
CHAPTER 5 

LOCAL OPERATORS 

 

 

After initial triangulation, there is a need to modify the mesh in such a way that the quality of 

the reconstructed image will improve or the mesh complexity will be reduced to achieve an 

optimal output. This chapter starts with an overview of the algorithm proposed by Dr. Lee to 

convert height field data into a triangular mesh. It will be followed by a new algorithm, which 

is adapted for gray-scale image data. Next, the chapter will present the method for region 

selection, which is necessary for triangle splitting and neighborhood assignment, which helps 

the edge-swapping operation faster. Eventually, the chapter will end with details about local 

operators that will be used for mesh simplification as well as image enhancement. 

 

 

5.1 High-Level Algorithm 

Since the approximation algorithm proposed by Dr. Lee is designed for height field data, it 

can be unsuitable for some images, which have slightly different characteristics from height 

field data. First of all, natural scene images tend to contain large changes in intensity while it 

is normally assumed that sharp spikes can hardly be found in terrain data. Secondly, 

geographical data usually does not contain clusters of spikes located near each other. 

However this is not the case for natural images especially for texture images where dark and 

white pixel data can randomly occur very close together. The major part of the algorithm in 

this thesis is still based on Dr. Lee’s algorithm except for some minor adaptation. This will be 

discussed in Section 5.1.2. 

 

 

5.1.1 SML High-Level Algorithm 

In his dissertation, Dr. Lee performed initial triangulation based on wavelet coefficients as 

described in Chapter 4 as the first step. Next he performed M-1 iterations of refinement, 

regularization and mesh reduction. The refinement includes candidate selection for splitting, 

neighborhood assignment for triangle pairing, edge swapping and shape-preserving splitting. 
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Finally, regularization and mesh reduction are used to decrease mesh complexity by 

removing redundant vertices. 

 

The next step is to select candidates for refinement based on the magnitude of the 

wavelet coefficients. These candidate triangles are referred to as 0-neighbor triangles. This 

will be presented in Section 5.2.1. Next, triangles are assigned 1-neighborhood and 2-

neighborhood status. This operation is known as neighborhood assignment and will be 

presented in Section 5.2.2. After this, the triangles that have no current status will be 

considered as 3-neighborhood (non-neighborhood). This is necessary for the convergence of 

the splitting and edge swapping operations. In splitting, triangles are paired only among 0-

neighborhood or 1-neighborhood triangles while edge swapping can be swapped only among 

triangles that have 0 to 2-neighborhood status. This helps the algorithm to split only on the 

necessary non-smoothed triangles as well as limit the swapping area to 2-neighborhood 

triangles. Some algorithms use the fan-area limitation [Lu, Le and Yun 00]. Edge swapping 

and splitting operations are presented in Sections 5.4.1 and 5.4.3 respectively. Finally, mesh 

reduction, which consists of vertex removal and edge collapse operators, are used to remove 

redundant vertices and edges respectively. These operations will be shown in Sections 5.3.1 

and 5.3.2. These mesh simplification operations try to reduce the mesh complexity as much 

as possible while, at the same time, try not to significantly degrade the quality of the image. 

Figure 5.1 shows the flow diagram of the approximation algorithm proposed by Dr. Lee. Its 

high-level algorithm is shown. 

1. Decompose two-dimensional data with discrete wavelet transform 

2. Perform initial triangulation from basic and variant templates 

a) Evaluate wavelet detail coefficients at coarsest resolution level M 

b) Assign basic and dual template labels for each region 

c) Tessellate square regions with variant templates 

3. For level = M to 0 

a) Refinement and regularization 

For k = 1 to 3 

i. Calculate detailed energy for region candidate selection 

ii. Perform neighborhood assignment 

iii. Refine by shape-preserving splitting   

iv. Regularize with edge swapping 

b) Mesh simplification (vertex removal and edge collapse) 
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Figure 5.1 – Flow diagram of SML algorithm. 

