0.2%) 

7.23% 

(0.4%) 

9.02% 

(0.8%) 

33.24% 

(0.7%) 

High 

Small 
28.01% 

(1.5%) 

17.77% 

(1.4%) 

2.19% 

(0.2%) 

4.06% 

(0.3%) 

2.19% 

(0.2%) 

17.77% 

(1.4%) 

28.01% 

(1.5%) 

Medium 
32.50% 

(1.6%) 

2.51% 

(0.3%) 

14.99% 

(1.3%) 

0.00% 

(0.0%) 

14.99% 

(1.3%) 

2.51% 

(0.3%) 

32.50% 

(1.6%) 

Note: Values in parentheses are standard deviations 
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Figure 29: Percentage of pressure directly over supports for pallets supported in the warehouse 

racking across the length (RAL) support condition for small, medium, and large boxes across all 

levels of pallet stiffness 

6.4. STACKING FLOOR SUPPORT CONDITIONS 

As with the racking support conditions, all stacking support conditions were examined 

using analysis of variance (ANOVA) models to determine if box size and pallet stiffness had any 

significant effect on pallet deflection. The interactions between box size and pallet stiffness were 

also examined for all stacking models. Top deckboards were analyzed separately from stringer 

boards. For the top pallet in the double stacked condition, the analysis was split into bottom 

deckboards across the width and bottom deckboards across the length. Below is a detailed analysis 

of the various deflection measurement locations for all stacking support conditions. 

6.4.1. Top Deckboards 

Only the worst top deckboard measurements in each scenario were examined since pallet 

performance is governed by the worst top deckboard deflection. The worst top deckboard 

deflection measurements are given in Table 19 for the single stacked support condition and in 

Table 20 for the double stacked support condition. The analysis of variance (ANOVA) results are 

shown in the appendix (A.5.1). For pallets in the single stacked support condition, a statistically 

significant reduction in pallet deflection was experienced when switching from small to large 
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boxes on the very low and low stiffness pallets. The change from small to large boxes resulted in 

a 50% reduction in deflection for the very low stiffness pallet and a 76% reduction for the low 

stiffness pallet when they were in a single stacked support condition. For pallets in the double 

stacked support condition, all pallet stiffnesses experienced statistically significant reductions in 

pallet deflection when tested with large boxes. The percent change in pallet deflection experienced 

by switching from small to large boxes ranged from 46% to 59% for those in the double stacked 

support condition. As the amount of force experienced by any pallet in a stacking support condition 

increases, the effect of box size becomes more relevant. While a change from small to large boxes 

is significant for most pallet stiffnesses in both single and double stacked support conditions, there 

was less than a 0.05 inch change in deflection for all combinations tested. Although small, 0.05 

inches of deflection may have real world implications when handling a pallet with a floor jack.  

Table 19: Average worst top deckboard deflection and the percent difference in reference to the 

small boxes during single stacked support condition using boxes with headspace. 

Box Size 
Pallet Deflection (in.) 

Very Low Low Medium High 

Small 

Back A Back A Back A Back A 

0.0450   0.0283   0.0182   0.0130   

(0.0044)   (0.0055)   (0.0023)   (0.0035)   

Medium 

Back A 

 

2% 

Back 

Middle A 

 

8% 

Back 

Middle A 

 

1% 

Back 

Middle A 

 

127% 
0.0460 0.0307 0.0183 0.0295 

(0.0105) (0.0074) (0.0071) (0.0111) 

Large 

Back B 

 

-50% 

Back B 

 

-76% 

Back A 

 

-57% 

Back   

0.0227 0.0067 0.0078     

(0.0015) (0.0015) (0.0038)     

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 
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Table 20: Average worst top deckboard deflection and the percent difference in reference to the 

small boxes during double stacked support condition using boxes with headspace. 

Box Size 
Pallet Deflection (in.) 