 

 

5.1.2 New Approach 

In this alternative approach, most of the work is based on Dr. Lee’s work except some minor 

changes and modifications for the image data. These modifications include the use of error-

based candidate selection for the last three iterations in the algorithm and wavelet-coefficient 

checking for vertex removal operation. Since the wavelet transform could not detect all the 

edges in the image, it is necessary to use an error-based scheme to refine the undetected 

regions. Furthermore, after some refinement, most of the vertices are found to be located 

along the edges, where large wavelet coefficients lie. It would be an advantage to use this 

information to check for flatness of the group of triangles that shares the same vertex. Next, 

this algorithm introduces a wavelet attraction operation, which is used to move vertices to 
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locations where large wavelet coefficients can be found. This operation is presented in 

Section 5.4.2. Finally, to remove vertex redundancy, a short edge removal operation is used 

to reduce the mesh complexity. This will be discussed in Section 5.3.2. The only difference in 

the algorithm is in step 3. Its high level algorithm is shown below while Figure 5.2 shows its 

equivalent flow diagram. 

 

1. Decompose two-dimensional data with Discrete Wavelet Transform 

2. Perform Initial Triangulation from basic and variant templates 

a) Evaluate Wavelet Detail Coefficients at coarsest resolution level M 

b) Assign basic and dual template label for each region 

c) Tessellate square regions with variant templates 

3. For level = M to -2 

a) Candidate Region Selection 

If M>=0 

Calculate wavelet detailed energy for region candidate selection 

Else 

Calculate error energy for region candidate selection 

b) Perform neighborhood assignment 

c) Refine by shape-preserving splitting   

d) Regularize with edge swapping with  1α

e) Mesh simplification with vertex removal and edge collapse operations 

f) Regularize with edge swapping with  2α

 

 

5.2 Region Selection 

Region selection is important to the algorithm in that, first, it helps to select 

appropriate triangles to be used for splitting and, second, it limits the area for edge 

swapping so that this operation will converge in a short period of time. This operation 

is composed of candidate selection and neighborhood assignment. 
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Figure 5.2 – Flow diagram of the new algorithm. 

 

 

5.2.1  Candidate Selection  

To enhance the image quality, there should be some criteria to select the triangles for 

refinement. These triangles are called candidates. Typically, it is appropriate to subdivide a 

triangle containing large error into smaller triangles to produce a better approximation. These 

triangles can be analyzed by the total error energy. 
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 Total Square Error  =     (5.1) ( ) ( )
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where x and y are locations within triangle of interest. Normally, when this error is higher 

than some threshold, this triangle  is subdivided into some smaller triangles. The method for 

assigning the neighborhood status will be discussed in the next section. 

 

In some applications, where large error must be avoided, it will be more appropriate 

to use maximum error as the criteria to subdivide the triangle. This error can be defined as 

Maximum Absolute Error ( ) ( )max , ,f x y f x y
∧= − 


    (5.2) 

Alternatively, the other factor that can be use to identify unfit triangles is wavelet 

coefficients. Since wavelet coefficients can be used to detect the change of intensity, large 

wavelet coefficients can be used to identify triangles that need refinement. Since the wavelet 

transform always yields three types of wavelet coefficients (horizontal, vertical and 

diagonal), it is necessary to consider all of these. The wavelet scheme for selecting triangles 

is, therefore, based on the square sum of detail coefficients, which can be expressed as 
2 21 2 3

, , , , , , , ,M i j M i j M i j M i je d d d= + +
2
     (5.3) 

In the same way, if this decision criterion is greater than a threshold value, the corresponding 

triangle contains some detail information that cannot be neglected and, therefore, must be 

subdivided into smaller sub triangles. 

 

There are two main schemes to this assignment: vertex-based and face-based 

assignment. For the vertex-based neighborhood, the magnitude of the sum of wavelet 

coefficient or error in all triangles surrounding the vertex is compared with a wavelet or error 

energy threshold. If it exceeds the threshold, the 0-neighborhood label is assigned to all the 

triangles whose corner lies on that vertex location. For the face-based neighborhood, the 0-

neighborhood are assigned to those triangles whose sum of wavelet coefficients or error in 

the triangle is greater than the threshold. This means that the triangle contains non-negligible 

detail information could not be reasonably represented by a single triangle. In this thesis, 

face-based assignment is employed. There is no difference for 1-neighborhood and 2-

neighborhood assignment for both schemes. 
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5.2.2 Neighborhood Assignment 

After candidate selection is performed, it is necessary to assign its neighborhood status to 

neighboring triangles so that, when pairing among the candidates is not possible, these 

neighbors can replace the candidates. Furthermore these neighbor triangles can also be used 

as the limitation area for edge swapping. This method is called neighborhood assignment. 

Triangles can be classified into four types of neighborhood: 0-neighborhood (candidate 

triangle), 1-neighborhood, 2-neighborhood or 3-neighborhood (or non-neighborhood).  