Very Low Low Medium High 

Small 

Back A Back A Back A Back A 

0.0773   0.0503   0.0368   0.0243   

(0.0040

)   
(0.0015) 

  
(0.0021) 

  
(0.0025) 

  

Medium 

Back A 

 

 

12% 

Back 

Middle 
A 

 

 

-17% 

Back 

Middle 
A 

 

 

-16% 

Back 

Middle 
A 

 

 

43% 

0.0867 0.0420 0.0310 0.0348 

(0.0078

) 
(0.0061) (0.0044) (0.0076) 

Large 

Back 
B 

 

-46% 

Back 
B 

 

-59% 

Back 
B 

 

-54% 

Back   
0.0420 0.0207 0.0168     
(0.0017

) 
(0.0015) (0.0012) 

    

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 

The locations where the corners of the corrugated boxes touch the pallet are shown in 

Figure 30. The interactions between those corners and the top deckboards of the pallet are 

important in understanding both the observed differences associated with the use of large boxes 

and the location of the worst top deckboards. The differences in pallet deflection observed for large 

boxes is due to the fact that the length of large boxes allow them to completely span the distance 

between blocks across the width causing minimal top deckboard deflection. When analyzing the 

locations of the worst top deckboard deflections, the locations of the box corners have been found 

to dictate which top deckboard will experience the greatest deflection. Since between 2/3 and 3/4 

of the compressive forces have been shown to transfer through box corners (Maltenfort, 1988), the 

top deckboards which directly support corners experience the greatest deflection. Looking at 

Figure 30, it is apparent that the corners of medium boxes rest directly on the front and back-

middle top deckboards. For small and large boxes, the corners rest on the front, front-middle, and 

back top deckboards. For medium boxes, the worst top deckboard deflection was experienced at 

the back-middle measurement location for all pallet stiffnesses except the very low stiffness pallet. 
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Small and large boxes consistently experienced the worst top deckboard deflection at the back 

measurement locations. This is due to the fact that these deckboards have two box corners resting 

on them; therefore, a higher tributary area associated with them. The higher tributary area results 

in a greater force being transferred to the deckboard and therefore greater deckboard deflection.  

 
Figure 30: Graphic showing the location of the corrugated box corners for small, 

medium, and large boxes 

6.4.2. Stringer boards  

As with the top deckboards, only the worst stringer board deflection measurements were 

considered in this analysis since pallet performance is limited by the worst deflection. The worst 

stringer board deflection measurements are given in Table 21 for single stacked pallets and in 

Table 22 for pallets in the double stacked support condition. An analysis of variance (ANOVA) 

test was carried out for both support conditions and the results are in the appendix (A.5.2). 

Although an increase in deflection was observed when switching from small to medium boxes for 

all pallet stiffnesses in both a single stacked and double stacked support conditions, a statistically 

significant change can only be observed for the very low stiffness pallet. For pallets that were 

single stacked, there was a 54% increase in pallet deflection when switching from small to medium 

boxes.  For pallets in the double stacked support condition this increase was 43%. While the effect 

of box size on stringer board deflection for pallets in single and double stacked support conditions 

was shown to be significant for the very low stiffness pallet, the overall change in deflection was 

less than 0.05 inches in both scenarios and serves no practical purpose.  

 

 

Small Medium Large 
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Table 21: Average worst stringer board deflection and the percent difference in reference to the 

small boxes during single stacked support condition using boxes with headspace. 

Box Size 
Pallet Deflection (in.) 

Very Low Low Medium High 

Small 

Center A Center A Center A Center A 

0.0643   0.0378   0.0325   0.0272   

(0.0051

)   
(0.0021) 

  
(0.0030) 

  
(0.0025) 

  

Medium 

Center 
B 

 

54% 

Center 
A 

 

30% 

Center 
A 

 

14% 

Center 
A 

 

52% 

0.0992 0.0493 0.0370 0.0413 

(0.0224

) 
(0.0051) (0.0069) (0.0021) 

Large 

Side 
A 

 

-22% 

Center 
A 

 

0% 

Center 
A 

 

-27% 

Back   

0.0500 0.0378 0.0238     

(0.0036

) 
(0.0029) (0.0050) 

    

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 

Table 22: Average worst stringer board deflection and the percent difference in reference to the 

small boxes during double stacked support condition using boxes with headspace. 

Box Size 
Pallet Deflection (in.) 