 

Assigning 0-neighborhood status to triangles has been discussed in Section 5.2.1. 

After candidate selection, 1-neighborhood status is assigned to triangles whose edges are 

common with those 0-neighborhood triangles. After 1-neighborhood assignment, 2-

neighborhood status is assigned to all those triangles that have only one common vertex with 

0-neighborhood triangles. The rest of the triangles are assigned as non-neighborhood. This 

means that they will not be used in refinement process. Figure 5.3 shows the difference 

between the two schemes. The neighborhood assignment for vertex-based scheme can 

defined by: 

 
{ ii TvTvN ∈= |)(0 }

0

=
=

        (5.4) 

1( ) { | , ( )i i j j jN v T T T E T N v= = ∈∩ 0 0( )iT N v∉ and     (5.5) 

2( ) { , ( )}i j j jN v T T v T N v= = ∈∩       (5.6) 

while the neighborhood assignment for face-based scheme can defined by: 

{ }TTN =)(0          (5.7) 

1( ) { | }i i iN T T T T E= ∩        (5.8) 

2( ) { | }i i kN T T T T V= ∩        (5.9) 

 
The face-based approach has proved to be more popular than the vertex-based 

approach because it tends to be more efficient and accurate. This is because the vertex-based 

method usually produces more redundancy by selecting more 0-neighborhood triangles. 

Although it can produce a better approximation than the face-based scheme, it also produces 

many unnecessary vertices and triangles. This can increase processing time to the algorithm. 

 

To consider the role of each neighborhood type, let the connections of 0-

neighborhood triangles be active regions and connection of 1-neighborhood triangles be 

dependent regions. Generally, when the triangles are refined, it is necessary to find the point 

 52 



CHAPTER 5. LOCAL OPERATOR 

where it will use to subdivide. There are many decision criterions to find this point. For fast 

calculation, a triangle’s centroid or barycenter can be used as split point. However, this will 

not guarantee a good approximation. Other choices can be the points where the largest error 

or wavelet coefficient are located. However, these points can lie on the edge of the triangle 

instead of inside the triangle itself. In this situation, the triangle is matched with another 

triangle in the active region before subdivision. Figure 5.4 shows the two triangle 

subdivisions. 

 

In the refinement process, the criterion for selecting triangle pairs gives priority to the 

triangles in the active region over triangles in the dependent region. If the triangle is 

connected to no 0-neighborhood triangle or 0-neighborhood triangles that have already been 

refined, it will choose a triangle in the dependent region. The role of 2-neighborhood 

triangles is to define swapping area for the edge swap operation used to regularize the mesh. 

These 2-neighborhood triangles help the operation to converge faster. This area also includes 

active and dependent regions. 

 

  
Figure 5.3 - Neighborhood assignment. (a) Face-based neighborhood. (b) Vertex-based 
neighborhood.  
 

 

    
Figure 5.4 – Triangle subdivision. (a) Individual subdivision. (b) Pair subdivision. 
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5.3 Mesh Simplification 

This section will give a detailed description about mesh simplification operators, which try to 

reduce the mesh complexity without considerably reducing the quality of the image. Since 

many unnecessary vertices or triangles can redundantly be added to the mesh after a 

refinement step, it is possible to remove these vertices without substantially degrading an 

image’s quality. Two common methods are vertex removal and short edge collapse 

operations. However, to avoid violating triangular mesh requirement, there are some 

conditions that must be satisfied before the operations can be performed. Vertex removal 

operator will be discussed in Section 5.3.1 while the short edge collapse operator is presented 

in Section 5.3.2. 

 

 

5.3.1  Vertex Removal Operation 

Since the intensity data can be considered as representing height field data, each triangle 

plane that approximates the intensity value can be imagined as three-dimensional plane by 

projecting the intensity values to the height field value in z-axis. Normal vectors of these 

triangle planes are very useful to find the flatness of the connected triangles. The vertex 

removal operator can, therefore, be used to increase the compression ratio, without 

significantly degrading the quality of the image, by deleting the vertices whose surrounding 

triangles have approximately the same direction of normal vectors. One vertex and one face 

are reduced every time this local operator is performed.  