Very Low Low Medium High 

Small 

Center A Center A Center A Center A 

0.1023   0.0658   0.0622   0.0442   

(0.0061

)   
(0.0025) 

  
(0.0025) 

  
(0.0015) 

  

Medium 

Center 
B 

 

43% 

Center 
A 

 

16% 

Center 
A 

 

7% 

Center 
A 

 

35% 

0.1458 0.0763 0.0667 0.0597 

(0.0225

) 
(0.0067) (0.0025) (0.0029) 

Large 

Side 
A 

 

-15% 

Center 
A 

 

-3% 

Center 
A 

 

-23% 

Back   

0.0873 0.0635 0.0478     

(0.0035

) 
(0.0026) (0.0029) 

    

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 
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6.4.3. Double Stacking - Bottom Deckboards 

For the top pallet in a double stacked support condition, an analysis of variance (ANOVA) 

test was conducted to determine the effect of box size and pallet stiffness on the observed 

deflection of bottom deckboards oriented along the width and the length. The results of these 

ANOVA tests are in the appendix (A.5.3). The deflection measurements for the worst bottom 

deckboards across the width are given in Table 23, and for the worst bottom deckboards across the 

length are given in  

Table 24. A statistically significant increase in bottom deckboard deflection across the 

width was observed by switching from small to medium boxes regardless of pallet stiffness. The 

largest increase in bottom deckboard deflection across the width was 600% and was observed 

when switching from small to medium boxes on the lowest stiffness pallet. Although the effect of 

box size on bottom deckboard deflection across the width was shown to be statistically significant 

for all pallet stiffnesses, the largest change in deflection was less than 0.04 inches and is of no 

practical importance.  

For bottom deckboard deflection across the length, there is no consistent trend; the effect 

of box size seems to be random in nature. Only the low and high stiffness pallets showed any 

statistically significant effect of switching from small to medium boxes. However, for the low 

stiffness pallet, the change in box size resulted in a reduction of pallet deflection, while for the 

high stiffness pallet an increase in pallet deflection was observed due to a change in box size. 

Although there is no clear trend for bottom deckboard deflection across the length due to change 

in box size, the statistically significant differences are less than 0.02 inches and are too small to 

have any practical implications.   
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Table 23: Average worst bottom deckboard across the width deflection and the percent 

difference in reference to the small boxes during double stacked support condition using boxes 

with headspace. 

Box 

Size 

Pallet Deflection (in.) 

Very Low Low Medium High 

Small 
0.0055  

A 

0.0142  

A 

0.0117  

A 

0.0062  

A (0.0026) (0.0006) (0.0032) (0.0040) 

Medium 
0.0385 600% 

B 

0.0265 87% 

B 

0.0330 183% 

B 

0.0193 214% 

B (0.0046) (0.0060) (0.0075) (0.0023) 

Large 
0.0083 52% 

A 

0.0112 -21% 

A 

0.0018 -84% 

A 
  

(0.0021) (0.0042) (0.0021) 

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 

 

Table 24: Average worst bottom deckboard across the length deflection and the percent 

difference in reference to the small boxes during double stacked support condition using boxes 

with headspace. 

Box Size 
Pallet Deflection (in.) 

Very Low Low Medium High 

Small 

Center A Center A Center A Center A 

0.0437   0.0725   0.0430   0.0330   

(0.0035)   (0.0026)   (0.0075)   (0.0010)   

Medium 

Center A 

 

18% 

Center B 

 

-28% 

Center A 

 

28% 

Center B 

 

44% 

0.0515 0.0522 0.0552 0.0475 

(0.0035) (0.0025) (0.0042) (0.0108) 

Large 

Center A 

 

17% 

Center A 

 

5% 

Center A 

 

11% 

Back   

0.0510 0.0758 0.0478     

(0.0017) (0.0035) (0.0012)     