 

First the operator starts by calculating the normal vector of each face and their 

average surface normal. Next, Gauss mapping is performed to find the deviation angle. This 

solution maps the surface normal vectors of all surrounding faces onto a unit sphere to check 

for the deviation in surface normal directions. This average normal vector and angle deviation 

can be calculated by  

( )0
10

1 k

i
i

n
N V =

= ∑n

))

      (5.10) 

dθ =
1
max

i k≤ ≤
(( 1

0cos in n− ⋅      (5.11) 

where k is the number of triangles surrounding the vertex V . is the average normal vector 

of triangles under consideration while is the maximum deviation in angle of the vectors. 

0n

dθ
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Figure 5.5 shows the concept of Gauss mapping. If the maximum angle deviation is less than 

a threshold value, this indicates that the n-connected planes are smooth and, thus, the vertex 

can be removed. 

   
 

(a) (b) (c) 
 

Figure 5.5 – Gauss mapping. (a) Gauss mapping maps normal surface vector to a unit sphere. 
(b) An example of smooth region that have approximately the same direction of normal 
vectors. This will satisfy vertex removal criteria (c) An example of region where normal 
vectors point to different direction. This will not satisfy vertex removal condition.  
 

However, this criterion can be biased in some cases. For example, if the average 

normal vector is biased to a group of normal vectors, it could produce an undesired outcome, 

deleting a vertex from a non-smooth region. This is shown in Figure 5.6 (b). To solve this 

problem, an autocorrelation matrix is introduced. Since its eigenvalues represent the total 

deviation, these values can be used as the vertex removal criteria. This is shown in Figure 

5.6(c) where the autocorrelation formula can be expressed as: 

( ) ( ) 10

1 k
T

i i
i

R v n n
N v =

= ∑     (5.12) 

 

          
(a) (b) (c)  

 
Figure 5.6 – Biased Gauss mapping and autocorrelation representation. (a) Example of good 
average surface normal vector (black arrow). (b) Example of biased average surface 
normal vector . (c) Autocorrelation representation of normal vectors. 

0n

0N
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The results from this autocorrelation matrix are three eigenvalues that represent the 

approximation of the overall normal vectors. The largest value (red arrow) is equivalent to 

the average normal vector n  while the two smallest eigenvalues indicate the deviation in two 

perpendicular planes. Dr. Lee has found that these values perform better because it does not 

depend on the average normal vector that can be biased.  The criteria for the vertex removal 

operation is 

0

1 2 λλ λ δ≤ <      (5.13) 

where  is the threshold that is used to control the maximum deviation. If this value is too 

low, very little or no redundant vertex will be deleted. However if this value is too large, 

some important vertex will be deleted, causing the final quality to degrade dramatically. 

λδ

 

As the mesh becomes more complex, it requires more time to perform this local 

operation. One way to reduce processing time is to perform pre-checking. After some 

observation, it is observed that more than half of the vertices in the triangular mesh lie on the 

location where large wavelet coefficients occur. The pre-checking condition can be expressed 

as 
2 2 21 2 3

, , , , , ,m i j m i j m i j wd d d δ+ + <      (5.14) 

where  is the threshold to control pre-checking strictness. Setting this value too low can 

cause redundant vertices to remain unresolved, while setting this value too high would cause 

the algorithm to gain no advantage of this pre-checking at all. 

wδ

 

 

5.3.2 Edge Collapse Operation 

The other common local operation that can be used to reduce the number of triangles in the 

triangular mesh is edge collapsing. Typically this method removes two triangles and one 

vertex from the triangulation by merging two adjacent vertices. Figure 5.7 shows some 

examples of this.  
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Figure 5.7 – Edge collapse example. (a) Original triangulation. (b) Edge collapse by 
removing vertex V . (c) Edge collapse by removing vertex V . (d) Edge collapse by replacing 

both vertices by 

2 1

( )1 2

2
V V+

. 

 

There are many criteria that can be used to select the vertices and triangles. One of the 

most popular ones is to use the distance between two vertices. Figure 5.8 shows an example 

of an edge collapse operator. If the edge is shorter than some edge collapse threshold, the 

edge is removed. Although it is consistent to remove the edge, this distance criterion does not 

guarantee a good approximation.  

 
Figure 5.8 – Top view of an edge collapse operation. 

 

For example, Figure 5.9 illustrates a condition where edge collapse will not produce a good 

approximate result. Although vertices V  and V  lie close together when looking from the top 

viewpoint, they can be located far away in the horizontal viewpoint (front view and side 

view). Figure 5.10 shows the result of edge collapse by removing vertex V  or vertex V . 