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet stiffness represent 

statistically significant differences in expected pallet deflection 

 An image of the interaction between the corrugated boxes and the pallets in a double 

stacked support condition is shown in Figure 31. For small boxes, all of the blocks of the top pallet 

are directly supported by a corner of the boxes on the bottom pallet. Supporting the center block 

allows for minimal deflection of the top pallet as a whole and in turn minimal upward deflection 

of the bottom deckboards. For medium boxes, the center block is located in the center of a box and 

is not supported by the box corners. Since the center block is not supported by the box corners, 
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there is greater deflection of the top pallet. Consequently, the bottom deckboards experience a 

greater upward force from the corners of the boxes on the bottom pallet and this results in a greater 

upward deflection. The large boxes also directly support the center block of the top pallet in a 

double stacked support condition and therefore minimal deflection was observed. The bending of 

the top pallet due to the support provided by the corrugated boxes below should hold true for both 

bottom deckboard deflection across the width and across the length. However, the effect box size 

on bottom deckboard deflection across the width displayed a clear trend while no trend was 

observed for bottom deckboard deflection across the length. It was concluded that bottom 

deckboard deflection is more effected by the location of the box corners than by box size. Box 

sizes where the center block of the top pallet is not directly supported will result in a greater bottom 

deckboard deflection. However, further research should be conducted in order to understand the 

effect of box size on bottom deckboard deflection along the length of the pallet.  
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Figure 31: Graphical representation of interaction between corrugated boxes 

and pallets in a double stacked support condition for small and medium boxes 

6.5. UNIDIRECTIONAL BASE DESIGN VERSUS PERIMETER BASE DESIGN  

To analyze the relationship between load bridging and base design, analysis of variance 

(ANOVA) tests were conducted for all support conditions where deflection measurements were 

taken. The results of the ANOVA tests are given in Table 25 (individual ANOVA models are 

presented in the appendix A.5.4). The effect of pallet base design was determined to be statistically 

insignificant for all support conditions except double stacked floor support for top deckboards and 

double stacked floor support for bottom deckboards across the length. Although the ANOVA 

results determined that pallet base design has a statistically significant effect on pallet deflection 

for both the top and bottom deckboards, this difference was observed for treatments that are 

expected to be different (Perimeter Base/Small Boxes vs. Unidirectional Base/Medium Boxes or 

Small Boxes Medium Boxes 
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Perimeter Base/Medium Boxes vs. Unidirectional Base/Small Boxes). Box size was determined to 

have a statistically significant effect for pallets in all support conditions measured except for 

warehouse racking across the length (RAL) and single stacked floor support for top deckboards. 

There were no significant interaction effects for any of the support conditions examined.  

Table 25: Analysis of variance (ANOVA) results of the effects tests for the main effects of base 

design and box size along with the interaction of base design and box size. ANOVA was 

performed using the deflection measurements (inches) for the various support conditions 

Support 

Condition 
Components 

P-values 

Base 

Design 
Box Size 

Base Design 

* Box Size 
Racked Across the 

Width (RAW) 
- - - - 

Racked Across the 

Length (RAL) 
- 0.4817 0.4284 0.827 

Single Stacked 
Top deckboards 0.0726 0.4114 0.3466 

Stringer boards 0.1037 0.0437* 0.3213 

Double Stacked 

Top deckboards 0.0145* 0.0201* 0.2722 

Stringer boards 0.3369 0.0093* 0.2103 

Second Pallet – Width 

Bottom Deckboards 
- - - 

Second Pallet – Length 

Bottom Deckboards 
0.0230* 0.0004* 0.1985 

Note: p-values less than 0.05 indicate a statistically significant main or interaction effect and 

were marked with *. 

The final analysis conducted was to determine the effect of base design on pallet deflection. 

A perimeter base design was compared to a unidirectional base design for medium stiffness pallets. 

Both small and medium boxes were tested and analyzed on both base designs. All support 

conditions were examined except for warehouse racking across the width (RAW) and the double 

stacked floor support for bottom deckboards across the width. The comparisons of the deflection 

results are shown in Table 26. For both small and medium boxes, no differences in deflection were 

observed between the perimeter base design and the unidirectional base design. This was true for 

all support conditions.  
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Table 26: Average worst pallet deflection for medium stiffness perimeter base design and 

medium stiffness unidirectional base design during all support conditions using boxes with 

headspace. 