Both reconstructed cases do not resemble the original well. Therefore it is necessary to 

consider the vertical distance as well as the horizontal distance. Figure 5.11 shows an 

example of a desired case where the two vertices lie close to each other in both horizontal and 

vertical distance.  

1 2

1 2
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Top View 

 

 

 

Side View 

Front View 

Figure 5.9 – Undesirable condition for edge collapse. 

 
 

Figure 5.10 – Undesirable result of edge collapse. 

 

The edge collapse conditions are 

1 2v vz z δ− < v       (5.15) 

and   ( ) ( )1 2 1 2

2 2

v v v vx x y y δ− + − < H     (5.16) 

These two distances can be combined into one parameter as total distance to speed up time 

for computing as 

( ) ( ) ( )1 2 1 2 1 2

2 2 2

v v v v v vx x y y z z δ− + − + − < d     (5.17) 

This means that any vertex V that lies adjacent to vertex V  within a sphere distance of  

can be removed while maintaining an overall representation of the mesh. This operator is also 

efficient in time because it involves only calculation and comparing of the distance of two 

vertices.  

1 2 dδ
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Figure 5.11 – Short edge collapse. 

 

However there are some cautions that should be made before removing any edge from 

the triangular mesh. Figure 5.12 demonstrates how removing an edge can cause violation in 

triangulation. When vertices V  and V  are merged to either position V  or V , triangles 

 and triangle  are removed. However, four more triangles , ,  

and , are forced to have zero area and this causes violation in triangulation. In this case, 

it is also impossible to collapse edge 

1 2 1

523∆

2

15∆132∆

∆

241∆ 3 264∆

461

13 , 32 ,24  and 41 . 

 

 
Figure 5.12 – Triangulation violation caused by edge collapse. 

 

There are many solutions to this problem. Besides checking for the feasibility of 

removing the edge, an easy solution is to check whether the edge lies in the convex polygon 

of its surround vertices. This condition guarantees that no violation will occur. Figure 5.13 

shows the possibilities of removing an edge from the polygon. One of the ways to check for 

convexity of the polygon is to find cross product of V V and V V , where V  is the individual 

surrounding vertex, and V and V are the adjacent vertices of V . Since we are only interested 

in the z-axis, the criteria can be reduced to 

0 1

JJJJG
0 2

JJJJG

0

0

1 2

1 0 2 2 1 0 2 0
( )( ) ( )( )V V V V V V V Vx x y y y y x x− − − − − 0>   (5.18) 

 59 



CHAPTER 5. LOCAL OPERATOR 

for each neighboring vertex V  that is adjacent to the deleted vertex. Figure 5.14 shows an 

example where a concave polygon can produce violation in the triangulation. Therefore, 

checking for polygon convexity before removing a vertex or an edge can ensure validation in 

triangulation. 

0

  

 

 

 

 

 

 

 

 

 

 

Figure 5.13 – Effect of edge collapse on convex polygon. It is possible to collapse any edge 
from the convex polygon without causing violation in the triangular mesh. 
 
 

 

 

 

 

 
(a) (b) (c) 

 

 

 

 

 

 (f) (d) (e) 
 

Figure 5.14 – Effect of edge collapse on a concave polygon. Removing a vertex from a 
concave polygon can cause a violation in triangulation if an inappropriate edge is chosen. (a) 
Original polygon with vertex of interest. For this polygon, only case (d) and (f) do not violate 
the triangulation rule. 
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5.4 Image Enhancement 

After initial triangulation, the reconstructed image from the triangulation usually does not 

represent the original image well. This section will give the description of image 

enhancement operators that try to increase the quality of the reconstructed image by adding as 

few triangles as possible to the triangular meshes. 

 

5.4.1  Edge Swap Operation 

The edge swap operator is very useful in many triangular mesh applications. First, it can be 

used either to regularize the mesh or improve the image quality without inserting new 

vertices. One of the most popular regularization techniques is known as Delaunay 

triangulation. This will be discussed in Section 3.2. This scheme tries to maximize the 

minimum angle of all the triangles. Although the use of this ‘fat’ triangle is not desirable in 

some cases, improved Triangulated Irregular Network (TIN) [Kim, Park, Jung, Cho 99] 

proves that Delaunay mesh can be compressed at compression rate of 0.30 bits/vertex [Kim, 

Park, Jung, Cho 99]. While a smaller number of thin, sliver triangles can give a better 

approximation to the image, this requires up to 12 bits/vertex for non-Delaunay triangulation.  