Support Condition 

Box Size 

Small Medium 

Perimeter Unidirectional Perimeter Unidirectional 

RAW - - - - 

RAL 
  0.2063 A 0.2092 A 0.2004 a 0.0209 a 

 (0.0099)   (0.0089)   (0.0093)   (0.0101)   

Single - TDB 

0.0182 A 0.0208 A 0.0183 a 0.0260 a 

(0.0023) Back (0.0032) Back (0.0071) 
Back 

Middle 
(0.0030) 

Back 

Middle 

Single - SB 
0.0325 A 0.0348 A 0.0370 a 0.0452 a 

(0.0030) Center (0.0055) Center (0.0069) Center (0.0045) Center 

Double - TDB 

0.0368 A 0.0398 A 0.0310 a 0.0377 a 

(0.0021) Back (0.0021) Back (0.0044) 
Back 

Middle 
(0.0012) 

Back 

Middle 

Double - SB 
0.0622 A 0.0615 A 0.0667 a 0.0708 a 

(0.0025) Center (0.0017) Center (0.0025) Center (0.0055) Center 

Double - BDB- F - - - - 

Double - BDB - L 
0.0430 A 0.0465 A 0.0552 a 0.0677 a 

(0.0075) Center (0.0046) Center (0.0042) Center (0.0015) Center 

Note: The values in parentheses are standard deviations. The letters were determined by running 

a Tukey HSD with an alpha level of 0.05. Different letters for a given pallet base design 

represent statistically significant differences in expected pallet deflection 

7. CONCLUSION 

The following conclusions were discovered during this study.  

 Headspace has no practical effect on pallet deflection for most support conditions 

as long as unit loads containing small boxes weigh less than 3,500 lbs, and unit 

loads containing large boxes weigh less than 1,750 lbs.  However, the effect of 

headspace should be considered when stacking multiple unit loads in a floor 

stacking support condition.  

 The effect of box size on pallet deflection was found to be significant especially 

when small and large boxes were compared. The effect was most prominent on low 

stiffness pallets and support conditions that allow more pallet bending. As much as 
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a 50% reduction in deflection was observed when large boxes were stacked on the 

low stiffness pallet when comparted to small boxes.   

 The pressure distribution across the top surface of the pallet showed a greater 

redistribution of pressure towards the supports as box size increased. This pressure 

redistribution towards the supports explains the reduction in pallet deflection as a 

function of box size increasing.  

 Base design was determined to have no significant effect on pallet deflection 

regardless of box size. 

The results indicate that the load capacity of pallets could potentially be increased for certain 

support conditions as long as the pallet only supports larger boxes. This finding will allow 

designers to optimize pallet designs by reducing the required amounts of raw materials.  

8. RECOMMENDATIONS FOR FUTURE RESEARCH 

Additional research should be conducted in order to further understand load bridging on 

block class pallets.  

 Heavier unit loads should be investigated further; it was determined that unit load weight 

determines the extent of load bridging. 

 The effect of headspace should be further investigated by exploring various box sizes, flute 

sizes, and greater unit load weights. 

 The effect of box size on pallet deflection for pallets in a warehouse racking across the 

length (RAL) support condition should be examined by using a more incremental change 

in box size across the length including a box size large enough to span the distance between 

the blocks across the length. 

 Further investigate bottom deckboard deflection on the top pallet in a double stacked 

scenario by either increasing unit load weight or increasing the number of unit loads in a 

floor stacking support condition.  

 Investigate various flute sizes in order to determine if the effect seen for C-flute corrugated 

board applies to other flute sizes.  
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A. APPENDIX 

A.1  COMPONENT MODULUS OF ELASTICITY (MOE) 

The MOE measurement for each pallet component is attached 

A.2 LOADING RATES 

Table 27: Loading rates for various thicknesses of plywood top deckboards, bottom 

deckboards, and stringer boards according to ASTM D3043-17 Standard Test Methods for 

Structural Panels in Flexure 

Plywood 

Thickness 

Loading Rate (in./min.) 

Top deckboard and 

bottom deckboards 

Stringer 

Boards 

0.375 0.8640 1.2907 

0.5 0.6480 0.9680 

0.625 0.5184 0.7744 

0.75 0.4320 0.6453 

 

A.3 PALLET STIFFNESS 

Table 28: Stiffness values obtained from the slope of the load-deflection curve using a uniform 

loading method (airbag) for each pallet given various support conditions. Stiffness values were 

calculated both before and after testing. 