 

The decision for Delaunay triangulation is usually based on the angles of the triangles. 

The input is two connected triangles. The edge swap operation will try to regularize the mesh 

by maximizing the minimum angles found in these two triangles. Figure 5.15 shows an 

example of a Delaunay mesh decision. This can be formulated as 

     (5.19) i i( ) (min , min ,i j i jT T T T>( ( )

)j

where T  and T are the input triangles and T and are the future swapped triangles.  i j
i i i jT

 

The other common criterion for edge swap is the total error within the two triangles. 

To give a better approximation of the original image, the current and predicted error bounded 

within the triangle are calculated for comparison. This decision can be expressed as 

i( ) i( ) ( ) (i j iE T E T E T E T+ < +     (5.20) 

However, this data-dependent schemes can be time consuming because it requires an error 

calculation for every image pixel within the triangles while Delaunay calculation needs only 

to compare the minimum angles. This scheme is shown in Figure 5.16.  
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Figure 5.15 – Delaunay triangulation decision (a) Two connected triangles that have not been 
regularized. (b) Delaunay scheme regularizes the mesh by swapping the edge to maximize the 
minimum angle. 
 

 

 
Figure 5.16 – Error-based edge swap (data-dependent) (a) Pair of triangles that do not 
represent the original data well. (b) New pair of triangles that produce a better approximation. 
 

However, while data-dependent triangle is preferred for optimal result, sometimes it is 

undesirable to have long and sliver triangles. Therefore, in his dissertation, Dr. Lee has 

proposed a formula to compromise the importance of both the Delaunay and data-dependent 

schemes. This can be defined as  

( ),i jT Tξ α= ( )1A αℜ + − ℜE

)

     (5.21) 

where 

( )
(

min ,
min ,

i j
A

i j

t t
T T

ℜ =
(
(

  
( ) ( )
( ) ( )

1
1

i j
E

i j

E T E T
E t E t

+ +
ℜ =

+ +
  (5.22) 

Aℜ  and ℜ  are the ratios of minimum angles and ratio of total errors of the two set of 

triangles respectively. This mesh regularity factor is controlled by parameter . If  is 1, the 

E

α α
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triangulation will base on Delaunay decision and it will be data dependent scheme if  is 0. 

The range of 0  will give the combination of both the Delaunay and the data-

dependent triangulation, depending on the weight of the . This result will be presented in 

Section 6.3.1. 

α

de

1<< α

α

 

 

5.4.2 Wavelet Coefficient Attraction Operation 

There are many operators that can improve the quality of the reconstructed image. However, 

most of them involve insertion of new vertices or edge swapping.  These operators usually do 

not involve in relocation of vertex position. Therefore the improvement will generally be 

limited by the fixed location of the vertices. Figure 5.17 shows how the edge swap operator 

has no effect in improving the result. Notice that the region in rectangle , and do 

not achieve any improvement after edge swap operator is performed. 

bcfe hg,

 

One of the most common vertex-moving operations is to find a new vertex location 

with minimum error. However this brute force approach will be too time-consuming for 

many real-time applications. One of the new approaches to move the vertices efficiently is to 

use wavelet coefficients. Since wavelet coefficients indicate the locations of edges where 

vertices should be found, this coefficient can be used to attract the vertex closer to these edge 

locations. The vertical wavelet coefficient will attract the vertices horizontally while the 

horizontal wavelet coefficient will try to vertically pull the vertices towards itself. This 

concept is shown in Figure 5.18. 

 

However there are many conditions that must be met before moving each vertex. First 

the vertex must be located in the area where wavelet coefficient is very low. It requires 

checking wavelet coefficients in the surrounding area with magnetic threshold, , because it 

is unnecessary to move the vertex, which is already located near or on the large wavelet 

coefficient. The size of this area template, , will depend on the size and resolution image 

as well as the weighing template, which will be discussed next. Figure 5.19 (a) shows a 3x3 

template used for comparing with magnetic threshold, .  

Pµ

Tµ

Pµ
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Figure 5.17 – Limitation of edge swap (a) Original mesh. (b) New mesh after edge swap 
operation does not produce much better result. 
 

 
Figure 5.18 – Wavelet coefficient attraction (a) Edge (black line) detected by Wavelet 
Transform. (b) Vertices are attracted to the nearby large magnitude wavelet coefficients. (c) 
Better approximation by moving vertices. 
 