Pallet 

Stiffness 

Support Condition 

Racked Across the 

Width (RAW) 

Racked Across the 

Length (RAL) 

Stacking – Top 

Deckboard 

Stacking – Bottom 

Deckboard 

Before After Before After Before After Before After 

Very Low 1082 1186 791 827 - 20140 - 13226 

Low 2250 2376 2465 2479 30388 27754 - 40966 

Medium 3261 3388 2606 2588 57115 50748 20307 34508 

High 4845 5131 3989 3951 64473 69326 28184 51862 
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A.4 PRESSURE MAT SPEC SHEET 
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A.5 ANOVA TABLES  

A.5.1 TOP DECKBOARDS 

 Single Stacked 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.00528897 0.000529 13.7214 

Error 22 0.00084800 0.000039 Prob > F 

C. Total 32 0.00613697  <.0001* 

 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.00248207 32.1967 <.0001* 

Box Size 2 1 0.00015000 3.8915 0.0612 

Pallet*Box Size 6 5 0.00049615 2.5744 0.0559 

 

 Double Stacked 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.01462618 0.001463 76.3709 

Error 22 0.00042133 0.000019 Prob > F 

C. Total 32 0.01504752  <.0001* 

 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.00795874 207.7836 <.0001* 

Box Size 2 1 0.00001204 0.6288 0.4363 

Pallet*Box Size 6 5 0.00101250 10.5735 <.0001* 

 

A.5.2 STRINGER BOARDS 

 Single Stacked 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.01331273 0.001331 21.8025 

Error 22 0.00134333 0.000061 Prob > F 

C. Total 32 0.01465606  <.0001* 

 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.00768896 62.9617 <.0001* 

Box Size 2 1 0.00153600 25.1553 <.0001* 

Pallet*Box Size 6 5 0.00161170 5.2790 0.0025* 
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Double Stacked 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.02482030 0.002482 42.1766 

Error 22 0.00129467 0.000059 Prob > F 

C. Total 32 0.02611497  <.0001* 

 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.01421252 120.7552 <.0001* 

Box Size 2 1 0.00199838 33.9580 <.0001* 

Pallet*Box Size 6 5 0.00234261 7.9615 0.0002* 

 

A.5.3 BOTTOM DECKBOARDS 

 Width 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.00434018 0.000434 26.1361 

Error 22 0.00036533 0.000017 Prob > F 

C. Total 32 0.00470552  <.0001* 
 

 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.00002822 0.8498 0.4411 

Box Size 2 1 0.00240000 144.5255 <.0001* 

Pallet*Box Size 6 5 0.00052911 6.3725 0.0008* 

 

 Length 

Source DF Sum of Squares Mean Square F Ratio 

Model 10 0.00476073 0.000476 21.2303 

Error 22 0.00049333 0.000022 Prob > F 

C. Total 32 0.00525406  <.0001* 
 

Source Nparm DF Sum of Squares F Ratio Prob > F 

Pallet 3 2 0.00202896 45.2404 <.0001* 

Box Size 2 1 0.00009204 4.1046 0.0551 

Pallet*Box Size 6 5 0.00143338 12.7842 <.0001* 
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A.5.4 BASE DESIGN COMPARISON 

 Warehouse racking across the length (RAL) 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 0.00011865 0.000040 0.4305 

Error 8 0.00073500 0.000092 Prob > F 

C. Total 11 0.00085365  0.7369 

 

 Single stacked top deckboard 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 0.00011292 0.000038 2.0074 

Error 8 0.00015000 0.000019 Prob > F 

C. Total 11 0.00026292  0.1916 

   

 Single stacked stringer board 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 0.00027492 0.000092 3.4045 

Error 8 0.00021533 0.000027 Prob > F 

C. Total 11 0.00049025  0.0737 

 

 Double stacked top deckboard 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 0.00014092 0.000047 6.4789 

Error 8 0.00005800 7.25e-6 Prob > F 

C. Total 11 0.00019892  0.0156* 

 

 Double stacked stringer board 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 0.00016667 0.000056 4.8309 

Error 8 0.00009200 0.000012 Prob > F 

C. Total 11 0.00025867  0.0333* 

  

Double stacked bottom deck board 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 0.00107333 0.000358 14.6530 

Error 8 0.00019533 0.000024 Prob > F 

C. Total 11 0.00126867  0.0013* 

 