 

 

 

 

 

 

 

 

 

Figure 5.19 - Templates for wavelet coefficient attraction (a) Area template (b) horizontal 
attraction template (c) Vertical attraction template. The black-bordered box indicates the 
location of the vertex of interest. 
 

After checking that the surrounding pixels have total detail energy lower than some 

threshold value, the vertex uses the wavelet horizontal and vertical attraction templates 

shown in Figure 5.19 (b) and (c) respectively to look for possible large wavelet coefficients 

nearby. While using the horizontal attraction template with length, , the information is 

retrieved from the vertical wavelet coefficient and vice versa. During the horizontal check, it 

will try to compare the magnitude of the wavelet coefficients on the left and right of the 

template. The vertex will move to whatever direction that has the heavier (or larger) wavelet 

Lµ
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coefficient with the difference larger than magnetic additional weight, . This also applies 

to the vertical template where top and bottom balance is used instead of left and right 

comparison.  

Wµ

 

To prevent the creation of invalid triangular meshes, the new vertex location must be 

checked for consistency before moving the vertex. First, it must not be located on another 

vertex location or outside of image boundary. Second, it must satisfy clockwise orientation so 

that all triangles will always have positive normal vectors. Figure 5.20 shows an example 

when moving vertex can cause violation in triangular mesh.  

 

 
Figure 5.20 – Triangular mesh violation after vertex translation. (a) Original triangulation 
with strictly clockwise orientation. (b) Moving vertex V causing their vertex to be ordered in 
counter-clockwise direction.  
 

 

5.4.3 Shape-Preserving Split Operation 

There are many times when edge swapping and vertex translation is limited to improving the 

quality of the reconstructed image because of the limited number of current vertices. There is 

a need to perform triangle subdivision to improve the reconstructed output. For example 

when an image is represented by only ten triangles, it may be impossible to improve the 

output quality without inserting a new vertex to the triangulation to obtain a better 

approximation. Generally, there are two types of triangle subdivision: Subdivision within the 

triangle itself and subdivision among the triangles in active or dependent region. Splitting 

among triangles can be performed on two or more triangles. However, normally, it is applied 
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to two triangles because of simplicity and its better approximation. Figure 5.21 shows an 

example of each type of subdivision. 

 

One of the easiest ways to choose the location of the new location is to use the 

triangle centroid.  Although this method is fast in computing and gives good regularity in the 

new triangles created, it does not guarantee the result and, therefore, can add unnecessary 

vertices and triangles to the triangulation. The other two possible solutions are to find the 

location of maximum error and absolute wavelet coefficient in the triangle. However, 

although the position is known, this does not give any suggestion as to how the triangle 

should be cut. Dr. Lee has stated in his dissertation that it is possible to use the wavelet 

detailed coefficient to find the best cutting direction instead of the vertex location. First the 

direction is calculated before find an appropriate paired triangle. Next the best cutting 

direction for the paired triangle is calculated. In the best case, the inserted point is the 

intersection location of these two cutting lines. If the lines do not intersect, the average of the 

locations of the cutting lines and the shared edge is used as the insertion point. Figure 5.22 

shows the concept of this directional subdivision. Let be the barycenter point of the triangle 

and the gradient vector, which determines the discontinuities direction in the two-dimensional 

image. This can be expressed as 

tc
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Implicitly, the cutting direction, which is perpendicular to this direction, can be defined as  
T

f fg
y x

⊥  ∂ ∂
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
      (5.24) 

With this slope and passing point, the first line equation is obtained. The second line equation 

is easily computed from the edge information. With these two known line equations, it is 

possible to compute the intersection points. The splitting point is the average of the two 

intersecting points as described. If finding an appropriate pairing or splitting point is 

unsuccessful, splitting within the triangle is used to solve the problem. 
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Figure 5.21 – Triangle split. (a) Split within triangle. (b) Split among triangles. 

 

 
Figure 5.22 – Directional split based on wavelet coefficient. (a) Directional is calculated from 
vertical and horizontal detailed coefficient. (b) With the help of barycentric point, , 
intersection point, V , and pair triangle can be found. (c) The vertex that is not on the shared 
edge is used as the final cutting line direction. (d) Basing on the pair triangle, the cutting line 
as well as the intersection point on the shared edge is calculated. (e) The average of two 
intersection points is used as the insertion point.  
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